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ABSTRACT 

 

Genetic Improvement of Upper Half Mean Length and Short Fiber Content in 

Upland Cotton, Gossypium hirsutum. (August 2012) 

Benjamin Michael Beyer, B.S., Texas A&M University; 

M.S., Colorado State University 

Co-Chairs of Advisory Committee: Dr. C. Wayne Smith 
Co-Chairs of Advisory CommitteDr. Richard Percy 

 

 

Desired base upper half mean length (UHML) of upland cotton (G. 

hirsutum) in the U.S. has been set a 27.0 mm and is shorter than the standard 

set by the international community.  Upland cotton genotypes from China, South 

Africa, West Africa, and the U.S. were test crossed to an extra long staple 

upland (ELSU) and a short staple upland (SSU)  and selected genotypes that 

included both ELSU and MSU phenotypes were crossed in a half-diallel mating 

scheme to estimate general combing ability (GCA) effects and specific 

combining ability (SCA) effects.  A recombinant inbred line (RIL) population was 

established to determine the narrow sense heritability (h2) of AFIS short fiber 

content by weight (SFCw) and lower half mean length (LHML) and to estimate 

SFCw using HVI fiber properties. 

Obsolete cultivars from China are not likely sources for UHML 

improvement, cultivars from Africa and the U.S. could harbor alleles not being 

used in current elite short staple cultivars or modern ELSU cultivars. Two ELSU 
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lines used in this study derived through interspecific hybridization with G. 

barbadense could contain alleles for UHML improvement in modern ELSU 

cultivars developed without any apparent G. barbadense introgression.  A third 

line D&PL 45-867, might contain alleles for UHML improvement in long staple 

upland cotton genotypes. 

Narrow sense heritability estimates indicated a much higher heritability of 

LHML than AFIS SFCw. Correlation between AFIS SFCw and LHML did not 

agree with previous studies when using an ELSU X MSU  cross.  Further study 

is needed to understand this complex relationship. 
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CHAPTER I 

INTRODUCTION 

 Upland cotton, Gossypium hirsutum L., is a crop that produces spinnable 

fibers and is a major crop in 14 of the 17 cotton producing states of the United 

States (US) (Cotton Incorporated, 2009).  During the period of 2009 to 2011, the 

US on average produced 15.3 million bales per year and exported 11.6 million 

bales per year (National Cotton Council, 2012).  Because cotton is now being 

traded in a global market, producers in the US must compete with producers 

around the world.  While yield has always been the primary trait of interest by 

producers, fiber quality quickly is becoming of major importance in order to 

maintain global competitiveness.  This is evident also by the increase in demand 

for the high quality fibers produced by pima, G. barbadense L., fibers (Cline, 

2009). 

 The quality of cotton is dependent upon the cultivar, environmental 

conditions during the growing season, harvest methods, and ginning methods 

(Anthony, 1999).  While improvements have been made in the way cotton is 

handled from harvesting to ginning, genetic improvement of fiber quality will 

provide the highest return per dollar invested.  New sources of alleles coding for 

improved fiber quality are needed along with improved conventional or molecular 

techniques for understanding inheritance and epistatic interactions.   

   
This dissertation follows the style of Crop Science. 
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 The ultimate evaluation of fiber quality is the quality of yarn that can be 

produced. The fundamental problem that breeders face is that maximum genetic 

gain from selection occurs from single plant selections in the F2 or F3 generation 

which doesn’t provide  enough for spinning (Braden, 2005).  Breeders must rely 

on estimates, i.e., correlations, of the relationship between  fiber properties and 

yarn properties.   

Fiber length is typically a good indicator of cotton fiber quality and 

producers can receive a premium for longer fibers (Braden and Smith, 2004).  

Length also is related to strength and fineness characteristics.  Long and strong 

fibers are desired by processors because they allow increased spinning speeds 

which correspond to increased production and decreased cost per unit.   

Fiber length in cotton is a heritable trait controlled by multiple genes.  

Because of the narrow genetic base of current elite commercial cultivars, genetic 

variation might not be present for continued improvement of fiber quality 

(Paterson et al., 2004; Percy et al., 2006).  Possible sources for improving 

current elite lines can be found in primary germplasm resources that include 

foreign cultivars and obsolete cultivars in the national germplasm collection 

(Percy et al., 2006).  Knowing the inheritance and genetic variation for fiber 

length is essential to the improvement of UHML and reduction of short fiber 

content in upland cotton.   

This project used a total of 29 cultivars collected from China and Africa in 

addition to seven US cultivars that represented different cotton production 
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regions or germplasm pools in testcross per se performance with a short staple 

cultivar and a recently released ELSU germplasm line to determine GCA and 

SCA of potential parents for improved UHML.  A second study was a half diallel 

mating design using a long staple upland (LSU) germplasm line and a recently 

release ELSU germplasm line along with three confirmed ELSU accessions from 

the United States Department of Agriculture (USDA) Cotton Collection to  

determine GCA and SCA.  Broad sense heritability (H2) estimates for UHML 

were obtained from the testcross and diallel studies.  Lastly, individual plants 

were selected in the F2:3 generation of a ‘DP491’(PVP 200100159, PI 

618609)/ELSU cross.  Seed of each plant was increased to the F3:5 generation 

and planted in a replicated design.  Fiber data were obtained to determine the 

narrow sense heritability (h2) of Advanced Fiber Information System (AFIS) 

Short Fiber Content by Weight (SFCw) and Lower Half Mean Length (LHML) 

measurements from High Volume Instrument (HVI) data.  Regression equations 

to determine AFIS SFCw from HVI data were developed.  Pearson’s correlation 

coefficients (r) were obtained between the regression equations and AFIS SFCw 

and other HVI measured fiber properties.  The data obtained will be of 

importance to plant breeders to develop ELSU cottons with improved spinning 

properties. 

Objectives 

 The objectives of the research described herein are: 
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1) determine general combining ability (GCA), specific combining ability 

(SCA), and broad sense heritability (H²) estimates for fiber length among 

a cohort of medium staple genotypes from China,  Africa, and the U.S.  

when crossed to TAM B-182-33 ELS and Tamcot CAMD-E, a short staple 

obsolete upland cultivar; 

2) determine GCA and SCA for fiber length parameters among three 

confirmed USDA  accessions, TAM B182-33 ELS, and TAM 94L-25;             

3) evaluate heritability and equations used to estimate short fiber content 

using HVI parameters in an F3:5 population derived from DP491/TAM B-

182-39 ELS. 
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CHAPTER II 

REVIEW OF LITERATURE 

Cotton Fiber Development 

 Cotton (Gossypium sp.) fibers are single cell growths that arise from 

epidermal cells on the outer integument of ovules within developing bolls (Basra 

and Malik, 1984).  The fiber is ultimately a hair or trichome that elongates up to 

1000-3000 times longer than its diameter and is one of the purest forms of 

cellulose.    

Cotton fibers consist of two distinct types; longer fibers that have 

commercial value because they can be spun into yarns and made into textiles, 

and the extremely short fibers called linters that have little commercial value 

(Basra and Malik, 1984).  Fiber development consists of four phases; initiation, 

elongation, secondary wall thickening, and maturation (Naithani et al., 1982; 

Basra and Malik, 1984).  While initiation and maturation are distinct steps, a 

study by Gibson and Johan (1969) found an overlap between the elongation and 

secondary cell wall thickening phases.   

 Stewart (1975) documented the beginning states of the development of 

cotton fibers.  Prior to antheis, the ovules of developing cotton squares are 

anatropous.  However, the ovules begin to form stomata on the surface 

beginning one week before anthesis, primarily on the chalazal end.  While fiber 

initials can form anywhere from a day before to two days past anthesis (dpa) 

(Basra and Malik, 1984), Stewart (1975) noted that they first form on the crest of 
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the funiculus on the morning of anthesis.  This is followed by the formation of 

initials around the lateral circumference of the ovule.  Within a few hours, initials 

will form at the chalazal end and is finished at the micropylar end.  In this area, 

fiber initials can continue to occur up to four days past anthesis.  Linters typically 

begin to form at four dpa (Joshi et al., 1967; Zhang et al., 2007).   

Following initiation of fiber development, elongation immediately begins 

(Basra and Malik, 1984).  Stewart (1975) described the beginning of the 

elongation with the initials becoming rounded and expanding, thus resembling a 

balloon.  At this stage, the developing fibers on the chalazal end expand more 

rapidly than the other initials.  Furthermore, elongation happens as a tangent to 

the ovule in the direction of the micropyle.  On the second dpa, fiber elongation 

becomes more evident with directional growth occurring at the top of the 

funiculus.  Following this stage, the fibers will begin to grow together and take on 

spiral growth as they continue to elongate.  The fibers will continue to elongate 

for 27-30 days dpa under optimum conditions (Schubert et al., 1973).  The fiber 

lengths obtained during elongation are a result of the rate of elongation and the 

elongation period (Gipson and Joham, 1969), which also varies among 

genotypes (Basra and Malik, 1984).  The rate of elongation is determined by 

environmental conditions and dpa (Gipson and Joham, 1969).  Gipson and 

Johan (1969) showed fiber elongation is highly temperature dependent from 

zero to 15 dpa when developing bolls were subjected to temperatures below 

21.1C.  Temperatures below 21.1C resulted in significantly slower rates.  The 
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authors also noted that the maximum elongation/day occurred at 10-15 dpa.  

Once bolls were 15 dpa, elongation rates were constant regardless of night time 

temperature and continued until the end of elongation.   

 As elongation cycle ends, secondary cell wall thickening begins (Basra 

and Malik, 1984).  Secondary cell wall thickening however may begin prior to 

cessation of elongation (Benedict et al., 1973; Schubert et al., 1973, 1976; 

Meinert and Delmer, 1977; Beasley, 1979; Naithani et al., 1982; Basra and 

Malik, 1984) and occurs evenly over the entire fiber and not at specific regions 

(Basra and Malik, 1984).  Upon maturation the secondary cell walls will be 

comprised of up to 94% cellulose.  The thickness of the secondary cell walls and 

the angle at which they spiral ultimately affect their strength and thus their ability 

to withstand fiber breakage during harvesting, ginning, and cleaning.    

When secondary cell wall thickening is complete, the ovary wall will begin 

to dry and split along lines in the surface tissue of the boll (Basra and Malik, 

1984).  This will leave seeds and fibers exposed to the elements and the 

remaining fluids in the boll will evaporate.  Fiber maturity is determined 

traditionally by the amount of secondary cell wall thickening that occurs.  Fully 

mature fibers will have a thick secondary wall and thin lumen.  This makes the 

fibers stronger and more resistant to breaking during harvesting and processing.  

On the other hand, if the fibers are not mature, they will have thinner secondary 

walls and not spin as well because they will not twist and bind together during 
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spinning.  Furthermore, the fibers will entangle and produce small knots known 

as neps.   

The type of cotton fibers desired by yarn spinners are long, strong, fine, and 

mature fibers because they produce stronger and finer yarns (Basra and Malik, 

1984).  Because of the impact the environment has on fiber development, 

potential cultivars should be tested for adaptation prior to adoption by producers 

in order to determine the potential for fiber quality.   

Fiber Quality 

Cotton fiber quality is at its peak when the bolls are still on the plant 

(Anthony, 1994; Anthony 1999).  The fiber quality however will depend upon the 

cultivar, environmental conditions during the growing season, weathering of the 

open bolls prior to harvest, harvest method, and ginning procedures (Anthony, 

1999).  The primary fiber quality parameters are length, fineness, length 

distribution, and strength (Hsieh, 1994).  The fiber properties that are important 

depend upon the spinning system used and will have impacts on the yarn 

strength, thick and thin places, and feel and attractiveness of the yarn produced.  

Furthermore, the fiber properties are determined by both genetic and 

environmental factors. 

Cotton Harvesting 

 The two means of harvesting cotton in the U.S. are by mechanical spindle 

picker harvest and stripping (Anthony, 1999).  It is estimated that 75% of the 

cotton in the U.S. is harvested with the mechanical spindle picker and the 
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remaining 25% is harvested with the mechanical stripper (Mayfield et al., 1999).  

The primary difference in the harvested product between mechanically picked 

and stripped cotton is the amount of trash.  About 1500 pounds of picked 

seedcotton is required to make a 480 pound bale of lint and whereas 2200 

pounds of seedcotton is required under stripper harvest.  The difference is due 

to the amount of trash in the seedcotton.  Picker harvested cotton will contain 

approximately 120 pounds of trash in the 1500 pounds of seedcotton versus 

approximately 800 pounds of trash in the 2200 pounds of stripped seedcotton.  

However, modern cotton strippers utilize onboard trash extractors in order to 

reduce the amount of trash in the harvested seedcotton (Anthony, 1999).   

Ginning Procedures 

 Prior to the mechanization of cotton harvesting, the only machinery 

needed were a gin stand and a press to form bales (Mayfield et al., 1999).  The 

modern saw type ginning system now includes seedcotton cleaning and drying, 

ginning, lint cleaning, and bale pressing.  The optimum moisture of seedcotton to 

maintain fiber quality is six to seven percent (Anthony, 1999).  Furthermore, the 

amount of cleaning of seedcotton should be kept to a minimum in order to 

preserve the fiber quality.   

 A saw gin uses a set of circular saws between ginning ribs that do not 

allow seed to pass through (Mayfield et al., 1999).   Fibers are caught on the 

teeth of the saw blades and pulled free of the seeds as the blade passes 

through the ribs.  The seeds then drop to an auger system for removal from the 
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gin stand while the fibers are doffed from the saw blades by  brushes that spin at 

a faster speed and opposite direction to the saw blades.  Ginned fibers then 

pass through one or two lint cleaners.  Lint cleaners remove any remaining fine 

trash but reduce fiber quality by breaking fibers.  One lint cleaner is used in the 

ginning process and a second is only used if further cleaning is needed.  Finally, 

the lint is compressed into bales and wrapped completing the saw ginning 

process. 

 Extra long staple (ELS) or Pima cotton (G. barbadense) in the U. S. is 

ginned on rotary-knife roller gin stands that use a large diameter roller to pull the 

fiber under a stationary knife that will not let the seed pass which effectively 

separates the fiber from the seed  (Anthony, 1999; Mayfield et al., 1999).  Roller 

ginning may require an extra seedcotton cleaning and drying stage prior to 

ginning.  Roller ginning is easier on the fibers, which in turn produces fewer 

broken fibers and entanglements and maintains high fiber quality.   

Fiber Length 

Fiber length was the first parameter to be measured for cotton quality 

determination (May, 1999).  It has long been known as a contributor to yarn 

strength and processing performance (Brown, 1938; May, 1999; Perkins et al., 

1984).  Moreover, knowing fiber length is important knowledge for spinning 

yarns of a certain size on ring spinning frames (May, 1999; Rusca and Reaves, 

1968).  In terms of yarn strength, longer fibers require less twist  whereas a 

shorter staple cotton would require more twist to produce yarn with equivalent 
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strength if all other fiber quality parameters were held constant (May, 1999).  

Because there is a limit to the amount of twist of fibers drawn into yarn, longer 

fibers would mean reduced input costs (May, 1999; Perkins et al., 1984) and 

would allow finer yarns worth more income to be produced (Landstreet, 1954; 

May, 1999). 

Suter-Webb 

The Suter-Webb array system was used to determine fiber length via the 

staple length system (Behery, 1993; May, 1999).  The Suter-Webb array method 

uses a comb-sorting technique which separates the fibers into different length 

groups that are then weighed by each group.  This method requires too much 

time to test each sample and is thus impractical for breeding programs and is 

rarely used (Thibodeaux et al., 2008). 

Staple length, which is a subjective estimate of the longest five percent of 

fibers is measured in 32nd of an inch increments and was the original method 

used by the USDA to classify cotton fiber length (USDA, 1965; Woo, 1967).  

However, this method is  subjective  and does not provide any fiber length 

distribution data, and has been replaced by more objective measurements.  

 Upper Half Mean Length (UHML) 
 

 The HVI upper half mean length (UHML) is the average length of the 

longest 50% of fibers in a sample or bale (ASTM, 1994b).  This measurement is 

used to place cotton into the five upland staple classes which are short (<21.0 

mm), medium (22.0 mm  – 25.0 mm), medium-long (26.0 mm. -28.0 mm), long 
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(29.0 mm. – 34.0 mm), and extra long staple (ELS) (>34.0 mm) (Bradow and 

Davidonis, 2000).    The HVI UHML measurement also is what is traditionally 

used to market fiber length in the United States and the world (Smith et al., 

2009) and the data is needed in order to set drafting rollers at the proper 

distance for spinning (Rusca and Reeves, 1968; Behery, 1993; El Mogahzy and 

Chewing, 2001; Braden, 2005).   

High Volume Instrument  

High Volume Instrument (HVI)  technology is rapid and measures fiber 

length using a small beard of paralleled fibers passing through a sensing point of 

the system (Anthony, 1999).  High Volume Instrument can be programmed to  

provide fiber length measurements in 32nds, i.e., staple, or in continuous length 

measurements occurring in 100th of an inch increments.   

The basis of the HVI method for measuring fiber length is based on the 

Hertel (1940) fibrogram methods (Ramey, 1999; Cui et al., 2009).  The process 

begins by clamping a beard of fibers at a random point along their length 

(Ramey, 1999).  The beard is then combed in order to remove loose fibers and 

to straighten fibers in the clamp.  The beard is then scanned to determine the 

fiber length distribution.  The values are calculated based on the scan and 

averages taken to determine the fiber length properties (Ramey, 1999). 

The beard sampling procedure presents a fundamental issue as it introduces a 

bias into the measurement of the fiber parameters (Cai et al., 2010).  The 

original theory was that the probability of a fiber being selected was in proportion 



13 

 

to its length (Hertel and Zervigon, 1936; Hertel, 1940, Cai et al., 2010).  This 

theory is the length-biased assumption and was proven by Zeidman et al. 

(1991a).  However, Chu and Riley (1997) later disproved the theory and 

proposed that each fiber has an equal chance of being sampled  but there were 

still discrepancies specifically related to fibers less than 12.7 mm in length (Cui 

et al., 2007; Cai et al., 2010).  

Advanced Fiber Information System  

The Advanced Fiber Information System (AFIS) is another tool to 

determine fiber quality parameters.  A small sliver of cotton, approximately 0.5 g 

and containing 3,000 to 10,000 fibers, is prepared manually for analysis by the 

AFIS (Calhoun et al., 1997).  The fibers are  individualized and pass through 

electo-optical sensors via air flow (Bragg and Shofner, 1993: Calhoun et al., 

1997).  Algorithms based on the duration and speed of a fiber passing through 

the sensor are used to calculate fiber length (Calhoun et al., 1997).  However, 

the AFIS system can produce biased measurements since the fiber 

individualizer results in fiber breakage (Bragg and Shofner, 1993).  This 

breakage can reduce the UHML by one to two millimeters and increase Short 

Fiber Content (SFC) (Bragg and Shofner, 1993).   

The AFIS software can be programmed to provide length data  in both 

English or metric units and is calculated on both a number and weight basis 

(Calhoun et al., 1997).  A graphic distribution of fiber length categories can be 

obtained.  The number values are based on actual count data whereas the 
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weight data is calculated (Calhoun et al., 1997) based on the average fiber 

fineness, thereby biasing the measurement (Krifa, 2006).  Types of length data 

reported include mean length, upper quartile length by weight (UQLw), which is 

the average length of the longest 25% of fibers by weight, and short fiber content 

(Calhoun et al., 1997).  Calhoun et al. (1997) and Smith and Williams (1995) 

have shown high correlation between HVI UMHL and AFIS UQLw.  Short fiber 

content can be reported both by number and by weight.   

Mean Length 

 The average or mean length of fibers (ML) can be calculated in both a 

weight and number basis with the later being important  in yarn spinning 

(Braden, 2005; ASTM, 1994a).  However, with the measurements being weight 

and number based, the two measurements are not the same.  For example, the 

fiber length by number (FLn) includes and averages  short fibers in the sample 

whereas the fiber length by weight (FLw) excludes or discounts them in the 

calculated values.  Since cotton fibers vary in their diameter,  fibers that are 

more mature and  thicker have an increased mass that biases the results.  

Furthermore, a study by Cui et al. (1998) showed that number-based and 

weight-based measurements of fiber length can result in different ranks of cotton 

fiber lengths both theoretically and experimentally.   

Uniformity Index  

 The uniformity index (UI) of cotton is the ratio of the mean length to the 

UHML expressed as a percentage (Behery, 1993).  If the fibers in the bale were 
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the same length, then the uniformity index would be 100 (Cotton Inc., 2011).  

However, because cotton fiber lengths vary naturally and because processing 

causes  fiber breakage, the UI is less than 100.   

The classifications for uniformity index are very high (>85), high (83-85), 

intermediate (80-82), low (77-79), and very low (<77) (Cotton Inc., 2011). 

Uniformity index affects the evenness and strength of yarn and is related to yarn 

processing ability.  Cottons with a low UI will produce inferior yarns. 

Short Fiber Content  

 Short fiber content (SFC)  is defined as the percentage of fibers that are 

12.7 mm or shorter (Bragg and Shofner, 1993).  Short fibers have a big impact 

upon the quality of yarn produced and the performance during spinning (Backe, 

1986).  Backe (1986) found that SFC had the biggest impact on the number of 

thick and thin places in yarn and the adjusted break factor of a yarn This was 

observed when the difference in SFC  was as little as three percent.  

Furthermore, it was shown that SFC had a greater impact than fiber length, 

micronaire, and the number of bales used in the laydown procedure. 

 Anthony (1992) reported on the origin of SFC within cotton bales and 

samples.  The changes were primarily attributed to different fiber moisture, fiber 

strength, and machines used in processing during ginning (Anthony 1985; 

Anthony, 1992).  The author found that as moisture levels decreased, the 

amount of SFC increased in samples.  The  SFC also increased with more lint 

cleaners being used.  The SFC of samples increased from 6.8% with no lint 
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cleaners to 9.8%, 11.1%, and 12.7% as one, two, or three lint cleaners were 

used, respectively (Anthony, 1992).   

 The best way to accurately measure SFC is through the Sutter-Webb 

array method (Thibodeaux et al., 2008).  However, this method is too tedious 

and time consuming to perform on every bale or fiber sample.  An advantage of 

AFIS is that it provides direct measurement of SFC on both a number and 

weight basis (Bragg and Shofner, 1993; Calhoun et al., 1997).   

Determination of SFC must be done using other length parameters as 

direct determination has been shown to be difficult and unreliable (Zeidman et 

al., 1991b).  This is a sharp contrast to measuring other fiber length properties 

which are easy to accurately measure.  As such, multiple studies have published 

different methods in which to quantify different fiber property measurements as 

indicators of  SFC in a sample or bale (Ramey and Beaton, 1989; Zeidman, 

1991b; Anthony, 1992; Thibodeaux et al., 2008; Cai et al., 2011). 

 Ramey and Beaton (1989) found a high negative (-0.955) correlation 

between SFC and UI.  However, when the authors broke their data down by 

year, the correlations between SFC and UI were -0.635 and -0.744 for their 

samples in 1984 and 1985, respectively.  Thibodeaux et al. (2008) looked at 

Suter-Webb array data and HVI and AFIS fiber properties.  The authors stated 

that SFC similar to what would be found using the Suter-Webb array method 

could be accurately predicted using AFIS or HVI data.   

Zeidman et al. (1991b) tried using ML, UHML, and UI parameters 
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correlated to estimate SFC using USDA Annual Quality Surveys from 1985, 

1986, and 1987.  Based on the 1985 data, the authors found coefficient of 

correlation values of 0.75 and 0.80 between UI and SFCn or SFCw, , 

respectively.  When UI was combined with other length parameters, the 

coefficient of multiple determination was highest for the 1985 crop year but did 

not perform as well in the other years.  Furthermore, their data was only relevant  

for the 1985-1987 crop years and is not valid for future samples (Anthony, 

1992). 

Anthony (1992) also looked at the relationship between UI and SFC.  The 

author found that prediction of SFC from UI could produce an error as large as 

47%.  Based on 20 different genotypes, only four showed a significant 

relationship between SFC and UI.  The overall relationship between SFC and UI 

produced an R-square of 0.23 when the genotypes were included (Anthony, 

1992). 

Lower Half Mean Length 

 A new statistical parameter to characterize cotton fibers shorter than 12.7 

mm is known at the Lower Half Mean Length (Cui et al., 2009).  This parameter 

was developed using algebraic conversion and can be calculated using the 

UHML and UI measurements (Cai et al., 2011).  It is meant to provide more 

information than current short fiber measurements primarly due to lower 

coefficient of variation (CV) than AFIS SFCw.  Furthermore, current data 
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suggests that LHML is a better parameter for predicting spinning performance 

than AFIS SFCw.   

Fiber Length Distribution 

 The length and number of each length within a given sample of a cotton 

genotype can be displayed as a fiber length distribution.  Robert et al. (2000) 

hand pulled fibers from seedcotton of  Pima (G. barbadense) cultivar S-6.  When 

the fiber distribution was analyzed, it resembled a normal unimodal curve.  

However, since lint is rarely hand pulled from seedcotton, fiber length 

distributions of mature and strong upland cottons machine harvested and saw 

ginned are typically bimodal (Krifa, 2006).  The first peak in the distribution 

typically occurs around the 3.2mm point.  This peak is attributed to fiber 

breakage during processing and handling.  The second peak in the fiber length 

distribution is associated with the UHML of sample.  Unimodal distributions can 

be seen also in upland cotton.  However, they are typically immature and weak 

cottons that have excessive fiber breakage from processing and handling.  

Unimodal distributions are possible with mature and strong cotton, but are only 

seen if excessive forces in cleaning and processing were used (Krifa, 2006).  

Ultimately, fiber length distribution in upland cotton is based on the inherit 

genotype and genotype X environment factors and the processes used during 

ginning, cleaning, and carding (Krifa, 2007). 

Textile Industry 

 The majority of the lint produced is used directly in the production of yarns 
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to manufacture textiles.  The end product for a bale of cotton is ultimately 

decided by the fiber properties and the type of spinning technology being used 

to transform the fibers into yarn (Krifa and Etheridge, 2003).  The innovations in 

spinning technology have arisen from changes in processing practices, end 

products, and various mixes of fiber properties being used.   

Ring Spinning 

 Invention of the ring spinning frame is credited to John Thorpe and dates 

to 1828 (Fraser, 1993).  The modern ring spinning frame involves  vertically 

mounted spindles with several drafting rollers above each of them.  Roving is 

above each spindle where it passes through the drafting rollers in order to 

reduce it to the desired fineness prior to spinning.  As yarn exits the drafting 

rollers, it passes through a guide eye located above each spindle.  Past the 

guide eye is a traveler, which is free to rotate around a ring as the yarn is fed 

onto a bobbin.   

 During this process the yarn is twisted to impart tensile strength (Fraser, 

1993).  Fiber strength is the most important factor affecting yarn tenacity (Üreyen 

and Kadoğlu, 2006).  However, it should be noted that fiber length and length 

uniformity are the most important fiber properties that affect ring spun yarn 

tenacity (Deussen, 1993).  Fiber properties that are also important include fiber 

elongation and fiber fineness (Üreyen and Kadoğlu, 2006).  The previous stated 

fiber properties along with yarn count, yarn twist, roving count, and unevenness 
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of roving are all factors that impact upon the tenacity of yarn.  Roving count is 

especially important since it is used to set the draft on the ring spinning machine. 

 Ring spun yarn elongation before breaking is highly dependent upon yarn 

count, twist, and the roving count (Üreyen and Kadoğlu, 2006).  Üreyen and 

Kadoğlu (2006) also found elongation of the yarn increased with more twists or 

in coarser yarns but decreased when a finer roving was used.  Fiber elongation 

and fineness highly influence yarn elongation and have a positive effect on it.  

Other fiber parameters influencing yarn elongation were reflectance, fiber 

strength, SFC, and length but had a lower effect. 

 Yarn evenness and hairiness are other characteristics were influenced by 

fiber properties (Üreyen and Kadoğlu, 2006).  Yarn evenness is affected 

primarily by the yarn count and unevenness of the roving.  This characteristic is 

highly dependent upon fiber strength and prevention of fiber breakage leads to 

better yarn evenness.   Yarn hariness, which are fibers that are protruding from 

the spun yarn, was affected mostly by twist with strength, elongation, and length 

also affecting this yarn appearance measurement.  Fiber length was shown to 

have the biggest impact on skein break factor, an important yarn quality 

parameter that is determined based upon the load applied and the yarn number 

(El Mogahzy et al., 1990).  As such, increasing fiber strength, UHML, UI, yarn 

twist, and yarn count will reduce the hairiness of yarn when ring spun.   

Ring spinning is considered the best platform for spinning  short staple 

upland cotton (Özgüney et al., 2007) and is the standard by which other spinning 
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forms are judged (Fraser, 1993).  It continues to undergo further improvement 

despite the need for high energy inputs and low production rates (Chang et al., 

2003). 

Compact Spinning 

Compact spun yarns are a relatively novel type of spinning technology 

(Artzt, 2000).  Compact spinning offers yarn spinners the possibility of producing 

high quality yarns from shorter staple upland cotton rather than using more 

expensive long or extra long staple cultivars (Krifa et al., 2002).   Krifa and 

Etheridge (2003) were able to produce a 50 Ne carded yarn that was 

comparable to a combed yarn produce on a conventional ring spun frame with 

significantly reduced hairiness. 

Compact spun yarns do not pass through a traditional spinning triangle as 

conventional ring spun yarns, but uses a much smaller triangle designed to 

minimize its width and height (Krifa et al., 2002).  The advantage of this system 

is that the fibers are put into a more organized structure than ring spun yarns 

(Artzt, 2000; Krifa et al., 2002).  The yarns produced represent a superior ring 

spun yarn which is attributed to the uniform integration of fibers into the yarn 

cross section (Artzt, 2000).  This is accomplished by compacting the fibers into a 

narrow sliver in a process devoid of tension and then twisting them as a compact 

sliver.   The process also has the distinct advantage of being able to utilize 

shorter staple cotton fibers than ring spun yarns.   
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The advantages of compact spinning is not only in the ability to use 

shorter  fibers (Krifa et al., 2002), but other yarn structure qualities can be 

achieved (Artzt, 2000).  Artzt (2000) analyzed the structure of a compact spun 

yarn using Scanning Electron Microscopy (SEM) and found that there was a 

better arrangement of fibers, a distinct twist, and a relatively small number of 

both short (1-2 mm) and long (6-8 mm) protruding hairs.  Furthermore, Krifa et 

al. (2002) showed there was also improved elongation and yarn strength and 

Yilmaz et al. (2007) showed 30% higher packing density in compact versus ring 

spun yarns.     

The advantages of compact spun yarn in terms of reduced hairiness and 

improvement in yarn parameters such as elongation and strength has been well 

documented in the literature (Krifa et al., 2002; Cheng and Yu, 2003; Krifa and 

Ethridge, 2003; Göktepe et al., 2006; Krifa and Ethridge, 2006; Kretzschmar et 

al., 2007; Omeroglu and Ulku, 2007; Yilmaz et al., 2007; Özgüney et al., 2008; 

Wang et al., 2009).  Omeroglu and Ulku (2007) showed fabrics woven from 

compact spun yarns also had higher resistance to pilling, or the breaking of 

fibers and subsequent formation of fiber entanglements.  Fabrics made with 

compact spun yarns also showed better dying and printing properties when 

compared to ring spun yarns by Kretzschmar et al. (2007) and Özgüney et al. 

(2008). 

As with any new technology, it becomes critical to match quality with 

profitability (Krifa and Ethridge, 2003).  If the fiber properties are not correct, 
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compact spinning may not be an economically viable option for spinners since 

the value added to the yarn will not match the increased production costs (Krifa 

and Etheridge, 2006).  The primary benefit of compact spinning appears to be 

the potential for reducing the combed yarn process (Krifa and Etheridge, 2003).  

The primary criteria for dealing with combed cotton is the SFC.  Krifa and 

Etheridge (2003) found the ability of compact yarns to compensate for any 

benefit from fiber combing decreased as SFC increased.  Thus if fiber 

distributions are not taken into account, compact spinning may not counteract 

any fiber impurities that would otherwise be removed by combing.  If the 

impurities are not removed, compact yarns will be significantly lower in quality 

than traditional ring spun yarns.   

Open-End/Rotor Spinning 

Rotor or open-end (OE) spinning produces yarn with a different structure 

than ring and compact spinning frames and does not use a spindle (Lord, 1971).  

It begins by drafting individual or small groups of fibers rather than using a sliver.  

This is such that no torque is created to be transmitted upstream and an open-

end is created.  Thus, fibers or small groups of fibers are attached at the end 

and wrapped into the yarn.  The economic implication of this is that the speed is 

no longer limited to the size and shape of the yarn, which can be made to any 

size and shape desired.   

 Compared to ring spun yarn, OE yarn is 10-30% weaker, fuller, and has 

better elongation (Lord and Nichols, 1974; Mohamed and Lord, 1973).  This has 
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been attributed to the unsystematic method of fiber integration into the yarn.  

This results in decreased fiber migration and an increase in the number of fiber 

tanglements in the yarn.  In OE yarns, most of the fibers are in the fiber core 

(Mohamed and Lord, 1973).  The fiber core is then wrapped by fibers that vary in 

twist level.  This differential structure results in an uneven distribution of 

stresses, thus resulting in the reduced strength but increased elongation 

properties.  However, the strength of OE yarn may be improved by increasing 

the twist level.   

 Similar to other studies, El Mogahzy et al. (1990) determined that fiber 

strength had an impact upon the skein break factor of OE spun yarn, although 

fiber fineness had the biggest impact on skein break factor.  As with other yarns, 

fiber length and length uniformity also had a significant impact upon yarn quality.    

Air Jet Spinning 

Air-jet spinning has advantages over the other spinning methods in both 

speed and cost (Basu and Oxenham, 1999).  The air jet spinning system was 

first commercialized by the DuPont Company in 1963 (Grosberg et al., 1987).  

The system involves a false-twisting zone that is made up of a set of drafting 

rollers, the air-jet, and take-up rollers.  Yarn is twisted in one direction by the 

rollers is then twisted in the opposite direction by the air-jet.  The air-jet nozzle 

produces axial velocity and tangential velocity (Zeng and Yu, 2003).  The axial 

velocity pulls fibers or strands of fibers from the front roller into the nozzle and 

then transfers them out onto the take-up roller.  The tangential velocity is 
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responsible for the twisting of the yarn.  The three biggest factors affecting yarn 

quality in air-jet spinning are the nozzle pressure, the jet orifice angle, and the jet 

orifice position. 

Modern air-jet spinning systems use two air-jets to introduce false twist 

into the yarn (El Mogahzy, 1998).  In this set up, the second jet orifice operates 

at the opposite direction and at a higher velocity to the first jet orifice.  Important 

fiber properties for air-jet spinning are fiber length, length uniformity, SFC, fiber 

bending resistant, fine trash content, and fiber/fiber friction (El Mogahzy, 1998). 

The structure of air-jet spun yarn varies along its length (Grosberg et al., 

1987).  Class 1 structure has a thick yarn core that is wrapped by a thin yarn 

strand of wrapping fibers and has a corkscrew appearance.  This structure 

represents 80% of the yarn structure in air-jet spun yarns.  The class 2 structure 

has looser wrapping fibers and sometimes no wrapping fibers which makes it 

appear like twisted yarns and weaker.  It is further divided into subclasses 

(Grosberg et al., 1987).  Some sections will have a regular helix wrap angle with 

sections that have fiber wraps similar to open-end spun yarns (Lawrence and 

Baqui, 1991).  There are also regions that are unwrapped and these can either 

have some twist or no twist at all. 

The tenacity of air-jet spun yarns is different than other spinning methods 

(Grosberg, 1987).  Coarse yarns have reduced tenacity compared to fine yarns.  

When fine yarns are spun using an air-jet system, a smaller number of fibers 

enter the front roller, which causes them to become individualized.  This in turn 
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allows fibers on the edges to move away from the primary bundle and to 

become wrapping fibers.  However, this can also negatively impact the 

evenness of the yarn during spinning.   

A new adaptation of air-jet spinning is the Murata Vortex Spinning (MVS) 

system (Soe et al., 2004).  This system differs from air-jet spinning by drafting 

fibers into a spindle orifice using an air vortex.  The fiber property critical in MVS 

is SFC and dust content (El Mogahzy, 1998).  The system tends to remove short 

fibers thereby allowing 100% cotton yarn to be spun with more variation for fiber 

length (Soe et al., 2004), while also giving the yarn a combed-like structure (El 

Mogahzy, 1998). Thus, fine yarns such as those produced by ring spinning can  

be spun on the MVS system.  Another advantage of the system is that yarn can 

be spun at 400 m min-1 (Soe et al., 2004).  Between the speed and quality of 

yarn produced, air-jet and MVS spinning was expected to become the 

predominant system (El Mogahzy, 1998). 

Improvement for Fiber Length in Upland Cotton 

 Tetraploid cotton is thought to have arisen one to two million years ago 

through a chance hybridization of a Gossypium diploid A-genome and a D-

genome (Iqbal et al., 2001).  The resulting F1 hybrid then doubled its 

chromosome number to create an allotetraploid.  The polyploidization of the A 

and D-genomes has led to five different AD allotetraploid species.  Two AD 

species, G. hirsutum and G. barbadense, comprise the majority of cotton planted 

in the world (Iqbal et al., 2001). 
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 Eventually, tetraploid Gossypium species would be domesticated 

(Brubaker et al., 1999; Iqbal et al., 2001); however, there still exists one wild G. 

hirsutum genotype known as ‘yucantanense’ (Iqbal et al., 2001).  Over time the 

phenotypes of G. hirsutum would be further domesticated from photoperiodic 

perennials that produced very short and coarse fiber to a non-photoperiodic 

annual that produces longer and finer fiber suitable for the manufacturing of 

various textiles (Brubaker et al., 1999; Iqbal et al., 2001).  This drastic change 

has caused several bottlenecks and the subsequent reduction in genetic 

diversity of upland cotton (Iqbal et al., 2001). 

Genetic Diversity 

 A variety of studies have looked at genetic variation for fiber properties 

within germplasm resources (May and Green, 1994; Zhang et al., 2005) and 

genetic variability among cotton cultivars (May et al., 1995; Bowman et al., 1996; 

Van Esbroeck et al., 1998; Bowman et al., 2003).  In terms of fiber length and 

other fiber properties, significant genetic variation existed within populations of 

elite Pee Dee germplasm released by the Pee Dee Cotton Germplasm program 

and Acala type cottons from the New Mexico Cotton Breeding program (May 

and Green, 1994; Zhang et al., 2005).  However, overall the gene pool of cotton 

in the U.S. contains very little genetic diversity (May et al., 1995; Bowman et al., 

1996; Van Esbroeck et al., 1998; Bowman et al., 2003; Paterson et al., 2004).  

The reduction in genetic diversity has resulted in increased genetic vulnerability 

(Paterson et al., 2004).  This has resulted from commercial breeding programs 
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utilizing a small number of elite genetic backgrounds to develop new cultivars.  

Furthermore, the dominance of planting transgenic cultivars has resulted in even 

more genetic uniformity and subsequent lack of genetic variation within U.S. 

cotton cultivars (Paterson et al., 2004). 

 A study to examine the genetic gain for fiber length among cultivars 

adapted to Central Texas was performed by Schwartz and Smith (2008).  The 

authors planted nine different cotton cultivars released from 1905-2002 in 

different plant densities.  The densities were four individual plant densities and a 

commercial density.  Based on the commercial plant density data, ‘Lone Star’ (PI 

528636) a variety released in 1905, had an UHML equivalent to Stoneville 213 

(PI 529229) and Deltapine 55 (PI 529282), which were cultivars released in 

1962 and 1974, respectively.  Four cultivars in the study ‘Half and Half’ (PI 

528511), ‘Deltatype Webber’ (PI 528717), ‘Rowden 41B’ (PI 528818), and 

‘Deltapine 14’ (PI 528970) were released in 1910, 1922, 1930, and 1941, 

respectively, and all had lower UHML.  This was attributed to an increase in 

selection solely for yield since no fiber objective quality testing was available 

until the 1960s.  The authors found genetic gain rate of 0.048 mm/year in the 

commercial density and smaller slopes in the individual plant densities.   This 

implied that genetic gain for increased interplant competition has occurred and 

that less genetic gain for UHML has occurred over the period of 1905-2002.    

Sources for Fiber Length Improvement 

 Kohel (1999) suggested that wild species and accessions are likely 
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sources of new alleles for fiber length improvement.  These sources include both 

the A-genome diploid species G. arboretum and G. herbaceum and the AD-

genome tetraploid species G. barbadense and G. hirsutum.  The major 

drawback in determining the potential of a wild parent for enhancing fiber length 

however is that not all of the germplasm lines produce spinnable fibers (Kohel, 

1999). 

 Kebede et al. (2007) used microsatellite markers to determine the amount 

of genetic variation for fiber length in 20 G. herbaceum (A1-genome) and 21 G. 

arboretum (A2-genome) germplasm lines.  The authors included three D-

genome diploid species and upland and Pima type cultivars in the study.  

Genetic variation within G. herbaceum and G. arboreum both had an average 

polymorphic information content (PIC) value of 0.89.  The PIC when G. hirsutum 

was 0.69 when included with G. herbaceum and 0.52 when included with G. 

arboreum.  The three D-genome species used in the study, G. raidondii, G. 

gossypioides, and G. thurberi had PIC values of 0.61, 0.60, and 0.54, 

respectively, when compared with G. hirsutum.  These data suggest thatthe wild 

Gossypium diploids used in the study could be used to increase genetic diversity 

within upland cotton (Kebede et al., 2007).  Nevertheless, utilizing a diploid 

germplasm source requires more time and resources to breed out any 

undesirable agronomic traits and to derive a useful genotype, thus making it 

infeasible for any short term gains (Ragsdale and Smith, 2007).   
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 Another wild species source is the primitive allotetraploid cotton 

accessions found in the USDA-ARS Cotton Collection (McCarty et al., 2004).  In 

order to make these accessions more fully accessible to cotton breeders outside 

the tropics, they must first be used in a backcross breeding program to derive 

day-neutral germplasm lines.  While time and resources are  required to remove 

undesirable agronomic traits, this type of germplasm source can be used to 

enhance current germplasm in less time than diploid species. 

 Mutation breeding is a system that has been used to enhance cultivars of 

other crops and has been used in cotton (Fehr, 1987; Auld et al., 2000; Herring 

et al., 2004).  Mutation breeding is only useful when genetic variation for the trait 

of interest does not exist (Fehr, 1987).  Moreover, it also requires a large 

population to discover individuals that possess the desired trait change while 

minimizing undesirable agronomic traits. 

 Another method to enhance fiber length and other fiber properties has 

been through interspecific hybridization of G. hirsutum with improved G. 

barbadense cultivars (Smith et al., 2008).  Efforts to improve upland cotton fiber 

quality via interspecifc hybridization with Pima date to  the 1860s with  little 

success reported.  The primary deterrents to the adoption of improved upland 

cottons derived through interspecific hybridization has been low gin turnout and 

low lint yield (Smith et al., 2008). 

 The preferred source of germplasm for fiber length enhancement is 

through using natural genetic variation within upland cotton.  This method 
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requires the least amount of time to overcome any reproductive obstacles and 

undesirable agronomic traits associated with interspecifc hybridization with both 

diploids and closely related tetraploids.  Sources for alleles can be found in 

obsolete and improved cultivars and germplasm.   

Inheritance 

 The number of alleles that affect fiber length in cotton is not known.  Fiber 

length is most likely controlled by a few major genes and numerous genes that 

have smaller direct and indirect effects (Want et al., 2006; Zhang et al., 2009; 

Liu et al., 2011; Wang et al., 2011).  Knowledge of how a trait is inherited is 

important when determining the best methods for improvement (Braden, 2005).  

May (1999) looked at various fiber length studies and found a strong 

genetic base regardless of the type of system used to measure it.  He concluded 

that the amount of variation observed was due to genetic factors more than 

nongenetic effects.  Genotype X Enviroment and other interactions were found 

in populations but the effect was small when compared to genetic variation.  

Thus, selection for fiber length can be made without the need to maximize 

testing locations such as is used for yield potential.  Meredith and Bridge (1972), 

using an array of material that included genotypes that were phenotypically 

upland cottons but derived from interspecific hybridization not only with G. 

barbadense but also G. thurberi and G. arboreum, went as far as to state that 

selection for fiber properties could be made in a single environment. 
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Genetic studies for fiber length have identified additive variance as the 

primary source of genetic variation (Al-Rawi and Kohel, 1969; Al-Rawi and 

Kohel, 1970; Campbell et al., 2008; Lee et al., 1967; May and Green, 1994; 

Meredith, 1970; Meredith and Bridge, 1972; Meredith et al., 1970; Miller and 

Lee, 1964; Miller and Marani, 1963; Miller et al., 1959; Miller et al., 1962; Percy 

et al., 2006; Quisenberry, 1975; Tang et al., 1993; Braden and Smith?????? (or 

Smith and Braden)).  This was found among parental material used in crosses 

that included elite cultivars from different regions of the cotton belt, obsolete 

varieties, double haploids, and germplasm lines developed using interspecific 

hybridization.  Furthermore, studies by Meredith et al. (1970) and Meredith and 

Bridge (1972) did not find that lines developed from interspecific hybridation 

were specifically superior in fiber length to G. hirsutum lines developed solely by 

intraspecific hybridization.  Dominance variance was a source of genetic 

variation for fiber length, however it did not have as large of an effect as additive 

variance (Al-Rawi and Kohel, 1969; Al-Rawi and Kohel, 1970; Campbell et al., 

2008; Lee et al., 1967; May and Green, 1994; Meredith, 1970; Meredith and 

Bridge, 1972; Meredith et al., 1970; Miller and Lee, 1964; Miller and Marani, 

1963; Miller et al., 1959; Miller et al., 1962; Percy et al., 2006; Quisenberry, 

1975; Tang et al., 1993).  Significant deviations from expected heterosis in F2, 

F3, and F4 populations (May and Green, 1994; Meredith et al., 1970; Meredith 

and Bridge, 1972; Meredith, 1990; Quisenberry, 1975; Tang et al., 1993) and 

transgressive segregation in a F5:6 Recombinant Inbred Line population (Percy 
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et al., 2006) support the conclusion that additive variance is the primary source 

of genetic variation for fiber length. 

Testcross of per se Performance 

 The testcross is a mating scheme in which a set of individuals are 

crossed to a set of genotypes that are meant to act as genetic standards 

(Hallauer et al., 2010).  The use of the testcross allows evaluation of breeding 

value of potential parents for improvement.  In order to do this, a tester that 

reflects breeding goals and allows discrimination of potential among genotypes 

must be chosen.  Therefore, genetic diversity among lines and testers is crucial 

to determine per se performance.  The three traits that all testers must possess 

are simplicity in use, correctly classify usefulness of lines, and provide maximum 

genetic gainIt is important to evaluate a potential parent based on its 

performance averaged across all testers Hallauer et al., 2010). 

 Analysis of testcross per se performance will give estimates of general 

combining ability (GCA), which is the average performance of line in a hybrid 

combination and theoretically estimates the additive gene action, and specific 

combining ability (SCA), which is the average performance of a specific hybrid 

combination over the combined performance of the hybrid mean, line GCA, and 

tester GCA and theoretically estimates dominant and epistatic gene action 

(Hallauer et al., 2010).  Broad sense heritability (H2) estimates may also be 

obtained from testcross per se performance (Meeks et al., 2011). 
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 The testcross method of genotype evaluation has  been used primarily in 

maize improvement (Narro et al., 2003; Nelson and Goodman, 2008; Bolduan et 

al., 2010; Badu-Apraku et al., 2011).  However, it also has been used for the 

improvement of summer squash (Cucurbita pepo L.) (Ahmed et al., 2003), grain 

sorghum (Sorghum bicolor L. Moench) (Kishan and Borikar, 1988), and soybean 

(Glycine max L. Merr.) ( Feng et al., 2004).  The testcross method has been 

used for determining improvement for fiber length in cotton using both 

intraspecific hybrid crosses (Miller and Lee, 1964) and in testcrosses involving 

lines derived through interspecific hybridization with G. barbadense (Jenkins et 

al., 2007). 

Diallel 

 A diallel is a mating scheme in which parents, preferably chosen at 

random,  are hybridized in all possible combinations (Griffing, 1956; Falconer 

and Mackay, 1996).  There are four primary methods in the diallel mating 

scheme.  Method 1 involves taking data on all possible crosses between parents 

and their reciprocal combinations for a total of p² entries when p parents are 

used.  Method 2 is the same as method 1 with the exception of the reciprocal 

cross combinations.  Thus in method 2, data for p parents and p((p-1)/2) F1’s are 

collected.  Method 3 is the same as method 1 except parents are not included 

and thus p(p-1) F1s are analyzed.  Method 4 is the same as method 3 except 

reciprocal crosses are not included and thus p((p-1)/2) F1s are analyzed. 



35 

 

 Each of the four methods are analyzed differently and are used to provide 

different estimates of genetic parameters (Griffing, 1956).  Furthermore, each 

can be analyzed as a different model.  Model one is when the parents evaluated 

are chosen based on their performance and are therefore fixed.  Model two is 

when parents are chosen at random from a universe of possibilities.  A summary 

by Baker (1978) stated that a fixed model can be used to make inferences on 

combining ability of the set of parents chosen from the population.  However, for 

a random model, inferences may be made on the universe because individuals 

are selected at random.   Because plant breeders are typically interested in the 

genetic parameters for a set of parents, model one is typically used (Eberhart 

and Gardner, 1966; Baker, 1978).   

 Diallel analysis  provides information on genetic control for quantitative 

traits of the parental lines.  However, in a fixed effect model, the GCA and SCA 

are estimated values rather than true parameters that are available with the 

random models (Griffing, 1956).  Nevertheless, plant breeders often use the 

relative magnitude of GCA and SCA estimates to determine which parents and 

combination might be best for improvement of the trait in question (Braden, 

2005).  

Recombinant Inbred Line 

 A recombinant inbred line (RIL) population is derived by crossing two 

unrelated parents and then deriving lines that have been inbred through several 

generations, typically through the single seed decent method.  Recombinant 
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inbred line populations typically are used for tagging molecular markers for 

quantitative trait loci in cotton (Wang et al., 2006; Zhang et al., 2009; Liu et al., 

2011; Wang et al., 2011).  However, it is possible to use a RIL population to 

analyze fiber traits (Percy et al., 2006).   

In RIL populations, it is possible to perform analysis on F2:3 lines (Wang et 

al., 2011); however RIL populations are typically inbred further while still being 

derived from individual F2 plants (Zhang et al., 2009) or selected from inbred 

individual plants at a later generation such as the F5 (Percy et al., 2006; Wang et 

al., 2006; Liu et al., 2011).  The advantage of RIL populations is that they allow 

the analysis of the amount of genetic variation in a population from two parents, 

providing information on agronomic and fiber quality traits, heritability of traits, 

and utility of a line for improvement (Percy et al., 2006).  Their disadvantage, 

however, is that they take a long time to establish if using generations later than 

the F2 as is commonly practiced.  Furthermore, RIL populations also limit the 

number of parents that can be studied because of demand for field plot space 

relative to limited time and monetary resources.   

The method and fiber quality bred into each experimental strain in route 

to becoming a cultivar ultimately depends upon the type of spinning system that 

is used (Meredith et al., 1991; May, 2003).  Thus, as spinning technology 

evolves, new fiber quality requirements will arise (May, 2002).  While direct 

knowledge of a specific genotype’s spinning ability will not be known in early 

generations, breeders must make selection based on the fiber properties known 
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to affect yarn quality (Meredith et al., 1991; May and Taylor, 1998; May, 2002; 

May, 2003).  In order to obtain the desired fiber package, new sources of 

germplasm containing alleles for enhanced fiber quality must be studied 

(Paterson et al., 2004).  
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CHAPTER III 

MATERIALS AND METHODS 

Population Development 

Testcross 

Twenty-nine upland cotton cultivar accessions in the USDA-ARS 

Germplasm System that were collected from foreign countries were obtained 

from Dr. Richard Percy.  Twelve of the cultivars were from China: China 632 (PI 

451750), Chung Mein-Jue #7 (PI 529467), Duck Shelter (PI 452101), Jiangsu #3 

(PI 452103), Kang Bin Chang Mienne (PI 433732), Lintsing Sze Tze 4B (PI 

528889), Lishan Big Boll (PI 452105), Nanging #12 (PI 529483), Pengze (PI 

529486), Shan 5245 (SA-3202), Small Leaf (PI 438958), and Zhopng Mian Suo 

9 Hao (SA-3207).  Seven were from West Africa and are Allen 333 (PI 392289), 

Allen 333-61 CB 4027 (PI 529302), BJA 592 (PI 529492), F 280 (PI 529383), 

Funtua FT-5 (PI 607222), PAN 575 (PI 529385), and Reba W296 (PI 529387).  

Lastly, 10 from South Africa included A 7215 (PI 529054), A-637-33 (PI 408999), 

ALA 70-11 (PI 529332), Albacala 7 (PI 529319), BPA 68 CB 4030 (PI 529305), 

Komati (PI 607192), Limpopo (PI 607199), Marico (Smooth) (PI 607197), Sabie 

(PI 607193), and UK 64 (PI 407455).  Additionally, seven upland cotton cultivars 

representing different regions of the U.S. Cotton Belt were included: Acala 1517-

99 (PVP 200000181, PI 612326), Deltapine 491 (DP491) (PVP 200100159,  PI 

618609), Phytogen 72 (PHY 72) (PVP 200100115, PI 617043), Stoneville 474 

(ST 474) (PVP 9400152, PI 578877), Tamcot 22 (PVP 200500006, PI 635877), 
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and Paymaster Tejas (PM Tejas) (PVP 9500252, PI 591047).  The seventh U.S. 

genotype was Del Cerro (PI 529358), a high fiber quality upland type cotton 

derived through introgression of G. hirsutum with G. tuberi Tod., G. aroboreum 

L., G. barbadense, and G. hirsutum var. puntartum (Meredith and Bridge, 1972). 

 Flowers of the 36 lines from China, West Africa, South Africa, and the 

U.S. were emasculated and hand pollinated with either Tamcot CAMD-E (PI 

529633; Bird, 1979) or TAM B182-33 ELS (PI 654362; Smith, et al., 2009).  The 

two testers, Tamcot CAMD-E and TAM B182-33 ELS were chosen based on 

their UHML.  Tamcot CAMD-E is an early maturing, short staple cultivar 

released in 1979 by the Texas AgriLife Reserach.  TAM B182-33 ELS is a high 

fiber quality upland cotton derived through intraspecific hybridization of a long 

staple upland and a short staple upland and capable of producing an UHML 

greater than 35 mm  

Diallel Development 

 Fifteen upland cotton germplasm lines that had reported UHML of 33 mm 

or greater were obtained from the national germplasm collection.  Seed of the 

germplasm lines were sown into pots and thinned to obtain two plants per pot in 

a greenhouse in the winter of 2008-2009.  Seed of TAM B182-33 ELS (PI 

654362) was also sown into pots and thinned to one plant per pot.  Bolls were 

harvested at maturity from individual plants, ginned on a laboratory style saw 

gin, and fiber samples sent to Cotton Inc., Cary, NC, for HVI analysis.  

Germplasm lines that did not meet the selected criteria of an UHML of 33 mm or 
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greater were discarded.  Of the 15 genotypes, only three met this criteria.  

Among the selected germplasm lines, TAM B182-33 ELS, and TAM 94L-25, a 

long staple upland, a standard error for UHML was calculated and any plant that 

exhibited an UHML more than two times the standard error of the longest parent 

were discarded.  Two of the three germplasm lines selected for the experiment 

were ‘Ewings Long Staple X Tidewater’ (PI 528726) and Sealand 1 (PI 528871).  

Both of these parents were developed using interspecific hybridization with G. 

barbadense.  The third selected line was D & PL 45-867 (PI 528771).  The 

parentage and development of this germplasm line is unknown.   

The three confirmed germplasm lines, TAM B182-33 ELS, and TAM 94L-

25 were then sown in a crossing block during the summer of 2009 at College 

Station, TX.  The parents were crossed by hand emasculation and pollination in 

a half diallel mating scheme, i.e., no reciprocal crosses.  Parents were crossed 

again in the greenhouse during the winter of 2009-10 and again in a crossing 

block in 2010 at College Station, TX.   

Recombinant Inbred Line Population 

 To determine inheritance and to test published regression equations to 

estimate SFC from HVI parameters, an F2 population derived from the cross of 

TAM B182-39 ELS/DP 491.  TAM B128-39 ELS is an unreleased sister line to 

TAM B182-33 ELS and expresses the ELS trait.  Twenty-seven individual F2  

plants were selected at Weslaco, TX, in 2008,  ginned on a laboratory saw gin 

and the fibers sent to FBRI, Lubbock, TX, for HVI analysis.  The fiber samples 



41 

 

were returned and sent to Cotton Inc., Cary, NC for AFIS analysis.  Progeny 

rows from the twenty-seven individual plants were established at the Texas A&M 

Research Farm in College Station, TX, during the summer of 2009 along with 

Tamcot 22 and FM 832 as checks.  Fourteen rows were selected based 2008 

HVI UHML data and  10 individual plants within each row were taken at random.  

The individual plants were ginned and progeny rows planted in 2010 to increase 

seed supply and establish 140 F3:5 RIL’s for planting replicated trails.   

Experimental Design 

Testcross 

 Parents and their F1 progenies were planted at the Cotton Winter Nursery 

at Tecoman, Colima, Mexico, on November 20th, 2009 (MX2010) and at College 

Station, TX, on April 27th, 2010 (CS 2010), and April 18th, 2011 (CS 2011).  Plots 

were planted in a randomized complete block design (RCBD) with three 

replications at Mexico and four replications for both of the College Station 

environments.  At all three locations, plots were randomized by the female 

parent and subsequently by generation (i.e., female parent, female 

parent/Tamcot CAMD-E, and female parent/TAM B182-ELS).  The two testers 

were used as checks and appeared three times in each block at MX2010 and 

four times in each block at CS 2010 and CS 2011.  At MX2010, three hills of 

each entry in each block were planted by hand and thinned to one to two plants 

per hill with 1.02 m between rows and approximately 0.4 m between hills.  At CS 

2010 and CS 2011, parents and progenies were planted with a cone type 
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research planter with 1.02 m between rows and were 5.5 m long.  After 

emergence, the plots were thinned to 0.4 m between plants.  The West Africa 

cultivar BJA 592 did not produce enough fiber to obtain UHML at CS 2010 to 

bring the total number of observations to 1268 for parents and progenies.  

Standard cultural practices including furrow irrigation were used at the three 

locations.  The soil at Tecoman, Colima, Mexico, is a sandy loam and the soil 

type at the Texas A&M Univeristy Research Farm located outside College 

Station, TX, is a Westwood silt loam. 

 At harvest, 30 boll samples were hand harvested from each plot.  Bolls at 

CS 2010 and CS 2011 were preferentially taken from the first position of the 

middle fruiting branches.  The boll samples were then ginned on a laboratory 

style saw gin and the fibers sent to the Fiber and Biopolymer Research Institute 

(FBRI), Lubbock, TX, for HVI analysis. 

Diallel 

Parents and their 10 F1 progenies were established at MX2010, CS 2010, 

and CS 2011 environments for diallel analysis.  Three replications were used at 

Mexico and four at each of the College Station, TX, plantings.  The planting 

dates were November 20th, 2009 for MX2010, April 27th, 2010 for CS 2010, and 

April 18th, 2011 for CS 2011.  Plots at MX2010 were hand planted into three hills 

and thinned to obtain one to two plants per hill.  Row spacing was approximately 

1.02 m and  approximately 0.4 m between hills.  Plots planted at College Station, 

TX, in 2010 and 2011 were planted with a cone type research plot planter with 
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1.02 m row spacing and  5.5 m long.  Plots were thinned to 0.4 m between 

plants.  Standard cultural practices including furrow irrigation were used in the 

three environments.   

At harvest, 30 boll samples were hand harvested from each plot.  Bolls at 

CS 2010 and CS 2011 were preferentially taken from the first position of the 

middle fruiting branches.  The boll samples were then ginned on a laboratory 

style saw gin and the fibers sent to the Fiber and Biopolymer Research Institute 

(FBRI), Lubbock, TX, for HVI analysis. 

Recombinant Inbred Line Population 

 One hundred and forty F3:5 RIL’s with parents were planted at the Texas 

A&M University Research Farm outside of College Station, TX, on April 18th, 

2011.  A randomized complete block design with two replications was used.  A 

research cone type planter was used with 1.02 m row spacing.  Plots were 5.5 m 

long.  Standard cultural practices including furrow irrigation were used in the 

test. 

 At harvest, a 30 boll sample were hand harvested from each plot.  Bolls 

were preferentially harvested from the first position of the middle fruiting 

branches.  The boll samples were then ginned on a laboratory style saw gin and 

the fiber samples were sent to FBRI, Lubbock, TX, for HVI analysis.  The fiber 

samples were returned and then sent to Cotton Inc., Cary, NC, for AFIS 

analysis.   
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Statistical Analysis 

Testcross Statistical Analysis 

 Analysis of variance for UHML among the parents and progenies was 

performed using SAS 9.2 (Cary, NC) Proc GLM with Environments, 

Reps(Environments), and Genotypes X Environments as random effects.  Sums 

of squares for Parents (P), Crosses, Parents Vs. Crosses (Pvs.C), Line (L), 

Tester (T), Line X Tester (LxT), Parents X Environments, Crosses X 

Environments, (Parents Vs. Crosses) X Environments, Line X Environment, 

Tester X Environment, and Line X Tester X Environment were also obtained.   

 Calculation of GCA and SCA was performed using methods described in 

Falconer and Mackay (1996).  General combining abilities of the female lines 

were calculated as: 

GCAi = µi.-µ.. 

where GCAi is the general combining ability of line i, µi. is the mean of all hybrids 

with line I, and µ.. is the mean of all hybrids.  General combining abilities of the 

male testers were calculated as: 

GCAj = µ.j - µ.. 

where GCAj is the general combining ability of tester j, µ.j is the mean of all 

hybrids with tester j, and µ.. is the mean of all hybrids.  Specific combining ability 

was calculated as: 

SCAij = µij – GCAi – GCAj – u.. 
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where SCAij is the specific combining ability of line I with tester j and µij is the 

mean UHML between line i with tester j, GCAiis the calculated GCA of line i, 

GCAj is the GCA of tester j, and µ.. is the mean of all hybrids. 

 Significance of GCA and SCA estimates were determined by calculating 

the standard error for GCA of lines, GCA of testers, and SCA.  A 95% and 99% 

confidence interval was then calculated by multiplying the standard error by 2 

and 3, respectively.   Standard errors were calculated according to Singh and 

Chaudhary (1985).  Standard error for GCA of lines were calculated as: 

S.E. (GCAi) = √MSE/(r∙t) 

where MSE is the mean square of error, r is the number of replications and t is 

the number of testers.  Standard error for GCA of testers were calculated as: 

S.E.(GCAj) = √MSE/(r●l) 

where MSE is the mean square of error, r is the number of replications and l is 

the number of lines.  Standard error for SCA of lines X testers was calculated as: 

S.E.(SCAij) = √MSE/r 

where MSE is the mean square of error and r is the number of replications.  For 

example, the 95% confidence interval of a line was calculated as: 

GCAi ± 2●S.E.(GCAi) 

where GCAi is the calculated GCA value for line i and S.E.(GCAi) is the 

calculated standard error for lines.   
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Heritability 

 Broad sense heritability (H2) estimates was calculated was calculated on 

the testcross population using the equation: 

H2 = σG
2/(σG

2 + (σGxE
2/E) + (σerror

2/ER)) 

where E  is the number of environments and ER  is the total number of 

replications among the three environments.  The variances were obtained using 

the expected mean squares calculated by SAS 9.2 (Cary, NC) and the values in 

the Type III sums of squares.  

Diallel Analysis 

 Statistical analysis of the diallel was performed according to Griffing’s 

(1956) Model 1, Method 2.  In Model 1, the genotype effects are fixed because 

they were selected specifically for this study and inferences can only be made 

among the parents used.  Method 2 states that parents and one set of F1 

progenies (i.e., no reciprocals) are used to determine GCA and SCA.  Analysis 

of variance, calculation of GCA and SCA, and significance of GCA and SCA was 

determined using Diallel SAS-05 as described by Zhang et al. (2005) using SAS 

9.2 (Cary, NC).   Means of parents and hybrids were separated using the 

Duncan-Waller means separation test. 

Heritability 

Broad sense heritability (H2) estimates was calculated was calculated on the 

testcross population using the equation: 

H2 = σG
2/(σG

2 + (σGxE
2/E) + (σerror

2/ER)) 
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where E is the number of environments and ER is the total number of 

replications among the three environments.  The variances were obtained using 

the expected mean squares calculated by the general linear model given in 

Diallel SAS-05 (Zhang et al., 2005) and the values in the Type III sums of 

squares.  

Recombinant Inbred Line Analysis  

Values for Mean Length (ML) among the 140 F3:5 RILs, TAM B182-39 

ELS, and DP491 and their F2:3 parents were calculated using the equation:  

ML=(UI/100)●UHML 

Lower half mean length values were calculated according to Cai et al. (2011): 

LHML = (UHML●(UI/100))/(9.38 – 14.86(UI/100) + 6.5(UI/100)2) 

Ziedman et al. (1991) have previously reported regression equations to 

determine SFCw from HVI fiber properties.  These equations were adjusted for 

metric length units from standard English length units and included in this study 

for both the F2:3 and F3:5 generations to make comparisons with previous work 

completed related to this topic.  The equations used were: 

SFCw1 = 126.21 – (15.81/25.4)●UHML – 1.23●UI 

SFCw2 = -(0.249/25.4)●UHML – 0.533●UI 

Analysis of variance for AFIS SFCw and HVI fiber properties UHML, ML, LHML, 

Micronaire, Uniformity Index, Strength, and Elongation on the 140 F3:5 RILs and 

parents TAM B182-39 ELS and DP 491 were performed using SAS 9.2 (Cary, 
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NC) using Proc GLM with blocks (reps) considered as a random effect.  

Homoscedasity of error variance among genotypes for AFIS SFCw was tested 

using the hovtest=Bartlett option in the Means statement of Proc GLM. 

Regression equations to determine SFCw from HVI properties were developed 

using data from the 140 F3:5 RILs and parents TAM B182-39 ELS and DP 491 

grown at College Station, 2011 using SAS 9.2 Proc Reg with and without an 

intercept.  Tests for collinearity among HVI fiber parameters were performed 

using the collin, tol, and vif options in the Means statement of Proc Reg.  

Selection of the regression equation used was based on Mallow’s C(p) statistic 

and the adjusted coefficient of determination (R2) values.  Pearson’s correlation 

coefficients (r) among HVI fiber properties and regression equations to 

determine SFCw from HVI fiber properties (SFCwx) and AFIS SFCw in both the 

F2:3 and F3:5 generations were calculated using SAS 9.2Proc Corr.   

Heritability 

Parent-offspring regression was used to determine the narrow sense (h2) 

heritability of SFCw and LHML among the 140 F3:5 RILs as described by Holland 

et al., (2003).  Both the values for AFIS SFCw and LHML in the F2:3 generation 

and the mid-parent values obtained from TAM B182-39 ELS and DP491 at 

College Station in 2011 were used.  The mid-parent values of TAM B182-39 

ELS and DP491 were calculated on a per block basis.  SAS 9.2 (Cary, NC) Proc 

Reg was used to derive the regression coefficient.  The heritability estimate 
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obtained when the F3:5 AFIS SFCw and LHML were regressed on the respective 

individual F2:3 plants were adjusted using: 

h2 = bOP / (1+Ft(1 – bOP)) 

where Ft is the inbreeding coefficient of generation t as described by Holland et 

al., (2003).  
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CHAPTER IV 

RESULTS AND DISCUSSION 

Testcross per se Performance for UHML 

Table 1 presents analysis of variance results for UHML among a cohort of 

upland cotton cultivars and seven U.S. cotton cultivars when crossed to TAM 

CAMD-E and TAM B182-33 ELS.  Calculated mean square values were highly 

significant for all of the estimated parameters with the exception of (Parents Vs. 

Crosses) x Environment and Tester X Environment, which were not significant.  

Variation due to tester and environment represented 29.7% and 24.1% of the 

total variation, respectively. 

  Broad sense heritability (H2) was 0.785 for UHML among these lines 

and testers, indicating that the primary source of variation for UHML is due to 

genotypes and is most likely due to the extremes of the testers used in the 

study.  Because of highly significant Line X Environment and (Line X Tester) X 

Environment effects, calculated GCA and SCA estimates are presented 

independently for each environment.   

One environment for this study was conducted at the Cotton Winter 

Nursery in Tecoman, Colima, Mexico, during the winter of 2009-10.  The 

remaining two environments were in College Station during the summers of 

2010 and 2011.  Upper half mean lengths of parents and hybrids were 

numerically higher at MX2010 than either of the two College Station   
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Table 1. Analysis of variance for and broad sense heritability (H2) estimate for 
Upper Half Mean Length (UHML, mm) among upland cotton parents and F1 
progenies evaluated at Tecoman, Mexico 2009-10 and College Station in 2010 
and 2011. 
Source   DF Mean Square 

Environment (E)   2 1059.984*** 
Reps within (E) (Error A)   8 5.007 
Genotypes (G)   109 39.637*** 
 Parents (P)  37 43.835*** 
 Crosses (C)  71 31.901*** 
 P Vs. C  1 433.505*** 

  Line (L) 35 14.375*** 
  Tester (T) 1 1719.036*** 
  LxT (Error B) 35 1.224 

GxE   218 1.078*** 
 PxE  74 0.948*** 
 CxE  142 1.162*** 
 (PxC)*E  2 0.000 
  LxE 70 1.585** 
  TxE 2 0.793 
  LxTxE (Error C) 70 0.749 

Error D   930 0.461 

H2 =  0.785   

*Significant at the 0.05 probability level. 
**Significant at the 0.01 probability level. 
***Significant at the 0.001 probability level. 
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environments.  Thus MX2010 might allow expression of true genetic potential of 

parents and progeny for UHML.   

General Combining Ability 

Parental UHML for the 36 lines and two testers and their associated GCA 

estimates can be found in Table 2.  Parent UHML ranged from 25.40 mm for 

Lintzing SZE TZE 4B at CS2010 to 36.24 mm for TAM B182-33 ELS at MX2010. 

The calculated GCA estimates ranged from -2.07 for Lintsing SZE TZE 4B at CS 

2010 to 2.57 for Del Cerro at MX2010.  

Parental UHML for cultivars from China ranged from 26.25 mm to 27.89 

mm when averaged over the three environments.  Overall the Chinese  

cultivars were poor general combiners for UHML indicating that alleles which 

would contribute to further UHML improvement were not present.   

Parental UHML for cultivars from West Africa ranged from 27.98 mm to 

30.02 mm when averaged over the three environments.  Of the West African 

cultivars, Allen 333 was a poor general combiner at MX2010 and CS2010.  Allen 

333 had a negative GCA estimate at CS2011, but it was not significantly 

different from zero.  The cultivars F 280, UK 64, and Reba W 296 were good 

general combiners for UHML at CS2010 producing estimates of 1.20 (P<0.01), 

0.83 (P<0.01), and 0.69 (P<0.05), respectively.  Allen 333-61 CB 4027, A-637-

33, and Pan 575 had GCA estimates that were not different from zero at 

MX2010, but were positive and significantly different from zero at CS2010 and 

CS2011.   
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Table 2. Parental UHML (mm) and calculated General Combining Ability (GCA) estimates (mm) for fiber length 
among 12 lines from China, 7 lines from West Africa, 10 lines from South Africa, and 7 lines from the U.S. of 
upland cotton (G. hirsutum) and testers TAM B182-33 ELS and TAM CAMD-E planted at Tecoman, Mexico in 
2009-10 (MX2010), College Station in 2010 (CS2010), and College Station 2011 (CS2011). 

  MX2010 CS2010 CS2011 Average 

Line 
Country of 

Origin UHML  GCA UHML  GCA UHML  GCA UHML  

Jiangsu #3 China 29.30 -0.31 27.31 -0.10 27.43 -0.56* 27.89 
Lishan Big Boll China 29.21 -0.65* 27.50 -0.20 26.73 -0.62* 27.69 
Small Leaf China 29.72 -0.35 26.73 -1.34** 26.86 -0.59* 27.59 
Nanging #12 China 28.96 -1.37** 26.86 -0.80** 26.92 -0.50* 27.46 
Duck Shelter China 29.04 -0.90 * 26.61 -1.34** 26.48 -0.85** 27.22 
Zhopng Mian Suo 9 Hao China 29.21 -0.18 26.42 -0.61* 26.16 -0.37 27.08 
Pengze China 29.04 -1.20** 26.48 -0.67* 26.16 -1.07** 27.06 
Shan 5245 China 28.87 -0.31 26.48 -0.93** 26.23 -0.37 27.04 
China 632 China 29.13 -1.33** 26.48 -1.09** 25.97 -0.46* 27.02 
Chung Mien-Jue #7 China 28.96 -0.01 26.16 -1.05** 25.97 -0.88** 26.85 
Lintsing SZE TZE 4B China 28.28 -0.35 25.40 -2.07** 26.16 -0.78** 26.46 
Kang Bin Chang Mienne China 28.03 -0.78* 25.40 -0.96** 25.78 -0.75** 26.25 

Allen 333-61 CB 4027 W. Africa 32.09 0.11 29.34 0.76** 29.15 0.52* 30.02 
F280 W. Africa 31.41 0.28 29.08 1.20** 28.96 0.90 29.67 
Pan 575 W. Africa 30.90 0.16 29.02 1.14** 28.96 0.65* 29.51 
Allen 333 W. Africa 30.57 -1.62** 27.62 -2.01** 27.94 -0.31 28.54 
Reba W 296 W. Africa 31.41 -0.14 27.88 0.69* 26.67 0.23 28.40 
UK 64 W. Africa 28.96 -0.01 28.45 0.88** 26.80 0.17 27.99 
A-637-33 W. Africa 29.55 -0.48 27.75 0.60* 27.05 0.46* 27.98 

BPA 68 CB 4030 S. Africa 32.77 2.15** 29.85 1.58** 28.83 0.68** 30.27 
A 7215 S. Africa 32.26 1.17** 28.64 0.63* 27.56 -0.08 29.23 
Funtua FT-5 S. Africa 31.33 0.71* 28.83 0.82** 27.62 0.74** 29.07 
Marico (Smooth) S. Africa 31.16 0.45 28.51 1.39** 28.00 0.62* 29.05 
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Table 2 continued         
  MX2010 CS2010 CS2011 Average 

Line 
Country of 

Origin UHML  GCA UHML  GCA UHML  GCA UHML  

Limpopo S. Africa 31.41 0.16 28.51 1.14** 27.81 0.74** 29.05 
Albacala 7 S. Africa 31.24 0.50 28.58 0.63* 27.69 0.52 28.98 
Ala 70-11 S. Africa 30.14 0.50 28.19 -0.07 27.24 -0.37 28.38 
BJA 592 S. Africa 30.57 0.79* 28.32 0.57* 26.29 0.33 28.17 
Sabie S. Africa 29.55 0.07 36.23 0.18 26.61 -0.02 27.27 
Komati S. Africa 29.21 0.20 26.67 -1.34** 26.35 -0.12 27.24 

Del Cerro U.S. 33.61 2.57** 30.35 1.96** 30.67 1.63** 31.36 
Acala 1517-99 U.S. 32.51 0.20 29.08 0.85 29.34 0.93** 30.11 
Phytogen 72 U.S. 30.48 1.22** 28.39 0.53* 28.64 0.68** 29.05 
Deltapine 491 U.S. 31.16 1.05** 27.75 1.20** 27.62 -0.02 28.63 
Tamcot 22 U.S. 29.38 -0.18 27.12 -0.20 27.56 0.08 27.89 
Stoneville 474 U.S. 26.36 -0.44 27.62 -0.71* 26.61 -0.12 27.45 
PM Tejas U.S. 28.53 -1.45** 25.40 -1.28** 25.53 -1.07** 26.67 

S.E. (GCAi)
 

 0.306 0.245 0.221  

         
  MX2010 CS2010 CS2011 Overall 

Tester  UHML GCA UHML  GCA UHML  GCA UHML 

TAM B182-33 ELS U.S. 36.24 1.55** 33.04 1.47** 32.24 1.44** 33.43 
TAM CAMD-E U.S. 30.37 -1.55** 27.45 -1.47** 27.40 -1.44** 28.07 

S.E. (GCAj)
 

 0.072 0.058 0.052  

*Significant at the 0.05 probability level. 
**Significant at the 0.01 probability level.
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 Parental UHML for the South African cultivars ranged from 27.24 mm to 

30.27 mm when average across the three environments.  The South African 

cultivar BPA 68 CB 4030 was a good general combiner for UHML in all three 

environments.  The calculated GCA estimates were 2.15 (P<0.01), 1.58 

(P<0.01), and 0.68 (P<0.01) for MX2010, CS2010, and CS2011, respectively.  

Additionally, Funtua FT-5 combined well for UHML in all three environments. 

Marico (Smooth) and Limpopo were good general combiners at CS2010 and 

CS2011 but not MX2010. 

Parental UHML for the U.S. cultivars ranged from 26.67 mm to 31.36 

when averaged across the three environments.  Of the seven cultivars, 

Paymaster Tejas was the worst general combiner and produced statistically 

significant (P<0.05) negative GCA estimates in all three environments.  Del 

Cerro and Phytogen 72 combined well for UHML in all three environments, while  

Acala 1517-99 was the second longest parent of the U.S. cultivars and had 

highly significant (P<0.01) positive GCA estimates for enhancing UHML at 

CS2010 and CS2011.  Deltapine 491 was a good general combiner for UHML at 

MX2010 and CS2010, but not at CS2011. 

Two lines used in this study, Phytogen 72 and Acala 1517-99, are known 

high fiber quality cultivars adapted to the western cotton producing states.  A 

third line, Del Cerro, has a G. hirsutum phenotype but is known to contain alleles 

for enhanced fiber length from interspecific hybridization.  As such it is expected 

that these lines would serve as superior parents for enhancing fiber length.  A 
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previous study by Lee et al. (1967) found Acala 1517, a parent of Acala 1517-

99, showed positive GCA effects for enhanced fiber length.  A study by Meredith 

and Bridge (1972) showed significant heterosis for fiber length in a cross made 

between Deltapine 16 and Del Cerro. 

The UHML of the testers Tamcot CAMD-E and TAM B182-33 ELS were 28.07 

mm to 33.43 mm, respectively, when averaged over the three environments.  As 

expected, TAM B182-33 ELS was a better general combiner for UHML than the 

short staple TAM CAMD-E.  In all three environments, GCA estimates were 

highly  significantly different from zero. 

Specific Combining Ability  

Specific combining ability is a measurement of deviation from expected 

hybrid performance based on the GCA of the two parents.  It represents effects 

due to dominance or favorable epistatic allele interactions.  While SCA is 

typically more important in hybrid crops, eight ELSU lines were derived from 

combinations of long staple upland (LSU) and SSU cottons by Smith et al. 

(2008, 2009).  While some of these lines may have alleles from G. barbadense, 

others were derived using only alleles from the G. hirsutum genome (Smith and 

Hague, 2008).  The crosses made among the LSU and SSU genotypes resulted 

in favorable epistatic allelic combinations and produced stable transgressive 

segregates that could be selected among (Braden, 2005; Smith et al. 2008; 

Smith et al., 2009).   
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 Upper half mean lengths and  SCA estimates for the 72 hybrids can be 

found in Table 3.  The UHML ranged from 27.02 mm for Allen 333/TAM CAMD-

E to 33.64 mm for Del Cerro/TAM B182-33 ELS when averaged over the three 

environments.  Among the 72 hybrids planted at MX2010 and CS2010, there 

were 10 SCA estimates that were significantly different from zero.  At College 

Station in 2011, no SCA estimates were significantly different from zero .    

Among the 12 Chinese cultivars, there were no hybrids with TAM CAMD-

E and TAM B182-33 ELS that produced SCA estimates for UHML that were 

significantly different from zero in any of the three environments.  

Data on some of the SCA of the 36 lines with the two testers do agree with the 

GCA data.   While no SCA estimates in 2011 were significantly different from 

zero, the South African lines Limpopo and Funtua FT-5 were both good general 

and specific combiners for improved UHML.  Limpopo and had positive GCA 

estimates at both CS2010 and CS2011 and specifically combined well with 

Tamcot CAMD-E at CS2010 for improved UHML.  Additionally, Funtua FT-5 had 

positive and significant GCA estimates at CS2010 and CS2011 and had a 

positive SCA that was significant when crossed with TAM B182-33 ELS at 

CS2010.  Del Cerro was the best general combiner for UHML among the U.S. 

lines, but it did not specifically combine with Tamcot CAMD-E nor TAM B182-33 

ELS in any of the three environments.   

 Hybrids of the West African cultivar UK 64 had SCA estimates of 1.00 

and -1.00 (P<0.05) at MX2010 when crossed to TAM CAMD-E and TAM B182-
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Table 3. Hybrid UHML (mm) and calculated Specific Combining Ability (SCA) estimates of 12 Chinese, 7 West 
African, 10 South African, and 7 U.S. upland cotton (G. hirsutum) cultivars when crossed to TAM CAMD-E and 
TAM B182-33 ELS and planted at Tecoman, Mexico in 2009-10 (MX2010), College Station in 2010 (CS2010), and 
College Station in 2011 (CS2011). 

  MX2010 CS2010 CS2011 Average 

TAM CAMD-E Hybrids 
Country of 

Origin UHML  SCA UHML  SCA UHML  SCA UHML  

Jiangsu #3 China 30.31 0.11 27.50 -0.18 26.80 -0.02 28.01 
Zhopng Mian Suo 9 Hao China 30.31 -0.02 27.24 0.07 27.05 0.04 28.01 
Lishan Big Boll China 29.80 -0.06 27.62 0.04 26.99 0.23 27.98 
Chung Mein-Jue #7 China 30.82 0.32 26.61 -0.12 26.80 0.30 27.82 
Shan 5245 China 30.14 -0.06 26.92 0.07 26.80 -0.21 27.76 
Kang Bin Chang Mienne China 29.63 -0.10 27.24 0.42 26.54 -0.08 27.64 
Nanging #12 China 29.46 0.32 26.92 -0.05 26.80 -0.08 27.57 
China 632 China 29.29 0.11 26.48 -0.21 26.67 -0.24 27.32 
Lintsing SZE TZE 4B China 30.14 -0.02 25.97 0.26 26.48 -0.12 27.29 
Small Leaf China 29.72 -0.23 26.10 -0.34 26.54 -0.24 27.25 
Pengze China 28.53 -0.78 26.80 -0.31 26.67 0.36 27.23 
Duck Shelter China 29.46 -0.14 26.29 -0.15 26.04 -0.50 27.06 

F 280 W. Africa 30.82 0.03 28.96 -0.02 28.00 -0.27 29.12 
UK 64 W. Africa 31.50 1.00* 28.64 -0.02 27.11 -0.43 28.86 
A-637-33 W. Africa 30.23 0.20 28.89 0.52 27.37 -0.47 28.70 
Pan 575 W. Africa 30.48 -0.19 28.38 -0.53 27.37 -0.47 28.70 
Reba W 296 W. Africa 30.31 -0.06 28.51 0.04 27.69 0.08 28.70 
Allen 333-61 CB 4027 W. Africa 30.23 -0.40 28.19 -0.34 27.94 0.04 28.66 
Allen 333 W. Africa 28.19 -0.69 25.59 -0.18 27.56 0.49 27.02 

Limpopo S. Africa 31.33 0.66 29.97 1.06** 28.70 0.58 29.88 
BPA 68 CB 4030 S. Africa 32.60 -0.06 29.53 0.17 27.88 -0.18 29.76 
Marico(Smooth) S. Africa 30.99 0.03 29.65 0.49 27.94 -0.05 29.40 
Funtua FT-5 S. Africa 31.41 0.20 27.81 -0.78* 28.19 0.08 28.93 
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Table 3 continued         
  MX2010 CS2010 CS2011 Average 

TAM CAMD-E Hybrids 
Country of 

Origin UHML  SCA UHML  SCA UHML  SCA UHML  

Albacala 7 S. Africa 30.48 -0.52 28.77 0.36 27.88 -0.02 28.91 
A 7215 S. Africa 31.75 0.07 28.26 -0.15 27.37 0.07 28.89 
BJA 592 S. Africa 30.90 -0.40 28.19 -0.15 30.80 0.21 28.68 
Ala 70-11 S. Africa 31.50 0.49 27.62 -0.09 27.31 0.30 28.56 
Sabie S. Africa 30.48 -0.10 28.26 0.30 27.18 -0.18 28.47 
Komati S. Africa 30.90 0.20 27.37 0.93* 27.50 0.23 28.38 

Del Cerro U.S. 32.68 -0.40 29.59 -0.15 28.64 -0.37 30.09 
Deltapine 491 U.S. 32.09 0.54 29.40 0.42 27.94 0.58 29.60 
Phytogen 72 U.S. 31.75 0.03 28.07 -0.24 28.32 0.27 29.16 
Acala 1517-99 U.S. 30.82 0.11 28.19 -0.44 28.32 0.01 28.96 
Tamcot 22 U.S. 30.65 0.32 27.50 -0.09 27.50 0.04 28.36 
Stoneville 474 U.S. 29.38 -0.69 26.35 -0.72* 27.62 0.36 27.64 
Paymaster Tejas U.S. 29.21 0.15 26.61 0.10 26.29 -0.02 27.20 

         
  MX2010 CS2010 CS2011 Average 

TAM B182-33 ELS Hybrids 
Country of 

Origin UHML  SCA UHML  SCA UHML  SCA UHML  

Jiangsu #3 China 33.19 -0.11 30.80 0.18 29.72 0.02 31.06 
Zhopng Mian Suo 9 Hao China 33.44 0.02 30.04 -0.07 29.85 -0.04 30.90 
Shan 5245 China 33.36 0.06 29.72 -0.07 30.10 0.21 30.85 
Lishan Big Boll China 33.02 0.06 30.48 -0.04 29.40 -0.23 30.78 
Small Leaf China 33.27 0.23 29.72 0.34 29.91 0.24 30.76 
Duck Shelter China 32.85 0.14 29.53 0.15 29.91 0.50 30.57 
Pengze China 33.19 0.78 30.35 0.31 28.83 -0.36 30.57 
China 632 China 32.17 -0.11 28.95 0.21 30.04 0.24 30.55 
Chung Mein-Jue #7 China 33.27 -0.32 29.78 0.12 29.08 -0.30 30.48 
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Table 3 continued         
  MX2010 CS2010 CS2011 Average 

TAM B182-33 ELS Hybrids 
Country of 

Origin UHML  SCA UHML  SCA UHML  SCA UHML  

Nanging #12 China 31.92 -0.32 29.97 0.05 29.85 0.09 30.46 
Kang Bin Chang Mienne China 32.94 0.10 29.34 -0.42 29.85 0.09 30.41 
Lintsing ZSE TZE 4B China 33.27 0.02 28.38 -0.26 29.59 0.12 30.16 

Pan 575 W. Africa 33.95 0.18 32.39 0.53 31.24 0.34 32.40 
F 280 W. Africa 33.87 -0.03 31.94 0.02 31.43 0.28 32.28 
Allen 333-61 CB 4027 W. Africa 34.12 0.40 31.81 0.34 30.73 -0.04 32.05 
Reba W 296 W. Africa 33.53 0.06 31.37 -0.04 30.42 -0.07 31.61 
UK 64 W. Africa 32.60 -1.00* 31.62 0.02 30.86 0.43 31.61 
A-637-33 W. Africa 32.94 -0.20 30.80 -0.52 31.18 0.47 31.52 
Allen 333 W. Africa 32.68 0.69 28.89 0.18 29.46 -0.49 30.13 

BPA 68 CB 4030 S. Africa 35.81 0.06 32.13 -0.17 31.12 0.18 32.77 
Funtua FT-5 S. Africa 34.12 -0.20 32.32 0.79* 30.92 -0.07 32.30 
BJA 592 S. Africa 34.80 0.40 31.43 0.15 30.80 0.21 32.12 
Marico (Smooth) S. Africa 34.04 -0.03 31.62 -0.49 30.92 0.05 32.03 
Albacala 7 S. Africa 34.63 0.52 30.99 -0.36 30.80 0.02 31.91 
A 7215 S. Africa 34.71 -0.07 31.50 0.15 30.10 -0.07 31.87 
Sabie S. Africa 33.78 0.10 30.61 -0.30 30.42 0.18 31.40 
Limpopo S. Africa 33.10 -0.66 30.80 -1.06** 30.42 -0.58 31.29 
Ala 70-11 S. Africa 33.61 -0.49 30.73 0.09 29.59 -0.30 31.10 
Komati S. Africa 33.61 -0.20 28.45 -0.93* 29.91 -0.23 30.39 

Del Cerro U.S. 36.58 0.40 32.83 0.19 32.26 0.37 33.64 
Acala 1517-99 U.S. 33.70 -0.11 32.00 0.44 31.18 -0.01 32.17 
Phytogen 72 U.S. 34.80 -0.03 31.50 0.25 30.67 -0.27 32.10 
Deltapine 491 U.S. 34.12 -0.54 31.50 -0.42 29.65 -0.58 31.54 
Stoneville 474 U.S. 33.87 0.69 30.73 0.72* 29.78 -0.36 31.24 
Tamcot 22 U.S. 33.10 -0.32 30.61 0.09 30.29 -0.04 31.17 
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Table 3 continued         
  MX2010 CS2010 CS2011 Average 

TAM B182-33 ELS Hybrids 
Country of 

Origin UHML  SCA UHML  SCA UHML  SCA UHML  

Paymaster Tejas U.S. 32.00 -0.15 29.34 -0.11 29.21 0.02 30.02 

S.E.(SCA)  0.425 0.347 0.313  

*Significant at the 0.05 probability level. 
**Significant at the 0.01 probability level. 
 
 
.
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33 ELS, respectively.  The South African cultivars Limpopo and Komati were 

good specific combiners with TAM CAMD-E at College Station in 2010 and 

produced significant estimates.  The U.S. cultivar Stoneville 474 was a good 

specific combiner with TAM B182-33 ELS at College Station in 2010.  This 

indicates obsolete short staple upland cotton cultivars might possess alleles for 

UHML improvement in modern ESLU. 

Based on the observed values for both GCA and SCA estimates, the 

majority of the variation among this set of parents is due to additive effects.  This 

would agree with previous reports for inheritance of fiber length in cotton (Al-

Rawi and Kohel, 1969; Al-Rawi and Kohel, 1970; Campbell et al., 2008; Lee et 

al., 1967; May and Green, 1994; Meredith, 1970; Meredith and Bridge, 1972; 

Meredith et al., 1970; Miller and Lee, 1964; Miller and Marani, 1963; Miller et al., 

1959; Miller et al., 1962; Percy et al., 2006; Quisenberry, 1975; Tang et al., 

1993).   

Based on the parents used in the study, it appears that cultivars used in 

China likely do not contain any additional alleles for further UHML improvement.  

In order to enhance UHML in upland cotton, it appears that germplasm lines 

developed through interspecific hybridization would produce the largest gains.  

However, yield drag and other factors such as reduced turnout would hinder 

efforts to improve UHML.   

 In order to meet short term goals for UHML improvement, upland cotton 

cultivars from West and South Africa could be used in crosses with current elite 
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lines.  Because yield was not taken, it is not known if yield drag or reduced 

turnout at ginning could be adverse effects in lines derived from these cultivars.  

Furthermore based on the data reported it would appear using U.S. upland elite 

cultivars with good UHML measurements could be used for improvement.  This 

is evident as Acala 1517-99, Deltapine 491, and Phytogen 72 had GCA 

estimates that were positive and significantly different from zero in the three 

environments.  Furthermore, based on a positive SCA estimate, ST474 and 

other obsolete short staple upland US cultivars might possess alleles or 

beneficial epistatic combinations for improvement of UHML in ELSU cottons. 

Diallel Analyis of UHML Among Three Confirmed Extra Long Staple Upland  

Accessions from USDA-ARS 

Analysis of variance revealed significant variation due to Environments, 

Reps within Environments, and Genotypes (Table 4).  Broad sense heritability 

 (H2) was 0.927.  This indicated that the majority of the variation within study was 

due to genotypes.  The general combining ability (GCA) and specific combining 

ability (SCA) effects were significant but the GCAxEnvironment and 

SCAxEnvironment interaction effects were not significant, thus data were 

combined across the three environments. 

The five parents and 10 hybrids differed for UHML when averaged over 

the three environments (Table 5).  The three longest parents were TAM B182-33 

ELS (Smith et al, 2009), EwingsLongStapleXTidewater, and Sealand 1.  Their 

mean UHML ranged from 34.06 mm to 33.92 mm and were different (P≤0.05) 
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Table 4. Analysis of variance and broad sense (H2) estimate for UHML (mm) 
among three confirmed ELS upland cotton lines, TAM B182-33 ELS, and TAM 
94L-25 and their 10 F1 progeny lines derived from a half diallel mating scheme. 

Source† df Mean square 

Environment (E) 2 114.6105*** 
Reps within E 8 1.8882 
Genotypes (G) 14 10.0956*** 
 GCA 4 26.1007*** 
 SCA 10 3.4482*** 
GxE 28 0.5502 
 GCAxE 8 0.8342 
 SCAxE 20 0.4366 
Error 112 0.4606 

H2 = 0.927  

*Significant at the 0.05 probability level. 
**Significant at the 0.01 probability level. 
***Significant at the 0.001 probability level. 
†GCA = general combining ability; SCA = specific combining ability. 
 

 

 

from TAM 94L-25 but not D&PL 45-867.  The mean of D&PL 45-867, was 33.41 

mm, numerically the shortest of the three accessions.  The long staple upland 

TAM 94L-25 was significantly shorter than the four other parents, as expected, 

and the 10 F1 hybrids tested.  The average UHML of hybrids TAM B182-33 

ELS/EwingsLongStapleXTidewater and TAM B182-33 ELS/Sealand 1 were 

significantly longer than the five parents or any of the other hybrid combinations 

but were not different from each other.  The hybrid of EwingsLongStapleX-

Tidewater/Sealand 1 produced a mean UHML of 34.10 mm but was significantly 

shorter (P<0.05) than the hybrids made with TAM B182-33 ELS and not 

significantly different than TAM B182-33 ELS, EwingsLongStapleXTidewater, 

and Sealand 1.  The hybrid of TAM B182-33 ELS/TAM 94L-25 was shorter  
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Table 5. Means and standard deviations for UHML of three confirmed ELS 
Upland Cotton lines from GRIN, TAM B182-33 ELS, and TAM 94L-25 crossed in 
a half diallel mating scheme grown at Tecoman, Mexico 2009-10, College 
Station 2010, and College Station 2011. 

Genotype UHML (mm) s 

TAM B182-33 ELS 34.06bc† 1.79 

EwingsLongStapleXTidewater 33.94bc 1.86 
Sealand 1 33.92bc 1.32 
D&PL 45-867 33.41cd 0.96 
TAM 94L-25 30.80f 1.07 
TAM B182-33 ELS/EwingsLongStapleXTidewater 34.87a 1.63 
TAM B182-33 ELS/Sealand 1 34.75a 1.46 
EwingsLongStapleXTidewater/Sealand 1 34.10b 1.60 
TAM B182-33 ELS/D&PL 45-867 34.06bc 1.62 
EwingsLongStapleXTidewater/D&PL 45-867 33.94bc 1.14 
D&PL 45-867/Sealand 1 33.78bcd 1.43 
EwingsLongStapleXTidewater/TAM 94L-25 33.71bcd 1.59 
D&PL 45-867/TAM 94L-25 33.57bcd 1.13 
Sealand 1/TAM 94L-25 33.23de 1.37 
TAM B182-33 ELS/TAM 94L-25 32.77e 1.31 

†Mean values followed by the same letter were not different at P≤0.05. 

 
 
 

(P<0.05) than the four ELS parents and all of the hybrid combinations with the 

exception of Sealand 1/TAM 94L-25.  However, the hybrid combination was  

significantly longer  than TAM 94L-25.  This was  expected as TAM 94L-25 is a 

parent of TAM B182-33 ELS.  Based on this data, it appears the three longest 

parents would be ideal for improvement of UHML in both ELS upland and LSU 

cottons. However, it also suggests that TAM B182-33 ELS, which Smith et al. 

(2008, 2009) suggested was an ELS upland developed without introgression 

from G. barbadense, has the same or essentially the same alleles for fiber 

length as the accessions from the USDA Cotton Collection, which are 

considered to be introgressed lines (Smith and Hague; 2008). 
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 General combining ability represents that average performance of parents 

in a hybrid combination.  The analysis of variance (Table 4) did not reveal a 

significant GCAxE interaction and therefore the data were pooled.  The 

calculated estimates for GCA effects (Table 6) revealed that TAM B182-33 ELS 

(Smith et al., 2008) and EwingsLongStapleXTidewater were good general 

combiners.  TAM B182-33 ELS and EwingsLongStapleXTidewater produced 

significant GCA estimates of 0.370 and 0.364, respectively.  Sealand 1 had a 

GCA estimate of 0.248, not significantly different from zero.  The shortest parent, 

TAM 94L-25 had a GCA estimate of -1.012 that was highly significantly different 

from zero, as expected when grouped with this set of ELS upland phenotypes.  

These data agree with conclusions from the mean and standard deviation for 

UHML among the parents and hybrids in this study as discussed above.  Based 

on the available data, TAM B182-33 ELS and EwingsLongStapleXTidewater 

would be the most desirable parents to use for UHML improvement among 

these parents.    

 Specific combining ability represents the deviation from expected 

performance of a hybrid combination based on the mean of all hybrids and the 

GCA of the parents.  Good SCA deviations can be due to dominance effects or 

favorable epistatic gene interactions and suggest that the trait in question can be 

improved through selection of specific parental combinations.  However, 

superior specific combiners can and might still have poorer performance than 

elite lines.  When averaged over the three environments, only D&PL 45- 
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Table 6. Estimates of specific combining ability (SCA) effects, general 
combining ability (GCA) effects, and the overall mean for UHML among three 
confirmed Extra Long Staple upland cottons, TAM B182-33 ELS, and TAM 94L-
25 crossed in a half diallel mating scheme grown at Tecoman, Mexico 2009-10, 
College Station 2010, and College Station 2011. 

 Parent  
Parent 1 2 3 4 GCA  

 SCA   

1. TAM B182-33 ELS     0.370* 
2. EwingsLongStaplexTidewater 0.473    0.364* 
3. Sealand 1 0.472 -0.169   0.248 
4. D&PL 45-867 -0.004 -0.112 -0.158  0.030 
5. TAM 94L-25 -0.254 0.699 0.330 0.893* -1.012*** 

*Significant at the 0.05 probability level. 
***Significant at the 0.001 probability level.   
 
 
 
867/TAM 94L-25 produced a SCA estimate that was significantly different from 

zero.  Because neither parent exhibited  a good GCA estimate, this particular 

combination might possess different alleles contributing to UHML via dominance 

effects or a favorable epistatic gene interaction.  The hybrid produced a mean 

UHML of 33. 57 mm when averaged over the three environments and was not 

significantly different  than the mean UHML of TAM B182-33 ELS, 

EwingsLongStapleXTidewater, or Sealand 1.   
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Heritability of Lower Half Mean Length and Short Fiber Content by Weight  

in an Extra Long Staple X Medium Staple Upland Cotton Cross 

Short fiber content adversely affects yarn spinning and spinning 

performance (Backe, 1986).  Lowering short fiber content is important to 

spinners because it represents waste and increases the number of thick and thin 

places in yarn.  Currently breeders must use AFIS to determine short fiber 

content in a sample of cotton lint as HVI does not have a short fiber content 

measurement.  Recently Cai et al. (2001) found that lower half mean length was 

a better indicator of yarn spinning performance.  Currently there are no narrow 

sense (h2) estimates for SFCw or LHML for ELSU X MSU crosses. 

 Narrow sense (h2) heritability estimates were obtained for both LHML and 

AFIS SFCw using parent-offspring regression..  Estimates were obtained using 

both individual F2:3 data from College Station in 2009 and mid-parent data from 

TAM B182-39 ELS and DP491 planted with the 140 F3:5 RIL’s at College Station 

in 2011.  The h2 estimates estimates obtained when the RILs were regressed on 

their respective individual parent plant in the F2:3 generation were adjusted using 

the correction factor from Holland et al. (2003) and Ft = 1/2.  The mid-parent 

values were calculated on a per block basis.  Any negative regression 

coefficients were interpreted as a heritability estimate of zero. 

 Estimates of h2 ranged from 0 to 0.48 (Table 7).  Estimates of h2 for AFIS 

SFCw and LHML were 0.27 and 0.00, respectively, when based on mid-parent  



69 

 

 

 

Table 7. Narrow sense heritability (h2) estimates and their standard error for 
LHML and AFIS SFCw in a F3:5 RIL population using both F2:3 individual plant 
data from College Station 2009 and parents grown in a RCBD with 2 replications 
at College Station, TX in 2011. 

Fiber Parameter Generation 

Narrow sense 
heritability (h2) 

estimate Standard Error 

AFIS SFCw 
Mid-Parent 0.27 0.69 

F2:3 0.15*** 0.04 

LHML 
Mid-Parent 0.00 0.42 

F2:3 0.48*** 0.06 

***Significant at the 0.001 probability level. 
 
 
 
values obtained at College Station in 2011.  Furthermore, the heritability 

estimate obtained for SFCw was not significantly different from zero.   

  Narrow sense heritability (h2) estimates obtained when 2011 F3:5 plot 

values were regressed on F2:3 individual plant values from 2009 were 0.15 and 

0.48 for AFIS SFCw and LHML, respectively.  Based on the standard errors for 

the regression coefficients, there was a drastic reduction in error when plot 

values were regressed on individual parental F2:3 selections. 

Cai et al. (2011) found a high correlation (r = -0.986) between AFIS SFCw 

and LHML among 28 different cotton samples.  The authors also found LHML 

was a better predictor of yarn performance when spun.  Higher coefficients of 

determination (R2) were found for spinning performance when LHML replaced 

AFIS SFCw.  While the fiber parameters of the cottons used are not known, 

evidence in their study suggests that selecting for improved LHML in populations 

has the potential to aide in the development of cottons with fiber properties that 

yarn spinners desire at a faster pace versus selecting on AFIS SFCw.   
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 Data collected in the study found a low h2 of 0.15 in a F3:5 RIL population 

derived from a ELSU X MSU cross for AFIS SFCw when plot values were 

regressed on F2:3 individual plant data.  The h2 of LHML was a moderate 0.48.  

This indicates a greater amount of genetic variation for LHML than AFIS SFCw.    

If the conclusions of Cai et al. (2011) hold for cottons developed from ELSU X 

MSU crosses, cotton breeders would be able to increase genetic gain by 

selecting cottons with improved yarn spinning properties.  However, further data 

on the spinning performance in relation to AFIS SFCw and LHML using lines 

derived from ELSU X MSU crosses is needed. 

Determining Short Fiber Content by Weight in an Extra Long Staple X  

Medium Staple Upland Cotton Cross 

 Analysis of variance of 140 F3:5 RILs and their parents, TAM B182-39 

ELS and DP 491 indicated that genotypes were the primary source of variation 

for AFIS SFCw and HVI fiber properties (Table 8).  Replications (Reps) were, 

however, a significant (P<0.01) source of variation for fiber micronaire but not for 

any other HVI traits reported. This indicates that the fiber properties were mostly 

affected by genotypes and not by variation from the field.  Because of this it can 

be concluded that fiber properties are stable among the genotypes and it is 

possible to use HVI fiber properties to determine SFCw using a regression 

equation. 

Coefficients of variation (CV) indicated that there was a lot of variation for 

SFCw but not for HVI fiber properties.  This suggests there are more factors 
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than the genotype that affect SFCw.  The AFIS instrument itself is known to bias 

SFCw measurement from fiber breakage caused by the fiber individualizer 

(Bragg and Shoffner, 1993).  Among the traits reported in Table 8, the CV for 

AFIS SFCw was the highest at 20.75, while the HVI fiber properties had much 

lower CVs.  Lower Half Mean Length had the highest CV of the HVI based fiber 

properties at 6.29.  These results agree with the findings of Cai et al. (2011).  

Two regression equations from Zeidman et al. (1991) were used in this 

study.  They are: 

SFCw1 = 126.21 – (15.81/25.4)●UHML – 1.23●UI 

SFCw2 = -(0.249/25.4)●UHML – 0.533●UI 

A third regression equation for this study was developed using SAS 9.2 Proc 

Reg setting the SFCw values given from AFIS measurements equal to the F3:5 

RIL fiber samples to the HVI fiber tests.  Selection for the regression equation 

used herein was based upon Mallow’s C(p) statistic and the associated adjusted 

coefficient of determination (R2) values, the regression equation.  The regression 

equation developed is: 

SFCw3 = 40.825 – 0.320●UI – 1.129●Micronaire 

Pearson correlation coefficients (r) were  calculated among AFIS SFCw and two 

regression equations to determine SFCw from HVI fiber properties published by 

Zeidman et al. (1991) and the regression equation developed in this study 

(SFCw3) (Table 9).  The two regression equations from Zeidman et al. (1991) 

SFCw1 and SFCw2 were positively and statistically significantly (P<0.05) 
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Table 8. Mean square values and coefficients of variation among 140 F3:5 RILs and their parents, TAM B182-39 
ELS and DP 491, for AFIS SFCw and HVI fiber properties grown at College Station in 2011. 

Source SFCw 
UHML  
-mm- 

ML 
-mm- 

LHML 
-mm- Micronaire Uniformity 

Strength  
-kN m kgˉ¹- Elongation 

Genotype 1.75*** 4.38*** 4.08*** 3.38*** 0.26*** 2.45*** 840.38*** 0.66*** 
Replications 0.25 1.68 2.07 2.18 0.48** 1.53 60.11 0.26 
Error 0.87 0.87 0.95 0.97 0.07 0.97 208.97 0.14 

C.V. 20.75 3.19 4.03 6.29 5.56 1.19 4.51 5.71 

*Significant at the 0.05 probability level. 
**Significant at the 0.01 probability level. 
***Significant at the 0.001 probability level. 
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Table 9. Pearson correlation coefficients (r) among AFIS SFCw and HVI fiber properties LHML, UI, micronaire, and 
fiber strength and three regression equations to determine AFIS SFCw from HVI properties in individual plant data 
from the F2:3 generation grown at College Station, TX in 2009 and among 140 F3:5 RILs and parents TAM B182-39 
ELS and DP 491 grown at College Station, TX, in 2011 in a RCBD with 2 replications. 

F2:3 Generation 
 SFCw SFCw1

 SFCw2
 SFCw3

 
LHML  UI Micronaire Strength  

SFCw 1.000 0.366** 0.555** 0.574** -0.225** -0.560** -0.308** -0.227** 
SFCw1

  1.000 0.812** 0.578** -0.960** -0.803** 0.252** -0.673** 
SFCw2

   1.000 0.857** -0.618** -0.999** -0.198* -0.467** 
SFCw3

 
   1.000 -0.367** -0.863** -0.556** -0.496** 

F3:5 Generation 
 SFCw SFCw1

 SFCw2
 SFCw3

 
LHML UI Micronaire Strength  

SFCw 1.000 0.252** 0.409** 0.613** -0.177** -0.415** -0.241** -0.433** 
SFCw1

  1.000 0.939** 0.472** -0.988** -0.932** -0.498** -0.531** 
SFCw2

   1.000 0.666** -0.876** -0.999** 0.317** -0.601** 
SFCw3

 
   1.000 -0.368** -0.674** -0.400** -0.702** 

*Significant at the 0.05 probability level. 
**Significant at the 0.01 probability level. 
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correlated to AFIS SFCw.  Between both generations SFCw2 had a higher 

correlation with r values of 0.555 and 0.409 in the F2:3 and F3:5 generation 

respectively.  The regression equation derived from the F3:5 RIL data in 2011      

(SFCw3) was significantly (P<0.05) correlated to AFIS SFCw in both generations 

as well with r values of 0.574 and 0.613 in the F2:3 and F3:5 generations, 

respectively.  When the three regression equations were compared to the 

previous work by Zeidman et al. (1991), SFCw2 and SFCw3 were the highest 

correlated in both generations with r values of 0.857 in the F2:3 generation and 

0.666 in the F3:5 generation.   

 Pearson correlation coefficients (r) were calculated among AFIS SFCw 

and HVI fiber parameters for both the F2:3 and the F3:5 generations.  Between 

both generations, LHML, UI, micronaire, and fiber strength were significantly 

correlated with AFIS SFCw (Table 9).  In the F2:3 generation, UI correlated the 

highest with AFIS SFCw.  However, in the F3:5 generation, fiber strength was 

higher correlated with AFIS SFCw with r=-0.433.  Uniformity Index correlated 

slightly less than fiber strength with r=-0.415. This was to be expected as UI is 

the ratio of ML to UHML.  Therefore, as UI increases, SFCw should theoretically 

decrease.  

 Lower half mean length was correlated with AFIS SFCw with r = -0.225 

and -0.177 in the F2:3 and F3:5 generations, respectively.  This was a stark 

contrast to the correlation coefficient of -0.986 reported by Cai et al. (2011).  
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Thus, basing selection for improved AFIS SFCw via LHML might not be as 

efficient in ELSU X MSU crosses. 

Pearson correlation coefficients (r) were also calculated among the three 

regression equations and AFIS SFCw (Table 9).  In both the F2:3 generation 

grown in 2009 and the replicated F3:5 generation grown in 2011, SFCw1 

correlated the best to LHML of the three regression equations and AFIS SFCw.   

Regression equations derived by Zeidman et al. (1991) were highly 

correlated to UI.  Pearson correlation coefficient values (r) ranged from -0.803 to 

-0.999.  Thus the regression equations developed by Zeidman et al. (1991) 

places a high emphasis on UI.  The regression equation SFCw3 was also highly 

correlated to UI with r values of -0.863 and -0.674 in the F2:3 and F3:5 

generations, respectively.  Therefore SFCw3 appears to also emphasize UI but 

not to the same degree as SFCw1 and SFCw2.   

Pearson correlation coefficients (r) among the HVI fiber micronaire and 

strength and AFIS SFCw and the regression equations varied between the two 

generations (Table 9).  The r values for SFCw1 changed from 0.252 to -0.498 in 

the F2:3 and F3:5 generations, respectively.  The regression equation SFCw2 

changed from having a positive r value of 0.317 in the F2:3 generation to -0.198 

in the F3:5 generation. The regression equation SFCw3 remained negatively 

correlated (P<0.01) with HVI fiber micronaire in both generations but r values 

decreased from -0.556 to -0.400 between the F2:3 and F3:5 generation, 

respectively.  When pearson correlation coefficients (r) were calculated among 
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the three regression equations and fiber strength, SFCw1 was the highest 

correlated (-0.673) in the F2:3 generation and SFCw3 was the highest correlated 

(-0.702) in the F3:5 generation.  This indicates that the regression equations were 

not emphasizing selection for higher fiber strength per se or that the two 

equations developed by Zeidman et al. (1991) emphasize fiber micronaire.   

Cai et al. (2011) found a high correlation (r = -0.986) between AFIS SFCw 

and LHML among 28 different cotton samples.  The authors also found LHML 

was a better predictor of yarn performance when spun.  Higher coefficients of 

determination (R2) were found for spinning performance when LHML replaced 

AFIS SFCw.  While the fiber parameters of the cottons used are not known, 

evidence in their study and this study suggests that selecting for improved LHML 

in populations has the potential to aide in the development of cottons with fiber 

properties that yarn spinners desire at a faster pace versus selecting on AFIS 

SFCw.   

 Data collected in the study found a low narrow sense (h2) heritability of 

0.15 in a F3:5 RIL population derived from a ELSU X MSU cross for AFIS SFCw 

when plot values were regressed on F2:3 individual plant data.  The narrow 

sense heritability (h2) of LHML was a moderate 0.48.  This indicates a greater 

amount of genetic variation for LHML than AFIS SFCw.    If the conclusions of 

Cai et al. (2011) hold for cottons developed from ELSU X MSU crosses, cotton 

breeders would be able to increase genetic gain by selecting cottons with 

improved yarn spinning properties.  However, further data on the spinning 
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performance in relation to AFIS SFCw and LHML using lines derived from ELSU 

X MSU crosses is needed. 

Based on the data presented herein, the conclusions of Cai et al. (2011) 

do not apply in ELSU X MSU cotton crosses.  This study found significant but 

lower r values between AFIS SFCw and LHML.  The study by Cai et al. (2011) 

however found a high negative correlation between the two parameters.  

Therefore, further testing is needed using lint derived from ELSU in mini-

spinning performance trials. 

Furthermore the variation for Pearson’s correlation coefficients suggests 

that a second year of data is needed in order to determine the stability of AFIS 

SFCw and HVI fiber micronaire and strength values.  Based on the variation 

seen for r values, the regression equation developed herein (SFCw3) might have 

advantages over equations developed by Zeidman et al. (1991) by placing 

emphasis on other fiber properties important in the spinning process.  Because 

there was a significant and negative ρ value, breeders must exercise caution 

when selecting using SFCw3 as higher micronaire values will be obtained.   

In agreement with Cai et al. (2011), this study observed a much higher 

coefficient of variation for AFIS SFCw than LHML.  It is possible that further 

improvements in spinning performance could be obtained because LHML 

measurements have a lower coefficient of variation.  Because there is less 

variation in the data, it would be easier for breeders to select cottons with 

enhanced yarn spinning properties.   
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There are advantages of using micronaire values in a regression 

equation.  Micronaire is an indirect measurement of fineness and maturity.  

Thus, adding micronaire into an equation to select for lower AFIS SFCw could 

prevent selection of cottons that produce immature fibers.   

It is important to understand the role that fiber strength plays in 

determining AFIS SFCw.  Strong fibers are less prone to breaking which in turn 

increases yarn strength making them more desirable.  When cotton fibers are 

less to prone to breakage, less short fibers will form during the harvesting and 

handling process regardless of machine setting.   

Lastly, it is important to determine what is happening in terms of fiber 

length distributions of ELSU X MSU crosses.  Due to the drastic disagreement 

with the findings of Cai et al. (2011), it appears that predicting spinning 

performance of ELSU cultivars or cultivars derived in ELSU X MSU crosses 

deviates from the expectations of commercial type upland cultivars.  
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CHAPTER V 

CONCLUSIONS 

 Genetic improvement of UHML and LHML and reduction of SFCw 

 are imperative in order for the U.S. to maintain competiveness in a global 

community.  This study answers some fundamental question for continued 

improvement of both short staple upland and modern ELSU cotton cultivars.   

  The cultivars developed in China and used in this study apparently do not 

contain any additional alleles for UHML improvement in ELSU phenotypes 

developed at Texas AgriLife Research.  Upland cotton cultivars from West and 

South Africa could be used in crosses with current elite lines.  Because yield 

was not taken, it is not known if yield drag or reduced turnout at ginning could be 

adverse effects in lines derived from these cultivars.  Furthermore based on the 

data reported it would appear using U.S. upland elite cultivars with good UHML 

measurements could be used for improvement.  This is evident as Acala 1517-

99, Deltapine 491, and Phytogen 72 had GCA estimates that were positive and 

significantly different from zero in the three environments.  Furthermore, based 

on a positive SCA estimate, ST474 and other obsolete short staple upland US 

cultivars might possess alleles or beneficial epistatic combinations for 

improvement of UHML in ELSU cottons.  

Combining ELSU accessions from the USDA Cotton Collection with 

Texas AgriLife Research ELSU material may provide the opportunity for UHML 

improvement but such improvement would be incremental relative to the 
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advancement from LSU UHML to ELSU UHML. However, yield drag and other 

unknown factors such as reduced gin turnout could hinder efforts to develop 

upland cultivars exhibiting the ELS UHML. 

 Lower half mean length had a much higher narrow sense heritability than 

SFCw among lines derived from TAM B182-39 ELS/DP 491.  Additionally, LHML 

also had a much lower coefficient of variation than SFCw. Thus selection for 

improved LHML could enhance efforts to develop lines with superior spinning 

properties.  However, LHML and SFCw among lines developed from TAM B182-

39 ELS/DP491 were not as strongly correlated as a previous study found.  As a 

result further testing is needed in order to determine how well LHML predicts 

spinning performance in a ELSU X MSU cross. 

A regression equation developed using a F3:5 RIL population might 

possess advantages over previous work to determine SFCw using HVI fiber 

properties.  The equation developed uses the strength and micronaire fiber 

properties to determine SFCw.  This is important as fiber strength plays an 

important role in preventing fiber breakage during harvesting and processing.  

Furthermore, micronaire is an indirect measure of fiber fineness and maturity.  

Using micronaire as a part of a regression equation to determine SFCw should 

ensure cottons with mature fibers are selected.  However, breeders must be 

careful so that selected cottons have micronaire values in the non-discount 

range.   
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