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ABSTRACT 
 
 
 

Systematic Analysis of Genetic and Pharmaceutical Modulators of the Eukaryotic Cell  
 

Cycle. (August 2012) 
 

Scott Allen Hoose, B.A., Texas A&M University 
 

Chair of Advisory Committee, Dr. Michael Polymenis 
 
 

Cell replication and division are central to the proliferation of life, and have 

implications for normal growth and development as well as disease state. Assembly of a 

complete picture of the systems which control this process requires identification of 

individual genetic components, but the identity and complete sequence of events that 

trigger initiation of cell division, at a point called START in yeast, remain unknown. 

Here, we evaluated panels of non-essential single gene deletion strains and tested the 

effects of FDA-approved drugs on cell-cycle progression, using flow cytometry to detect 

altered DNA content. 

Previous studies relied mainly on cell size changes to systematically identify 

genes required for the timely completion of START. This analysis revealed that most 

gene deletions that altered cell-cycle progression did not change cell size. Our results 

highlight a strong requirement for ribosomal biogenesis and protein synthesis for 

initiation of cell division. We also identified numerous factors that have not been 

previously implicated in cell-cycle control mechanisms. We found that cystathionine-β-

synthase (CBS) advances START in two ways: by promoting cell growth, which 
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requires CBS’s catalytic activity, and by a separate function which does not require that 

activity. CBS defects cause disease in humans, and in animals CBS has vital, non-

catalytic, unknown roles. Hence, our results may be relevant for human biology.  

Screening chemical libraries to identify compounds that affect overall cell 

proliferation is common. However, it is generally not known whether the compounds 

tested alter the timing of particular cell-cycle transitions. Our approach revealed strong 

cell-cycle effects of several commonly used pharmaceuticals. We show that the 

antilipemic gemfibrozil delays initiation of DNA replication, while cells treated with the 

antidepressant fluoxetine severely delay progression through mitosis. We discovered a 

strong suppressive interaction between gemfibrozil and fluoxetine. The novel interaction 

between gemfibrozil and fluoxetine suggests that identifying and combining drugs that 

show cell-cycle effects might streamline identification of drug combinations with a 

pronounced impact on cell proliferation. 

Our studies not only transform our view of START, but also expand the 

repertoire of genetic and chemical means to modulate the eukaryotic cell cycle.
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1. INTRODUCTION AND 

LITERATURE REVIEW*

 

"Omnis cellula e cellula" ("Every cell from a cell") 

 - François-Vincent Raspail, popularized by Rudolph Carl Virchow, 1858 

 

All life as we know it is physically organized into autonomous or semi-autonomous 

membrane-bound structures called cells. The phrase above was coined at a time when 

the scientific community had just begun to accept the concept that cells do not, and in 

fact cannot, arise spontaneously from non-cellular precursors, but rather must be 

generated from pre-existing cells through a process of division. Debate of whether 

simpler structures by definition should be considered life is beyond the scope of this 

thesis, but it nevertheless holds true that even in the cases of the prototypical example of 

viruses, interaction with cellular life is required in order to proliferate. Thus, even 

though specifics of cellular structure and role vary widely across diverse phylogenetic 

taxa and even from tissue to tissue within individual higher-order organisms, the 

requirement for a cellular progenitor is an axiom for cell origination, and by extension 

the proliferation of all life. In addition, the mechanisms by which eukaryotic cells  

____________ 
This dissertation follows the style of Molecular and Cellular Biology. 
*Major portions of this dissertation have been adapted from Hoose SA et al. 2012. 
A systematic analysis of cell cycle regulators in yeast reveals that most factors act 
independently of cell size to control initiation of division. PLoS Genet. Mar;8(3):
e1002590. Epub 2012 Mar 15 and Hoose SA et al. 2012. Systematic analysis of cell 
cycle effects of common drugs leads to the discovery of a suppressive interaction
between gemfibrozil and fluoxetine. PLoS One 7(5): e36503. 
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accomplish that division are often highly conserved. Therefore, an accurate and 

complete understanding of the systems which comprise and regulate the replicative 

process could arguably be considered central to our understanding of life itself. 

Cells contain or can synthesize the internal structures and molecular machinery 

required for them to replicate through division. Subcellular components must also be 

replicated, and, as in the case of any complex constructive process, there exist systems 

which gather the necessary resources, assess the current state of the system, commit to 

the process, produce or organize the machinery specific to replication and division, and 

then subsequently initiate the process at the proper time and place. Throughout the 

regimen, components of these and other pathways must be appropriately activated and/or 

deactivated, in response to specific internal and external stimuli. As with most aspects of 

cellular life, the replicative program is encoded at its highest level in the genetic material 

of the cell, resulting in the expression of factors which may themselves serve to regulate 

the expression of other genes or effect other metabolic, structural, or regulatory changes 

to the cell environment. Thus, it is important, so far as we are currently able, to define 

the contributions of individual genes to this process. This initially requires experimental 

identification of those genes which impact it most significantly. Much is currently 

known about the cell cycle, the program by which a cell prepares to divide and then 

undergoes division, in the process giving rise to one or more daughter cells, but science 

demands that existing models and paradigms be expanded and re-evaluated as additional 

data becomes available. 
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In multicellular organisms, proper regulation of cell growth and division is 

critical for proper tissue/organ growth and development, as well as regenerative 

capabilities, for example, in wound healing. Disruption of the proper progression of this 

program can result in termination of the process, death of the cell, or misregulated or 

even unregulated division. These effects can manifest themselves as a pathology, such as 

cancer. From a basic scientific standpoint, we seek ultimately to fully understand the 

endogenous systems: how they are organizationally structured, how they respond to 

various differential environmental and metabolic stimuli, and how defects in those 

systems affect phenotype. From a medical or engineering perspective, we seek effective 

ways to manipulate that process, either in therapeutic response to disrupted or diseased 

state, or as prophylaxis. In this thesis, we expand the body of knowledge relative both to 

the basic understanding of the natural process and to possibilities of its modulation, 

using the yeast Saccharomyces cerevisiae as a model organism. 

S. cerevisiae is an important eukaryotic model for many reasons, including ease 

of culture and availability of a wide variety of genetic and bioinformatic resources. 

These include the entire sequence of the yeast genome, and commercial gene deletion 

panels for both diploid and haploid strains which cover the vast majority (>90%) of the 

genome. Most importantly, many key discoveries pertaining to higher-order eukaryotes 

have been made through study of yeast homologs. General cell organization and mitotic 

cell-cycle progression are highly conserved from yeast to humans; in fact, the yeast and 

human homologs of the central regulator of the cell cycle, the cyclin-dependent kinase 

Cdk1 (yeast gene CDC28, human CDC2), share 60-65% sequence similarity, and human 
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Cdc2 can complement the yeast cdc28 mutation. The cell cycle consists of multiple 

phases: a) interphase, which includes Gap 1 (G1), Synthesis (S), and Gap 2 (G2) 

subphases, during which the cell assesses its status and commits to replication (G1) and 

synthesizes a copy of its DNA (S), and b) mitosis, during which the cell divides. Thus, 

by definition, progression from G1 to G2 is delineated by DNA synthesis, and 

measurement of DNA content of the cell is the most fundamental indicator of the cell-

cycle phase it currently occupies. 

Understanding cell division requires knowing not only how, but also what 

determines when cells divide. Previous studies identified several components of the 

machinery that drives the cell cycle. However, it is not clear how cellular pathways 

impinge on the cell division machinery to initiate cell division. This is a critical gap in 

our understanding, since this process governs overall proliferation: once cells initiate 

their division, they are committed to completing it.  

In proliferating cells, the G1 phase of any given cell cycle lasts from the end of 

the previous mitosis until the beginning of DNA synthesis. In unfavorable growth 

conditions, eukaryotic cells typically stay longer in G1, delaying initiation of DNA 

replication (5, 15, 42, 48, 50, 83, 97). Subsequent cell-cycle transitions, culminating with 

mitosis, are less sensitive to growth limitations, and their timing does not vary greatly, 

even if growth conditions worsen. Hence, differences in the length of the G1 phase 

account for most of the differences in total cell cycle, or generation times, between the 

same cells growing in different media, or among different cells of the same organism. 

Such fundamental observations support the notion that eukaryotic cells commit to a new 
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round of cell division at some point in late G1 (5, 50, 75, 76). Budding yeast cells also 

evaluate their "growth" in late G1 at a point called START, before DNA synthesis in S 

phase (83). In favorable growth conditions, and in the absence of mating pheromones 

(for haploids), or meiotic inducers (for diploids), cells pass through START (83). 

Passage through START and commitment to cell division precedes a large 

transcriptional program and additional events that lead to initiation of DNA replication 

(25, 30, 96).  

The lack of a detailed view of upstream regulatory networks that govern the 

timing of START in the yeast Saccharomyces cerevisiae is surprising, given the rich 

history of the field. The classic cdc screen identified factors essential for START, such 

as Cdc28p (83), the main yeast cyclin-dependent kinase (Cdk). However, the cdc screen 

did not target nonessential regulators, such as the cyclin regulatory subunits of Cdc28p 

(8). Other efforts relied on gene-specific suppression (28, 39, 40, 85, 103) or sensitivity 

to mating pheromones (21, 26). By far, however, most approaches to identify regulators 

of START interrogated cell size. Almost half a century ago, a relationship between the 

size or mass of a cell and the timing of initiation of DNA replication was described from 

bacterial (24), to mammalian cells (58). Indeed, a newborn budding yeast cell is smaller 

than its mother is, and it will not initiate cell division without first increasing in size (83). 

Thus, it appears that there is a critical size threshold for START completion in yeast. 

Based on this concept of a critical size, the question of "when do cells divide?" was 

reduced to "what size are cells when they divide?" Hence, several screens for regulators 

of START interrogated cell size (16, 52, 82, 102, 120). In fact, systematic, genome-wide 
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approaches to find genes required for the correct timing of START relied solely on cell 

size changes (52, 120).  

Any gene deletion that alters the length of the G1 phase relative to the rest of the 

phases of the cell cycle will alter the DNA content profile. Thus, the DNA content of a 

population reports on the relative length of the G1 phase directly, by identifying the 

fraction of cells with unreplicated genome. In yeast, DNA content analyses measured the 

effects of gene over-expression on cell-cycle progression (70, 101), or cycle arrest when 

essential genes were turned-off (118). However, the yeast single-gene deletion 

collections have not been evaluated with this method.  

To assess cell-cycle progression more directly, we evaluated by flow cytometry 

the yeast deletion collection of nonessential genes for altered DNA content. We found 

that most gene deletions that altered cell-cycle progression did not change cell size. Our 

results suggest that evaluating the length of the G1 phase of the cell cycle, instead of cell 

size, provides a much more accurate view of the contribution of individual gene products 

to the timing of START and commitment to cell division. We also documented a strong 

requirement for ribosomal biogenesis for initiation of cell division, and identified 

numerous factors that have not been implicated previously in cell-cycle control 

mechanisms. One such factor is the metabolic enzyme cystathionine-β-synthase (CBS; 

Cys4p in yeast). We discovered a novel, non-catalytic role of CBS in accelerating 

START.  

Taken together, the data we present here substantially expand the range of factors 

that affect initiation of cell division. We discuss the significance of our finding that most 
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gene deletions that change the length of the G1 phase do not alter cell size, in the context 

of models that center on the role of cell size at START. 

Adjusting rates of cell proliferation is the objective of many therapeutic strategies. 

Most often, the goal is to impede or block cell proliferation of target cells, as with 

chemotherapy in cancer. In other cases, as in tissue regeneration, the goal is to promote 

cell proliferation. Proliferating eukaryotic cells pass through a series of highly regulated 

cell-cycle phases, culminating with mitosis (83). Hence, drugs that influence the timing 

of cell-cycle transitions are useful in efforts to adjust rates of cell proliferation.  

Identifying drugs that potentiate the effects of other drugs is the leading 

therapeutic strategy in the treatment of numerous diseases, such as cancer (93), 

tuberculosis (13) and HIV-AIDS (79). Conversely, drug interactions may suppress a 

desired response, or even lead to a harmful outcome. Screening libraries composed of a 

few hundred thousand compounds for a sought-after effect of a single chemical is now 

common (46). However, testing all the possible combinations, even binary ones, of these 

chemicals represents a formidable obstacle (10).  

Here we report a systematic analysis of cell-cycle progression of yeast cells 

exposed to a panel of FDA-approved drugs. We document novel cell-cycle effects of 

several compounds. We also reasoned that drugs that affect cell-cycle progression might 

be more likely to display interactions with other such drugs, and thereby greatly impact 

overall cell proliferation. We demonstrate one such novel drug interaction, between 

gemfibrozil and fluoxetine. 



 8

2. RESULTS 

 

2.1 Genetic deletion analysis 

 

Rationale and outline of the experimental design. We measured the DNA content 

during exponential growth in rich media (YPD-2% dextrose (55), see Materials and 

Methods), for several reasons: First, exponential growth in liquid media affords much 

greater reproducibility (90). Second, for the haploid deletion strains, cell size 

measurements during the same growth conditions are available (52). Third, fitness data 

during growth in the same rich media are available (35), providing another parameter for 

interpreting our findings. 

 We used the homozygous diploid deletion panel to query the nonessential genes, 

to minimize the effects of aneuploidy found in a substantial portion of haploid deletion 

strains (47). We evaluated strains individually (Fig. 1). We quantified each sample in an 

automated manner, recording the percentage of cells with unreplicated genome (%G1, 

see Materials and Methods). We did not quantify complex profiles (e.g., due to cell 

separation defects, see Fig. A-1), and we excluded these strains from further analyses. At 

the beginning and end of most batches of strains, we measured the reference wild type 

strain (BY4743), which was cultured and processed along with the deletion strains. To 

identify strains with altered cell cycle, we compared the frequency distribution of the 

deletion strains against a normal distribution fit of the wild type (31.17% ±5.20, n=250) 

samples (Fig. 2). Deletion strains that had a %G1 greater or less than two standard 
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deviations of the wild-type distribution were considered to differ significantly from wild 

type, and we evaluated them further (see Materials and Methods). 

 

 

FIG 1 Schematic overview of our approach. For a detailed description of all the protocols we used, see 
Materials and Methods. 
 



 10

 

FIG 2 DNA content screen identifies genes required for normal cell-cycle progression. Cumulative 
histogram displaying the percentage of cells in the G1 phase of the cell cycle (%G1), for homozygous 
diploid deletion strains. The bin width of the histogram is 1%, with each bin containing all the strains with 
values within the bin boundaries. The black line superimposed to this histogram is the normal distribution 
fit of the %G1 values of the reference wild type strain. Bins with values >2 sd from the mean of the wild 
type distribution are in red ("Low G1" group) and green ("High G1" group). 
 
 

A large number of gene deletions affect the G1 phase of the cell cycle. From all 

strains analyzed successfully (n=4, 342; Dataset C-1), 152 were in the "High G1" group, 

but only 16 were in the "Low G1" group. Hence, the majority of gene deletions that 

affect cell-cycle progression lead to a G1 delay (Fig. 2). We expect that additional gene 

deletions affect cell-cycle progression, but were not included in the "High G1" or "Low 

G1" groups, for at least two reasons: experimental error; and imposition of restrictive 

cutoffs (>41.57%G1 for the "High G1" group and <20.77%G1 for the "Low G1" group). 

An example of the latter is whi5Δ cells, which lack an inhibitor of START (20, 22). 

whi5Δ cells clearly had "Low G1" DNA content, with ~25% of cells in G1 (compared to 
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~31% for wild type cells), but that value was still within 2 sd of the WT mean (Fig. 2). 

To examine the issue of false negatives in more detail, we determined the timing of 

START in two strains, which were close to our cutoffs, but not included in the candidate 

lists. Each of these strains lacked a protein kinase of unknown function: Kns1p (74) 

(kns1Δ cells had a 27% G1 score), or Tda1p (86) (tda1Δ cells had a 39% G1 score). 

 DNA content measurements from asynchronous cultures only reflect the relative 

duration of the G1 phase compared to the rest of the cell-cycle phases. For example, a 

given deletion could increase the length of not only the G1 phase, but also subsequent 

phases. In that case, if the mitotic phases are disproportionately expanded compared to 

the G1 phase, that strain will display a "Low G1" DNA content, despite its lengthened 

G1 phase. To address this possibility, we obtained estimates of the absolute length of the 

G1 phase. The length of the G1 phase of a strain cultured in any given medium can be 

measured if one knows three parameters: i) the size of newborn cells ("birth" size). ii) 

the "critical size" these newborn daughter cells must attain to initiate cell division. iii) 

the rate ("growth rate") at which they grow from their birth size to their critical size. 

Values for each of these variables can be obtained in yeast studies. From cell size 

distributions of log-phase cultures obtained with a channelyzer, daughter "birth" size was 

defined as the maximum size of the smallest 10% of cells on the left side of the cell size 

distribution of each strain. Wild type, kns1Δ and tda1Δ cells had indistinguishable cell 

size distributions (Fig. A-2A), and the same birth size (~35 fl), in this medium (YPD-

0.5% Dextrose). To obtain the "critical size" and "growth rate" of these strains, we 

examined highly synchronous, elutriated cultures (6, 7, 43). As a function of time, we 
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measured cell size and the percentage of budded cells (budding correlates with START 

completion). We found that there was no difference between wild type and kns1Δ cells 

(Fig. A-3). In contrast, tda1Δ cells delay START, not because they have altered critical 

size (Fig. A-3B), but because they reach that size more slowly than do wild type cells 

(Fig. A-3A). Hence, our cutoffs exclude some gene deletions with cell-cycle effects, 

such as whi5Δ or tda1Δ cells. Therefore, despite the large number of gene deletions we 

identified to alter cell-cycle progression significantly, we have likely underestimated that 

number. 

 

Most gene deletions that affect cell-cycle progression do not alter cell size. We found 

that reduced fitness (35) correlates with altered cell-cycle progression to some degree 

(Fig. 3). Nevertheless, many gene deletions affect cell-cycle progression, without 

affecting fitness. Cells that spend relatively more time in a particular cell-cycle phase 

may not display reduced fitness because reciprocal, compensatory changes in the 

duration of other cell-cycle phases may result in no net change in total generation time. 

Several known cell-cycle mutants behave in this manner (e.g., whi5 cells (52)). 
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FIG 3 Decreased fitness correlates with altered cell-cycle progression. The y-axis shows the fitness values 
of Giaever et al (35). Higher values indicate reduced fitness. The cutoff for reduced fitness was about 
<85% of the wild type in that study (35). Thus, strains with possible small reductions in fitness have been 
assigned a "WT-like" fitness score of 1. Giaever et al (35) evaluated fitness of the same strains we used, 
during growth in rich (YPD-2%Dextrose) liquid media, allowing for a direct comparison with our dataset. 
We used the non-parametric Spearman test to obtain the correlation (r) values we show. The correlation 
coefficient for all the strains (rT) is shown at the bottom right of the graph. We colored the r values for the 
sub-groups as in Fig. 2. For every gene we included in this analysis, the values we used in this correlation 
are shown in Dataset C-1. 
 
  

 We then compared %G1 values against cell size (52, 120). We expected a strong 

negative correlation between cell size and the fraction of cells with unreplicated genome, 

since cells grow larger as they advance in the cell cycle. Remarkably, however, there 

was only a very weak, negative correlation between %G1 and cell size (r=-0.14, Fig. 4 

and A-4). Most of the deletion strains displaying a longer G1 (the "High G1" group) did 

not have altered cell size (Fig. 4, strains between the dashed lines; and Fig. A-4). 

Conversely, many strains classified as size mutants (52, 120) did not have significantly 
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altered DNA content (Fig. 4, open circles outside the dashed lines, and Fig. A-4). These 

data show that changes in cell size are neither necessary nor sufficient for altered cell-

cycle progression. In the Discussion, we describe the implications of these results in the 

context of previous attempts to identify cell-cycle regulators based on cell size changes. 

 

 

FIG 4 Cell size correlates poorly with DNA content. We plotted the %G1 (x-axis) from all the deletion 
strains we examined against the haploid median cell size (in fl, y-axis) data of Jorgensen et al (52). The 
dashed lines indicate the cutoffs used to define whi (bottom) and lge (top) mutants in that study. We 
calculated and displayed the r values as in Fig. 3. For every gene we included in this analysis, the values 
we used in this correlation are shown in Dataset C-1. 
 
 

 Along with DNA content, we also analyzed the forward scatter (FSC) from the 

same flow cytometry experiments. FSC values often serve as a proxy for cell size, 

especially in animal model systems (4, 59). An overall negative correlation between FSC 

values and %G1 was present (r=-0.26, Fig. A-5). However, we noticed some 
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discrepancies. For example, in the "High G1" group %G1 correlated to some extent with 

FSC (r=-0.31), but much less with actual cell size (r=-0.09, Fig. 4). We then correlated 

FSC values to cell size. Surprisingly, for the majority of strains, FSC values do not 

correlate well with published (52, 120) cell size values (Fig. A-6). These data generally 

suggest that inferring cell size phenotypes from FSC measurements is problematic. 

We next asked if there is a correspondence between genes that affect cell division 

when over-expressed, with genes required for normal cell-cycle progression. We 

compared our data set to the genes identified in a systematic over-expression screen, 

which also relied on DNA content changes (70). In only one case did over-expression of 

a non-essential gene have the reciprocal effect of its deletion (NIP100, encoding the 

large subunit of dynactin; Table B-2). On the other hand, about half of the deletion 

strains with a low budding index (119) also had a high %G1 (Table B-3). This is 

reasonable, since budding correlates with START completion (83). 

 

Deletion of genes involved in ribosomal biogenesis and protein synthesis delay 

START. The "Low G1" group is enriched for "cell cycle" gene ontologies (Table B-4). 

We point out the sic1Δ strain, which was the 2nd-highest ranked strain of the group. 

Sic1p is a Cdk inhibitor of Clb/Cdk complexes, which is destroyed before cells initiate 

DNA replication (8). Cells lacking Sic1p are not small size mutants (52, 120), and Sic1p 

was identified biochemically, as a Cdk-associated protein (68). The "High G1" group is 

enriched for genes involved in "cytoplasmic translation" and "ribosome biogenesis" 
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(Table B-5). This is consistent with protein synthesis and ribosome biogenesis being 

required for the timely completion of START (2, 42, 69, 80, 107). 

 In our analyses, we considered a high G1 DNA content and a lengthened G1 

phase indicative of delayed START. We noticed that some of the genes involved in 

ribosome biogenesis and protein synthesis that we found with a "High G1" DNA content, 

were also classified by others as small size mutants with accelerated START (52, 53). 

For example, sfp1Δ cells, which lack a transcription factor important for ribosome 

biogenesis (31, 52, 67), was the 2nd highest-ranked gene deletion in our "High G1" group 

(see Fig. A-1 and Dataset C-1). Yet, although the high G1 DNA content of sfp1Δ cells 

was noted (52), because of the small size of sfp1Δ cells, others concluded that START 

was accelerated in these cells (53). 

 To resolve these discrepancies, we decided to examine transit through G1 and 

START completion in sfp1Δ cells. We did these experiments in YPD medium with 2% 

Dextrose, because Jorgensen et al used the same medium in a similar analysis of sfp1Δ 

cells (53). Under these conditions, wild type cells have a "birth" size of 42.12±1.23 fl 

(n=3) and a "critical" size of 61.53±0.64 fl (n=8). We found that sfp1Δ cells had 

dramatically reduced "birth" (16.04±0.62 fl, n=3, P=6.9x10-5 based on a t test, see Fig. 

A-2B) and "critical" (39.23±0.53 fl, n=6, P=2.1x10-10, Fig. 5C, A-7) sizes, and "growth 

rate" (Fig. 5A, 5B, A-7). We calculated the "growth rate" differences between wild type 

and sfp1Δ cells in two different ways (see Materials and Methods), assuming that growth 

is exponential or linear. If growth is exponential, then sfp1Δ cells grow at ~50% the rate 

of wild type cells (Fig. 5B, A-7). If growth is linear, then sfp1Δ cells grow at ~30% the 
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rate of wild type cells (Fig. 5A, A-7). For all other comparisons of "growth rates" 

between different strains that we present in this study, we obtain similar results, 

regardless of whether we plot size increases in an exponential or a linear manner, 

because the overall size of those strains is similar to wild type. However, given the 

strong cell-size phenotype of sfp1Δ cells, and since exponential growth incorporates cell 

size differences (i.e., smaller cells grow more slowly than large cells), the growth rate 

decrease of sfp1Δ cells compared to wild type appears somewhat less if one assumes 

exponential increase in size. Nonetheless, regardless of whether growth is linear or 

exponential, it is clear that the G1 phase of sfp1Δ cells is substantially expanded (~4-fold, 

see Materials and Methods for calculations). Cells lacking Sfp1p have a long G1 because 

they are born sufficiently small and grow sufficiently slowly to overcompensate for any 

theoretical shortening of the phase due to small critical size. Therefore, their small size 

notwithstanding, we conclude that START is severely delayed in sfp1Δ cells. We expand 

on this interpretation further in the Discussion. 
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FIG 5 Deletion of genes involved in ribosome biogenesis delay START. (A) Rate of cell size increase 
(shown as growth rate, in fl/min) for the indicated strains was measured from synchronous elutriated 
cultures, in YPD-2% Dextrose medium. The average value for each strain was calculated assuming linear 
growth and is shown with a horizontal bar (± sd). Where indicated, the P values shown were calculated 
from two-tailed t tests. The data used to calculate these values are shown in Fig. A-7A. (B) The specific 
rate of cell size increase constant k (in h-1) was measured from the same elutriation experiments shown in 
A, assuming exponential growth. The data used to calculate these values are shown in Fig. A-7B. (C) The 
critical cell size of the indicated strains (shown in fl), was measured from the same elutriation experiments 
shown in A and B (see also Fig. A-7C). 
 
 

 To probe the connection between ribosomes and START further, we next 

evaluated rps0bΔ cells, another mutant with small size (52), lacking one of the Rps0 

variants of the 40S ribosome particle. Cells lacking RPS0B have a high G1 DNA content 

(54%, see Dataset C-1). We found that rps0bΔ cells have a reduced "birth" size 

(34.53±1.89 fl, n=3, P=0.007 based on a t test, see Fig. A-2B), an increased "critical" 

size (70.06±1.90 fl, Fig. 5C, A-7), and a slow "growth" rate (Fig. 5A, 5B, A-7). From 

these data, we conclude the following: i) since each of these changes alone would be 

sufficient to prolong G1, the combination of all three adequately explain the significant 

G1 delay of rps0bΔ cells, ii) "birth" size is not necessarily a predictor of "critical" size, 
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and vice versa, since the two values can be highly discordant, as in rps0bΔ cells, and iii) 

DNA content measurements incorporate contributions of all these variables, including 

growth rate, successfully identifying the long G1 and delayed START of rps0bΔ cells. 

 Next, we examined if there are any patterns in the requirement of ribosomal 

proteins for the timely completion of START. Intriguingly, although deletion of 

ribosomal protein subunits delayed START in general, the effect was much greater upon 

loss of 40S ribosomal proteins (RPSs), compared to the 60S subunits (RPLs; Fig. 6A). In 

contrast, loss of RPSs or RPLs had similar effects on fitness (Fig. 6B) and cell size (Fig. 

6C). 

 

Networks of genes affecting cell-cycle progression. Factors with related biological 

functions show genetic interactions more often than expected by chance (104). We 

queried the BioGRID database (100), for interactions among the genes we identified. 

Most of the factors of the "Low G1" group have multiple interactions with each other 

(Fig. 7). In the "High G1" dataset, we also noted several highly connected factors (Fig. 

8), including the SR protein kinase Sky1p, similar to human SRPK1, which is involved 

in regulating proteins involved in mRNA metabolism. A group of genes in the "High 

G1" dataset that does not appear to interact with the rest of the group is composed of 

subunits of the vacuolar ATPase (Fig. 8, bottom). Finally, we also noted an interaction 

between a metabolic enzyme, Cys4p, and the Cdk Cdc28p (34). 
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FIG 6 Phenotypes of ribosomal proteins. We grouped strains (n=53) that lack ribosomal proteins of the 
60S subunit (RPL), against strains (n=43) that lack ribosomal proteins of the 40S subunit (RPS). We then 
compared the two groups based on the %G1 DNA content (this study, (A); fitness (data from Giaever et al 
(35), (B); or haploid median cell size (data from Jorgensen et al (52), (C)) The box plots were generated 
with Microsoft Excel. The box represents the middle 50% of the data range (from the 25th percentile to 
the 75th percentile). The band within the box is the median, while the cross shows the mean. The ends of 
the whiskers represent the lowest datum still within 1.5 of the interquartile range (IQR) of the lower 
quartile, and the highest datum still within 1.5 IQR of the upper quartile. Any data points not included 
within the whiskers are shown as outliers, displayed as filled circles. For the fitness data in B, the lower 
quartiles are not visible, because they are equal to 1 (i.e., most strains have fitness values similar to WT). 
The P values were calculated from t tests. 
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FIG 7 Network representation of the "Low G1" group. The interactions shown are from the gold-standard 
reference database BioGRID (100). The network was constructed with Cytoscape (98), and displayed 
using an unbiased, force-generated layout. Only the factors that showed interactions (physical or 
functional) are included. We also included the essential gene CDC28 (shown in red), encoding the major 
yeast Cdk.  
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FIG 8 Interactions among the factors of the "High G1" group. The network of interactions was constructed 
and displayed as in Fig. 7. We also included factors with known roles at START (shown in red), which 
were not identified in our study. Among the G1 cyclins, we only included Cln3p, which is responsible for 
initiating the positive feedback loop of the large G1/S transcriptional program (25, 30, 96). The other G1 
cyclins, Cln1p and Cln2p, are important for this feedback, once it is initiated by Cln3p, but they were not 
included in this network. 60S ribosomal proteins are in yellow, while 40S ribosomal proteins are in orange. 
The most highly connected factors among the ones we identified are in green, and Cys4p is in blue. 
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A non-catalytic function of Cys4p promotes START. CYS4 encodes the yeast CBS. 

We focused on Cys4p because we had previously shown that cells with a hypermorphic 

CYS4 allele accelerate START (6). Since the loss of Cys4p delays START (see Dataset 

C-1), we queried the effects of Cys4p over-expression on START. To measure the 

timing of START, we examined highly synchronous, elutriated cultures. All strains cells 

had indistinguishable cell size distributions (Fig. A-2C) and the same birth size (~14 fl, 

Fig. A-2C) in this medium (YPGal-3% Galactose). Consistent with Cys4p’s metabolic 

role (6), we found that over-expression of Cys4p, but not of the catalytically inactive 

Cys4p-S289D variant (84), increased growth rate (Fig. 9A). Over-expression of Cys4p 

also reduced the critical size for START (Fig. 9B). Hence, wild type Cys4p accelerates 

START both by increasing growth rate, and by reducing critical size. Taking both of 

these variables into account, we conclude that over-expression of Cys4p shortens the 

length of the G1 phase by ~30% (see Materials and Methods for calculations). 

Remarkably, over-expression of Cys4p-S289D also decreased critical size (Fig. 9B, 

right). These results suggest that Cys4p promotes START in two ways: first, by 

promoting cell growth, which requires its catalytic activity, and second, by reducing 

critical size fully independently of catalytic activity. 
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FIG 9 Cys4p advances START both by promoting cell growth and by a separate function, which does not 
require CBS’s catalytic activity. (A) Rate of cell size increase (shown as growth rate, in fl/min) for the 
indicated strains was measured assuming linear growth from synchronous elutriated cultures in media that 
contain galactose and induce expression of the PGAL alleles (see Materials and Methods). The average 
value for each strain is shown with a horizontal bar (± sd). Where indicated, the P values shown were 
calculated from two-tailed t tests. The data used to calculate the values shown in A and B are in Fig. A-8. 
(B) The critical cell size of the indicated strains (shown in fl), was measured from the same elutriation 
experiments shown in A (see also Fig. A-9). The analogous experiments in non-inducing, glucose 
containing, medium are shown in Fig. A-9. 
 
 

 Yeast lacking CYS4 can be viable if supplemented with cysteine (18). In the 

standard S288c strain background we used here, cys4Δ cells proliferate more slowly than 

wild type (~2 to 3-fold), even in rich media (35). In humans, patients with CBS 

deficiency have high levels of homocysteine. These patients have brain, skeletal and 

vascular abnormalities (33). There are more than 130 pathogenic CBS mutations, but not 
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all of them affect the activity of CBS (92). Cbs-/- mice have high levels of homocysteine 

(>200µM) and die within weeks after birth (112). In Cbs-/- mice, cells critical for the 

development of the cerebellum cannot proliferate (27). Introducing human CBS alleles 

that encode inactive enzymes did not reduce the homocysteine levels of these mice, but 

these transgenes did rescue the neonatal lethality of Cbs-/- mice (111). Thus, in animals, 

CBS must have essential, non-catalytic roles. Because of these observations, we asked if 

the catalytic role of Cys4p is separable from the proliferative defects associated with loss 

of Cys4p in yeast. We generated strains that express Cys4p-S289D at endogenous levels 

(Fig. 10A, lanes 3 & 4). These strains are cysteine auxotrophs (Fig. 10B, middle panel), 

consistent with their lack of Cys4p catalytic activity. However, when cysteine is present, 

they proliferate much better than strains that lack Cys4p altogether (Fig. 10B, lower 

panel). These results are in remarkable agreement with the data in mice: loss of CBS 

leads to proliferative and metabolic defects (homocysteinuria in mice, cysteine 

auxotrophy in yeast). In both organisms, inactive CBS does not suppress the metabolic 

defects, but it suppresses the proliferative defects. 
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FIG 10 Cys4p has a vital, non-catalytic role in cell proliferation. (A) Immunoblots showing the levels of 
Cys4p in the indicated strains, detected with an antibody against human CBS. We probed the same blot 
with an antibody against yeast Cdc28p, to indicate loading. (B) Growth of the same strains on rich (YPD) 
and synthetic minimal media (SMM). We added cysteine (at 2.5 mM), to the SMM plate at the bottom. All 
strains were spotted on plates at 5-fold serial dilutions from liquid cultures, starting at ~5, 000 cells. 
 
 

2.2 Atypical or unquantifiable cytometry profiles 

 

As detailed above, we interrogated the yeast deletion collection of nonessential genes for 

altered DNA content by flow cytometry (45). Most strains displayed DNA content 

histograms with well-defined peaks, corresponding to cells with unreplicated (G1 phase 

of the cell cycle), or fully replicated genome (in the G2 or M phases of the cell cycle). 

Well-defined DNA content profiles allow for automated quantification of the percentage 

of cells in different phases of the cell cycle. However, we could not include in that 

analysis deletion strains with complex, unquantifiable DNA content profiles. These 

DNA content profiles could arise from abnormal DNA replication, chromosome 
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segregation, cytokinesis or cell separation. Hence, information from DNA content 

analysis will be helpful to efforts aiming to understand these important cellular processes. 

Here, we present a survey of all the deletion strains that reproducibly displayed complex 

DNA content profiles. To our knowledge, such an analysis has not been reported 

previously. 

We visually examined and manually curated each DNA content profile. We 

identified deletion strains that in at least two independent experiments reproducibly 

displayed complex DNA content profiles. In arranging the DNA content histograms, we 

took into account not only the overall appearance of each profile, but also the mean 

fluorescence intensity in each case (mean FL-A values, see Fig. 11). For example, cells 

lacking HFI1, encoding a protein adaptor of the SAGA histone acetyltransferase-

coactivator complex (3), had a DNA content profile with some well-defined peaks. 

However, the profile was shifted overall, to the left along the x-axis, with low mean 

fluorescence intensity (Fig. 11). The left-most peak may represent hfi1Δ cells with sub-

G1 DNA content. Alternatively, the overall shift to the left may result from lower overall 

DNA staining, perhaps due to unusual chromatin structure of hfi1Δ cells. 
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FIG 11 Homozygous diploid deletion strains with complex DNA content. BY4743 is the wild type, 
diploid reference strain. For all other strains, DNA content histograms from two independent experiments 
are shown in each case. Fluorescence is plotted on the x-axis, while the number of cells analyzed is on the 
y-axis. The plate ID number refers to the position of these strains in 96-well plates, as they were supplied 
from Open Biosystems. The mean fluorescence values (FL-A) are shown for each strain. The profiles for 
clb5Δ and elm1Δ cells have also been shown in an earlier study. All methods and information on data 
acquisition have been described elsewhere. 
 



 29

The next group of gene deletions (ura7Δ, gln3Δ, dpb4Δ, acn9Δ, rrm3Δ, clb5Δ, 

dia2Δ; Fig. 11) has a DNA content profile suggestive of abnormalities during DNA 

replication. Indeed, several of the corresponding gene products have well established 

roles during DNA replication. Dpb4p is a subunit of DNA polymerase ε (71). Rrm3p is a 

DNA helicase involved in DNA replication (66). Clb5p is an S-phase cyclin (8), while 

Dia2p is a protein that binds to origins of DNA replication (60). Loss of the transcription 

factor Gln3p has been reported to lead to a DNA content profile consistent with cells 

accumulating in the S-phase of the cell cycle (114), probably because Gln3p affects 

expression of ribonucleotide reductase (64). Similarly, loss of Ura7p, the major subunit 

of CTP synthase involved in pyrimidine synthesis and maintenance of nucleotide pools 

(73), may explain the accumulation of cells during the S-phase of the cell cycle. 

However, we also found in the same group cells lacking Acn9p, a protein reported 

residing in mitochondria (23). Although Acn9p, which is conserved in humans, has 

putative metabolic roles (23), its exact molecular function is unknown. Our data suggest 

that Acn9p’s function is critical for some aspect of DNA replication, directly or 

indirectly. We also found that cell lacking Pho88p, a putative membrane protein 

implicated in phosphate transport (117), have a DNA content profile with multiple peaks 

(shown at the bottom left of Fig. 11), which are somewhat better defined than in the rest 

of the deletion strains we mentioned above with a more typical "S-phase"  DNA content 

profile. 

Next, we identified a set of deletions strains in which a fraction of cells has DNA 

content higher than a fully replicated diploid genome. These DNA content profiles are 
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shown on the right of Fig. 11. The gene products deleted in these strains include several 

with known roles in cytokinesis or cell separation. Elm1p is a protein kinase involved in 

cytokinesis (11). Ace2p is a transcription factor important for the destruction of the 

septum after cytokinesis (89). Finally, Def1p, a chromatin-associated protein with roles 

in transcription elongation, also has been implicated in cytokinesis (51). Other gene 

products in this group have already been reported to function in chromosome 

maintenance and segregation. Ypk1p is a pleiotropic protein kinase with roles during 

progression through the G2 phase of the cell cycle (99). Est1p is a telomere homeostasis 

factor (121). Cnm67p is a spindle pole component (91). Sfh1p is a component of the 

RSC chromatin remodeling complex whose loss impairs progression through the G2/M 

transition of the cell cycle and it is required for normal ploidy (14). Spc72p is a 

component of γ-tubulin that binds spindle pole bodies (44). Ctf4p is required for sister 

chromatid cohesion (41). Mms22p is a subunit of an E3 ubiquitin ligase with roles in 

DNA replication and repair and chromosome segregation (108). Finally, Apn1p is a 

DNA repair endonuclease (9). Surprisingly, however, we also found that cells lacking 

Akr1p have DNA content higher than a fully replicated diploid genome (Fig. 11). Akr1p 

is a palmitoyl transferase (87), which to our knowledge has not been previously 

implicated in cytokinesis or chromosome maintenance. 

In summary, for most of the deletion strains we examined here, their DNA 

content profiles validate and support the function(s) previously ascribed to the 

corresponding gene products during DNA replication and chromosome maintenance. 

Importantly, however, our DNA content analysis also suggests previously unrecognized 
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roles in these processes for some gene products. For example, our data support a role for 

Acn9p in DNA replication and for Akr1p in chromosome maintenance. Since these 

proteins are conserved in most eukaryotes, including humans, the results we present may 

be significant for human biology. 

 

2.3 Drug treatment analysis 

 

We used a commercially available panel of 640 FDA-approved drugs (see Materials and 

Methods). We monitored the effects of each drug on cell-cycle progression by measuring 

the DNA content of the cells by flow cytometry (38) (see Fig. 12, and Materials and 

Methods). We did not quantify complex profiles (see Fig. 13), and we excluded the drug 

treatments that caused them from further analyses. At the beginning and end of most 

batches of samples, we measured the reference sample (a yeast strain that lacks the 

multidrug transporters Pdr5p and Snq2p, mock-treated with DMSO; see Materials and 

Methods), which was cultured and processed along with the cultures that were treated 

with drugs. We evaluated each drug in at least two independent experiments. We 

deposited all raw flow cytometry data in a public database (see Dataset C-2, and 

Materials and Methods). 
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FIG 12 Decision flow-chart diagram of our primary analysis. This diagram summarizes our DNA content 
measurements using the pdr5Δ, snq2Δ strain. See text for details. 
 



 33

 

FIG 13 Representative DNA content histograms. Independent experiments of the indicated samples are 
shown in each case. Fluorescence is plotted on the x-axis, while the number of cells analyzed is on the y-
axis. Reference samples were treated with DMSO, shown at the top. Examples of "High G1" profiles 
include cells treated with ketoconazole or gemfibrozil, while cells treated with fluoxetine give rise to a 
"Low G1" DNA content profile. At the bottom, we show a few examples of complex DNA content 
histograms that were unquantifiable. These include profiles of cells treated with suramin and 5-
fluorouracil (antineoplastic agents), and flubendazole (a microtubule blocker used as anti-nematodal). 
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To identify drugs that altered the cell cycle, we compared the frequency 

distribution of cultures treated with drugs against a normal distribution fit of the 

reference (n=82) samples (Fig. 14A). Samples that had a %G1 greater or less than two 

standard deviations from the mean of the reference sample distribution were considered 

to differ significantly from the mock-treated samples (Fig. 12 and 14A). Drugs that led 

to an increase (%G1>60.00%) in the percentage of cells with unreplicated DNA formed 

the "High G1" group, while others led to a mitotic delay and a "Low G1" (%G1<38.76) 

DNA content (see Fig. 14A, and Dataset C-2). In this initial screen, we added the drugs 

to cultures diluted from an overnight stationary phase culture, where most cells would be 

in the G1 phase of the cell cycle (83). Hence, drugs in samples with a "High G1" DNA 

content may have arrested cell-cycle progression non-specifically. In that case, the high 

G1 DNA content reflected the state of the starting culture, and not cell-cycle effects of 

the drugs. To exclude such possibilities, we re-tested the "High G1" drugs by adding 

them to actively dividing cells (see Fig. 12). Overall, from this primary analysis we 

identified 27 compounds that interfered with progression in the G1 phase of the cell 

cycle, before initiation of DNA replication, resulting in a "High G1" DNA content (see 

Table B-6). Another 12 drugs affected mitotic progression, resulting in a "Low G1" 

DNA content (see Table B-7). 
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FIG 14 DNA content analysis identifies drug effects on cell-cycle progression. (A) Cumulative histogram 
displaying the percentage of cells in the G1 phase of the cell cycle (%G1), for cells treated with a panel of 
FDA-approved drugs. The bin width of the histogram is 1%, with each bin containing all the drugs with 
values within the bin boundaries. The black line superimposed to this histogram is the normal distribution 
fit of the %G1 values of the reference sample. Bins with values >2 sd from the mean of the wild type 
distribution are in grey ("Low G1" group) and black ("High G1" group). (B) From all the samples we 
analyzed by flow cytometry, the %G1 is on the x-axis, and the forward angle scattering (FSC) values on 
the y-axis. We colored the data points of the sub-groups as in A. 
 



 36

Along with DNA content, we also analyzed the forward scatter (FSC) from the 

same flow cytometry experiments (see Fig. 14B). FSC values often serve as a proxy for 

cell size, but they are also affected by cell shape and intracellular composition (56). We 

noticed that most drugs in the "Low G1" group had elevated FSC values compared to the 

group with no cell-cycle effects (Fig. 14B). This is consistent with the notion that mitotic 

delay leads to an increase of cell size. It should also be noted that yeast cells in mitotic 

phases of the cell cycle are budded (83). Hence, their irregular shape may also contribute 

to an increase in FSC values. An increase of FSC values was also evident for a 

significant fraction, but not all, of drugs in the "High G1" group (Fig. 14B). 

We are not aware of other systematic studies of drug effects on cell-cycle progression 

measured by DNA content analyses. Our results reveal that several drugs currently and 

commonly used for human therapy have specific effects on the eukaryotic cell cycle. 

The higher number of drugs that interfered with G1 progression likely reflects the fact 

that cells commit to initiation of cell division in the G1 phase (50, 76, 83). Among the 

"High G1" group, we noted antifungals that inhibit biosynthesis of ergosterol, a 

component of fungal membranes (77), and rapamycin, a potent inhibitor of the TOR 

pathway known to block G1 progression (1). Overall, however, there was a diverse 

range of compounds in the "High G1" group (see Table B-6). Although most drugs in the 

"Low G1" group have well established mitotic roles (see Table B-7), we noted that the 

highest-ranked drug from this group was fluoxetine (brand name Prozac). To our 

knowledge, this is the first time that such strong cell-cycle effects have been reported for 

fluoxetine.  
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Since we did our primary analysis in a sensitized pdr5Δ, snq2Δ yeast strain, we 

then tested the drugs that led to the "High G1" and "Low G1" groups against the PDR5+, 

SNQ2+ wild type reference strain BY4741. We found that several drugs were not 

effective in this case. For example, lovastatin, which leads to a G1 arrest in mammalian 

cells (57), had no effect in PDR5+, SNQ2+ yeast cells (see Table B-6). This is consistent 

with an earlier report that yeast cells are sensitive to lovastatin in a pdr5Δ -dependent 

manner (32). Nonetheless, about half of the drugs in both groups remained effective in 

cells with intact multidrug transporters (see Tables B-6 and B-7).  

Among drugs that led to a "High G1" DNA content, we further examined the 

cell-cycle effects of the potent antilipemic gemfibrozil (88), a Peroxisome Proliferator-

Activated Receptor α (PPARα) agonist. To our knowledge, a G1 cell-cycle role for 

gemfibrozil has not been reported, in any system. The High G1 DNA content could 

result from roles specific to G1 progression, or manifest in G1 as a "carryover" from 

roles in other cell-cycle phases. To distinguish between these two possibilities, we added 

gemfibrozil to highly synchronous newborn G1 cells that we obtained by centrifugal 

elutriation (6, 7). 

As a function of time, we then measured cell size and the percentage of budded 

cells (budding correlates with initiation of DNA replication in yeast (83)). This allowed 

us to measure the length of the G1 phase accurately, by calculating two parameters: i) 

the "critical size" these newborn daughter cells must attain to initiate cell division; ii) the 

rate ("growth rate") at which they grow to their critical size. DMSO-treated cells had a 

critical size of 63.2±2.4 fl and a specific growth rate constant k=0.328±0.008 h-1 (Fig. 
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15). Rapamycin markedly prolonged the G1 phase, in part because cells had to reach a 

substantially larger critical size (79.4±1.2 fl) before they could initiate DNA replication 

(Fig. 15A). Rapamycin-treated cells also grew very slowly (k=0.104±0.004 h-1, Fig. 

15B), although this effect was evident ~1 h after addition of the drug (Fig. A-10). We 

found that cells treated with gemfibrozil delayed initiation of DNA replication, not 

because they had altered critical size (65.4±0.6 fl, Fig. 15A), but because they reached 

that size more slowly than did cells treated with DMSO (k=0.287±0.07 h-1, P=0.005, Fig. 

15B). In addition, from the cell size distributions of asynchronously dividing cells, we 

obtained the "birth size" of newborn cells (see Materials and Methods). While DMSO-

treated cells had a "birth size" of 40.3±2.7 fl under these growth conditions, gemfibrozil-

treated newborn cells were significantly smaller (30.1±4.7 fl, P=0.04, Fig. 15C). Taken 

together, these data show that the smaller "birth size" and slower "growth rate" of cells 

treated with gemfibrozil lengthen the G1 phase. 
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FIG 15 Gemfibrozil delays initiation of DNA replication. (A) The critical cell size (shown in fl) of diploid 
BY4743 cells treated with DMSO, rapamycin (0.1 μg/ml) or gemfibrozil (50 μg/ml), was measured from 
synchronous elutriated cultures, in YPD medium. The data points shown were from three independent 
experiments in each case. The P values shown were calculated from paired, two-tailed t tests, assuming 
unequal variance. The data used to calculate these parameters are shown in Fig. A-10. (B) The specific 
rate of cell size increase constant k (in h-1) was measured from the same elutriation experiments shown in 
a, assuming exponential growth. The data used to calculate these parameters are shown in Fig. A-10. (C) 
The cell size distributions of the indicated cell populations, proliferating asynchronously in YPD medium, 
were measured using a channelyzer (see Materials and Methods, and (45)). Cell numbers are plotted on the 
y-axis and cell size (in fl) on the x-axis. Daughter "birth" size was defined as the maximum size of the 
smallest 10% of cells on the left side of the cell size distribution of each sample (45). 
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Next, we focused on the effects of gemfibrozil and fluoxetine on overall cell 

proliferation rates. We tested these drugs alone and in combination, at several doses (Fig. 

16A). We found that gemfibrozil did not significantly affect overall cell proliferation at 

the doses tested (Fig. 16). Hence, the prolongation of the G1 phase by gemfibrozil is 

likely accompanied by compensatory shortening of subsequent cell-cycle phases, 

resulting in similar overall generation time. On the other hand, fluoxetine arrested 

proliferation of yeast cells at 200 μM (Fig. 16A, first green bar to the left; and Table B-8, 

bottom left cell). To our knowledge, the near complete inhibition of yeast cell 

proliferation by fluoxetine has not been reported. Remarkably, however, addition of 

gemfibrozil even at a 4-fold less molar concentration fully suppressed the inhibitory 

effects of fluoxetine (see Fig. 16A, compare the left green bar to the other green bars; 

and Table B-8, last row). 
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FIG 16 A novel interaction between gemfibrozil and fluoxetine. (A) Fluoxetine strongly inhibits yeast cell 
proliferation, but it is suppressed by gemfibrozil. We added to freshly reseeded wild type haploid yeast 
(BY4741) cells DMSO, fluoxetine and gemfibrozil at the binary combinations and concentrations shown. 
We then monitored cell proliferation hourly, for 8 h (see Materials and Methods). The specific growth rate 
constant (k) for each combination is shown. The errors associated with these measurements are shown in 
Table B-7. (B) DMSO, fluoxetine and gemfibrozil were added to dividing cells at 200 µM in binary 
combinations, sequentially, in the order shown. Cell proliferation was monitored for 6 h as in a, with the 
specific growth rate constant (k) for each combination shown. Data from one representative experiment is 
shown. Suppressive effects of gemfibrozil on fluoxetine arising from order of addition were assessed by 
calculating growth rate constant (k) folds for gemfibrozil treatment over DMSO control for all 
experiments, initial treatment with gemfibrozil yielding a fold of 2.51 +/- 0.25, versus final treatment, 0.71 
+/- 0.21, P-value = 0.000146. 
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We then added the two drugs not simultaneously, but in different order, 

removing the first drug before adding the second (Fig. 16B). We found that gemfibrozil 

suppressed fluoxetine’s anti-proliferative effects only if added before (representative 

experiment in Fig. 16B, compare the blue and yellow bars on the right; and Table B-9, 

compare the top and middle cells in the 3rd column), but not after fluoxetine (Fig. 16B, 

compare the left and middle green bars; and Table B-9, compare the left and middle cells 

in the 3rd row). These results suggest that the suppressive interaction between 

gemfibrozil and fluoxetine is not due to extracellular interaction or competition for 

transport between the two drugs. Furthermore, the results from the order-of addition 

experiment suggest that gemfibrozil acts upstream, since it does not reverse fluoxetine’s 

inhibition of cell proliferation. Instead, it appears that fluoxetine cannot inhibit cell 

proliferation in the context of gemfibrozil’s prior action. 
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3. MATERIALS AND METHODS 

 

3.1 Methods for genetic deletion analysis 

 

Yeast protocols. S. cerevisiae strains used in this study are listed in Table B-1. Unless 

noted otherwise, we used standard yeast methods (55). To construct the PGAL -GST-CYS4 

strain (Fig. 9, A-8, A-9), we started from a commercially available plasmid containing a 

PGAL -GST-CYS4 allele (Open Biosystems, cat#: YSC3869-95169400). However, this 

plasmid contained a frameshift mutation at nucleotide position 856 of the CYS4 ORF, 

which we corrected. We then removed a BsrGI-SalI fragment, re-ligated the plasmid, 

and digested it with StuI. Finally, we integrated this linearized plasmid derivative 

containing the PGAL -GST-CYS4 allele at the URA3 locus of W303-k699 (see Table B-1). 

We sequenced a similar plasmid supposed to carry a PGAL -GST-KIP3 allele (Open 

Biosystems, cat#: YSC3869-9518649), but we found that it only drives expression of 

GST, due to mutations downstream of the GST tag. We used this plasmid to construct 

the negative control PGAL-GST strain (Fig. 9, A-8, A-9), as we described above. From the 

PGAL -GST-CYS4 plasmid we generated the PGAL-CYS4(S289D) derivative, as follows: 

We used the PGAL -GST-CYS4 plasmid as a template in a PCR reaction with a forward 

primer encoding the S289D substitution, and a reverse primer complementary to 

sequences downstream of the CYS4 ORF. The PCR fragment was then used to gap-

repair the PGAL -GST-CYS4 plasmid, which was previously digested with BstEII. The 

resulting PGAL-CYS4(S289D) plasmid was then used in the same way as above, to 
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construct the PGAL-CYS4(S289D) strain (Fig. 9, A-8, A-9). All plasmids were sequenced 

and the resulting strains were verified for expression of the proteins of interest. 

The CYS4-13MYC strain (Fig. 10) was made with a single-step PCR replacement 

(6). To make the CYS4(S289D)-13MYC strain (Fig. 10), we used genomic DNA of the 

CYS4-13MYC strain as a template in a PCR reaction with a forward primer encoding the 

S289D substitution, and a reverse primer complementary to sequences downstream of 

the CYS4 ORF. 

For DNA content measurements, strains were cultured standing at 30 °C in YPD 

(1% yeast extract, 2% peptone, 2% dextrose). Overnight cultures were diluted 1:500 into 

1 ml fresh medium, cultured for 4-5 hrs, collected by centrifugation and fixed in 70% 

ethanol. To obtain size distributions from asynchronous cultures, overnight cultures of 

the strain and medium of interest were diluted 1:500 in fresh medium, and allowed to 

proliferate for 5-6 h, before we analyzed them. For synchronous cell-cycle analyses (6), 

strains were cultured and elutriated in YPD medium containing 0.5% dextrose (Fig. A-3, 

A-9), 2.0% dextrose (Fig. 5, S7), or YPGal (1% yeast extract, 2% peptone, 3% galactose; 

Fig. 9, A-8), as indicated. 

 

Cell size determinations. Cell size was measured with a Beckman Z2 Channelyzer. For 

each sample we analyzed, we obtained size distributions from two different dilutions of 

cells. The average of the geometric mean of each size distribution was recorded. We 

used the Accucomp Beckman software package to obtain the statistics of each size 

distribution.  
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Measurements of critical size and growth rate from elutriated cultures. For isolation 

of early G1 daughter cells, cultures were grown in the medium indicated in each case at 

30°C to a density of ~1-5x107 cells/ml, then fractionated with a Beckman JE-5.0 

elutriator as described previously (7). Early fractions containing predominantly (>95%) 

small unbudded cells were collected by centrifugation, resuspended in the medium 

indicated in each case and incubated at 30°C. Every 20 min we monitored the percentage 

of budded cells and cell size. The "critical size" is the size at which 50% of the cells 

have budded in these experiments, and it was calculated as we described elsewhere (7). 

We calculated the rate of size increase, "growth rate" (in fl/min), assuming linear growth, 

as we described previously (7). To calculate "growth rate" assuming exponential growth, 

we plotted the natural log (ln) of cell size as a function of time (in h), see Fig. A-7B. We 

fit the data to a straight line using the regression function in Microsoft Excel. From the 

slope of the line, we obtained the specific rate of cell size increase constant (k, in h-1). 

The average of all experiments for each strain was then calculated, along with the 

associated standard deviation. Since it sometimes took the cells longer to recover from 

the elutriation, we exclude this "lag" phase in our growth rate calculations. We derived 

growth rate data only from the linear portion of each experiment. 

 

Estimates of the length of G1 were calculated as follows: Assuming linear growth, 

G1(min)=("Critical Size"-"Birth Size")/"Growth Rate". Assuming exponential growth, 

G1(h)=ln("Critical Size"/"Birth Size")/k. 
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Staining for DNA content analyses. Fixed cells were stored at 4 °C (overnight to 14 

days). Cells were collected by centrifugation and stained overnight in 1 ml staining 

solution containing 50 mM sodium citrate pH 7.0, 0.25 mg/ml RNaseA, and 500 nM 

SYTOX Green (Molecular Probes, OR). Samples were stored at 4 °C overnight in 

opaque containers. Cell suspensions were sonicated briefly at the fixing and staining 

steps and immediately before flow cytometry. 

 

Flow cytometry data acquisition, deposition and analysis. Stained cells were 

analyzed on a FACSCalibur (Becton Dickinson Immunocytometry Systems, CA) flow 

cytometer, using CellQuest (version 3.3; Becton Dickinson Immunocytometry Systems) 

acquisition software. Sytox Green fluorescence was collected through a 515/30-nm 

bandpass filter, and list mode data were acquired for 10, 000 cells defined by a dot plot 

of forward scatter (FSC) versus side scatter (SSC). Prior to each experiment, standard 

beads (Cyto-Cal Multifluor Intensity Beads, Thermo Scientific, CA) were used to 

calibrate the flow cytometer, and photomultiplier tube voltages were adjusted to place 

the highest intensity bead in the same channel (+/- 3). FACS files were archived at 

Cytobank (61). Automated quantification of the DNA content histograms was done with 

FlowJo 7.5 software. To exclude particulate non-yeast events, which had both very low 

FSC and low fluorescence (FL1/2-A), asymmetrical gates were fitted with the autogating 

tool. Gates were centered near FSC ~100 and FL1/2-A ~300 and contained all events of 

sufficient contiguity as defined by the default autogating parameters, on average ~91% 

of total. From the gated populations, we determined the mean and standard deviation of 
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the FSC parameter. Cell-cycle phase subpopulations were computed from the gated 

population using the Dean-Jett-Fox model without constraints. %G1 was defined as the 

area of the G1 model peak, divided by the combined areas of the G1 and G2/M peaks. 

Because the %G1 results represent a continuum, it was necessary to impose cutoffs in 

order to exclude model fits that did not accurately represent experimental data. This was 

assessed primarily by root mean square (RMS) error, which averaged 11.68 (+/- 2.80 

standard deviation) across all included experiments. For this reason, we did not analyze 

experiments that yielded an initial model fit RMS >25, %G1<5%, or %G1>95% (since 

extremes in %G1 were often indicative of poor fit), except in a few cases where the 

model fit was visually inspected and/or manually constrained. Experiments for which the 

%G1 fell outside two standard deviations of the wild-type distribution were repeated 

additional times. Experimental data and correlations are provided in the searchable 

spreadsheet available as Dataset C-1. Raw data files can be freely accessed at Cytobank 

(www.cytobank.org) and are found in the public experiments "Yeast DNA Content 

Project – DELETION – INCLUDED", and "Yeast DNA Content Project – DELETION 

– EXCLUDED". 

 

Statistical analysis. Non-parametric Spearman tests were done with the Analyze-it 

software package. In all other cases, statistical calculations were done with Microsoft 

Excel. Where indicated, t tests were 2-tailed, assuming unequal variance between data 

sets. 

 



 48

Yeast protein extracts. Protein extracts for immunoblots were made with the NaOH 

extraction method (63). 

 

Antibodies. For detection of proteins of interest on immunoblots we used an anti-

PSTAIR antibody to detect Cdk (Fig. 10A; Abcam, Cat#: ab10345) and an anti-hCBS 

polyclonal antibody to detect human and yeast CBS proteins (Fig. 10A; SantaCruz, 

Cat#:46830). Secondary antibodies were from Pierce. All antibodies were used at the 

dilutions recommended by the manufacturers. 

 

3.2 Methods for drug treatment analysis 

 

Yeast strains. For our primary analysis, we used the S. cerevisiae strain JTY2953 

(MATa pdr5::TRP1 snq2::hisG ade2-101 his3-Δ200 leu2-Δ1 lys2-801am trp1-Δ63 

ura3–52; a generous gift from Dr. Paul deFigueiredo, Texas A&M University). For the 

elutriation experiments in Fig. 4 we used the diploid strain BY4743 (MATa/α 

his3Δ1/his3Δ1 leu2Δ0 /leu2Δ0 lys2Δ0/LYS2 MET15/met15Δ0 ura3Δ0/ura3Δ0; 

commercially available from Open Biosystems). For all other experiments, we used the 

haploid strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0; commercially available 

from Open Biosystems).   
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Media and culture conditions. In all experiments, strains were cultured at 30 °C in 

YPD (1% yeast extract, 2% peptone, 2% dextrose). For our primary analysis with the 

JTY2953 strain, overnight cultures were diluted 1:200 and aliquoted into 96-well plates, 

198 μl per well. To each well we then added 2 μl of a drug stock solution (2 mg/ml in 

DMSO), resulting in a final drug concentration of 20 μg/ml. At the four corner wells of 

each 96-well plate, the cultures were treated with DMSO only. These cultures served as 

the mock-treated reference samples. The plates were then placed at 30 °C and incubated 

standing for 6-7 h. Each of the 200 μl cultures were then transferred to microcentrifuge 

tubes containing 500 μl ethanol, and sonicated for 5 s. For the experiments where the 

drugs were added in dividing JTY2953 cells, the overnight cultures were diluted 1:400 

and incubated for 3 h at 30 °C. We then added the drugs of interest and incubated the 

plates at 30 °C for another 6 h before fixing the samples in ethanol. For DNA content 

measurements in BY4741 cells, which proliferate faster than JTY2953 cells do, 

overnight cultures were diluted 1:400, cultured for 2.16 h before we added the drugs of 

interest, and then cultured for another 4.33 h before they were fixed in ethanol. 

 

Cell size determinations. To obtain size distributions from asynchronous cultures, 

overnight cultures of BY4743 cells were diluted 1:500 in fresh medium, and incubated 

for 2 h at 30 °C. We then added the drugs of interest and incubated at 30 °C for another 

4 h. Cell size was then measured with a Beckman Z2 Channelyzer. For each sample we 

analyzed, we obtained size distributions from two different dilutions of cells. The 
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average of the geometric mean of each size distribution was recorded. We used the 

Accucomp Beckman software package to obtain the statistics of each size distribution.  

 

Measurements of critical size and growth rate from elutriated cultures. For isolation 

of early G1 daughter cells, cultures were grown in YPD at 30°C to a density of ~1-5x107 

cells/ml, then fractionated with a Beckman JE-5.0 elutriator as described previously (7). 

Early fractions containing predominantly (>95%) small unbudded cells were collected 

by centrifugation, re-suspended in fresh medium and aliquoted in three separate flasks. 

To each flask, we then added as indicated rapamycin (at 0.1 μg/ml), gemfibrozil (at 50 

μg/ml), or DMSO alone. After testing several doses of each drug and measuring the 

DNA content, we decided to use these concentrations because they were the lowest ones 

that resulted in consistently pronounced effects in this strain background. The cultures 

were incubated at 30 °C. Every 20 min we monitored the percentage of budded cells and 

cell size. The "critical size" is the size at which 50% of the cells have budded in these 

experiments, and it was calculated as we described elsewhere (7). To calculate "growth 

rate" assuming exponential growth, we plotted the natural log (ln) of cell size as a 

function of time (in h), see Fig. A-10. We fit the data to a straight line using the 

regression function in Microsoft Excel. From the slope of the line, we obtained the 

specific rate of cell size increase constant (k, in h-1). The average of all experiments (n=3) 

for each treatment was then calculated, along with the associated standard deviation.  
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Staining for DNA content analyses. Cells were fixed and stained as in the genetic 

deletion analysis protocol (section 3.1), except they were stained overnight in 0.5 ml 

staining solution containing 50 mM sodium citrate pH 7.0, 0.25 mg/ml RNaseA, and 1 

µM SYTOX Green (Molecular Probes). 

 

Flow cytometry data acquisition, deposition and analysis. Data were acquired, 

deposited, and analyzed as in the genetic deletion analysis protocol (section 3.1), with 

exceptions as follow. Gates were centered near FSC ~100 and FL2-A ~300 and 

contained all events of sufficient contiguity as defined by the default autogating 

parameters, on average ~95% of total. Model fits that did not accurately represent 

experimental data were assessed primarily by root mean square (RMS) error and ratio of 

mean fluorescence intensities (MFI, calculated from the FL2-A parameter) of the G2/M 

vs. G1 peaks. Automated unconstrained analyses that yielded extremes in these 

parameters, or extremes in %G1 or S-phase components of the model fit, were manually 

constrained by application of the median G2/G1 MFI ratio and a G1 MFI position that 

minimized the resulting overall RMS. All model fits were visually inspected in order to 

confirm the accuracy of the fit. Unquantifiable data was excluded from further analysis. 

Experimental data and correlations are provided in the searchable spreadsheet available 

as Dataset C-2. Raw data files can be freely accessed at Cytobank (www.cytobank.org) 

and are found in the public experiments "Yeast DNA Content Project - DRUG - 

INCLUDED" and "Yeast DNA Content Project - DRUG -EXCLUDED". 
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Proliferation assays. Yeast strain BY4741 was grown overnight at 30 °C in a 1 ml YPD 

starter culture, then diluted 1:200 into fresh YPD in the presence or absence of drug. 200 

µl volumes were aliquoted into clear flat-bottom 96-well sterile cell culture plates 

(Thermo Scientific, Nunc MicroWell Plate 167008), and the absorbance at 600 nm was 

measured hourly using a Tecan infinite 200Pro plate reader, after one minute of 3.5 mm 

orbital shaking to re-suspend cells. Plates were incubated standing at 30 °C in between 

measurements. Absorbances were blanked post-measurement against wells containing 

media and DMSO alone. For combination assays, cells were treated with drug at the 

time of initial reseeding, at a final DMSO concentration of 1.24% throughout, aliquoted 

immediately into 96-well plates for reading of absorbance, and followed as described 

above. Growth constants were calculated using a best fit for exponential growth 

incorporating time points from 2 h through 6 h. For order of addition experiments, cells 

were reseeded at 1:200 into fresh YPD in a culture tube, cultured standing at 30 °C with 

hourly re-suspension for 3 h, then divided into three tubes and treated with the first drug 

(200 µM) or DMSO-only control, at a final DMSO concentration of 0.62% throughout. 

Following an additional 3 h of incubation at 30 °C, the primary treated cultures were 

washed twice with fresh YPD at 30 °C, re-suspended in the same, and further divided for 

treatment with the second drug, as above, resulting in nine total temporal combinations 

of vehicle, gemfibrozil, and fluoxetine. Growth constants were calculated as above from 

0 h through 6 h. 
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Drugs. The FDA-approved library was purchased from Enzo (Cat. #: BML-2841). 

Artemisinin was from Enzo (Cat. #: ALX-350-219), gemfibrozil from Sigma (Cat. #: 

G9518), while chlorpromazine (Cat. #: 101077-482), fluoxetine (Cat. #: 89160-860) and 

clinafloxacin (Cat. #: 89150-368) were purchased through VWR International. All drug 

stock solutions were in DMSO.  
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4. SUMMARY AND CONCLUSIONS 

 

Our results provide a comprehensive picture of the genetic requirements for the proper 

timing of initiation of cell division. The data we present raise several questions, and we 

discuss their implications and significance in the context of prevailing models of cell-

cycle control mechanisms. 

 

4.1 Discussion of genetic deletion analysis 

 

Why do most gene deletions that affect cell-cycle progression lead to a G1 delay? 

We think that this likely reflects the fact that cells commit to initiation of cell division in 

the G1 phase. It is reasonable to expect that extensive regulatory networks contribute to 

such a critical cellular transition, perhaps more so than for other cell-cycle transitions. 

Interestingly, inactivation of the majority of essential genes also leads to a G1 arrest 

(118). Furthermore, the strong requirement of protein synthesis for START completion 

(2, 42, 69, 81, 83, 94, 95, 107), and the large number of essential and non-essential genes 

involved in protein synthesis, also partially explains why most gene deletions that affect 

the cell cycle lead to a G1 delay.   

 

Is there a critical size threshold for initiation of cell division in yeast? This question 

has been highly debated (see (65, 113) for related commentaries), especially when yeast 

is contrasted with animal model systems. Our study does not address this question. The 



 55

debate about whether there is a critical threshold for initiation of cell division centers on 

whether cell size increases in a linear, or in an exponential fashion (19, 65, 106, 113). In 

several experiments, we monitored cell size increases as a function of time in 

synchronous cultures. However, our data points are of insufficient resolution to 

distinguish between an exponential vs. linear mode of growth (see Fig. A-7 and 

Materials and Methods). Note that this limitation does not in any way affect our 

conclusions about the relative rates of growth of different strains. In fact, when we 

compare strains with similar overall size distributions (see Fig. A-2A) the relative 

"growth rates" we obtain are the same, whether cells increase in size exponentially or not. 

Even in the case of strains with very different size distributions (e.g., wild type vs. sfp1Δ 

cells, see Fig. A-2B and Fig. 5), the results are qualitatively similar, regardless of the 

pattern of growth. Nonetheless, in our study we have monitored and incorporated in our 

calculations the "critical size" at which cells initiate their division. From these 

experiments and similar others we published previously (see Fig. A-3, A-7, A-8, A-9 and 

(6, 7, 43)), the "critical size" is a highly reproducible parameter. Hence, in accordance 

with numerous other reports, it is our opinion that any strain growing in a given medium 

has to reach a critical size characteristic of that strain and medium.  

 

Why do most gene deletions that affect cell-cycle progression not affect cell size? 

Our genome-wide data unequivocally show little correlation between %G1 and cell size 

(see Fig. 4, A-4, A-5). Thus, although reaching a critical size threshold for initiation of 

cell division contributes to the timing of START, the most reasonable conclusion from 
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our data is that genetic determinants of size control mechanisms are neither the sole nor 

the major factor determining the timing of initiation of cell division in dividing cells. 

This is a key finding of our study, which stands in marked contrast to previous 

approaches that used cell size alterations as a means to identify START regulators (52). 

In our opinion, monitoring the length of the G1 phase reflects the timing of START far 

more accurately than monitoring cell size. We expand more on this issue next, when we 

discuss the role of ribosome biogenesis and the behavior of wild type cells in different 

nutrients. 

 

Does ribosome biogenesis promote or delay START in yeast? The behavior of strains 

lacking genes involved in ribosome biogenesis and protein synthesis exemplifies the 

different interpretations about the timing of START, depending on whether the focus is 

on the length of G1 (this study), or on cell size (52, 53). We will discuss the phenotypes 

of sfp1Δ cells, because we examined them (see Fig. 5) with the same methods and under 

the same conditions as in previous studies by Jorgensen et al (53). The parameters we 

obtained are in complete agreement with those of Jorgensen et al (53): sfp1Δ cells divide 

at a greatly reduced cell size, grow much more slowly than wild type cells, and they are 

also born small. Jorgensen et al focused on their small critical size and concluded that 

START was accelerated in sfp1Δ cells and other strains lacking genes involved in 

ribosome biogenesis (53). Instead, we took into account not only their small critical size, 

but also their extremely slow growth rate and small birth size (see Fig. 5, A-2, A-7). We 

conclude that START must be severely delayed in sfp1Δ cells, because these cells have 
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such an expanded G1. If one focuses only on the small critical size of sfp1Δ cells, it may 

seem that START is accelerated. However, we think it is more accurate to describe these 

cells simply as small and severely growth-impaired. Loss of Sfp1p delays START to 

such an extent that during the time sfp1Δ cells spend in G1, their wild type counterparts 

would have initiated several new rounds of cell division. 

 Not all gene deletions that affect ribosome biogenesis prolong G1 and those that 

do may differ quantitatively and qualitatively in their impact (Fig. 5, 6). Overall, 

however, the G1 phase is prolonged in many ribosome biogenesis mutants (see Dataset 

C-1). Because of their lengthened G1, we conclude that START is delayed in strains 

lacking non-essential ribosomal components or factors that regulate protein synthesis. 

This interpretation is consistent with the terminal G1 arrest of essential genes involved in 

the same processes (118), and with the strong delay of START upon inactivation of 

rRNA processing in yeast (2). For these reasons, we conclude that gene deletions that 

impair ribosome biogenesis delay START, and that in dividing wild type yeast cells, 

ribosome biogenesis promotes START. This conclusion also agrees with extensive 

evidence from animal cells that increased ribosomal biogenesis (by Myc and other 

oncogenes) promotes initiation of cell division (17, 36, 72, 109). 

 

Does the length of the G1 phase accurately reflect the timing of START? Obviously, 

completion of START and commitment to a new round of cell division precedes the 

actual end of the G1 phase, when cells initiate DNA replication (30, 83). Mutants in 

processes that molecularly link START with DNA replication (e.g., cdc34 cells (110)), 
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may complete START, but they are unable to initiate DNA replication. These rare 

exceptions notwithstanding, we see no compelling reason that invalidates using the 

length of the G1 phase as an accurate metric of the timing of START. This is supported 

further by the behavior of dividing wild type cells in different growth conditions. Poor 

growth conditions greatly prolong G1, whereas the time required to transit the remaining 

cell-cycle phases is unaffected (50). In steady-state chemostat cultures, where growth 

rate can be altered independently of nutrient composition, the lower the growth rate is, 

the longer the cells stay in G1, delaying START completion (12, 43), while cell size 

remains largely unaffected (12, 37). Nutrients also affect the critical size threshold. Cells 

dividing in poor carbon sources typically are small, but they also have a slow growth 

rate and a long G1 (105), resembling ribosome biogenesis mutants with a delayed 

START.  

 We would like to clarify that, in all of the above examples we discussed, we 

considered continuously dividing populations, without media changes. In a nutritional 

up-shift, from poor to rich media, G1 is transiently prolonged, probably until cells reach 

the new larger "critical size" characteristic of the rich medium (49). During this short 

temporal window, in the first cell cycle as cells transit from the poor medium to the new 

richer one, genetic control of the "critical size" threshold likely prolongs G1 and delays 

START by increasing the critical size threshold (53, 54). In subsequent cell cycles 

however, despite the larger "critical size" cells have to attain in that richer medium, the 

cells are born larger and grow faster, resulting in a short G1 and accelerated START. 
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 What could be the benefit of the small critical size observed in poor nutrients? It 

has been argued that the plasticity of critical size thresholds may allow yeast cells to 

"best compete for limited and fluctuating resources" (54). This is reasonable, if one 

keeps in mind the two competing objectives of all proliferating cells: i) Ensure that 

growth requirements are met before initiating a new round of cell division; ii) At the 

same time, exploit all the available nutrients to divide as quickly and as many times as 

possible. Perhaps, with their smaller birth size and slower growth rate, which lengthen 

G1, cells in poor nutrients satisfy the first objective. Then, as they progress in G1, cells 

have to reach a smaller critical size, alleviating a little bit the overall delay in initiating a 

new round of cell division in poor nutrients.  

 

Implications for our understanding of genetic networks that control initiation of 

cell division. Overall, our results increase the number of gene deletions that delay G1, as 

listed currently in the Saccharomyces Genome Database, by more than 3-fold. Even if 

one excludes genes involved in ribosome biogenesis, we still uncovered >100 genes 

required for the timely initiation of cell division (see Dataset C-1). Most of the genes we 

identified do not affect cell size. As a result, these genes were not identified in previous 

attempts to find regulators of START. Hence, our findings greatly expand and reshape 

our view of START. We followed up one such gene we identified in this study, Cys4p 

(CBS). CBS is a key metabolic enzyme, associated with disease in humans, with 

conserved functions between yeast and humans. Indeed, human CBS complements yeast 

lacking Cys4p (62). Hence, the role of CBS in cell division we described in yeast may be 
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significant for human biology. The systematic identification of non-essential regulators 

of START we described here will be the basis for further insight into the control of cell 

division in yeast and other organisms. It enables future studies to define how many 

pathways affect START, which factors operate within each pathway, and the extent of 

interactions between pathways.   

 

4.2 Discussion of drug treatment analysis 

 

What is the significance of the gemfibrozil-fluoxetine interaction? Because of the 

novel and opposing cell-cycle effects of the individual drugs, we subsequently examined 

the combined effects of gemfibrozil and fluoxetine on cell proliferation and found that 

gemfibrozil suppresses the proliferative defect resulting from fluoxetine treatment. 

Understanding the basis of the interaction between gemfibrozil and fluoxetine would 

require a mechanistic understanding of their function in yeast cells. We would like to 

note that the suppressive interaction between the two compounds could be unrelated to 

their cell-cycle effects. For example, gemfibrozil might induce expression of proteins 

that do not interfere with cell-cycle progression, but may cause fluoxetine resistance. 

Fluoxetine is an anti-depressant thought to act as a serotonin-specific reuptake inhibitor 

(116). Hence, the effects we described for fluoxetine in yeast appear to result from some 

other mechanism. Similarly, nuclear receptors of the PPARα/RXR type, the target of 

gemfibrozil, are thought to be unique to animals and sponges (29, 115), but ancestral 

analogs may exist in yeast (78). Nonetheless, although the effects of fluoxetine and 
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gemfibrozil on yeast cells we described above likely represent off-target modes of action, 

they may act similarly in other eukaryotic organisms, including humans. In conclusion, 

our results suggest that monitoring the effects of drugs on cell-cycle progression reveals 

unexpected cellular roles of widely prescribed compounds. Finally, although we did not 

test all possible combinations of the compounds that affected cell-cycle progression, at 

least in the case of gemfibrozil and fluoxetine, our results suggest that combining such 

compounds may also be an effective strategy to identify novel drug interactions. 

 

4.3 Future investigations 

 

The networks of physical and functional interactions we have described (Fig. 7 and 8) 

are limited by existing descriptions of these interactions from the curated body of 

literature. Since our results implicate many additional, previously unidentified genes in 

regulation of cell-cycle progression, including genes of unknown function, it is 

important that a network of epistatic genetic interactions specific to the phenotypes we 

describe be established as a framework for ultimate elucidation of the pathways 

controlling this process. This will be accomplished through production of homozygous 

diploid double mutant strains representing key deletions from our current dataset, which 

will be selected based on phenotype strength, perceived significance of currently 

described roles and/or interactions, and existing annotations or sequence data which 

suggest potentially important molecular role(s).  These resulting strains will be analyzed 

with methods similar to those described here, and internally compared to the single 
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deletions in type and degree of effect. In the extent of this network refinement, we are 

limited only by the extent of our technical and temporal resources. Additional targeted 

experiments have been and will continue to be performed in order to more fully describe 

the effects of specific gene deletions, with a goal of ultimately describing the molecular 

and biochemical activities and interactions suggested by existing functional and new 

genetic networks. 

Likewise, additional drugs and drug combinations of interest will be identified, 

both from our existing data and from future expansions of this set derived from 

experiments with larger panels. Even though we anticipate that many of the effects 

observed in yeast will also apply to higher eukaryotes, it is important to confirm this in 

additional model systems. To this end, experiments in animal models are already 

underway, and preliminary data indicate generally conserved effects, bolstering the 

likelihood that there are conserved mechanisms and demonstrating the applicability of 

these yeast data to issues of health and therapeutics. 

In summary, in addition to challenging and refining previous models for factor 

identification, we have already significantly expanded the list of genes and drugs that 

affect cell-cycle progression. We therefore conclude that measurement of DNA content 

in yeast is a valid and powerful way to streamline identification of genetic regulators and 

pharmaceutical modulators of the eukaryotic cell cycle, and anticipate that this approach 

and the data we present here will both serve as foundations for future discoveries. 
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APPENDIX A 

FIGURES 

 

 

FIG A-1 Representative DNA content histograms. Three independent experiments of the indicated strains 
are shown in each case. Fluorescence is plotted on the x-axis, while the number of cells analyzed is on the 
y-axis. BY4743 is the wild type, diploid reference strain. sfp1Δ/sfp1Δ, or rad57Δ/rad57Δ, strains were 
from the "high G1", or "Low G1" sets, respectively. clb5Δ/clb5Δ, or elm1Δ/elm1Δ, strains have known 
roles during DNA replication, or cytokinesis and cell separation, respectively, giving rise to complex DNA 
content histograms that were not quantified. 
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FIG A-2 Cell size distributions of asynchronous cultures. The cell size of the indicated cell populations 
was measured using a channelyzer (see Materials and Methods). Cell numbers are plotted on the y-axis 
and the x-axis indicates size (in fl). A, Size distributions of wild type (BY4743), kns1Δ/kns1Δ and 
tda1Δ/tda1Δ cells, cultured in YPD (0.5% Dextrose) medium. B, Size distributions of wild type (BY4743), 
sfp1Δ/sfp1Δ and rps0bΔ/rps0bΔ cells, cultured in YPD (2% Dextrose) medium. C, Size distributions of 
wild type pGAL-GST, pGAL-CYS4, pGAL-CYS4(S289D) cells, cultured in YPGal (3% Galactose) medium. 
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FIG A-3 Evaluating false negatives. (A) Rate of cell size increase (shown as growth rate, in fl/min) for the 
indicated strains was measured from synchronous cultures, in rich (YPD-0.5% Dextrose) medium, 
assuming linear growth. The average value for each strain is shown with a horizontal bar (± sd). (B) The 
critical cell size of the indicated strains (in fl), was measured from the same experiments shown in A. (C) 
Graphs from which we determined the growth rates shown in A. (D) Graphs from which we determined 
the percent of budded cells as a function of cell size, from the same elutriation experiments. The data 
points shown were from the linear portion of each experiment, when the percentage of budded cells began 
to increase, and used to determine the critical size for division we show in B. 
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FIG A-4 Cell-cycle progression correlates weakly with cell size data from stationary phase growth. We 
plotted the %G1 (x-axis) from all the deletion strains we examined against the diploid median cell size (in 
fl, y-axis) data of Zhang et al (24), in stationary phase after growth on solid media. We calculated and 
displayed the r value as in Fig. 3. For every gene we included in this analysis, the values we used in this 
correlation are shown in Dataset C-1. 
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FIG A-5 Correlation between DNA content and FSC values. The %G1 is shown on the x-axis, and the 
forward angle scattering (FSC) values on the y-axis, from all the deletion strains we examined by flow 
cytometry. We calculated and displayed the r values as in Fig. 3. For every gene we included in this 
analysis, the values we used in this correlation are shown in Dataset C-1. 
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FIG A-6 Correlation between FSC and cell size values. We plotted the FSC values (y-axis) from all the 
deletion strains we examined against the median cell size (in fl, x-axis) data of Jorgensen et al (23) (A), or 
Zhang et al (24) (B). We calculated and displayed the r values as in Fig. 3. For every gene we included in 
this analysis, the values we used in this correlation are shown in Dataset C-1. 
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FIG A-7 Determining the timing of START in mutants that affect ribosome biogenesis. (A) Graphs from 
which we determined the rate of cell size increase shown in Fig. 5A, assuming linear growth. Our 
measurements were from synchronous cultures, in rich (YPD-2% Dextrose) medium. (B) Graphs from 
which we determined the specific rate of cell size increase constant k, shown in Fig. 5B, from the same 
elutriation experiments shown in A. In this case, we plotted the natural log of the cells size (y-axis), 
against time (shown in hours, x-axis). (C) Graphs of the fraction of budded cells (y-axis) as a function of 
cell size (in fl, x-axis), from the same elutriation experiments. The data points shown were from the linear 
portion of each experiment, when the percentage of budded cells began to increase, and used to determine 
the critical size for division we show in Fig. 5C. 
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FIG A-8 Cell-cycle progression of synchronous cultures of PGAL haploid strains, in galactose-containing 
media. The full data set used to calculate the values shown in Fig. 9A and 9B are shown on the left and 
right panels, respectively. Elutriations were done in media that contain galactose and induce expression of 
the PGAL alleles (see Materials and Methods). 
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FIG A-9 Cell-cycle progression of synchronous cultures of PGAL haploid strains, in repressive, glucose-
containing media. (A) The rate of cell size increase (shown as growth rate, in fl/min) for the indicated 
strains was measured from synchronous elutriated cultures assuming linear growth, as in Fig. 9, in media 
that contain glucose (YPD-0.5% Dextrose) and repress expression of the PGAL alleles. The average value 
for each strain is shown with a horizontal bar (± sd). (B) The critical cell size of the indicated strains 
(shown in fl), was measured from the same elutriation experiments shown in A. The rate of cell size 
increase for each elutriation experiment of the indicated strains is shown on the left panels. (C, D) The full 
data set used to calculate the values shown in A, and B, respectively. 
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FIG A-10 Determining the length of G1. Left, Graphs from which we determined the specific rate of cell 
size increase constant k, shown in Fig. 15, from the same elutriation experiments. The natural log cell size 
(y-axis) is plotted against time (shown in hours, x-axis). Right, Graphs of the fraction of budded cells (y-
axis) as a function of cell size (in fl, x-axis), from the same elutriation experiments. The data points shown 
were used to estimate the critical size for division we show in Fig. 15A. In (A) the cells were treated with 
DMSO, in (B) with rapamycin (at 0.1 μg/ml), and in (C) with gemfibrozil (at 50 μg/ml). 
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APPENDIX B 
 

TABLES 
 
 
 
TABLE B-1 S. cerevisiae strains used in this study 
Strain Genotype  Source 
Homozygous diploid 
deletions (BY4743 
background) 

MATa/α his3Δ1/his3Δ1 leu2Δ0 /leu2Δ0 
lys2Δ0/LYS2 MET15/met15Δ0 
ura3Δ0/ura3Δ0 
orfΔ::kanMX4/orfΔ::kanMX4 

Research 
Genetics-Open 
Biosystems 

W303-K699 MATa ade2-1 ura3-1 trp1-1 can1-100 leu2-
3, 112 his3-11, 15 GAL psi+ 

Bruce Futcher 

SCSAH01 
 

ura3-1::PGAL-GST::URA3 (at URA3) 
(W303-K699 otherwise) 

This study 

SCSAH02 ura3-1::PGAL-GST-CYS4::URA3 (at URA3) 
(W303-K699 otherwise) 

This study 

SCSAH03 ura3-1::PGAL-GST-CYS4(S289D)::URA3 
(at URA3) 
(W303-K699 otherwise) 

This study 

BY4742 MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Open Biosystems 
16696 cys4Δ::kanMX4 (BY4742 otherwise) Open Biosystems 
SCMSP178 
 

CYS4-13MYC::KanMX4  
(BY4742 otherwise) 

This study 

SCMSP214 
 

CYS4(S289D)-13MYC::KanMX4 
(BY4742 otherwise) 

This study 

 
 
 
TABLE B-2 Correspondence between genes that affect cell division when over-
expressed, with genes required for normal cell-cycle progression 

ORF Phenotype Comment 
 Over-expression Deletion  

YLR052W G1   
YOR131C G1   
YHL001W G1 ‡NA  
YER028C G1   
YHR174W G1 NA  
YDR117C G1   
YGR112W G1 G1  
YDR156W G1   
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ORF Phenotype Comment 
 Over-expression Deletion  

YCR046C G1 †ND  
YDR493W G1   
YOR065W G1   
YPR152C G1   
YDR397C G1 NA essential 
YIR013C G1   
YHL031C G1 ND  
YPL127C G1   
YHR070W G1 NA essential 
YNL167C G1 NA  
YMR275C G1   
YGL105W G1   

YLL066W-B G1 NA  
YKL052C G2 NA essential 

YBR131C-A G2 NA Dubious, overlaps YBR131W 
YOR257W G2 NA essential 
YCR093W G2 NA essential 
YGR206W G2   
YML055W G2   
YHR172W G2 NA essential 
YIL138C G2   

YBL050W G2 NA essential 
YOR326W G2 NA essential 
YNL264C G2   
YDR277C G2   
YLR123C G2   
YML052W G2   
YHR014W G2   
YHR002W G2 NA  
YLR394W G2   
YJR060W G2 ND  

YCL026C-A G2   
YPR015C G2   
YOR286W G2 ND  
YGR091W G2 NA essential 
YDL002C G2   
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ORF Phenotype Comment 
 Over-expression Deletion  
YJL077W-A G2 NA Dubious, overlaps YJL077C 
YML007W G2   
YER145C G2   
YLR149C G2 ND  
YJL012C G2   

YLR341W G2   
YNL188W G2 NA essential 
YOR195W G2   
YGR109C G2   
YBR211C G2 NA essential 
YDR245W G2   
YDR033W G2   
YJL030W G2   
YDR091C G2 NA essential 
YIR001C G2   

YKL078W G2 NA essential 
YPR190C G2 NA essential 
YDR266C G2   
YDL214C G2   
YDR001C G2   
YIR016W G2   
YBR083W G2   
YKR067W G2   
YHR131C G2   
YFL022C G2 NA essential 
YDR143C G2   
YPL174C G2 G1 NIP100 
YOR002W G2   
YNL283C G2   
YPL247C G2   
YJL031C G2 NA essential 
YPR119W G2 G2 CLB2 
YML053C G2   
YJL106W G2   

YMR199W G2   
YML016C G2   
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ORF Phenotype Comment 
 Over-expression Deletion  

YLR189C G2   
YER007W G2   
YEL022W G2 NA  
YDL192W G2   
YDR335W G2   
YKR029C G2   
YGR094W G2 NA essential 
YBL031W G2   
YGR005C G2 NA essential 

YGR109W-A G2 NA Ty-transposon 
YPL116W G2   
YAR007C G2 NA essential 
YDL093W G2   
YOL063C G2   
YJR125C G2   
YIL036W G2   
YOR337W G2   
YOR007C G2   
YJL128C G2   
YIL158W G2   
YHR177W G2   
YGL066W G2   
YMR068W G2   
YER131W G2   
YFL037W G2 NA essential 
YDL155W G2   
YPR120C G2   
YFL039C G2 NA essential 

‡NA, not available. These deletion strains were not in the panel.  
†ND, not done. These deletion strains did not pass quality control either when they were 
generated, or when we analyzed them. 
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TABLE B-3 Correspondence between gene deletions that affect the budding index and 
the DNA content 

Phenotype ORF 
BI* %G1 

YLR226W Low ND† 
YKL068W Low  
YHL025W Low High 
YOR096W Low High 
YJL089W Low  
YHR008C Low ND 
YLL007C Low  
YHL011C Low High 
YKR092C Low  
YMR060C Low High 
YCL058C Low High 
YOR309C Low High 

YPL257W Low  
YPL240C Low  
YPL271W Low High 
YPL220W Low  
YPL171C Low  

YPL265W Low  
YPL227C Low  
YPL193W Low High 
YPL226W Low High 
YPL161C Low ND 
YBR199W Low  
YBR200W Low ND 
YBR181C Low High 
YPL125W Low High 
YDR140W Low High 
YDR379W Low  
YDR418W Low High 
YDR399W Low  
YEL001C Low ND 
YEL007W Low  
YDR378C Low High 
YKL009W Low High 
YKL096W High  
YKL113C High  
YKL143W High  
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Phenotype ORF 
BI %G1 

YKL129C High  
YOR107W High  
YKL116C High  
YKL164C High  
YKL187C High  
YOR279C High  
YHR191C High  
YJL047C High Low 

YGR107W High  
YPL267W High  
YPL191C High  
YPL120W High  
YPL114W High  
YPL108W High  
YBR205W High  
YBR231C High  
YDR121W High ND 
YDR122W High  
YDR055W High  
YDR073W High  
YDR135C High  
YDR085C High  
YDR101C High  
YDR069C High  
YDR102C High  
YDR338C High  
YDR363W High  
YDR369C High  
YDR393W High  
YDR402C High  
YEL004W High  
YCL016C High  
YKL041W High  
YKL048C High  
YPR109W High  
YPR115W High  
YPR119W High Low 
YPR135W High ND 
YGR188C High  



 89

* BI, Budding Index, as defined in Zettel et al (119). 
†ND, not done. 
 
 
 
TABLE B-4 Gene Ontology Enrichment of the "Low G1" group* 
ID Process p-value
GO:0022403 cell cycle phase 0.0017 
GO:0010529 negative regulation of transposition 0.0052 
GO:0033554 cellular response to stress 0.0104 
GO:0006974 response to DNA damage stimulus 0.0316 
GO:0007049 cell cycle 0.0426 
GO:0000278 mitotic cell cycle 0.0438 
GO:0000725 recombination repair 0.0464 
* The analysis was performed with the YeastMine (v. 2011-10-09) feature of the 
Saccharomyces Genome Database (http://yeastmine.yeastgenome.org/yeastmine).  
 
 
 
TABLE B-5 Gene Ontology Enrichment of the "High G1" group* 
ID Process p-value
GO:0002181 cytoplasmic translation 2.56E-17 
GO:0042274 ribosomal small subunit biogenesis 9.35E-15 
GO:0042254 ribosome biogenesis 2.24E-13 
GO:0022613 ribonucleoprotein complex biogenesis 1.01E-12 
GO:0030490 maturation of SSU-rRNA 3.05E-11 
GO:0071843 cellular component biogenesis at cellular level 3.58E-10 

GO:0000462 maturation of SSU-rRNA from tricistronic rRNA 
transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) 1.15E-09 

GO:0044085 cellular component biogenesis 1.10E-07 
GO:0006364 rRNA processing 1.68E-06 
GO:0016072 rRNA metabolic process 3.71E-06 
GO:0006412 translation 3.81E-06 
GO:0042255 ribosome assembly 3.07E-05 
GO:0034470 ncRNA processing 5.04E-05 
GO:0000028 ribosomal small subunit assembly 1.13E-04 
GO:0070925 organelle assembly 1.59E-04 
GO:0006396 RNA processing 2.57E-04 
GO:0034660 ncRNA metabolic process 8.03E-04 

GO:0071841 cellular component organization or biogenesis at cellular 
level 0.0017 
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ID Process p-value 
GO:0022618 ribonucleoprotein complex assembly 0.0035 
GO:0007035 vacuolar acidification 0.0053 
GO:0045851 pH reduction 0.0053 
GO:0051452 intracellular pH reduction 0.0053 
GO:0071826 ribonucleoprotein complex subunit organization 0.0056 
GO:0006407 rRNA export from nucleus 0.0070 
GO:0030641 regulation of cellular pH 0.0070 
GO:0051029 rRNA transport 0.0070 
GO:0051453 regulation of intracellular pH 0.0070 
GO:0071840 cellular component organization or biogenesis 0.0113 
GO:0006885 regulation of pH 0.0193 
GO:0000478 endonucleolytic cleavage involved in rRNA processing 0.0270 

GO:0000479 endonucleolytic cleavage of tricistronic rRNA transcript 
(SSU-rRNA, 5.8S rRNA, LSU-rRNA) 0.0270 

GO:0010467 gene expression 0.0407 

GO:0015931 nucleobase, nucleoside, nucleotide and nucleic acid 
transport 0.0417 

GO:0050658 RNA transport 0.0495 
GO:0051236 establishment of RNA localization 0.0495 

* The analysis was performed with the YeastMine (v. 2011-10-09) feature of the 
Saccharomyces Genome Database (http://yeastmine.yeastgenome.org/yeastmine). 
 
 
 
TABLE B-6 Drugs that lead to a High G1 DNA content 
Drug %G1 Use‡ Type 

Auranofin† 95.94% Antirheumatic Organogold 
compound 

Ketoconazole 84.05% Antifungal Ergosterol inhibitor 
Climbazole 83.30% Antifungal Ergosterol inhibitor 

Oxatomide 79.10% Antiallergic, antiasthmatic Histamine H1 
antagonist 

Rapamycin 78.81% Immunosuppressant, anticancer TOR inhibitor 
Myclobutanil 76.56% Antifungal Ergosterol inhibitor 

Aripiprazole 76.24% Antipsychotic 
Presynaptic dopamine 
agonist, postsynaptic 
D2 antagonist 

Haloperidol  76.21% Antipsychotic Dopamine antagonist 

Flunarizine 76.11% Antimigraine Calcium channel 
blocker 
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Drug %G1 Use‡ Type 
Itraconazole 75.14% Antifungal Ergosterol inhibitor 
Gestrinone 73.60% Contraceptive Steroid 
Clopidogrel 71.92% Platelet aggregation inhibitor  
Dehydroepi-
androsterone 71.86%  Steroid 

Fluconazole 71.14% Antifungal Ergosterol inhibitor 
Nystatin 69.94% Antifungal Ionophore 

Ibudilast 69.85% Vasodilator Phosphodiesterase 
inhibitor 

Lovastatin 69.77% Anticholesteremic HMG-CoA reductase 
inhibitor 

Ifenprodil 69.36% Anticonvulsant, vasodilator NMDA receptor 
inhibitor 

Progesterone 69.33%  Steroid 

Vatalanib 69.08% Antiangiogenic Protein kinase 
inhibitor 

Artemisinin 69.05% Antimalarial  
Nefazodone 68.80% Antidepressant  
Fenretinide 68.11% Antineoplastic Retinoid 

Amlodipine 67.31% Antihypertensive, vasodilator Calcium channel 
blocker 

Gemfibrozil 66.69% Antilipemic PPARa activator 
Alfacalcidol 65.06% Bone density conservation Vitamin D analog 
Canrenone 64.94%  Steroid 
‡Information about the use and type for each drug was obtained from PubChem 
(http://pubchem.ncbi.nlm.nih.gov/). 
†Drugs shown in bold were active both in pdr5Δ, snq2Δ, and in PDR5+ SNQ2+ cells. 
 
 
 
TABLE B-7 Drugs that lead to a Low G1 DNA content 
Drug %G1 Use‡ Type 
Fluoxetine† 16.98% Antidepressant Serotonin uptake inhibitor 
Promethazine 20.39% Antiallergic Histamine H1 antagonist 
Moxifloxacin 21.17% Antimicrobial Topoisomerase inhibitor 
Clinafloxacin 25.38% Antimicrobial Topoisomerase inhibitor 
Mitomycin c 27.26% Antineoplastic Alkylating agent 
Chlorpromazine 27.80% Antipsychotic Dopamine antagonist 
Nadifloxacin 28.13% Antimicrobial Topoisomerase inhibitor 
Idarubicin 29.10% Antineoplastic Intercalating agent 
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Drug %G1 Use‡ Type 
Clozapine 31.90% Antipsychotic GABA and Serotonin antagonist 
Gatifloxacin 33.52% Antimicrobial Topoisomerase inhibitor 
Aclarubicin 36.42% Antineoplastic Intercalating agent 
Sparfloxacin 36.57% Antimicrobial Topoisomerase inhibitor 

‡Information about the use and type for each drug was obtained from PubChem 
(http://pubchem.ncbi.nlm.nih.gov/). 
†Drugs shown in bold were active both in pdr5Δ, snq2Δ, and in PDR5+ SNQ2+ cells. 
 
 
 
TABLE B-8 Fluoxetine strongly inhibits yeast cell proliferation, but it is suppressed by 
gemfibrozil 

 [Gemfibrozil] 
  [Fluoxetine] 0 μM 50 μM 100 μM 200 μM 

0 μM 0.41±0.03* 0.43±0.01 0.45±0.01 0.40±0.01 
50 μM 0.41±0.02 0.43±0.01 0.45±0.00 0.42±0.02 
100 μM 0.39±0.02 0.45±0.01 0.47±0.00 0.43±0.01 
200 μM 0.03±0.01 0.46±0.02 0.44±0.03 0.42±0.01 

*The specific growth rate constant (k) of each drug combination is shown. These values 
were used to generate the graph in Fig. 16A. Errors represent the standard deviation of 
nine replicates of the 0 µM/0 µM control, and ranges of two replicates of all others. 
 
 
 
TABLE B-9 Gemfibrozil suppresses fluoxetine’s anti-proliferative effects only if added 
before, but not after, fluoxetine 

 2nd treatment 
 1st treatment DMSO Gemfibrozil Fluoxetine 

DMSO 0.470±0.001* 0.400±0.002 0.108±0.005 
Gemfibrozil 0.475±0.006 0.402±0.001 0.277±0.004 
Fluoxetine 0.287±0.001 0.239±0.001 -0.008±0.001 

*The specific growth rate constant (k) of each treatment combination is shown. These 
values were used to generate the graph in Fig. 16B. Errors represent the ranges of two 
replicates for all samples. 
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APPENDIX C 

ATTACHED DATASETS 

 

Description of attached MS Excel files: 

 

Dataset C-1.xls. (4.04 MB) Searchable spreadsheet of all the primary gene deletion data 

analysis, arranged in different worksheets. In the worksheet entitled "Data and 

Correlation", we list the experimental data we obtained, representing mean average 

values for individual deletions, organized by plate ID. Data from our study are correlated 

to growth and cell size data from the indicated studies, and descriptions from the 

Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/). In the 

worksheet entitled "INCLUDED Experiments", we list all our flow cytometry individual 

experiments that were included in the final analysis. Raw .fcs files can be accessed at 

Cytobank (www.cytobank.org). Public experiment name: "Yeast DNA Content Project – 

DELETION – INCLUDED". In the worksheet entitled "EXCLUDED Experiments", we 

list individual experiments that were excluded from the final analysis for various reasons, 

but which may represent valid flow cytometry profiles. Cytobank public experiment 

name: "Yeast DNA Content Project – DELETION – EXCLUDED". Finally, in the 

worksheet entitled "Explanation", we provide further detailed descriptions of each 

parameter listed in the previous worksheets. 
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Dataset C-2.xlsx. (503 KB) Searchable spreadsheet of all the primary drug treatment 

data analysis, arranged in different worksheets. Layout and formatting is similar to that 

of Dataset C-1. Raw .fcs files can be accessed at Cytobank (www.cytobank.org). Public 

experiment names: "Yeast DNA Content Project – DRUG – INCLUDED" and "Yeast 

DNA Content Project – DRUG – EXCLUDED". 
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