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ABSTRACT 

 

Regulation and Synchronization of the  

Master Circadian Clock by Purinergic Signaling  

from Suprachiasmatic Nucleus Astrocytes. (August 2012) 

Alisa Diane Womac, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Mark Zoran 

 

Molecular, cellular, and physiological processes within an organism are set to occur at 

specific times throughout the day. The timing of these processes is under control of a 

biological clock. Nearly all organisms on Earth have biological clocks, ranging from 

unicellular bacteria and fungi to multicellular plants, insects, reptiles, fish, birds, and 

mammals. The biological clock is an endogenous time-keeping mechanism that 

generates the onset of many processes and coordinates the phases of processes over 24 

hours. While the biological clock allows these organisms to maintain roughly 24-hour, 

or circadian, timing in daily processes, many organisms have the ability to set their 

clocks, or entrain them, to changes in light. In mammals, the suprachiasmatic nucleus 

(SCN) is the master biological clock that entrains daily physiological and behavioral 

rhythms to the appropriate times of day and night.   
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The SCN is located in the hypothalamus and contains thousands of neurons and glia that 

function in coordinating system-level physiological rhythms that are entrained to 

environmental light cues. Many of these neurons and glia are individual circadian 

oscillators, and the cellular mechanisms that couple them into ensemble oscillations are 

emerging. Adenosine triphosphate (ATP) is a transmitter involved in local 

communication among astrocytes and between astrocytes and neurons. ATP released 

from astrocytes may play a role in SCN cellular communication and synchrony.   

 

Extracellular ATP accumulated rhythmically in the rat SCN in vivo, and ATP released 

from rat SCN astrocytes in vitro was rhythmic, with a periodicity near 24 hours. ATP 

released from mouse SCN astrocytes was circadian, and disruption of the molecular 

clock abolished rhythmic extracellular ATP accumulation. SCN astrocyte cultures with 

disrupted molecular clocks also had marked reductions in total ATP accumulation 

compared to SCN astrocyte cultures with functional biological clocks. Furthermore, 

ATP-induced calcium transients were rhythmic, and this rhythmic purinergic sensitivity 

was abolished in clock mutant astrocytes. Pharmacological blockade of purinergic 

signaling, with antagonists of both the P2X7 and P2Y1 receptors, led to a gradual 

reduction in the amplitude of coordinated ATP accumulation over three days. These 

purinergic receptor antagonists, as expected, led to a reduction in calcium responses of 

SCN astrocytes to ATP and led to a dampening of clock gene expression rhythms as 

determined by PER2::LUC bioluminescence reporting in SCN astrocytes.  
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These data demonstrate that astrocytes of the mammalian SCN rhythmically release ATP 

and are rhythmically sensitive to ATP in a manner dependent on their intrinsic molecular 

clock. Ensemble rhythmicity of SCN astrocytes is, in turn, dependent on that rhythmic 

purinergic signaling via both P2X and P2Y classes of ATP receptors. These results are 

indicative of a functional role for ATP accumulation within the SCN, with astrocytes 

releasing ATP every 24 hours for continual signaling onto astrocytes and neurons to 

maintain daily coordinated synchrony of the clocks in these cells. 
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NOMENCLATURE 

 

AMP   Adenosine-5'-monophosphate 

ATP   Adenosine-5‟-triphosphate 

BBG   Brilliant Blue G, specific antagonist to P2X7R 

BMAL1 Brain and Muscle Arnt-Like protein1, mammalian canonical clock 

protein 

Bmal1 Brain and muscle arnt-like protein1, mammalian canonical clock 

gene 

Ca2+ Calcium ion 

cAMP   3'-5'-cyclic adenosine monophosphate 

CLOCK Circadian Locomotor Output Cycles Kaput, mammalian canonical 

clock protein 

Clock Circadian locomotor output cycles kaput, mammalian canonical 

clock gene 

CRY CRYPTOCHROME, mammalian canonical clock protein 

Cry Cryptochrome, mammalian canonical clock gene  

 

 

 

 

 



 x 

CT Circadian time 

DD   Constant darkness conditions 

E-box Enhancer box, binding site within promoter region 

GTP   Guanosine-5'-triphosphate 

K+   Potassium ion 

LD   Light-dark conditions 

MRS 2'-Deoxy-N6-methyladenosine 3',5'-bisphosphate tetrasodium salt 

(MRS-2179), specific antagonist to P2Y1R  

Na+   Sodium ion 

PER  PERIOD, mammalian canonical clock protein 

Per  Period, mammalian canonical clock gene 

P2XR   Purinergic Receptor, ligand-gated ionotropic receptor 

P2YR   Purinergic Receptor, G-protein coupled metabotropic receptor 

SCN   Suprachiasmatic Nucleus 

SCN2.2  Suprachiasmatic Nucleus immortalized cell line  

ZT    Zeitgeber time  
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CHAPTER I 

INTRODUCTION  

 

 

Nearly all life on Earth has the inherent ability to tell time. This ability is crucial for the 

survival of organisms, as almost every aspect of their life cycle relies on timing. The 

time-keeping mechanism that regulates daily, monthly, seasonal, and annual fluctuations 

in physiological and behavioral processes occurring within the organism is referred to as 

the biological clock. The biological clock controls the timing of many processes, such as 

gene transcription, hormone and body temperature cycles, metabolism, and periods of 

activity and rest. Fluctuations in these events occur at roughly the same time every 24 

hours, producing a circadian rhythm. The internal time-keeping mechanism maintains 

the timing and phase of circadian rhythms, but it must be able to set these rhythms to the 

surrounding environment so that they are occurring at the proper times during the day or 

night. In order to set the timing every day, the biological clock must have some way of 

perceiving light from the environment. This connection of the internal biological clock 

to the external light-dark environment allows the organism to entrain its internal timing 

to the light, as well as anticipate the changing light cycle over 24 hours. Furthermore, it  

 

 
 
 
____________ 
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allows an organism to adjust the timing of its clock each day to match the light cycle, a 

process known as photoentrainment. This resetting of the clock is necessary since the 

internal clock does not keep precise 24-hour timing.   

 

MAMMALIAN CIRCADIAN CLOCK 

 

The biological clock establishes circadian rhythmicity and synchrony among different 

physiological and behavioral processes within an organism to the appropriate time of 

day or night. In mammals, the biological clock capable of synchronizing daily rhythms 

to the time of day is the suprachiasmatic nucleus (SCN). The SCN is a paired structure in 

the hypothalamus that contains roughly 20,000 neurons and an abundance of astrocytes. 

Many of these neurons contain cell-autonomous clocks, meaning they have the 

capability to produce periodic oscillations in gene transcription, translation, and 

electrical activity at nearly 24-hour periods independent of input from other cells 

(Gillette and Reppert, 1987; Welsh et al, 1995). The coupling mechanisms that 

coordinate these individual cellular oscillators within the SCN are not fully identified. 

Nonetheless, the coordination of SCN oscillations produces and maintains synchronized 

rhythmicities that influence behavioral, biochemical and physiological processes.  

 

 

 



 3 

The SCN serves as the master circadian pacemaker in mammals and imposes circadian 

rhythmicity upon peripheral cellular oscillators in the organism through neuronal and 

hormonal influences, thereby coordinating those oscillations to overt behavioral and 

physiological rhythms (Silver et al., 1996; Ueyama et al., 1999). Light is perceived by 

the retina and photic information is conveyed via the optic nerve, composed of the axons 

from retinal ganglion cells (RGCs), to different areas of the brain for processing. A small 

subset of RGCs projects to the SCN in the hypothalamus in a pathway called the 

retinohypothalamic tract (RHT) (Moore and Lenn, 1972; Moore et al., 1995). This 

subset of RGCs contains a photosensitive pigment called melanopsin, which allows 

these RGCs to be directly sensitive to light (Hattar et al., 2002). The SCN is therefore a 

brain area composed of individual neuronal oscillators that function as an ensemble 

tissue oscillator. The SCN receives light (input) cues from the environment through the 

RHT pathway and then communicates this photic information as coordinated (output) 

rhythms to other body tissues throughout the organism, thereby driving circadian 

rhythms in physiology and behavior (Figure 1).  
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Figure 1. Hierarchical organization the mammalian circadian system. The 
centralized pacemaker, the suprachiasmatic nucleus, is located in 
the brain and is entrained to the appropriate time of day by input 
signals. Entrainment of the central pacemaker maintains 
coordination of peripheral tissue oscillators and physiological 
output rhythms.  
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The SCN is located directly above the optic chiasm in the anterior hypothalamus. It is 

organized into two compartments: the ventrolateral core and the dorsomedial shell. 

Pacemaker cells that reside in the core are entrained by light stimulus from direct retinal 

inputs and communicate this synchronizing cue to neighboring core neurons, to clock-

containing cellular oscillators located in the SCN shell, or to other target regions in the 

brain via synchronous firing rhythms (Hastings and Herzog, 2004).  

 

Molecular clocks control circadian rhythms in intracellular processes found within 

individual cells. The clock is composed of several genes and gene products that 

participate in transcriptional-translational feedback loops that activate and inhibit their 

own gene expression and expression of numerous clock-controlled genes. The timing of 

the transcriptional-translational feedback loop, of the activation and inhibition of clock 

gene expression, takes nearly 24 hours. This 24-hour feedback loop drives rhythms in 

individual oscillators, and the coupling of oscillators throughout the SCN produces a 

coordinated, ensemble rhythm. 
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Several genes are core components of the mammalian canonical clock machinery: 

Period (Per) 1, Per2, Per3, Cryptochrome (Cry) 1, Cry2, Bmal1, Clock, & Rev-erbα. 

The canonical clock has persistent transcriptional-translational feedback loops that allow 

for accurate timing of the circadian oscillation (Hardin, 2004). At the start of the 

oscillation occurring at early subjective day, CLOCK and BMAL1 proteins form 

heterodimers and bind to the E-box promoter sequences of the Per, Cry and Rev-erbα 

genes to activate their transcription (Gekakis et al., 1998; Hastings and Herzog, 2004). 

Transcription of Per and Cry genes continues until sufficient amounts of PER and CRY 

proteins have accumulated in the cytoplasm. As these proteins accumulate, their stability 

is affected by casein kinase 1ε (CK1ε), which uses ATP to either phosphorylate PER and 

mark it for degradation or phosphorylate the PER/CRY complex, thus increasing its 

stabilization and inducing the nuclear translocation of the heterodimer (Takano et al., 

2000; Lee et al., 2001; Akashi et al., 2002; Takano et al., 2004). Once inside the nucleus, 

CRY of the PER/CRY complex binds directly to the CLOCK/BMAL1 complex on the 

promoter to inactivate transcription of Cry and Per genes, among others, thus creating a 

negative-feedback loop, which occurs around early subjective night. As REV-ERBα 

accumulates, it binds to the ROR response element (RORE) binding sites within the 

Bmal1 promoter to repress transcription. CRY also inactivates transcription of Rev-erbα, 

and with the lack of REV-ERBα inhibition at the RORE binding sites and the 

competitive binding of the transcriptional activating protein Retinoid-related Orphan 

Receptor (ROR) at the RORE sequence, Bmal1 transcription is able to resume and 

maintain the positive feedback loop (Preitner et al., 2002; Ueda et al., 2002). Like most 
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molecular clock mechanisms in diverse organisms (Bell-Pedersen et al., 2005), this 

process takes nearly 24 hours to complete and is tightly regulated to maintain this 

circadian timing.   

 

The central model system of this research is an immortalized rat SCN cell line that is 

composed of neuronal and glial cell types. The SCN2.2 cell line, characterized by Dr. 

David Earnest, was created from the presumptive anlage of the rat SCN and 

immortalized by infection with a retroviral vector encoding the adenovirus 12S E1A 

gene (Earnest et al., 1999). This cell line retains endogenous circadian properties that 

make it a beneficial system for investigating mechanisms of clock-controlled neural 

physiology. SCN2.2 cells produce rhythmic expression of neurotrophins and 

neuropeptides found in the SCN in vivo as well as canonical clock and clock-controlled 

genes, and they have the ability to restore overall rhythmicity once transplanted into 

SCN-lesioned rats (Earnest et al., 1999; Allen et al., 2001). Therefore, the SCN2.2 cell 

line exhibits fundamental properties of the mammalian circadian clock in vitro. 
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INTERCELLULAR COMMUNICATION 

 

In the brain, electrical activity is rapidly communicated between neurons via chemical 

synapses. These synapses are formed between presynaptic axon termini and postsynaptic 

cells. Also found at this site of communication are glial cells. Historically, glial cells 

have largely been defined as supporting cells; however, research has shown that these 

cells, particularly astrocytes, play a significant role in modulating synaptic transmission, 

as their numerous processes are in contact with thousands of synapses (Araque, et al., 

1999; Bacci, et al., 1999). At the synapse, the astrocytic process surrounds the axon 

terminal, synaptic cleft, and postsynaptic dendritic spine to provide maximum neuronal-

glial interaction (Tamada et al., 1998). Astrocytes remove excess extracellular levels of 

the neurotransmitter glutamate from the synaptic cleft to avoid neuronal excitotoxicity, 

as well as accumulated potassium ions (Rothstein et al., 1996; Newman, 2003). 

Astrocytes provide nutrients such as glucose, lactate, glutamine, and glutamate to the 

neurons (Hertz et al., 1999; Magistretti et al., 1999). Astrocytes mediate synaptic 

transmission by releasing gliotransmitters that act on pre- and postsynaptic neurons, 

indicating that they have a significant role in modulating electrical communication in the 

brain (Parpura and Haydon, 2000; Pascual et al., 2005). Based on these findings, the 

tripartite synapse, comprised of presynaptic and postsynaptic neurons and the astrocytic 

process that surrounds the synapse, is thought to regulate brain neurophysiology (Araque 

et al., 1999; Haydon, 2001; Newman, 2003).  
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Astrocytes have been found to communicate via electrical synapses, or gap junctions 

(Welsh and Reppert, 1996; Blomstrand et al., 1999; Pascual et al., 2005). 

Communication across a span of cells occurs with the release of calcium ions from 

intracellular stores (van den Pol et al., 1992). This cytosolic increase in calcium is 

propagated through a large number of glial cells, and one mechanism that regulates this 

propagation involves gap junctions. The other mode of calcium wave propagation 

involves cells not coupled by gap junctions, but rather, whose intracellular calcium 

levels can be elevated by purinergic receptor-binding of ATP released from neighboring 

astrocytes. Extracellular ATP diffusion and gap junctional coupling are major mediators 

of intercellular calcium signaling. Elevation of cytosolic calcium arises from activation 

of the inositol-1,4,5-triphosphate (IP3) pathway. When an astrocyte is excited through 

purinergic receptor-binding or through gap-junctional signaling, phosphatidylinositol-

4,5-bisphosphate is cleaved into IP3 and diacylglycerol (DAG) by phospholipase C. IP3 

binds to IP3 receptors located on the endoplasmic reticulum (ER) to trigger release of 

intracellular Ca2+ stores into the cytosol. Because gap junctional pores can pass small 

molecules up to 1kDa in size, IP3 and Ca2+ can travel to coupled astrocytes, causing 

increases in intracellular calcium levels by activating IP3 receptors in these adjacent 

cells. As astrocytes are excited, they can release their own gliotransmitters. ATP, 

released from astrocytes through exocytotic, hemichannel-mediated, or other 

mechanisms, can diffuse through the extracellular space to reach adjacent astrocytes. 

Activation of purinergic receptors on adjacent astrocytes leads to elevated cytosolic 

calcium via influx of ions and the generation of IP3, and the release of ATP, thus 
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perpetuating the spread of the calcium wave. Purinergic receptors are divided into two 

major categories: ligand-gated ionotropic receptors (P2X) and G-protein-coupled 

metabotropic receptors (P2Y) (Abbracchio and Burnstock, 1994; Fields and Burnstock, 

2006) and are expressed in neurons and glia.   

 

One interest of ours is to investigate the cellular source of factors that synchronize SCN 

cells. Because many synapses have astrocytic contacts, diffusible ATP released from 

astrocytes at a coordinated time may assist in synchronizing neurons to each other. Daily 

oscillations in clock gene expression are coordinated among many cells in the SCN. 

Within the SCN, synchronization among the pacemaker cells is of vital importance if 

rhythmicity of biological processes throughout the organism is to occur. Oscillators in 

the SCN must be coordinated to each other; however, the mechanism of inter-oscillator 

coupling is not fully understood. Roles for interastrocytic signaling by diffusible 

molecules have been proposed (Guthrie et al., 1999; Colwell, 2000; Parpura and 

Haydon, 2000; Fellin et al., 2004; Maywood et al., 2006). Glutamate and PACAP 

(pituitary adenylate cyclase-activating polypeptide) are the phase-resetting 

neurotransmitters released from retinal ganglion cell afferents and are responsible for 

entraining the SCN to the light-dark cycle (Hannibal et al., 2000). The majority of 

neurons in the SCN contain the neurotransmitter γ-aminobutyric acid (GABA) and 

GABA receptors, and for this reason, it has been deemed the principal neurotransmitter 

of the SCN and a potential synchronizing molecule among the SCN oscillators (Decavel 

and van den Pol, 1990; Moore and Speh, 1993; Liu and Reppert, 2000). Several 
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neuropeptides are expressed and released by SCN neurons in a circadian manner. 

Vasoactive intestinal polypeptide (VIP) may have a role in the photic entrainment 

pathway by synchronizing arginine vasopressin (AVP)-containing shell neurons to the 

light-entrained period of the core neurons, creating a synchronously coupled oscillator 

(Reed et al., 2001). Gastrin-releasing peptide (GRP) is rhythmically expressed in core 

cells that synapse with RGCs and possibly has a role in the entrainment of SCN cells to 

light (Tanaka et al., 1997; McArthur et al., 2000). While several factors are required for 

maintaining circadian rhythmicity and may be synchronizing cues between cells in the 

SCN, ATP released from astrocytes may play a role in SCN cellular communication and 

synchrony.   

  

In these studies, we examine the individual circadian oscillators of the SCN and the 

cellular mechanisms that couple their oscillations into ensemble rhythms. Adenosine 

triphosphate (ATP) is a transmitter involved in local communication among astrocytes 

and between astrocytes and neurons, and its potential contribution in SCN cellular 

communication and synchrony was investigated. The data presented here implicate ATP 

as a synchronizing agent among clock oscillators and highlight its influence on circadian 

regulation of daily rhythms.  
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CHAPTER II 

CIRCADIAN RHYTHMS OF EXTRACELLULAR ATP 

ACCUMULATION IN SUPRACHIASMATIC NUCLEUS CELLS 

AND CULTURED ASTROCYTES* 

 

 

INTRODUCTION 

 

In mammals, the suprachiasmatic nuclei (SCN) of the hypothalamus function as the 

master pacemaker, orchestrating circadian rhythmicity in the brain and peripheral 

tissues. The SCN also generate circadian oscillations that persist in the absence of 

external input. SCN cells intrinsically produce circadian rhythms of neuropeptide 

secretion, cellular metabolism, electrical activity, and gene expression in vivo and in 

vitro (Lee et al., 2001). These circadian oscillations are not only an ensemble property of 

the SCN, but are autonomously generated by individual SCN neurons (Welsh et al., 

1995; Hastings & Herzog, 2004). For example, rhythmic GFP-fluorescence driven by  

 

 

 
____________ 
*Reprinted with permission from “Circadian Rhythms of Extracellular ATP 
Accumulation in Suprachiasmatic Nucleus Cells and Cultured Astrocytes” by Alisa 
Womac, Jeff Burkeen, Niki Neuendorff, David Earnest, and Mark Zoran , 2009. The 
European Journal of Neuroscience, Volume 30, Pages 869-876, Copyright 2009 by 
Wiley-Blackwell Publishing. 
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the clock gene Per1 is a composite of the autonomous oscillations (Quintero et al., 

2003). Other neural loci also contain cell-autonomous clocks similar to those found in 

the SCN. Individual olfactory bulb neurons exhibit circadian oscillations of Per1 

transcription and firing rate in vitro (Granados-Fuentes et al., 2004). Identification of the  

genes and signal molecules responsible for the coordination of oscillations among 

multiple cellular clocks within the SCN (Bell-Pedersen et al., 2005) and other brain 

regions is therefore of critical importance for understanding how SCN clock cells are 

coupled and how extra-SCN neural oscillators maintain local time for indigenous 

processes.  

  

ATP, besides providing a critical energy source for driving cellular chemical reactions, is a 

signaling molecule involved in intercellular communication between astrocytes and neurons 

(Haydon, 2001; Scemes & Giaume, 2006). ATP can bind to a class of receptors, the 

purinergic P2 receptors, on astrocytes and neurons to elicit cellular responses. In addition, 

once ATP is released from astrocytes, it can be hydrolyzed and accumulate as extracellular 

adenosine in the brain and can regulate synaptic transmission and neural integration (Pascual 

et al., 2005; Fellin et al., 2006). Furthermore, gliotransmission is thought to regulate aspects 

of brain metabolism (Bernardinelli et al., 2004; Magistretti, 2006). Therefore, ATP is a good 

candidate for a signal that mediates the local coordination of individual circadian clocks in 

the SCN and perhaps in other brain regions.  
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Because the expression of genes involved in the regulation of ATP oscillates in the SCN 

(Menger et al., 2005), we first examined ATP production by SCN cells for evidence of 

rhythmic fluctuations in levels of this gliotransmitter in vitro and in vivo. Immortalized rat 

SCN cells (SCN2.2) were used for our in vitro analysis because these cells retain the 

endogenous rhythm-generating and pacemaker properties of the SCN in situ (Allen et al., 

2004). The cellular composition of the SCN2.2 line is similar to the rat SCN, consisting of a 

heterogeneous population of neural cells that includes large numbers of astrocytes, which 

provide ATP as an important signal in intercellular communication. In addition, in vivo 

microdialysis methods were used to determine whether the rat SCN is marked by diurnal 

and circadian oscillations in ATP levels. Because circadian oscillations and the underlying 

clockworks are common to extra-SCN neural cells (Granados-Fuentes et al., 2004; Guilding 

& Piggins, 2007), we next determined whether cortical astrocytes express circadian patterns 

of extracellular ATP accumulation in vitro. Evidence for the circadian regulation of 

extracellular ATP levels in SCN cells and in other neural oscillators suggests that ATP may 

be an important circadian output of the clockworks in the SCN and some neural oscillators 

in other brain regions. 
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MATERIALS AND METHODS 

 

Cell culture conditions. SCN2.2 cells were cultured on laminin-coated dishes (60mm; 

Corning, Corning, NY, USA) and maintained at 37°C and 5% CO2 in Minimum 

Essential Medium (MEM; Invitrogen, Carlsbad, CA, USA), supplemented with 10% 

fetal bovine serum (FBS), glucose (3000µg/ml), L-glutamine (292µg/ml), and 1% 

penicillin-streptomycin-neomycin (PSN) mixture (Invitrogen). Primary cortical 

astrocytes were obtained from the forebrains of Sprague-Dawley rat pups on postnatal 

day 2 using a differential detachment method (Li et al., 2008) and cultured under similar 

conditions. During cell propagation, the medium was changed at 48-hour intervals, and 

cultures were split every 2-3 days. 

  

Experiment 1: Temporal profile of ATP production in SCN2.2 cultures. In order to 

determine if ATP levels fluctuated over 24 hours, ATP levels were examined for 

evidence of rhythmic variation in living cultures of SCN2.2 cells that were derived from 

a single passage. Prior to experimental analysis, cells were propagated as described 

above, seeded onto a 24-well plate in culture medium with a decreased FBS 

concentration of 5% and 24 hours later subjected to medium replacement with serum-

free neurobasal medium (supplemented with glucose, L-glutamine, and 1X B-27 serum-

free supplement; Invitrogen). Pairs of individual cultures in a 24-well plate were used as 

replicates of 12 specific time points,  and the paired wells were exposed for 2 hours to 

serum-free medium containing either dimethylsulfoxide (DMSO; Sigma, St. Louis, MO, 
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USA) vehicle (0.1%) or 15µM forskolin (FSK; Calbiochem, La Jolla, CA, USA). 

Exposure to DMSO or FSK began 24 hours after cells were plated, at the time of serum-

free medium replacement. This procedure was repeated every 2 hours for the remaining 

pairs of cultures to provide for image analysis of 12 consecutive time points over a 

complete 24-hour cycle on one plate. FSK, an adenylate cyclase agonist that increases 

cyclic AMP (cAMP) levels, has been used to coordinate rhythms of clock gene 

expression and glucose uptake by acting as a synchronizing agent across SCN2.2 cell 

cultures (Allen et al., 2001). Immediately after treatment, cells were rinsed and 

maintained thereafter in serum-free neurobasal medium. Chemiluminescent imaging of 

ATP levels was performed 24hr later on living cultures incubated in fresh serum-free 

neurobasal medium (1ml) containing 10µl luciferase (3mg/ml; Sigma) and 20µl luciferin 

(3mg/ml; Invitrogen) for 30 minutes prior to analysis. 

  

Experiment 2: Temporal profile of extracellular ATP accumulation in SCN2.2 cultures. 

To examine extracellular accumulation of ATP and its potential contribution to the 

profiles observed in the preceding experiment, ATP levels in triple replicates were 

analyzed in serial samples of the medium from SCN2.2 cultures (N=13). SCN2.2 cells 

were treated as described in Experiment 1 except that cultures were maintained in 60mm 

dishes throughout this analysis. After lowering the serum concentration to 5%, SCN2.2 

cultures were exposed to either DMSO (N=6) or 15µM FSK (N=5) for 2 hours; controls 

(N=2) were untreated. The medium was replaced with serum-free neurobasal medium 

(3ml) containing the aforementioned supplements, and 2 hours later experimental 
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analysis was initiated by collecting and replacing medium (1ml) from all cultures at 2-

hour intervals for 72 hours. To determine if sampling procedures influenced extracellular 

ATP accumulation, some experiments were performed to increase the time for total 

volume exchange from 6 hours to 16 hours by collecting/replacing smaller sample 

volumes (500µl) every 2 hours from cultures incubated in 4ml of medium. Media 

samples were frozen, stored at -20°C, and later analyzed for ATP accumulation using a 

luciferin/luciferase (luc/luc) chemiluminescence assay. 

  

Experiment 3: Temporal profile of ATP levels in the rat SCN. In vivo microdialysis 

methods were used to determine whether extracellular ATP levels fluctuated 

rhythmically in the rat SCN. Experimental subjects were eight Sprague-Dawley rats 

(250-350gm). These animals were born and reared in the vivarium at the Texas A&M 

University System Health Science Center under a standard 12-hour light:12-hour dark 

photoperiod (LD 12:12; lights-on at 0600 hours). Prior to experimental analysis, animals 

were housed 2-3 per cage. Access to food and water was provided ad libitum and 

periodic animal care was performed at random times. The procedures used in this study 

were approved by the University Laboratory Animal Care Committee at Texas A&M 

University (AUP # 2007-3). Chronic placement of a guide cannula for the microdialysis 

probe (CMA11, CMA Microdialysis, North Chelmsford, MA, USA) in the SCN region 

was accomplished using empirical stereotaxic techniques (Earnest et al., 1999: Liang et 

al., 2000). During the light phase of the LD 12:12 cycle, animals were anesthetized 

(xylazine 65mg/kg; ketamine 87mg/kg) and stereotaxic coordinates (0.9mm posterior to 
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Bregma; 0.4mm lateral to midline; 5.8mm ventral to the dura) were used to place the 

cannula assembly (guide with dummy stylet) along the lateral margin of the SCN. Three 

small screws were inserted in the skull (one anterior and two in posterior-lateral 

locations) and the exposed portion of the guide cannula was secured in place to these 

anchors with dental acrylic resin. After a recovery period of 24-30hr, animals were 

anesthetized with isofluorane (VEDCO Inc., St. Joseph, MO, USA) and following 

removal of the dummy stylet, a microdialysis probe (CMA 11, CMA Microdialysis; 

240µm diameter; cuprophane membrane with 6kD cut-off) was inserted into the guide 

cannula. The microdialysis probes were designed to provide for extension of the probe 

tip ~1mm beyond the guide cannula and for limited perfusion (~50µm) of the 

surrounding parenchyma. Probes were attached to micro-bore tubing traveling through a 

microdialysis swivel and head tether assembly (Instech, Plymouth Meeting, PA, USA) 

that allowed animal movement around the cage. Artificial cerebrospinal fluid (aCSF) 

was delivered to the probe via a KDS220 Infusion Pump (KD Scientific, Holliston, MA, 

USA) at a rate of 2µl/min and beginning at zeitgeber time (ZT) or circadian time (CT) 

12, samples (~120µl) were collected in a cooled (8°C) fraction collector (820 

Microsampler, SciPro Inc., Sanborn, NY, USA) at 2-hour intervals for 24 hours. During 

this analysis, animals were either maintained under LD 12:12 conditions (N=5) or 

exposed to constant darkness (DD) (N=3). Microdialysis samples were frozen and stored 

at -80°C until later assay of ATP levels. At the conclusion of microdialysis sampling 

procedures, animals were anesthetized (sodium pentobarbital 3mg/kg) and sacrificed by 

transcardiac perfusion with 50ml of 0.1M phosphate buffer (pH=7.3) containing heparin 
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followed by 200-250ml of 4% paraformaldehyde. Immediately after perfusion, the 

brains were removed, post-fixed for 1-2 hours at 4C, and stored overnight in 

cryoprotectant solution (15% sucrose in 0.15M phosphate buffer). The tissue was then 

frozen and sectioned in the coronal plane at 30µm using a sliding microtome. Coronal 

sections containing the SCN were mounted on glass slides, air-dried overnight, stained 

with Cresyl violet, and coverslipped with Permount. Probe placement in relation to the 

SCN was determined by localization of the ventral extent of the cannula tract in mounted 

sections using brightfield microscopy. 

  

Experiment 4: Temporal profiles of ATP accumulation in the culture medium from other 

neural cell types. For each of two biological replicates, cultures of primary cortical 

astrocytes were propagated on 60mm dishes and analyzed for evidence of rhythmic ATP 

accumulation in the medium. Similar to the analysis in Experiment 2, the serum 

concentration was reduced to 5% and then all astrocyte cultures were either untreated 

(N=2) or exposed to DMSO (N=2) or 15µM FSK (N=2) for 2 hours followed by 

sampling of culture medium (1ml) at 2-hour intervals for 72 hours.  
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Chemiluminescence assays for analysis of ATP levels. To analyze ATP levels in living 

cultures (Experiment 1), chemiluminescent imaging was performed on SCN2.2 cells that 

were maintained in a humidified incubator at 37°C and 5% CO2 equipped with a liquid 

nitrogen-cooled CCD camera (Versarray, Photometrics, Tucson, AZ, USA). The CCD 

was cooled to -110°C and images were captured using 5min exposures in total darkness. 

Chemiluminescence images were captured in three consecutive exposures, and 

intensities of luminescence from the collected images were analyzed using 

MetaMorph4.6 imaging software (Universal Imaging Corporation, Downingtown, PA, 

USA).    

  

Cell-free, chemiluminescence assays of extracellular ATP levels were performed by 

incubating aliquots (100µl) of media samples (Experiment 2 and 4) or aliquots (20µl) of 

microdialysis samples (Experiment 3) with 1µl of luciferase and 2µl of luciferin in wells 

of a black, 96-well plate (Thermo, Milford, MA, USA). ATP-dependent chemi-

luminescent activity produced by media or microdialysis samples was measured in 

constant darkness using a multiplate Packard TopCount scintillation counter (Meriden, 

CT, USA). Based on the repeated analysis of the same samples across multiple assays, 

interassay variation in the determination of ATP levels was less than 10%. 
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To approximate ATP levels in living SCN2.2 cultures (Experiment 1) and in conditioned 

culture medium (Experiment 2 and 4), standard curves were generated for both the 

CCD-based imaging assay and the TopCount (TC)-based photomultiplier assay using 

known concentrations of ATP (Figure 2A). Chemiluminescence derived from culture 

media samples (Experiment 2 and 4) was calibrated relative to assay standards ranging 

from 1pM to 100nM ATP in unconditioned medium. For microdialysis samples 

(Experiment 3), chemiluminescent activity was calibrated to ATP standards ranging 

from 1 - 10nM. Comparison of the standard curves revealed that the sensitivity of ATP 

detection is similar between the imaging and photomultiplier assays. Internal controls 

consisting of unconditioned medium (Experiment 2 and 4) without ATP standard, 

luciferase, or luciferin were included on all analyzed plates. An important consideration 

in the implemented design of Experiments 1, 2 and 4 (i.e., the use of serum- free 

medium) was based on methodological analysis indicating that the luciferase reaction 

was dramatically disrupted by the presence of serum in the culture medium. In this 

analysis, ATP standards containing FBS exhibited a dose-dependent suppression of 

chemiluminescent signal and media samples from SCN2.2 cultures containing 10% FBS 

consistently produced lower signal intensities than those obtained from cultures 

maintained in serum-free medium (data not shown). 
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Figure 2.  Comparison of ATP levels in the medium of SCN2.2 cultures. 
Standard concentrations of ATP generated with both charge-
coupled device (CCD) camera and TopCount (TC) photomultiplier 
assays were used to compare ATP levels. A) Two standard curves 
were generated using known concentrations ranging from 1pM to 
100nM ATP (CCD assay, solid circles; TC assay, open circles) and 
compared to experimentally determined averages for peak (P) and 
trough (T) levels of SCN2.2 rhythms in extracellular ATP 
accumulation. The estimated range of rhythmic ATP levels in 
living SCN2.2 cultures (dashed lines) and in media samples from 
SCN2.2 cultures (dotted lines) was between 10pM (trough) and 
10nM (peak) ATP. Comparable levels of ATP were estimated from 
medium images (N=4 cultures) and media samples (N=4 cultures). 
B) Chemiluminescent activity in the medium from SCN2.2 
cultures is dependent on ATP. Bars denote determinations of ATP 
levels in media samples collected from SCN2.2 cultures treated 
with vehicle (CON) or apyrase (APY), an enzyme that degrades 
ATP. Chemiluminescent signal was significantly reduced in APY-
treated SCN2.2 cultures (p<0.05; N=4) relative to that of control 
cultures (N=18). 

A B 
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Technical analysis was also performed to confirm that chemiluminescent activity was 

dependent on ATP in the culture medium. Treatment with apyrase (50U/ml), an enzyme 

that degrades ATP, abolished detectable chemiluminescence in the medium from 

SCN2.2 cultures (Figure 2B), demonstrating that ATP is necessary to drive the Luc/Luc 

reaction in this assay. 

 

Statistical analysis. Raw chemiluminescence data (photons/sec) were normalized in 

relation to the maximum for each culture, which was arbitrarily set at 100. The  

normalized data from Experiment 2 and 4 was subjected to a Lomb-Scargle Fourier 

Transform analysis using AutoSignal software (Systat Software Inc., Point Richmond, 

CA, USA). A least-square fitting of the data was applied with a sinusoidal parametric 

function. Through regression analysis at various frequencies, the period () of recurrent 

oscillations was extracted from the time series data, with significant periods ranging 

from 22 to 26 hours. For analysis of extracellular ATP accumulation in SCN2.2 cultures 

treated with apyrase and in the SCN in vivo (Experiment 3), paired and pooled t-tests 

were performed to determine if peak levels were significantly different from trough 

values. The  value was set at 0.05 for all statistical analyses. 
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RESULTS 

 

Experiment 1: Temporal profile of ATP production in SCN2.2 cultures. To determine 

whether ATP produced in living cultures of SCN2.2 cells oscillate in a rhythmic fashion, 

cells were bathed in luciferin/luciferase-containing medium and images of ATP-

dependent chemiluminescence were captured. Rhythmic fluctuations in ATP levels were 

observed in each of 10 independent SCN2.2 cultures. ATP levels that were measured 

were presumably from the medium; however, detection of intracellular ATP levels may 

have contributed to observed chemiluminescence. Dimethylsulfoxide- (DMSO; N=5) 

and forskolin-treated (FSK; N=5) cultures were similar with regard to the expression of 

these ATP rhythms (Figure 3) and peak chemiluminescence ranging from 800-4000 raw 

pixel intensity values, without significant differences in chemi-luminescence values 

between DMSO- and FSK-treated cultures. Rhythms in ATP levels were marked by 

robust differences of greater than 17-fold between peak and trough values. Based on 

comparisons with standard curve determinations using known concentrations of ATP 

(Figure 2A), ATP levels were approximated at 10nM for the peak and at 10pM for the 

trough of the ATP rhythms in SCN2.2 cultures. The rhythmic peak in SCN2.2 ATP 

levels typically persisted for 2-8 hours before declining to basal levels. In most of the 

cultures (9/10), the temporal profiles of ATP-dependent chemi-luminescence exhibited a 

single peak over the 24-hour time course. One DMSO- treated culture exhibited a 

bimodal pattern in which the primary peak in ATP levels was followed 10 hours later by 

a secondary, low-amplitude peak. The phase of the ATP rhythms in SCN2.2 cultures 



 25 

            

     

 

 

 

Figure 3. Circadian regulation of ATP levels in living SCN2.2 cultures. 
Images (top) and corresponding temporal patterns (bottom) of 
ATP-dependent chemiluminescence captured from representative 
SCN2.2 cultures exposed to DMSO (left panels, closed square) or 
FSK (right panels, closed circle) for 2 hours immediately prior to 
this analysis. Symbols denote determinations of signal intensity at 
2-hour intervals by image-based analysis of luminescence 
produced by the luciferin/luciferase reaction. The plotted values 
correspond to chemiluminescent signal measurements that were 
normalized in relation to the maximum for each culture, which was 
arbitrarily set at 100.  
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was variable within and between the DMSO and FSK treatment groups. This variability 

in rhythm phase is presumably related to comparisons founded on three experiments 

using cultures derived from separate passages. However, DMSO- and FSK-treated 

SCN2.2 cultures within a given experiment generated ATP rhythms in which peak levels 

were either concurrent or 12 hours out of phase. ATP-dependent luminescence from 

cultures lacking luciferin, luciferase, or both reagents in the assay medium was 

equivalent to background levels in blank wells with no evidence of rhythmicity. 

 

Experiment 2: Temporal profile of extracellular ATP accumulation in SCN2.2 cultures. 

Because ATP accumulation in the medium presumably contributed to the profiles 

observed in the preceding image-based analysis of living cells, we next conducted 

chemiluminescence assays on cell-free samples of conditioned medium from SCN2.2 

cultures to distinguish the extent and temporal pattern of extracellular ATP 

accumulation. Consistent with oscillations in ATP levels observed in chemiluminescent 

imaging of living cells (Experiment 1), untreated (N=2), DMSO- (N=6) and FSK-treated 

(N=5) SCN2.2 cultures exhibited rhythmic profiles of ATP accumulation in the medium 

with recurrent peaks at circadian intervals (Figure 4). Similar to the values established 

for living SCN2.2 cultures in Experiment 1, standard curve estimates of ATP levels 

(Figure 2A) were about 10nM for the peak and 10pM for the trough of SCN2.2 rhythms 

in extracellular ATP accumulation. These circadian rhythms in extracellular ATP levels 

persisted for 3 cycles in all SCN2.2 cultures (N=13) with peak-to-peak intervals of 

typically 20-24 hours (10/13) and 4-57 fold differences between peak and trough levels  
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Figure 4. Circadian rhythms of extracellular ATP accumulation in representative 
SCN2.2 cultures. SCN2.2 cultures were untreated (top), or exposed to 
DMSO (middle) or FSK (bottom) for 2 hours immediately prior to this 
analysis. For comparison, the extracellular ATP rhythms are depicted for 
an untreated SCN2.2 culture in which sampling procedures were 
modified so as to increase the time for total volume exchange (top panel; 

, dashed line) and for a DMSO-treated SCN2.2 culture rinsed with 
Neurobasal medium (middle panel; , dashed line) rather than CMF 
buffer prior to the initiation of sampling. Symbols denote normalized 
values for photomultiplier tube-based determinations of ATP-dependent 
chemiluminescence in the medium from individual SCN2.2 cultures at 2-
hour intervals for 72 hours. Dotted lines demarcate 24-hour intervals. 
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of chemiluminescence. In the three remaining cultures, the extracellular ATP rhythms 

were distinguished by peak-to-peak intervals of 16 hours (2 DMSO-treated) or 28 hours 

(1 DMSO-treated). The phase of the ATP rhythms in SCN2.2 cultures differed across 

treatment groups and even exhibited a degree of variability among individual cultures 

exposed to the same treatment presumably because the data are derived from three 

biological replicates. Phase differences across treatment groups were especially evident 

during the first cycle such that the timing of initial ATP peaks in individual SCN2.2 

cultures ranged from 2-20 hours after the onset of analysis. Based on Fourier transform 

analysis, circadian frequencies were predominant in the temporal profiles of extracellular 

ATP accumulation for 11 of 13 independent cultures and the mean (±SEM) period () 

for these SCN2.2 rhythms was 23.7 ± 0.8 hours. It is noteworthy that when different 

sampling procedures were used to collect a smaller volume of media at 2-hour intervals 

and increase the time for total volume exchange from 6 to 16 hours, the rhythms of 

extracellular ATP accumulation and their underlying properties in SCN2.2 cultures 

(N=2) were similar to those observed using the standard protocol (Figure 4). To examine 

the possible influence of low calcium treatment associated with exposure to CMF buffer 

at the onset of analysis, additional experiments were performed using Neurobasal 

medium to rinse cultures prior to the initiation of sampling. In SCN2.2 cultures rinsed 

with Neurobasal medium (N=5), the initial elevation in extracellular ATP levels was 

greatly diminished, but the amplitude of the extracellular ATP rhythms was similar 

relative to that found in CMF-exposed cells (Figure 4). Collectively, these observations 

indicate that the rhythms in extracellular ATP accumulation are not a product of either 
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sampling procedures or FSK- and low calcium-induced increases in ATP levels, but 

instead are endogenous to SCN2.2 cells. 

  

Experiment 3: Temporal profile of ATP levels in the rat SCN. Post-experimental 

histological analysis confirmed probe placement in seven out of eight animals along the 

lateral margin of the left SCN and dorsal to the chiasm with no evidence of damage to 

the SCN. Similar to the rhythmic pattern expressed by SCN2.2 cells in vitro, 

extracellular ATP accumulation in the SCN of these rats showed overt signs of 

rhythmicity under both LD 12:12 (N=4) and DD (N=3) conditions. During exposure to 

LD 12:12, SCN levels of ATP remained low throughout the daytime and the first half of 

the night, rapidly increased reaching peak values near the middle of the dark phase, and 

then declined over the remainder of the night returning to basal values just prior to the 

onset of the light phase (Figure 5A). Peak levels of ATP in the SCN during the night 

were significantly (P<0.05) and about 10-40-fold greater than those observed throughout 

the daytime. The SCN rhythms in extracellular ATP levels persisted during exposure to 

DD with comparable amplitudes (i.e., peak-to-trough differences of 20-40-fold) and 

peak levels occurring during the middle of the subjective night (Figure 5B). This crest in 

the circadian regulation of ATP accumulation is coincident with the rhythmic peak in 
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Figure 5. Diurnal and circadian ATP rhythms in the rat SCN in vivo. A) Top panel 

depicts the representative temporal pattern of extracellular ATP 
accumulation in the rat SCN during entrainment to LD 12:12. Bottom panel 
represents the temporal profile of extracellular ATP levels in the anterior 
hypothalamic area (AHA) about 400-600µm caudal to the SCN. The bar at 
the top signifies the timing of the light (open) and dark (closed) phase in the 
LD 12:12 cycle. B) Representative temporal profile of ATP accumulation in 
the rat SCN during exposure to constant darkness (DD). Symbols denote the 
raw data for photomultiplier tube-based determinations of ATP-dependent 
chemiluminescence in individual sets of microdialysis samples collected at 
2-hour intervals for 24 hours.  

A 

B 

A 
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SCN cellular content of ATP that occurs during the middle of the subjective night 

(Yamazaki et al., 1994). In the remaining animal where the probe was located in the 

anterior hypothalamic area (AHA) about 400-600µm caudal to the SCN, ATP levels 

were consistently low and exhibited no evidence of diurnal, circadian or even regular 

rhythmic, fluctuations (Figure 5). In contrast to this finding, Yamazaki and co-workers 

(1994) reported that ATP content fluctuates on a circadian basis in the AHA with peak 

levels occurring during the middle of the subjective day. It is unclear why the AHA is 

distinguished by the circadian regulation of cellular content, but not extracellular 

accumulation, of ATP. Cellular content presumably reflects ATP levels found in both 

neurons and glia within a given brain region whereas extracellular accumulation is 

derived from astrocytes. Thus, a potential explanation for the low ATP levels and lack of 

rhythmicity in the AHA is that astrocytes are much more prevalent within the SCN than 

the AHA and other regions of the hypothalamus (Morin et al., 1989). Nevertheless, the 

observed regional differences in extracellular ATP levels suggest that our microdialysis 

probes and analysis provide a good reflection of regional ATP levels to distinguish SCN 

profiles from those in surrounding areas. 
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Experiment 4: Temporal profiles of ATP accumulation in the medium from cultured 

cortical astrocytes. The SCN2.2 rhythm in ATP accumulation may reflect the functional 

activity of astrocytes, which represent a prominent component of this multipotent cell 

line. Therefore, we next examined extracellular ATP levels in astrocyte cultures derived 

from another brain region. Specifically, primary cultures of cortical astrocytes were 

analyzed for evidence of circadian fluctuations in extracellular ATP accumulation in 

vitro. Similar to the rhythmic patterns observed in SCN2.2 cells, ATP levels in the 

medium from primary cultures of untreated (N=2), DMSO- (N=7) and FSK-treated 

(N=7) rat cortical astrocytes oscillated with recurrent peaks at intervals of 20-24 hours 

(Figure 6). In all treatment groups, the amplitude of these circadian oscillations in 

extracellular ATP accumulation was robust, with 9-92 fold differences between peak and 

trough levels over 3-4 cycles. Fourier transform analysis of the temporal patterns of 

extracellular ATP accumulation revealed that predominant frequencies were circadian in 

all cortical astrocyte cultures and the mean (±SEM)  for these astrocyte rhythms was 

23.1 ± 0.2 hours. 
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Figure 6. Circadian rhythms of extracellular ATP accumulation in primary 
cultures of cortical astrocytes. Astrocyte cultures were untreated (top), 
or exposed to DMSO (middle) or FSK (bottom) for 2 hours 
immediately prior to this analysis. Symbols denote normalized values 
for photomultiplier tube-based determinations of ATP-dependent 
chemiluminescence in the medium from astrocyte cultures at 2-hour 
intervals for 72 hours. 
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DISCUSSION 

 

Chemiluminescence-based analysis of ATP levels revealed that SCN2.2 cells generate 

circadian oscillations in the production and extracellular accumulation of this 

gliotransmitter in vitro. Moreover, the rat SCN was similarly characterized by daily and 

circadian fluctuations in extracellular ATP levels in vivo. The rhythmic regulation of 

ATP levels was anticipated in SCN2.2 cultures and in the SCN in vivo for several 

reasons. First, transcriptional profiling studies indicate that the expression of some genes 

in ATP signaling and metabolic pathways is similarly clock-controlled in SCN2.2 cells 

and the SCN in vivo (Panda et al., 2002; Menger et al., 2005). The circadian clock in 

SCN2.2 cells influences mitochondrial energy transduction through the rhythmic 

expression of mitochondrial ATP synthase 8 (mt-Atp8) and Ca2+ transporting ATPase 

(Atp2a3), and impacts upon glucose metabolism by regulating oscillations in the 

expression of malic enzyme 1 (Me1), hexokinase 2 (Hk2), and glyoxylate 

reductase/hydroxypyruvate reductase, an enzyme that mediates the conversion of serine 

to glucose. Second, cellular content of both ATP and cAMP fluctuate on a circadian 

basis in the rat SCN. The cellular content of ATP in extracted SCN tissue reaches peak 

levels during the middle of the subjective night (Yamazaki et al., 1994) and SCN content 

of cAMP in vitro is marked by bimodal peaks during the late subjective day and late 

subjective night (Prosser & Gillette, 1991). Finally, circadian oscillations are a hallmark 

property of SCN metabolism. Both SCN2.2 cells and the rat SCN are distinguished by 

circadian regulation of 2-deoxyglucose (2DG) utilization (Allen et al., 2001; Schwartz, 
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1991) as well as rhythmic expression of Glut-1 (Slc2a1), the primary facilitative 

transporter of D-glucose, and Mct1 (Slc16a1), a major transporter of ketone bodies and 

lactate in glial cells (Menger et al., 2005). 

 

ATP levels in the medium also oscillated with a periodicity of approximately 24 hours in 

primary cultures of cortical astrocytes. It is interesting that circadian oscillations in 

extracellular ATP accumulation were similarly observed in astrocytes even when 

cultures were untreated or vehicle-treated because non-SCN cells are typically unable to 

sustain circadian rhythmicity as an ensemble in vitro in the absence of SCN pacemaking 

cues, serum shock, or activation of various signal transduction pathways (Allen et al., 

2001). Thus, the circadian oscillations in ATP accumulation reported here may represent 

a pervasive physiological output of the mammalian cellular clock in SCN cells and 

astrocytes from at least some brain regions. 

 

The mechanism responsible for generating these ATP oscillations in SCN cells and 

cortical astrocytes is unknown. Although our data have limited implications in this 

regard, it seems likely that ATP release, uptake, and degradation may individually or 

even collectively contribute to the observed circadian rhythms in extracellular ATP 

accumulation. The differential prevalence of circadian oscillations among genes 

regulating glucose metabolism, mitochondrial energy transduction, and metabolite 

transporters in SCN cells (Rutter et al., 2002; Menger et al., 2005) raises the possibility 

that the oscillations in extracellular ATP accumulation may represent a byproduct of 
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rhythms in SCN cellular metabolism. However, this explanation is incompatible with the 

phase differences between the oscillation in ATP levels and these metabolic or cellular 

rhythms in the SCN. For example, the ATP oscillations in the rat SCN reach their apex 

during the night (Figure 5) in advance of the daytime peaks in SCN neural activity and 

glucose utilization (Inouye & Kawamura, 1982; Schwartz, 1991). Alternatively, cell 

lysis, calcium influx via voltage-dependent calcium channels (VDCCs), neuron-like 

exocytotic release, or membrane passage via channels or transporters have been linked to 

the regulation of ATP release from cells (Pascual et al., 2005; Scemes & Giaume, 2006). 

In relation to our investigation, studies of cortical and hippocampal astrocytes are 

noteworthy in suggesting that calcium entry through VDCCs or release from 

intracellular stores may mediate a calcium-regulated exocytosis of ATP-containing 

vesicles (Queiroz et al., 1999; Pascual et al., 2005). Thus, these calcium-dependent 

mechanisms may play a role in regulating extracellular ATP accumulation and its 

circadian profile in our astrocyte cultures and even in SCN2.2 cells because VDCCs are 

rhythmically expressed and inhibition of VDCCs disrupts clock gene oscillations in 

these cells (Nahm et al., 2005). 

  

The functional implications of extracellular ATP rhythms are similarly equivocal, but 

the present findings raise the possibility that this nucleotide may play a role in 

intercellular signaling between circadian oscillators in the SCN and other brain regions. 

ATP released from astrocytes acts as an autocrine or paracrine messenger that regulates 

intercellular calcium waves (Scemes & Giaume, 2006) and intercellular communication 
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via gliotransmission among astrocytes and neurons (Haydon, 2001). In turn, intercellular 

gliotransmission is thought to regulate brain metabolism (Bernardinelli et al., 2004; 

Magistretti, 2006). After its release, extracellular ATP is degraded by ectonucleotidases 

and its primary metabolites, adenosine and 5‟-AMP, are involved in regulating 

hypothalamic mechanisms of sleep (Scammell et al., 2001) and metabolic processes in 

the liver (Zhang et al., 2006), respectively. Interestingly, the collective observations 

from other studies of cAMP-dependent signaling indicate that cAMP content in the SCN 

similarly fluctuates on a circadian basis with peak levels during the subjective day and 

that this SCN oscillation is accompanied by circadian regulation of cAMP response 

element (CRE) activity (Murakami & Takahashi, 1983; Obrietan et al., 1999; O‟Neill et 

al., 2008). Thus, the SCN rhythm in extracellular ATP accumulation may represent a 

local signal that is involved in clock control of gliotransmission and synchronizing the 

rhythmic behavior of individual cellular oscillators. ATP may influence intercellular 

communication between autonomous SCN oscillators via a direct action or through the 

regulation of purinergic signaling by its metabolite, adenosine. The latter mechanism is 

compatible with electrophysiological evidence for adenosine A1 and A2 receptors in the 

SCN (Chen & van den Pol, 1997).  

 

It is also noteworthy that during astrogliosis the activation of P2X purinergic receptors 

by elevated levels of extracellular ATP is coupled with increases in glial fibrillary acidic 

protein (GFAP) expression and process elongation (Neary et al., 1994, 1996). Consistent 

with this relationship between extracellular ATP accumulation and astrocytic properties, 
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the observed peak of the ATP rhythm during the night precedes the time when both 

GFAP distribution and astrocytic process elongation in the SCN are at their maxima 

during the day (Lavialle & Serviere, 1993). ATP signaling and its rhythmic regulation in 

SCN oscillators may thus be important in the activation of neuroglial endfeet networks 

so as to modulate ion buffering, transmitter uptake, and energy transfer. Although further 

analysis will be necessary to determine the specific functions of extracellular ATP 

rhythms, their prevalence in the mammalian SCN and differential expression in cortical 

astrocytes suggest that ATP may represent an important signaling molecule for circadian 

timekeeping among astrocytes and between astrocytes and neurons in the SCN and some 

other brain regions. 
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CHAPTER III 

CLOCK-CONTROLLED PURINERGIC SIGNALING  

MEDIATES SYNCHRONIZATION AMONG  

SUPRACHIASMATIC NUCLEUS ASTROCYTES 

 

 

INTRODUCTION 

 

Circadian rhythms in physiological and behavioral events are coordinated such that their 

temporal patterns are maintained in appropriate phase with the animal's external 

environment. These 24-hour rhythms are detectable in virtually all animals and are the 

direct outputs of an internal time-keeping mechanism that establishes rhythmicity and 

synchronizes the phase of disparate biological processes within the organism (Bell-

Pedersen et al., 2005). In mammals, a pair of clustered neurons in the hypothalamus, the 

suprachiasmatic nuclei (SCN), function as the master circadian pacemaker, which drives 

system-level physiological rhythms and entrains them to environmental light cues via 

photic inputs from the eyes (Hattar et al., 2002). The SCN itself is composed of 

thousands of individual neuronal oscillators, and the cellular mechanisms that couple 

them into ensemble oscillations capable of driving downstream neural outputs are 

emerging (Prosser and Gillette, 1989; Silver et al., 1996; Welsh et al., 2010). Clearly, a  
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number of chemical signals transmitted at SCN synaptic connections, including 

glutamate, vasoactive intestinal peptide (VIP) and gamma-aminobutyric acid (GABA), 

are key players.  

 

Along with multiple types of neurons, the SCN contains an abundance of neuroglial 

cells, specifically astrocytes (van den Pol, 1980; Morin et al., 1989), which express 

receptors for a range of neuromodulators such as melatonin (Peters et al., 2005), 

serotonin (Deecher et al., 1993), testosterone (Karatsoreos et al., 2011), glutamate 

(Bowman and Kimelberg, 1984) and ATP (King et al., 1996). SCN neurons generate 

sustained ensemble circadian oscillations via synchronizing intercellular signals (Liu et 

al., 2007; Webb et al., 2009). Similarly, cultured astrocytes exhibit circadian oscillations 

that can be sustained by SCN explants (Prolo et al., 2005) and entrained by vasoactive 

intestinal polypeptide (VIP) (Marpegan et al., 2009). SCN astrocytes release ATP 

rhythmically and this gliotransmitter accumulates in rat SCN extracellular fluid and in 

the medium of rat SCN cell cultures with a periodicity near 24 hours (Womac et al., 

2009). These rhythms are dependent on intracellular and mitochondrial calcium 

signaling (Burkeen et al., 2011), but the intercellular signaling mechanisms regulating 

ensemble rhythms in SCN astrocyte physiology remain unknown. Recently, Marpegan et 

al. (2011) demonstrated that ATP is rhythmically released from primary cultures of 

mouse cortical astrocytes and that these rhythms are disrupted by mutations in clock 
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genes, such as Clock, Bmal1, Period (Per1 and Per2) and Cryptochrome (Cry1 and 

Cry2), whose expression is required for the generation of behavioral rhythms in 

mammals. Therefore, we have hypothesized that rhythmic release of ATP from SCN 

astrocytes is also regulated by this canonical clock mechanism, and that clock-controlled 

ATP release itself is necessary to maintain ensemble synchronization of astrocytic 

rhythms in gene expression and physiological outputs.  

  

To test this hypothesis, we used mouse SCN cell lines generated from multiple 

genotypes, including mPer2Luc transgenic mice and Per1ldcPer2ldc double mutant mice, 

to monitor clock gene rhythms and disrupt molecular clock function in SCN astrocytes, 

respectively. Additionally, we identified purinergic receptors expressed on astrocytes of 

rat SCN cell cultures and employed receptor-specific pharmacological antagonists to 

disrupt astrocytic ATP signaling. Disruption of both the intracellular molecular clock 

mechanism and intercellular ATP signaling mechanisms abolished ensemble rhythms in 

ATP release from SCN astrocytes. 
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MATERIALS AND METHODS 

 

Cell culture conditions. SCN2.2 cell cultures were derived from fetal progenitors of the 

rat SCN (embryonic day 15) immortalized with the adenovirus E1A gene (Earnest et al., 

1999). SCN2.2 cells were cultured on laminin-coated dishes (60mm; Corning, Corning, 

NY, USA) and maintained at 37°C and 5% CO2 in Minimum Essential Medium (MEM; 

Invitrogen, Carlsbad, CA, USA), supplemented with 10% fetal bovine serum (FBS), 

glucose (3000µg/ml), L-glutamine (292µg/ml), and 1% penicillin-streptomycin-

neomycin (PSN) mixture (Invitrogen). mPer2Luc and Per1ldcPer2ldc immortalized SCN 

cells were provided by David Earnest (Texas A&M Health Science Center, College 

Station, TX, USA), and establishment of immortalized cell lines was described 

previously (Farnell et al., 2011). Cells were cultured under the same conditions as 

SCN2.2 cells. During cell propagation, the medium was changed at 48-hour intervals, 

and cultures were split every 2-3 days. 
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Temporal profile of extracellular ATP accumulation. To examine extracellular 

accumulation over 72 hours, two biological replicates were performed in which ATP 

levels were analyzed in serial samples of the medium from mPer2Luc cultures (N=10), 

Per1ldcPer2ldc cultures (N=10), SCN2.2 cultures (N=9) and SCN2.2 cultures treated with 

Brilliant Blue G (BBG; n=9), an antagonist of the P2X7 receptor, or 2'-Deoxy-N6-

methyladenosine 3',5'-bisphosphate tetrasodium salt (MRS-2179; N=9), an antagonist of 

the P2Y1 receptor. Cells derived from a single passage were propagated and treated as 

described above in cell culture conditions. Following the reduction in serum 

concentration of MEM medium to 5% FBS 24 hours after plating then to serum-free 

neurobasal medium (supplemented with glucose, L-glutamine, and 1X B-27 serum-free 

supplement; Invitrogen) 48 hours after plating (T0), experimental analysis was initiated 

by collecting and replacing medium (500 µl) from all cultures at 2-hour intervals for 72 

hours. Media samples were frozen, stored at -20°C and later analyzed for ATP 

accumulation using a chemiluminescence assay. Drug treatments with 10 nM MRS-2179 

(Tocris Bioscience, Bristol, UK) or BBG (Sigma-Aldrich, St. Louis, MO, USA) were 

initiated at T0 and were included in the replacement medium every 2 hours. 
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Extracellular ATP accumulation assay. Extracellular ATP levels in media samples were 

quantified using a TopCount luminometer-based assay similar to that described 

previously (Womac et al., 2009). Media samples were snap-frozen in liquid nitrogen and 

stored at -80°C until subsequent analysis of ATP accumulation. Cell-free, 

chemiluminescence assays of extracellular ATP levels were performed by incubating 

aliquots (100 µl) of thawed media samples with 1 µl of luciferase (Sigma-Aldrich) and 2 

µl of luciferin (Invitrogen) in wells of a black, 96-well plate (Thermo, Milford, MA, 

USA). ATP-dependent chemiluminescent activity produced by media samples was 

measured in constant darkness using a multiplate Packard TopCount scintillation counter 

(Meriden, CT, USA). ATP-dependent chemiluminescence was calibrated relative to 

assay standards ranging from 1 pM to 100 nM ATP. Internal controls consisting of 

medium without ATP, luciferase, or luciferin were included on all analyzed plates. For 

analysis and representation of rhythmicity between the trough and peak time points of 

the extracellular ATP accumulation rhythm, a chemiluminescence peak-to-trough ratio 

(CP/T) was calculated as the chemiluminescence intensity at the ATP peak time point 

divided by the intensity at the ATP trough time point. Estimated ATP concentrations 

were determined by setting average trough chemiluminescence values to 10 pM. Fold 

differences in amplitude were calculated by dividing the peak chemiluminescence value 

by the subsequent trough chemiluminescence value for each 24-hour cycle.  
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Calcium imaging. SCN2.2, mPer2Luc, and Per1ldcPer2ldc cultures were sub-cultured onto 

poly-D-lysine and laminin-coated, 2-well Nunc glass chamber slides (Thermo Fisher 

Scientific, Rochester, NY, USA) in 5% FBS medium for Ca2+ imaging. Time point 0 

(T0) was established after cells were washed and placed in 5% FBS medium. Drug 

treatments were initiated at T0, with 10 nM MRS-2179 or BBG added to neurobasal 

medium. At T24, the 5% FBS medium was washed out and replaced with neurobasal 

medium. Prior to Ca2+ imaging at T40 and T50 time points, extracellular ATP 

accumulation was determined from media samples using the chemiluminescence assay. 

Cultures were loaded at T40 and T50 with a cell-permeant acetoxymethyl ester (AM) of 

cytosolic Ca2+ sensitive dye, 4 μM FLUO-4 AM (Molecular Probes, Eugene, OR, USA), 

in neurobasal medium for 1 hour at 37°C in 5% CO2. Transient increases in resting 

cytoplasmic Ca2+ were elicited by bath application (15 µl) of 1 µM ATP in neurobasal 

medium. Control applications of neurobasal medium were also performed. Calcium 

transients in cells were monitored by FLUO-4 AM imaging with an Olympus IX70 

inverted microscope (20X objective), with images acquired every 2 seconds for ~3 

minutes. Images were acquired using a CoolSnapHQ2 camera (Actimetrics, Wilmette, 

IL, USA) and analyzed using SimplePCI 6.0 imaging software (Compix, Inc., Cranberry 

Township, PA, USA). For monochromatic imaging with FLUO-4 AM, an excitation 

wavelength of 490 nm was used and single fluorescence images were captured. For each 

captured image, four regions of interest (ROI), each approximately 200 pixels x 300 

pixels in size, were randomly chosen, background was subtracted, and fluorescence 

intensity levels for all cells within the ROI were measured. Transients were calculated as 
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percent changes in fluorescence by dividing fluorescence ~10 seconds after ATP 

application by fluorescence ~10 prior to ATP application. The mean percentages of cells 

responding to ATP application with detectable large transients (greater than 50% 

increases in fluorescence) were determined from the analysis.   

 

Immunocytochemistry. For analysis of P2X7 and P2Y1 receptor immunoreactivity, 

SCN2.2 cells plated to glass chamber slides were treated to a serum-reduction protocol 

then fixed for 30 min with 4% paraformaldehyde. Cells were washed with phosphate-

buffered saline (PBS; Invitrogen), PBS containing 0.4% Triton-X, and 10% blocking 

solution before being incubated for 24 hours in blocking solution containing rabbit anti-

P2X7 (Alamone Labs, Jerusalem, Israel) diluted 1:300 or rabbit anti-P2Y1(Alamone 

Labs) diluted 1:300. Cells were washed then treated with goat anti-rabbit Alexa Fluor 

488 IgG (Invitrogen) diluted 1:1000 in blocking solution for 4 hours prior to imaging. 

Images were captured with a confocal microscope using 100x oil immersion objective 

and analyzed using Image J software. Images of the cell membrane that were closest to 

the coverslip were selected for analysis (N=6 for each receptor at each time point). 

Threshold was adjusted to remove background noise, and all changes to settings were 

identical across images. 

 

Protein isolation and western blotting. To assay levels of P2X7R and P2Y1R, protein 

was extracted with extraction buffer containing 20mM Tris pH 7.5, 137mM NaCl, 1% 

Triton X-100, 10% Glycerol, 10 mM NaF, 10mM glyceroβ-phosphate, 2mM EDTA 1 
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mM PMSF, 1 mM orthovaudale, 1X HALT Protease Inhibitor Cocktail (Thermo 

Scientific, Waltham MA). Protein concentration was determined using NanoDrop 

spectroscopy (A280 of 1 = 1 mg/ml protein), and 50 µg of protein were boiled for 5 

minutes in 4× Laemmli sample buffer. Samples were run on 10% SDS/PAGE gels and 

blotted to an Immobilon-P nitrocellulose membrane (Millipore, Billerica MA) according 

to standard methods. Total P2X7R and P2Y1R protein were detected by western blot 

using rabbit anti-P2X7 (Alamone Labs, Jerusalem, Israel) or rabbit anti-P2Y1(Alamone 

Labs) with goat anti-rabbit HRP secondary (BioRad, Hercules, CA, USA) antibodies, 

and actin loading control was detected by actin primary (BD Biosciences, San Jose, 

California, USA) with goat anti-mouse HRP secondary (BioRad). Immuno-reactivity 

was visualized on X-ray film (Phenix, Candler, NC, USA) with Super Signal West Pico 

chemi-luminescence Detection (Thermo Scientific, Waltham, MA, USA). 

 

Real-time analysis of mPER2::LUC bioluminescence. Bioluminescence analysis was 

performed according to Farnell et al., 2011. Briefly, mPer2Luc cultures on 35mm dishes 

(Corning) were placed in DMEM recording media containing 10 mm HEPES, 0.03% 

NaHCO3, 4.510 g/L glucose, 25 units/mL penicillin, 25 μg/mL streptomycin (Sigma-

Aldrich), 1x N2 supplement, and 0.1 mM luciferin. Dishes were airtight-sealed with 

sterile glass coverslips (VWR, Radnor, PA, USA) and sterile silicon grease (Dow 

Corning, Midland, Michigan, USA). Bioluminescence was continuously recorded for 

~70 s at 10 min intervals for 5 days using an automated 32-channel luminometer 

(LumiCycle; Actimetrics, Wilmette, IL, USA) that was maintained within a standard cell 
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culture incubator at 32 °C. At 130 hours, media was changed and MRS (10nM) and 

BBG (10nM) drug treatments were added, with control dishes treated with vehicle 

control. Bioluminescence recordings continued for another 5 days, with drug washout 

and media change occurring at 250 hours. Recordings continued for the washout phase 

for another 5 days. The first 12 hours following a media change was excluded from data 

analysis due to transient induction of bioluminescence. Bioluminescence data were 

analyzed using the LumiCycle Analysis program (Actimetrics). For each raw data set, 

baseline drift was removed by fitting a polynomial curve with an order equal to one less 

than the number of recorded cycles. Circadian frequencies in the data were detected by 

Fourier transform analysis from AutoSignal software (Systat Software Inc., Point 

Richmond, CA, USA).  

 

Statistical analysis. Raw chemiluminescence data (photons/sec) were normalized in 

relation to the maximum for each culture, which was arbitrarily set at 100 %. The 

normalized data was subjected to a Lomb-Scargle Fourier transform analysis using 

AutoSignal software. A least-square fitting of the data was applied with a sinusoidal 

parametric function. Through regression analysis at various frequencies, the period () of 

recurrent oscillations was extracted from the time series data, with significant periods 

ranging from 22 to 26 hours. In most cases, paired and pooled t-tests were performed to 

determine if changes in fluorescence, responding cells, or ATP levels were significantly 

different between peak and trough times. The  value was set at 0.05 for all statistical 

analyses. 
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RESULTS 

 

The SCN, which regulates behavioral rhythmicity in mammals, is potentially modulated 

by a growing number of neurotransmitters and neuromodulators, including the 

gliotransmitter ATP. ATP is released rhythmically from astrocytes of the hypothalamic 

SCN and cortex (Womac et al., 2009; Burkeen et al., 2011) and mutations in clock genes 

disrupt rhythmic ATP release from cortical astrocytes (Marpegan et al., 2011). Similarly, 

ATP rhythms were abolished in SCN astrocytes derived from mice with targeted 

disruption of Per1 and Per2 (Per1ldcPer2ldc; N=10; Figure 7). In contrast, ATP 

accumulation in parallel cultures of SCN astrocytes derived from mPer2Luc mice (N=10) 

with functional molecular clocks was rhythmic, as determined by Fourier transform 

analysis (Table 1). High amplitude fluctuations of extracellular ATP accumulation were 

not discernable after the first 30 hours of analysis in the Per1ldcPer2ldc SCN cultures. 

Mean chemiluminescence in these cultures was significantly lower than mPer2Luc SCN 

cultures at their subjective peak and subjective trough of ATP accumulation (p<0.05; 

Table 1), as determined from peak and trough times of ATP accumulation in the 

mPer2Luc SCN cultures. Estimated basal ATP concentration for mPer2Luc SCN cultures 

(i.e., trough ATP levels) was greater than 10 pM compared to an estimated basal level of 

less than 1 pM for Per1ldcPer2ldc  cultures and this difference in basal release level was 

statistically significant (p<0.05; Figure 7B). Thus, molecular clock disruption caused 

both arrhythmicity in SCN astrocytic ATP release and significantly lowered basal ATP 

accumulation.  
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Figure 7. Rhythms of extracellular ATP accumulation did not persist in mouse 
SCN cells containing targeted disruption of Per1 and Per2. A) 
Representative traces of ATP-dependent chemiluminescence for SCN 
cell cultures illustrate patterns of ATP release. Immortalized mouse SCN 
cell cultures containing a PER2::LUC fusion protein (mPer2Luc; solid 
circles) exhibited circadian rhythmicity in the temporal pattern in the 
levels of extracellular ATP accumulation. ATP release rhythms were 
abolished in SCN astrocytes derived from mice with targeted disruption 
of Per1 and Per2 (Per1ldc/Per2 ldc; open circles). B) Estimated levels of 
extracellular ATP at trough times for mPer2 Luc (Per2:L SCN; N=10) and 
at subjective trough times for Per1ldc/Per2 ldc (PerDM SCN; N=10) 
cultures. These basal levels of ATP accumulation were significantly 
lower in SCN astrocytes with dysfunctional biological clocks (*, 
p<0.05). Subjective trough times are determined by the timing of troughs 
in control cultures, since these cultures are arrhythmic. 
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The binding of ATP to purinergic receptors on astrocytes activates calcium influx and 

release of Ca2+ from intracellular stores (Suadicani et al., 2006). We tested the efficacy 

of exogenous ATP to raise intracellular calcium levels in SCN astrocytes derived from 

mice with  disrupted and functional clocks, as monitored with the Ca2+-sensitive dye 

FLUO-4 AM. ATP application (1µM) evoked calcium transients in both mPer2Luc SCN 

(Figure 8A) and Per1ldcPer2ldc SCN astrocytes (Figure 8B), whereas neurobasal medium 

alone had no effect. ATP-activated Ca2+ responses varied between peak and trough time 

points in mPer2Luc SCN glial cells (N=5), with significantly larger responses at the 

trough time point (low extracellular ATP), compared to those at the peak (high 

extracellular ATP; Figure 8C; p<0.001). Furthermore, a greater percentage of mPer2Luc 

SCN cells responded to ATP application when extracellular ATP accumulation was low 

(p<0.005; Figure 8D). In contrast, the amplitude of evoked calcium transients and the 

number of cells responding in Per1ldcPer2ldc SCN astrocytes (Figure 8C-D) were not 

different between subjective peak and trough ATP accumulation time points. 
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Figure 8. ATP-evoked calcium responses were rhythmic. A) ATP-induced 
calcium transients in individual mPer2Luc SCN cells were analyzed 
as percent change in fluorescence over 60 seconds. Each trace 
represents fluorescence changes in a cell at either the ATP trough 
or ATP peak time. Individual mPer2Luc cells were imaged for 
fluorescence changes when extracellular ATP was low (black 
traces) and when ATP was high (gray traces). Brief fluorescence 
decreases immediately preceding increases were artifacts of the 
method of ATP bath application. B) Fluorescence changes in 
individual Per1ldc/Per2 ldc cells were similar when extracellular 
ATP was at its subjective trough (black traces) or at its subjective 
peak (gray traces). Subjective trough and subjective peak times 
were determined by the timing of the trough and peak in control 
mPer2Luc SCN cultures, since ATP accumulation in Per1ldc/Per2ldc 
SCN cultures was arrhythmic. C) Mean percent changes in 
fluorescence of mPer2Luc SCN and Per1ldc/Per2ldc SCN cultures in 
response to ATP at times of high and low extracellular ATP. 
Calcium transients were significantly larger at trough time points 
in controls (*, p<0.001; CP/T = 4.68 ± 0.48; N=5), as compared to 
the double mutant astrocytes (N=5) with identical responses at 
both time points. D) The percentages of cells responding with 
ATP-induced calcium transients in mPer2Luc SCN and 
Per1ldc/Per2ldc SCN cultures at times of high and low extracellular 
ATP. Again, controls were significantly different (*, p<0.005), but 
mutants were not. Transients were calculated by dividing 
fluorescence at ~10 seconds after ATP application by fluorescence 
at ~10 seconds prior to ATP application.  
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Figure 8. Continued. 
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ATP released from astrocytes binds to multiple types of purinergic receptors in glial 

cells (Burnstock and Knight, 2004), and ATP receptor genes are rhythmically expressed 

in the rat SCN and SCN2.2 cell line (Menger et al., 2005). Therefore, we conducted both 

immunocytochemistry and Western blot analyses to test for the presence of purinergic 

receptor proteins in SCN2.2 astrocytes. Immunoreactivity was detected for the P2X7R, 

an ionotropic ATP receptor, and the P2Y1R, a metabotropic ATP receptor (Figure 9). To 

determine if these purinergic receptors elicited Ca2+ responses to ATP, calcium transients 

were measured in SCN2.2 cells following exogenous ATP application in the presence of 

BBG, an antagonist of P2X7R, and MRS, an antagonist of P2Y1R. Bath application of 1 

µM ATP elicited Ca2+ transients in control SCN2.2 astrocytes (Figure 10A). The largest 

Ca2+ responses, as indicated by the percent change in fluorescence, were detected when 

extracellular ATP was low and these responses were significantly different than those 

elicited when ATP accumulation was high (p<0.001; N=5; Figure 10B). In addition, 

when extracellular ATP levels were high, the percentage of cells responding to ATP 
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Figure 9. Purinergic receptor proteins were expressed in SCN2.2 astrocytes. 

A) Immunoreactivity for a P2X7 receptor antibody visualized with 
confocal microscopy. Scale bar is 20 µm. B) Immunoreactivity for 
the P2Y1 receptor antibody visualized with confocal microscopy. 
Scale bar is 20 µm. C) P2X7R and P2Y1R protein was detected 
with antibodies in Western blot analyses of SCN2.2 cell cultures.  
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Figure 10. ATP-evoked calcium responses were disrupted by purinergic 
receptor inhibition. A) ATP-induced calcium transients in 
individual cells were analyzed as percent change in fluorescence 
over 60 seconds. Brief fluorescence decreases immediately 
preceding increases were artifacts of the method of ATP bath 
application. Individual SCN2.2 cells were imaged for fluorescence 
changes when extracellular ATP was low (>50% ΔF) and when 
ATP was high (0% ΔF). Each trace represented fluorescence 
change over 60 seconds in an individual cell at either an ATP 
trough or ATP peak time. B) Mean percent changes in fluorescence 
(>50% ΔF) of control, MRS- and BBG-treated cultures in response 
to ATP at times of high and low extracellular ATP (N=5). BBG-
treated cultures had significantly lower calcium responses 
compared to controls, as indicated by lower percent fluorescence 
changes (p<0.01). C) The percentages of cells responding with 
ATP-induced calcium transients in control, MRS- and BBG-treated 
SCN2.2 cultures at times of high and low extracellular ATP 
(p<0.05, MRS; p<0.001, BBG). Transients were calculated by 
dividing fluorescence ~10 seconds after ATP application by 
fluorescence ~10 seconds prior to ATP application.   
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Figure 10. Continued. 
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application was low and increased significantly when ATP accumulation was lower 

(p<0.001; Figure 10C). In the presence of pharmacological antagonism, the P2X7 

receptor antagonist, BBG, led to a significantly diminished Ca2+ response at the ATP 

trough (p<0.01), compared to controls (Figure 10B). Although the P2Y1 receptor 

antagonist, MRS, decreased the Ca2+ response at this time point, the decrease was not 

significantly different from untreated controls (Figure 10B). Furthermore, when 

extracellular ATP accumulation was low (trough), MRS- and BBG-treated cultures had 

significantly fewer cells responding to exogenous ATP with large calcium transients 

compared to untreated control cultures (p<0.05, MRS; p<0.001, BBG; Figure 10C). 

ATP-dependent chemiluminescence ratios (CP/T) were calculated between peak and 

trough time points for control, MRS-treated and BBG-treated cultures prior to antagonist 

exposure and CP/T ratios of 3.31 ± .60, 2.67 ± .43, and 2.32 ± .48, respectively, were not 

significantly different. Thus, SCN2.2 astrocyte sensitivity to ATP was rhythmic and 

purinergic receptor pharmacology supported the existence and function of P2X7 and 

P2Y1 receptors in SCN2.2 astrocytes. 
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Extracellular ATP accumulation is rhythmic in SCN2.2 cell cultures (Womac et al., 

2009) and, consequently, purinergic signaling might contribute to the synchronization of 

SCN astrocyte rhythms. To test the role of purinergic signaling in the mediation of 

clock-controlled outputs, we disrupted P2X7R- and P2Y1R-mediated ATP signaling. 

Media samples were collected over 72 hours from control cultures (N=9), MRS-treated 

cultures (N=9) and BBG-treated cultures (N=9) and extracellular ATP levels were 

measured (Figure 11A). Initial peaks in ATP accumulation were potentiated by P2Y1R 

antagonism in MRS-treated cultures, and the estimated concentration of basal ATP was 

greatest in these MRS-treated cultures (p<0.05; Figure 11B, Table 2), as compared to 

control basal levels. BBG treatment lowered ATP levels at both peak and trough time 

points (Table 2). Furthermore, while control cultures maintained robust peaks in ATP 

chemiluminescence over 72 hours, the amplitude of ATP peaks diminished over this 

timeframe in MRS-treated cultures and was all but abolished in BBG-treated cultures. 

Amplitude differences of peak-trough accumulation by the 3rd cycle (48-72 hours) were 

significantly less in MRS- and BBG-treated cultures compared to controls (p<0.005; 

Figure 11C). Thus, treatment with purinergic receptor antagonists altered the amount of 

ATP released from SCN2.2 cells and caused the damping of the ATP accumulation 

rhythm.  
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Figure 11. Purinergic receptor antagonists diminished ATP accumulation rhythm 
amplitude. A) SCN2.2 cultures exhibited circadian rhythmicity in the temporal 
pattern of extracellular ATP accumulation levels (N=9). MRS- and BBG-treated 
SCN2.2 cultures exhibited altered rhythms in extracellular ATP accumulation 
(N=9). Representative traces of ATP-dependent chemiluminescence from 
individual cultures illustrate that rhythms in ATP accumulation were dampened 
in MRS- and BBG-treated cultures over 72 hours. B) Estimated levels of 
extracellular ATP at trough times for control, MRS-treated, and BBG-treated 
cultures illustrate that basal ATP accumulation was enhanced by P2Y1 
antagonism (*, p<0.05). C) Fold differences in amplitude measured between 48 
and 72 hours revealed persistent and robust rhythms in ATP accumulation in 
control cultures, but both MRS-treated and BBG-treated cultures had diminished 
rhythm amplitudes (*, p<0.005). 
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Inhibiting P2X7 and P2Y1 receptors with specific antagonists decreased rhythms in 

accumulation of ATP, an output of the circadian clock. This may suggest that ATP 

signaling involving these receptors contributes to the maintenance of robust circadian 

outputs. To test this possibility, we treated mPer2Luc SCN luciferase reporter cells with 

MRS, BBG or vehicle control and recorded bioluminescence for 120 hours before, 

during, and after drug treatment. All cultures maintained robust circadian rhythms in 

PER2::LUC bioluminescence prior to the drug treatment phase (Figure 12). Predominant 

frequencies, as detected by Fourier transform analysis over 4 cycles, were circadian in  

all treated and control cultures, and each treatment group had a mean period near 22 

hours (N=6 per group; Table 3). Periods did not change between pre-treatment and drug 

treatment phases; however, the amplitude of PER2::LUC bioluminescence declined 

following MRS and BBG treatment (Figure 12; Table 3). Although bioluminescence 

rhythms dampened during the MRS and BBG-treatment phase compared to the pre-

treatment phase, only BBG treatment caused significant damping of PER2::LUC 

rhythmic bioluminescence throughout the entire treatment and post-treatment phases 

(p<0.005; Figure 12; Table 3). PER2::LUC bioluminescence amplitudes during the post-

treatment (washout) phase in MRS- and BBG-treated cultures did not recover to pre-

treatment levels, whereas PER2::LUC bioluminescence in controls maintained rhythm 

amplitudes similar pre-treatment phase levels throughout the experiment (Figure 12; 

Table 3). 

 

 
   



 64 

 

 

        

 
 
 
Figure 12. PER2::LUC reporter rhythms were disrupted by purinergic receptor 

antagonism. Representative traces of mPER2::LUC bioluminescence 
from control, MRS- and BBG-treated mPer2Luc SCN cultures (N=6) 
illustrate the robustness of the mPER2::LUC expression profiles. 
Bioluminescence was recorded for 5 days for pre-treatment, drug 
treatment, and drug washout experimental phases. Treatment of BBG 
(bottom records) caused a reduction in mPER2::LUC bioluminescence 
amplitude, damping of PER2::LUC oscillations, and a diminution in the 
number of cycles that persisted in the PER2::LUC rhythm. MRS 
treatment (middle records) caused similar, but not as severe, alterations 
in mPER2::LUC bioluminescence. Media changes occurred at the times 
of drug treatment and washout. 
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DISCUSSION  

 

Organisms possess a circadian clock mechanism for entraining the internal timing of 

molecular and physiological events to the external environment. These circadian 

entrainment and pacemaker mechanisms in mammals are localized to the 

suprachiasmatic nuclei (SCN) of the hypothalamus, which synchronize peripheral 

oscillations to 24-hour rhythms in appropriate phase with the local photoperiod (Silver et 

al., 1996; Ueyama et al., 1999; Schibler and Sassone-Corsi, 2002; Dibner et al., 2010; 

Welsh et al., 2010). The SCN contain nearly 20,000 neurons (Moore, 1996; Abrahamson 

and Moore, 2001) and an abundance of astrocytes (Morin et al., 1989). Daily oscillations 

in clock gene expression are coordinated among SCN neurons (Reppert and Weaver, 

2001; Welsh et al., 2010) and this coordination is necessary to produce robust circadian 

rhythms in animal behavior. However, the mechanism of inter-oscillator coupling within 

the SCN is not well understood (Hastings and Herzog, 2004). We hypothesized that ATP 

release was an output of the molecular clock in astrocytes, with one of its functions 

being the regulation of intercellular coupling among SCN glial cells. SCN astrocytes 

exhibit circadian oscillations in various physiological processes (Prolo et al., 2005; 

Becquet et al., 2007; Womac et al., 2009; Burkeen et al., 2011), can be entrained by VIP 

(Marpegan et al., 2009), and can affect circadian neuronal activity (Prosser et al., 1994). 

Still, the mechanisms that couple individual SCN astrocytic oscillators into ensemble 

oscillators remain undefined. In the present studies, we have demonstrated that clock-

controlled ATP release from SCN astrocytes and purinergic signaling through P2 
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receptors contribute to ensemble synchronization of rhythms in clock gene expression, 

ATP-evoked calcium signaling, and circadian rhythms in ATP release itself. 

  

ATP release from astrocytes and its rhythmic extracellular accumulation is under 

circadian clock control (Marpegan et al., 2011; Figure 7). Here, we have demonstrated 

that clock-controlled ATP accumulation affects clock output rhythms and the robustness 

of the ensemble SCN astrocytic clock. Communication via ATP signaling mechanisms 

varies over 24 hours in SCN astrocytes, where intrinsic oscillations exist in calcium 

responses to ATP application (Figures 8 and 10). This rhythmicity in inherent sensitivity 

to ATP may provide a mechanism of phase resetting, a mechanism by which organisms 

adjust their clock each day to correspond with daily light-dark cycles (Albrecht et al., 

2001). Rhythmic ATP accumulation was affected by inhibiting ATP signaling via 

purinergic receptor antagonism (Figure 11), suggesting that, as high levels of ATP 

accumulate extracellularly every 24 hours, this purinergic signal feeds back upon the 

astrocytes, perhaps triggering physiological adjustments influencing the clock through 

calcium-dependent signaling mechanisms. BBG, a P2X7R antagonist, abolished peak 

levels of ATP in most cultures and significantly reduced the basal level of ATP 

accumulation; whereas, MRS, a P2Y1R antagonist, raised the basal level of ATP 

accumulation and enhanced the initial amplitude of ATP release peaks. These 

differences in antagonistic effects were surprising and may be explained by examining 

the calcium signaling mechanisms evoked by receptor activation. For the P2X7R, ATP 

activation induces an influx of Ca2+ ions that raises cytosolic calcium concentration and 
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can influence the activation of clock gene expression. Following P2Y1R activation, the 

phospholipase C (PLC) signaling pathway initiates an increase in cytosolic calcium by 

release from intracellular stores and that can influence transcription, as well. P2Y 

receptors are classified by which G-proteins they are associated with, and P2Y1 

receptors are generally coupled to Gq/G11 GTPases (Verkhratsky, 2005; Abbracchio et 

al., 2009). Interestingly, P2Y receptors can activate other G-protein signaling pathways 

and can form hetero-oligodimers with other P2Y receptors to activate varying responses 

(White et al., 2003; White and Burnstock, 2006; Ecke et al., 2009). P2Y stimulation of 

Gs-dependent adenylate cyclase activation leads to increased conversion of intracellular 

ATP to cAMP and subsequent activation of cAMP signaling pathways. Whereas 

intracellular content of ATP (Yamazaki et al., 1994) and extracellular levels of ATP 

(Womac et al., 2009) both peak in the rodent SCN at night, rhythmic SCN cellular 

content of cAMP (Prosser & Gillette, 1991) peaks during the day and is accompanied by 

rhythmic regulation of cAMP response element (CRE) activity (O‟Neill et al., 2008). In 

the present studies, P2Y1R inhibition of SCN astrocytes may have disrupted a P2Y/Gs-

dependent cAMP signaling, thereby explaining the elevated basal levels of extracellular 

ATP in the MRS-treated cultures. 
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The hypothesis that ATP signaling mediates circadian rhythms among SCN astrocytes 

was further studied using PER2::LUC bioluminescence reporting of mPer2 gene 

expression following treatment with purinergic receptor antagonists. Analysis of PER2 

reporter rhythms revealed less robust rhythms in ensemble bioluminescence in the 

presence of purinergic antagonists (Figure 12). Disruption of ATP signaling caused a 

decrease in bioluminescence reporting of ensemble Per2 gene expression, suggesting 

that ATP regulates, in some manner, synchrony between astrocytic oscillators of the 

ensemble SCN clock. We conclude that the decline in PER2::LUC bioluminescence is 

due to uncoupling of synchronized oscillators within the culture. A direct damping effect 

on the molecular clock mechanism within individual oscillating cells seemingly is not 

occurring as a result of purinergic receptor inhibition. In rats, manipulation of SCN input 

and output pathways abolishes behavioral rhythmicity, but the molecular clock remains 

functional (Schwartz et al., 1987), demonstrating that arrhythmicity is not due to an 

affected molecular clock. Here, robust amplitudes of PER2::LUC bioluminescence 

indicated strong inter-oscillator coupling and robust coordination of rhythmic gene 

expression. Our results imply that ATP signaling, via both P2X and P2Y classes of 

purinergic receptors, synchronizes SCN astrocytic oscillators leading to coordinated 

ensemble rhythms in clock gene expression and ATP production, release, and 

accumulation. Future studies must determine if individual SCN astrocytes, as is the case 

with SCN neurons (Welsh et al., 1995; Hastings & Herzog, 2004), are actually 

individual oscillators functioning in ensemble physiological synchrony and whether ATP 

signaling disruption causes uncoupling of these individual oscillators. Taken together, 
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the current data are indicative of a functional role for clock-controlled ATP signaling by 

astrocytes within the mammalian SCN. 

  

Rhythmic extracellular ATP accumulation has been established as an output of the 

circadian clock; however, the function of that purine accumulation is unknown. 

Astrocytes play a role in modulating synaptic transmission, as their numerous processes 

contact vast numbers of synapses within the mammalian brain (Araque et al., 1999; 

Bacci et al., 1999). The tripartite synapse, consisting of presynaptic and postsynaptic 

elements and the astrocytic end-feet that surround them, is thought to regulate many 

aspects of brain neurophysiology (Araque et al., 1999; Haydon, 2001; Newman, 2003). 

In Drosophila, the glia-specific gene ebony mediates circadian rhythms in locomotor 

behavior, demonstrating that glial cells can modulate complex neuronal networks (Suh 

and Jackson, 2007; Ng et al., 2011). In rats, circadian neuronal firing patterns from SCN 

slices are altered when glial coupling and metabolism are disrupted, signifying glial 

involvement in maintaining rhythmicity in the SCN (Prosser et al., 1994). ATP is 

released from astrocytes as a gliotransmitter that can modulate synaptic communication 

(Cotrina et al., 1998; Guthrie et al., 1999; Haydon, 2001; Scemes & Giaume, 2006) and 

has been implicated in hippocampal plasticity (Pascual et al., 2005) and sleep (Halassa et 

al., 2009). ATP mediates neuronal-glial signaling by binding to purinergic receptors, 

either ionotropic P2X receptors or G-protein-coupled P2Y receptors, to initiate 

elevations in intracellular Ca2+. Disrupting signaling through these receptors affects both 

neuronal and astrocyte physiology, in part by alterations in adenosine signaling 
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following ATP hydrolysis (Edwards et al., 1992; Evans et al., 1992; Fields and Stevens, 

2000; Fumagalli et al., 2003; Fields and Burnstock, 2006). Interestingly, 

electrophysiological evidence exists for presence of adenosine A1 and A2 receptors in 

the SCN (Chen & van den Pol, 1997), suggesting potential glia-neuron interactions 

originating from clock-controlled ATP release rhythms from SCN astrocytes. Blockade 

of purinergic signaling with P2X7 and P2Y1 antagonists disrupted multiple aspects of 

clock-controlled ATP signaling in SCN astrocytes, suggesting that purinergic signaling 

pathways may have broad influence on the coordination and synchrony of circadian 

rhythms within the SCN. Furthermore, these results suggest that clock-controlled ATP 

release throughout the mammalian brain could have important influences over circadian 

rhythms in brain function. 
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CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

 

 

THE MAMMALIAN MASTER CIRCADIAN PACEMAKER 

 

In mammals, biological clocks are found in many different cell types. The retina, 

astrocytes, pituitary gland, heart, lungs, liver, and kidneys are among some of the tissues 

that are composed of cellular oscillators containing biological clocks (Yamazaki et al., 

2000; Yoo et al., 2004; Prolo et al., 2005; Ko et al., 2007). Because many organs in 

mammals have biological clocks that can all keep time locally within the organ, it is 

proposed that these tissues are coordinated by a pacemaking oscillator that can 

synchronize the timing of clocks in each organ to the appropriate time of day. This 

structure is the suprachiasmatic nucleus (SCN) and represents the master circadian 

pacemaker in mammals.  

 

The SCN is entrained by daylight and then coordinates the phases of peripheral 

biological clocks to this timing (Silver, 1996; Ueyama, 1999; Schibler and Sassone-

Corsi, 2002; Dibner, et al., 2010; Welsh et al., 2010). Individual cellular oscillators in 

the SCN rhythmically express genes that have been identified as core components of the 
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mammalian canonical clock machinery: Clock, Bmal1, Period (Per1 and 

Per2),Cryptochrome (Cry1 and Cry2), and Rev-erbα. The self-sustained rhythms of 

these molecular clock components are driven by 24-hour transcriptional and post-

translational feedback loops and are found in all oscillators, including peripheral clock 

cells. However, it is the ability for the oscillators within the SCN to coordinate the 

phases of peripheral clocks that sets them apart. The SCN contains retinorecipient 

pacemaking neurons that communicate light information received from retinal inputs to 

other neuronal and astrocytic oscillators in the SCN. The oscillators within the SCN 

itself are coupled to one another, and this coordination of SCN oscillations imposes 24-

hour rhythmicity upon peripheral cellular oscillators in an organism. This coupling 

mechanism within the SCN produces and maintains synchronized rhythmicities that 

influence behavioral, biochemical and physiological processes. We hypothesize that one 

function of ATP signaling is to contribute to this mechanism of coupling SCN 

oscillators. 
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CIRCADIAN REGULATION OF ATP SIGNALING 

 

These studies present a novel finding, that ATP is released from the SCN in vivo and 

from SCN cell cultures and accumulates extracellularly every 24 hours. It is not 

surprising that rhythms in ATP accumulation persist from these cells, as several genes 

involved in the regulation of ATP oscillate in the SCN (Menger et al., 2005). 

Intracellular ATP content oscillates, with peak levels detected during mid-subjective 

night (Yamazaki et al., 1994). In addition, ATP is released from neurons and astrocytes 

to modulate neuronal-glial synaptic communication, so its extracellular detection is 

expected. ATP accumulation is identified here as a 24-hour circadian rhythm. This 

rhythmic accumulation is characterized as an output of the clock, one of the many 

processes controlled by endogenous molecular clock oscillations. A non-functional 

circadian clock, unable to express Per1 and Per2 properly, abolishes rhythmic 

accumulation, demonstrating its classification as a circadian rhythm and the necessity of 

the clock to produce this rhythm. The purpose of SCN astrocytes releasing ATP every 24 

hours is of interest.  

 

Astrocytes play a significant role in modulating synaptic transmission, as their numerous 

processes contact thousands of synapses (Araque, et al., 1999; Bacci et al., 1999). The 

tripartite synapse has since been established as presynaptic and postsynaptic neurons that  
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communicate with astrocytes to regulate brain neurophysiology (Araque, et al., 1999; 

Haydon, 2001; Newman, 2003). ATP is released from astrocytes as a gliotransmitter that 

can modulate communication at the site of the synapse (Cotrina et al., 1998; Guthrie et 

al., 1999; Haydon, 2001). ATP mediates neuronal-glial signaling by binding to its 

receptors, either ionotropic P2X receptors or metabotropic P2Y receptors, on astrocytes 

and neurons to initiate elevations in intracellular Ca2+. Disrupting signaling through 

these receptors affects neuronal and astrocytic excitability (Edwards et al., 1992; Evans 

et al., 1992; Fields and Stevens, 2000; Fumagalli et al., 2003; Fields and Burnstock, 

2006) and highlights the importance of ATP in modulating intercellular communication 

(Jackson, 2011). The present studies support these findings, in which ATP signaling 

mediates astrocytic communication, and a disruption in this signaling pathway has a 

broader influence on the coordination of communication and synchrony within the SCN. 

 

Communication via ATP signaling mechanisms between astrocytes and neurons may 

vary over 24 hours, as our results suggest that SCN cells contain an innate oscillation in 

cellular response to ATP. Activation of purinergic receptors with exogenous ATP varies 

at different levels of ATP accumulation (peak vs. trough), with less receptor activation 

and smaller cellular responses measured when extracellular ATP accumulation is high. 

Large cellular responses, recorded as large increases in intracellular Ca2+, and receptor 
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activation are seen when extracellular ATP is low. Different physiological responses to 

ATP over 24 hours indicate that the clock may be regulating not only the output rhythm 

of ATP accumulation but also cellular sensitivity to transmitter signaling. Receptor 

availability and turnover may be under circadian control, and if so, cellular 

responsiveness is directly affected by the clock. This inherent sensitivity to respond to 

ATP signaling may also provide a method of phase resetting, a mechanism by which 

organisms can adjust clock timing slightly each day to correspond with daily light-dark 

cycles (Albrecht et al., 2001). Animals can respond to light pulses by either advancing or 

delaying their activity, depending on when during the night the pulse is given. This 

demonstrates the ability of the entrainable SCN clock to reset its phase, indicating its 

responsiveness to stimuli. Thus, cellular oscillators must be sensitive to a stimulus in 

order to be reset. Here, that sensitivity could be modulated by receptor function and 

availability, characteristics that may also be under clock control. 
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CIRCADIAN CLOCK SYNCHRONY REGULATED BY PURINERGIC SIGNALING  

 

This study reveals that ATP accumulates from SCN astrocytes to synchronize the many 

oscillators within the SCN. ATP acts in this manner through its purinergic receptors that 

are found on astrocytes and neurons. ATP can initiate Ca2+ waves among populations of 

astrocytes by activating the IP3 signaling pathway that leads to the increase in cytosolic 

Ca2+. This rise in Ca2+ triggers the release of gliotransmitters, such as ATP, that 

participate in the propagation of the Ca2+ wave by binding to purinergic receptors on 

adjacent astrocytes. IP3 signaling molecules can also pass through gap junctions, which 

couple astrocytes to one another, to raise intracellular Ca2+. The coordinated release of 

ATP from SCN astrocytes has the ability to signal to adjacent neuronal and astrocytic 

oscillators and cause a simultaneous rise in Ca2+ among these oscillators.  

 

This synchronized elevation of cytosolic Ca2+ may trigger clock gene transcriptional 

activation, leading to initiation of the molecular transcriptional-translational feedback 

loop. SCN oscillators will then have the timing of their molecular clocks set to the same 

phase, as they have been exposed to phase-setting ATP signals that activate transcription 

via signaling pathways that elevate cytosolic Ca2+. As intracellular Ca2+ rises, it binds to 

CaMKII, a protein kinase that activates CREB. CREB is a transcription factor that binds  
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to the cAMP response element (CRE) on the promoter sequence of genes to activate 

transcription. The only gene of the canonical clock components to contain CRE 

sequences is Period. Because of this, Per induction can occur rapidly in response to a 

Ca2+-elevating stimulus. CLOCK and BMAL1 are continuously bound to the Per 

promoter and can readily initiate Per transcription if the stimulus is applied at a specific 

time during the feedback loop. The data presented here suggest that ATP is a Ca2+-

elevating stimulus, eliciting cytosolic Ca2+ increases via purinergic receptor signaling. 

As ATP accumulates every 24 hours and signals to adjacent SCN astrocytes and 

neurons, it may cause the activation of Per transcription through elevated intracellular 

Ca2+ signaling in these oscillators. Activation of Per expression by ATP signaling 

coordinates the transcriptional feedback loop in the oscillators to the same phase. In this 

manner, ATP could be a synchronizing cue among SCN oscillators, resetting the timing 

of clock gene expression to the same phase every day so that SCN cells, as a whole, 

produce one, coordinated 24-hour rhythm that can be imposed upon peripheral clocks. 

  

We investigated this possible function of accumulated extracellular ATP as a 

synchronizing molecule by disrupting ATP signaling mechanisms in SCN astrocytes. 

Using pharmacological agents, we antagonized the P2X7 and P2Y1 ATP receptors and 

studied the effects on ATP accumulation and synchrony among SCN cells in culture. 

Disrupting the function of these receptors implicates ATP as a modulator of synchrony 
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among SCN cells. The potential role of ATP as a circadian signaling molecule 

contributing to the maintenance of synchronized phasing between oscillators is revealed 

in these studies when receptor antagonism altered ATP accumulation output rhythms and 

dampened bioluminescence reporting of Per2 clock gene expression. Rhythmic ATP 

accumulation was affected by inhibiting ATP from binding several of its receptors. This 

may suggest that, as high levels of ATP accumulate extracellularly every 24 hours, this 

signaling molecule acts on its receptors across many neurons and astrocytes within the 

SCN with the function to maintain proper coordination of the clock and its output 

rhythms. Observed changes to ensemble PER2::LUC rhythmicity when treated with 

purinergic receptor antagonists support this hypothesis. Analysis of PER2::LUC 

bioluminescence rhythms revealed less robust rhythms in ensemble bioluminescence 

among the treated cells in culture. Taken together, these data are indicative of a 

functional role for ATP accumulation within the SCN, whereas astrocytes release ATP 

every 24 hours for continual signaling onto astrocytes and neurons to maintain daily 

coordinated synchrony of the clocks in these cells (Figure 13). 
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Figure 13. Astrocyte purinergic signaling regulates synchronous function of the SCN. 

A) ATP is rhythmically released from SCN astrocytes and accumulates over 
24 hours. Rhythmic ATP accumulation is an output of the circadian clock, 
and the timing of its release and action on purinergic receptors are 
synchronized among astrocytes. B) Disruption of signaling mechanisms via 
purinergic receptors eliminates ATP as a synchronizing cue among SCN 
oscillators. C) This disruption causes coordinated timing of cellular clocks to 
become unsynchronized, affecting their clock output rhythms and 
coordinated reception of synchronizing cues.  

A 

B 

C 
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CALCIUM SIGNALING AND ATP ACCUMULATION 

 

Previous studies conducted by our lab demonstrated a circadian rhythm in cytosolic 

calcium levels in SCN2.2 cell cultures. An antiphase relationship between intracellular 

Ca2+ and extracellular ATP was observed, as assays for both molecules were 

simultaneously conducted at 1-hour intervals. The peaks and troughs in Ca2+ 

fluorescence had an inverse phase in relation to rhythmic ATP-dependent 

chemiluminescence (Figure 14A), demonstrating an antiphasic relationship between 

rhythmic extracellular ATP accumulation and cytosolic Ca2+ concentration. Rhythms in 

extracellular ATP accumulation and cytosolic Ca2+ in SCN2.2 astrocytes are 12 hours 

out of phase, suggesting that peak levels of astrocytic Ca2+ coincide with the daytime 

peak in SCN neuronal Ca2+ (Colwell, 2000; Ikeda et al, 2003; Irwin and Allen, 2009). 

Determining the timing of peak astrocytic Ca2+ elevations is based on the timing of 

extracellular ATP accumulation in the rat SCN. We found that extracellular ATP 

accumulation in the rat SCN peaks at late night (Figure 5; Womac et al., 2009); 

therefore, cytosolic Ca2+ peaks roughly 12 hours after that, during the day.  
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Figure 14. Intracellular calcium rhythms and ATP accumulation. (A) The time 

course of ATP-dependent chemiluminescence (blue line) and cytosolic 
calcium fluorescence as detected with Fluo-4-AM (green line) illustrates 
the anti-phase and inverse relationship between these two cellular 
rhythms. Mitochondrial calcium elevations as detected by Rhod-2-AM 
(red dotted line) occur in phase with extracellular ATP accumulation. (B) 
Fluorescence imaging was performed with MitoTracker Green, a 
mitochondrial marker, and Rhod-2-AM, a mitochondrial Ca2+ marker in 
SCN2.2 cells. Rhod-2 fluorescence colocalized with MitoTracker Green 
fluorescence. This fluorescent colabeling verified that that Rhod-2 was 
primarily an indicator of mitochondrial Ca2+ levels in these cultures. 
These data from Figure 14 are reprinted with permission from 
“Mitochondrial Calcium Signaling Mediates Rhythmic Extracellular 
ATP Accumulation in Suprachiasmatic Nucleus Astrocytes” by Jeff 
Burkeen, Alisa Womac, David Earnest, and Mark Zoran, 2011. The 
Journal of Neuroscience, Volume 31, Pages 8432-8440, Copyright 2011 
by The Society for Neuroscience. 

A 

B 

Rhod-2 MitoTracker             Merge 
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Mitochondrial calcium levels fluctuated in phase with extracellular ATP accumulation 

and 12 hours out of phase with fluctuating cytosolic Ca2+ levels (Figure 14A, B). 

Calcium signaling in the mitochondria regulates its function, including the production of 

ATP (Santo-Domingo and Demurex, 2010; McCormack et al., 1990). Blocking calcium 

from entering the mitochondria disrupts the extracellular ATP accumulation rhythm, and 

presumably ATP production. Ru360, a specific mitochondrial calcium uniporter 

inhibitor, significantly reduced extracellular ATP accumulation in treated SCN2.2 

cultures as compared to untreated cultures at both trough and peak ATP accumulation 

time points. Our data illustrates that rhythmic ATP accumulation might lag slightly 

behind ATP production, since cellular ATP content peaks at mid subjective night 

(Yamazaki et al., 1994).   

 

The antiphase relationship between extracellular ATP accumulation and cytosolic Ca2+ 

may be contributed to the utilization of ATP and the movement of ions by ATP-

dependent transport proteins. Several P-type ATPases, including the sodium/potassium 

pump (Na+/K+ ATPase) and the plasma membrane Ca2+ ATPase (PMCA), hydrolyze 

ATP to transport ions either into or out of the cell. The Na+/K+ ATPase maintains proper 

sodium and potassium ion concentrations inside neurons and astrocytes by pumping Na+ 

ions out of the cell and K+ ions into the cell, and it uses ATP to sustain this balance. In 

the SCN, neuronal firing is greatest during the day, and likewise, Na+/K+ ATPase 

activity is higher during this same time to reestablish resting membrane potentials 

(Wang and Huang, 2004; Ko et al., 2009). This rise in Na+/K+ ATPase activity utilizes 
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large quantities of ATP at times of increased neuronal firing, and it could be occurring in 

both neurons and astrocytes, as astrocytes function to clear excess potassium from the 

synaptic cleft during neuronal activity. Therefore, Na+/K+ ATPases would hydrolyze 

ATP in abundance within astrocytes during the day, accounting for low levels of 

accumulated ATP. However, when neuronal activity and Na+/K+ ATPase activity 

decrease during the night, ATP is available to accumulate extracellularly as it is not 

being hydrolyzed at a higher rate. The plasma membrane Ca2+ ATPase functions to 

transport elevated concentrations of Ca2+ ions out of the cell by hydrolyzing ATP. We 

see that Ca2+ levels in astrocytes oscillate over 24 hours, most likely peaking during the 

day, as the antiphase peak in ATP accumulation occurs during late night in the SCN. As 

we hypothesize that intracellular Ca2+ oscillations are peaking during the day, plasma 

membrane Ca2+ ATPase activity may be coinciding with neuronal activity. During 

neuronal firing, astrocytes are activated by neurotransmitters, leading to elevated 

intracellular calcium levels. Plasma membrane Ca2+ ATPases transport calcium to the 

extracellular space, hydrolyzing intracellular ATP in the process. Lower levels of ATP 

are available for accumulation as they are being utilized in this transport process. As 

elevated Ca2+ levels drop, presumably concurring with decreased neuronal activity, 

plasma membrane Ca2+ ATPase activity may decrease. This would indicate that non-

hydrolyzed intracellular ATP would be available to accumulate extracellularly. The 

timing of this process would account for the 12-hour antiphase relationship between 

extracellular ATP accumulation and intracellular Ca2+ oscillations.  

 



 85 

ROLE OF ATP SIGNALING IN PERIPHERAL CLOCKS 

 

The focus of these studies has been on SCN astrocytes and their ability to affect clock 

synchrony through purinergic signaling. What we understand from these results is that 

ATP accumulation is an output of the clock. We base this on evidence obtained from 

these studies, in which accumulation is driven by the clock and is abolished when the 

molecular clockwork mechanism is disrupted. As it is known, clocks are found in many 

peripheral tissues aside from the master circadian pacemaker. We observed this novel 

rhythm of ATP accumulation in several peripheral clock oscillators: fibroblasts, 

hepatocytes, and cortical astrocytes. Each of these oscillators exhibits rhythmic ATP 

accumulation with periods ranging from ~20 hours to ~25 hours (Figure 15). The range 

in period length among these different cell types is indicative of local time-keeping 

among peripheral oscillators in the absence of SCN timing. The SCN induces a 24-hour 

rhythm on peripheral clocks, and when these clocks are left to oscillate without SCN 

influence, they manage to keep time with a period that is endogenous to each peripheral 

clock. Here, each of these cultures maintains the rhythmic clock output of ATP 

accumulation. As we propose, ATP may function as a synchronizing signal among 

oscillators within the SCN. Additionally, ATP may have the same function in 

maintaining synchrony among peripheral clocks in each tissue. We revealed that ATP

         

        
               

 
 



 86 

 

 
 
 
 
 

Figure 15. Circadian periodicities of ATP accumulation in peripheral cellular 
oscillators. Representative traces from individual cultures illustrate 
temporal pattern of ATP accumulation. All cultures underwent Fourier 
transform analysis to determine the number of rhythmic cultures (N) and 
Lomb-Scargle periodicities (τ ± SEM). SCN2.2 cultures (N=11) had τ: 
23.68 ± 0.72 hours. Primary cortical astrocyte cultures (N=16) had τ: 
23.14 ± 0.20 hours. Hepa1c1c7 hepatocyte cultures (N=3) had τ: 25.43 ± 
0.51 hours. NIH/3T3 fibroblast cultures (N=6) had τ: 20.60 ± 1.63 hours. 
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was released and accumulated extracellularly from fibroblast, hepatocyte, and cortical 

astrocyte oscillators, and each of these cell types express purinergic receptors 

(Burnstock, 2008). It is plausible that ATP is acting exactly as it does in SCN cultures, 

that it is maintaining synchrony among peripheral clocks to keep coordinated time, while 

the SCN imposes 24-hour timing and correct phasing of oscillations on these peripheral 

tissues. The significance of ATP release from SCN astrocytes, however, is that this 

signaling molecule is affecting synchrony within the circadian pacemaker, which 

ultimately controls rhythmic physiology and behavior. 

 

 

CIRCADIAN ATP SIGNALING AND SLEEP HOMEOSTASIS 

 

Astrocytes have been associated with synaptic transmission as active participants of the 

tripartite synapse. The tripartite synapse involves the pre- and post-synaptic neurons and 

the astrocytic process that surrounds the synapse. Astrocytes are capable of modulating 

communication between neurons as they have numerous processes that contact 

thousands of synapses (Halassa et al., 2007). One aspect of synaptic modulation by 

astrocytes addresses regulation of sleep homeostasis in mammals. ATP is released by 

astrocytes and activates P2 purinergic receptors. ATP can also be hydrolyzed by 

ectonucleotidases in the extracellular fluid. Thus, ATP is metabolized to adenosine, 

which activates inhibitory A1 adenosine receptors on neurons. The accumulation of 

adenosine and activation of its receptors are linked to the regulation of sleep. Regulation 
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of sleep is controlled by two aspects: circadian timing of a sleep-wake cycle in 

accordance to time of day and sleep pressure as determined by a sleep-wake cycle 

(Porkka-Heiskanen et al., 1997; Dijk and Lockley, 2002; Halassa et al., 2009). 

Adenosine accumulation is a marker for prior wakefulness and is thought to be an 

important determinate of sleep pressure or drive that influences the need for sleep. In this 

sense, adenosine is an indicator for sleep homeostasis. Because ATP is released from 

SCN astrocytes and has a circadian pattern of extracellular accumulation, it could be 

contributing to adenosine accumulation that stimulates sleep every 24 hours. This would 

provide another level of circadian regulation, aside from coordinating the timing of the 

sleep cycle to the inactive phase, whether day or night. The present data show that 

extracellular ATP accumulates from the rat SCN in vivo, and levels peak during mid-to-

late night. Since rats are nocturnal, ATP accumulation peaks during its active phase. 

This result fits with the model of sleep that wakefulness leads to the accumulation of 

adenosine. As ATP accumulates in the SCN during the mid-to-late active phase, it is 

converted to adenosine, which then initiates sleep onset at the beginning of the rest 

phase. This is a likely function of rhythmic ATP accumulation, in addition to 

synchronizing oscillators within the SCN.  
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CONCLUSION 

 

The ability of extracellular ATP accumulation to affect clock output rhythms and the 

robustness of the ensemble clock is established in these results. These data support a 

function of ATP signaling which has been implicated in the maintenance of synchrony 

among oscillators within the SCN. We have discovered that ATP is released from SCN 

astrocytes and accumulates every 24 hours. It activates both P2X and P2Y receptors to 

initiate cellular responses, which are critical for both the synchronization of oscillators to 

each other and the persistence of robust clock output rhythms. The importance of ATP as 

a synchronizing agent among clock oscillators is emerging, and this newly discovered 

function of ATP signaling is one of the myriad roles that ATP accumulation might 

underlie in diverse brain and body tissues. 
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