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ABSTRACT

Improvements to the Calculation of Indirect Signals of Diffuse Gamma-rays and

Neutrinos from Dark Matter Annihilation. (August 2012)

Sheldon Scott Campbell, B.S., University of Alberta; M.S., University of Alberta

Chair of Advisory Committee: Dr. Bhaskar Dutta

A new formalism is presented for calculating the mean intensity spectrum and

angular power spectrum of gamma-rays or neutrinos from extragalactic annihilating

dark matter, taking into account the dependence of the relative motions of the

annihilating particles on the annihilation cross section.

To model the large scale dark matter distribution of mass and relative velocities,

the halo distribution model is comprehensively summarized, and extended to

include a universal radial profile of the particles’ velocity variance, based on results

from N-body computer simulations of dark matter halos. A velocity variance

profile, associated with the NFW density profile, is proposed by enforcing a

power-law profile of the pseudo phase-space density. This allows the large-scale

velocity distribution to be described by virialized, gravitationally bound dark

matter halos, as opposed to thermal motions used to describe the velocity

distribution in the early Universe. The recent particle motion history of the

Universe is presented for the described model.

Sample extragalactic gamma-ray intensities from dark matter annihilation are

shown for dark matter annihilating with p-wave, according to a

relative-velocity-weighted annihilation cross section σv = a+ bv2, for constants a

and b, with examples taken from supersymmetric models. For thermally produced

dark matter, the p-wave suppresses the signal intensity. If b/a ? 106, the p-wave

hardens the intensity spectrum by an estimated factor of 1 + (6b/a)∆I(Eγ), and

increases the angular power spectrum by a factor also depending on new

coefficients ∆
(1)
Cℓ
(Eγ) and ∆

(2)
Cℓ
(Eγ). The energy-dependence of the new p-wave

coefficients ∆I , ∆
(1)
Cℓ
, and ∆

(2)
Cℓ

are shown for various annihilation spectra. Sample
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intensity spectra are also presented for Sommerfeld-enhanced annihilation.

The intensity of neutrinos from dark matter annihilation is also considered. The

variations between the dark matter annihilation signals for different particle

phenomenologies suggest that particle physics constraints are possible from an

observed indirect detection signal.

Calculations of the annihilation signal from the galactic halo are also shown. The

extragalactic signal’s intensity is found to be consistent in magnitude with the

galactic intensity—within the uncertainty of the models of the dark matter

distribution—when looking out from the galactic plane. This suggests that the

total cosmic signal may have significant contributions from both components.
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1 INTRODUCTION

The existence of dark matter in the Universe consistently explains many

astronomical observations over a huge range of distance scales. The light-to-mass

ratios of dwarf galaxies [1], as well as the velocities of stars within spiral galaxies [2]

and elliptical galaxies [3], suggest there is much more matter within the galaxies

than can be observed from the radiation they emit. Results are similar for the

speeds of galaxies within galaxy clusters [4]. The distribution of this dark mass

throughout space can be indirectly observed from the weak lensing of light

propagating from far away galaxies. The masses of galaxies and galaxy clusters

determined dynamically from velocity dispersions have been verified independently

by gravitational lensing. This has been done for individual galaxies [5] and for

galaxy clusters [6]. The physical spatial separation of the light and mass of

colliding galaxy clusters, such as observed with the Bullet Cluster, shows that the

excess mass does not come from radiating matter [7]. Weak gravitational lensing

has also made possible the construction of dark matter maps over extended regions

of space [8] which are consistent with the properties of the distribution of dark

matter generated from large scale simulations of matter undergoing gravitational

collapse [9].

The presence of a large component of dark matter is also evident in the cosmic

microwave background (CMB) [10–12], where the lensing effects of the dark matter

on primordial light emitted from the sphere-of-last-scattering (the time when atoms

form and the Universe becomes transparent) are imprinted in the fluctuations in

the CMB. Acoustic vibrations in the early Universe are also imprinted in the

distribution of galaxies today. This so-called baryon acoustic oscillation has been

measured by the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey [13],

and is consistent with a significant non-baryonic matter content. Observations of

high-redshift type-Ia supernovae have been able to measure the speeds of galaxies

at large distances and have discovered the acceleration of the Universe [14].

This dissertation follows the style of Physical Review D.
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All of these observations provide a consistent picture, which has led to the standard

model of cosmology which posits that the current energy fraction of baryons in the

Universe is only about 4%, dark matter is 23%, and the remaining energy of the

Universe is due to dark energy, responsible for the observed acceleration of the

Universe.

This low energy density of baryons in the Universe is also consistent with

independent observations of the abundance of elements, such as deuterium, in

primordial cosmic gas. This abundance depends on the baryon density, according

to the standard theory of Big Bang Nucleosynthesis (BBN), which explains the

production of deuterium, helium-4, helium-3, and lithium-7 during the Big Bang at

the beginning of the Universe. The abundances of D, 4He, and 3He are in

agreement with the observations for a low energy density of baryons [15], although

presently, there is a discrepancy with the 7Li abundance (some proposals to

account for this discrepancy are reviewed in [16]). Thus, it is well established that

the majority of matter and energy in the Universe is not baryonic.

Simulations of galaxy formation also appear to require a certain amount of cold

(that is, non-relativistic) dark matter, in order for gravitational clustering of matter

to begin early enough to generate structure that is consistent with the observed

distribution of galaxies and galaxy clusters [17]. On scales of tens of megaparsecs,

the matter is seen to collapse into a cosmic web of intersecting planes and

filaments. The densest regions are found at the cores of halos of dark matter. Halos

containing clusters of galaxies can be as large as about 1015M⊙, and the Milky Way

halo is thought to have a mass of 2× 1012M⊙.

It has been postulated that the dark matter could be cold, baryonic material whose

radiations are too dim to be observed. As explained above, this is at odds with the

results of the BBN. In addition, observations of high-redshift light from QSOs

shows absorption features known as the Lyα forest, due to interaction with H I gas

in the intergalactic medium (IGM). These absorption features are consistent with

the same low baryon density seen in the other experiments, enforcing a small dark

baryon content in the IGM [18]. In galaxy clusters, the IGM becomes very hot at
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the center of the cluster and emits X-rays. Observations of these X-rays establish

that the baryons in the cluster account for a small portion of the total mass of the

cluster, determined from virial motions of the galaxies or from gravitational lensing

by the cluster [19]. It was previously thought that a significant portion of the halo

mass could be due to massive compact halo objects (called MACHOs), such as

brown dwarfs, red dwarfs, white dwarfs, quiescent neutrons stars, and black holes.

The EROS 2 experiment searched for these objects in our own halo by observing

events caused by their passage in front of a star in the Large Magellanic Cloud.

The results showed conclusively that MACHOs make up a very small portion of our

dark matter halo [20].

Dark matter must be electrically neutral because it does not radiate. The only

stable, neutral candidate matter remaining in the standard model are the

neutrinos. However, the particle masses are too light to contribute significantly to

the energy content of the Universe [21], and this matter is too relativistic to create

the structure needed to form galaxies in the Universe, according to the

cosmological simulations [22]. One is left with the conclusion that dark matter is a

new form of matter beyond the standard model of particle physics. As seen from

the Bullet Cluster, the dark matter has very low viscosity, and hence interacts very

weakly with baryonic matter.

One theoretical paradigm that may account for dark matter is that of the

thermally produced weakly interacting massive particle (WIMP). Here, dark

matter is one or more new stable particles beyond the standard model. These

particles are produced and annihilated in thermal equilibrium in the Big-Bang

plasma of the early Universe. As the Universe expands and cools, it eventually

becomes too cool to produce new dark matter particles efficiently. These particles

continue to annihilate until the rate of annihilation becomes smaller than the

expansion rate of the Universe, at which point annihilations become rare and the

dark matter content of the Universe freezes out. This theory accounts for the

observed density of dark matter if, at the moment of freeze-out, the average

velocity-weighted dark matter annihilation cross section is σv ≈ 10−36cm2 in unit

light speed units. The strength of these interactions would then be of the same
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magnitude as the strength of the weak nuclear interactions, suggesting a tantalizing

connection between the electroweak theory of the standard model and the new

physics that accounts for the dark matter sector.

Modern experimental efforts to determine the properties of dark matter fall into

one of three categories: collider, direct detection, and indirect detection. These

three methods are complementary to each other because they probe different

sectors of the dark matter interactions with standard model particles.

In collider experiments, standard model particles are collided with one another at

high energy in order to produce dark matter particles, which will be lost in the

experiment, resulting in a measurement of missing transverse energy. If the

products of these decays are captured by the experiment’s detectors, it may be

possible to reconstruct the correct particle theory and determine the nature of the

dark matter particle.

Direct detection experiments attempt to detect cosmic dark matter scattering off

of a nucleon in a lab detector. These experiments constrain the scattering cross

section for different particle masses, and they appear to be at tension with one

another. The noble gas detector XENON100 experiment has observed no signal

[23]. The CDMS-II experiment observed an excess of 2 events in its signal region

[24]. The CRESST-II experiment also detected excess signal events [25]. The

DAMA/NaI, DAMA/LIBRA [26], and CoGeNT [27] experiments have observed

annual modulations in their event rates, that appear to be consistent [28], and

could be interpreted as a change in dark matter flux through the detector as the

Earth’s orbit travels through the dark matter halo of our galaxy [29]. However,

these different signals prefer different regions of parameter space, all of which would

be expected to have been detected already by the XENON experiments, if one

assumes standard dark matter interactions, and standard models of local phase

space distribution in our solar system. As detector and experimental technology

improves, the observed anomalies can be independently verified, and their causes

zeroed in upon.
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Indirect detection of dark matter entails the detection of products from

annihilating cosmic dark matter. Experiments looking for signs of annihilating dark

matter in the high energy gamma-rays are the Fermi Gamma-ray Space Telescope

(FGST) [30], and atmospheric cherenkov telescope arrays such as HESS [31] and

VERITAS [32]. High energy cosmic neutrino products of dark matter are searched

for by experiments such as IceCube [33], AMANDA-II [34], and ANTARES [35].

Novel charged cosmic rays include positrons, antiprotons, antideuterium, and so on.

Currently, these are being actively sought by the AMS-02 [36], PAMELA [37], and

ATIC [38] experiments, among others. The FGST has also accomplished using its

calorimeter, while using the Earth as a shadow and magnetic source, to make

measurements of cosmic rays competitive with PAMELA [39].

Annihilations occur more often in regions of space where the dark matter is denser.

The intensity of products is also higher when closer to the source. With this in

mind, there are a number of sources most often considered when looking for

indirect dark matter signals. These include the Sun, nearby dwarf galaxies orbiting

the Milky Way, the Milky Way halo and galactic core, and the extragalactic halo

cores (such as from galaxy clusters) and subhalos.

In the Sun, dark matter particles may scatter off a solar nucleus and be captured

gravitationally, eventually collecting at the Sun’s core. Annihilation of these

particles may result in a population of high energy neutrinos being emitted from

the Sun. Current constraints on this signal are placed by the IceCube and

AMANDA-II experiments [40]. Nearby dwarf galaxies have very small light-to-mass

ratios, providing verified large dark matter densities in relatively close proximity.

Observations of dwarf galaxies by the Fermi Large Area Telescope (LAT) aboard

the FGST have not observed any excess gamma-rays, providing some of the most

stringent constraints on the annihilation properties of dark matter [41]. From these

results, it is apparent that the dark matter annihilation signal will not be bright,

and may need to be extracted from among other background astrophysical sources

of radiation by carefully designed precision experiments.

It is pertinent to also consider radiation from diffuse dark matter within the halo
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that our galaxy resides in. While gamma-rays and neutrinos can be traced back to

their sources, charged cosmic rays follow chaotic paths within the interstellar

medium. The PAMELA experiment detected a larger than expected positron

fraction in the energy range of 60–100 GeV [37], which has recently been verified by

the FGST [39]. If this excess were produced by dark matter annihilation within our

halo, it would require quite a large annihilation cross section, at odds with the Sun

and dwarf galaxy experiments. It is therefore more likely that this excess will be

understood from improved models of emissions from other astrophysical

phenomena, such as supernova remnants and pulsar wind nebulae [42].

Since the halo is most dense at the galactic core, it may be a good strategy for

gamma-ray and neutrino detectors to focus there. Unfortunately, that region is a

very bright gamma-ray source, and it would be difficult to extract an annihilation

signal from there, but the neutrinos do not suffer such backgrounds. In fact, the

dominant neutrino source at energies on the order of 100 GeV are atmospheric

neutrinos due to decays of muons produced from cosmic rays interacting with the

atmosphere [43].

It has been suggested that perhaps the brightest source of dark matter annihilation

may be subhalos within our galactic halo (including dwarf galaxies) [44]. The

distribution of these subhalos would be quite different from other gamma-ray

sources in the galaxy, and therefore would give a distinct anisotropy modulation,

seen in the gamma-ray angular power spectrum [45]. Unfortunately, this may be

difficult to predict: the abundance of galactic subhalos predicted by halo

simulations has not been observed [46]. While some subhalos may be too dim to be

discovered (having too few baryons and/or being too distant), it is also possible

that the simulations are not yet accurate in this regard. However, detection of a

distinct modulation in the angular power spectrum due to these subhalos would

provide constraints, not only on the dark matter particle properties, but also on the

galactic subhalo population.

It may be that the annihilation signal due to extragalactic dark matter halos is

more predictive. The distribution of dark matter halos is consistent across a variety
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of independent simulations [47], and is in reasonable agreement with the observed

distribution of galaxies and galaxy clusters [48]. The fact that relaxed halos have

universal density profiles [49, 50] has allowed the development of a simple

semi-analytic model for the distribution of dark matter, known as the halo model.

This allows, in principle, the calculation of both the mean intensity and the angular

power spectrum of gamma-rays or neutrinos from extragalactic dark matter

annihilation for any theory of annihilation. Charged cosmic rays would be blocked

by the intergalactic medium. This extragalactic source has the advantage that the

annihilation signal would also have a distinct angular signature in the gamma-ray

sky, perhaps making it easier to extract, if it is dim when compared with other

gamma-ray sources. It is therefore important to consider improvements to the

theoretical predictions of these extragalactic signals. If such a signal were to be

observed, it would not only provide constraints on the particle nature of dark

matter, but also on the large-scale distribution of matter in the Universe.

Estimates of the extragalactic gamma-rays from annihilating dark matter have

been carried out [51, 52], using the spherical halo model to describe the distribution

of dark matter [53], and assuming the annihilation properties do not depend on the

relative momentum of the annihilating particles. However, there are many realistic

models of dark matter for which the rate of annihilation (determined from the

annihilation cross section) changes with the energy of interaction. In order to probe

these models of dark matter with extragalactic indirect detection, predictions of the

signals need to be determined and compared against the observed gamma-ray data.

Presented in this dissertation is a framework for estimating the mean intensity

spectrum of gamma rays from velocity-dependent annihilating dark matter, and the

angular power spectrum of this radiation. To do this, a model of the velocity

distribution of matter is incorporated into the spherical halo model using

information from the latest high-resolution simulations of dark matter halos. The

development and generalization of the halo model is explained in Section 2. In

Section 2.1, the Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmology is

reviewed to establish its basic notations. On large scales, structure formation is

described by linear equations. The justification for these equations, their solution
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via the linear growth factor, the power spectrum of linear fluctuations, and the

variance of matter on linear scales are reviewed in Section 2.2.

The halo model is used to describe matter in the non-linear regime. Its

development begins by reviewing the lessons from spherical collapse of matter in

Section 2.3, where we come to understand the conditions for an isotropic density of

matter to collapse gravitationally on itself. In Section 2.4, the formalism of

excursion of sets is reviewed to see how it is used to derive the halo mass function.

The mass function provides a one-point statistic of the distribution of halos. The

model of linear halo bias is described in Section 2.5, and it provides information

about the two-point statistics of the halo distribution. Each halo is described by its

universal profiles.

In Section 2.6, the observed universal halo profiles of halo density are reviewed.

Newly introduced to the halo model here is the application of the universal

pseudo-phase-space density profile observed in halo simulations. When a universal

pseudo-phase-space density profile is postulated for a collisionless gravitational

system, a closed set of equations determines a family of density profiles and

associated universal profiles of the particle velocity variance at each position in the

halo. This fact is exploited to develop a new method for determining affiliated

universal velocity variance profiles from any given universal density profile. From

the velocity variance profile, a universal halo profile of relative particle velocities

can be determined.

All of the ideas of this section are brought together in Section 2.7 to define the

simplest spherical halo model of large scale structure with rigid, disjoint, relaxed,

spherical halos whose properties depend only on the halo’s mass and observed

redshift. Central to this model is the distribution of halo concentrations with halo

mass and redshift. Although the sample calculations done in this dissertation

neglect the effects of halo substructure on the dark matter annihilation signals,

studies show that they are important to the signal. Thus, some results about the

distribution of halo substructure are shared in Section 2.7.5, in order to inform

later discussion of its effects on the extragalactic indirect detection signals. Some
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properties of the large scale structure described by the simple halo model are

presented in Section 2.8.

This framework for describing the large-scale structure of matter is used to

quantify the effects of the velocity-dependence of dark matter annihilation on

cosmic annihilation signals for a variety of dark matter phenomenologies. The

contributions of particle physics to these cosmic signals is discussed in Section 3. In

Section 3.1, the necessary particle physics quantities are introduced, including the

dark matter mass, annihilation spectrum, and annihilation cross section. Different

phenomenologies that give rise to a dependence of the annihilation cross section on

the annihilating particles’ relative velocity in the non-relativistic regime are

explained in Section 3.2. Section 3.2.1 discusses p-wave annihilation, Section 3.2.2

explains Sommerfeld-enhanced annihilation and Sommerfeld resonances, and

Section 3.2.3 examines interesting scenarios of dark matter annihilating through a

Breit-Wigner resonance.

The large scale structure of dark matter and its particle physics properties are

brought together in Section 4 to calculate the intensity of cosmic dark matter

annihilation radiation. Section 4.1 explains how to calculate new expressions for

the angular distribution of the intensity spectrum of gamma rays from dark matter

annihilation for any specified phase space distribution of the dark matter, and for

any theory of annihilation. This result is then used to derive the mean annihilation

gamma-ray intensity in Section 4.2, and the gamma-ray angular power spectrum in

Section 4.3, in the context of the universal halo model of large scale structure. The

effects of the velocity dependence of the annihilation cross section are considered in

the new formulations. The formalism in this section provided the basis for a new

computer program that I developed to calculate predictions numerically for the

annihilation observables.

Results from the calculations of extragalactic annihilation gamma-rays are

presented in Section 5. In Section 5.1, specific particle physics models for which

calculations were carried out are described. Results for s-wave and p-wave

annihilation are presented in Section 5.2, and results for Sommerfeld-enhanced
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annihilation appear in Section 5.3.

In Section 6, the strengths of the extragalactic intensity spectra are compared to

the strengths of the intensities from annihilations in the Milky Way smooth

component of the dark matter, and the calculation tools are then applied to

calculate signals of neutrino radiation. The intensity formula derived in Section 4.1

is applied to the galactic halo, and the standard formulae for the angular

distribution of the galactic annihilation signal are reproduced in Section 6.1.

Section 6.2 contains comparisons of the predicted extragalactic and galactic

gamma-ray annihilation signals and explores the question of which signal is

dominant. Since the dark matter annihilation models considered in Section 5 also

produce neutrinos, it is interesting to consider the predicted neutrino radiation

from dark matter annihilation. These results are presented in Section 6.3.

The results and conclusions of this dissertation are summarized in Section 7.

Some supplemental material is provided in two appendices. Appendix A outlines

numerical algorithms developed to calculate Fourier transforms of universal halo

functions, needed for calculation of the angular power spectrum of the extragalactic

dark matter annihilation radiation. Appendix B explains the method used to

calculate galactic intensities of the annihilation radiation from observation cones

centered on the galactic center, in the case where it contains a

Navarro-Frenk-White cusp.
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2 LARGE SCALE STRUCTURE OF MATTER

AND THE SPHERICAL HALO MODEL

The distribution of the production of radiation from extragalactic dark matter

annihilation depends on the phase space distribution of the dark matter. Making a

successful prediction of an extragalactic indirect detection signal of dark matter

requires a reasonably realistic description of the distribution of dark matter in our

Universe. An important aspect of this work is determining those aspects of the

large scale structure that are most important to understand for a robust

determination of annihilation radiation.

Much of the detailed information of large scale structure comes from N-body

cosmological simulations. It is important to remember that the results of the

simulations must be compared against astrophysical observations, in order for their

validity to be verified. In fact, extragalactic dark matter annihilation radiation may

provide new observational constraints on large scale structure, if this radiation is

observed. When cold dark matter is simulated in a simple cosmology consistent

with observations, the matter collapses into huge structures–filaments and planes

that form a cosmic web. These large structures are made up of smaller dark matter

halos, spherical or ellipsoidal gravitationally bound collections of dark matter.

Structure formation is hierarchical with small halos forming initially, and then

merging to form larger halos. This is consistent with observations of galaxies that

suggest that each galaxy is enveloped in a dark matter halo. The distribution of

halos in simulations is consistent with the observed distribution of galaxies in our

Universe. The accuracy of cosmological simulations is inferred from the comparison

of independently developed simulation algorithms and codes [47]. The detailed

results of these different programs agree amazingly well with one another. These

results give us reason to rely on simulated distributions to describe the large scale

structure of the Universe, though this needs to be done with an eye toward

observational verification of the important results.

One method for predicting an extragalactic dark matter annihilation signal would
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be to integrate directly over the distribution from a large scale simulation. This has

the benefit of precisely accounting for all aspects of simulated results. This idea

was carried out for the results of the Millennium-II simulation, for an s-wave

annihilating dark matter [54]. Calculations of this type are very important to

provide a baseline for annihilation signal predictions. However, they do have a

number of drawbacks.

• The simulations have limited resolution and volume, and therefore effects at

higher resolution or at scales larger than the simulation volume must be

modeled.

• The simulation is done with a fixed set of cosmological parameters. To see

data with different parameters requires that a new, costly simulation be run.

• It is difficult to quantify the importance of specific aspects of the large scale

structure on the annihilation signal with this method. For example, removing

halo substructure to determine the effect the substructure has for that

particular simulated distribution.

To this end, it makes a great deal of sense to make use of available semi-analytical

models of large scale structure, of which the spherical halo model is an example.

These are simplified descriptions of the large scale structure, but should be

sophisticated enough to account for the results found from a full simulated

distribution. The simplicity of the semi-analytic models allows for fast calculations

of predictions, permitting effects of different cosmologies to be compared easily.

New effects can be quantified by adding them to the model.

The purpose of this section is to provide a comprehensive review and motivation for

the model of large scale structure used in the extragalactic indirect detection

calculations. It begins by briefly reviewing cosmological results in Sections 2.1–2.3,

introducing the notations used throughout the dissertation, and deriving results

used as inputs in the halo model. In Sections 2.4–2.6, I will briefly describe the

components of the simplest of realistic semi-analytic models of large scale structure,

which is an ensemble of universal, rigid, disjoint, spherical dark matter halos. The
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properties of the halos in this model are specified by only their mass and observed

redshift. The halo model provides a framework to specify statistical information

about the mass distribution of dark matter across the Universe, and has been used

in previous research to calculate extragalactic signals of s-wave annihilating dark

matter. The intensity of emitted annihilation products scales as the square density,

as described in Section 4, and is therefore only contributed to by the densest

regions of space. This model provides a realistic annihilation signal produced from

the densest regions of the halos—their cores—provided that the halo cores are

modeled correctly.

In order to quantify effects of velocity-dependent dark matter annihilation, one

needs to model the distribution of 1-point relative velocities of the dark matter

particles. In Section 2.6, I explain a method for modeling these relative velocities in

the halo model, using results from cosmological simulations. The full halo model of

large scale structure used in my analyses is summarized in Section 2.7. Perhaps the

most important effect that the model neglects is that of halo substructure. There is

much substructure observed within halos by simulations [55, 56], much of it being

the cores of absorbed small halos that have remained gravitationally bound. These

subhalos also have high densities, and are expected to contribute significantly to

extragalactic annihilation signals. Since this has significant consequences for the

conclusions of the work in this document, halo substructure is further discussed in

Section 2.7.5. This section is concluded by showing some properties of the simple

halo model in Section 2.8.

2.1 Brief Review of FLRW Cosmology

The cosmology of an isotropic and uniform perfect fluid is now widely attributed to

Friedmann, Lemâıtre, Robertson, and Walker (FLRW) [57]. The hypothesis that

our observable Universe is uniform and isotropic is supported by observations of the

distribution of galaxies, and the cosmic microwave background. Any uniform and

isotropic spacetime metric can be transformed to coordinates such that it is written
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as [58, 59]

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (2.1)

where t is known as the comoving time coordinate in natural units with light speed

c = 1, r is the physical radial coordinate, dΩ is the usual solid angle infinitesimal,

a(t) is the scale factor, and k specifies the local curvature: if the Universe is

positively curved, then k = 1; if negatively curved, k = −1; and if the Universe is

flat, then k = 0. Since cosmological observations are consistent with a flat

Universe, k = 0 is used throughout this work. The comoving coordinates are chosen

so that t = 0 today and a(0) = 1.

The dynamics of the Universe encoded in the scale factor a(t) are determined from

the theory of general relativity via solutions of Einstein’s equation for appropriate

matter fields described by the energy-momentum tensor. When the

energy-momentum tensor describes independent perfect fluids enumerated by i,

each with its own uniform energy density ρi and pressure pi, at rest in the

comoving rest frame, Einstein’s equation can be written as the Friedmann equation

and acceleration equation

H2 ≡
(
ȧ

a

)2

=
8πG

3

∑
i

ρi +
Λ

3
, (2.2)

ä

a
=− 4πG

3

∑
i

(ρi + 3pi) +
Λ

3
, (2.3)

where the dot in ȧ expresses differentiation with respect to comoving time, H is the

Hubble function, Λ is the cosmological constant, and G is the universal

gravitational constant. Important fluids in the lifetime of the universe include

photon radiation where pr = ρr/3, and matter fields such as baryonic matter,

neutrinos, and dark matter, where pm = 0 to excellent approximation for most of

the Universe’s evolution. The cosmological constant term can equivalently be

interpreted as a component of the energy-momentum tensor (contributing to dark

energy, and often associated with vaccuum energy) with constant energy density

ρΛ = Λ/(8πG) (2.4)
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and pressure pΛ = −ρΛ.

Energy conservation is expressed as the vanishing covariant divergence of the

energy-momentum tensor, which becomes the constraint∑
i

[
ρ̇i + 3H(ρi + pi)

]
= 0. (2.5)

If the energy exchange between different fluid components is negligible, then each

component i satisfies the constraint separately. Then the energy constraint is

separable, and one finds

ρm(t) ∝ a−3(t) ∝ t−2, (2.6)

ρr(t) ∝ a−4(t) ∝ t−2. (2.7)

As the Universe expands, the radiation energy density eventually becomes

negligible and the Universe becomes matter-dominated. For the purposes of this

work, radiation can be neglected throughout. However, in the presence of a small,

positive Λ, ρm eventually becomes small with respect to ρΛ and the Universe

becomes dominated by dark energy. This transition does contribute to the

calculations in this dissertation, so both matter and dark energy must be taken into

account.

Once a(t) is determined, then one could use the value of a to specify cosmic time,

with a = 0 at the beginning of the Universe, increasing to a = 1 today. Another

more convenient measure of cosmic time for observational cosmologists is

cosmological redshift z. As light propagates in an expanding Universe, its

wavelength expands with the scale factor and the light becomes redshifted. A

photon emitted with wavelength λe at rest in the comoving frame at some time in

the distant past at time t is redshifted to the observed wavelength λo according to

1 + z =
λo
λe

=
a(0)

a(t)
=

1

a
. (2.8)

Thus, if a(t) is properly understood, then measuring the cosmological redshift of

some light determines how long ago it was emitted from its source. The coordinate
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distance to the source (recalling t < 0, and radial null geodesics satisfy

−dt2 + a2(t)dr2 = 0) is

r =

∫ 0

ct

dr =

∫ 0

t

dt

a(t)
=

∫ 1

a

a

ȧ

da

a2
=

∫ z

0

dz

H(z)
. (2.9)

An expression for the Hubble function in terms of redshift follows simply from the

Friedmann equation. In a flat Universe with no cosmological constant,

Equation (2.2) shows that the total energy density of the Universe is the critical

energy density, defined as

ρc ≡
3H2

8πG
. (2.10)

Denoting the energy content of matter and dark energy today as

Ωm =
ρm(0)

ρc(0)
, (2.11)

ΩΛ =
ρΛ(0)

ρc(0)
=

Λ

3H2
0

, (2.12)

respectively, where H0 ≡ H(0) is the Hubble constant. The Hubble constant is

normally specified by h, where

H0 ≡ 100h km/s/Mpc. (2.13)

The Friedmann equation (2.2), with (2.6), becomes the Hubble function as a

function of redshift

H(z) = H0

√
Ωm(1 + z)3 + ΩΛ. (2.14)

The matter content can be broken into different terms, including baryons Ωb, cold

dark matter Ωc, neutrinos Ων , and so on.

It is convenient to use redshift as a time coordinate to describe the evolution of the

energy content of the Universe. The time associated with a given redshift is

t = −
∫ 1

a

da

ȧ
= −

∫ z

0

dz

(1 + z)H(z)
. (2.15)
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At any redshift, the matter content is

Ωm(z) =
ρm(z)

ρc(z)
=

Ωm · (1 + z)3

Ωr · (1 + z)4 + Ωm · (1 + z)3 + ΩΛ

, (2.16)

where (2.7) was used to add the appropriate radiation dependence to the Hubble

function. Unless redshift dependence of the matter content is explicitly stated by

writing Ωm(z), writing Ωm will always refer to the matter content today at z = 0.

Similarly,

Ωr(z) =
Ωr · (1 + z)4

Ωr · (1 + z)4 + Ωm · (1 + z)3 + ΩΛ

, (2.17)

ΩΛ(z) =
ΩΛ

Ωr · (1 + z)4 + Ωm · (1 + z)3 + ΩΛ

. (2.18)

Current cosmological observations are consistent with this cosmology [12] with

Ω ≡ ΩΛ + Ωm + Ωr ≈ 1, ΩΛ ≈ 0.725, and the redshift of matter-radiation equality

being zeq ≈ 3200. It follows that

Ωr =
1

zeq + 2
(Ω− ΩΛ) ≈

Ω− ΩΛ

zeq
≈ 8.6× 10−5,

Ωm =
zeq + 1

zeq + 2
(Ω− ΩΛ) ≈

(
1− 1

zeq

)
(Ω− ΩΛ) ≈ 0.275.

Figure 1a plots the energy contents of the Universe on a log scale in 1 + z, from

present day back to the time of matter-radiation equality when the Universe

became matter dominated. Today, the radiation content is negligible, but the

matter and dark energy contents are still of the same order of magnitude—we are

presently in the epoch of transition from matter domination to dark energy

domination.

Extrapolation to future times is shown in Figure 1b, on a linear scale in redshift,

where z approaches −1 as time goes to infinity.

Another important result is with regard to the age of the Universe tU at redshift z.
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(a)

(b)

Figure 1: The energy content of the Universe. (a) The energy content of the Universe
from the present to the time of matter-radiation equality, over a log scale in 1+z. (b)
The energy content of the Universe on linear redshift scale, extrapolated to future
times at negative redshift, and going back to z = 1.
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Figure 2: The age of the Universe in units of the inverse Hubble function at redshift
z.

Beginning with (2.15),

tU(z) =

∫ ∞

z

1

H(z′)

dz′

1 + z′
=
F (z)

H(z)
, (2.19)

F (z) ≡
∫ ∞

z

√
ΩΛ + Ωm · (1 + z)3 + Ωr · (1 + z)4

ΩΛ + Ωm · (1 + z′)3 + Ωr · (1 + z′)4
dz′

1 + z′
∼ 1

for parameters consistent with observations (see Figure 2). Therefore, the Hubble

time H−1 provides an approximation of the age of the Universe, and the Hubble

length c/H estimates the length scale of the observable Universe, or the distance to

the horizon of the Universe.
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2.2 Matter Collapse on Linear Scales

In this section is derived the description of the growth of structure on linear scales.

At the beginning of the matter-dominated period, when matter was the dominant

energy density in the Universe, fluctuations in the matter density are small. That

is, the matter overdensity at each region of space

δρ(r) ≡
ρ(r)

⟨ρ⟩
− 1 (2.20)

has a small value

|δρ| ≪ 1, (2.21)

where ⟨ρ⟩ is the mean density at that epoch, corresponding to ρm of the previous

subsection. The evolution of these perturbations is described by linear equations.

In later times, as matter collapses gravitationally and structures grow, δρ fluctuates

greatly and takes on large values at the dense regions. However, when considering

average densities over large volumes of space near the homogeneity scale, δρ is

again small at these scales, and its evolution is described by the linear perturbation

equations.

2.2.1 The Linear Perturbation Equations

This section largely follows the discussion in [60]. Working under the hypothesis of

cold dark matter, it will be assumed that the matter is non-relativistic. Therefore,

the discussion can begin with the Newtonian fluid equations. Let ρ(r, t) be the

density at the physical coordinates as defined in Section 2.1. Mass conservation

leads to the continuity equation

∂ρ

∂t
+∇r · (ρu) = 0, (2.22)
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where u = dr/dt is the fluid velocity vector, relative to the origin. Conservation of

momentum via Newton’s Second Law is known as the Navier-Stokes theorem

∂u

∂t
+ (u ·∇r)u = −∇rΦ, (2.23)

where fluid pressure and stress are assumed to be negligible, and Φ is the

gravitational potential per unit mass, satisfying

∇2
rΦ = 4πGρ. (2.24)

In the context of an expanding Universe, this description is not very convenient or

intuitive. Consider two spatially-separated objects, each at rest according to the

comoving coordinates, with distance R between them when the scale factor of the

Universe had a value of a0. Due to the expansion, the distance between the objects

will increase with the scale factor, r(t) = Ra(t)/a0, even though they are “at rest.”

An observer at one object’s location will measure a speed u = Rȧ/a0 for the other

object. A description of the objects where they can appear to be at rest with

respect to one another can be made in a non-inertial coordinate system that

expands in accordance with the Universe. Define the expanding, comoving

coordinates today, at t = 0 so that a0 = 1 and therefore the expanding, comoving

radial coordinate R is defined at all times by

R =
r(t)

a(t)
=
r(a)

a
= r(z)(1 + z), (2.25)

as parametrized by time, scale factor, or redshift. A fluid with coordinates R(t) that

is in motion with respect to the background has proper velocity u = aṘ+ ȧR. The

first term ȧR = Hr is the relative motion of “at rest” objects, and is referred to as

the Hubble flow. The second term in the proper velocity is the motion with respect

to the background in expanding coordinates, and is called the peculiar velocity

v ≡ aṘ. (2.26)

Re-define the density function ρ(r, t) = ρ(a(t)R, t) to the function ρ(R, t) that

specifies the density at comoving coordinates (R, t). To write the gravitational
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potential in comoving coordinates, consider the Lagrangian for a particle of mass m

L(r,u, t) = 1

2
mu2 −mΦ(r, t).

In comoving coordinates, it becomes

L(R, Ṙ, t) =1

2
m(aṘ+ ȧR)2 −mΦ(aR, t)

=
1

2
ma2ṙ2 −m

(
Φ(aR, t) +

1

2
aäR2

)
+

d

dt

(
1

2
maȧR2

)
.

Recall that the total time derivative does not affect the equations of motion. This

motivates the gravitational potential in comoving coordinates to be defined as

ϕ(R, t) ≡ Φ(aR, t) +
1

2
aäR2. (2.27)

It satisfies the wave equation

∇2ϕ(R, t) = 4πGa2(t)[ρ(R, t)− ⟨ρ⟩(t)], (2.28)

where the new operator ∇ is with respect to the comoving coordinates R.It is now

possible to write the fluid equations in expanding coordinates. In terms of the new

system,
∂

∂t
ρ(r/a(t), t) =

∂

∂t
ρ(R, t)− ȧ

a
R ·∇ρ(R, t),

and similarly

∇r · (ρu) =
1

a
∇· (ρv) + 3

ȧ

a
ρ+

ȧ

a
R ·∇ρ.

Therefore, the continuity equation (2.22) in comoving coordinates becomes

∂ρ

∂t
+

1

a
∇· (ρv) + 3

ȧ

a
ρ = 0. (2.29)

It is convenient to re-express it in terms of δρ. Making use of the energy

conservation relation (2.5)
∂ ⟨ρ⟩
∂t

= −3
ȧ

a
⟨ρ⟩
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to see that
∂ρ

∂t
= ⟨ρ⟩ ∂δρ

∂t
− 3

ȧ

a
ρ,

the continuity equation then takes the form

∂δρ
∂t

+
1

a
∇· [(1 + δρ)v] = 0. (2.30)

The new Navier-Stokes equation (2.23) is

∂v

∂t
+
ȧ

a
v +

1

a
(v ·∇)v = −1

a
∇ϕ. (2.31)

From these coupled equations, it is desirable to have an equation for the dynamics

of δρ alone. If this is accomplished, (2.30) can then be used to determine v(R, t)

from δρ. To this end, multiply (2.29) by v, multiply (2.31) by ρ, and add the results.

∂(ρvi)

∂t
+

1

a

∂

∂Rj
(ρvivj) + 4

ȧ

a
ρvi = −ρ

a

∂

∂Ri

ϕ

In this expression, indices repeated in the same term are implicitly summed over.

Now replace the density with the overdensity[
∂

∂t
+
ȧ

a

]
[(1 + δρ)v

i] +
1

a

∂

∂Rj
[(1 + δρ)v

ivj] = −1

a
(1 + δρ)

∂

∂Ri

ϕ,

and act on the result with the operator − 1
a

∂
∂Ri , applying (2.30) to the divergence

acting on the first term.

∂2δρ
∂t2

+ 2
ȧ

a

∂δρ
∂t

=
1

a2
∇· [(1 + δρ)∇ϕ] +

1

a2
∂2

∂Ri∂Rj
[(1 + δρ)v

ivj] (2.32)

Then apply (2.30) and (2.32) to the linear regime where overdensities are small.

For our discussion, it is suitable to consider distributions where the momentum

skewness is negligible. After applying (2.28), the result is the linear perturbation

equations

∂2δρ
∂t2

+ 2
ȧ

a

∂δρ
∂t

= 4πG ⟨ρ⟩ δρ, (2.33)

∂δρ
∂t

+
1

a
∇·v = 0. (2.34)
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2.2.2 The Linear Perturbation Growth Factor

Following the method of [61], solving (2.33) is done by first expressing it in terms of

redshift, instead of comoving time. Similarly to the calculation in (2.15),

∂

∂t
= −(1 + z)H(z)

∂

∂z
.

For the second time derivative, it is helpful to note, with H(z) being given by

(2.14) during structure formation, that

∂H

∂z
=

H2
0

2H(z)
3Ωm · (1 + z)2 =

3H(z)Ωm(z)

2(1 + z)
.

Then the second time derivative can be written as

∂2

∂t2
= (1 + z)2H2(z)

∂2

∂z2
+ (1 + z)H2(z)

(
1 +

3

2
Ωm(z)

)
∂

∂z
.

The source term becomes

4πG ⟨ρ⟩ = 3

2
H2

0Ωm · (1 + z)3 =
3

2
H2(z)Ωm(z).

The linear perturbation equation for δρ(z) is therefore

(1 + z)
∂2δρ
∂z2

+

(
3

2
Ωm(z)− 1

)
∂δρ
∂z

=
3Ωm(z)

2(1 + z)
δρ. (2.35)

The solutions for the evolution of the linear perturbation δρ(z) can be written as

δρ(z) = δρ(0)D(z), (2.36)

where D is the linear growth factor, normalized so D(0) = 1. It can be verified by

substitution that one solution to the linear perturbation equation is

D−(z) =
H(z)

H0

.
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This solution describes shrinking structures. The relevant solution for structure

formation is the growing mode solution, found from the method of second solution

[62]

D(z) = CD−(z)

∫ ∞

z

dz′[D−(z′)]−2 exp

[
−
∫ z′

0

dz′′p(z′′)

]
,

where

p(z) =
3
2
Ωm(z)− 1

1 + z
=

1

H(z)

∂H(z)

∂z
− 1

1 + z

for the equation under consideration, and C is a constant that enforces D(0) = 1.

The argument of the natural exponential becomes

−
∫ z′

0

dz′′p(z′′) =

∫ z′

0

dz′′

1 + z′′
−
∫ H(z′)

H0

dH

H
= ln

(
H0(1 + z′)

H(z′)

)
.

The linear perturbation growth factor is therefore

D(z) = C
H(z)

H0

∫ ∞

z

dz′
(

H0

H(z′)

)3

(1 + z′), (2.37)

C =

[∫ ∞

0

dz

(
H0

H(z)

)3

(1 + z)

]−1

.

This is well approximated by [63]

D(z) ≈ Ωm(z)

(1 + z)

[
Ω4/7
m (z)− ΩΛ(z) +

(
1 +

1

2
Ωm(z)

)(
1 +

1

70
ΩΛ(z)

)]−1

, (2.38)

up to a constant factor. According to [64], the error of this approximation is better

than 7× 10−4 for Ωm = 0.27.

For greater precision, (2.37) was integrated numerically in a form, due to [65], that

is simpler computationally. Let ω = ΩΛ/Ωm. By changing coordinates to

u = (2ω)1/3/(1 + z′), (2.37) becomes

D(z) = C(2ω)2/3(1 + ω−1)A

(
(2ω)1/3

1 + z

)
,
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where

A(x) ≡
(
2 + x3

x3

)1/2 ∫ x

0

(
u

2 + u3

)3/2

du. (2.39)

The growth factor is calculated from

D(z) =
A
(

(2ω)1/3

1+z

)
A ((2ω)1/3)

. (2.40)

In the special case where ΩΛ = 0, (2.37) can be integrated directly, giving

D(z) =
1

1 + z
= a(z). (2.41)

This is a very good approximation throughout most of the matter-dominated epoch.

2.2.3 The Power Spectrum of Linear Perturbations

In general, there are spatial correlations between perturbations at different

positions. One measure of these correlations is the two-point correlation function

ξ(r, t) = ⟨δρ(r1, t)δρ(r1 + r, t)⟩ , (2.42)

where the average can be taken to be over all positions r1 at time t. The fact that

it depends only on the magnitude of r is due to the statistical uniformity and

isotropy of the Universe [66]. Of particular interest is the Fourier transform of this

function, called the power spectrum.

P (k, t) =

∫
d3re−ik · rξ(r, t) (2.43)

When calculated from perturbations that evolve according to the linear

perturbation equations, the result is the linear power spectrum Plin(k) that

describes the power spectrum on linear scales.

An alternative formulation that is often cited is to determine the matter fluctuation
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in momentum space

δ̃ρ(k, t) =

∫
d3re−ik · rδρ(r, t). (2.44)

Note that this satisfies the same evolution equations as δρ. The momentum-space

2-moment is denoted and defined as⟨
δ̃ρ(k1)δ̃ρ(k2)

⟩
≡
∫

d3r1d
3r2e

−i(k1 · r1+k2 · r2) ⟨δρ(r1)δρ(r2)⟩ , (2.45)

from which it follows that⟨
δ̃ρ(k1, t)δ̃ρ(k2, t)

⟩
= (2π)3δ(3)(k1 + k2)P (k1, t). (2.46)

To get a physical sense of P (k), consider the statistical variance of the density

perturbations, denoted in this work as

σ2
ρ(t) = ⟨δρ(r, t)δρ(r, t)⟩ − ⟨δρ⟩2 = ξ(0, t)

=

∫
d3k

(2π)3
P (k, t) =

∫
d(ln k)∆2(k, t), (2.47)

where

∆2(k, t) ≡ k3P (k, t)

2π2
(2.48)

is the power per logarithmic wavenumber interval. Note that σ2
ρ is actually not a

finite quantity, but this discussion is still meaningful when applied to smoothed

fluctuations, discussed in Section 2.2.4.

During cosmological inflation, quantum fluctuations are continuously produced at

microscopic scales. They are inflated to all larger scales up to the scale of total

inflation, beyond the horizon ctU of the observable Universe, where tU is the age of

the Universe. If inflation is uniform, the amplitude of fluctuations at all scales will

be equivalent, and therefore the initial perturbations would be scale invariant. As

the Universe expands, perturbations of length scales outside (i.e. larger than) the

horizon will re-enter the horizon. Recalling that the Hubble length is a good

estimate of the length scale of the observable Universe, the amplitude of scales
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entering the horizon today are approximated by the definition

P (c/H0, 0) ≡ δ2H . (2.49)

If the initial perturbations are scale invariant, then perturbations entering the

horizon have the same amplitude,

∆2(kH , tH) ∼ δ2H ,

where kH is the wavenumber of the mode entering the horizon at time tH . To

estimate their relation, use the fact that the length scale associated with kH is

2π/kH . Then perturbations with wavenumber k today entered the horizon at time

tH given by
D(tH)

D(0)

2π

k
∼ c

H(tH)
.

During the matter-dominated era, when the cosmological constant was negligible,

one can substitute

D(tH) = a(tH) ∝ t
2/3
H

and

H(tH) =
ȧ(tH)

a(tH)
∝ 2

3
a−3/2(tH)

to find that

a
2π

k
∝ 3

2
ca3/2 =⇒ a(tH) ∝ k−2.

For linear scales at time t that entered the horizon during matter domination at

time tH , the linear power spectrum is roughly

∆2
lin(k, t) = ∆2

lin(k, tH)
D2(t)

D2(tH)
∼ δ2H

a2(t)

a2(tH)
∝ δ2Ha

2(t)k4.

That is, Plin(k) ∝ k for scales that entered the horizon during matter domination.

Before matter domination, when radiation was important, fluctuations grew slower

than a, and did not grow at all during the radiation-dominated epoch. To take

these different growth rates into account, the standard form for the linear power
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spectrum with scale-invariant primordial fluctuations is

∆2
lin(k, t) = δ2H

(
ck

H0

)4

T 2(k, t)D2(t)

where T(k) is the transfer function that describes the evolution of the

perturbations away from the initial primordial spectrum.

Inflation models can produce fluctuations that are not scale-invariant, and this

creates a tilted primordial spectrum, so that

∆2
lin(k, t) = δ2H

(
ck

H0

)3+ns

T 2(k, t)D2(t), (2.50)

where the tilt or spectral index ns provides a measure of deviation from scale

invariance.

The transfer function has been calculated in detail. When calculating the linear

power spectrum, the fitting function of [67] was used. Although neutrino streaming

and gravitational wave effects are available as options in the developed computer

program, they were neglected for the sample calculations shown in this document.

In this case, the transfer function is time-independent and given by

T (k) =

[
1 +

C(keff)

L(keff)
k2eff

]−1

, (2.51)

where

C(k) =14.4 +
325

1 + 60.5(k/Mpc−1)1.11
,

L(k) = ln

[
e+

1.84
√
αν

1− 0.949fb

(
k

Mpc−1

)]
,

for baryon fraction fb = Ωb/Ωm. Here, the small-scale suppression factor is given by

αν =fc(1− 0.4pc)(1− 0.553fb + 0.126f3
b )(1 + yd)

−pc

×
[
1 +

pc
2

(
1 +

1

7(3− 4pc)

)
(1 + yd)

−1

]
,
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where use is made of the cold dark matter fraction

fc =Ωc/Ωm,

pc =(5−
√

1 + 24fc)/4,

and yd = (1 + zeq)/(1 + zd) is the relative expansion between matter-radiation

equality and the scale where baryons are released from the Compton drag of the

photons. In terms of the cosmic microwave background temperature

TCMB = 2.728 K = 2.7Θ2.7 K, the matter-radiation equality redshift is parametrized

as 1 + zeq = 2.50× 104Ωmh
2Θ−4

2.7, and the baryon release epoch is determined from

the fitting function

zd =1291
(Ωmh

2)0.251

1 + 0.659(Ωmh2)0.828

×
{
1 + 0.313(Ωmh

2)−0.419
[
1 + 0.607(Ωmh

2)0.674
]
(Ωbh

2)0.238(Ωmh2)0.223
}
.

The scaling of the wavenumber being suppressed is

keff = k
Θ2

2.7

Ωmh2

[
√
αν +

1−√
αν

1 + (0.43sk)4

]−1

,

where the scale of the sound horizon is

s =
44.5 ln(9.83/Ωmh

2)√
1 + 10(Ωbh2)3/4

Mpc.

2.2.4 Filtered Linear Variance of the Density Perturbations

A common method for considering large-scale perturbations to probe linear

structure formation is to filter out, or smooth out, small perturbations by

convoluting the perturbations with a filter Wρ(r, R), associated with some length

scale R, and normalized such that∫
d3rWρ(r, R) = 1.
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The filtered perturbations are

δρ(r, R) =

∫
d3r′δρ(r− r′)Wρ(r

′, R), (2.52)

and similar to (2.47), the linear variance of the filtered fluctuations on mass scale

M = 4πR3 ⟨ρ⟩ /3 is

σ2
lin(M) =

∫
d(ln k)∆2

lin(k)|W̃ρ(k,R)|2, (2.53)

where the Fourier transform of the filter is

W̃ρ(k,R) =

∫
d3re−ik · rWρ(r, R),

which depends only on kR if W depends only on r/R.

One commonly used filter is the tophat filter

Wρ(r, R) =
3

4πR3
Θ(1− r/R) =


3

4πR3
when r ≤ R,

0 when r > R,
(2.54)

with

W̃ρ(k,R) =
3

(kR)3
[sin(kR)− (kR) cos(kR)]. (2.55)

With this choice, δρ(r, R) is simply the average value of δρ in a sphere of radius R

centered at the position r.

An alternative to normalizing the linear power spectrum by specifying δH is to

specify instead the parameter σ8, defined as the linear variance filtered by a tophat

of length scale R = 8 Mpc/h. Then δH is determined implicitly from

σ2
8 =

∫
d(ln k)∆2

lin(k)W̃
2
ρ (k, 8 Mpc/h). (2.56)
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2.3 Toward Matter Collapse on Non-Linear Scales:

Uniform Spherical Perturbations

2.3.1 A Spherical Collapse Solution

To gain an intuition for structure formation on non-linear scales due to

gravitational collapse, it is useful to consider a toy model of an evolving uniform

sphere of coordinate radius R(t) containing matter with density

ρ1(t) = ρm(t)[1 + δ1(t)], where ρm is the density of the uniform background outside

the sphere, and constant mass M = (4/3)πR3(t)ρ1(t). Useful discussions of this

model were found in [60, 68, 69]. According to Birkhoff’s theorem, the dynamics of

the spherical distribution at radius R depends only on the matter distribution

within that radius [70]. Since the matter within R is isotropic and uniform, it is

described by an FLRW metric (2.1)

ds2 = −dt2 + a21(t)

[
dr2

1− κ1r2
− r2dΩ2

]
. (2.57)

Here, a1(t) is the scale factor within the overdensity, and κ1 is the curvature

generated by the overdensity δ1 of the sphere.

The sphere’s dynamics are therefore described by Friedmann’s equation (2.2),

assuming R(t) ∝ a1(t):

Ṙ2

R2
=

8πG

3
ρm(1 + δ1) +

Λ

3
− κ

R2
, (2.58)

where κ = κ1R
2/a21. Replacing δ1 in favor of the sphere’s constant mass leads to

the energy equation

Ṙ2(t) =
2GM

R(t)
+

Λ

3
R2(t)− κ. (2.59)

Similarly, the acceleration equation (2.3) gives

R̈(t) = − GM

R2(t)
+

Λ

3
R(t). (2.60)
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When collapse occurs in the matter-dominated regime, the cosmological constant is

negligible, and the sphere’s evolution equations are

Ṙ2(t) =
2GM

R(t)
− κ, (2.61)

R̈(t) =− GM

R2(t)
. (2.62)

From (2.61), it is seen that the overdensity stops growing and begins to collapse

when it reaches a radius of

Rmax =
2GM

κ
. (2.63)

This gives a physical interpretation for κ.

Solving for GM in (2.62) and substituting into (2.61) results in the evolution

equation

2RR̈ + Ṙ2 + κ = 0, (2.64)

which has the collapsing solution

R =
Rmax

2
(1− cos θ),

t =
tta
π
(θ − sin θ), (2.65)

for 0 ≤ θ ≤ 2π, where t is the time from when the perturbation first appeared with

infinitesimal radius at θ = 0, and tta is the turnaround time when R = Rmax, which

occurs at θ = π. Substituting the solution into (2.62),

−GM = R2R̈ = −π
2

8

R3
max

t2ta
=⇒ tta =

πGM

κ3/2
=
π

2

Rmax√
κ
. (2.66)

The collapse time

tc = 2tta (2.67)

occurs when θ = 2π.
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2.3.2 Spherical Collapse in the Linear Regime

To connect with the linearized formalism, consider the collapsing solution (2.65) in

the linear regime, where θ ≪ 1. The t equation gives

t ≈ tta
π

θ3

6

(
1− θ2

20

)
=⇒ θ3 ≈ 6πt/tta

1− (θ3)2/3/20
≈ 6πt/tta

1− (6πt/tta)2/3/20
≈ 6π

t

tta

[
1 +

1

20

(
6π

t

tta

)2/3
]
.

Substitute into the R equation to find

R

Rmax

≈ θ2

4

(
1− θ2

12

)
≈ 1

4

(
6π

t

tta

)2/3
[
1 +

1

30

(
6π

t

tta

)2/3
][

1− 1

12

(
6π

t

tta

)2/3
]

≈
(
3π

4

t

tta

)2/3
[
1− 1

20

(
6π

t

tta

)2/3
]
.

This motivates the definition of the linear overdensity evolution

Rlin(t) ≡ Rmax

(
3π

4

t

tta

)2/3
[
1− 1

20

(
6π

t

tta

)2/3
]
. (2.68)

Referring to (2.6), it is understood that the first term expresses the evolution of the

background a(t), whereas both terms give the linear theory expression for a1(t).

Now let Rback(t) be the radius of a sphere having the background density with the

same mass M as the overdense sphere. Since its evolution is determined by a(t), it

is given by the first term of Rlin(t).

R3
back =

3M

4πρm
= R3

max

(
3π

4

t

tta

)2

(2.69)

From

δlin =
ρ

ρm
− 1 =

R3
back

R3
lin

− 1,
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the linear overdensity is defined as

δlin(t) ≡
3

20

(
6π

t

tta

)2/3

, (2.70)

consistent with (2.41). The linear solution diverges from the total solution near the

turnaround time, when the overdensity is

δlin(tta) =
3

20
(6π)2/3 ≈ 1.06. (2.71)

That is, the linear theory breaks down when perturbations become of order 1.

The main result of this subsection is that the overdensity of the linear theory at the

time that collapse occurs in the full solution is

δc ≡ δlin(tc) =
3

20
(12π)2/3 ≈ 1.686. (2.72)

This is the critical overdensity for spherical collapse. This provides an estimate of

when halo virialization occurs in non-linear scales when probing only linear scales.

Doing the full calculation with Λ ̸= 0 shows only slight modifications in δc, which

will be neglected [65, 71].

The value of a linear overdensity today that was critical for spherical collapse at

redshift z is denoted as

δc(z) ≡
δc

D(z)
. (2.73)

The mass scale M∗(z) for which

σ2
lin(M∗(z)) ≡ δ2c (z), (2.74)

with the linear mass variance given in (2.53), is defined as the characteristic mass

at redshift z, and it represents the mass scale of modern halos that virialized at

redshift z, in the context of the uniform collapsing sphere model.
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2.3.3 Halo Virialization

The toy spherical model collapses to a point at the collapse time tc. However, in

reality, an overdensity ceases to collapse when it is supported by its constituent

particles’ virial motions. Combining the spherical model with the virial theorem, it

is possible to determine the virial radius of the overdensity when it ceases to

collapse [72].

The virial theorem states that the described dynamical equilibrium occurs in a

radial potential U ∝ rn if the kinetic energy of the system is T = n
2
U [73].

Consider the uniform spherical mass overdensity of radius R. Referring to the

energy equation (2.59), the energy per unit mass of a shell of radius r ≤ R

enclosing a mass m =M(r/R)3 is

εr =
1

2
ṙ2 − Gm

r
− Λ

6
r2.

The mass of the shell of thickness dr is dm = 3Mr2dr/R3. Therefore, the total

gravitational energy of the sphere is

UG(R) = −
∫
Gm

r
dm = −G

∫ R

0

1

r

(
M

R3
r3
)(

3M

R3
r2dr

)
= −3

5

GM2

R
. (2.75)

The total potential energy from Λ is

UΛ(R) = −Λ

6

∫
r2dm = −Λ

6

∫ R

0

r2
(
3M

R3
r2dr

)
= − 1

10
ΛMR2. (2.76)

According to the virial theorem, the collapsing sphere will virialize (that is, reach

virial equilibrium and discontinue its collapse) when

Tf = −1

2
UG,f + UΛ,f . (2.77)

All mass shells are at rest at the turnaround time, so Tta = 0. Energy conservation
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relates the energies at virialization to the energies at turnaround.

Tf + UG,f + UΛ,f = UG,ta + UΛ,ta (2.78)

Substitute (2.77) to find

1

2
UG,f + 2UΛ,f = UG,ta + UΛ,ta.

Let Rvir denote the virial radius, the radius of the sphere after it virializes.

1

2

3GM2

5Rvir

+ 2
Λ

10
MR2

vir =
3GM2

5Rmax

+
Λ

10
MR2

max.

This results in a cubic equation for Rvir/Rmax

2η

(
Rvir

Rmax

)3

− (2 + η)
Rvir

Rmax

+ 1 = 0,

where η ≡ ΛR3
max/(3GM) = 2ρΛ/ρ(tta) from (2.4).

For Λ = 0, the solution is simply Rvir = Rmax/2. The general solution with any

cosmological constant is

Rvir

Rmax

=



√
z
2η
(
√
3 sinϕ+ cosϕ), η < η0

y
2η

+ z
y
, η0 < η < 0

1
2
, η = 0√
z
2η
(
√
3 sinϕ− cosϕ), η > 0,

(2.79)
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where

z = (2 + η)/3,

y =

[
2η2

(
−1 +

√
1− 2z3

η

)]1/3
,

ϕ =
π

3
− 1

3
cos−1

√
η

2z3
,

η0 = −
[
2 +

3

2
(4 + 2

√
2)1/3 + 3(4 + 2

√
2)−1/3

]
≈ −6.427.

During the matter-dominated epoch when Λ ≈ 0, the overdensity δta of the

spherical perturbation at the turnaround time is

1 + δta =
ρ(tta)

ρm(tta)
=
R3

back(tta)

R3
max

=

(
3π

4

)2

= 5.55, (2.80)

where (2.69) was used. At virialization, the radius is half the maximum, therefore

the density increases by a factor of 23.

ρ(tvir)

ρ(tta)
= 8 (2.81)

The time of virialization tvir can be found from

R(tvir) =
1

2
Rmax

=
1

2
Rmax(1− cos θvir),

using (2.65). Then θvir = 3π/2 and the associated virial time is

tvir =
tta
π
(θvir − sin θvir) = tta

(
3

2
+

1

π

)
∼ 2tta. (2.82)

Since ρm(t) ∝ t−2 from (2.6), the background density decreased during the sphere’s
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collapse by a factor of
ρm(tta)

ρm(tvir)
=

(
tvir
tta

)2

∼ 4. (2.83)

Therefore, the overdensity of the perturbation at virialization is

1 + δvir =
ρ(tvir)

ρm(tvir)
=
ρ(tvir)

ρ(tta)

ρ(tta)

ρm(tta)

ρm(tta)

ρm(tvir)
≈ 8 · 5.55 · 4 = 178. (2.84)

This value describes the scale of perturbation that separates virialized matter from

still-collapsing matter, and is consistent with the corresponding scale observed in

simulations [74].

2.4 Excursion Set Formalism and the Universal Halo Mass Function

The methods in Sections 2.4 and 2.5 follow the excellent review by Zentner [75],

which may be referred to for additional details and developments.

The halo mass function dn
dM

(M, z) is defined such that the number density of halos

at redshift z with mass between M and M + dM is

dn

dM
(M, z)dM.

By dimensional analysis, this number density scales according to ⟨ρ⟩(z)/M . The

statement of universality that is observed in the simulations is that, for any FLRW

cosmology, the mass function is expressed by

M

⟨ρ⟩(z)
dn

dM
(M, z)dM = f(ν)dν, (2.85)

where

ν(M |z) ≡
(

δc(z)

σlin(M)

)2

(2.86)

is treated as a function of M . Here, the overdensity δc(z) with value today that had

value δc = 1.686 at redshift z is given by (2.73), and the linear variance of
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perturbations is given by (2.53). Arguments used to explain (2.85) and to

determine the universal function f are summarized below.

For reasons that will be made clear in Section 2.4.2, f is called the first-crossing

distribution. Assuming that all matter is contained within halos, the normalization

condition for this distribution follows from∫
dνf(ν) = ⟨ρ⟩−1

∫
dM

dn

dM
M = 1. (2.87)

2.4.1 The Press-Schechter Mass Function

An estimate of the mass function of collisionless structures formed from

gravitational collapse was first obtained by Press and Schechter in 1974 [76], before

it could be determined from N-body simulation, and before its universality was

realized. They consider the matter distribution described by linear perturbations

smoothed over scales R, according to (2.52) and (2.54). If the linear perturbations

are distributed according to a Gaussian distribution, the variance is given by

(2.47), and it follows that the smoothed perturbations of scale R are also Gaussian

with distribution

P(δlin;R)dδlin =
1√

2πσ2
lin(R)

exp

[
− δ2lin
2σ2

lin(R)

]
dδlin, (2.88)

and variance (2.53).

A position r with δlin(r, R) = δc = 1.686, from (2.72) is taken to represent a

virialized halo of mass scale

M(R) ≡ 4

3
π ⟨ρ⟩R3. (2.89)

Larger linear overdensities at the scale R reached the critical density for spherical

collapse in the past, at the redshift z where δlin(r, R) = δc(z) = 1.686/D(z). At the

same position, the linear overdensity of an overdense region will generally decrease
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toward 0 as the smoothing scale R increases. Therefore, finding a scale R where

δlin(r, R) > δc means that the position contains a halo of scale larger than R. Then

the positions r of space such that δlin(r, R) > δc are taken to represent the positions

that are contained in halos larger than the smoothing scale R.

Let F (M |z) be the fractional volume of space at redshift z that is contained by

halos larger than the scale M . It is given by the probability that each position has

a greater than critical value of linear overdensity at that redshift, which is the

probability that the linear overdensity today has value over δc(z):

F (M |z) =
∫ ∞

δc(z)

P(δlin;R)dδlin =
1

2
erfc

(√
ν(M |z)

2

)
,

where the complementary error function is defined by

erfc(x) ≡ 2√
π

∫ ∞

x

e−y
2

dy. (2.90)

Since σlin(M) diverges as M → 0, then ν(0|z) = 0, and F (0|z) = 1/2. However,

F (0|z) should include all matter, and should equal 1. This is fixed by hand, so that

F (M |z) = erfc

(√
ν(M |z)

2

)
. (2.91)

This factor of 1/2 was explained in [77] by using the theory of excursion sets,

summarized in Section 2.4.2.

The fractional volume of halos with mass between M and M + dM is − dF
dM

dM ,

since F decreases with increasing M . From the mass definition (2.89), these halos

have volumes V =M/ ⟨ρ⟩, so that the number density of these halos is

dn

dM
dM = − 1

V

dF

dM
dM = −⟨ρ⟩

M

dF

dν
dν,

resulting in the Press-Schechter universal halo function when comparing to (2.85):

f(ν) = −dF

dν
= (2πνeν)−1/2 . (2.92)
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2.4.2 Press-Schechter Mass Function from Excursion Set Theory

One problem with the model presented by Press and Schechter is the so-called

“cloud-in-cloud” problem [77]. It turns out to be common in realistic matter

distributions to have situations where δlin(r, R) < δc is subcritical, but is critical at

some larger scale R′ > R. For instance, if a virialized halo has an underdense patch

in its interior. The Press-Schechter formalism would not identify this underdense

region as being within a halo for smoothing scales of R or smaller. To solve this

problem, the condition for r to be within a halo of scale R or greater should be

modified to be true if δlin(r, R
′) ≥ δc for and R

′ ≥ R. This new condition will

modify the calculation of F (M) from that of the Press-Schechter method.

Let t0 be a time sufficiently early, such that all matter perturbations at the scales

R of interest have not yet approached the non-linear regime (i.e. are less than 1, in

accordance with (2.71)). All overdensities are then evaluated at t0 and linearly

extrapolated to the present time via the linear growth factor. All coordinates are

Lagrangian coordinates (coordinates moving with the perturbations, such that the

perturbations are at rest in those coordinates), defined at t0.

Begin with a very large scale R0, such that σlin(M0) ≪ δc and therefore the

probability that δlin(r, R) ≥ δc for any R ≥ R0 is vanishingly small. At a given

position r, R is decreased from R0 until there is found a largest value of R for

which δlin(r, R) = δc, at which point the perturbation is said to cross the barrier δc.

It is necessary to calculate the probability that the scale R, or equvalently the

filtered variance σlin(M), is where the first up-crossing of δlin(r, R) over the barrier

δc occurs.

To understand the solution, it is helpful initially to consider two probability

distributions. Specify the perturbation smoothing scale of radial extent R or mass

M by the value of the filtered linear variance S = σ2
lin(M) at that scale.

Let Π(δ, S|δ1, S1)dδ be the probability of having, at a fixed position, an overdensity

between δ and δ + dδ for a smoothing scale with variance S, given that at that
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position the overdensity is δ1 for the scale with variance S1. That is,

Π(δ1, S1|δ1, S1) = δD(δ1), where in this section, δD(x) denotes the Dirac delta

function. For our purposes, it will be sufficient to use the smooth Universe

assumption that at very large scales, δ1 = 0 at S1 = 0, though the argument follows

for any prior values of δ1 and S1.

Let Ψ(∆δ,∆S|δ1, S1)d(∆δ) denote the transition probability of having overdensity

between δ1 +∆δ and δ1 +∆δ + d(∆δ) at scale variance S1 +∆S, given that the

overdensity was δ1 at S1 scale. Note that Ψ(∆δ, 0) = δD(∆δ).

These can be related with the statement: the probability density of overdensity δ

with variance S +∆S is the probability of δ −∆δ at variance S transitioning with

changes ∆δ and ∆S, for any value of ∆δ.

Π(δ, S +∆S) =

∫ ∞

−∞
d(∆δ)Π(δ −∆δ, S)Ψ(∆δ,∆S|δ −∆δ, S)

Considering this for infinitesimal transitions ∆S → 0 leads to an equation for

Π(δ, S), in the following way. In the small ∆S limit, it is assumed that it is

overwhelmingly probable the ∆δ will also be small. That is, Ψ(∆δ,∆S) should be

negligible for large values of ∆δ. Then we can Taylor expand Π(δ −∆δ, S) about

∆δ = 0:

Π(δ, S +∆S) ≈
∫ ∞

−∞
d(∆δ)

[
Π(δ, S)−∆δ

∂Π(δ, S)

∂δ
+

1

2!
(∆δ)2

∂2Π(δ, S)

∂δ2

]
×Ψ(∆δ,∆S|δ −∆δ, S)

=Π(δ, S)− ⟨∆δ⟩
Ψ
(∆S|δ, S)∂Π(δ, S)

∂δ
+

⟨(∆δ)2⟩
Ψ
(∆S|δ, S)
2

∂2Π(δ, S)

∂δ2
,

where the statistical moments

⟨(∆δ)n⟩
Ψ
(∆S|δ, S) ≡

∫ ∞

−∞
d(∆δ)(∆δ)nΨ(∆δ,∆S|δ −∆δ, S)

are introduced. Neglecting higher-n moments is equivalent to stating that Ψ

approaches a Gaussian distribution as ∆S → 0. Motivated by the fact that, in the

case where a filter that is a top-hat in k-space rather than in configuration space is
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applied to Gaussian fluctuations, it is strictly true that ⟨∆δ⟩
Ψ
= 0 and

⟨(∆δ)2⟩
Ψ
= ∆S for any ∆S [77], and by the argument that Ψ should be

independent of choice of filter in the small ∆S regime, one requires that

lim
∆S→0

⟨∆δ⟩
Ψ

∆S
= 0,

lim
∆S→0

⟨(∆δ)2⟩
Ψ

∆S
= 1.

Therefore,

∂Π

∂S
= lim

∆S→0

Π(δ, S +∆S)− Π(δ, S)

∆S

= lim
∆S→0

[
−⟨∆δ⟩

Ψ

∆S

∂Π

∂δ
+

⟨(∆δ)2⟩
Ψ

2∆S

∂2Π

∂δ2

]
=
1

2

∂2Π

∂δ2
. (2.93)

Next, consider a modified Π(δ, S) distribution. Again at fixed position, let

Π′(δ, S|δ0, S0, δc)dδ be the probability of the smoothed overdensity—at scale with

variance S—having a value between δ and δ + dδ, given that the overdensity is δ0

at scale S0, AND that the overdensity is below the barrier δc for all (larger) scales

with variances smaller than S. It follows that Π′(δ, S) = 0 for δ ≥ δc. For this

definition of Π′, the integral relation to Ψ is similar to before, but must be modified

not to include values of ∆δ for which δ −∆δ ≥ δc:

Π′(δ, S +∆S) =


∫ ∞

−∞
d(∆δ)Π′(δ −∆δ, S)Ψ(∆δ,∆S|δ −∆δ, S), δ < δc,

0, otherwise.

Then (2.93) still holds for Π′.

Solving for Π′, take it to be a function of γ ≡ δc − δ. Applying the Fourier

transform of Π′(γ) to (2.93) and requiring Π′(0) = 0 gives

Π′(γ, S) =

∫ ∞

−∞

dω

2π
A(ω) sin(ωγ)e−ω

2S/2
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for some amplitude function A(ω). The other condition that the overdensity is δ0

at scale with variance S0 requires

Π′(γ, S0) = δD(γ − γ0) =
1

π

∫ ∞

−∞
dω sin(ωγ0) sin(ωγ)

with γ0 ≡ δc − δ0, thus fixing

A(ω) = 2 sin(ωγ0)e
ω2S0/2.

The integration over ω can then be evaluated for Π′ to determine the conditional

overdensity distribution

Π(δ, S|δ0, S0, δc) =



1√
2π(S − S0)

{
exp

[
− (δ − δ0)

2

2(S − S0)

]
− exp

[
−(δ + δ0 − 2δc)

2

2(S − S0)

]}
, δ < δc

0, δ ≥ δc.

(2.94)

The second term of Π′ takes into account the possibility of the overdensity crossing

the barrier at some higher smoothing scale, giving us control over the

cloud-in-cloud problem.

In set excursion theory, at a fixed position, a trajectory is the overdensity values

δ(S) as the variance changes according to smoothing scale. The smallest variance S

at which the trajectory crosses the barrier δc determines the first-crossing scale. In

a simulated distribution of matter, each position has its own trajectory δ(S).

Emulating the Press-Schechter prescription, let F (S|δ0, S0, δc) denote the fraction

of trajectories that have crossed the barrier δc for some scale with variance smaller

than S, given that the trajectory crosses δ(S0) = δ0. Given that the fraction of

trajectories that have not crossed the barrier for any variance less than S is

determined by ∫ δc

−∞
dδΠ′(δ, S),
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it follows that

F (S) = 1−
∫ δc

−∞
dδΠ′(δ, S) = erfc

(
δc − δ0√
2(S − S0)

)
. (2.95)

In accordance with the smooth Universe paradigm, take δ0 = 0 at S0 = 0, and

(2.91) is recovered.

The function f in the mass function can be interpreted, in this context, to be the

probablility density for the first crossing of the trajectory over the barrier at the

scale of interest. It is for this reason that it is called the first-crossing distribution.

The general first-crossing distribution for a perturbation at scale S, that had value

δ0 at scale S0 is

f(S|δ0, S0)dS =
dF

dS
dS =

δc − δ0√
2π(S − S0)3

exp

[
− (δc − δ0)

2

2(S − S0)

]
dS. (2.96)

In the universal form used in Press-Schechter theory, let

ν10(M |z) ≡ (δc(z)− δ0)
2

S(M)− S0

, (2.97)

and note that |f(S)dS| = |f(ν10)dν10| requires

f(S) = f(ν10)ν10/(S − S0). (2.98)

Then

f(ν10) = [2πν10e
ν10 ]−1/2. (2.99)

2.4.3 The Sheth-Tormen Mass Function

When the distribution of halos was considered in N-body simulations by Sheth and

Tormen in 1998, they found that the universal form of the mass function (2.85)
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held, but for a modified first-crossing distribution [78]

f(ν) = Aa

[
1 +

1

(aν)p

]
[2πaνeaν ]−1/2 , (2.100)

where a = 0.707 and p = 0.3. The normalization A is determined from (2.87) to be

A−1 =

∫ ∞

0

d(aν)

[
1 +

1

(aν)p

]
[2πaνeaν ]−1/2

=
2√
π

∫ ∞

0

dx e−x
2

+
1√
π
2−p

∫ ∞

0

dy y(1/2−p)−1e−y

=1 +
1

2p
√
π
Γ

(
1

2
− p

)
≈ 0.3222,

where the substitutions x =
√
aν/2 and y = aν/2 were made.

This was later explained in the context of non-spherical collapse, with a barrier

consistent with ellipsoidal collapse [79]

δec(ν|z) =
√
aδc(z)

[
1 + 0.485(aν)−0.615

]
.

It was verified that this barrier resulted in the observed first-crossing distribution

by simulations of random-walk trajectories δ(S).

2.4.4 The Mass Function in the Latest N-Body Simulations

Very recently, some interesting new results regarding the halo mass function were

released from the Bolshoi simulation [64]. The analysis used the Bryan-Norman

definition of the virial mass of halos [80]

M =
4

3
πR3

virδvir(z) ⟨ρ⟩(z), (2.101)

where the virial overdensity is given by

δvir(z) = 18π2 + 82x− 39x2 (2.102)
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and x = Ωm(z)− 1. The virial overdensity is near 360 today, and evolves to 178 at

high redshift. The analysis also modeled the halos as spherical overdensities (as

they appear in our model), instead of the friends-of-friends analysis that is carried

out in many works.

The analysis found that the Sheth-Tormen mass function described the mean

distribution of halos very well at low redshift, but over-estimated the halos at high

redshift, by a factor of 50% at redshift z = 6. The result is that the mass function

comes to agreement, within 10% deviations, over the range of masses

5× 109h−1M⊙– 5× 1014h−1M⊙ and redshifts z = 0–10, if it is multiplied by the

factor

F (z) =
[5.501D(z)]4

1 + [5.500D(z)]4
, (2.103)

where D(z) is the linear growth factor (2.37). It is advisable to use these results for

immediate future work.

2.5 Halo Bias

The linear halo bias hypothesis supposes that the clustering of dark matter halos

should follow the clustering of matter. More precisely, the overdensity of halos in a

very large volume should have a general relation to the overdensity of matter

within the volume, and it is supposed in the linear model that

δh(r,M,R) = b(M)δρ(r, R), (2.104)

where R is the comoving radial extent of the volume under consideration, δρ is the

top-hat filtered overdensity in the volume, and δh is the relative excess of mass M

halos in the volume.

A scheme for determining the bias function b(M) in the context of the uniform

sphere collapse model and excursion set theory is due to Mo and White [81]. As

before, the matter perturbations are taken to be at a sufficiently early time t0, such

that fluctuations are small. Consider a large spherical comoving volume V0 with
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radius R0 and containing a total mass of M0 = 4πR3
0 ⟨ρ⟩ /3. The variance of

smoothed overdensities for such volumes is S0 = σ2
lin(M0). The halo overdensity in

the comoving volume V0 is known as the Lagrangian coordinate halo overdensity

δLh . It ignores the dynamical evolution of the overdense regions.

By the set excursion theory in Section 2.4.2, recall from (2.96) that the fraction of

trajectories that first cross the barrier with mass scales having variances between S

and S + dS in the region with mass scale having variance S0 and overdensity δ0 is

f(S|δ0, S0)dS = f(ν10)
ν10

S − S0

dS,

using (2.98). Then the fraction of mass in halos with masses between M and

M + dM in the volume V0 is

f(ν10)
ν10

S − S0

∣∣∣∣ dSdM
∣∣∣∣ dM,

and the number of halos with that mass range in the volume is

N (M |δ0, S0)dM =
M0

M
f(ν10)

ν10
S − S0

∣∣∣∣ dSdM
∣∣∣∣ dM. (2.105)

Then the Lagrangian space halo overdensity becomes the relative excess of number

of halos over the expected number from the mass function

δh(M,R0, δ0) =
N (M |δ0, S0)

dn
dM

(M)V0
− 1 = bL(M)δ0. (2.106)

to first order in δ0. An expression for bL by expanding N /V0 about δ0 = 0 and

S0 = 0.

1

V0
N (M |δ0, S0) ≈

1

V0
N (M |0, 0) + 1

V0

∂N (M |δ0, 0)
∂δ0

∣∣∣∣
δ0=0

δ0

=
dn

dM

[
1 +

1

ν10f(ν10)

∂[ν10f(ν10)]

∂ν10

∂ν10
∂δ0

∣∣∣∣
ν10=ν

δ0

]
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The Lagrangian space linear bias function is therefore

bL(ν) = − 2

δc(z)f(ν)

d[νf(ν)]

dν
. (2.107)

To get the result in Eulerian space, thereby taking into account the dynamics of

the overdensity, the spherical collapse model of Section 2.3 is invoked. In Eulerian

space, the region of mass M0, if sufficiently overdense with respect to the

background, will collapse and have a changing volume V . At the early time t0, the

overdensity is very small, and its volume V0 is very nearly the volume of a region of

the background with the same mass. Thus, the overdensity of the collapsing

perturbation is δ = ρ/ ⟨ρ⟩ − 1 = R3
0/R

3 − 1 = V0/V − 1. The halo overdensity is

δh(M,R, δ) =
N
dn
dM
V

− 1 =
N

dn
dM
V0

(1 + δ)− 1

=(1 + bLδ0)(1 + δ)− 1 ≈ (bL + 1)δ (2.108)

at large scales. Therefore, the suggestion in the literature for the linear bias

function is

b(ν, δc) = 1− 2

δc(z)f(ν)

d[νf(ν)]

dν
. (2.109)

The Press-Schechter mass function (2.92) gives [81]

b(M, z) = 1 +
ν(M |z)− 1

δc(z)
,

and the Sheth-Tormen mass function (2.100) gives [78]

b(ν, δc) = 1 +
1

δc(z)

[
2p

1 + (aν)−p
+ aν − 1

]
,

where a = 0.707 and p = 0.3, as before. However, Sheth, Mo, and Tormen later

point out that the moving barrier of ellipsoidal collapse has additional effects on

the halo clustering, which must be accounted for [82]. After simulating the effect of
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the moving barrier, they found the linear bias is, to a very good approximation,

b(ν, δc) = 1 +
1

δc(z)

[
aν +B(aν)1−c − a−1/2

1 +B(1− c)(1− c/2)(aν)−c

]
(2.110)

for new constants B = 0.5 and c = 0.6. This is the model that was used to describe

halo clustering in this dissertation’s calculations.

In a recent paper [83], these models were tested in simulations by comparing b(M)

directly to the ratio of halo power spectrum to matter power spectrum

b2(M) =
Ph(k,M)

P (k)
, (2.111)

which is the sense that the bias function is required to hold in this work. They also

identify models using the spherical overdensity technique, according to some virial

overdensity δvir. The Sheth-Mo-Tormen bias is found to be too high at low ν, and

too low at high ν. A new fitting function is provided that takes into account the

halo virial mass definition used

b(ν, δc, δvir) = 1− A
νa

νa + δac
+Bνb + Cνc, (2.112)

where

y = log10 δvir,

A =1.0 + 0.24ye−(4/y)4 ,

a =0.44y − 0.88,

B =0.183,

b =1.5,

C =0.019 + 0.107y + 0.19e−(4/y)4 ,

c =2.4.
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2.6 Universal Halo Profiles

The properties of typical individual dark matter halos have been explored in

N-body simulations. Large volume simulations can explore the properties of halos

in large ensembles, but to limited resolution. Some recent examples are the

Millennium [84] and Millennium-II [85] simulations, the Bolshoi and MultiDark

simulations [86], and most recently, the Millennium-XXL simulation [87].

A method that has been employed to improve the resolution of results is to take

local data from the environment of a single halo in a large simulation, and

re-simulate that halo at much higher resolution, using the data of the large

simulation to source the gravitational potential and incoming accreting matter at

the volume boundary. Recent simulations of individual Milky-Way sized dark

matter halos that have been carried are Via Lactea [88], Via Lactea II [55], GHALO

[89], and the Aquarius simulations [50, 56]. The results reported from these works

continue to provide justification for the techniques described in this section.

2.6.1 Universal Density Profiles

It was first pointed out by Navarro, Frenk, and White in 1996 that the relaxed

halos in their simulations appeared to stratify their mass in a common way. They

found that when the halo density was averaged over spherical shells, the halo

density profile followed a universal form, consistent with [49]

ρh(r|ρs, rs) =
ρs

r
rs

(
1 + r

rs

)2 , (2.113)

where the scale density ρs and scale radius rs are fit parameters for each halo. This

is referred to as the NFW profile.

The spherically-averaged density profile in an individual halo tends to be quite

smooth in the inner regions of the halo, but is seen to fluctuate dramatically at
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larger radii. This is due to the presence of halo substructures in the outer regions

of the halo. However, the mean profile, averaged over large ensembles of halos,

tends to be quite smooth and consistent with (2.113).

The Aquarius simulations [50] have been able to resolve to small enough scales to

probe far enough to the core of simulated halos to suggest that the NFW profile is

too dense at the core, but that the density profile is better described by the Einasto

profile

ρh(r|ρ−2, r−2, α) = ρ−2 exp

{
− 2

α

[(
r

r−2

)α
− 1

]}
.

Other profiles are also possible. Despite the disfavor of the NFW profile in the

inner core, it is used in this work because it has a simple analytic form. It makes

sense to attempt to calculate with more complex profiles once a working code has

been developed. Also, previous works of extragalactic dark matter indirect signals

have also used NFW profiles, and comparison of our work to the previous works is

more direct if NFW profiles are used in initial calculations.

Another density profile that was cited by the Aquarius simulations as still being

consistent with their halos is the Taylor-Navarro profile, which will be described in

the next section.

2.6.2 Halos With Universal Pseudo-Phase-Space Density Profiles

In 2001, Taylor and Navarro found that the spherically-averaged total velocity

dispersion σu of dark matter at each radial position within their simulated halos

was radially stratified according to

ρh(r)

σ3
uh(r)

∝ r−α. (2.114)

They measured α = 15/8 = 1.875, which continues to be consistent with modern

simulations [50, 89].



54

A number of remarkable observations about this profile deserve to be highlighted.

One is that, unlike the density profile, the observed pseudo-phase-space-density

profile is relatively smooth in individual halos, even in the substructure-rich outer

regions of the halo. Also, simulations have observed that disturbed halos settle to

this stratification on relatively short time-scales, well before the halo would be

considered to be relaxed based on other criteria. It is likely that the best-fit value

of α has some variation from halo to halo, which likely depends on the merger

history and local environment of the halo, and can be described by a distribution

that can be estimated from simulations. The description is so good, though, that it

makes sense to use (2.114), with a universal constant value of α, as a base model

from which perturbations can be implemented in future work.

When this phenomenological constraint is combined with the dynamics of a

collisionless, self-gravitating system, it is possible to determine consistent pairs of

solutions for the density profile ρh and velocity variance profile σ2
uh.

The phase space of a gravitating, collionless collection of massive particles in a

static, isotropic density distribution satisfies the radial, spherical Jeans equation

[91]
d

dr

[
−r2

Gρh

(
d(ρhσ

2
uh,r)

dr
+

2β

r
ρhσ

2
uh,r

)]
= 4πρhr

2, (2.115)

where σ2
uh,r ≡ u2r − ur

2 is the variance of the radial velocity component, and

β(r) ≡ 1− (σ2
θ + σ2

ϕ)/(2σ
2
r) is a measure of the velocity anisotropy, in terms of the

velocity variance in polar and azimuthal spherical-tangential directions. In terms of

these component variances, the total variance is

σ2 =
σ2
r + σ2

θ + σ2
ϕ

3
. (2.116)

In regions where ∣∣∣∣d(ρhσ2
uh,r)

dr

∣∣∣∣≫ 2|β|
r
ρhσ

2
uh,r,

it is a good approximation to neglect the velocity anisotropy, resulting in the
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isotropic, spherical, radial Jeans equation

d

dr

[
−r2

Gρh

d(ρhσ
2
uh,r)

dr

]
= 4πρhr

2. (2.117)

However, this condition does not necessarily infer that β ≪ 1 or σ2
r ≈ σ2.

Therefore, it is more logical to use the measurement of σ2
r when using (2.117) to

approximate a system with anisotropic velocities.

The system of equations, (2.114) with (2.117), was analyzed in detail by Dehnen

and McLaughlin in 2005 [92]. The work in this dissertation considers this isotropic

velocity approximation. Note that Dehnen-McLaughlin also analyzed (2.114) with

(2.115) for an assumed universal velocity anisotropy profile β(r), and the work in

this dissertation can be generalized to include these effects.

Let r0 be a reference radius to be precisely defined later, and let ρ0 and σ2
0 be the

density and radial velocity variance, respectively, at that radius. The

proportionality constant in (2.114) is written in terms of these. Combining (2.114)

with (2.117) by removing σuh,r results in an equation for the density profile that

can be written in the useful form

dγ

dx
− 2

3

(
γ − 2α

5

)(
γ − 2α+ 3

2

)
=

3

5
κx2−2α/3y1/3,

where

x ≡ r

r0

is the scaled radial coordinate,

γ ≡ −d(ln ρh)

d(ln r)
= −d(ln ρh)

d(lnx)

is the negative logarithmic density slope,

y ≡ ρh
ρ0

= exp

[
−
∫ r

r0

γ(r′)
dr′

r′

]
= exp

[
−
∫ x

1

γ(x′)
dx′

x′

]



56

is the scaled density, and

κ ≡ 4πGρ0r
2
0

σ2
0

(2.118)

is a dimensionless parameter of the equation that specifies the scale of the velocity

dispersion. There is a power-law solution γ(r) = 6− 2α to this equation with

y = x−γ. It turns out that all physical solutions have radius at which the

logarithmic slope takes this value. For general descriptions of the solutions of this

equation, it therefore makes most sense to define the reference position by

γ(r0) ≡ 6− 2α, (2.119)

which can be compared to the more usual reference position found in the literature

of r−2, where γ(r−2) ≡ 2.

For each value of α, there is a family of density profiles delineated by the value of

κ. For α > 35/18, there are no solutions that describe the profiles observed in the

simulations.

For α ≤ 35/18, there is one critical value of κ for which the resulting density profile

asymptotically approaches a power law at the inner halo core. It is also very similar

to the NFW profile, making it consistent with the simulations. When α < 35/18,

the density cuts off at some outer radius, as the density becomes negative in the

solution. The Taylor-Navarro density profile is this solution for α = 15/8, and is

shown in [50] with simulated density profiles. It has an inner logarithmic slope of

γ(0) = 3/4.

When α = 35/18, the density also asymptotically approaches a power law at large

radius, and there is a closed form solution. Also, when the Aquarius simulations

found the best fit value of α using σr instead of σ, the values of α were more

consistent with 35/18 than the value of 15/8, which is more consistent when using

σ.

Therefore, the halo model used in this dissertation will assume the halos satisfy
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(2.114) with

α ≡ 35

18
≈ 1.944. (2.120)

The NFW-like solution of the radial Jeans equation occurs for

κ =
200

81
, (2.121)

and the critical Dehnen-McLaughlin density and velocity variance profiles are

ρh(r|ρ0, r0) =
64ρ0(

r
r0

)7/9 [
1 +

(
r
r0

)4/9]6 (2.122)

σ2
uh(r|σ0, r0) = 16σ2

0

(
r

r0

)−1


(
r
r0

)4/9
1 +

(
r
r0

)4/9


4

, (2.123)

with the constraint (2.118). The density profile has an inner logarithmic slope of

γ(0) = 7/9, and an outer logarithmic slope of γ(∞) = 31/9.

2.6.3 Universal Velocity Variance Profiles for Isotropic Velocity Distributions

Having already committed to working with the NFW profile, and wanting to model

halos with universal pseudo-phase-space density profiles and isotropic velocity

distributions, a method needed to be developed for determining a consistent

velocity variance halo profile. The proposed strategy was to assume the desired

density profile is a good fit to the simulated density profiles, and treat it as an

approximation of the critical Dehnen-McLaughlin profile. By matching the two

profiles at the reference position r0, then (2.114) can be used to determine σ2
uh(r).

This process will now be demonstrated for the NFW profile (2.113), but can be

applied to any other density profile, such as the Einasto profile. It is convenient for

the NFW profile to define the constant

β ≡ 2

3
(α− 1) =

17

27
, (2.124)
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the physical significance of which will become apparent.

Given an NFW profile with particular values of ρs and rs, first use (2.119) to

determine the reference radius r0.

γ(r0) = 1 +
2

1 + rs
r0

≡ 6− 2α = 4− 3β =⇒ r0 =
5
2
− α

α− 3
2

rs =
1− β

β − 1
3

rs (2.125)

Use this result to determine the reference density.

ρ0 = ρh(r0) = ρs

(
r0
rs

)−1(
1 +

r0
rs

)−2

=

(
α− 3

2

)3
5
2
− α

ρs =
9
(
β − 1

3

)3
4(1− β)

ρs (2.126)

Finally, determine the reference velocity variance from (2.118).

σ2
0 =

4πG

κ
ρ0r

2
0 =

4πG

κ

(
α− 3

2

)(
5

2
− α

)
ρsr

2
s =

9πG

κ

(
β − 1

3

)
(1−β)ρsr2s (2.127)

Then the phase space density profile

ρh/ρ0
(σuh/σ0)3

=

(
r

r0

)−α

gives

σ2
uh(r) = σ2

0

[(
r

r0

)α
ρh(r)

ρ0

]2/3
= σ2

0

(
rs
r0

)2α/3(
ρs
ρ0

)2/3(
r

rs

)2(α−1)/3(
1 +

r

rs

)−4/3

.

If the NFW scale variance is defined as

σ2
s ≡ σ2

0

(
rs
r0

)β+2/3(
ρs
ρ0

)2/3

,

then the suggested NFW velocity variance profile is

σ2
uh(r|σ2

s , rs) =
σ2
s

(
r
rs

)β
(
1 + r

rs

)4/3 , (2.128)
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where

σ2
s =

122/3πG

κ

(
β − 1

3

)β−1/3

(1− β)1−βρsr
2
s . (2.129)

The physical significance of β is now seen to be the inner logarithmic slope of σ2
uh.

2.6.4 Universal Mean Square Relative Velocity Profiles in the Absence of Flows

The mean square relative particle velocity at a position derives directly from the

velocity variance there [93]. With the relative velocity between two particles having

velocities u1 and u2 denoted as v = u1 − u2, the mean square relative velocity is

v2 = (u1 − u2)2 = u2
1 + u2

2 − 2u1 ·u2.

In the absence of flows,

u1 ·u2 = 0,

and u1 = 0, implying

u2
1 = σ2

u1,r
+ σ2

u1,θ
+ σ2

u1,ϕ
= 3σ2

u,

from (2.116). Therefore,

v2 = 6σ2
u. (2.130)

One can then determine a universal mean-relative-velocity halo profile, denoted as

vh(r) = λσ2
uh(r), (2.131)

where λ is a new constant parameter introduced in the model. For calculations

requiring a value of λ, it is always set to 6. Different values can be used to model

effects of velocity anisotropies, or net dark matter flows. Since dark matter flows

are a significant phase space substructure in halo simulations, it is important to

add them to this model in future work undertaken, for the viability of the methods

of calculating indirect detection signals described in Section 4.
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2.7 Simplest Halo Model with Rigid, Disjoint, Spherical Halos and Linear Bias

A halo model consists of a description of the point distribution of halos at each

redshift, distributed by position and any halo variables required to specify the

properties of the halo. The model also requires specification of the universal

properties of the halos, dependent on the halo variables at each redshift. Developed

in this section is the simplest halo model of large scale structure, where the only

halo variable that the halo properties depend on is the halo mass M .

2.7.1 The Halo Point Distribution

At redshift z, the distribution of an ensemble of Nh halos with masses Mi and

positions Ri, specified by a global set of coordinates at that redshift, is

ph(r,M, z) =

Nh(z)∑
i=1

δ(3)(r−Ri(z))δ(M −Mi(z)), (2.132)

where r is a position according to the same set of coordinates used to describe the

halo positions at redshift z. In the statistical description of large scale structure,

the halo positions and masses are stochastic variables. The ensemble average of the

halo distribution is independent of position, because of the statistical uniformity of

the Universe, and is precisely the halo mass function described in Section 2.4.

⟨ph⟩ (M, z) =
dn

dM
(M, z) (2.133)

Formally, the halo overdensity is then defined as

δh(r,M, z) ≡ ph(r,M, z)
dn
dM

(M, z)
− 1. (2.134)

In practice, it is usual to consider this function averaged over fixed volumes.
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Collectively, the connected n-point halo correlation functions

ξ̃
(n)
hc (r1, r2, . . . , rn,M1,M2, . . . ,Mn, z)

= ⟨δh(r1,M1, z)δh(r2,M2, z) · · · δh(rn,Mn, z)⟩c

fully specify the halo statistics at redshift z, for positions ri at that redshift. The

angular power spectrum of dark matter annihilation products requires knowledge of

the n = 2 halo statistics, described below:

The full halo correlation function

ξ̃h(r1, r2,M1,M2, z) = ⟨δh(r1,M1, z)δh(r2,M2, z)⟩ (2.135)

has a singularity at r1 = r2. This can be seen by applying (2.134)

ξ̃h(r1, r2,M1,M2, z) =
⟨ph(r1,M1, z)ph(r2,M2, z)⟩

dn
dM

(M1, z)
dn
dM

(M2, z)
− 1, (2.136)

and separating the halo distribution 2-moment into diagonal (1-halo) and

non-diagonal (2-halo) pieces.

⟨ph(r1,M1, z)ph(r2,M2, z)⟩

=

⟨
Nh∑
i=1

Nh∑
j=1

δ(3)(r1 −Ri)δ(M1 −Mi)δ
(3)(r2 −Rj)δ(M2 −Mj)

⟩

=

⟨∑
i

∑
j ̸=i

δ(3)(r1 −Ri)δ(M1 −Mi)δ
(3)(r2 −Rj)δ(M2 −Mj)

⟩

+

⟨∑
i

δ(3)(r1 −Ri)δ(M1 −Mi)δ
(3)(r2 −Ri)δ(M2 −Mi)

⟩

=C
(2)
h (r1,M1, r2,M2, z) + δ(3)(r1 − r2)δ(M1 −M2)

dn

dM
(M2, z)



62

This expression makes the singularity explicit. Here, the function

C
(2)
h (r1,M1, r2,M2, z)

≡

⟨∑
i

∑
j ̸=i

δ(3)(r1 −Ri)δ(M1 −Mi)δ
(3)(r2 −Rj)δ(M2 −Mj)

⟩
(2.137)

is introduced as the non-diagonal part of the halo 2-moment. In disjoint ensembles

where no 2 halos can be at the same position, C
(2)
h = 0 when r1 = r2. The

non-diagonal part of the full halo correlation function is what is normally referred

to as the halo correlation function, and it can be defined as

ξh(r1, r2,M1,M2, z) ≡
C

(2)
h (r1,M1, r2,M2, z)
dn
dM

(M1, z)
dn
dM

(M2, z)
− 1, (2.138)

so that

ξ̃h(r1, r2,M1,M2, z) = ξh(r1, r2,M1,M2, z) +
δ(3)(r1 − r2)δ(M1 −M2)

dn
dM

(M1, z)
. (2.139)

The halo power spectrum is defined accordingly as

Ph(k,M1,M2, z) ≡
∫

d3re−ik · rξh(r1,M1, r1 + r,M2, z). (2.140)

Its correlation to the matter power spectrum is encoded in the halo bias function.

For our purposes, the precise meaning of the halo bias is through the relation

Ph(k,M1,M2, z) = b(M1, z)b(M2, z)P (k, z). (2.141)

For extragalactic annihilation signals of dark matter, the properties of the point

distribution of halos that are required are the halo mass function and the linear

halo bias function. The sample calculations carried out used the Sheth-Tormen

mass function (2.100) with (2.85), and the associated Sheth-Mo-Tormen bias

function (2.110).
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2.7.2 Universal Halo Profiles in the Halo Model

What remains, in order to specify the halo model, is to define the individual halo

properties as functions of halo redshift and the other universal halo variables. For

our purposes, the halo density and velocity variance profiles are specified in terms

of the halo mass and redshift, ρh(r|M, z) and σ2
uh(r|M, z).

Unfortunately, the mass of a halo described by the NFW profile (2.113) is

ill-defined, since its radial integration diverges. This issue is normally addressed by

defining a virial radius Rvir for the halo, beyond which the density is negligible:

ρh(r|ρs, rs, Rvir) =
ρs

r
rs

(
1 + r

rs

)2 Θ(Rvir − r), (2.142)

where

Θ(x) =

1, x > 0

0, x < 0

is the Heaviside step function. The definition of virial radius simultaneously defines

the halo virial mass M = 4π
∫ Rvir

0
ρh(r)r

2dr.

There are many different virial mass-radius relations used for halos in the

literature. Motivated by the analysis of Martin White [94], which suggested that

the Sheth-Tormen mass function is especially consistent with simulations for the

mass-radius relation of the constant-density perturbation when it virializes (2.84),

the outer boundary Rvir of the halo is defined to be where the enclosed halo mass

M satisfies

M ≡ 4

3
πR3

virδvir ⟨ρ⟩(z) (2.143)

for δvir ≡ 180.

Given an NFW halo with scale density ρs and scale radius rs, its concentration is

defined as

c ≡ Rvir

rs
. (2.144)
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The scale radius can then be replaced in favor of the halo mass, redshift, and

concentration.

rs(M, z, c) =
1

c

(
3M

4πδvir ⟨ρ⟩(z)

)1/3

(2.145)

The halo mass satisfies (letting x = r/Rvir = r/(crs))

M =4π

∫ Rvir

0

ρh(r)r
2dr = 4πρsr

3
sc

3

∫ 1

0

x2dx

cx(1 + cx)2

=4πρsr
3
s

∫ 1

0

[
c

1 + cx
− c

(1 + cx)2

]
dx

=4πρsr
3
s

[
ln(1 + cx) +

1

1 + cx

]x=1

x=0

=4πρsr
3
s

[
ln(1 + c)− c

1 + c

]
.

Substituting (2.145) for the scale radius, the scale density becomes expressed as

ρs(z, c) =
δvir ⟨ρ⟩(z)

3

c3[
ln(1 + c)− c

1+c

] . (2.146)

Using these results with (2.129) determines the NFW scale velocity variance

σ2
s(M, z, c).

It appears that spherical NFW halos require two halo variables to be specified: the

halo mass, and the halo concentration. While halos of a given mass and redshift do

appear to have a distribution of concentrations that is consistent with a log-normal

distribution [95], this distribution can be approximated as a Dirac delta function.

The mean concentration ⟨c⟩(M, z) does scale with halo mass and redshift. If this

scaling is understood, then the halo profiles used in the halo model are

ρh(r|M, z) = ρh

(
r
∣∣∣ρs(z, c), rs(M, z, c), Rvir(M, z)

)∣∣∣
c=⟨c⟩(M,z)

,

σ2
uh(r|M, z) = σ2

uh

(
r
∣∣∣σ2
s(M, z, c), rs(M, z, c), Rvir(M, z)

)∣∣∣
c=⟨c⟩(M,z)

.
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2.7.3 Mean Halo Concentration Distribution

In this section, the spread of concentration values are not considered, and the mean

concentration ⟨c⟩ (M, z) will be denoted only as c(M, z). In the finite resolution of

N-body cosmological simulations, the concentrations of halos are able to be probed

over typical halo mass ranges of 1010M⊙ > M > 1015M⊙, and tend to be well-fitted

by functions of the form

c(M, z) ≈ a

1 + z

(
M

1012h−1M⊙

)b
,

or

c(M, z) ≈ a

1 + z

(
M

M∗(z)

)b
for different constants a and b, where the characteristic mass was defined in (2.74).

These scalings are not expected to hold down to lower mass scales beyond the

simulation resolution, and are not appropriate for extrapolating to low halo mass.

A physical model of concentrations was provided by NFW [49], based on the

excursion set formalism. Their development was as follows. Consider a halo of mass

M at redshift z = 0. That is, the smoothed overdensity at the halo’s position with

scale M and variance S0 = σ2(M) is critical to spherical collapse δ0 = δc.

Define the collapse redshift zc(M, f) to be the time when half of the mass of the

halo was first contained in progenitors Mi with Mi > fM for a fixed fraction f < 1.

Then, according to the excursion set formalism, with reference to (2.96), zc satisfies∫ ∞

fM

dS f(S|δ0, S0) =erfc

[
δc(zc)− δc√

2[σ2(fM)− σ2(M)]

]
=

1

2

=⇒ δc(zc) = δc + C ′
√
σ2(fM)− σ2(M), (2.147)

where C ′ ≡
√
2 erfc−1(1/2) ≈ 0.67449.

Best fits to the data were achieved for f ≪ 1. In this regime, σ2(fM) ≫ σ2(M),



66

and hence δc(zc) ≫ δc. Then

δc(zc) ≈ C ′σ(fM), f ≪ 1,

resulting in

σ(M∗(zc)) ≈ C ′σ(fM)

in terms of the characteristic mass M∗ in (2.74), or within an order of magnitude,

M∗(zc) ≈ fM. (2.148)

This shows that, in this model, collapse occurs at a time when the characteristic

mass is a small fraction of the final halo mass. The main assumption of the NFW

concentration model is

ρs(M, f) = C ⟨ρ⟩ (zc(M, f)) (2.149)

for proportionality constant C, and ρs is the NFW scale density of the halo with

mass M . The analysis of this model used the 200c definition of halo mass

M200 = ∆cρc(z)
4π

3
R3

200 =

∫ R200

0

4πρ(r|ρs, rs)r2dr,

where ∆c = 200. The concentration is c = R200/rs, and the mass definition gives

∆cρc(z)

3ρs
=

ln(1 + c)− c
1+c

c3
.

When combined with (2.149), it is found that the concentration in this model is

given implicitly by

c3

ln(1 + c)− c
1+c

=
3CΩm(z)[1 + zc(M, f)]3

∆c

(2.150)

for mass M halos at redshift z. The best fit with the N-body simulations of NFW

(which used Ωm = 0.25, ΩΛ = 0.75, h = 0.75, and σ8 = 1.3) had f = 0.01 and

C = 3410. This model is now known to over-predict the concentration of halos at

early times.
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An improvement was proposed by Bullock, et al. [95]. Their analysis defined

spherical halos with the Bryan-Norman virial mass (2.102). The model contains

two axioms. First, the definition of the collapse redshift zc(M) of a mass M halo is

modified to be given precisely by (2.148) for a small proportionality constant

F ≪ 1.

M∗(zc) ≡ FM (2.151)

From the definition of the characteristic mass (2.74), this is equivalent to

ν(FM |zc) = 1, using (2.86), or in terms of the linear growth factor,

D(zc) =
δc

σlin(FM)
, (2.152)

where δc = 1.686 is assumed, as usual. The second axiom is to assume that

M
4
3
πr3s

≡ K3δvir(z) ⟨ρ⟩(zc) = K3δvir(z) ⟨ρ⟩(z)
(
1 + zc
1 + z

)3

. (2.153)

Using the definition of the virial mass of a halo observed at redshift z,

M
4
3
πr3s

= δvir(z) ⟨ρ⟩(z)
(
Rvir

rs

)3

= δvir(z) ⟨ρ⟩(z)c3,

then the halo concentration is given by

c(M, z|F,K) = K
1 + zc(M |F )

1 + z
. (2.154)

This model fits much of the simulation data for K ≈ 4 and F ≈ 0.01.

As is pointed out in the original paper, this model underestimates the

concentrations of the highest mass halos (see also [96]). That is because the model

has a hard cutoff where halo concentration vanishes at a maximum halo mass,

characterized as having a collapse redshift of -1

Mmax =
M∗(−1)

F
, (2.155)
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or equivalently

σlin(FMmax) = δc(−1) =
δc

D(−1)
. (2.156)

Using WMAP5 cosmological parameters [11], Mmax = 2.03× 1015M⊙.

This is the concentration distribution that was used for the sample calculations

later in this dissertation, which introduced an upper halo mass to the model. When

integrating over the halo masses, care was required when integrating near the

maximum mass in order for the numerical integrator to be stable and converge to

the required precision. Knowledge of the analytic structure of c(M, z) near

M =Mmax(z) was very useful and I will summarize some of the unpublished results

here. First, determine the asymptotic linear growth factor. From (2.40),

D(z) =
A
(

1
ξ(z)

)
A
(

1
ξ(0)

) ,
after defining

ξ(z) ≡ 1 + z

(2ω)1/3

with ω = ΩΛ/Ωm. Also define

A∞ ≡ A(∞) =

∫ ∞

0

(
u

2 + u3

)3/2

du =
Γ
(
5
6

)
Γ
(
5
3

)
22/3

√
π

≈ 0.36217.

The asymptotic expansion∫ x

0

(
u

2 + u3

)3/2

du =A∞ −
∫ 1

x

0

t

(1 + t3)3/2
dt

=A∞ − 1

2x2
+

3

5x5
− 15

16x8
+O(x−11)

can be multiplied by
√
1 + 2x−3 and expanded to find

A

(
1

ξ

)
= A∞ − 1

2
ξ2 + A∞ξ

3 +
A∞

2
ξ6 − 7

80
ξ8 +O(ξ9). (2.157)

Next, let ∆(M) denote the relative linear growth of a newly collapsed halo of mass
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M , relative to its asymptotic future growth

∆(M) ≡ 1− D(zc)

D(−1)
. (2.158)

Then ∆(Mmax) = 0, and this is a perturbative quantity near maximum halo mass.

Using (2.152) and (2.156), ∆(M) is most conveniently calculated as

∆(M) = 1− δc
D(−1)σlin(FM)

= 1− σlin(FMmax)

σlin(FM)
. (2.159)

Defining

ξc(M) ≡ ξ(zc(M)) =
1 + zc(M))

(2ω)1/3
=

K

(2ω)1/3
(1 + z)c(M, z), (2.160)

then an expansion for ∆(M) near M =Mmax is

∆ = 1− D(zc)

D(−1)
= 1− A(ξ−1)

A∞
=

1

2A∞
ξ2c − ξ3c −

1

10A∞
ξ5c +O(ξ6c ).

Reversing the series to expand ξc in ∆, and using (2.160) to replace ξc in favor of c

gives the desired expansion

c(M, z) =
K(2ω)1/3

1 + z

[√
2A∞∆(M) + 2A2

∞∆(M) + 5
√

2A7
∞∆3(M)

+
2

5
A2

∞(1 + 80A3
∞)∆2(M) +O(∆5/2(M))

]
. (2.161)

As with other aspects of the halo model, there is some very recent progress on the

distribution of halo concentrations from the latest simulations that should be

applied to future work. It is found in the Bolshoi simulation [64] that the redshift

dependence is not quite like (1 + z)−1, but is well fit by

c(M, z) = c(M, 0)
[
D4/3(z) + κ(M)

(
D−1(z)− 1

)]
. (2.162)

where κ(M) was found to be 0.084 for M = 3× 1011h−1M⊙ and 0.135 for

M = 3× 1012h−1M⊙.



70

A more complete concentration profile is provided by [97], based on data from the

Bolshoi and MultiDark simulations. Motivated by the form of the Sheth-Tormen

mass function, a curve as a function of σ(M) was found, and a fitting function for

the full rms matter fluctuation, from [64], is also provided.

2.7.4 Minimum Halo Mass

One more input into the halo model is the minimum mass Mmin of dark matter

halos. For a thermal dark matter WIMP in the standard cosmology, there are two

effects that wash out small-scale structures: particle free-streaming, and acoustic

oscillations.

The mass scale at which each of these suppresses the power spectrum is dependent

on the dark matter’s kinetic decoupling temperature, at which the dark matter

relic’s temperature begins to deviate from the temperature of the background.

However, the free-streaming cutoff scale also depends on the dark matter particle

mass, whereas the mass of the smallest surviving structures of acoustic oscillations

depends on the effective relativistic degrees of freedom, and is thus more efficient at

higher decoupling temperatures.

Scans of supersymmetric neutralino dark matter parameter space show that either

effect may determine the minimum halo mass scale, and the models accomodate

10−10M⊙ > Mmin > 10−3M⊙ [98]. Therefore, the halo mass cutoff provides a

window into the constraint of the particle interaction properties of dark matter,

and should be fixed consistently with the particle model being considered. For the

sample calculations in this dissertation, the minimum halo mass is set to a constant

value by hand.

Other recent papers look at other effects on the minimum halo mass, including the

streaming of baryons at the time of recombination [99], and effects from a reheating

epoch [100].
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2.7.5 Halo Substructure

It is quite probable that the largest neglected effect in the sample calculations

carried out below is the presence of halo substructure. N-body simulations predict

that dark matter halos contain an abundant population of subhalos, sub-subhalos,

etc. [55, 56, 88, 89]. The subhalo mass function in these simulations is consistent

with
dN

dMsub

∝M−1.90
sub

down to the simulation resolutions. The subhalos have density profiles consistent

with NFW profiles, but they are generally more concentrated than halos of the

same mass. This can be accounted for by tidal stripping of the subhalo as it merges

with the parent halo.

Different analytic approaches for accounting for substructure in indirect detection

annihilation signals have been independently developed [101], allowing for different

methods to estimate the substructure effects.

Since the intensity of dark matter annihilation scales with the square density of the

annihilating region (as explained in Section 4), a population of densely-cored

substructures within a halo can dramatically increase the overall annihilation

intensity of the halo. If observing from within the halo, the substructure

annihilations are dispersed throughout the field of view. Therefore, it is unlikely

that the substructures within the galactic halo would increase the intensity of

annihilations from within the halo by more than a factor of a few. However,

substructures in an extragalactic halo can have a dramatic coherent effect on the

halo’s annihilation intensity, and for Milky Way sized halos, could increase the

intensity by a factor on the order of 100 [102]. Clearly, this is an important effect

to be modeled, and the consequences and constraints of different halo substructure

models need to be understood in future work.
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2.8 General Matter Distribution Results from the Spherical Halo Model

The spherical halo model allows for elementary calculation and prediction of

statistical measures of the large scale structure on all scales [103], such as the

power spectrum, matter variance of fluctuations, bispectrum, trispectrum, and so

on. Comparison of these results with the N-body simulations guides how this

semi-analytic model should be used in serious work.

The mean density profile of the Universe was used as a constraint in the model to

normalize the halo mass function in (2.87). However, the new velocity variance

profiles allow the mean vlocity variance of the Universe to be calculated at each

redshift as a model prediction.

⟨
σ2
u

⟩
(z) =

∫
d3rdM

dn

dM
(M, z)σ2

uh(r|M, z) (2.163)

This is shown in Figure 3 for a cosmology with ΩΛ = 0.721, Ωb = 0.0462,

Ωc = 1− ΩΛ − Ωb, h = 0.701, σ8 = 0.817, ns = 0.96, and Mmin = 106M⊙. Inclusion

of smaller halo masses have negligible effect on the result. In this model of

distributed velocities, the mean velocity variance was increasing during the matter

domination epoch as structures grew. However it turns over near z = −0.1 and the

spatially-average relative speed begins slow. In this model, the mean velocity

variance is very near its maximum today. This is understood by the fact that we

are currently in the transition epoch from matter domination to dark energy

domination. As dark energy becomes the dominant energy density in the universe,

matter structures stop growing and are pulled apart from each other, decreasing

the net phase space. In the range of −1 ≤ z > 1, the result is described quite well

by the function ⟨
σ2
u

⟩
(z) ≈ A(1 + z) exp

{
−[B(1 + z)]1+B

}
(2.164)

where A = 2.97× 10−9 and B = 0.8 are constants. The relative error of the fit is

shown in the inset of the figure.
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Figure 3: Spatially averaged one-point velocity variance, ⟨σ2
u⟩(z). It is calculated

from the spherical halo model for parameters described in the text. In (a) is a log
plot, and (b) shows a linear plot. The thin, blue fitting curve, given by Eqn. (2.164),
agrees well for −1 ≤ z > 1, to within 15% except for very near z = −1. The relative
error of the fit is shown in the inset.
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3 CONTRIBUTIONS OF PARTICLE PHYSICS TO EXTRAGALACTIC

DARK MATTER ANNIHILATION*

3.1 Particle Properties Important for Annihilation Signals

The signals of cosmic dark matter annihilation depend on the nature of the dark

matter particle, and details of its self-interaction. These properties are specified by

the particle physics model. Given the particle Lagrangian, the particle properties

important to indirect detection can be determined. For simplicity, it is assumed

that the dark matter is composed of a single species of particle. Generalizing the

calculations in this dissertation to models where the dark matter is made up of

more than one kind of particle is straight forward to do.

The quantities that contribute to the observable annihilation radiation are:

• the dark matter annihilation cross section σ(v), expressed here as a function

of the relative velocity v of the annihilating dark matter particles,

• the spectrum dNγ

dEγ
(Eγ, v) of produced gamma-rays of energy Eγ, per

annihilation at relative velocity v, and

• the dark matter particle mass mDM.

It is often more convenient to consider the velocity dependence of the quantities σv

and dNγ/dEγ in terms of v2. Hence, frequently they will appear in this dissertation

written as [σv](v2) and dNγ

dEγ
(Eγ, v

2).

*Parts of this section are reprinted with permission from “Effects of Velocity-Dependent Dark
Matter Annihilation on the Energy Spectrum of the Extragalactic Gamma-ray Background” by
S. Campbell, B. Dutta, and E. Komatsu, Phys. Rev. D 82, 095007 (2010), Copyright 2010 by The
American Physical Society, and “Effects of P-wave Annihilation on the Angular Power Spectrum of
Extragalactic Gamma-rays from Dark Matter Annihilation” by S. Campbell and B. Dutta, Phys.
Rev. D 84, 075004 (2011), Copyright 2011 by The American Physical Society.
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Let i = 1, 2, . . . , N enumerate the different channels of annihilation in the theory.

Each annihilation channel has its own velocity-weighted cross section [σv]i(v
2), and

produces gamma-rays with average spectrum per annihilation of
dNγ,i

dEγ
(Eγ, v

2).

To understand the significance of these particle quantities, consider a volume

(infinitesimal dV ) of dark matter particles at some position r with number density

n(r) and velocity distribution fu(u|r) such that
∫
d3u′fu(u

′) = 1 and the mean

particle velocity is u =
∫
d3u′u′fu(u

′). From fu, the distribution of square relative

velocities v2 is

fv2(v
2) =

∫
d3u1d

3u2fu(u1)fu(u2)δ(v
2 − |u1 − u2|2).

The total annihilation cross section σ(v) =
∑N

i=1 σi(v) determines the rate at which

annihilations occur in this volume dV of dark matter. Recall that the cross section

of annihilation σ(v) is defined as the rate Γp of annihilations per target particle,

divided by the incident flux nv on the target (for an incident particle with relative

speed v with the target). By averaging over all particles incident on the target, the

mean annihilation rate per target at position r is

Γp(r) = n(r)σv(r), (3.1)

where the mean velocity-weighted cross section is

σv(r) =

∫
dv2fv2(v

2|r)[σv](v2). (3.2)

The annihilation rate per unit volume at the given position is

dΓ

dV
(r) =

1

2
n(r)Γp(r) =

1

2
n2(r)σv(r), (3.3)

where the factor of 1/2 occurs because each particle is being considered as both an

incident and a target particle, thus double-counting each possible interaction

between pairs of particles.
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The annihilation spectrum is required to determine the power emissivity dPγ

dV dEγ
of

annihilation-produced gamma-rays: that is, the amount of energy emitted, due to

produced gamma-rays with energy between Eγ and Eγ + dEγ, per unit time, per

unit volume dV , per unit energy range dEγ. In particular, what is needed is the

quantity

[σv](v2)
dNγ

dEγ
(Eγ, v

2) =
∑
i

[σv]i(v
2)
dNγ,i

dEγ
(Eγ, v

2) (3.4)

=[σv](v2)
∑
i

Bi(v
2)
dNγ,i

dEγ
(Eγ, v

2), (3.5)

where the channel branching fractions Bi = σi/σ satisfy
∑
Bi = 1.

The rate of energy of these emitted gamma-rays, per target particle, per

gamma-ray energy range dEγ, for incident particles of square relative velocity v2, is

dPγ,p
dEγ

(Eγ, v
2) = Γp(v

2)Eγ
dNγ

dEγ
(Eγ, v

2) = nEγ[σv](v
2)
dNγ

dEγ
(Eγ, v

2).

Averaging this quantity over the incident particles in the volume gives

dPγ,p
dEγ

(Eγ, r) = n(r)Eγ
dNγ

dEγ
σv(Eγ, r).

The power emissivity at position r is thus

dPγ
dV dEγ

(Eγ, r) =
1

2
n(r)

dPγ,p
dEγ

(Eγ, r) =
1

2
Eγn

2(r)
dNγ

dEγ
σv(Eγ, r). (3.6)

For initial considerations, the work in this dissertation will assume that the particle

models being considered each have a dark matter annihilation spectrum dNγ/dEγ

that depends negligibly on the relative velocity of the annihilating particles, over

the relevant energy range of annihilations occurring in the cosmos. This is a good

approximation if all of the relevant branching fractions, and each channel’s

gamma-ray-spectrum-per-annihilation, do not change with the energy of

annihilation. The annihilation spectrum also will not change significantly if the
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annihilation spectra of channels with changing branching fractions are

indistinguishable. For these types of theories, the power emissivity can be written

dPγ
dV dEγ

(Eγ, r) =
dΓ

dV
Eγ

dNγ

dEγ
(Eγ) =

1

2
Eγ

dNγ

dEγ
(Eγ)n

2(r)σv(r). (3.7)

The dark matter particle mass mDM appears explicitly in the number density, to

convert it to the mass density ρ. Implicitly, the cross section and annihilation

spectrum also depend on the particle mass. The energy of the produced

gamma-rays scales with mDM, the spectrum has an upper kinematical cutoff near

mDM, and the normalization of the spectrum typically scales like m−1
DM. Between

this and the dependence of n, the power emissivity scales roughly like m−3
DM.

dPγ
dV dEγ

(Eγ, r) =
Eγ

2m3
DM

dNγ

d( Eγ

mDM
)

(
Eγ

mDM

∣∣∣mDM

)
[ρ2σv](r|mDM) (3.8)

3.2 Non-relativistic Velocity-Dependence of Annihilation Cross Sections

3.2.1 S-wave and P-wave Annihilations

If the particle annihilation is not through a resonance, partial wave analysis can

decompose the cross section into its constituent multipole contributions.

[σv](v2) =
∞∑
ℓ=0

[σv]ℓ(v
2)

Each component takes the form

[σv]ℓ(v
2) =

∞∑
n=ℓ

Cℓ,nv
2n
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for constant coefficients Cℓ,n. The first multipole is the s-wave component

[σv]0(v
2) =

∞∑
n=0

snv
2n

for constant coefficients sn ≡ C0,n, and the p-wave is the second multipole

[σv]1(v
2) =

∞∑
n=1

pnv
2n

for constant coefficients pn ≡ C1,n. That is,

[σv](v2) = s0 + (s1 + p1)v
2 +O(v4).

Because cosmic dark matter is non-relativistic, then v ≪ 1 in light-speed units, and

σv is constant to high precision for all cosmic particle relative velocities. However,

it sometimes occurs that the s-wave is suppressed, due to a symmetry. If sufficiently

small, so that s0 ≪ p1 and s1 ≪ p1, then p-wave annihilation is important. In this

case, it is typical in the literature for the cross section to be written as

[σv](v2) = a+ bv2, (3.9)

where a and b are constants. If the s-wave is suppressed, then b is dominated by

the p-wave, and it is often referred to as the p-wave contribution, even though the

s-wave also contributes to it. An example of an annihilation cross section with a

strong p-wave is shown in the figure on page 104, found in Section 5.2, where

calculations with realistic particle physics models are shown.

Annihilation with p-wave is an example where the cross section increases with

interaction energy. However, there exist possible resonance effects that could be

responsible for an increase of the cross section at lower interaction energies. These

may include Sommerfeld enhancements, and Breit-Wigner resonances.
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3.2.2 Sommerfeld-Enhanced Annihilation

The Sommerfeld enhancement [105–107] of dark matter annihilation occurs in cases

where the annihilation is mediated by an attractive Yukawa force through a scalar

or vector boson. Non-perturbative resonant boson exchange between annihilating

particles is demonstrated to result in a significant enhancement of the cross-section

that grows as relative particle motion decreases.

Although this enhancement occurs for any partial wave [107], I will (for simplicity)

present intensity spectra for s-wave Sommerfeld enhancement. It is expressed in the

form

[σv](v) = S
( v
α

∣∣∣ϵϕ) [σv]0, (3.10)

where [σv]0 is the relative-velocity-weighted annihilation cross section at tree level,

assumed constant at all relevant energies for this model, and set for the calculations

to [σv]f = 3× 10−26 cm3/s to satisfy the relic density (although, in careful

calculations, the enhancement can have significant effects on the relic density

calculation [108]). Here, α is the Yukawa coupling between the dark matter and

mediator, and

ϵϕ ≡ mϕ

mDMα

with mϕ the mediator mass. For convenience, ϵv ≡ v
α
is also defined.

Following the derivation by [106], S is extracted from the solution Φ(x) of the

Schrödinger equation

Φ′′ +
2

x
Φ′ + (1− Ũ)Φ = 0

with boundary conditions Φ(0) = 1 and Φ′(0) = −1/ϵv, and where

Ũ(x) ≡ − 2

ϵvx
e−2

ϵϕ
ϵv
x

is the normalized potential. This is more illuminating with ψ(x) ≡ xΦ(x), in which

case the Schrödinger equation becomes

ψ′′ + (1− Ũ)ψ = 0 (3.11)
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Figure 4: The s-wave Sommerfeld enhancement. (a) S(ϵv|ϵϕ) vs. ϵϕ for ϵv = 1, 0.1,
and 0.01 from bottom to top, respectively. The vertical lines correspond, from right
to left, to ϵϕ = 1.107, 0.635, and the first Sommerfeld resonance ϵ

(1)
ϕ described in the

text. (b) S( v
α
|ϵϕ) vs. v2 for α = 0.01. The solid curves show the enhancement for the

same three values of ϵϕ specified earlier from bottom to top, and the dashed curve
shows the Coulomb case where ϵϕ = 0.

with the necessary solution near the boundary of limx→0 ψ = x− x2/ϵv and

limx→0 ψ
′ = 1− 2x/ϵv.

Written in this form, it is now easy to see that ψ converges very quickly to a

sinusoid as x increases. S is simply the inverse square of the amplitude of ψ far

from the origin. One could integrate Eq. (3.11) to x = xM large enough that Ũ(xM)

is sufficiently negligible, and simply evaluate

S =
1

ψ2(xM) + ψ′2(xM)
. (3.12)

Figure 4a shows the enhancement for ϵv = 1, 0.1, and 0.01. As relative velocity

decreases, a series of Sommerfeld resonances reveals itself.

Define the locations of the resonances to be at ϵϕ = ϵ
(n)
ϕ for n = 1, 2, . . . . Analytic

approximations show the first few s-wave resonances to be near ϵ
(n)
ϕ ≈ 6/(nπ)2.
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Also,

lim
ϵv→0

S(ϵv|ϵ(n)ϕ ) =
A(n)

ϵ2v
,

where A(n) are constants. The first resonance, found at ϵ
(1)
ϕ = 0.595 306 210 530 309,

has A(1) = 3.37286, up to the given precisions. Away from the resonances, the

enhancement saturates to a constant value as v diminishes. Until the resonances

arise at low ϵϕ, S follows the Coulomb-Sommerfeld enhancement in the

center-of-momentum frame

S(ϵv|0) =
2π/ϵv

1− e−2π/ϵv
,

which scales like ϵ−1
v at low v. Examples of the relative velocity dependence of each

of these cases are shown in Figure 4b for α = 0.01.

In principle, the resonance cross-sections can break unitarity bounds for s-wave

annihilation [109]. If the scattering operator conserves angular momentum and is

unitary, then the weighted s-wave annihilation cross section must satisfy [110]

σv ≤ 4π

m2
DMv

. (3.13)

In the low-v limit v ≪ α for the Coulomb case, this provides an upper bound on

the mass for a given coupling:

αm2
DM . 2

[σv]f
∼ (30 TeV)2, for ϵϕ = 0 (3.14)

for the value of [σv]f in our model. For the first Sommerfeld resonance, we require

v & vmin ≡ A(1)m2
DMα

2

4π
[σv]f ∼

( mDMα

40 TeV

)2
, for ϵϕ = ϵ

(1)
ϕ . (3.15)

As long as the enhancement saturates before getting to relative velocities below

vmin, the theory is consistent. Otherwise, some neglected model-dependent effects

(such as finite widths or non-perturbative dynamics) become important and must

be taken into account. A model near resonance which saturates below scales that

contribute to the intensity would be indistinguishable from the resonance intensity,
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but would still satisfy unitarity constraints.

3.2.3 Annihilation Through Breit-Wigner Resonance

The final common example of effect in annihilation cross sections to be mentioned

in this section is the Breit-Wigner resonance, due (for example) to the mass of the

annihilation mediator’s being at the energy of the annihilating particles. If the dark

matter annihilates via an unstable particle of mass M and decay rate Γ ≪M , and

the center-of-momentum energy E of the annihilation is near M , then the

annihilation cross section is of the form [111]

σ
BW

(E) ∝ 1

E
√
E2 − 4m2

DM

M2Γ2

(E2 −M2)2 +M2Γ2
. (3.16)

If we define

Γ̃ ≡ Γ

M
,

∆m ≡ M

2
−mDM, and

∆m ≡ ∆m

M

(
1− ∆m

M

)
,

then, for any relative velocity v of the annihilating particles and spectral separation

∆m, the velocity dependence of the cross section near the resonance is

[σv]
BW

(v) ∝

√
1−

(
v
2

)2
1 +

[
( v
2)

2
−4∆m

Γ̃
[
1−( v

2)
2
]
]2 . (3.17)

For a non-relativistic resonance, we have v ≪ 1 and |∆m| ≪M , and the cross

section is

[σv]
BW

(v) =
[σv]r

1 + 1
Γ̃2

[(
v
2

)2 − 4∆m
]2 , (3.18)
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where, in this context, ∆m = ∆m/M and [σv]r is the velocity-weighted cross

section at the resonance energy where v = vr ≡ 4
√
∆m (which is unattainable by

the interaction in the case that M < 2mDM).

If there are no other significant additional features in the cross section from the

resonance scale vr to the freezeout scale vf = 6Tf/mDM ∼ 1/2 for freezeout

temperature Tf , then [σv]r can be correlated to the mean cross section at freezeout

[σv]f ∼ 3× 10−26 cm3/s:

[σv]r ∼
[σv]f

(16Γ̃)2

for theories where one may assume vf ∼ 1/2, |∆m| ≪ 1/64, and Γ̃ ≪ 1/16. Also

note that some O(1) constants are being neglected, owing to vf being near 1. In

this kind of theory,

[σv]
BW

(v) =
η[σv]f
(16)2

[
1−

(
v
2

)2]5/2[(
v
2

)2 − 4∆m
]2

+ Γ̃2
[
1−

(
v
2

)2]2 (3.19)

up to the freezeout scale where η is an O(1) constant that takes into account the

approximations of the relic density calculation and relativistic freezeout velocities.

The velocity dependence for s-wave annihilation via a non-relativistic (vr ≪ 1 and

|∆m| ≪M/64) Breit-Wigner resonance of small width (Γ ≪M/16) is therefore

found to have the broad behavior of

[σv]
BW

(v) ≈


η[σv]f
(16vs)2

, for
v

2
≪ vs,

η[σv]f
16v4

, for vs ≪
v

2
≪ 1,

(3.20)

where the cross section saturates at

v

2
∼ vs ≡

4

√
Γ̃2 + (4∆m)2. (3.21)

Accordingly, when the energy scale of the dark matter is above the saturation

threshold, [σv]
BW

(v) ∝ v−4, and when the cross section is saturated, it is modified
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by a factor of ∼ (16vs)
−2 from the freezeout cross section. Behaviors for other cases

of Breit-Wigner resonance could be similarly derived starting from Eq. (3.17), and

their features in the extragalactic gamma-ray spectrum due to dark matter

annihilation could then be studied using the methods described in the rest of

Section 4.

A summary of the simple functional forms of [σv](v2) for non-relativistic velocities

that were encountered in this section is given in Table 1. In this dissertation,

sample calculations are given of the mean intensity and angular power spectrum of

extragalactic gamma-rays from annihilation with strong p-wave, and the mean

intensity for annihilation with various Sommerfeld enhancements and resonances.

These results are presented in Section 5.

Table 1: Possible non-relativistic scalings of [σv](v).

v−4 non-relativistic Breit-Wigner resonance
v−2 Yukawa-Sommerfeld resonance
v−1 Coulomb-Sommerfeld resonance
v0 s-wave, saturated resonance
v2 p-wave

3.3 Universal Halo Cross-section Profiles

Given the dark matter annihilation cross section [σv](v2), such as one of the

examples in Section 3.2, the next step is to apply Equation (3.2) to determine

σv(r) at each position. When the distribution of particle velocities in a dark matter

halo follows a universal profile, then the mean velocity-weighted cross section halo

profile [σv]h(r) is also universal. This observation is what couples the particle

annihilation physics to the halo statistics of large scale structure.

For the case of p-wave annihilation, the full velocity distribution is not required.

We only need the mean-square-relative-velocity profile, as in Equation (2.131).

[σv]h(r) = a+ bv2h(r) = a+ λbσ2
uh(r) (3.22)
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In this way, whenever σv is a polynomial in v2, one only requires the mean of whole

powers of v2 at each position of the halo, rather than the complete relative velocity

distribution function at each position.

For more complicated functional forms of σv, the halo profile, calculated from (3.2),

in principle requires knowledge of the particle velocity distribution at each position

in the halo. For a simple “zeroth order” estimation, one might approximate

[σv]h(r) ≈ [σv](v2h(r)). (3.23)

This approximates fv2(v
2|r) ≈ δ(v2 − λσ2

uh(r)), which happens to be exact for

p-wave annihilation. The next order of approximation that is often used is to

assume an isotropic Maxwell-Boltzmann distribution at each position with velocity

variance σ2
uh(r). The velocity distributions observed in simulated dark matter halos

are better described by Tsallis distributions [112], but the profile of the Tsallis

distribution parameters in halos remains to be determined from the simulations.
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4 DARK MATTER ANNIHILATION PRODUCTS FROM EXTRAGALACTIC

UNIVERSAL HALOS: FORMALISM*

4.1 Intensity of Massless Annihilation Products from Extragalactic

Dark Matter Annihilation

In this section, a formula is derived to determine the intensity Iγ of gamma-rays of

energy Eγ from the annihilation of dark matter along a line of sight in the direction

n̂. The argument is a generalization of the discussion found in [113]. It is

applicable to any specified phase space distribution of the dark matter particles,

and any theory of dark matter particle annihilation.

To begin, consider a volume dV of dark matter particles with number density n

that may annihilate one another, as in Section 3.1. The rate of particle

annihilations per unit volume is given by Equation (3.3); Equation (3.6) expresses

the power emissivity of the annihilations.

In a flat FLRW cosmology, using the physical coordinates in the cosmological rest

frame described in Section 2.1, the proper volume of space with solid angle dΩ and

thickness dz at redshift z is

dV = [a(z)dr][a2(z)r2dΩ] =
1

(1 + z)3
r2drdΩ

where a is the cosmological scale factor. Consider each position r to be specified as

being in a particular direction n̂ with distance specified by redshift z, as in

Equation (2.9). The discussion will treat z as a time coordinate given by (2.15).

*Parts of this section are reprinted with permission from “Effects of Velocity-Dependent Dark
Matter Annihilation on the Energy Spectrum of the Extragalactic Gamma-ray Background” by
S. Campbell, B. Dutta, and E. Komatsu, Phys. Rev. D 82, 095007 (2010), Copyright 2010 by The
American Physical Society, and “Effects of P-wave Annihilation on the Angular Power Spectrum of
Extragalactic Gamma-rays from Dark Matter Annihilation” by S. Campbell and B. Dutta, Phys.
Rev. D 84, 075004 (2011), Copyright 2011 by The American Physical Society.
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The luminosity dLγ(Eγ, r) of photons of energy Eγ emitted from the region of

space at position r because of annihilations is

dLγ(Eγ, r, z) =
dPγ

dV dEγ
(Eγ, r, z)dV =

1

2
Eγn

2(r)
dNγ

dEγ
σv(Eγ, r)

1

(1 + z)3
r2drdΩ.

Assuming isotropic emission, the photons emitted by this volume pass with uniform

flux density through any sphere centered on the source. The sphere on which we

sit, centered on the source, has proper surface area

A = 4πr2a2(0) = 4πr2.

The total luminosity on this shell (energy of photons emitted from the source with

energies between Eγ and Eγ + dEγ, per dEγ , per unit time of emission) is

redshifted: the cosmological redshift of photon energy due to the expansion of the

universe is cancelled by the redshift of the energy bin dEγ; the arrival rate of

photons is redshifted giving one factor of (1 + z)−1. Observation of photons of

energy Eγ means photons of energy (1 + z)Eγ were emitted. Hence, the luminosity

of photons on the observer’s spherical shell with energy Eγ from the source at

redshift z is

dL′
γ(Eγ, r, z) =

dLγ((1 + z)Eγ, r, z)

1 + z
e−τ((1+z)Eγ ,z)

where τ(Eγ, z) is the optical depth of the universe to gamma rays [104]. The

photon flux on the sphere, or surface brightness, due to a source at position r and

redshift z is

dSγ(Eγ,r, z) =
dL′

γ(Eγ, r, z)

A(z)

=
1

8π
(1 + z)Eγn

2(r)
dNγ

dEγ
σv((1 + z)Eγ, r)e

−τ((1+z)Eγ ,z)
1

(1 + z)4
drdΩ,

where (2.9) is used to express the line-of-sight integration in terms of redshift with

the Hubble function H(z) expressed by (2.14). The net specific intensity (number

of photons of energy Eγ observed per bin dEγ, per unit time, per source solid angle,

per normal photon collecting area) is found from a line-of-sight integration in
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direction n̂:

Iγ(Eγ, n̂) =

∫
dSγ(Eγ, z)

EγdΩ

=
1

8πmDM

∫
dz

H(z)

1

(1 + z)3
e−τ((1+z)Eγ ,z)

[
ρ2

dNγ

dEγ
σv

]
((1 + z)Eγ, n̂, z).

(4.1)

Considering models where the annihilation spectrum is negligibly dependent on the

relative velocity, the gamma-ray intensity from annihilations is

Iγ(Eγ, n̂) =

∫
dz

H(z)
W ((1 + z)Eγ, z)[ρ

2σv](n̂, z), (4.2)

where the important spatially dependent field ρ2σv is weighted by the intensity

window function

W (Eγ , z) =
1

8πm2
DM

1

(1 + z)3
dNγ

dEγ
(Eγ)e

−τ(Eγ ,z). (4.3)

4.2 The Mean Extragalactic Annihilation Intensity in the Spherical Halo Model

From (4.2), the mean intensity of annihilation gamma-rays is found from averaging

over ensembles of dark matter halos

⟨Iγ⟩ (Eγ) =
∫

dz

H(z)
W ((1 + z)Eγ, z)

⟨
ρ2σv

⟩
(z). (4.4)

In the disjoint halo model, an ensemble of halos at redshift z has

[ρ2σv](r, z) =

Nh(z)∑
i=1

ρ2h(r−Ri(z) |Mi(z), z) [σv]h(r−Ri(z) |Mi(z), z)

where r are a global set of coordinates at the time associated with redshift z. For

disjoint ensembles, at most one term contributes to the sum at any given position

r. This expression allows the formulation of the ensemble average in terms of the
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halo mass function, using (2.132) and (2.133).

⟨
ρ2σv

⟩
(z) =

∫
d3R dM

⟨
Nh(z)∑
i=1

δ(3)(R−Ri(z)) δ(M −Mi(z))

⟩
×ρ2h(r−R |M, z) [σv]h(r−R |M, z)

=

∫
d3R dM

dn

dM
(M, z) ρ2h(R|M, z) [σv]h(R|M, z) (4.5)

For s-wave annihilation, σv = [σv]0, a constant. Then the intensity spectrum is

⟨Iγ⟩0(Eγ) = [σv]0

∫
dz

H(z)
W ((1 + z)Eγ, z)

⟨
ρ2
⟩
(z) (4.6)

where ⟨
ρ2
⟩
(z) =

∫
d3rdM

dn

dM
(M, z)ρ2h(r|M, z). (4.7)

For annihilation with p-wave, the velocity-weighted annihilation cross section is

σv = a+ bv2 = [σv]0

(
1 +

b

a
v2
)

where [σv]0 = a and b are constants, and the cross section halo profile is given by

(3.22). In this case, if there is significant dark matter annihilation with square

relative velocities ? a/b, then the distribution of produced gamma-rays is coupled

to the cosmic dark matter velocity distribution. The intensity spectrum with

p-wave annihilation is

⟨Iγ⟩ (Eγ) = [σv]0

∫
dz

H(z)
W ((1 + z)Eγ, z)

⟨
ρ2
(
1 +

λb

a
σ2
u

)⟩
(z) (4.8)

where⟨
ρ2
(
1 +

λb

a
σ2
u

)⟩
(z) =

∫
d3rdM

dn

dM
(M, z)ρ2h(r|M, z)

[
1 +

λb

a
σ2
uh(r|M, z)

]
=

⟨
ρ2
⟩
(z) +

λb

a

⟨
ρ2σ2

u

⟩
(z). (4.9)
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The effects of the p-wave on the shape of the annihilation spectrum are encoded in

the relative contribution of the new second term, due to the p-wave, given by

⟨Iγ⟩(Eγ|σv = a+ bv2)

⟨Iγ⟩0(Eγ|σv = a)
− 1 =

λb

a
∆I(Eγ) (4.10)

with

∆I(Eγ) ≡
∫

dz
H(z)

W ((1 + z)Eγ, z) ⟨ρ2σ2
u⟩(z)∫

dz
H(z)

W ((1 + z)Eγ, z) ⟨ρ2⟩(z)
. (4.11)

Other than the dependence on large scale structure in the ensemble averages, ∆I

depends only on the details of the annihilation spectrum and opacity effects. Note

the relative change in intensity diverges for vanishing [σv]0 since the s-wave

intensity is zero in this limit.

4.3 The Angular Power Spectrum of the Intensity

The formulation of the angular power spectrum in this section is a generalization of

the derivation in [51]. The angular anisotropies in the intensity signal are explored

by determining its angular power spectrum, defined as

Cℓ =
⟨
|aℓm|2

⟩
,

with spherical harmonic coefficients obtained from

δI(n̂, Eγ) ≡
Iγ(n̂, Eγ)

⟨Iγ⟩ (Eγ)
− 1 =

∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓm(Eγ)Yℓm(n̂),

or

aℓm(Eγ) =

∮
dΩ δI(n̂, Eγ)Y

∗
ℓm(n̂)

=
1

⟨Iγ⟩(Eγ)

∮
dΩ

∫
dz

H(z)

{
[ρ2σv](n̂, z)−

⟨
ρ2σv

⟩
(z)
}
W ((1 + z)Eγ, z)Y

∗
ℓm(n̂)

=
1

⟨Iγ⟩(Eγ)

∫
dz

H(z)

⟨
ρ2σv

⟩
(z)W ((1 + z)Eγ, z)

∮
dΩ δρ2σv(n̂, z)Y

∗
ℓm(n̂)
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where, as usual,

δρ2σv ≡
ρ2σv

⟨ρ2σv⟩
− 1.

Then

Cℓ(Eγ) =
1

⟨Iγ⟩2(Eγ)

∫
dz

H(z)

dz′

H(z′)

⟨
ρ2σv

⟩
(z)
⟨
ρ2σv

⟩
(z′)

×W((1 + z)Eγ, z)W((1 + z′)Eγ, z
′)Fℓ(z, z

′),

where

Fℓ(z, z
′) ≡

∫
dΩdΩ′ ⟨δρ2σv(n̂, z)δρ2σv(n̂′, z′)⟩Y ∗

ℓm(n̂)Yℓm(n̂
′).

It will soon be apparent why Fℓ is independent of m. To simplify: write in terms of

the power spectrum of the ρ2σv field,

⟨δρ2σv(n̂, z)δρ2σv(n̂′, z′)⟩ =
∫

d3k

(2π)3
eirkn̂ · k̂e−ir′kn̂′ · k̂Pρ2σv(k, z, z′),

where r is the distance to redshift z, given by (2.9), and r′ is the distance to

redshift z′. Applying Rayleigh’s formula

eirkn̂ · k̂ = 4π
∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

iℓ
′
jℓ′(kr)Y

∗
ℓ′m′(k̂)Yℓ′m′(n̂)

and the orthogonality of spherical harmonics, one finds

Fℓ(z, z
′) =

2

π

∫ ∞

0

dkk2Pρ2σv(k, z, z
′)jℓ(kr)jℓ(kr

′).

We would not expect any significant correlation between regions of different

redshift along a line-of-sight. One way this is realized is when Pρ2σv is a

slowly-varying function of k. In this case, it is a good approximation to treat it as a

constant at wave number where jℓ(kr) is maximized. Since jℓ(x) has its maximum

near x = ℓ, we can approximate the power spectrum by its value at k = ℓ/r(z).

Then orthogonality of the spherical Bessel functions∫ ∞

0

dkk2jℓ(kr)jℓ(kr
′) =

π

2r2
δ(r − r′) =

π

2r2(z)
H(z)δ(z − z′)
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gives

Fℓ(z, z
′) ≈ δ(z − z′)

H(z)

ℓ2
k2Pρ2σv(k, z)

∣∣∣
k= ℓ

r(z)

.

Thus, the angular power spectrum is finally expressed as

Cℓ(Eγ) ≈
1

ℓ2 ⟨Iγ⟩2(Eγ)

∫
dz

H(z)
W 2((1 + z)Eγ, z)k

2P ρ2σv(k, z)
∣∣∣
k= ℓ

r(z)

, (4.12)

where we denote

P ρ2σv(k, z) ≡
⟨
ρ2σv

⟩2
(z)Pρ2σv(k, z).

To derive the expression for the power spectrum of ρ2σv, consider the correlation

function at two points r1, r2 at the same redshift z.

⟨δρ2σv(r1, z)δρ2σv(r2, z)⟩ =
⟨[ρ2σv](r1, z)[ρ2σv](r2, z)⟩

⟨ρ2σv⟩2(z)
− 1

Recalling from the definition of the full halo correlation function (2.136) that

⟨ph(R1,M1, z)ph(R2,M2, z)⟩ =
dn

dM
(M1, z)

dn

dM
(M2, z)[ξ̃h(R1,M1,R2,M2, z) + 1],

the 2-moment becomes⟨
[ρ2σv](r1, z)[ρ

2σv](r2, z)
⟩

=

⟨∑
i

∑
j

[ρ2σv]h(r1 −Ri|Mi, z)[ρ
2σv]h(r2 −Rj|Mj, z)

⟩

=

∫
d3R1dM1d

3R2dM2[ρ
2σv]h(r1 −R1|M1, z)[ρ

2σv]h(r2 −R2|M2, z)

× ⟨ph(R1,M1, z)ph(R2,M2, z)⟩

=

∫
d3R1dM1d

3R2dM2
dn

dM
(M1, z)

dn

dM
(M2, z)

× [ρ2σv]h(r1 −R1|M1, z)[ρ
2σv]h(r2 −R2|M2, z)ξh(R1,M1,R2,M2, z)

+

∫
d3RdM

dn

dM
(M, z)[ρ2σv]h(r1 −R|M, z)[ρ2σv]h(r2 −R|M, z)

+
⟨
ρ2σv

⟩2
(z),
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where the second term in the last equality is due to the singularity in ξ̃h, shown in

(2.139). We therefore find the correlation function to be

⟨δρ2σv(r1, z)δρ2σv(r2, z)⟩

=

∫
d3RdM

dn

dM
(M, z)

[ρ2σv]h(r1 −R|M, z)[ρ2σv]h(r2 −R|M, z)

⟨ρ2σv⟩2(z)

+

∫
d3R1dM1d

3R2dM2
dn

dM
(M1, z)

dn

dM
(M2, z)

× [ρ2σv]h(r1 −R1|M1, z)[ρ
2σv]h(r2 −R2|M2, z)

⟨ρ2σv⟩2(z)
ξh(R1,M1,R2,M2, z).

This simplifies significantly in momentum space. If we determine the Fourier

transform of the halo profile

FT {[ρ2σv]h}(k|M, z) =

∫
d3re−ik · r[ρ2σv]h(r|M, z),

the power spectrum can be written

P ρ2σv(k, z) =
⟨
ρ2σv

⟩2
(z)

∫
d3r ⟨δρ2σv(r1, z)δρ2σv(r1 + r, z)⟩ e−ir ·k

=

∫
dM

dn

dM
(M, z)FT{[ρ2σv]h}2(k|M, z) +

∫
dM1dM2

dn

dM
(M1, z)

dn

dM
(M2, z)

×FT{[ρ2σv]h}(k|M1, z)FT{[ρ2σv]h}(k|M2, z)Ph(k,M1,M2, z).

The first term, the one-halo term, dominates at small scales (large k) and the

second term, the two-halo term, dominates at the large scales, in the linear regime.

Therefore, in this expression, it is correct to use

Ph(k,M1,M2, z) = b(M1, z)b(M2, z)Plin(k, z)

if (2.141) holds true. The power spectrum is thus expressed as

P ρ2σv(k, z) =

∫
dM

dn

dM
(M, z)

[
FT{[ρ2σv]h}(k|M, z)

]2
+

[∫
dM

dn

dM
(M, z)b(M, z)FT{[ρ2σv]h}(k|M, z)

]2
Plin(k, z). (4.13)
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For s-wave annihilation, the angular power spectrum reduces to

C0,ℓ(Eγ) =
[σv]20

ℓ2 ⟨Iγ⟩20(Eγ)

∫
dz

H(z)
W 2((1 + z)Eγ, z) k

2P ρ2,ρ2(k, z)
∣∣∣
k= ℓ

r(z)

(4.14)

with

k2P ρ2,ρ2(k, z) =

∫
dM

dn

dM
(M, z)

[
kFT {ρ2h}(k|M, z)

]2
(4.15)

+

[∫
dM

dn

dM
(M, z) b(M, z)

[
kFT {ρ2h}(k|M, z)

]]2
Plin(k, z).

The quantity kFT {ρ2h}(k|M, z) for the NFW halo profile that we use approaches a

constant in the asymptotic k → ∞ limit (see Appendix A.1). Note that, due to the

normalization with mean intensity, the angular power spectrum does not depend on

the value of the annihilation cross section, [σv]0. In fact, it is a desirable property

of the angular power spectrum that it is independent of any uniform constants

appearing in the intensity distribution, including constant intensity boost factors

that may be associated with halo substructures or non-thermal relic effects, or

intensity suppression factors due to p-wave suppression or co-annihilations during

freeze out.

The angular power spectrum with p-wave annihilations is

Cℓ(Eγ) =
[σv]20

ℓ2 ⟨Iγ⟩2(Eγ)

∫
dz

H(z)
W 2((1 + z)Eγ, z) k

2P ρ2(1+λb
a
σ2
u)(k, z)

∣∣∣
k= ℓ

r(z)

(4.16)

where the power spectrum is

P ρ2(1+λb
a
σ2
u)(k, z) =

∫
dM

dn

dM
(M, z)

[
FT

{
ρ2h +

λb

a
ρ2hσ

2
uh

}
(k|M, z)

]2
(4.17)

+

[∫
dM

dn

dM
(M, z)b(M, z)FT

{
ρ2h +

λb

a
ρ2hσ

2
uh

}
(k|M, z)

]2
Plin(k, z)

= P ρ2,ρ2(k, z) + 2
λb

a
P ρ2,ρ2σ2

u
(k, z) +

(
λb

a

)2

P ρ2σ2
u,ρ

2σ2
u
(k, z). (4.18)
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For clarification, the mixed power spectrum is

P ρ2,ρ2σ2
u
(k, z) =

⟨
ρ2
⟩
(z)
⟨
ρ2σ2

u

⟩
(z)Pρ2,ρ2σ2

u
(k, z)

=

∫
dM

dn

dM
(M, z)FT {ρ2h}(k|M, z)FT {ρ2hσ2

uh}(k|M, z)

+

[∫
dM

dn

dM
(M, z)b(M, z)FT {ρ2h}(k|M, z)

]
×
[∫

dM
dn

dM
(M, z)b(M, z)FT {ρ2hσ2

uh}(k|M, z)

]
Plin(k, z).

The biggest challenge in evaluating these expressions is the efficient evaluation of

the Fourier transforms. Numerical integration of the Fourier transforms for each

integrand sampling during the halo mass and redshift integrations is more

time-intensive than is reasonable. See Appendix A for the efficient algorithms that

I developed and implemented for evaluation of these transforms for the case of

NFW halo profiles.

The relative contribution of the quadratic term in σv to the angular power

spectrum is

Cℓ(Eγ|σv = a+ bv2)

C0,ℓ(Eγ|σv = a)
=

1 + λb
a
∆

(1)
Cℓ
(Eγ) +

(
λb
a

)2
∆

(2)
Cℓ
(Eγ)[

1 + λb
a
∆I(Eγ)

]2 (4.19)

where each multipole ℓ has its own set of power spectrum coefficients

∆
(1)
Cℓ
(Eγ) ≡

2
∫

dz
H(z)

W 2((1 + z)Eγ, z) k
2P ρ2,ρ2σ2

u
(k, z)

∣∣∣
k=ℓ/r(z)∫

dz
H(z)

W 2((1 + z)Eγ, z) k2P ρ2,ρ2(k, z)
∣∣∣
k=ℓ/r(z)

, (4.20)

∆
(2)
Cℓ
(Eγ) ≡

∫
dz
H(z)

W 2((1 + z)Eγ, z) k
2P ρ2σ2

u,ρ
2σ2

u
(k, z)

∣∣∣
k=ℓ/r(z)∫

dz
H(z)

W 2((1 + z)Eγ, z) k2P ρ2,ρ2(k, z)
∣∣∣
k=ℓ/r(z)

. (4.21)

It is more convenient to re-express the p-wave effect as

Cℓ(Eγ|σv = a+ bv2)

C0,ℓ(Eγ|σv = a)
= 1 +

λb
a
∆

(1)
Cℓ
(Eγ) +

(
λb
a

)2
∆

(2)
Cℓ
(Eγ)[

1 + λb
a
∆I(Eγ)

]2 (4.22)
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where

∆
(1)
Cℓ
(Eγ) ≡ ∆

(1)
Cℓ
(Eγ)− 2∆I(Eγ), (4.23)

∆
(2)
Cℓ
(Eγ) ≡ ∆

(2)
Cℓ
(Eγ)−∆2

I(Eγ). (4.24)

It is interesting to note that this has a well-defined finite value in the vanishing a

limit, and that ∆
(1)
Cℓ

does not contribute there.
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5 CALCULATIONS OF EXTRAGALACTIC GAMMA-RAYS DUE TO

ANNIHILATING DARK MATTER*

5.1 Particle Models of Dark Matter Annihilation

Example models of dark matter considered in this dissertation are supersymmetric

extensions of the standard model [114] with WIMP (weakly interacting massive

particle) dark matter. In these extensions, each particle degree of freedom (DoF) in

the standard model has an associated SUSY particle DoF with spin differing by

1/2. The spin-1/2 leptons and quarks have associated spin-0 sleptons and squarks,

respectively. The spin-1 gauge bosons have spin-1/2 gaugino partners, and spinless

Higgs bosons result in spin-1/2 higgsinos. Mixing terms in the gaugino and higgsino

sector mean that the charged particles combine to produce states called charginos

χ̃±, and the neutral charginos and higgsinos combine to form four neutralinos χ̃0.

SUSY extensions of the standard model were proposed as a solution to the

hierarchy problem [115]. In the standard model, renormalization corrections to the

bare Higgs particle mass, calculated to determine the measurable physical mass,

were very large and needed to cancel the squared mass very precisely (to 34 orders

of magnitude) to produce the expected physical mass of about 100 GeV. It was

since discovered that the addition of SUSY modified the renormalization of the

standard model gauge couplings (the strength of the forces) so that they unify at

an energy scale of about 1016 GeV, known as the grand unified theory (GUT) scale

[116]. This provides hints of a more complete particle physics theory, derived from a

unified gauge theory at this scale. The most general theory would allow interactions

*Parts of this section are reprinted with permission from “Effects of Velocity-Dependent Dark Matter
Annihilation on the Energy Spectrum of the Extragalactic Gamma-ray Background” by S. Campbell,
B. Dutta, and E. Komatsu, Phys. Rev. D 82, 095007 (2010), Copyright 2010 by The American
Physical Society, “Effects of P-wave Annihilation on the Angular Power Spectrum of Extragalactic
Gamma-rays from Dark Matter Annihilation” by S. Campbell and B. Dutta, Phys. Rev. D 84,
075004 (2011), Copyright 2011 by The American Physical Society, and “Extragalactic and galactic
gamma rays and neutrinos from annihilating dark matter” by R. Allahverdi, Sheldon Campbell,
and Bhaskar Dutta, Phys. Rev. D 85, 035004 (2012), Copyright 2012 by The American Physical
Society.
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that cause decay of the proton. The stability of the proton requires that there be

some principle, such as R-parity symmetry [117], that disallows (or suppresses)

these interactions involving an odd number of SUSY particles. A consequence of

such a symmetry is that the lightest SUSY particle becomes stable (or very nearly

so), and therefore a candidate to make up the dark matter in the Universe.

As explained in Section 1, the abundance of WIMP dark matter in the cosmos

freezes out when the Universe becomes too cool to create new dark matter particles

spontaneously, and the rate of expansion of the Universe exceeds the rate of

particle annihilation. The dyanamical abundance of dark matter is calculated by

numerical integration of the Boltzmann equation [59, 118]. The time at which the

dark matter relic freezes out is specified in terms of the temperature of the

Universe at freezeout Tf , defined to be the temperature at which the dark matter

number density is twice the value it would be if it were still in thermal equilibrium.

This freezeout temperature is often expressed in terms of xf ≡ mDM/Tf . It

typically takes values around xf ∼ 20–25. For a pure s-wave annihilation, the

correct dark matter abundance is reached if σv = 3× 10−26 cm3/s = 10−36 cm2. For

other theories of annihilation, the mean velocity-weighted annihilation cross section

at freezeout [σv]f must be near this value, to obtain the correct relic density for a

thermally produced relic.

5.1.1 mSUGRA

A subset of possible SUSY extensions of the standard model are models of minimal

supergravity (mSUGRA) [119]. In mSUGRA, scalar sfermions have a unified mass

m0 at the GUT scale, and the gauginos have a unified GUT mass m1/2. Also united

at the GUT scale are the trilinear couplings A0 of the fermion-sfermion-gaugino

interactions. There must be two Higgs superfields to cancel anomalies. The up-type

Higgs couples the weak isospin 1/2 fermions and generates a vacuum expectation

value (VEV) v1. Likewise, the down-type Higgs couples the weak isospin -1/2

fermions and generates a VEV v2. The model can be specified by the ratio

tan β = v1/v2, the values of m0, m1/2, and A0, and the sign of the mass parameter
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µ coupling the two Higgs superfields in the superpotential. This parameter space of

four parameters and one sign is currently being actively probed by the ATLAS

[120] and CMS [121] experiments at the Large Hadron Collider.

At the present time, there is plenty of parameter space of mSUGRA that satisfies

all current particle physics, astrophysical, and cosmological constraints, with a

variety of phenomenologies (although, if the new hints of a light Higgs particle with

mass around 125 GeV are confirmed [122], the parameter space will become much

more heavily constrained). In these regions, the dark matter particle is the lightest

neutralino χ̃0
1. Examples of models with vanishing A0 and positive µ will be

considered. When describing annihilation spectra, the focus is on universal masses

that are not so large as to result in a dark matter particle massive enough to

produce significant top quarks from annihilations.

In the three-dimensional parameter space of m0, m1/2, and tanβ, the parameter

space is typically broken up into four main regions: the bulk region, the focus point

(also known as hyperbolic) region, the co-annihilation region, and the funnel region.

In these regions, the dark matter particle turns out to be the lightest neutralino χ̃0
1.

In the bulk region, both m0 and m1/2 are relatively small. The neutralino is nearly

pure bino (the gaugino which is the supersymmetric partner of the weak

hypercharge gauge boson), and annihilates predominantly to bottom anti-bottom

quark pairs bb, secondarily to tau anti-tau lepton pairs τ+τ− (more so at larger

tan β). These processes in the bulk region give the correct annihilation cross

section to account for the relic density, if it were thermally produced.

Generically, larger values of m0 and m1/2 result in theories with larger mass dark

matter that have smaller annihilation cross sections, and therefore would result in

more thermally produced dark matter in the Universe than is observed today.

However, when considered carefully, one finds that other parameter space does

result in the correct relic density, due to different mechanisms [123], according to

the parameter space of interest.
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The focus point region [124] has a branch where m1/2 remains small and m0 is

allowed to increase. As m0 does so, the lightest neutralino gains a larger Higgsino

component, which opens up additional annihilation channels. Here, annihilation

dominantly produces W+W− bosons, with small branching fractions also producing

bb quark pairs and ZZ boson pairs, for small to moderate tanβ. For large tanβ,

the Higgsino component of the lightest neutralino is again small in this region, but

Bino annihilation is enhanced by an increased coupling to the pseudoscalar Higgs A

and annihilation is again dominated by bb and τ+τ−.

There is a threshold where m0 becomes too small and one of the supersymmetric

partners of the tau (stau τ̃) becomes the lightest supersymmetric particle, which is

electrically charged and therefore cosmologically disallowed. This threshold

increases with m1/2. Near this boundary, the τ̃ mass is only slightly larger than the

χ̃0
1 mass, enhancing the co-annihilation interaction cross section between these

particles. The τ̃ ’s present in the early Universe co-annihilate with the χ̃0
1’s,

reducing the neutralino density to the correct value. This parameter space is the

stau-neutralino co-annihilation region [125]. When A0 > 0, there is parameter

space at low m1/2 where a supersymmetric partner of the top quark (stop t̃)

becomes lighter than χ̃0
1. The stop-neutralino co-annihilation region [126] is near

this boundary. In these parameter spaces, χ̃0
1 is again nearly pure Bino, and mostly

bb and some τ+τ− are produced from annihilations. Because there are no τ̃ or t̃

particles present today, they no longer contribute to annihilations and the effective

annihilation cross section of the neutralinos is reduced from its value at freezeout.

Additionally, at low tanβ, annihilation is dominated by t-channel sfermion

exchange, which is helicity-suppressed [127]. The presence of a strong p-wave

annihilation component brings the annihilation cross section up to its needed value

at freezeout, but slow relative motions of the particles today do not allow the

p-wave to contribute. In these cases, the annihilation cross-sections are quite small,

which make the rates of annihilations low and the intensity of annihilation radiation

much more difficult to detect. The situation improves at large tanβ where

annihilation via A is a stronger component, lifting much of the helicity suppression.

The final parameter space, the heavy Higgs or A annihilation funnel regions, occurs
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where the mass of one of the Higgs bosons is near half the χ̃0
1 mass, resulting in a

Breit-Wigner resonance enhancement of the annihilations at freezeout interaction

energies [128]. Since the resonance does not enhance the cross section today, the

annihilation cross sections are again lower in the present epoch for dark matter

models of this parameter space.

5.1.2 Gauged U(1)B−L Model

Another paradigm to be considered, which is interesting in the context of neutrino

radiation production, is the U(1)B−L extension of the MSSM [129]. Here, baryon

number B minus lepton number L is a gauged charge with associated gauge boson

Z ′ that couples to baryons and leptons, according to their B − L charges with

gauge coupling g′. This extension requires the presence of right-handed neutrinos

N c for anomaly cancellation, providing a natural framework to explain neutrino

masses and oscillations. In order for this new internal symmetry to be

spontaneously broken, two new Higgs superfields H′
1 and H′

2 must be introduced,

which are standard model neutral and oppositely charged under B − L for anomaly

cancellation. They are coupled by a new mass parameter µ′ in a new term added to

the MSSM superpotential. The physical neutrinos ν are light, but N c heavy, by the

type I see-saw mechanism [130]. This requires a Majorana mass for the N c, which

does not obey the B − L symmetry; however, the N c can have a Yukawa coupling

to another Higgs field with lepton number −2, which we identify with H ′
2. This

Higgs will gain a vacuum expectation value around 1 TeV, producing the N c

Majorana mass and generating the appropriate neutrino spectrum. Thus, by

defining supersymmetric partners for each of the introduced new fields and putting

them in chiral supermultiplets, the minimal U(1)B−L extension to the MSSM has

superpotential [131]

W = WMSSM + yDN
cHuL+ fH′

2N
cNc + µ′H′

1H
′
2 (5.1)

where Hu is the Higgs superfield of the MSSM that gives mass to the up-type

quarks, and L is the superfield containing the left-handed leptons. Note that flavor

and the weak isospin SU(2)L indices have been suppressed.
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There exists parameter space in this framework where the LSP is a supersymmetric

partner of N c, the right sneutrino Ñ . If the N c mass is less than the Ñ mass, then

annihilations could produce a large number of N c from neutralino exchange, which

would then decay according to the particular model considered. In any case, one

would expect many direct neutrinos to be produced, while photons would only be

produced secondarily.

Alternatively, Ñ s-channel annihilation via the B − L Z ′ boson would produce

mostly leptons (including neutrinos) and some hadrons, which would then radiate

photons and additional neutrinos.

5.2 Mean Extragalactic Gamma-ray Intensity and Angular Power Spectrum for

Annihilation with S-wave and P-wave

5.2.1 Example mSUGRA Dark Matter Models

To begin, consider three mSUGRA models with tan β = 10, A0 = 0, and µ > 0:

one in the focus point region with neutralino dark matter particle mass

mχ̃0
1
= 150 GeV, one with the same particle mass in the stau-neutralino

co-annihilation region, and a third model in the bulk region with mχ̃0
1
= 62.3 GeV.

Properties of these models are given in Table 2.

All mSUGRA particle spectra, cross sections, annihilation spectra, and relic

densities are calculated using DarkSUSY 5.0.5 [132], interfaced with ISAJET 7.78

[133], and FeynHiggs 2.6.5.1 [134]. In Figure 5, the velocity-weighted annihilation

cross section is shown for the co-annihilation region model, as a function of the

square relative velocity of the annihilating particles in the center-of-momentum

frame. The mean square relative velocity of the dark matter at freezeout is

indicated by the gold vertical line. At energies below the freezeout energy, the

annihilation cross section, indicated by the thick blue line, is well-described by

σv = a+ bv2, shown by the thin blue line using the values for a and b implicated in

Table 2. There is a strong Breit-Wigner annihilation resonance, due to the
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pseudoscalar Higgs particle, at an energy above freezeout. The resonance is

unimportant for this model, but in the funnel region of parameter space, the energy

of this resonance coincides with the freezeout energy. Above the rest energy of a χ̃0
1

and a τ̃ , neutralino co-annihilations with stau particles are kinematically allowed.

The thick magenta line shows the effective annihilation cross section with

co-annihilations during the early Universe. The coannihilations bring the rate of

neutralino annihilations up to the needed rate to provide the correct

thermally-produced dark matter relic density.

For the initial calculations, ΛCDM cosmological parameters from WMAP5 [11]

were used, neglecting primordial neutrino effects: ΩΛ = 0.721, Ωb = 0.0462,

Ωc = 1− ΩΛ − Ωb, h = 0.701, σ8 = 0.817, and ns = 0.96. The minimal halo mass

scale is set to Mmin = 106M⊙, and the effects due to the opacity of the Universe are

neglected, to be considered later since they do not affect the discussion. (Note that

WMAP7 results are applied in the calculations of Section 6. The photon opacity

and a smaller minimum halo mass of 10−6M⊙ are applied from Section 5.2.4

onward, except for the results of Section 5.3.)

Table 2: Sample mSUGRA models with parameters tanβ = 10, A0 = 0, and µ > 0.
The first two columns show the input model parameters. The other columns show
the calculated dark matter properties that are relevant to this discussion. The last
column shows the thermally-averaged σv at freezeout, including co-annihilations.

mSUGRA Region m0 (GeV) m1/2 (GeV) mχ̃0
1
(GeV) a (×10−26 cm3/s)

Focus Point 2569 395 150 1.9
Bulk 79 171 62.3 0.27

Co-annihilation 79 373.7 150 0.0019

mSUGRA Region b
a

Ωch
2 xf [σv]f (×10−26 cm3/s)

Focus Point 1.8 0.114 22.9 2.6
Bulk 57.5 0.114 22.5 3.8

Co-annihilation 378.8 0.113 24.0 5.8
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co-annihilation suppression

p-wave suppression
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Figure 5: The effective relative-velocity-weighted annihilation cross section for a 150
GeV neutralino dark matter particle in the mSUGRA model with tanβ = 10 and
A0 = 1 in the co-annihilation region. It results in a relic density of Ωch

2 = 0.113. The
thick blue line shows the cross section involving annihilations between χ̃0

1 particles
only. The thin blue line shows the best fit a + bv2 using values in Table 2. The
magenta line indicates the effective annihilation, including co-annihilations, during
the early Universe. The vertical gold line indicates the value of the mean square
relative particle velocities at the time of freezeout. The suppression of the low-
energy cross section due to co-annihilations at freezeout, and due to the strength of
the p-wave during freezeout, are each indicated.
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Figure 6: Sample gamma-ray mean intensities and p-wave relative contributions of
extragalactic dark matter annihilation for three mSUGRA models. (a) Gamma-ray
intensity spectrum of extragalactic dark matter annihilation for the three mSUGRA
models (at tanβ = 10, A0 = 0, and µ > 0), which have neutralino dark matter
with the properties given in Table 2. (b) ∆I vs. Eγ for those three models. For
comparison, a power law ∝ (Eγ/mDM)

0.14 is also plotted.
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The resulting intensity spectra of gamma-rays from extragalactic dark matter

annihilation are shown in Figure 6a for the three models in Table 2. The differences

between these models can be described broadly in terms of five effects.

The first is the normalization shift due to the difference in particle mass. The mean

intensity at a particular gamma-ray energy per particle mass scales approximately

like m−3
DM (as in Equation (3.8)), if opacity effects are negligible. Therefore, the

bulk model intensity has a factor of about 14 over the other two models, due to its

smaller particle mass.

The second and third effects are also normalization shifts that cause changes in the

value of the s-wave component a of the velocity-weighted annihilation cross section.

The main effect is the p-wave suppression: the fact that a must be smaller for

models with larger p-wave strengths b/a in a thermally-produced relic. The mean

square relative particle velocities at freezeout are v2 = 6/xf . Therefore, applying

σv = a+ bv2 at freezeout, one finds

a =
[σv]f

1 +
(
b
a

)
6
xf

. (5.2)

For thermally-produced dark matter, a becomes an approximate measure of the

p-wave strength.

a ≈ 3× 10−26 cm3/s

1 + 1
4
b
a

The p-wave suppression of the cross section for the co-annihilation model is

indicated in Figure 5, and is seen to be approximately a factor of 10−2. Also seen in

that figure is the third effect, the suppression of a in the co-annihilation model, that

is due to the presence of co-annihilations in the early Universe. In this model, a

must be reduced by an additional factor of about 1/2 in order to be consistent with

the conditions at the time of freezeout. Other enhancements at freezeout, such as

annihilation resonances, would also suppress a for thermally-produced dark matter.

The fourth effect is dependence of the shape of the spectrum on the

velocity-dependence of the cross section. With p-wave annihilation, regions of space
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where dark matter particles have higher relative velocities will annihilate at

increased rates because of the larger cross section. The effect of p-wave annihilation

on the spectrum shape is expressed in Equations (4.10)–(4.11). Figure 6b plots ∆I

for the three models in consideration. The only quantities that contribute to

variations among them are their different annihilation spectra. The ∆I for these

models are very nearly the same value close to the peak energy of the spectrum.

For comparison, also plotted is the power law ∆I = 0.95× 10−7
(

Eγ

mDM

)0.14
, which

approximately describes ∆I near the peak of the spectrum. Because ∆I is

increasing with gamma-ray energy, the p-wave increases the intensity of higher

energy gamma-rays more than lower energy, thereby making the spectral shape

harder than if the cross-section were purely s-wave.

Referring to Equation (4.10), the magnitude of ∆I ∼ 10−7 informs that the p-wave

will only have significant effect on the shape of the intensity spectrum if

λb/a ? 107, or if the p-wave strength exceeds b/a ? 106. This is consistent with the

largest significantly present relative velocities that affect the cosmic annihilation

signal to be v > 10−3 in our halo model. It follows that the p-wave does not affect

the shapes of the spectra in Figure 6a in any observable way. Their variations in

shape can, therefore, only be due to differences in their annihilation spectrum—the

fifth effect to be observed.

Of these five effects, the one most dominant is the p-wave suppression. The total

effect that a p-wave component in the annihilation cross section has on the intensity

of extragalactic gamma-rays from annihilations of a thermal dark matter relic is

⟨Iγ⟩ (Eγ|σv = a+ bv2)

⟨Iγ⟩ (Eγ|σv = [σv]f )
=

a

[σv]f

⟨Iγ⟩ (Eγ|σv = a+ bv2)

⟨Iγ⟩ (Eγ|σv = a)
=

1 +
(
b
a

)
λ∆I(Eγ)

1 +
(
b
a

)
6
xf

, (5.3)

using (4.10) and (5.2). This p-wave suppression of the intensity is plotted in

Figure 7a for mild values of b/a, with xf = 24 and λ∆I = 5× 10−7. Since

λ∆I ≪ 6/xf , there are 3 regions of interest, as can be seen explicitly in Figure 7b:

1. When b/a≪ xf/6 ∼ 4, the theory is s-wave dominated, and the p-wave

contributes very little to both the relic density calculation and the



108

annihilation photon intensity spectrum. When b/a > 1, the intensity

suppression is linear in b/a with slope −6/xf ∼ −1/4.

2. When xf/6 ≪ b/a≪ (λ∆I)
−1, it is important to include the p-wave for the

accurate calculation of the relic density, resulting in a suppression of the

s-wave of the annihilation cross section. But the p-wave contribution to the

shape of the intensity spectrum is negligible in this region.

3. When b/a≫ (λ∆I)
−1 ∼ 106, the theory is p-wave dominated and the s-wave

component contributes little to both calculations. In this regime, p-wave

suppression is maximal with a suppression factor of xfλ∆I/6 ∼ xf∆I ∼ 10−6

relative to an equivalent s-wave dominated theory.

In summary, for each of the three regions, the p-wave suppression behaves as

⟨Iγ⟩ (Eγ|σv = a+ bv2)

⟨Iγ⟩ (Eγ|σv = [σv]f )
≈


1− 6

xf

(
b
a

)
b
a
≪ xf

6
,[

6
xf

(
b
a

)]−1
xf
6
≪ b

a
≪ [λ∆I(Eγ)]

−1,

xf
6
λ∆I(Eγ)

b
a
≫ [λ∆I(Eγ)]

−1.

(5.4)

It follows that the extragalactic intensities for the three mSUGRA models

considered can be calculated as s-wave theories with σv = a, with the appropriate

value of a for each model. It is interesting to consider whether there are regions of

parameter space in the Minimally Supersymmetric Standard Model (MSSM)

(where each supersymmetric partner of standard model particles has its own mass,

and each allowed supersymmetric interaction beyond the standard model and each

allowed soft supersymmetry breaking interaction has its own coupling constant)

that has a very large p-wave strength of b
a

? 106.

5.2.2 Large P-wave Strengths in the MSSM

The first step is recognizing that neutralino dark matter has certain annihilation

channels where the s-wave components are helicity-suppressed. For annihilation



109

0 2 4 6 8 10
����

b

a

0.4

0.6

0.8

1.0

����������������������

YIΓ] I ���
b
a
M

YIΓ] H0L

(a)

0.001 1 1000 106 109
����

b

a

10-5

10-4

0.001

0.01

0.1

1

����������������������

YIΓ] I ���
b
a
M

YIΓ] H0L

(b)

Figure 7: (a) The p-wave suppression factor for the mean intensity of extragalactic
dark matter annihilation photons [Eq. (5.3)] as a function of b/a, for typical values
of xf = 24 and λ∆I = 5 × 10−7. The suppression is shown here for small values of
b/a. (b) The same plot as in (a), but on log scale and for a wider range of b/a.

into a fermion anti-fermion pair, the s-wave annihilation component is suppressed

by (mf/mχ̃0
1
)2, the squared ratio of the fermion mass to the neutralino mass. This

includes t and u-channel sfermion exchange, and s-channel mediation by the Z

boson or neutral Higgs bosons. Each contribution to the total cross-section

amplitude has an approximate factor of (mM/mχ̃0
1
)−2, where mM is the mediator

mass. This factor enhances the channels mediated by the Z and lightest Higgs, but

suppresses the sfermion and heavy Higgs channels.

In the parameter space where the neutralino is very nearly pure bino and the

magnitude of the Higgs superpotential coupling µ is much larger than the first soft

gaugino mass M1, the annihilation is dominated by the sfermion exchange. This

allows the contributions of Z or Higgs mediation to be greatly reduced, as well as

all other annihilation channels that are not helicity-suppressed.

In the case where the sfermion masses are unified at the GUT scale, the heavy

third generation fermion channels dominate the s-wave annihilations, due to their
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larger masses when compared with the other fermions. In parameter space where

the neutralino is nearly pure bino, squark masses are much larger than sfermion

masses. However, the b quark is sufficiently massive when compared with the τ

lepton that it still has a significant branching ratio. Also, remaining modest

amounts of Z mediation will add to the bb production. The production of t quarks

becomes important if the neutralino is massive enough to kinematically allow it.

We can increase b/a further by taking advantage of the sfermion mass suppression

of the cross section and considering large non-universal 3rd generation sfermion

masses at the GUT scale. In this parameter space of the MSSM, where the

neutralino is nearly pure bino and annihilation into 3rd generation fermions is

suppressed, we would expect the dominant contribution to the s-wave component of

the cross section to be proportional to (mµ/mχ̃0
1
)2 > 10−6, relative to the p-wave

component.

However, there are loop processes that become the dominant s-wave contribution at

this point, generated when the fermion anti-fermion pair close the loop and two

gauge bosons come off the internal lines [135], such as two photons, photon and Z,

or two gluons. The amplitude due to these loops provides a hard lower bound on

the s-wave component of the cross section on the order of 10−29 cm3/s, keeping

b/a > 104 in the MSSM parameter space that satisfies the relic density constraint.

Correspondingly, the p-wave intensity term will have a magnitude of less than a

percent of the s-wave approximation. However, as already explained, such large

values of b/a still require a significant reduction in the s-wave component of the

cross section in order to satisfy the relic density constraint.

Therefore, it can be concluded that, in the MSSM, the s-wave approximation of the

intensity calculation in Eq. (4.6) gives very accurate results in the MSSM, as long

as the correct annihilation cross section is used. The p-wave suppression of the

s-wave component is very significant in parts of the MSSM parameter space. The

intensity is further suppressed in parameter space with significant co-annihilations

at dark matter freezeout, or with a significant Breit-Wigner resonance at freezeout.
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5.2.3 A P-wave Dominated Theory in MSSM⊗U(1)B−L

To find models with very strong p-wave annihilation, consider the U(1)B−L

extension of the MSSM. In this model, the lightest supersymmetric particle (LSP)

can be the lightest right sneutrino or the lightest neutralino. Here, a parameter

space where the right sneutrino is the LSP is considered. Thus, the dark matter is

neutral to standard model charges and the only gauge interaction is with the Z ′

(and B − L neutralinos) via its lepton charge. It also interacts with the B − L

Higgs fields. Possible s-wave annihilation processes are annihilation into neutrinos

mediated by B − L neutralinos, and into B − L Higgs via s-channel Z ′ or Higgs

fields. However, there is parameter space where the B − L Higgs’ and neutralinos

are massive compared to twice the sneutrino mass, and can be neglected in this

discussion. In this region, sneutrino annihilation is (at tree level) exclusively

s-channel via the Z ′ into fermion anti-fermion pairs. In this process, s-wave

annihilation is completely forbidden. Therefore, this is an example of a pure p-wave

annihilation process.

At one loop, an s-wave component is generated, but is strongly coupling-suppressed

when compared with the tree level p-wave cross section, with additional factors of

α4 or g′4α2, where α is the fine structure constant (or the strong force constant in

the case where gluons are emitted from quarks, instead of photons) and g′ is the

U(1)B−L gauge coupling, which is taken to be 0.4 in the calculation. Thus, we

would estimate b/a in this scenario to be ? 108, completely p-wave dominated. A

calculation of the intensity spectrum due to annihilations at the tree level,

neglecting the small s-wave component altogether, is carried out.

For our example, consider a model with spectrum mν̃ = 550 GeV,

MZ′ = 1300 GeV, and Z ′ width ΓZ′ = 17 GeV. Here, the sneutrino is at a near

resonance with the Z ′, which allows the relic density constraint to be satisfied. The

annihilation cross section and relic density calculations were performed using a

Mathematica program written by Bhaskar Dutta. The photon spectrum per

annihilation was simulated with Pythia 8.135 [136]. The resulting intensity

spectrum is shown in the bottom curve of Figure 8a.
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Figure 8: More sample extragalactic annihilation gamma-ray spectra. (a) The lower
curve is the intensity spectrum for a pure p-wave process. This scenario is realized
in the MSSM⊗U(1)B−L with right handed sneutrino dark matter. The sneutrino,
here of mass 550 GeV, annihilates through a Z ′ resonance into fermion anti-fermion
pairs. The Z ′ for this plot had mass 1300 GeV and width 17 GeV. For contrast, the
upper curve is due to annihilations of a 550 GeV neutralino in the co-annihilation
region of mSUGRA with tanβ = 50, A0 = 0, and µ > 0. This model has a relatively
mild p-wave strength of b/a = 4.8. (b) The associated ∆I for the two models, given
by Eq. (4.11). For reference, the same power law as in Figure 6b is also shown.
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The low intensity in this model shows the expected full p-wave suppression factor

of nearly 6 orders of magnitude. For comparison, the spectrum for an mSUGRA

co-annihilation region model at high tanβ = 50 is shown. The dark matter is a

neutralino, also of mass 550 GeV. It has a p-wave strength of b/a = 4.8, which is

relatively weak when compared with the low tanβ model considered earlier. This is

because of a stronger neutralino coupling to the pseudoscalar Higgs boson. Here,

the differences in spectrum shape between the two models will be due both to

differences in photon spectrum per annihilation, and the fact that the lower

intensity curve is directly coupled to the current dark matter velocity distribution,

whereas the upper curve is not.

5.2.4 Inclusion of the Opacity Effect

An important effect that was neglected in Section 5.2.1 is the opacity of the

Universe to gamma-rays. As energetic photons propagate, they interact with

background fields such as the cosmic microwave background. A fitting function for

the optical depth τ(Eγ, z) is available [104], and it was applied to the annihilation

intensity calculations.

Figure 9 shows how these changes affect the intensity spectrum and p-wave ∆I for

each of the 5 SUSY models we considered. The inclusion of microhalos down to a

mass of 10−6M⊙ increases the annihilation intensity and slightly lowers ∆I . The

opacity has little effect on the intensity of the three smaller mass models, but

introduces a much sharper cutoff in the intensity spectrum for the two higher

particle mass models. The effect of opacity on ∆I is observed to depend strongly

on the particle mass of the dark matter, based on how models with the same

particle mass group together. In particular, the opacity pushes up the value of ∆I

to near its maximum value, and this occurs at a lower photon energy for higher

mass dark matter particles.
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Figure 9: Sample spectra with photon opacity effects. This shows Figures 6 and 8
combined, with the opacity effect added, and the minimum halo mass reduced to
Mmin = 10−6M⊙.
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5.2.5 Spectra for Single Branching Ratios

To see the variation in the annihilation intensity that is possible with different

annihilation spectra, one can carry out the calculations for the same annihilation

cross section and particle mass, but with different annihilation channels. These

results could be used with Equation (3.5) to construct the intensity for

combinations of these channels according to any velocity-independent branching

ratios. If the branching ratios are velocity-dependent, they need to be included in

the halo ensemble average for that model.

In Figure 10a, intensity spectra are shown for s-wave dark matter annihilation for

particles with annihilation cross-section [σv]0 = 1.9× 10−26 cm3/s and mass 150

GeV, the same as for our focus point model. They were calculated for dark matter

annihilating purely to W+W− bosons, bb quarks, cc quarks, τ+τ− leptons, µ+µ−

leptons, or e+e− leptons. The gamma-ray spectrum per annihilation for this

calculation was simulated with Pythia for each of the annihilation products. The

intensity from annihilation to W ’s is indistinguishable from annihilation to b quarks

for 150 GeV dark matter. The c quarks have an additional high energy bump, but

that would also be difficult to observe. Also, the light leptons, muons and electrons,

produce nearly equivalent hard spectra that would be similarly difficult to

distinguish from each other.

Each of the models has a strong feature in ∆I near Eγ = 5× 10−3mDM from the

gamma-ray opacity. This is even visible in the intensity spectra for the

annihilations to leptons. These hard spectra also show a strong feature at

Eγ = mDM/(1 + zmax) where zmax = 10 is the largest redshift integrated to in the

calculation. In retrospect, this effect is slightly visible in ∆I for the B − L SUSY

model, which produces a large number of light leptons. The redshift cutoff zmax is

near the epoch of reionization because effects of reionization are not modeled. It

was surprising to see possible contributions from photons at this distance. It is

intriguing that neglecting photons produced from this era (and beyond) generates

observable effects in our calculations. The possibility of being able to probe the

physics of reionization with a hard annihilation signal is interesting.
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Figure 10: Intensity spectra for s-wave dark matter annihilation to single chan-
nels. (a) These show results for 150 GeV dark matter particles that annihilate with
velocity-weighted cross section [σv]0 = 1.9× 10−26 cm3/s. (b) The p-wave effect on
the spectral shape for each of the annihilation products.
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5.2.6 Angular Power Spectrum with P-wave Annihilation

From Equation 4.22, the relative effect of p-wave annihilation on the angular power

spectrum of the extragalactic gamma-ray radiation it produces is determined from

∆I(Eγ), and the new coefficients ∆
(1)
Cℓ
(Eγ) and ∆

(2)
Cℓ
(Eγ).

These new coefficients are plotted—for the five SUSY models we’ve considered—in

Figure 11, at the energy Eγ,peak where E2
γ ⟨Iγ⟩ (Eγ) is maximized. The variations,

from opacity effects and different annihilation spectra, are quite mild.
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Figure 11: The coefficients that describe the relative effect of p-wave annihilation
on the angular power spectrum, according to Eq. (4.22), for the five sample SUSY
models under consideration.
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Figure 12: The angular power spectrum of extragalactic, diffuse gamma-rays from
dark matter annihilation with different p-wave components.

With ∆
(1)
Cℓ
(Eγ) ∼ 107, it is only non-negligible to Cℓ if λb/a ? 107, or b/a ? 106.

Similarly for ∆
(2)
Cℓ
(Eγ) ∼ 1014. This is consistent with the results of the p-wave

effects on the intensity spectrum.

It is interesting to take the general shapes of ∆
(1)
Cℓ

and ∆
(2)
Cℓ
, and put them into

Eq. (4.22) for various values of λb/a, to see how the angular power spectrum can be

affected by the coupling of dark matter annihilation to the particle velocity

distribution. The results of this exercise are shown in Figure 12 for the focus point

model. At b = 0, the usual s-wave angular power spectrum seen in previous works

is reproduced [51, 52]. Note how a strong p-wave can significantly increase power,

more so for large values of ℓ. If a component of gamma-rays of extragalactic origin

is determined to have an angular power spectrum that is best described by a dark

matter annihilation with significant v2 component in its cross section, it would be

an interesting challenge to understand the mechanisms that allow such a signal to

be observable, since one would expect its intensity to be strongly p-wave

suppressed. The magnitude of the effects for the p-wave cross section provide

motivation for considering other interesting scenarios of velocity-dependent

annihilation, such as annihilation resonances at low dark matter particle velocities.
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Figure 13: The components contributing to the p-wave angular power spectrum for
different pure annihilation channels of a generic 150 GeV dark matter particle.

To see the variation in the angular power spectrum due to different annihilation

products, the above calculations were carried out for the same annihilation cross

section as the focus point model, but with different annihilation spectra. In

Figure 13 are plotted the elements needed to determine the p-wave angular power

spectrum (the s-wave angular power spectrum, and the ∆
(1)
Cℓ

and ∆
(2)
Cℓ

coefficients),

along with the ∆I coefficients in Figure 10b. The main result to note about the

plots of the coefficients is that they depend only weakly on energy, and are very

similar for different annihilation spectra into charged particles, particularly at the

highest energies near the dark matter mass. In fact, the most variation is found in

the pure s-wave angular power spectrum.
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5.3 Mean Extragalactic Intensity for Sommerfeld-Enhanced Annihilation

Presented in this section are estimates of the effect of Sommerfeld enhancement of

s-wave annihilation on the intensity spectrum of produced gamma-rays. Results

will be shown for the four example cross sections that are displayed in Figure 4b, as

expressed by Equation (3.10) with [σv]0 = 3× 10−26 cm3/s. For this initial

calculation, the mean velocity-weighted cross section at each position in a halo is

approximated using Equation (3.23) and λ = 6.

[σv]h(r|M, z) ≈ S

(√
λσuh(r|M, z)

α

∣∣∣∣∣ϵϕ
)
[σv]0 (5.5)

Figure 14 shows the results for the extragalactic gamma-ray intensity due to

annihilations for theories with these cross sections. Again for simplicity, we

consider theories that annihilate exclusively into lepton anti-lepton pairs. The

photon radiation spectra per annihilation for these processes were also simulated

with Pythia. In these examples, the dark matter mass is taken to be

mDM = 200 GeV. Higher masses were explored; they simply gave the same results,

scaled up in energy. Annihilation into µ+µ− is visually indistinguishable from the

electron case, with a slightly higher intensity.

The ratio of each enhanced intensity to its respective unenhanced s-wave

annihilation intensity ⟨Iγ⟩0, where S = 1, is shown in Figure 15. Here it is found

that, for α = 0.01, the intensity enhancement is nearly uniform over most of the

Sommerfeld parameter space. This follows from the fact that, as is seen in

Figure 4b, the cross section has already saturated at the relative velocities

important today, less than 10−3, unless one is extremely close to a resonance value

of ϵϕ. However, for smaller values of α, the graph in Figure 4b shifts to the left and

the cross section may not necessarily be completely saturated today for larger

enhancements. This results in a smaller cross section at high energies and has the

effect of widening the intensity peak and shifting the maximum to smaller energy.

This is what is observed with the resonance cases: ϵϕ = 0 (an example of a v−1

resonance), and ϵϕ = ϵ
(n)

ϕ (v−2 resonances).
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Figure 14: Extragalactic gamma-ray intensities from dark matter with a sample of
annihilation theories including s-wave, Sommerfeld-enhanced s-wave, and Sommer-
feld s-wave resonances. For these models, α = 0.01 and mDM = 200 GeV. The
bottom dotted curves show the intensity for no Sommerfeld enhancement, the solid
lines show the Coulomb-Sommerfeld resonance, the top dot-dashed curves show the
first Sommerfeld resonance, and the long (short) dashed curves show the Sommerfeld
enhanced intensity where the enhancement saturates at 10 (1000). (a) Primary pho-
ton radiation from annihilation into electron-positron pairs. (b) Annihilation into
τ+τ−.



122

10-2 10-1 100 101 102
100

101

102

103

104

105

EΓ HGeVL

��������������

XIΓ\

XIΓ\0

(a)

10-2 10-1 100 101 102
100

101

102

103

104

105

EΓ HGeVL

��������������

XIΓ\

XIΓ\0

(b)

Figure 15: Ratios of the predicted Sommerfeld enhanced intensities to the unen-
hanced intensity. (a) Primary photon production from annihilation exclusively into
electron-positron pairs. (b) Annihilation into τ+τ−.
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Figure 16: The intensity ratios in Figure 15. The solid curves are for annihilation
into e+e−, and the dot-dashed curves show the results for τ pair production.

To see the detail of the variation of ⟨Iγ⟩ / ⟨Iγ⟩0 at peak intensities, plots of each

ratio on a linear scale, focused only on the appropriate range of the ratio for each

cross section, are shown in Figure 16. For comparison, the enhancement at

saturation for ϵϕ = 1.107 was 10.00, and for ϵϕ = 0.635 it was 1004. The intensity

ratio for annihilation into taus in the saturated examples was very similar to the

electron-production results. However, it can be seen that differences in the

spectrum per annihilation become important at the resonances.
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6 COMPARISON OF GALACTIC AND EXTRAGALACTIC GAMMA-RAY

ANNIHILATION SIGNALS TO NEUTRINO ANNIHILATION SIGNALS*

With the tools developed to do the calculations presented in Section 5, it is possible

to do many different analyses involving extragalactic dark matter annihilation

signals. The calculation of the intensity of gamma-rays from dark matter

annihilations in our dark matter halo is a relatively simple when compared to the

extragalactic calculation. An important question is whether it can be determined

conclusively which source of annihilation radiation dominates. If both components

contribute significantly, then the net intensity is of interest.

It is worth calculating the neutrino flux from extragalactic and galactic dark

matter annihilations because neutrinos are also produced in the annihilations of

dark matter in the particle models described in this document.

By the date of this research, the WMAP7 results were released [12], and the

updated cosmological parameters were applied to the calculations in this section:

ΩΛ = 0.725, Ωb = 0.0458, h = 0.702, σ8 = 0.816, and ns = 0.968. Again, neutrino

streaming effects are neglected in the linear power spectrum, and Ωc = 1− ΩΛ − Ωb

is set.

6.1 Diffuse Intensity Due To Galactic Dark Matter Annihilation

If our own Milky Way Galaxy dark matter halo is taken to be a typical halo of our

large scale structure model at mass MG = 2× 1012M⊙, then it has scale radius

rs,G = 38.0 kpc, virial radius Rvir,G = 412 kpc, and concentration cG = 10.8. The

important parameter here for this calculation is the scale radius, since the

contribution to the annihilation signal due to dark matter outside this radius is

very small; therefore, the virial radius definition (and hence the value of

*Parts of this section are reprinted with permission from “Extragalactic and Galactic Gamma Rays
and Neutrinos From Annihilating Dark Matter” by R. Allahverdi, S. Campbell, and B. Dutta,
Phys. Rev. D 85, 035004 (2012), Copyright 2012 by The American Physical Society.
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concentration) does not significantly affect the prediction of the galactic

annihilation signal. The solar system’s position in the halo is estimated to be

R⊙ = 8.0 kpc from the galactic center.

For the work in this section, it is assumed that velocity-dependence of the dark

matter annihilation is negligible (ie. s-wave dominated annihilation). The intensity

of gamma-rays, due to dark matter annihilation in the galactic halo in the direction

of angle ψ from the galactic center (assumed coincident with the halo center), is

typically written as

Iγ,G(Eγ, ψ) =
σv

8πm2
DM

dNγ

dEγ
(Eγ)J(ψ), (6.1)

where the J-factor is the line of sight integration of the square dark matter density

from the solar system out the halo†

J(ψ) ≡
∫ rmax(ψ)

0

dr

[
ρh

(√
r2 − 2rR⊙ cosψ +R2

⊙

∣∣∣∣∣MG, 0

)]2
, (6.2)

with

rmax(ψ) = R⊙ cosψ +
√
R2

vir,G −R2
⊙ sin2 ψ. (6.3)

6.2 Comparison of Galactic and Extragalactic Gamma-ray Annihilation Signals

In this subsection, the galactic annihilation gamma-ray signal is compared to the

extragalactic intensity for the halo model of dark matter distribution.

In Figure 17 are the contributions of the galactic and extragalactic components of

annihilation to the gamma-ray intensity for different lines of sight in the halo. The

particle physics model used in this example is the focus point model describe in

Table 2.

† The J-factor is usually scaled to be in units of R⊙ρ
2
⊙, where ρ⊙ is the estimated local density.

This is less convenient for comparison with the extragalactic signal, and therefore, the J-factor is
given an unscaled definition here, with arbitrary units of square mass density times length.
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Figure 17: The gamma ray signal from annihilating dark matter in the directions
of the indicated angle ψ from the galactic center. The dark matter shown here is
a 150 GeV neutralino in the focus point region of mSUGRA with tanβ = 10. The
dotted blue line is the extragalactic component, the dot-dashed red line is the galactic
component. The solid line is the net signal.

In the dark matter density distribution models, the galactic component is dominant

at the intensity peak of the signal when looking toward the galactic center, but the

contributions of the components are comparable when looking out of the galactic

plane or away from the galactic center. It is conceivable that with slightly different

choices of distribution parameters, the relative importance of each might be altered

considerably. The relative strength of the galactic to extragalactic intensity at a

given photon energy is

Iγ,EG(Eγ)

Iγ,G(Eγ, ψ)
=

∫
dz

[
⟨ρ2⟩(z)

H(z)(1 + z)3Ĵ(ψ)

][ dNγ

dEγ
((1 + z)Eγ)

dNγ

dEγ
(Eγ)

]
e−τ((1+z)Eγ ,z).
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Figure 18: Contributions to the galactic and extragalactic annihilation intensities.
(a) The magnitude of extragalactic intensity is approximately proportional to the
area under this curve, around 48000ρ2c/H0. (b) The corresponding contribution to
the galactic intensity.
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Figure 19: The mass integrand of the mean square density. It is shown for halos at
redshift z = 0, 0.5, and 1 from bottom to top, respectively.

The important parameters then appear in the first factor of the integrand.

Figure 18 plots the extragalactic and galactic contributions to this factor in units of

ρ2c/H0, where ρc is the cosmological critical density to collapse and H0 is the

Hubble constant. The extragalactic part is relatively flat in scale, with an area

under the curve of around 48000ρ2c/H0. The convolution with the annihilation

spectrum and opacity could modify the importance of this factor, depending on the
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details of those functions. One may wonder what mass scale of halos most

contributes to the mean square density ⟨ρ2⟩. In Figure 19, it is apparent that the

mass integrand scales essentially like M−1, nearly all the way to the maximum

mass scale, suggesting that all mass scales practically contribute equally to the

intensity. If the mass dependence of the Sheth-Tormen mass function correctly

describes the halo distribution down to low scales, and those low-mass halos have

density profiles well described by NFW, with concentrations described by the

model specified, then all mass scales are important contributors to annihilations.

However, consider for the moment the effect of the neglected substructure. At

Milky Way size halos, it is expected that substructure will increase the annihilation

rate by a factor on the order of 100, depending on the minimum halo mass scale

[102]. By definition, the smallest halos will not have any subhalos, and larger halos

will have more and more substructure. Thus, one would expect the largest halos to

contribute the most to intensity purely based on their substructure.

For the galactic contribution, if the galactic halo is well described by an NFW (or

similar) profile, then the value of scale radius rs has a significant effect on how

concentrated the dark matter is to the galactic core. Based on observations of

stellar velocities, it is generally estimated that the galactic halo has a somewhat

smaller scale radius than the typical radius we used [137]. This would result in an

increase in the predicted galactic intensity.

The scaling of the density at the core is also important. On the right plot of

Figure 18, it can be seen how the intensity formally diverges as the line of sight

approaches the galactic center for the NFW profile. Observing a signal from toward

the galactic center would help to better understand how the density is distributed

there in our halo, and would allow us to test various ideas about the effects that

the central black hole and baryonic cooling have on the profile.

It is expected that the substructure observed in the simulations would increase the

galactic signal by a factor of a few—not as significantly as for the extragalactic

intensity [102]. Therefore, it is not unreasonable to suppose that the extragalactic



129

annihilation could dominate over the galactic signal for most lines-of-sight that are

not too close to the galactic center.

In summary, an estimation of the most crucial elements in these calculations, which

have the greatest effects on the result, is:

• the halo scale radius, the galactic value of which has an important effect on

the galactic signal component, and the halo distribution of which affects the

extragalactic signal; and

• the inclusion of subhalos, not yet taken into account, will also increase the

predicted signal, and will depend on the scale of minimum halo mass.

Thus, it can be concluded from this discussion that the galactic and extragalactic

annihilation signals in Figure 17 are of comparable intensity, due to the value of

rs,G that was used, and the lack of substructure effects.

While being mindful of these uncertainties, it is still interesting to compare these

calculations to the experimental measurements. The extragalactic signal for this

model peaks at E2
γIγ ≈ 10−9 GeV/cm2/s/sr while the extracted extragalactic γ-rays

reported by the Fermi Gamma-ray Space Telescope is

E2
γIγ ≈ 5× 10−7 GeV/cm2/s/sr at that energy [138]. At higher dark matter

particle masses mDM with the same annihilation operators, the γ-ray peak energy

increases proportional to mDM, but the intensity I decreases like m−3
DM, according to

Equation 3.8. However, the extragalactic background intensity is measured to drop

more slowly, consistent with a power law scaling E−2.41
γ .

Unless the annihilation at the galactic core is very bright, it will be difficult to

observe those dark matter annihilation gamma-rays originating from the core

because there are so many other bright sources of astrophysical gamma-rays in that

region, which have theoretical uncertainties associated with them. A less

contaminated signal, for example, would be the consideration of the mean

annihilation signal away from the core. The galactic and extragalactic components
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for this are shown in Figure 20 for the same focus point model. For comparison,

also shown are the total signals for dark matter of the same mass, that annihilates

to W+W−, bb, or τ+τ−, at the same annihilation cross section as the focus point

model. The sources of photons in those models are from decaying pions or

radiating charged fermions. The W and b spectra are dispersed to lower energies

because they are more likely to decay to hadronic showers where each

photon-emitting product is at lower energy. At 150 GeV dark matter annihilation,

the photons from annihilation to W+W− are indistinguishable from annihilation to

bb. These pure branching ratio intensities can be used to construct the intensity

profile for any theory that annihilates to these states, with known branching ratios.

For larger dark matter masses, the W and b signals become distinguishable from

one another to a greater extent.

6.3 Galactic and Extragalactic Neutrino Signals

The models discussed in the previous sections also contribute a neutrino

annihilation spectrum dNν

dEν
, therefore, it is interesting to consider this component of

the signal as well. Since the neutrino is electrically neutral and weakly interacting,

it also propagates relatively freely through the cosmos, and the annihilation signal

will have both galactic and extragalactic contributions. This calculation is

completely analogous to that for the gamma-ray signal. Cosmic opacity for the

neutrinos is neglected in the sample calculations that follow.

Figure 21 shows the galactic, extragalactic, and net intensity of cosmic neutrinos

from annihilations of the same 150 GeV focus point neutralino dark matter

considered in the previous section. In the galactic signal, one can clearly see the

peaks from primarily and secondarily produced neutrinos from the W decays.

However, those features are washed out in the redshift-modulated extragalactic

signal. Both galactic and extragalactic components contribute significantly to the

total signal in all of the shown lines of sight. Again, reasonable adjustments of dark

matter distribution parameters and consideration of halo substructures could

significantly alter this balance in either direction.



131

Although the prediction of the annihilation neutrino signal from the galactic center

still contains uncertainties from the galactic core density profile, it does not suffer

from the same astrophysical contamination as do gamma-rays. Therefore, there is

no reason to exclude the galactic center in these experiments. In fact, if a neutrino

detector with high angular resolution can be developed, it is a good strategy to

focus on the galactic center.
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Figure 20: The mean intensity of gamma-rays from annihilating dark matter, aver-
aged over all directions an angle ψ > 18◦ away from the galactic center. (a) Shown
for the focus point model. The plot format is the same as for Figure 17. (b) Shown
for a 150 GeV dark matter particle that annihilates purely to W+W−, bb, or τ+τ−.
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Figure 21: The neutrino signal from annihilating dark matter in the indicated angle
ψ from the galactic center. The same particle model and plot format as in Figure 17
is used.

Figure 22 shows the neutrino signal for the focus point model averaged over the

whole sky, directions away from the core, and directions focused on the core,

respectively. The galactic annihilations are seen to dominate the signal at the

galactic core in the model of particle distribution where the NFW profile holds to

the center, and halo substructures are neglected. The same dominance of the

galactic core occurs with annihilation gamma-rays, but it is very difficult to see

those photons from the noisy center of the galaxy. Further work, with more

realistic distributions, should better elucidate the situation at the galactic core, and

provide an understanding of the information about the dark matter distribution

uncertainties that may be available in an observed neutrino signal.
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Figure 22: The mean neutrino intensity for the focus point model. (a) The all-sky
intensity, 0◦ < ψ < 180◦. (b) The anticore intensity, ψ > 18◦. (c) The core intensity,
ψ < 5◦. The plot format is the same as in Figure 17.

It is common in the literature to express neutrino signals as binned detector event

rates per detector mass. If ⟨Iν⟩Ω is the mean annihilation intensity in a solid angle

Ω of observation, the event rate for a neutrino νf of flavor f = e, µ, or τ in an

energy bin Ei < Eν < Ei+1 is

Rνf, i =
NAΩ

nm

∫ Ei+1

Ei

dEν σνfN(Eν) ⟨Iν⟩Ω(Eν)

where NA is Avogadro’s number, nm is the molar mass of the detector material, and

σνfN is the neutrino-nucleon charged current scattering cross section [139]. Note

that NA/nm is simply the nucleon number per detector mass. To ease conversion of

the results for different detector materials, the results are shown for nm = 1 g/mol.
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Figure 23: All-sky neutrino plus antineutrino detection rates for 150 GeV dark matter
annihilation. The thick lines are for electron or muon flavor, and the thin lines show
the tau flavor rate. At 70 Gev, the top two green lines are for annihilation to τ+τ−

leptons, the middle two blue lines show annihilation to W+W− bosons, and the
bottom two red lines are for annihilation to bb quarks.

Figure 23 shows the neutrino event rates for annihilation into W bosons, b quarks,

or τ leptons. The logarithmic GeV energy bin size used is ∆ = log10

(
Ei+1

Ei

)
= 0.04.

At these neutrino energies, the electron and muon neutrinos have indistinguishable

nucleon scattering cross sections, which are larger than that for the tau neutrinos.

Hence, the tau neutrino event rates are a little smaller. Since τ leptons always

decay to a primary neutrino, while W bosons only decay directly to leptons some of

the time, the ν production from τ ’s is more intense. The b quarks do not produce

primary neutrinos, and only have a lower energy neutrino spectrum from secondary

chains. Thus, the flux of neutrinos from annihilations breaks the degeneracy

between annihilation into W+W− and bb that occured in the gamma-ray signal.

Another class of models that results in interesting phenomenology for

dark-matter-annihilation neutrinos is the U(1)B−L extension of the MSSM,

described in Sec. 5.1.2. The particular model considered here is a parameter space

where the sneutrino Ñ is the dark matter particle, and has a mass of 150 GeV. In

this case, the dominant annihilation channels are the s-wave processes

ÑÑ −→ N cN c and Ñ*Ñ* −→ N c*N c* via t-channel exchange of B − L

neutralinos through its coupling with the gaugino Z̃ ′. The N c, taken to have mass

135 GeV, then decay exclusively to ν and standard model Higgs h, considered here

to have mass mh = 120 GeV. At this mass, the Higgs boson decays mostly to
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WW ∗ bosons, and to bb quarks, each of which produce secondary photons and

neutrinos. The neutrino detector rates for this model are shown in Figure 24. The

Ñ annihilation in this model does have a slight p-wave component, and the s-wave

cross section is σv = 1.1× 10−26 cm3/s, giving the correct thermal dark matter relic

density. The particle mass spectra, annihilation cross sections, and relic density

calculations were carried out using a program written by Bhaskar Dutta. The

neutrinos spectrum per annihilation was calculated using Pythia.

The secondary neutrinos produced from the Higgs decay result in a broad, soft

spectrum, whereas the neutrinos produced directly from N c decays produce a

narrower peak at lower energies on the order of the mass difference between the N c

and the Higgs. Due to the Higgs decays, there is also a gamma-ray component to

the signal.

In the case where the Ñ dark matter is heavier (larger than twice the Higgs mass),

and the N c mass is still slightly smaller than the Ñ particle, then the physical

neutrino peak occurs closer to the dark matter mass energy. This will produce a

hard spectrum with narrow peak from the primary neutrinos, and a broad

low-energy tail produced by the Higgs decays.
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Figure 24: All-sky neutrino plus antineutrino event rates for 150 GeV sneutrino dark
matter that annihilates to two 135 GeV right-handed neutrinos (each flavor equally
represented), each of which decays to a light neutrino and 120 GeV standard model
Higgs particle.
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Another intriguing scenario occurs when the dark matter annihilates solely to two

light neutrinos ν. In the context of the B − L model previously described, this

corresponds to the limit where the Higgs mass is small—negligible compared to the

Ñ mass—and the mass difference between Ñ and N c is also very small. Then the

spectrum of the produced light neutrinos is at the energy of the Ñ , and the width

of the spectrum is very small. This simple scenario results in a prominent neutrino

line feature with no corresponding gamma-ray observations. At this energy scale of

neutrino energies, the dominant astrophysical source is atmospheric neutrinos.
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Figure 25: Neutrino plus antineutrino event rates for 150 GeV dark matter annihi-
lating to 2 prompt neutrinos ν. The annihilation is taken to occur with cross section
σv = 1.1× 10−26 cm3/s (solid lines), shown with the mean atmospheric neutrino plus
antineutrino rates at the Kamioka site during low solar activity (dotted lines). For
the atmospheric neutrinos, the upper line is the muon flavor, and the lower line is
the electron flavor. For the annihilation neutrinos, the upper line shows the rate for
electron flavor, as well as the rate for muon flavor. The lower line shows the rates for
ντ + ντ . (a) The mean neutrino rates from the whole sky. (b) Rates when excluding
the galactic core, ψ > 18◦. (c) Rates when focused on the galactic core, ψ < 5◦. (d)
Rates when focused on the inner galactic core, ψ < 1◦.
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The solid lines in Figure 25 show the detector rates for annihilation of 150 GeV

dark matter particles into prompt neutrinos, to each flavor equally, with a cross

section of σv = 1.1× 10−26 cm3/s with the modeled dark matter distribution. The

upper line shows the electron flavor rates and muon flavor rates. The lower line is

the tau flavor detection rate. Shown is the mean all-sky signal (0◦ < ψ < 180◦), an

anticore signal (ψ > 18◦), a core signal (ψ < 5◦), and an inner core signal (ψ < 1◦).

The width of the spectral line feature is due to the velocity distribution of dark

matter in the galactic halo, which is negligible compared to the energy resolution of

viable detectors. Therefore, it is completely contained in the energy bin at the dark

matter mass. The diffuse component is due to the redshifted extragalactic

neutrinos. The dotted lines in the figure are the predicted mean atmospheric

neutrino rates, as would be seen at the Kamioka site during minimum solar activity

[140]. The upper line shows the νµ + νµ rates, and the lower line shows the νe + νe

rates.

By comparing them with the previous neutrino rate plots, it is seen that the typical

diffuse signals are well below the current measured atmospheric neutrino rates.

Again, the situation likely improves with the consideration of halo substructure,

and the background can also be reduced with respect to the signal by focusing on a

nearby dark-matter-dense region of space, as shall be discussed for the prompt

neutrino production example.

The prominence of the peak at the galactic core shows how a neutrino detector

with high angular resolution might extract a spectral line feature by focusing on a

dense region of space. Although the signal to background ratio improves with small

solid angles of observation, the detection rates become forbiddingly small. With

better energy resolution, an experiment can also gain a stronger signal in the

spectral line scenario. Thinner energy bins have a higher spectral line height.

For the energy bin at the energy of the dark matter mass Eν = m, the width that is

required for the bin height to be at the corresponding atmospheric neutrino rate
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when observing in solid angle Ω is approximately

∆E(m,Ω) ≈ 1

Ω

ϕG(m,Ω)

Iatm(m)− IEG(m)
,

where ϕG(m,Ω) is the flux of galactic annihilation neutrinos of energy at the dark

matter particle mass m originating within the solid angle Ω, Iatm(m) is the mean

intensity of atmospheric neutrinos of energy m, and IEG(m) is the mean

extragalactic annihilation neutrino intensity. The corresponding required

logarithmic bin width is (assuming ∆E ≪ m)

∆ ≈ ∆E

m ln 10
.

This approximate logarithmic energy bin size is shown in Figure 26 for ranges of

the dark matter mass, and for different solid angles centered on the galactic center.

For comparison, Figure 25 used ∆ = 0.04. The energy scales that require the

smallest bin widths occur where the spectral line is most hindered by the

atmospheric neutrinos. At high dark matter mass, the electron neutrinos are a

great deal easier to see, since the electron atmospheric neutrinos are much less

abundant than the muon atmospheric neutrinos.
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Figure 26: The approximate logarithmic bin size required for the spectral line de-
tector rate bin to reach the atmospheric neutrino rate. The upper line is for νe + νe
and the lower line is for νµ + νµ.
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7 CONCLUSIONS

For this dissertation, a calculational tool was developed and implemented to

analyze predictions of extragalactic gamma-ray or neutrino signals from

annihilating dark matter, predominantly from the cores of halos. The formalism of

these signals was extended from previous works, in order to be able to account for

effects due to the relative motions of the annihilating particles.

To accomplish this, a new theory of universal halo velocity variance profiles σ2
uh(r)

was developed, based on the observed approximate power-law stratification of the

pseudo-phase-space-density profile within N-body computer simulations of dark

matter halos. A velocity variance profile for the NFW density profile was proposed

to be

σ2
uh(r) = σ2

s

(
r

rs

)β (
1 +

r

rs

)−4/3

with scale variance related to the scale density ρs and scale radius rs by

σ2
s = 122/3πGκ−1(β − 1/3)β−1/3(1− β)1−βρsr

2
s ,

and critical values β = 17/27 and κ = 100/81. The mean velocity variance

evolution of the Universe was presented for the NFW profile of

Sheth-Tormen-distributed halos, illustrating the increase in particle relative motions

due to structure growth, and eventual washing out of phase space from dark energy

domination. Results of the annihilation calculations were consistent with significant

dark matter populations having relative velocity v <∼10−3 in the model.

Other new universal halo profiles necessarily introduced are the mean square

relative particle velocity profile, denoted v2h(r), and the mean

relative-velocity-weighted annihilation cross section profile for dark matter [σv]h(r).

Velocity-dependence of the annihilation cross section can occur at the energies of

cosmic dark matter for theories with p-wave annihilation, Sommerfeld-enhanced

annihilation, or for annihilation through a Breit-Wigner resonance. Sample cross

section halo profiles were considered for annihilation with a p-wave component in
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halos with locally isotropic velocity distributions, and for Sommerfeld-enhanced

annihilation in halos with local relative velocity density distributions approximated

as a Dirac delta function.

A new formalism was derived for calculating the mean intensity spectrum and

angular power spectrum of gamma-rays or neutrinos from extragalactic annihilating

dark matter in smooth halos. This formalism is justified if the most

dark-matter-dense regions of space occur at the nearly-spherical cores of halos.

However, simulations predict that halos also contain significant populations of

dense subhalos. If true, they will have a significant impact on the predicted

annihilation signals and need to be accounted for. The formalism for smooth halos

that is presented here can be extended to halos with substructure using existing

methods for modifying the density distribution, since the pseudo-phase-space power

law profile holds very well, even in the presence of substructure, and therefore the

proposed method for determining the velocity variance distribution within the halo

is still expected to be accurate with substructure. The gamma-ray intensity from

annihilations at a region of space scales with ρ2σv at that position, where ρ is the

density and σv is the mean velocity-weighted annihilation cross section.

An analysis of the effects of p-wave annihilation, where the velocity-weighted

annihilation cross section is σv = a+ bv2, on the annihilation signal of extragalactic

gamma-rays was carried out. When the local velocity distribution at each point in

the halo is isotropic, then [σv]h(r) = a+ 6bσ2
uh(r). The mean intensities of different

supersymmetric models considered had variations due to different s-wave

annihilation components a, p-wave strengths b/a, gamma-ray spectra per

annihilation, and particle masses. Since the models considered produced thermal

dark matter relics, the s-wave annihilation cross section a is p-wave suppressed.

This generates an associated suppression of the extragalactic gamma-ray intensity,

and expressions that accurately approximate the amount of p-wave intensity

suppression were presented. The coupling of the p-wave to the large-scale velocity

distribution modifies the intensity by a factor of 1 + (6b/a)∆I(Eγ), where the

coefficient ∆I depends predominantly on the model of cosmic dark matter phase

space, but also has some dependence on the gamma-ray spectrum per annihilation.
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This coefficient was presented for a variety of annihilation spectra. The order of

magnitude of ∆I is 10
−8, and therefore, it is only significant to the signal if

b/a ? 106. Also, since ∆I increases with Eγ, significant p-wave strengths harden

the annihilation intensity spectrum. It is found that the p-wave suppression effect

can be significant in the minimal supersymmetric standard model (MSSM), where

p-wave strengths as high as 104 were discovered. In the extension of the MSSM

with a gauged baryon number minus lepton number symmetry, p-wave dominated

theories with b/a≫ 106 were found to exist.

The p-wave was also shown to increase the angular power spectrum of the

extragalactic annihilation gamma-rays by a factor of

1 +
6b
a
∆

(1)
Cℓ
(Eγ) +

(
6b
a

)2
∆

(2)
Cℓ
(Eγ)[

1 +
(
6b
a

)
∆I(Eγ)

]2 .

Again, the coefficients ∆
(1)
Cℓ

and ∆
(2)
Cℓ

were presented for various annihilation

products. As before, none of the coefficients contributes significantly to the factor

unless b/a ? 106, at which point all of the coefficients contribute. However, in the

case where b/a is so large that the theory is p-wave dominated, the contribution

from ∆
(1)
Cℓ

becomes negligible. However, in thermally-produced models of dark

matter, a large p-wave would suppress the intensity so as to make it unobservable.

Therefore, the observation of an angular power spectrum from annihilations that is

best interpreted as being produced by a dark matter theory with strong p-wave

annihilation would necessarily have to be a non-thermally produced relic.

In order to calculate the angular power spectrum and its p-wave coefficients, the

Fourier transform of ρ2h(r)σ
2
uh(r) needs to be evaluated for any halo mass and halo

redshift. Development of an efficient algorithm to evaluate this function for NFW

profiles was carried out and is presented in Appendix A.

An initial exploration of extragalactic signals produced by a Sommerfeld-enhanced

theory of dark matter with σv = [σv]0S(v
2) was carried out by approximating

[σv]h(r) ≈ [σv]0S(6σ
2
uh(r)). Deviations from a constant boost were quantified in

detail, and seen to be relatively small. The case of Sommerfeld resonances were
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observed to soften somewhat the intensity spectrum.

When considering annihilation to bottom anti-bottom quarks, or to W+W− bosons

for 150 GeV dark matter, it was found that they result in indistinguishable

gamma-ray spectra. However, when considering their neutrino spectra, the models

are very different, since W’s can decay to prompt neutrinos, whereas the quarks

cannot.

When comparing the extragalactic signals to annihilation signals produced from

the galactic dark matter halo, it was found that the magnitude of peak E2
γI is

nearly the same for both theories when observed out from the galactic plane, but

the intensities are offset with the extragalactic signal’s being redshifted to lower

energies. This suggests that both components may contribute significantly to the

cosmic signal. However, with uncertainties of the contribution of substructure to

the extragalactic signal, and the value of parameters such as the concentration of

our own halo, the problem as to which component contributes most to a cosmic

indirect detection signal deserves further study. Since GeV energy neutrinos have

few known backgrounds near the galactic center, and the center is expected to be a

dense volume of dark matter, searching for neutrinos from the center of the galaxy

may be an interesting source to detect annihilation radiation producing neutrinos.
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APPENDIX A

ALGORITHMS FOR NUMERICAL EVALUATION

OF NFW FOURIER TRANSFORMS*

Although there exist some very good general integrators for Fourier transforms

[141], their use is not feasible in this calculation. The transforms appear in the

integrand of the halo mass integration, and that result is then integrated over

redshift. The number of evaluations required for precise calculation is very large,

and takes too long to complete when using a general-purpose integrator. Since

these functions are over a 3-dimensional space (k|M, z) that stretches over a large

range of scales, it is also not feasible to fill a data table for interpolation.

For the rigid NFW profile, a closed form solution is available for FT {ρ2h}, which
has allowed efficient calculation of s-wave angular power spectra in previous works.

No such closed form is available for the non-analytic FT {ρ2hσ2
uh}. Nevertheless, I

was successful in developing a numerical algorithm for efficient evaluation of this

function, as described below. One of the challenges for calculations of angular

power spectra of extragalactic dark matter annihilation products is the

development of efficient numerical methods to evaluate FT {ρ2h[σv]h} for a given

model’s halo profiles and annihilation cross section. This calculation would have

taken weeks to complete using the quadpack general purpose Fourier transform

integrator, qawf. With the algorithm described in this section, the results in this

paper were evaluated within a few days of run time on a desktop computer.

*This appendix is reprinted with permission from “Effects of P-wave Annihilation on the Angular
Power Spectrum of Extragalactic Gamma-rays from Dark Matter Annihilation” by S. Campbell and
B. Dutta, Phys. Rev. D 84, 075004 (2011), Copyright 2011 by The American Physical Society.
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A.1 FT {ρ2h}(k|M, z)

This Fourier transform can be expressed as

FT {ρ2h}(k) = 4πρ2sr
3
s

{
−2

3
+

4 + 3c

6(1 + c)2
cos(krsc)

+
11 + 15c+ 6c2 − [(1 + c)krs]

2

6krs(1 + c)3
sin(krsc) +

Si(krsc)

krs
(A.1)

−
(
1− (krs)2

6
1
krs

− krs
2

)( cos(krs) sin(krs)

− sin(krs) cos(krs)

)(
Ci
(
krs(1 + c)

)
− Ci(krs)

Si
(
krs(1 + c)

)
− Si(krs)

)}

where Si and Ci are the sine integral and cosine integral, respectively, for which

efficient numerical methods for evaluation already exist [142]. Evaluating the

line-of-sight integrand for the angular power spectrum near z = 0 requires the

Fourier transform to be evaluated in the k → ∞ regime. One finds that for krs ≫ 1,

FT {ρ2h}(k) = 2πr3sρ
2
s

{
π

krs
− 1

(krs)2

[
8 +

2

c(1 + c)4
cos(krsc)

]
+O

(
(krs)

−3
)}

.

Unfortunately, in the Bullock, et al. model of halo concentrations, the mean halo

concentration vanishes at a maximum halo mass scale. Staying true to the

definition of the model requires evaluating the transform in the vanishing

concentration regime. Here, one should use

(rsρs)
2 =

(
∆vir ⟨ρ⟩Rvir

3

)2
c4[

ln(1 + c)− c
1+c

]2
=

(
∆vir ⟨ρ⟩Rvir

3

)2 [
4 +

32

3
c+

28

3
c2 +O(c3)

]
.

If c≪ 1 and c≪ kRvir (equivalently, krs ≫ 1), then

k FT {ρ2h}(k) = 4π(rsρs)
2

{
Si(kRvir)− 2

[
1− cos(kRvir)

] c

kRvir

+3
[
sin(kRvir)− kRvir cos(kRvir)

]( c

kRvir

)2

+O(c3) +O

((
c

kRvir

)3
)}

.
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In the case where c≪ 1 and c≪� kRvir, then it must be that kRvir ≪ 1, and one

can use

k FT {ρ2h}(k) =4π(rsρs)
2kRvir

c

[
1

3

(
1− 1

(1 + c)3

)
− c

18(1 + c)
(kRvir)

2

+O
(
(kRvir)

4)] .
A.2 FT {ρ2hσ2

uh}(k|M, z)

This Fourier transform is simply expressed in the form

FT {ρ2hσ2
uh}(k) =

4πr2sρ
2
sσ

2
s

k
S(kRvir, c) (A.2)

with the definition

S(x, c) ≡
∫ c

0

sin
(
x
c
t
)

t1−β(1 + t)q
dt, (A.3)

where β = 17/27, as previously defined in (2.124), and q = 16/3 for the NFW

profile. The important result that allows efficient evaluation of S(x, c) for a wide

range of scales for x and c is the set of expansions (see Appendix A.3)

S(x, c) =



cβ

(1 + c)q

∞∑
p=0

(q)p
(β)p+1

ℑ
[
1F1(β; β + p+ 1; ix)

]( c

1 + c

)p
, c ≤ cT

− cβ

(1 + c)q

∞∑
p=0

(q)pℑ
[
eixU(p+ 1, β − q + 1,−ix)

]( 1

1 + c

)p
+Γ(β)ℑ

[
U
(
β, β − q + 1,−ix

c

) ]
, c > cT

(A.4)

where cT is an appropriate transition concentration. The truncation errors of the

two expressions were found to be of the same magnitude near c = 0.8, making it a

reasonable value for cT . Also in the expression appears the gamma function Γ(x),

the Pochhammer symbol

(q)p ≡
Γ(q + p)

Γ(q)
= q(q + 1)(q + 2) · · · (q + p− 1),
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the confluent hypergeometric function of the first kind 1F1(a; b; z) (expressed in the

notation of a generalized hypergeometric function), and the confluent

hypergeometric function of the second kind U(a, b, z).

For c < cT , if x is small, then the hypergeometric functions are most efficiently

evaluated with their power series

ℑ
[
1F1(β; β + p+ 1; ix)

]
=

∞∑
n=0

(−1)n(β)2n+1

(β + p+ 1)2n+1

x2n+1

(2n+ 1)!
.

This is found to work for x > 4. For larger values of x, the functions are quickly

determined from the recurrence relation

1F1(β; β + p+ 1; ix) =
β + p

p

[(
1− i

β + p− 1

x

)
1F1(β; β + p; ix)

+i
β + p− 1

x
1F1(β; β + p− 1; ix)

]
,

or

ℜ
[
1F1(β; β+p+ 1; ix)

]
=
β + p

p

{
ℜ
[
1F1(β; β + p; ix)

]
+
β + p+ 1

x
ℑ
[
1F1(β; β + p; ix)− 1F1(β; β + p− 1; ix)

]}
,

ℑ
[
1F1(β; β+p+ 1; ix)

]
=
β + p

p

{
ℑ
[
1F1(β; β + p; ix)

]
−β + p+ 1

x
ℜ
[
1F1(β; β + p; ix)− 1F1(β; β + p− 1; ix)

]}
.

Since 1F1(β; β; ix) = eix, then only the numerical evaluation of 1F1(β; β + 1; ix) is

needed to be able to determine the rest of the sum’s hypergeometric functions

using the recurrence relation. The power series is suitable for x > 10:

1F1(β; β + 1; ix) =
∞∑
n=0

β

β + n

(ix)n

n!
.
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The asymptotic expansion converges appropriately for x ? 27:

1F1(β; β+1; ix) ≃ Γ(β+1) exp

(
i
βπ

2

)
x−β+β

∑
n=1,2,3,...

(n−β)n−1 exp
[
i
(
x− nπ

2

)]
x−n.

For 10 > x > 27, these series’ do not converge sufficiently with double machine

precision arithmetic. For this short range of x, it is not too much of a burden to

evaluate the function via numerical integration

1F1(β; β + 1; ix) = β

∫ 1

0

eixttβ−1dt.

For large concentrations c > cT , there are two components. The first term depends

only on the ratio x̄ ≡ x/c and requires the evaluation of ℑ[U(β, β− q+1,−ix̄)]. We

can use the perturbative expansion for x̄ ≤ 5, for which a convenient expression is

ℑ[U(β, β − q + 1,−ix̄)] =
∞∑
n=0

[
(−1)(n+1)/2(n mod 2)

Γ(q − β)

Γ(q)

(β)n
(β − q + 1)n

+
π

2Γ(β)Γ(q − β + 1)

(−1)⌊n/2⌋

CSn
(
π(q−β)

2

) (q)n
(q − β + 1)n

x̄q−β

 x̄n
n!
,

Introduced in this expansion is the modulo 2 operation

n mod 2 =

0, n even,

1, n odd,

the floor operation ⌊x⌋ being the largest integer ≤ x, and a trigonometric function

defined as

CSn(x) ≡

cosx, n even,

sinx, n odd.

The asymptotic expansion

ℑ[U(β, β − q + 1,−ix̄)] ≃ x̄−β
∑

n=0,1,2,...

(−1)⌊3n/2⌋CSn+1

(
βπ

2

)
(β)n(q)n

x̄−n

n!
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works sufficiently for x̄ ≥ 40. For the little remaining range of 5 < x̄ < 40, the

integral representation was evaluated numerically.

Γ(β)ℑ[U(β, β − q + 1,−ix̄)] =
∫ ∞

0

sin(x̄t)

t1−β(1 + t)q
dt

To evaluate the functions

ℑ
[
eixU(p+ 1, β − q + 1,−ix)

]
=sin x ℜ

[
U(p+ 1, β − q + 1,−ix)

]
+ cosx ℑ

[
U(p+ 1, β − q + 1,−ix)

]
occuring in the sum, recursion relations can be used again.

ℜ
[
U(p+ 1, β − q + 1,−ix)

]
=

1

p(p+ q − β)

{
xℑ
[
U(p, β − q + 1,−ix)

]
+(2p+ q − β − 1)ℜ

[
U(p, β − q + 1,−ix)

]
−ℜ

[
U(p− 1, β − q + 1,−ix)

]}
ℑ
[
U(p+ 1, β − q + 1,−ix)

]
=

1

p(p+ q − β)

{
−xℜ

[
U(p, β − q + 1,−ix)

]
+(2p+ q − β − 1)ℑ

[
U(p, β − q + 1,−ix)

]
−ℑ

[
U(p− 1, β − q + 1,−ix)

]}
Since U(0, · , · ) = 1, we require only the evaluation of U(1, β − q + 1,−ix). For
x ≤ 4,

U(1, β−q + 1,−ix)

=
1

q − β

∞∑
n=0

(−1)n/2(1− n mod 2)

(β − q + 1)n
− πxq−β

2Γ(q − β)

(−1)⌊(n+1)/2⌋

n!CSn+1

(
π(q−β)

2

)
xn

+
i

q − β

∞∑
n=0

(−1)(n+1)/2(n mod 2)

(β − q + 1)n
− πxq−β

2Γ(q − β)

(−1)⌊n/2⌋

n!CSn
(
π(q−β)

2

)
xn

was used, and for x ≥ 45,

U(1, β − q + 1,−ix) ≃ −
∑

n=0,1,2,...

(q − β + 1)n(ix)
−(n+1)

was evaluated. For the mid-values of x, the integral representation was numerically
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calculated

U(1, β − q + 1,−ix) =
∫ ∞

0

eixt

(1 + t)q−β+1
dt.

For very large values of x, the recursion relations will fail because of loss of

precision, due to subtracted quantities being very near each other. In this regime,

the hypergeometric function in each term of the sum can be evaluated from the

asymptotic series

ℑ
[
eixU(p+ 1,β − q + 1,−ix)

]
≃

∑
n=0,1,2,...

(−1)⌊(n−p)/2⌋CSn+p(x)(p+ 1)n(q − β + p+ 1)n
x−(n+p+1)

n!
.

A.3 Derivation of Equation (A.4)

Let’s begin with the case of c < cT = 0.8 by expanding (1 + t)−q in Equation (A.3)

as a power series, and rescaling t −→ xt/c to get

S(x, c) =
∞∑
m=0

(−1)m
Γ(q +m)

Γ(q)m!

Iβ+m−1(x)

xβ+m
cβ+m,

where

In(x) ≡
∫ x

0

tn sin t dt.

Letting κ = c/(1 + c), we can write the expression in the form

S(x, c) = cβ

(1 + c)q

∞∑
m=0

(−1)m
Γ(q +m)

Γ(q)m!

Iβ+m−1(x)

xβ+m
κm

(1− κ)q+m
,

and expand the κ expression in a power series with shifted indices

(1− κ)−(q+m) =
∞∑
p=0

Γ(q +m+ p)

Γ(q +m)p!
κp =

∞∑
p=m

Γ(q + p)

Γ(q +m)(p−m)!
κp−m.
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Swap the order of summation to find

S(x, c) = cβ

(1 + c)q

∞∑
p=0

Γ(q + p)

Γ(q)

[
p∑

m=0

(−1)m

m!(p−m)!

Iβ+m−1(x)

xβ+m

](
c

1 + c

)p
after substituting c back into κ. The quantity in the square brackets can be

rewritten using the integral representation of the confluent hypergeometric function

1F1(a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

eztta−1(1− t)b−a−1dt

(convergent for ℜ(b) > ℜ(a) > 0), giving

p∑
m=0

(−1)m

m!(p−m)!

Iβ+m−1(x)

xβ+m
=

1

p!

p∑
m=0

(−1)m
(
p

m

)
x−(β+m)

∫ x

0

tβ+m−1 sin t dt

=
1

p!

∫ 1

0

tβ−1

[
p∑

m=0

(
p

m

)
(−t)m

]
sin(xt) dt

=
1

p!
ℑ
[∫ 1

0

tβ−1(1− t)peixtdt

]
=

Γ(β)

Γ(β + p+ 1)
ℑ
[
1F1(β; β + p+ 1; ix)

]
where the second line rescaled t −→ t/x.

For the case of large concentrations c > cT , split S into two terms

S(x, c) = S1

(x
c

)
− S2(x, c)

with

S1(x̄) =

∫ ∞

0

sin(x̄t)

t1−β(1 + t)q
dt,

S2(x, c) =

∫ ∞

c

sin
(
x
c
t
)

t1−β(1 + t)q
dt.
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The first term is

S1(x̄) = ℑ
[∫ ∞

0

eix̄t

t1−β(1 + t)q
dt

]
= Γ(β)ℑ

[
U(β, β − q + 1,−ix̄)

]
,

given that the confluent hypergeometric function of the second kind has the

integral representation

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−ztta−1(1 + t)b−a−1dt

if ℜ(a) > 0 and ℜ(z) > 0. For the second term, first substitute t −→ t− c

S2(x, c) =

∫ ∞

0

sin
(
x
c
(c+ t)

)
(c+ t)1−β(1 + c+ t)q

dt

=
cβ

(1 + c)q

∫ ∞

0

sin
[
x
(
1 + t

c

)](
1 + t

c

)1−β (
1 + t

1+c

)q dtc ,
and then substitute t −→ t/c

S2(x, c) =
cβ

(1 + c)q
ℑ
[
eix
∫ ∞

0

eixt

(1 + t)1−β(1 + κt)q
dt

]
with κ = c/(1 + c), as before. As is appropriate for large values of c, expand as a

power series about κ = 1.

S2(x, c) =
cβ

(1 + c)q

∞∑
p=0

Γ(q + p)

Γ(q)
ℑ
[
eix
∫ ∞

0

eixttp(1 + t)β−q−p−1dt
](1− κ)p

p!

=
cβ

(1 + c)q

∞∑
p=0

Γ(q + p)

Γ(q)
ℑ
[
eixU(p+ 1, β − q + 1,−ix)

]( 1

1 + c

)p
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APPENDIX B

CALCULATING GALACTIC ANNIHILATIONS SIGNALS

FROM AN NFW HALO CORE*

While the density cusp at the center of dark matter halos in the NFW model

causes the observed dark matter annihilation intensity to be infinite in the

direction toward the center of the halo, mean intensities over solid angles including

the center are finite. Baryon cooling and, in larger halos, the presence of a

supermassive black hole are some of the important effects that ultimately generate

a more realistic core profile. To keep the dark matter distribution in the sample

calculations relatively simple, no attempt was made to model these effects. The

NFW profile was simply assumed throughout the halo.

In this appendix, I explain my method for accurate calculation of annihilation

intensity averages I(ψM) from observations over solid angles centered on the

galactic center, with angular radius ψM . Referring to Equations (6.1)–(6.3), the

goal is to evaluate

I(Eγ, ψM) =
σv

8πm2

dNγ

dEγ
(Eγ)J(ψM)

with

J(ψM) =
1

1− cosψM

∫ ψM

0

dψ sinψJ(ψ).

Let x be the distance from the solar system, in units of the galactic halo scale

radius rs,G, along a line of sight at angle ψ from the galactic center, and let x⊙ be

the distance of the solar system from the galactic center, also in units of rs,G. Then

1− cosψM
ρ2s,Grs,G

J(ψM) =

∫ ψM

0

dψ sinψ

∫ xmax(ψ)

0

dx
(
x2 − 2x⊙x cosψ + x2⊙

)−1

×
(
1 +

√
x2 − 2x⊙x cosψ + x2⊙

)−4

,

*This appendix is reprinted with permission from “Extragalactic and Galactic Gamma Rays and
Neutrinos From Annihilating Dark Matter” by R. Allahverdi, S. Campbell, and B. Dutta, Phys.
Rev. D 85, 035004 (2012), Copyright 2012 by The American Physical Society.
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Figure 27: Galactic coordinates used for calculating the mean intensity due to dark
matter annihilation in the smooth component of the galactic halo.

where

xmax(ψ) = x⊙ cosψ +
√
c2G − (x⊙ sinψ)2

expresses the halo boundary and, as before, the halo concentration is

cG = Rvir,G/rs,G. The integrand of J in these coordinates is irregular in the

neighborhood of ψ = 0 and x = x⊙, precisely where the modeled density diverges at

the halo center.

The accurate evaluation of this expression is more easily attained when x is

replaced in favor of θ, as pictured in Fig. 27.

sin θ =
x⊙ sinψ

s
=

x⊙ sinψ√
(x− x⊙ cosψ)2 + x2⊙ sin2 ψ
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In these coordinates,

1− cosψM
ρ2s,Grs,G

J(ψM) =
1

x⊙

∫ ψM

0

dψ

∫ π−ψ

θM (ψ)

dθ

(
sin θ

sin θ + x⊙ sinψ

)4

,

where

θM(ψ) = sin−1

(
x⊙
cG

sinψ

)
.

The inner θ integration is now well defined and easy to evaluate numerically, except

for when ψ = 0, where the θ path of integration becomes degenerate, initially at the

Sun having the value of π, and instantaneously becoming 0 when crossing the

galactic center. Since this degenerate point is an end of the ψ integration, it is

sufficient for numerical evaluation to consider the value of the inner integration in

the limit as ψ approaches 0.

For ψ −→ 0, we have θM −→ x⊙ψ/cG −→ 0, and the inner integral approaches∫ π−ψ

θM (ψ)

dθ

(
sin θ

sin θ + x⊙ψ

)4

−→
∫ π

0

dθ = π.

For ψ = π, the θ integration path is simply of zero measure with θ = 0 constant

along the path. Therefore, the inner integration vanishes for this value of ψ.
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