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ABSTRACT 
 

 

Nonlinear Response and Stability Analysis of Vessel Rolling Motion in Random Waves 

Using Stochastic Dynamical Systems. (August 2012) 

Zhiyong Su, B.S.; M.S., Shanghai Jiao Tong University 

Chair of Advisory Committee: Dr. Jeffrey M. Falzarano 
 

 

       Response and stability of vessel rolling motion with strongly nonlinear softening 

stiffness will be studied in this dissertation using the methods of stochastic dynamical 

systems. As one of the most classic stability failure modes of vessel dynamics, large 

amplitude rolling motion in random beam waves has been studied in the past decades by 

many different research groups. Due to the strongly nonlinear softening stiffness and the 

stochastic excitation, there is still no general approach to predict the large amplitude 

rolling response and capsizing phenomena. We studied the rolling problem respectively 

using the shaping filter technique, stochastic averaging of the energy envelope and the 

stochastic Melnikov function. The shaping filter technique introduces some additional 

Gaussian filter variables to transform Gaussian white noise to colored noise in order to 

satisfy the Markov properties. In addition, we developed an automatic cumulant neglect 

tool to predict the response of the high dimensional dynamical system with higher order 

neglect. However, if the system has any jump phenomena, the cumulant neglect method 

may fail to predict the true response. The stochastic averaging of the energy envelope 
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and the Melnikov function both have been applied to the rolling problem before, it is our 

first attempt to apply both approaches to the same vessel and compare their efficiency 

and capability. The inverse of the mean first passage time based on Markov theory and 

rate of phase space flux based on the stochastic Melnikov function are defined as two 

different, but analogous capsizing criteria. The effects of linear and nonlinear damping 

and wave characteristic frequency are studied to compare these two criteria. Further 

investigation of the relationship between the Markov and Melnikov based method is 

needed to explain the difference and similarity between the two capsizing criteria. 
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CHAPTER I 

INTRODUCTION 

 

         Static and Dynamic stability is one the most important safety features when 

designing floating offshore structures, especially for ship shaped structures. Insufficient 

stability could lead to large amplitude rolling motion or even capsizing. GM based static 

stability criterion were first developed back to nineteen century (Moseley, 1850), and 

this approach was further refined by Rahola in 1939 (Rahola, 1939). The first 

international intact stability resolutions IMO A.167 were approved by IMO in 1968 for 

ships less than 100m; this criterion was mostly based on Rahola’s work (Rahola, 1939). 

The IMO intact stability (IS) code has been revised several times through the 1960s to 

now, but all of these codes are still based on the righting arm curve (GZ curve) in the 

calm water.  The reason why dynamic stability has not been applied in the IS code is the 

difficulty of the nonlinear large amplitude rolling motion with the stochastic and 

probabilistic approach has not been applied completely and satisfactory. The numerical 

simulation in the time domain and model testing provides possible alternative ways to 

approach this complex stochastic failure event. However, both methods are not easy to 

apply and also require significant time and cost. Both numerical simulation and model 

testing are excellent for estimating structure response, but not for stability or long term  

__________________________     

This dissertation follows the style and format of Ocean Engineering.  
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failure prediction. As the vessel capsizing failure is such a very rare event, analytical 

methods are still the most needed technique, which provides quick and accurate 

estimation of the system stability or failure. At present, International Maritime 

Organization (IMO) is working on the new regulations of intact stability based on the 

stochastic and probabilistic approach with dynamic effect. The sub-committee on 

Stability, Load Lines and on Fishing Vessels (SLF) of IMO is discussing the next 

generation of stability criterion during recent SLF meetings (SLF50/4, 2006; SLF51/4, 

2008; SLF52/3, 2009) and proposed four main intact stability failure modes.  

• Dead Ship Condition, i.e. ship without speed, exposed to environment 

• Pure-loss of Stability 

• Parametric Roll 

• Surf-riding and Broaching to 

          Physical phenomena of the above failure modes are complex nonlinear dynamics. 

For research convenience and simplicity, all of the above dynamical motions are 

modeled as a single degree freedom system after decoupling from the other modes with 

some appropriate assumptions.  Before studying vessel stability, it is necessary to 

explain the definition of an intact stability failure first.  Basically, there are two types of 

intact stability failure as per the SLF documents, 1) Total Intact Stability failure - total 

loss of the vessel, which may be additionally combined with the loss of the lives. 2) 

Partial intact stability failure - the partial loss of the vessel’s operational capabilities 

combined with the additional potential danger for people as well as for cargo and 

equipment. Capsizing is defined as the total intact stability failure and the capsizing is a 



3 

 

 

 

very rare event. Most capsizing accidents are related to the large angle rolling that leads 

to green water on deck or equipment shift. Large angle rolling is defined as the partial 

intact stability failure, which will not lead to capsizing. Only Dead Ship Condition with 

random beam waves will be considered in this dissertation.   

1.1 Physical Fundamentals of Vessel Dynamics 

      The equations of motion describing a floating rigid body are nonlinear and coupled. 

The six degree of freedom equations of motion have been derived in variety of 

references (Abkowitz, 1969; Falzarano, 1990; Lewandowski, 2004). These Euler’s 

equations of motions are as follows, derivations can be found in the Appendix A: 

2 2[ ( ) ( )]G GX m u qw rv x q r z pr q= + − − + + +� �  (1.1) 

[ ( ) ( )]G GY m v ru pw x pq r z qr p= + − + + + −� � �  (1.2) 

2 2[ ( ) ( )]G GZ m w pv qu x rp q z p q= + − + − − +� �  (1.3) 

44 55 66 64( ) ( )

( )G

K I p I I qr I r pq

mz v ru pw

= − − − +
− + −

� �
�

  (1.4) 

2 2
55 66 44 64( ) ( )

( ) ( )G G

M I q I I rp I r p

mz u qw rv mx w pv qu

= − − − −
+ + − − + −

�
��

  (1.5) 

66 44 55 64( ) ( )

( )G

N I r I I pq I p qr

mx v ru pw

= − − − −
− + −

� �
�

  (1.6) 

where m  is the mass of the ship, 
44I ,

55I ,
66I and 

64I are the moments and cross products 

of inertia in the body fixed system,  which always put its origin at the mid-ship and 

design waterline,  the subscripts represent respectively: 4=roll, 5=pitch, 6=yaw. u, v, w 
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are the velocity of the translational motions, surge, sway and heave; p q r are the angular 

velocity of the rotational motions, roll, pitch and yaw. 
Gx  and 

Gz are the coordinates of 

ship center of gravity in the body fixed system. X ,Y ,Z ,K ,M ,N  are applied force 

and moments in the body fixed system, representing the hydrodynamic and hydrostatic 

forces and moments. The total hydrodynamic and static forces are assumed as the 

summation of various components: including Froude-Krylov forces, diffraction forces, 

and radiation forces, viscous nonlinear damping force and hydrostatic restoring force. 

These coupled nonlinear equations are difficult if not impossible to get analytical 

solution to, so approximation and assumption must be made for any real progress. 

Considering small motions, the Euler’s equations of motions of equations (1.1) to (1.6) 

could be linearized to drop the nonlinear inertial terms. Following the derivations of 

Vugts (Vugts, 1970), the linearized equations of motions are as follows: 

[ ]GX m u z q= +� �  (1.7) 

[ ]G GY m v x r z p= + −� � �  (1.8) 

[ ]GZ m w x q= −� �  (1.9) 

44 64 GK I p I r mz v= − − �� �  (1.10) 

44 ( )G GM I q m z u x w= + − �� �  (1.11) 

66 64 GN I r I p mx v= − + �� �  (1.12) 

Due to the port and starboard symmetry, the linearized equations have no inertial 

coupling terms between longitudinal (surge, heave and pitch) and lateral (sway, roll and 

yaw) modes. In order to better understand the complicated nonlinear dynamics of vessel 
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rolling motion, it is necessary to decouple the rolling mode from the other six degrees of 

freedom linearized equations.  

         In this dissertation, we consider beam waves only, so the yaw mode motion is 

small and negligible when considering the ship is fore-aft symmetric approximately, and 

therefore only the coupling between the sway and roll is considered. The linear two 

degree of freedom equations describing roll and sway: 

                                                  44

G

G

ym mz Y

mz I Kφ

⎡ ⎤⎡ ⎤ ⎡ ⎤− ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

��
��                        (1.13) 

where y is the sway displacement and φ  is the roll angle; y v=� and pφ =� ; Note that 

the mass and moment inertial term m and 44I  could also include the virtual mass and 

inertial.  It is possible to find a new coordinate system that could remove the coupling 

term in the above equation.  The two equations can be solved independently after the 

decoupling. The new coordinates are called principal coordinates or normal coordinates. 

Let us assume the distance between the new coordinate system xN - yN and the original 

system x - y is cR . From the rigid body dynamics displayed in the Fig. 1, the relation 

involving the acceleration of the points on the body are given by below, 

 N c N

N

y y R φ
φ φ

⎧ = +⎪⎪⎨⎪ =⎪⎩

���� ��
�� ��  (1.14) 

We also need to replace the forces and moments with equivalent force and moment in 

the new coordinate system, 
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 N

N c

Y Y

K K mRY

⎧ =⎪⎪⎨⎪ = −⎪⎩
 (1.15) 

By substituting the equations (1.14) and (1.15) back into (1.13), we get the decoupled 

equations with c GR z= , 

 
44

0

0
N N

N NN

ym Y

I Kφ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

��
��  (1.16) 

where 2
44 44N GI I mz= − ; 

 
 
 

 

Fig. 1.    Body fixed coordinate system x-y and principal system xN - yN   

 
 
 

         The decoupled single degree freedom roll equation (Lewis et al., 1989) is 

considered in this dissertation for response and stability analysis,  
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3

44 44 44 44 1 3( ( )) ( ) ( ) ( ..) ( )N qI A B B C C f tω φ ω φ ω φ φ φ φ+ + + +Δ + + =�� � � �  (1.17) 

Linear added mass 44( )A ω and added damping 44( )B ω  coefficients are from linear 

potential theory, which can be calculated by many hydrodynamic program, e.g., Strip 

Theory based SHIPMO (Beck and Troesch, 1990), or Three-Dimensional panel based 

WAMIT (Lee and Newman, 2009), AQWA (ANSYS, 2010), and MOSES (Ultramarine, 

2010). We will use 44I  to replace the notation 44NI  in this dissertation for convenience. 

The constant Δ is the displacement of the vessel and 1C , 3C are the linear and cubic 

nonlinear stiffness coefficients. 44qB  is the quadratic viscous damping coefficients for 

roll motion, which is determined on a component basis (Falzarano, 1990) and is 

redefined and incorporated into SHIPMO. f is the external moment from wave 

excitation. The moment term in this dissertation is limited to linear excitation due to the 

limitation of available hydrodynamic code SHIPMO. However, the nonlinear part of the 

hydrodynamic force could also be considered for the large amplitude rolling motion 

(Kim, 2008). The damping moment, stiffness moment and external moment are part of 

NK in equation (1.16). How to calculate the hydrodynamic forces and how to analyze the 

rigid body dynamics are the two major problems when studying the rolling motions.  

1.2 Discussion of Intact Stability Failures Modes 

         The simplified and decoupled equation (1.17) is the generalized rolling math model. 

Based on the simple rolling model, the math modes for failure modes are described 

differently.          
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         According to (Belenky et al., 2008), Pure-loss of stability and Parametric Roll both 

related to the variation of the restoring moment in waves. The restoring moment 

becomes larger in the wave trough and smaller on the wave crest due to the variation of 

hull geometry underwater. When the ship is sailing in the following or head seas and the 

wave length is comparable to the ship length, the variation of GZ is most evident. Pure 

loss of stability in waves means when the vessel spends enough time on the wave crest 

in the following or quartering waves, the stability becomes smaller and less than the 

heeling moments and then the vessel may experience capsize or large amplitude angle 

motion. Parametric roll or parametric roll resonance is a result of periodic changes of 

stability at some frequency related to the natural frequency of the rolling motion. The 

major approach researching parametric rolling is Mathieu equation and related Ince-

Strutt diagram, which is a common approach in nonlinear dynamics to predict the stable 

and unstable zone for given parameters. Broaching to is also defined as a mode of intact 

stability failure, which is related to the maneuvering problem: surf-riding. Instead of 

researching the decoupled rolling equation for parametric rolling, the nonlinear math 

model for broaching is surge mode equation with resistance force and propeller force.           

         The most classic stability failure mode is considering the beam waves with 

constant restoring moment, the so called “Dead Ship Condition”. When a ship engine 

loses power during operation, the environment will turn the ship to the beam seas 

condition.  How to analyze the vessel rolling dynamics in the beam waves is the main 

purpose of this dissertation. When considering regular beam wave excitation and 

neglecting the wind excitation, equation (1.17) with constant added mass, damping and 
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stiffness coefficients is a widely accepted mathematical model for large amplitude 

rolling motion or capsizing research. However, it has to be noted that the wave force is a 

stochastic or random process, which means the wave excitation cannot be modeled as a 

regular input and the time invariant system is questionable. For a single harmonic 

excitation, added mass and linear damping takes values at the input wave frequency. For 

excitation with narrow banded excitation, the values may be evaluated at the peak 

frequency of the input excitation.  For wide band excitation, the values at the natural 

frequency may be a better approximation (Jiang et al., 2000).  

         Alternatively, the time domain model can overcome the variation of hydrodynamic 

coefficients in the frequency domain. Following (Ogilvie, 1964), the time domain ship 

rolling model that describes the realistic response in random waves is given as following 

with convolution integral:  

 44 44 0
3

44 1 3

( ( )) ( ) ( )

( ..) ( )

t

q

I A K t d

B C C f t

φ τ φ τ τ

φ φ φ φ

+ ∞ + −

+ +Δ + + =
∫�� �

� �
 (1.18) 

where 
44( )A ∞  is the added mass coefficient at infinite frequency, ( )K t τ− is the 

retardation function or impulse response function (IRF) of velocity, which is determined 

by the geometry of the ship hull. The IRF and the frequency domain hydrodynamic 

coefficients are related by cosine or sine transform, see e.g. (Cummins, 1962; Ogilvie, 

1964). The quadratic damping term
44qB  is usually treated as approximately constant and 

independent of frequency.  

          The time domain equation (1.18) gives a more accurate representation of the dead 

ship condition stability model compared with the constant coefficients model equation 
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(1.17) for the study of rolling stability in random beam waves. However, the convolution 

integral also introduces additional difficulties when using traditional methods of 

stochastic dynamical system. The final goal of the rolling stability in the dead ship 

condition is to analytically calculate the response and the capsizing probability based on 

the decoupled time domain math model. As an initial stage research, we will first focus 

on the constant coefficients model. 

1.3 Literature Review 

     Research on motions or dynamics of ships and offshore structures in random seas has 

been studied over the century. It is important to study the highly nonlinear large 

amplitude rolling motion of ship shaped structures, due to the its strong effect on the 

stability and safety, or even capsizing. Basically, there are two major obstacles to 

completely understand the highly nonlinear dynamics of offshore structures: 

hydrodynamic force computation and rigid body dynamics. The coefficients for the 

equations of rigid body dynamics and force excitation are determined from the 

hydrodynamics computations.  Most current time domain commercial software for 

motion predications are based on numerical simulation of dynamical system after first 

determining the hydrodynamics coefficients. When considering the nonlinear effects on 

motions, e.g. nonlinear damping, nonlinear restoring force, or nonlinear excitation, etc; 

people have to be cautious when applying the direct numerical simulation, especially 

when the nonlinear effect is strong. Analytical methods are still the most needed 
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technique for understanding the nonlinear behavior of vessel motions, like the typical 

vessel rolling analysis.  

       Mathematical research models for vessel dynamics include both coupled multi 

degrees of freedom (Falzarano and Zhang, 1993; Zhang and Falzarano, 1994; Spyrou, 

1996a; Spyrou, 1996b; Spyrou, 1997; Ibrahim and Grace, 2010) and also decoupled 

single degree freedom of system, especially rolling motion (Roberts, 1982; Roberts, 

1982; Roberts and Spanos, 1986; Falzarano, 1990; Falzarano et al., 1992; Lin and Yim, 

1995; Roberts and Vasta, 2000; Francescutto and Naito, 2004; Jamnongpipatkul et al., 

2011; Su and Falzarano, 2011). Rolling motion is nonlinear and coupled with the other 

modes of motions: sway, yaw and pitch, etc. It is reasonable to model the rolling motion 

as a single degree of freedom equation (SDOF) in two special cases: one is the ship 

rolling in unidirectional head or following seas, which will lead to parametric rolling 

analysis using popular Mathieu chart or Hill chart. The other one is the ship rolling in 

unidirectional beam seas at low or zero speed, provided that we consider the coordinate 

origin to be located at a pseudo ‘roll center’ (Roberts and Vasta, 2000).  

           Analytical studies of rolling motion under beam sea were first initiated by Froude 

(Froude, 1861), he derived the SDOF rolling equation including nonlinear damping and 

restoring moment terms. Nonlinear terms in the roll equation may lead to very 

complicated behavior of the ship rolling response. Stability is the most important issue 

for naval architects and ocean engineers. Traditionally, the only static intact stability is 

considered for practical design purpose. More and more researchers have found that 

hydrodynamic induced damping, wave exciting force, initial conditions and green water 
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on deck are also important to ship stability. Due to the nonlinearity of the damping and 

stiffness, we are unable to find the analytical solution for even the single degree freedom 

system of the general second order ordinary differential equation, even when the 

excitation force is only harmonic.  

        The response of nonlinear rolling motion in regular waves is a nonlinear dynamics 

problem with harmonic excitation, which may generate super harmonic, sub harmonic 

(Cardo, 1981; Cardo et al., 1984),or even chaos phenomena (Thompson, 1990; 

Thompson, 1992). Cardo and Francescutto applied harmonic excitation to the SDOF 

rolling motion and investigated three different mechanisms for the onset of super and 

sub harmonics phenomenon.  Thompson (Thompson, 1990) proposed the conception of 

safe basin and basin erosion with harmonic direct and parametric excitation and  

introduced that the transient motions induced capsize should be paid more attention than 

steady state conditions. Different initial conditions under harmonic excitation will be 

attracted to different steady state oscillations or divergent solutions. The safe basin is 

defined as the area of initial conditions which are attracted to the bounded steady state 

solutions. With the increasing direct or parametric excitation, the erosion of safe basin 

will reduce the safe area significantly. Also the frequency of excitation close to the 

natural frequency of rolling is found to be the worst excitation scenario. Virgin (Virgin, 

1987) studied the chaotic rolling motions in regular beam waves for SDOF rolling model 

using a semi empirical roll model.  Qualitative prediction techniques for the possibility 

of capsizing were utilized using dynamical system theory. Nayfeh (Nayfeh, 1986a; 
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Nayfeh, 1986b; Nayfeh, 1990) applied Floquet and bifurcation theory to study the local 

stability of the dynamical system with steady state solutions.  

         It is more accurate to consider the randomness of the excitation force than just 

considering harmonic force for vessel motions in realistic waves. How to understand the 

possibility of capsizing of ships in realistic waves is a very challenging research topic 

even only considering the SDOF rolling model. The math model for the SDOF rolling 

model with random forces is a nonlinear random vibration problem. Many different 

research groups have made contributions to analyzing the rolling stability in the sense of 

random waves.  Roberts (Roberts, 1982; Roberts, 1982; Roberts and Spanos, 1986; 

Roberts et al., 1994; Roberts and Vasta, 2000) have studied the rolling problem for more 

than two decades using stochastic averaging technique. By modeling the energy 

envelope of system response as a continuous Markov process, the one dimensional 

energy process satisfies the Fokker Planck Equation, which will be introduced in the 

next chapter. The drift and diffusion coefficients could be evaluated by the two state 

variable rolling equation’s system parameters. The issue of the stochastic averaging of 

the energy envelope is limited to the light damping. However, the statistics of first 

passage time to approach the critical boundary can be evaluated from the one 

dimensional Markov process and the associated Fokker Planck Equation.  

            Since the rolling response satisfies the Fokker Planck Equation, which is a partial 

differential equation (PDE), many researchers also have contributed to numerically 

solving the PDE. The path integral method is the most popular numerical tool for the 

analysis of random rolling response. The research group of Yim (Lin and Yim, 1995; 
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Yim et al., 2005) first applied the path integral method to a harmonic plus white noise 

excited rolling system and then to a filtered white noise excited roll-heave coupled 

system. The application of the path integral method to the stochastic rolling process can 

be also found from different authors (Liqin and Yougang, 2007; Cottone et al., 2009; 

Jamnongpipatkul et al., 2011). Instead of the numerical solution, Francescutto 

(Francescutto and Naito, 2004) utilized moment equations to study a six dimensional 

stochastic system with four Gaussian filter variables using the Gaussian cumulant 

neglect method. The author investigated the effect of linear and nonlinear damping, and 

righting moment effect on the statistics of the rolling response.  There is no limitation on 

the damping and force magnitudes for both moment equations and path integral methods. 

The difficulty for the filtered system is the high dimension, which is always to be 

avoided by researchers when dealing with stochastic systems. 

       Geometric methods have been applied to many nonlinear systems, especially to the 

nonlinear ship rolling model.  Instead of directly studying the stochastic differential 

equation, the geometric methods try to analyze the problem in the sense of phase space 

for qualitative behavior. The Melnikov method was initially introduced into Naval 

Architecture by Falzarano (Falzarano, 1990; Falzarano et al., 1992) for harmonic 

excitations. And the conception of phase space flux rate with random excitation was  

applied to dynamical systems by Frey and Simiu (Frey and Simiu, 1993). Then the 

Michigan research group continued to extend the Melnikov method with stochastic 

excitation to large amplitude rolling motion with both constant coefficients (Hsieh et al., 

1994) and a time domain memory included model (Jiang et al., 2000).  The dynamical 
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system with memory or a convolution term is a high dimensional system when extending 

the convolution integral into a linear state space model (Holappa and Falzarano, 1999). 

High dimensional stochastic problems are difficult and challenging question in random 

vibration. Jiang successfully applied the Melnikov method to understand the stability of 

stochastic system without extending the convolution term to extended state space model. 

Considering periodic excitation with random white noise disturbance, Lin and Yim (Lin 

and Yim, 1995) developed a generalized Melnikov method to predict upper bound of 

potential chaotic roll motion and further capsizing possibility. Chen and Shaw (Chen, 

1999) introduced a systematic approach to modeling multi degree freedom ship motions 

with regular excitation input. Bikdash (Bikdash et al., 1994)  studied different damping 

models for rolling dynamics and derived a condition that linear-plus-cubic and linear-

plus-quadratic model yields the same Melnikov predictions.  Huang (Huang, 2003; 

Huang, 2004) presented the safe basin erosion in random waves with energy based 

Melnikov methods. He also considered the stochastic averaging method developed by 

Robert to relate the capsizing phenomena and Melnikov function. Wu (Wu and McCue, 

2008) used the extended Melnikov method to two rolling model in regular seas without 

the constraint of small damping. 

        As the analytical methods for large amplitude rolling motion and capsizing analysis 

have to resort to many assumptions, e.g., decoupling, low damping, low excitation, 

constant hydrodynamics coefficients, etc, one of the possible solutions might be 

developing numerical simulation tool considering all nonlinear hydrodynamic effect. 

Belenky (Belenky and Sevastianov, 2007; Belenky et al., 2011) combining the analytical 
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method and Large Amplitude Motion Program (LAMP) to evaluate the probability of the 

rare event capsizing.  

1.4 Methods and Procedure 

     When the vessel is excited by random beam waves, the response and capsizing 

problem are governed approximately by the single DOF dynamical system, equation 

(1.17). The most direct method to study the response and the stability of the rolling 

motion is the numerical simulation, or so called Monte Carlo simulation. As capsizing is 

such a rare event, the numerical simulation provides no improvement for the practical 

vessel design. Analytical methods are still the most needed technique for vessel rolling 

analysis. We will study three different methods to understand the rolling response and 

stability problems separately by, 

• Increasing the dimension—Shaping filter technique  

• Decreasing the dimension—Stochastic averaging of energy envelope 

• Maintain the dimension—Melnikov Method 

        The fundamentals of stochastic dynamics are introduced in the Chapter II, with a 

focus on Brownian motion, Markov processes, stochastic differential equations, and the 

Fokker Planck Equation. 

        In Chapter III, the random excitation force is reproduced by using a linear filter, i.e., 

the so called shaping filter technique. This method introduces some additional Gaussian 

filter variables to transform the Gaussian white noise to colored noise in order to apply 
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the Markov properties. There is no limitation on the damping or excitation magnitude for 

the shaping filter technique. We will introduce the automatic cumulant neglect tool to 

analyze the statistical response of the high dimensional rolling model and also discuss 

the limitation of the cumulant neglect application to non Gaussian response. 

         In Chapter IV, the stochastic averaging of the energy of envelope decreases the two 

dimension rolling system to a one dimensional energy process, which satisfies the 

Markov process property under the small damping and excitation assumptions. 

Compared with the Markov method, the Melnikov method analyzes the rolling capsizing 

problem from the view of the phase space flux. This dissertation initially compares the 

efficiency, capacity and difference of the three methods and discusses their advantages 

and disadvantages respectively.   

        The work is summarized and future research directions are presented in Chapter V. 

Finally the derivation of nonlinear coupled equation of motion and stochastic averaging 

of energy envelope is given in the Appendix. 
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CHAPTER II 

FUNDAMENTALS OF STOCHASTIC DYNAMICS 

  

       Probabilistic or stochastic domain methods, which are different from the traditional 

frequency domain and time domain method in the offshore industry, are getting more 

and more attentions in the modern analysis of dynamical system, especially when 

designing new concept structures with nonlinear aspects. The loading of marine 

structures due to wind and wave, are always stochastic in nature. Therefore the 

probabilistic or stochastic methods are important to accurately estimate the response. A 

major concern in stability problems is estimating the extreme values and the upcrossing 

rate, while the probability density function (PDF) of the response signal can give the 

superior results, if the response PDF is known accurately. The demand for precise 

estimation of the response has motivated research on nonlinear stochastic dynamical 

systems. In order to understand the whole probabilistic domain method, application for 

the analysis of the stochastic dynamical systems, we first introduce the fundamentals of 

stochastic dynamics. 

2.1 Introduction to Stochastic Dynamics Systems 

       Stochastic dynamical systems or random dynamical systems are a theoretical 

formulation of a dynamical system with some elements of randomness or uncertainty. It 

consists of noise excitation and state variables. Analysis of stochastic dynamical systems 
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is a challenging field which has attracted many researchers for more than a century. The 

theory of stochastic dynamics in general began in the nineteenth century (Fuller, 1969), 

when physicists were trying to show that the heat in a medium is essentially a random 

motion of the molecules.  Robert Maxwell (Maxwell, 1860; Maxwell, 1867) developed 

the steady state probability density function for the individual molecules. Later Ludwig 

Boltzmann (Boltzmann, 1868) generalized Maxwell’s result to include the conservative 

force field. The probability density function given as an exponential function of total 

energy, which is known as Maxwell-Boltzmann distribution. They laid the foundation of 

stochastic dynamics, even the systems they considered were conservative and 

autonomous, and only initial conditions were random.  Around the end of nineteenth 

century, Rayleigh (Rayleigh, 1880) was the first to treat a random walk in physics and 

obtained a partial differential equation for the probability density function of the 

displacement. Moreover, he applied a similar technique to the theory of gas and arrived 

at a PDE governing probability density function of the velocity of the gas molecules   

(Rayleigh, 1891). The PDE is the first example of what was later defined as the Fokker 

Planck Equation. Bachelier (Bachelier, 1900) obtained a simple Fokker Planck Equation 

describing the French stock exchange. Later (1910, 1912) he studied the gambler’s ruin 

which led to a moderately general Fokker Planck equation. The work developed by 

Rayleigh and Bachelier have been largely unnoticed (Fuller, 1969).  

        In 1905, Albert Einstein (Einstein, 1905) brought the Maxwell-Boltzman theory 

and the random walk method together in a paper on Brownian motion. The definition of 

Brownian motion will be defined in the next section. Langevin interpreted the random 
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disturbances as an additional forcing function, which is the initiation of the stochastic 

differential equations (SDE). Fokker (Fokker, 1913; Fokker, 1914) treated a first order 

system with state dependent white noise. Planck (Planck, 1917) studied a n-th order 

system with state dependent white noise and also generalized Fokker’s equation. And 

Kolmogorov (Kolmogoroff, 1931)  made the Fokker Planck Equation more general and 

abstract. He also assumed the process to be a Markov process. FPE is also called Fokker 

Planck Kolmogorov (FPK) or Kolmogorov’s second equation to honor his contribution. 

Additionally, he also named Kolmogorov’s first equation, also known as backward 

Kolmogorov equation, which is adjoint of the second equation.  In 1933, Kolmogorov 

(Kolmogorov, 1933) extended the theory to the vector process and also discussed the 

uniqueness of the solution of the FPE. 

        Other early useful references to understanding the progress and history of stochastic 

dynamics and the Fokker Planck Equation can be found  in (Uhlenbeck and Ornstein, 

1930; Wang and Uhlenbeck, 1945),  (Caughey and Dienes, 1961; Caughey, 1963a)and 

(Crandall and Mark, 1963). Recent developments in the analysis of stochastic dynamics, 

are mostly based on the early development of Brownian motion. Analysis method for 

FPE and stochastic differential equations, include statistical linearization (Caughey, 

1963b; Roberts and Spanos, 1990), statistical nonlinearization (Lutes, 1970), stochastic 

averaging (Roberts and Spanos, 1986; Zhu, 1988), moments closure, exponential 

polynomial closure method (Er, 1998), etc.  More conclusive work can be found in 

classic textbooks (Soong and Grigoriu, 1993; To, 2000; Lutes and Sarkani, 2004; 

Ibrahim, 2007). Stochastic differential equations and FPE have been applied to many 
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engineering and science fields, such as particle physics, structural dynamics, 

aerodynamics, hydrodynamics, stock market, etc.  

2.2 Brownian Motion and Markov Process 

        Brownian motion is named after an English botanist Robert Brown to describe the 

random drift of particles in a fluid or the mathematical model used to describe such 

random motions. In mathematics, Brownian motion 
tB  ,  also called Wiener Process in 

honor of Norbert Wiener, is characterized by following properties for the unit process; 

• 
0 0B =  

• 
tB  has independent increments with dB = ~ (0, ( ))t sB B N t sσ− −  for 

0 s t≤ ≤  

• E(Bt) = 0, and  E(Bt, Bs)= σ2min(t, s) 

        N (μ, σ2) denotes the Gaussian distribution with mean value μ and variance σ2. E 

represents the expectation operation. The process is continuous everywhere but 

differential nowhere. Gaussian white noise Wt is defined as the increment of the Wiener 

process. From the property of the Wiener process, the increments are independent and 

Gaussian distributed. So variables Wt are uncorrelated for each time t. Hence the 

spectrum will be a flat curve, which means Gaussian ‘white’ noise. The mathematical 

relationship is given by: 

 ( )t tdX W dt W t dt= =  (2.1) 
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( )W t is Gaussian white noise, when numerically integrated the above equation, the 

response 
tX  is the Wiener process. Therefore we related the white noise and Wiener 

process by,  

 
t tdB W dt=  (2.2) 

Given a stationary Gaussian white noise with power spectrum density (PSD)
0s , 

0( )WWS sω = . The autocorrelation is given by, 

 
0( ) 2 ( )WWR sτ π δ τ=  (2.3) 

where ( ) ( ( ) ( ))WWR E W t W tτ τ= + is the correlation function. Also notice that 
0s is the 

value for two side spectrum density. If we consider the one sided PSD, then

0( ) 2WWS sω = . The relation of autocorrelation and spectral density function can be 

given by following Fourier transforms pairs, 

 1
( ) ( )

2
i

XX XXS R e dωτω τ τ
π

+∞

−

−∞

= ∫  (2.4) 

and  

 ( ) ( ) iXX XXR S e dωττ ω ω
+∞

−∞

= ∫  (2.5) 

The constant spectral density of white noise implies that the energy of the random 

process in uniformly distributed over whole frequency range and the autocorrelation 

function with Dirac delta function means that the Gaussian white noise has infinite 

variance. Such a process with infinite variance does not exist in reality, but it is a good 
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approximation to model wide band noise with very short correlation time, which is 

defined as, 

 
0

( )

(0)
XX

c
XX

R
d

R

τ
τ τ

∞

= ∫  (2.6) 

where ( ) ( ( ) ( ))XXR E X t X tτ τ= + . In the study of stochastic differential equations and 

stochastic systems, Gaussian white noise is a most important concept. The response of 

any linear or nonlinear system driven by white noise constitutes a Markov Process and 

therefore the system can be analyzed by using Markov methods. 

         The Markov process, named after the Russian mathematician Andrey Markov, is a 

stochastic process with the Markov property, and very limited memory, namely the 

process has only one step memory given below mathematically, 

 
1 2 0 1

( , ,......, ) ( )
n n n n nt t t t t tp x x x x p x x

− − −
=  (2.7) 

where 
1 2 0...n n nt t t t− −> > >  and ( )p • • designates the conditional probability density 

function (PDF) and 
nt
x represent the state value at time step 

nt . The above equation 

means that the future state 
nt
x depends only on current state 

1nt
x

−
and does not depend on 

any other past state values.   

         The well known Smoluchowski-Chapman-Kolmogorov (SCK) equation, which is 

very useful when understanding the derivation of FPE, can be derived based on 

equation(2.7), 

 
1 1

( ) ( ). ( )
n n n nt t t t t t tp x x p x x p x x dx

− −

+∞

−∞

= ∫  (2.8) 
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excitation, the limitation of white noise term can be eliminated by using a shaping filter 

technique to be introduced in the next chapter.  Generally, the stochastic differential 

equation can be expressed with a stochastic white noise term ( )W t  as below, 

 ( , ) ( , ) ( )
dt
dX

F X t G X tW t= +  (2.9) 

where X is the vector of stochastic process, ( , )F X t  is defined as drift coefficient vector, 

and ( , )G X t  is the diffusion coefficient matrix of the dynamical system. F and G both 

have deterministic function forms with nonlinear terms if the related dynamical system 

is nonlinear. The SDE above is equivalent to the general integration: 

 
0

0 0

( , ) ( , )
t t

t t

t t

X X F X d G X dBτ τ τ= + +∫ ∫  (2.10) 

where
0t  is the initial time and 

0t
X represent initial condition of the stochastic process. 

The first integral at RHS of the equation is an ordinary mean square Riemann-Stieltjes 

integral, but the second integral is not.  Here we discuss the one dimensional problem 

only, however, all these results can be generalized to higher dimensions. The Riemann-

Stieltjes integration of 
tX with respect to a variable

tR is given by 

 
2

1

1

1

1

( )
i i i

t m

t t
it

X dR X R Rτ τ τ+

−

=

≈ −∑∫ �  (2.11) 

where 
1i i iτ τ τ +≤ ≤�  and 

1 1 2 2.... Mt tτ τ τ= < < < = , when m → +∞ , the right 

hand side will converge to the unique integral. For the second integration of (2.10) 

including the Wiener processdB , the limit of the Rimann-Stieltjes integration depends 
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on evaluation point of iτ� is chosen. Basically, there are two different commonly used 

integral evaluation methods, namely the Itô integral, if
iτ�
=

iτ
, and the Stratonovich 

integral, if 
iτ�
= (

1i iτ τ+ + )/2.  

          The Itô, equation (2.12), and Stratonovich, equation (2.13) integral of the second 

term of equation (2.10) are written by, 

 
2

1

1

1

1

( )( )
i i

t m

t t i
it

G dB G B Bτ ττ
+

−

=

≈ −∑∫  (2.12) 

 
2

1

1

1
1

1

( )( )
2 i i

t m
i i

t t
it

G dB G B Bτ τ

τ τ
+

−
+

=

+
≈ −∑∫  (2.13) 

The Stratonovich integral satisfies all the formal rules of classical calculus and therefore 

it is a better choice for SDE. However, the Itô integrals are martingales and have more 

advantages for computational purposes (To, 2000).  The Stratonovich integral SDE 

becomes equivalent to the Itô SDE by adding a modified drift term, 

 1
)

2
(

G
G dt
X

dX F GdB
∂
∂

= + +  (2.14) 

in which G  is a matrix, the differentiation term in the parentheses is not appropriate. 

Thus, above SDE can be written more explicitly, 

          1 1 1

1
) , 1,2,3,4....

2
(

n n n
ij

i i kj ij j
j k jk

G
G dt i

x
dx F G dB

= = =

∂
=

∂
= + +∑∑ ∑                   (2.15) 

So the methodology for solving an Itô SDE is adapted for solving a Stratonovich SDE. 

The correction term 1
2

G
G
X

∂
∂

is well known as Wong-Zakai or Stratonovich correction 
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term. Note that the Itô and Stratonovich SDEs are equivalent in the case of additive 

noise, that is G is just a constant or constant vector, G
X

∂
∂

=0. For a system with 

parametric excitation, the correction term is necessary regardless of whether the 

Gaussian white noise excitation ( )W t  is ideal or physical.  

2.4 The Derivation of Fokker Planck Equation from the SDE 

       The key to the Markov process modeling is the derivation of the Fokker Planck 

Equation, which governs the transient probability density of the Markov process. 

Although the derivation of the FPE from the stochastic dynamic system can be found in 

many textbooks and papers, see e.g. (Fuller, 1969; Risken, 1996; Lin and Cai, 2004) , it 

may not be obvious for Naval Architects and Ocean Engineers.  For this dissertation to 

be self-contained, we first derive the FPE for the simplest case and then extend it to 

more general case following Fuller (Fuller, 1969). At the end of this section, we will also 

discuss the initial and boundary conditions for the FPE. 

2.4.1 The derivation of the FPE from the one dimensional SDE 

         The simplest case of a SDE is a scalar process ( )x t obtained by integrating white 

noise ( )w t ; the SDE for ( )x t is given by, 

 ( )
dx

w t
dt

=  (2.16) 

Following the formal integral rule, 
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0

( ) (0) ( )
t

x t x w τ τ= + ∫  (2.17) 

The increment of ( )x t is independent of its past value and time, hence ( )x t is a Markov 

process. Applying the Smoluchowski-Chapman-Kolmogorov (SCK) equation(2.8) to

( )x t , 

 3 3 2 2 2( , ) ( , , ) ( , )p x t t p x t t x t p x t dxδ δ
∞

−∞

+ = +∫  (2.18) 

Considering 
2x is a fixed value, and by defining the change of x during the time tδ asz ,

3 2z x x= − , 

 3 2 3 2( , , ) ( , , )p x t t x t dx q z t x t dzδ δ+ =  (2.19) 

where 
2( , , )q z t x tδ is the transition probability density. Here we assume the variable 

increment z is independent of past value
2x , so the equation (2.19) can be simplified to  

 
3 2 3 2( , , ) ( , , ) ( , )p x t t x t dx q z t x t dz q z t dzδ δ δ+ = =  (2.20) 

From equation (2.20) , equation (2.18) may be written as, 

 ( , ) ( , ) ( , )p x t t q z t p x z t dzδ δ
∞

−∞

+ = −∫  (2.21) 

      It is notable that we have dropped the subscript of
3x . Equation (2.21) states the 

property of the Markov Process. The increments are independent of past value and time. 

The probability of the system at x is equal to the product of the transition probability of 

the change z  and the variable value at the past time stepx z− , with integration over all 

possible changez . We assume that the time step tδ is very small, so the probability of a 
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large change z is very small. The transition probability density ( , )q z tδ  in the integral of 

equation (2.21) has considerable magnitude only when z is close to zero. By expanding 

( , )p x z t−  and ( , )p x t tδ+  at x  and t respectively by Taylor series and retain the first 

few terms, equation (2.21) becomes 

 
2 3

2 3
2 3

( , ) ( , )
( , ) ... ( , ) ( , ) ( , )

1 ( , ) 1 ( , )
+ ( , ) ( , ) ...

2! 3!

p x t p x t
p x t t p x t q z t dz zq z t dz

t x

p x t p x t
z q z t dz z q z t dz

x x

δ δ δ

δ δ

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

∂ ∂
+ + = −

∂ ∂

∂ ∂
− +

∂ ∂

∫ ∫

∫ ∫
 (2.22) 

The first integral on the RHS is unity, therefore it cancels the first term on the LHS; and 

the second integral on the RHS is zero considering the mean of thez is zero. The fourth 

term on RHS is a third order term of z , so it is negligible compared with the second 

order. The equation (2.22) may be simplified to the standard Fokker Planck Equation 

(FPE), 

 
2

2

( , ) ( , )
2

p x t b p x t
t x

∂ ∂
=

∂ ∂
 (2.23) 

where [ ( ) ( )] Q ( )TEW t W t τ δ τ+ =  is the intensity of the white noise and given by the  

formula below,   

 2

0

1
lim ( , )
t

b z q z t dz
tδ

δ
δ

∞

→
−∞

= ∫  (2.24) 

The derivation of the above FPE is based on many assumptions which lack the strict 

mathematical justification, but it is still very helpful and intuitive to understand the FPE 

for the beginners. 
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2.4.2 Derivation of FPE from general SDE 

        Most dynamical systems have more than two variables, the associated FPE 

therefore become a high dimensional partial differential equation (PDE). It is 

challenging to analyze a high dimensional PDE.  The general SDE has N dimensional 

variables and may be written in a standard differential equation format, 

 1 2( , ,..., , ) ( ) ( 1,2,..., )i
i N i

dx
F x x x t w t i N

dt
= + =  (2.25) 

        Similar to the derivation in the simple case, the generalized SCK equation may be 

written as, 

 ( , ) ( , , ) ( , )p X t t q Z t X Z t p X Z t dZδ δ
∞

−∞

+ = − −∫  (2.26) 

         Unlike the assumption in equation (2.20), we did not assume that the incrementZ is 

independent of the past valueX Z− . Compared with equation (2.21), the variable X

and the changes Z are both vectors, the probability density p and transition probability 

density q are scalars and 
1 2... NdZ dz dz dz= is a hyper volume differential elements. 

Assuming the time step X is small, so that the probability of large changes Z  is very 

small. Only values Z  close to zero contributes considerable to the integral in (2.26).  

Expanding the X Z− term by Taylor Series with respect to X , the integral in (2.26) 

becomes, 
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.....
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N N
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i j i j
N N N
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i j k i j ki
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z q Z t X t p X t
x

z z q Z t X t p X t
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z z z q Z t X t p X t
x x x

δ δ

δ

δ

δ

=

= =

= = =

− − =

∂
−

∂
∂

+
∂ ∂

∂
−

∂ ∂ ∂
+

∑

∑∑

∑∑∑

 (2.27) 

Substituting the above equation back into equation (2.26) and expanding the LHS of  

(2.26) by Taylor Series, 

 1

2

1 1

( , )
( , ) ... ( , , ) ( , )

( , , ) ( , )

1
( , , ) ( , )

2!

.....

N

i
i i

N N

i j
i j i j

p X t
p X t t q Z t X t dZp X t

t

z q Z t X t dZp X t
x

z z q Z t X t dZp X t
x x

δ δ

δ

δ

∞

−∞
∞

= −∞
∞

= = −∞

∂
+ + =

∂
⎡ ⎤∂ ⎢ ⎥− ⎢ ⎥∂ ⎢ ⎥⎣ ⎦

⎡ ⎤∂ ⎢ ⎥+ ⎢ ⎥∂ ∂ ⎢ ⎥⎣ ⎦
+

∫

∑ ∫

∑∑ ∫

 (2.28) 

       The first integral on the RHS is unity and cancels the first term on the LHS. With 

the assumption that the changes of variablesZ , we neglect the third and higher order 

terms on the RHS.  When 0tδ → , we postulate some ratios to be constant as below, 

 
0

( , , )

lim ( , )
i

it

z q Z t X t dZ

a X t
tδ

δ

δ

∞

−∞

→
=

∫
 (2.29) 

and 

 
0

( , , )

lim ( , )
i j

ijt

z z q Z t X t dZ

b X t
tδ

δ

δ

∞

−∞

→
=

∫
 (2.30) 
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Then we reach the Kolmogorov version of Fokker Planck Equation 

 1
2

1 1

( , )
( , ) ( , )

1
( , ) ( , )

2!

N

i
i i

N N

ij
i j i j

p X t
a X t p X t

t x

b X t p X t
x x

=

= =

∂ ∂ ⎡ ⎤= − ⎣ ⎦∂ ∂
∂ ⎡ ⎤+ ⎣ ⎦∂ ∂

∑

∑∑
 (2.31) 

         The coefficients ( , )ia X t  and ( , )ib X t  are called moments rates. Recall equation 

(2.25), we have, 

 ( ) ( ) ( , ) ( ) ( 1,2.... )
t t t t

i i i i i

t t

z x t t x t F X d w d i N
δ δ

δ τ τ τ τ
+ +

= + − = + =∫ ∫  (2.32) 

when 0tδ → , the mean of increment 
iz  yields 

 ( , ) ( 1,2.... )ii iz F X t t w i Nδ= + Δ =  (2.33) 

The overbar of variables represents taking the mean value of its ensemble; the mean of 

white noise increments is zero by definition, so the first moment rate can be found by 

 ( , ) ( , ) ( 1,2.... )i
i i

z
a X t F X t i N

tδ
= = =  (2.34) 

Following the same method, the second moment rate ( , )ib X t  yields 

 
2( )

( 1,2.... ; 1,2.... )

j i i ji j i j i j

i j

z z FF t F w t F w t w w

w w i N j N

δ δ δ= + Δ + Δ + Δ Δ

≈ Δ Δ = =
 (2.35) 

From (2.30) and (2.35), 

 
0

lim ( 1,2.... ; 1,2.... )
i j

ij t

w w
b i N j N

tδ δ→

Δ Δ
= = =  (2.36) 

The second moment’s rates are related with the properties of the white noise intensity. 

More details of derivation can be found in (Fuller, 1969)  
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2.4.3 Discussion of the Fokker Planck equation 

        We have derived the Fokker Planck Equation for one dimensional and higher 

dimensional dynamical systems. The FPE transforms the stochastic dynamical equation 

governing the displacement and velocity into a partial differential equation governing the 

probability density function, which includes the higher order error term from the Taylor 

series expansion cut off.  The approximate solution for the Fokker Planck Equation, 

especially the higher dimensional FPE, is a very difficult work. Even if we have an 

excellent numerical solution for the FPE, it is noted the solution is still an approximation 

to the original stochastic dynamical systems. When the theory is applied to practical 

problems in stochastic dynamics, the associated FPE may be solved numerically with 

suitable initial condition and boundary conditions. The appropriate initial condition 

associated with the parabolic differential equations FPE are: 

 
0 0 0( , , ) ( )p X t X t X Xδ= −  (2.37) 

0( )X Xδ − is a Dirac’s delta function. Note that both conditional probability density 

function 
0 0( , , )p X t X t and unconditional probability density function ( , )p X t satisfy the 

FPE.  

      The boundary conditions of the FPE are defined at infinity, which always indicates 

that the probability flow must vanish at the infinity: 

 ( , ) 0 0p t t∞ = ≥  (2.38) 

         In addition to the initial and boundary conditions, 
0 0( , , )p X t X t  should also fulfill 

the positivity and normalization constraints: 
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                 ( , ) 0 0p X t t≥ ≥                                                (2.39) 

 ( , ) 1 0p X t dX t
∞

−∞

= ≥∫  (2.40) 
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CHAPTER III 

THE CUMULANT NEGLECT METHOD APPLICATION TO THE 

NONLINEAR ROLLING RESPONSE 

 

         Rolling motions of ships in random beam seas may cause stability issues and affect 

the ability of cargo handling, helicopter landing and missile launching, etc. Prediction of 

ship rolling dynamics is very important for practical application. Due to the randomness 

of realistic waves in the ocean, rolling motions are always considered as a stochastic 

process. For the marine and offshore industry, the nonlinear effect of loads and 

responses lead to many complicated phenomena, e.g., bifurcation, chaos, non-Gaussian 

statistics, etc. There are two different types of nonlinearity, i.e., forcing nonlinearity, 

such as the 100 or 1000 year return period storm conditions and the other one is the 

system nonlinearity, e.g. stiffness and damping nonlinearity, the most typical case of 

which is the ship rolling equation which can be decoupled from other modes. The 

responses of linear systems with Gaussian input are always Gaussian. All higher order 

statistics can be derived from the second order moments. However, nonlinear system 

will have non-Gaussian response; large amplitude rolling motion with nonlinear 

damping and strong nonlinear stiffness needs more advanced technique to analyze the 

higher order response statistical moments and capture the non-Gaussian effects.  
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        Large amplitude ship rolling motion under random beam sea has been approached 

several times by different research groups, the analysis methods include Markov 

methods and non- Markov methods. Non-Markov methods include statistical equivalent 

linearization(Roberts and Spanos, 2003), perturbation methods, Monte Carlo methods, 

Melnikov methods(Falzarano et al., 1992; Hsieh et al., 1994; Jiang et al., 1996; Jiang et 

al., 2000) and Vakakis methods (Vishnubhotla et al., 2000; Falzarano et al., 2004; 

Falzarano et al., 2005; Vishnubhotla and Falzarano, 2009). Statistical equivalent 

linearization is widely used for nonlinear problems in the non-Markov methods. 

Linearization methods introduce some linear terms to replace nonlinear terms based on 

energy conservation. With linearization, the response has to be assumed Gaussian, losing 

any non-Gaussian effect.  

       The Markov assumption of the ship rolling process is the most popular procedure 

for random nonlinear dynamical analysis. Markov methods include the stochastic 

averaging method (Roberts and Vasta, 2000), moment closure methods (Francescutto 

and Naito, 2004) and also the direct solution of the Fokker-Planck-Kolmogorov (FPK) 

equation(Naess and Moe, 2000). The FPK equation is limited to the Markov assumption 

and ideal white noise excitation or filtered white noise. Wave excitation is the most 

typical forcing for ocean structures. Since wave excitation spectra normally have a 

central peak and limited bandwidth, a method of transformation between ideal white 

noise and color noise has been developed using filter technology. Using linear filters, 

any type of excitation can be handled by the Fokker-Planck-Kolmogorov equation. As 

we know, analytical solutions of the FPK equations are limited to linear systems and 
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some special nonlinear dynamical system with stationary responses (Soize, 1994). The 

numerical solution procedures mainly focus on three branches: finite element methods 

(Spencer and Bergman, 1993), finite difference methods (Kumar and Narayanan, 2006) 

and path integral method(Naess and Moe, 2000). With all these numerical methods, the 

FPK solution suffers from problems due to high dimensions, the so-called “curse of 

dimension”. With an increased number state dimensions, the finite element method and 

finite difference method require very large amounts of computer memory and may 

experience numerical stability issues.  

        Alternatively, moment closure methods have been applied in many fields. In this 

method, the differential equations governing the response process are first determined. 

The Itô differential rule is then applied to the governing equations to obtain moment 

equations. If the system has nonlinear terms, the moment equations up to Nth order will 

include N+1, N+2 order and higher order moments, which is called the infinite hierarchy. 

Higher order moments have to be closed by some closure method. The closure methods 

include the moment neglect, the cumulant neglect, the Hermite moment closure (Ness et 

al., 1989), etc. The cumulant neglect method which discards cumulants higher than a 

particular order N is adopted in this dissertation to close the moment equations. If N 

equals 2, then the method is defined as Gaussian closure, which is the equivalent of 

statistical linearization, otherwise the method is non-Gaussian closure. By setting the 

higher order cumulants to zero, the higher order moment can be expressed by the lower 

order moments to form the closed form equations. The response moments can be further 

used to generate the probability density function by Fourier transforming its 
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characteristic function (Wojtkiewicz, 2000),maximum entropy (Sobczyk and Trcebicki, 

1999).  For the ship rolling problems, most previous papers about moment equations 

only consider Gaussian cumulant closure due to the difficulty in tracking the higher 

order closure (Francescutto, 1990; Francescutto and Naito, 2004). This is especially true 

for higher order systems which may include a linear filter. The cumulant neglect method 

becomes tedious and untraceable when increasing the neglect order. This tedium is the 

motivation to develop an automatic tool to address the difficulty to handle the higher 

dimensional state space stochastic models and higher order closure levels. Ship rolling 

responses with strong nonlinear terms result in non-Gaussian effects. The higher order 

cumulant neglect method will help to analyze higher order moment effects, such as 

skewness and kurtosis, or even higher statistical moments. In this dissertation, we extend 

the neglect order to fourth order by developing an automatic tool. Higher order moments 

response will benefit from our understanding of the non-Gaussian effect of nonlinear 

ship rolling motion and further understanding of ship capsizing. 

3.1 Modeling of Rolling Motion with Filter Application 

3.1.1 Modeling of ship rolling 

       The second order ordinary differential equation describing the single degree 

freedom ship rolling motion is recalled in this section: 

 3
44 44 44 44 1 3( ( )) ( ) ( ) ( ..) ( )qI A B B C C f tω φ ω φ ω φ φ φ φ+ + + +Δ + + =�� � � �  (3.1) 

whereφ represent the roll angle andφ� is the roll velocity. 44I  and 44( )A ω  represent the 

roll inertia and added inertia of vessel respectively. 44( )B ω and 44 ( )qB ω are the linear and 
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quadratic damping coefficients from the hydrodynamic and viscous effects respectively. 

Δ is the displacement of the vessel, 1C and 3C are the linear and nonlinear restoring 

force coefficients. ( )f t represents the random wave excitation. If ( )f t is only some 

harmonic moment, all frequency dependent parameters are constant. If the excitation 

force is not purely harmonic, say, random force, 44( )A ω  and 44( )B ω  will no longer be 

constant any more. Then equation (3.1) with constant coefficients becomes an 

approximation for the rolling motion. For wide banded forcing spectrum, values at 

natural frequency are recommended; for narrow banded forcing, peak frequency values 

are more reasonable (Jiang et al., 2000).  Here the non linear damping term is not in the 

polynomial form, which is required by the moment closure methods. An equivalent 

nonlinear polynomial form will be constructed by the least square method (Dalzell, 

1978). All hydrodynamic coefficients can be calculated using a strip theory 

hydrodynamics program (Beck and Troesch, 1990). ‘T-AGOS’, an ocean surveillance 

ship, was analyzed by using strip theory and the parameters are shown in Table 1. Plots 

of the hydrodynamic force coefficient can be found in Fig. 3 to Fig. 6. 

         Dividing by the inertia and added inertia, Equation  (3.1) is rewritten as follows: 

 1 2
3 2 3

2 2 2 0 1 3 12 ( )

x x

x x x x x f tμ δ ω α ε

⎧ =⎪⎪⎨⎪ = − − − − +⎪⎩

�
�

 (3.2) 

where 1 2,x xφ φ= = �      , ( )f t represents the external roll excitation. In linear 

hydrodynamics theory, the magnitude of the external force can be calculated by 

multiplying the RAO by the wave height.  The spectrum of the external moment can be 

represented as follows: 



40 

 

 

 

 
2

( ) ( ) ( )ff rollingS S Fηηω ω ω=  (3.3) 

where: ( )ffS ω  is the external exciting spectrum; ( )rollingF ω is the rolling moment 

amplitude per unit wave height, also defined as the force RAO of rolling motion; and 

( )Sηη ω  is the wave spectrum. The wave amplitude is irregular and always described as a 

stationary, ergodic and Gaussian stochastic process. For simplicity, we adopt a one- 

parameter Pierson-Moskowitz spectrum described by equation(3.4). 

 
 
 

Table 1.  ‘T-AGOS’ dimensional parameters 

Parameter Dimensional Value Parameter Dimensional Value 

I44+A44(ω) 5.540 X 107  kg m2 Δ 2.017 X 107 N 

B44(ω) 5.266 X 106  kg m2s-1 B44q(ω) 2.877 X 106 kg m2 
C1 3.168 m C3 -2.513 m 

 
 
 

 

Fig. 3.    Added mass of T-AGOS 
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Fig. 4.    Linear added damping coefficient 

 
 
 

 

Fig. 5.    Rolling moment amplitude per unit wave height 
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Fig. 6.    GZ curve of T-AGOS (C1=3.618m,C3=-2.513m) 
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where 2A 0.0081g= ,g  is the gravitational acceleration. The significant wave height sh

is the only parameter in this formula.  

3.1.2 Modeling of rolling excitation moment   

        Since the moment equations are derived from the Fokker Planck equation, which is 

based on the theory of diffusion process. The excitation force for the Itô system has to be 

pure white noise. However, the random excitation term of rolling motion in equation 

(3.1) cannot be modeled as white noise. One method to handle the non white excitation 

is using a shaping filter, which is driven by white noise. Filter techniques are usually 
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performed by a linear ordinary differential equation. The response of linear differential 

equation, which has white noise as its excitation input, may represent a realistic 

excitation for the dynamical system. Analog filters designed for simulation of wave 

elevation and wave kinematics were introduced by Spanos (Spanos, 1983; Spanos, 1986). 

Definitions of different types of filters, e.g. Auto-Regressive Algorithm (AR), Moving 

Average (MA), and Autoregressive Moving Average Algorithms (ARMA) can be found 

in any time series textbook. 

            For a Linear constant-coefficient differential equation (LCCDE system) as 

follows (Stark and Woods, 2002): 

 
1 0

1 0
1 0

1 0

( ) ( ) ... ( ) ( )

( ) ... ( )

N N M
N N M

M
M

a Y t a Y t a Y t b X t

b X t b X t t

−
−

−
−

+ + + =

+ + + −∞ < < +∞                            
                    (3.5) 

where N and M are the order of derivation to time, the frequency response function or 

transfer function for this linear system above is: 

 0( ) ( ) / ( ), 0H B A withaω ω ω= ≠                                           (3.6) 

where        ( ) ( )
0

M
mB b j

mm
ω ω= ∑

=              

                  
( ) ( )

0

N
nA a j

nn
ω ω= ∑

=  

where j represent the imaginary unit, and the relationship between input excitation X (t) 

and output response Y (t) spectrums:     
 

 
2

( ) ( ) ( )YY XXS H Sω ω ω=  (3.7) 
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         General methods for filter design are available only for the case of stationary 

stochastic processes (Thampi and Niedzwecki, 1992). We can design lots of different 

filters following equation (3.5). Three filters will be introduced in this 

dissertation(Francescutto and Naito, 2004). They are frequently used in the analysis of 

stochastic nonlinear problems. Bandwidth, characteristic frequency, etc, can be easily 

adjusted by changing the coefficient of the linear filter.  

1) The simplest filter will be a second order linear differential equation:  

 1 1 1( ) ( ) ( ) ( )Y t Y t Y t W tα β γ+ + =�� �       (3.8) 

where ( )W t   is the Gaussian white noise input or excitation of the dynamical system with 

unit one side spectral density ( ) 1WWS ω =   and ( )Y t  is the response of this linear 

dynamical system. The response of this filter system is actually the input excitation to 

the ship roll system. Frequency response function is defined by equation (3.6), as 

followed: 

 1 1
2 2

1 1 1 1

( )
( ) ( ) ( )

H
j j j

γ γ
ω

ω α ω β β ω α ω
= =

+ + − +
 (3.9) 

 
2

2 1
2 2 2

1 1

( ) ( ) ( )
( ) ( )YY WWS H S

γ
ω ω ω

β ω α ω
= =

− +
 (3.10) 

2) The second order linear filter with differentiation to white noise: 

 2 2 2( ) ( ) ( ) ( )Y t Y t Y t W tα β γ+ + =�� � �       (3.11) 

 2 2
2 2

1 1 1 1

( )
( ) ( ) ( )

j j
H

j j j
γ ω γ ω

ω
ω α ω β β ω α ω

= =
+ + − +

 (3.12) 
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2 2

2 2
2 2 2

2 2

( ) ( ) ( )
( ) ( )YY WWS H S

γ ω
ω ω ω

β ω α ω
= =

− +
 (3.13) 

3) Fourth order linear differential equation could be designed as a higher order filter. 

This filter is also viewed as cascade of two linear filters (Spanos, 1983; 

Francescutto and Naito, 2004). 

 3 2 1 0 3( ) ( ) ( ) ( ) ( ) ( )Y t Y t Y t Y t Y t W tλ λ λ λ γ+ + + + =���� ��� �� � ��        (3.14) 

 
2

3
4 3 2

3 2 1 0

( )
( ) ( ) ( ) ( )

H
j j j j

γ ω
ω

ω λ ω λ ω λ ω λ
−

=
+ + + +

 (3.15) 

 

2 4
2 3

4 2 2 3 2
2 0 1 3

2 4
3

2 2 2 2 2 2
1 1 2 2

( ) ( ) ( )
( ) ( )

[( ) ( ) ][( ) ( ) ]

YY WWS H S
γ ω

ω ω ω
ω λ ω λ λ ω λ ω

γ ω
β ω α ω β ω α ω

= =
− + + −

=
− + − +

 (3.16) 

where 3 1 2λ α α= + , 2 1 2 1 2λ β β α α= + + , 1 1 2 2 1λ α β α β= + , 0 1 2λ β β= ; 

Generally, it is not allowed to take the derivative of the Gaussian white noise 

mathematically. However, the state space format of variables will avoid taking 

derivative, see example in equation (3.17). We set rolling moment excitation ( )f t  as the 

output of equation (3.8), (3.11)and (3.14) respectively. Random excitation force can be 

reproduced from these three filters from white noise. All coefficients of the filter are 

determined through non linear curve fittings methods after setting ff YYS S= , where 

definition of ffS can be found in equation(3.3). Fitting results are show in Fig. 7 . The 

original curve represent the target spectrum ffS ,and filter1, filter2, filter3 represents 

YYS  using various fitting coefficients of equations (3.8), (3.11)and (3.14). The plots in 
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Fig. 7 shows that filter 1 produces too large value e in the low frequency range and a non 

zero value at zero frequency. Filter 2 and filter 3 both provide better approximation of 

the original spectrum. Filter 3 performs best. Similar results can be found in 

(Francescutto and Naito, 2004). 

 

Fig. 7.    Comparison of original force spectrum with filtered spectrum 

3.1.3 State space formation of rolling motion 

         By combining the rolling equation of motion (3.2) and the filter equations (3.14), 

the rolling motion in random seas can be modeled in a state space form. Any excitation 

spectrum can be reproduced by some filter designed as explained above. 
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where 3x f=  and ( )W t represents white noise. With the Markov assumption, equation 

(3.17)  forms Itô’s differential equations: 

 ( , ) ( , )dX F X t dt G X t dB= +  (3.18) 

( )
dB

W t
dt

=  and ( )W t  is the white noise excitation. ( )B t  is defined as Wiener process 

or Brownian motion. And ( , )F X t  is defined as the drift coefficient, ( , )G X t  is the 

diffusion coefficient for the dynamical system. ( , )F X t is a Nx1 matrix, N is the 

dimension of equation(3.17); ( , )G X t is N x M matrix, here N=6, M=1. In equation, F, G 

and X are listed below:   

(1)
2

(2)3 2 3
2 2 0 1 3 1 3

(3)
4 3 3

(4)
35 2 3

(5)
6 1 3

(6)
0 3

0

02 ( )

0
( , )

0

0

Fx

Fx x x x x t

Fx x
F X t and G

x x F

x x F

x F

μ δ ω α ε
λ

γλ
λ

λ

⎧ ⎫⎧ ⎫ ⎧⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪− − − − + ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪− ⎪ ⎪⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨⎪ ⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪ ⎩⎩ ⎭ ⎩ ⎭
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 (3.19) 

For the beam sea condition, 
3γ is defined as a constant number, which means 

3γ  is not 

coupled to any state space variable or time. This Markov system has only additive white 

noise. If G(X, t) is coupled with the state space variable x  and time, the system will 

become a random parametric problem (e.g. random stiffness, random damping, or 

random inertia). Parametric rolling is induced by random stiffness. The Itô differential 

equation will involve the Wong-Zakai (Wong and Zakai, 1964) correction term. The 

Fokker Planck Equation (FPE) is defined by the transition probability density function

0 0( , , )P X t X t . 
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P X t X t G G PF P
t x x x= = =

∂ ∂∂
= − +

∂ ∂ ∂ ∂∑ ∑∑  (3.20) 

[ ( ) ( )] Q ( )TEW t W t τ δ τ+ = , Q is the intensity of white noise and ()δ ⋅ is the Dirac delta 

function. If we have Q =2π , spectrum density of two side white noise is unit in this way, 

0 0( , , )P X t X t is transition probability density function at X at time step t, given the 

initial state value 
0X  at time 

0t . 

3.2 The Cumulant Neglect Closure Method  

       Equation(3.20), which governs the probability density function of the diffusion 

process, is a high dimensional partial differential equation. The numerical solution of 

this high dimensional PDE will involve many stability and accuracy issues.  

Alternatively, the Moment equation, which governs the response of statistical moments, 

can be solved after some reasonable assumption and closure technique. For the N-

dimensional Itô differential equations, N(N+1)(N+2)…(N+M-1)/M! moment equations 

could be generated for Mth order moment. Six 1st order, 21 second order, 56 third order 

and 126 fourth order moment equations could be generated from equation(3.17). In the 

Gaussian Cumulant neglect method, the algorithm will analyze order up to two, and all 

higher order moments can be estimated by second and lower order moments. The Itô’s 

differential rule can be used to generate moment equations governing the response of 

stochastic dynamical system. Let us set ϕ  to be a scalar valued real function and

1 2
1 2

nk k k
nx x xϕ = " , where 1 2[ , , ]TnX x x x= " is the state space vector in equation (3.17). 
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( )E ϕ  represents the expectation of the combination ϕ . Following the Itô’s differential 

rule (Itô, 1951), the moment equations for ϕ  are formed in equation(3.21). 

 
2

( )

1 1 1

( ) 1
( ) (( Q ) )

2

N N N
i T

ij
i i ji i j

E
E F E G G

t x x x
ϕ ϕ ϕ

= = =

∂ ∂ ∂
= +

∂ ∂ ∂ ∂∑ ∑∑  (3.21)                   

          It is clear that the moment equations will not be closed due to the nonlinear term 

in the dynamical system. The second order moment equations will include third, fourth 

or even higher order unknown moments. When higher order moment equations are 

derived, even higher order moments will be introduced into the equations, this is the so 

called infinite hierarchy. Therefore, moment closure must be used to approximate the 

higher statistical moments. If we simply neglect moments higher then 2, then all the 

nonlinear effect will be lost. Here the cumulant neglect method was adopted. Cumulant 

of order higher than some particular order N will be neglected and all higher moments 

can be expressed as a function of the lower order moment. The moment equations will 

form a closed system of equations after application of the closure of the cumulant. The C 

Cumulant neglect, or Cumulant discard method was first applied to turbulence 

theory(Beran, 1965). More details can be found in the books of Lin(Lin and Cai, 2004), 

Lutes(Lutes and Sarkani, 2004) and Ibrahim(Ibrahim, 2007). 

3.2.1 Gaussian cumulant neglect method without automatic neglect tool 

       To apply the Gaussian Cumulant neglect method to the rolling problem, moment up 

to second order will be derived below. For the Itô type equation (3.17) , moments 

equations are listed separately for first order in equation (3.22) and second order in 

equation (3.23) and(3.24), 
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27 moment equations up to second order are derived above. Clearly, these 27 moment 

equations up to second order are not closed due to the higher order moment terms. If 

these higher moments are directly neglected, all nonlinearities of the equation are 

ignored. The Cumulant neglect method can close the equations without neglecting any 

nonlinearity of dynamical system. These 27 moment equations can be solved after 

closure of the higher order moments by the cumulant neglect method. The Cumulant 

neglect method includes both Gaussian and Non Gaussian methods. The cumulants are 

related to the statistical moments as follows (Stratonovich, 1963).  

1

2 1 1

3 1 2 1 1 1

4 2 2 1 3

1 1 2

( ) ( )

( ) ( , ) ( ) ( )

( ) ( , , ) 3{ ( ) ( , )} ( ) ( ) ( )

( ) ( , , , ) 3{ ( , ) ( , )} 4{ ( ) ( , , )}
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j j

j k j k j k

j k l j k l j k l s j k l

j k l m j k l m j k l m s j k l m s

j k l m

E x x

E x x x x x x

E x x x x x x x x x x x x

E x x x x x x x x x x x x x x x x

x x x x

κ
κ κ κ
κ κ κ κ κ κ
κ κ κ κ κ

κ κ κ

=
= +
= + +

= + +
+ 1 1 1 1} ( ) ( ) ( ) ( )s j k l mx x x xκ κ κ κ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪ +⎪⎪⎩
 (3.25) 

where 
iκ  is the i th order cumulant of variable, { }s• means a symmetrizing operation 

with respect to its all arguments and takes the arithmetic mean of different permuted 

terms similar to the one within the braces. For example, 

 1 2 1 2 1 2 1 2

1
{ ( ) ( , )} { ( ) ( , ) ( ) ( , ) ( ) ( , )}

3j k l s j k l k j l l j kx x x x x x x x x x x xκ κ κ κ κ κ κ κ= + +  (3.26) 

In the sense of Gaussian cumulant approximation, third and higher order cumulants are 

set to be zero. Equation (3.27) is substituted into the moment equations to close the 

moment equation system. 
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          Fig. 8 and Fig. 9 show the transient response of the root mean square rolling angle 

and rolling velocity. Both displacement and velocity will come to some stationary state 

under appropriate initial condition.  Here since we did not give a divergence result; the 

system may not converge to the stationary state, which depends on the coefficients of the 

dynamical system and the initial conditions of the moment equations. 

 

 

Fig. 8.    Transient response of root mean square of rolling angle 
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Fig. 9.    Transient response of root mean square of rolling velocity   

 
 
 

           Fig. 10, Fig. 11 and Fig. 12 express the effect of the nonlinear damping 

coefficient, nonlinear stiffness and linear damping on the rolling response. Horizontal 

coordinates represent natural frequency of this dynamical system and vertical 

coordinates represent stationary response of root mean square of rolling displacement.  

            Bending direction of the curves does not appear reasonable compared with some 

conventional response amplitude curve with negative nonlinear stiffness, which bends to 

the left. Some of the curves even have more than two values with respect to same 

frequency, which is defined as a bifurcation phenomenon caused by nonlinearity of 
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dynamical system. Here we use 0ω (the undamped natural frequency of the dynamical 

system)as the horizontal coordinate, and traditional amplitude curves are given by

0/ω ω , where ω represent the frequency of the harmonic excitation force and 0ω is 

denominator there. So the stochastic response curves are still reasonable.  

           In Fig. 10, four different values of nonlinear damping coefficients were used. It is 

expected that the response of the dynamical system should decrease with increasing 

nonlinear damping. From Fig. 7, the excitation force spectrum has a peak frequency 

close to 1.0 Rad/s. The maximum of response in Fig. 10 also appears in that range. This 

can be viewed as a kind of ‘resonance’. The difference of response is limited when the 

natural frequency 0ω  is far from the peak frequency of excitation force or excitation 

wave.  Fig. 11 also adopts four different values of the nonlinear stiffness coefficient to 

analyze the response, including the zero case and three negative values. There is a 

significant difference in the low natural frequency range (left part of plot), compared to 

Fig. 10, but limited difference in the high natural frequency domain. Fig. 12 shows the 

effect of linear damping coefficient on the response curves. This result demonstrates one 

peak value at some special frequency. Linear damping seems more important than the 

nonlinear damping or stiffness coefficient comparing Fig. 10 and Fig. 11. By inspecting 

the 27 moment equations up to second order, it seems impossible to analyze the 

stochastic system by moment equation to above second order. There are 209 moment 

equations for up to fourth order moments. In order to handle this difficulty, an automatic 

neglect tool was designed and applied to the ship rolling motion to capture the response 

of Non-Gaussian effect. 



56 

 

 

 

 

Fig. 10.  Effect of nonlinear damping coefficient   
on the root mean square (RMS) of rolling displacement 

 
 
 

 

Fig. 11.  Effect of nonlinear stiffness coefficient  
on the root mean square (RMS) of rolling displacement 
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Fig. 12.  Effect of linear stiffness coefficient  
on the root mean square (RMS) of rolling displacement 

 
 
 

3.2.2 The higher order cumulant neglect method with automatic neglect tool 

         In the cumulant closure technique, the response cumulants which are higher than 

some closure level are assumed to be smaller in comparison to those cumulants below 

the closure order and then can be neglected. To establish the relation between cumulants 

and ordinary moments, we consider the random vector 1 1[ , ...... ]T
nX x x x= with 

characteristic function(Soong and Grigoriu, 1993) as follows. 
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where 1j = − , n is the dimension of the state space in the diffusion process, e.g. in 

equation (3.17), n=6. It can be expanded by Taylor series expansion in terms of ordinary 

moments { }i jE x x ⋅ ⋅⋅ or cumulants { , }i jx xκ ⋅ ⋅⋅ . The expansion has two forms as follows 
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here ‘C’ in equation (3.29)and (3.30)  is the closure level and is a constant number.  
1φ

and
2φ are the same function with different expressions. Moments and cumulants can thus 

be found through the characteristic functions.  
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where 
1 2 nk k k k= + + ⋅ ⋅ ⋅ . Cumulants of order higher than the closure order ‘C’ can be 

set equal to zero and moments higher than that closure order will be written in terms of  

moments of order less than or equal to that closure level. The stochastic system equation 

(3.17) has 6 state space variables, so n=6 in the characteristic function
1φ and

2φ . The non-

Gaussian cumulant neglect method up to fourth order will involve 209 equations, which 

is an extremely large, complex and nearly impossible system to find a solution to by 

hand. The automatic procedure algorithm is described in Fig. 13. Compared with the 

algorithm  process in  Wojtkiewicz’s  dissertation  (Wojtkiewicz, 2000),   the  algorithm 
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Fig. 13.  Automatic Cumulant Neglect Tool procedure 

1: Input System state space 
dimension ‘n’ and closure level ‘C’

2: Form the characteristic function in terms of cumulants (3.29) and 
moments(3.30) separately, both characteristic functions are truncated at 
closure level ‘C’. 

3: Express all cumulants in equation (3.29) in 
terms of moments by equation(3.32).

4: Substitute all cumulants back to equation(3.29) 

5: Determine those higher order response moments, 
which are above closure level, in terms of lower 
order moments by equation (3.31) 

6: Form right hand side of equation (3.21) by substituting 
approximations for higher order moments in step 5 

7: Write all moments equations achieved by last step 
into some ‘txt’ file and translate all moments equation 
to Matlab format for ‘ode’ solver 

8: Matlab ‘ode’ solver to solve the ordinary 
differential equations
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developed here takes advantage of two different expansions for the characteristic 

function, i.e., equation (3.29)  and (3.30). This avoids the difficulty of substitution 

between the cumulants and the moments. Steps 1 to 7 generate the closed moment 

equations using MAPLE and all moment equations are written into a ‘txt’ file and then 

translated to the MATLAB format for the ‘ode’ solver in MATLAB. Step 8 takes 

advantages of the efficiency and convenience of the MATLAB ordinary differential 

equation solver.  

 3.2.2.1 Application to Stochastic Dynamical Systems with Analytical Solutions 

           Several precautions should be taken to the algorithm before programming the 

tools in MAPLE and MATLAB. To reduce memory load and computational speed, the 

symmetry of moments and cumulants require consideration to avoid repeating them. For 

example, 
1 2( )E x x and

2 1( )E x x are equivalent mathematically. In step 4, after substituting 

all cumulants back into equation(3.29), the characteristic function 
1φ is in terms of 

moments with order less than or equal to closure level ‘C’.  

    Case 1           

          A simple Duffing oscillator with white noise excitation and nonlinear hardening 

stiffness (Wojtkiewicz, 2000) is first analyzed to validate the accuracy of the automatic 

neglect tool.  

 1 2
2 2 3

2 0 2 0 1 0 12 x x ( )

x x

x x W tζω ω εω

⎧ =⎪⎪⎨⎪ = − − − +⎪⎩

�
�

 (3.33) 

where ( )W t  is a Gaussian white noise with zero mean and correlation: 

 1 2 2 1[ ( ) ( )] 2 ( ),EW t W t D t tδ τ τ= = −  (3.34) 
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Parameters of the system are given by  

 00.1, 0.4, =0.2, 1Dε ζ ω= = =  (3.35)                            

An analytical solution exists for the stationary probability density function of the system 

defined in(3.33), which is given by 

 
2 2 2 2 4

0 2 0 1 0 1
1 2 0

2
( , ) exp( ( ))

2 2 4
x x x

p x x C
D
ζω ω εω

= − + +  (3.36)             

and 0C is the normalization constant, response moment can be easily calculated from this 

analytical function. Fig. 14 indicates that the response has only one peak, as does a  

Gaussian response. 

 

Fig. 14.  Analytical probability density function of unimodal Duffing oscillator 
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result from the reference(Wojtkiewicz, 2000).  With the Itô differential rule, moment 

equations are given by, 

                         
2 2( , ) ( 1, 1) ( 1, 1) ( 3, 1)

2 ( , ) ( 1) ( , 2)

dE p q pE p q qE p q qE p q
dt

qE p q Dq q E p q

ω εω

ζω

= − + − + − − + −

− + − −
       (3.37)

where 1 2( ) ( , )p qE x x E p q= . The moment term ( 3, 1)E p q+ −  is a higher order moment, 

which needs to be approximated by the lower order moments through the cumulant 

neglect method. Transient and stationary response of displacement and velocity are 

given in Fig. 15 and Fig. 16. Table 2 lists the computational result by the algorithm 

developed above, results from the reference (Wojtkiewicz, 2000) and the exact result. 

The comparison indicates the accuracy of the automatic neglect tool. Here we just 

computed the response up to 8th order; the automatic tool can provide even higher order.  

          For the stationary displacement statistics, second order cumulant neglect, which is 

Gaussian closure and equivalent to the method of statistical linearization, underestimates 

the true response about 15%.  However there is only 0.1% error left when increasing the 

neglect order to four. Even more accurate result can be achieved when applying the 6th 

and 8th order. Velocity x2 is a Gaussian variable, therefore all closure order provides 

exact stationary statistical response, which is unity and shown in Fig. 16. 

           With the analytical solution, it seems that we easily investigated the accuracy of 

the closure method. But it is necessary to mention that the response of this dynamical 

system is close to Gaussian, which means that the response probability density function 

has a unimodal peak, that is bell shaped and close to the Gaussian distribution. We will 

now apply the cumulant to more systems for better understanding. 
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Fig. 15.  Mean square of displacement with different cumulant neglect order  
 
 
 

 

Fig. 16.  Mean square of velocity with different cumulant neglect order  
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Table 2.   Comparison of stationary mean square displacement of the  

unimodal Duffing 0scillator 

Closure Level 

 E(x1
2) 

Result by 
Fig. 13 

Result from 
(Wojtkiewicz, 

2000) 
Error for 
E(x1^2) 

Exact 

Second Order Cumulant Neglect 0.805401 0.8054 1.49% 

0.81756 
Fourth  Order Cumulant Neglect 0.816497 0.8165 0.13% 
Six       Order Cumulant Neglect 0.817374 0.8174 0.02% 
Eighth  Order Cumulant Neglect 0.817511  0.8175 0.01% 

  

  Case 2           

       To further investigate the application of the cumulant neglect method, we applied 

the automatic tool to a four dimensional dynamical system(Er, 2000b), which will also 

have a near Gaussian response with an analytical probability density function. It is 

expected that the accuracy of response will increase with increasing of the closure order. 

The four dimensional dynamical system is given by a two degree of freedom system: 

 
3 5

1 1 11 1 2 12 2 3 1 4 1 5 1 1

3 5
2 1 2 12 1 22 2 6 2 7 2 8 2 2

1
( 2 ) 2 4 6 ( )

2
1

[2(1 ) ] 2 4 6 ( )
2

Y a s Y a s Y aY a Y aY W t

Y a a s Y s Y aY a Y a Y W t

⎧⎪⎪ + + + + + =⎪⎪⎨⎪⎪ + − + + + + =⎪⎪⎩

�� � �

�� � �
 (3.38) 

where 1, 2, 3, 8....a a a a are constant numbers and the white noises are defined by, 

 1 2 2 1[ ( ) ( )] ( ), , 1,2i j ijEW t W t s t t and i jδ τ τ= = − =  (3.39) 

The system is written in state space format as following: 
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1 2

3 5
2 1 11 2 2 12 4 3 1 4 1 5 1 1

3 4

3 5
4 1 2 12 2 22 4 6 3 7 3 8 3 2

1
( 2 ) 2 4 6 ( )

2

1
[2(1 ) ] 2 4 6 ( )

2

x x

x a s x a s x a x a x a x W t

x x

x a a s x s x a x a x a x W t

⎧ =⎪⎪⎪⎪⎪ =− + − − − +⎪⎪⎪⎨⎪ =⎪⎪⎪⎪⎪ =− − + − − − +⎪⎪⎩

�

�

�

�

   (3.40) 

where 1 1, 1 2, 2 3, 2 4,Y x Y x Y x Y x= = = =� �  

Parameters are given as below, 

     1 3 4 5 7 6 8

11 22 12 2

a 1;a 1;a 1;a 0.5;a 0.5;a 1.5;a 0.2;

s 2; s 2; s , a arbitrary number

= = = = = = =
= = =

      (3.41) 

The analytical probability density function is given by (Scheurkogel and Elishakoff, 

1988) with normalization constant.  

 
2 2 2 4

1 2 3 4 1 2 4 3 1 4 1

6 2 4 6
5 1 6 3 7 3 8 3

1
( , , , ) exp{ [ ( )

2
]}

p x x x x C a x x a x a x

a x a x a x a x

= − + + +

+ + + +
 (3.42) 

The analytical equation (3.42) could be verified by substituting the PDF formula back to 

the associated Fokker Planck Equation, equation(3.43), 

 

3 5
1 11 2 2 12 4 3 1 4 1 5 1

2

1 2

3 5
1 2 12 2 22 4 6 3 7 3 8 3

4

3 4
2 2 2

11 22 122 2
2 42 4

1
[[ ( 2 ) 2 4 6 ] ][ ] 2

1
[[ [2(1 ) ] 2 4 6 ] ][ ] 2

1 1
2 2

a s x a s x a x a x a x px pp
t x x

a a s x s x a x a x a x px p
x x
p p p

s s s
x xx x

∂ − + − − −∂∂
= − −

∂ ∂ ∂

∂ − − + − − −∂
− −

∂ ∂
∂ ∂ ∂

+ + +
∂ ∂∂ ∂ (3.43) 
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Fig. 17.  Analytical probability density function of x1 x2 x3 and x4 
 
 
 

The probability density function plots in Fig. 17 all have bell shaped curves for each 

variable, which indicates that variables in this dynamical system may have Gaussian or 

near Gaussian response. With the Itô differential rule, the moment equation is given by, 

 

1 11

1 2 12 3

4 5

d (p, q, r, s)=p (p-1, q+1, r, s)+q(-(1 / 2)a s (p, q, r, s)

 -a a s (p, q-1, r, s+1)-2a (p+1, q-1, r, s)

                 -4a (p+3, q-1, r, s)-6a (p+5, q-1, r, s))

                +r (p, q, r-1, s+

E E E

E E

E E

E 1 2 12

1 22 6

7 8

11

1)+s(-a (1-a )s (p, q+1, r, s-1)

                -(1 / 2)a s (p, q, r, s)-2a (p, q, r+1, s-1)

                -4a (p, q, r+3, s-1)-6a (p, q, r+5, s-1))

                +(1 / 2)s q(q-1) (p, q-2, r, s)

E

E E

E E

E

22 12                +(1 / 2)s s(s-1) (p, q, r, s-2)+s qs (p, q-1, r, s-1)E E

 (3.44) 

where 1 2 3 4(p, q, r, s)= ( )p p r sE E x x x x , there are four moments in the right hand side of 

equation (3.44) which might need to be approximated by the cumulant neglect method 
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when the order is higher than the closure level, including (p+3, q-1, r, s)E ,

(p+5, q-1, r, s)E , (p, q, r+3, s-1)E , (p, q, r+5, s-1)E . As expected, the cumulant 

neglect methods and moment equations successfully increase the accuracy of statistics of 

the non Gaussian variables 1x  and 3x  by increasing the closure order in Fig. 18 and Fig. 

19.  Table 3 lists the error associated with the different closure level. We conclude that 

the fourth order cumulant neglect method greatly reduces the error compared with the 

Gaussian closure. Fig. 20 and Fig. 21 are the variances for velocities 2x , 4x , there is no 

difference with increasing closure level, as the velocity variables are Gaussian 

distributed.  

         
 

 

 

Fig. 18.  Mean square of x1 with different cumulant neglect order and exact solution 
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Fig. 19.  Mean square of x3 with different cumulant neglect order and exact solution 
 
 
 

 
Fig. 20.  Mean square of x2 with different cumulant neglect order and exact solution 
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Fig. 21.  Mean square of x4 with different cumulant neglect order and exact solution 
 
 
 

Table 3.   Comparison of stationary mean square of state variables with different closure 
level and exact stationary value 

Closure 
Level 

Stationary 
E(x1^2) 

Error for 
E(x1^2) 

Stationary 
E(x2^2) 

Stationary 
E(x3^2) 

Error for 
E(x3^2) 

Stationary 
E(x4^2) 

2nd Order 0.1789 12.99% 1.00 0.2021 7.34% 1.00 
4th Order 0.1968 4.28% 1.00 0.2143 1.41% 1.00 
6th Order 0.2014 2.04% 1.00 0.2164 0.39% 1.00 

Exact 0.2056 1.00 0.2172 1.00 
 

 Case3           

       Both analytical solutions for case 1 and case 2 are close to the Gaussian distribution, 

and cumulant neglect and moment equations perform excellently. In case 3, we will test 

a simple one dimensional dynamical system with obvious non-Gaussian behavior. 
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Considering the following stochastic differential equation with only additive noise (Er, 

2000a): 

 3 5( ) / 2 ( )z z z z W tα= − − +�  (3.45) 

where α is a constant and the Gaussian white noise is defined as 

[ ( ) ( )] ( )EW tW t qτ δ τ+ =  and q is also a constant. The analytical stationary PDF of z is 

known to be 

 
4 6

21
( ) exp[ ( )]

2 2 3
z z

p z c z
q

α= − −  (3.46) 

wherec  is the normalization constant. For α=0.05, q =2, the PDF is given in Fig. 22, 

and the plot indicates that z  is a non-Gaussian variable. 

 
 
 

 
Fig. 22.  Analytical probability density function of z 
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The moment equations for the one dimensional system are derived following the Itô 

differential rule, with ( ) ( )pE z E p= , 

 ( ) 1 1
[ ( ) ( 2) ( 4)] ( 1) ( 2)

2 2
dE p

p E p E p E p qp p E p
dt

α= − + − + + − −  (3.47) 

The transient and stationary response of variance of zwith different closure level is in 

given Fig. 23 and Table 4 shows that there is still 7.98% difference even with 10th order 

cumulant neglect method, which could be explained by the plot in Fig. 22.  The true 

stationary response does not have a bell-shaped PDF, but two peaks.  

 

 

Fig. 23.  Mean square of z with different cumulant neglect order and exact solution 
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Table 4.  Comparison of stationary mean square of z with different closure level and 

exact stationary value 

Closure 
Level 

Stationary 
E(z^2) 

Error for 
E(z^2) 

2nd Order 0.8883 25.32% 
4th Order 1.0199 14.25% 
6th Order 1.0645 10.50% 
8th Order 1.0843 8.84% 

10th Order 1.0945 7.98% 
Exact 1.1894

  

 Case4          

       Case1, case2 and case3 only have additive excitation. We consider a dynamical 

system with both multiplicative and additive stochastic noise, given in the following 

equation, 

 2 5
1 2( ) ( ) ( ) ( )x x x x x x ax bx W t W tα η γ λ+ + + + = + +�� � � � �  (3.48) 

where 0, 0α η> > and 0ab > Gaussian white noise 1( )W t  and 2( )W t are independent 

with correlation function [ ( ) ( )] 2 ( ) ( 1,2)i i iiEW tW t K iτ π δ τ+ = =  .  The system 

belongs to the generalized stationary potential when the following conditions are 

satisfied (Lin and Cai, 2004): 

 2 211
11

22

, ( )b K a K b
a K

γ η α π= = +  (3.49) 

The stationary joint probability density function is given by equation (3.50) and the 

marginal PDF is given in Fig. 24, 
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2 6

2 211 1
1 2 2 11 1

22

( , ) exp{ [ ]}
2 3
K b x

p x x c x K abx
K

α π
π λ

π
+

= − + +  (3.50) 

where c is the normalization constant, and 1 2,x x x x= =� . It is noted that the term 

2
11 1K abxπ in the PDF equation is from the Wong-Zakai correction term due to the 

parametric excitation. We assume 11 22 1/ (2 )K K π= = , 1.5η = , 1a bγ α λ= = = = =  for 

the computation.  

 
 
 

  

Fig. 24.  Analytical probability density function of x  and x�  

 
 
 

The moment equations for the two dimensional system with multiplicative and additive 

noise are derived following the Itô differential rule with Wong-Zakai correction terms,  

2

2 2 2
11 11

2
22

( , ) ( 1, 1) ( ( , ) ( ( 2, )
( , 2) 2 ( 1, 1) ( 5, 1)
( ( 1, 1) ( , ))) ( 1)( ( 2, 2)

( , ) 2 ( 1, 1) ( 1) ( , 2))

dE p q pE p q q E p q E p q
E p q E p q E p q

K a E p q b E p q K q q a E p q

b E p q abE p q K q q E p q

α η

γ γ λ

π π

π

= − + + − − +

+ + + + + − + −

+ + − + + − + −

+ + + − + − −

 (3.51) 
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where 1 2(p, q)= ( )p pE E x x  The marginal PDF of displacement and velocity in Fig. 24 

have Gaussian or nearly Gaussian response, it is expected that cumulant neglect method 

with moment equation will give more accurate solution with neglect order increasing. 

Second to sixth order closure are applied to the parametric system, Fig. 25  and Fig. 26 

display the evolution to stationary statistics for both displacement and velocity. As 

discussed in the previous cases, the velocity variable is Gaussian distributed, so all 

different closure gives same solution. While the displacement is a non Gaussian variable, 

the higher order closure predicts a better estimation.  However, instability happens when 

increasing the closure order to eight as shown in Fig. 27 and Fig. 28.  The question is 

whether this instability is just a mathematical error or mistakes from the methodology.  

Further research is necessary to address this problem.  

 

 

Fig. 25.  Mean square of 1x with different cumulant neglect order and exact solution 
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Fig. 26.  Mean square of 2x with different cumulant neglect order and exact solution 

 

 

 

 

Table 5.   Comparison of stationary mean square of 1x and 2x  with different closure level 

and exact stationary value 

Closure 
Level 

Stationary 
E(x1^2) 

Error for 
E(x1^2) 

Stationary  
E(x2^2) 

Error for 
E(x2^2) 

2nd Order 0.2419 19.34% 0.3333 0.00% 
4th Order 0.2758 8.04% 0.3333 0.00% 
6th Order 0.2865 4.47% 0.3333 0.00% 

Exact 0.2999   0.3333  

 

 

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

E
(x

22 )

 

 

2nd Closure
4th Closure
6th Closure
Stationary Exact



76 

 

 

 

 

Fig. 27.  Instability of cumulant neglect method with 8th order closure for mean square 

of 1x  
 
 
 

 

Fig. 28.  Instability of cumulant neglect method with 8th order closure for mean square 

of 2x  
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Case5   

          The bimodal Duffing oscillator was considered to investigate the limitation of 

cumulant neglect method (Wojtkiewicz, 2000). The stochastic dynamical system is 

given by 

 1 2
2 2 3

2 0 2 0 1 0 12 x x ( )

x x

x x W tζω ω εω

⎧ =⎪⎪⎨⎪ = − + − +⎪⎩

�
�

 (3.52) 

The only difference from case1 is the negative linear stiffness.  All parameters are same 

with the dynamical system defined in equation(3.33). Analytical joint probability density 

function is given by below equation and plotted in Fig. 29 and Fig. 30, which indicates 

that the response has obviously double peaks, thus non-Gaussian behavior, 

 
2 2 2 2 4

0 2 0 1 0 1
1 2 0

2
( , ) exp( ( ))

2 2 4
x x x

p x x C
D
ζω ω εω

= − − +  (3.53)    

The cumulant neglect applications with different closure order (2nd to 6th order) are 

displayed in Fig. 31, Fig. 32 and Table 6. Since velocity is a Gaussian variable, all level 

closure provides the exact result.  But the accuracy for displacement variable is much 

less attractive; there is very limited progress with higher order neglect method.  The 

performance of 8th order neglect method is same as the previous example; further 

research is needed to understand the instability of the algorithm. 
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Fig. 29.  Analytical probability density function of bimodal Duffing oscillator 

 
 
 

 

Fig. 30.  Marginal probability density function of Duffing oscillator 
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Fig. 31.  Mean square of 1x with different cumulant neglect order and exact solution 

 
 
 

 

Fig. 32.  Mean square of 2x with different cumulant neglect order and exact solution 
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Table 6.   Comparison of stationary mean square of 1x and 2x  with different closure level 

and exact stationary value for bimodal Duffing oscillator 

Closure 
Level 

Stationary 
E(x1^2) 

Result from 
(Wojtkiewicz, 

2000) 
Error for 
E(x1^2) 

Stationary  
E(x2^2) 

Error for 
E(x2^2) 

2nd Order 4.1387 4.1387 52.50% 1.000 0.00% 
4th Order 5.0000 5.0000 42.62% 1.000 0.00% 
6th Order 5.3195 5.3196 38.95% 1.000 0.00% 

Exact 8.7136 1.000 
 

 

 

 

Fig. 33.  Instability of cumulant neglect method with 8th order closure  

for mean square of 1x  
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Fig. 34.  Instability of cumulant neglect method with 8th order closure  

for mean square of 2x  

 
 
 

3.2.2.2 Application to Rolling motion with Filter  

        By applying the automatic cumulant neglect tool, the moment equations for the 

stochastic system (3.17) up to fourth order have been computed to compare with 

Gaussian neglect result in last section.  The moment equation is derived as below, 

 

3
2
0

3

2

( , , , , , ) ( 1, 1, , , , ) (2 ) ( , , , , , )

( , 2, , , , ) ( 1, 1, , , , )

( 3, 1, , , , ) ( , 1, 1, , , )

( , , 1, 1, , ) ( , , , 1, 1, )

( , , 1,

dE p q r s t m pE p q r s t m q r E p q r s t m

qE p q r s t m qE p q r s t m

qE p q r s t m qE p q r s t m

rE p q r s t m sE p q r s t m

sE p q r s

μ λ
δ ω
α ε

λ

= − + − +

− + − + −
− + − + − +
+ − + + − +
− + −

1 0
2

3

1, , ) ( , , , , 1, 1)

( , , 1, , 1, ) ( , , 1, , , 1)

( 1) ( , , , 2, , )

t m tE p q r s t m

tE p q r s t m mE p q r s t m

s s E p q r s t m

λ λ
πγ

+ − +
− + − − + −

+ − −

 (3.54) 
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Fig. 35 and Fig. 36 show the evolutions of root square of displacement and velocity 

respectively. The Second order cumulant neglect closure (Gaussian Closure) performs as 

good as the fourth order neglect closure at the transient phase. However, the Gaussian 

closure underestimates the stationary response moments as compared to the fourth order 

cumulant neglect result for both displacement and velocity.  

 

 

 

               Fig. 35.  Evolution of the root mean square of the rolling displacement 
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Fig. 36.  Evolution of the root mean square of the rolling velocity 
 
 
 

3.3 Discussions of the Moment Equations 

      Due to the complications of higher dimensional stochastic systems, this dissertation 

develops a convenient method of analyzing these higher dimensional systems. The 

higher order moment equations are solved with a cumulant neglect method with an 

automatic neglect tool. This algorithm will greatly assist in analyzing higher dimensional 

stochastic dynamical systems at any closure level. And kurtosis could be verified larger 

than 3 by checking fourth order moments, which shows non Gaussian effect of rolling 

motion response and soft spring effect (Winterstein, 1988). 

       As analyzed in the case 4, a system with parametric stochastic excitation 

(multiplication noise) can be analyzed as well as external stochastic excitation (additive 

noise) without loss of generality. The mathematical model for ship rolling here is an 

approximate frequency domain equation. Constant coefficients are used for the added 
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mass and added damping. All these coefficients are selected with respect to the peak 

frequency of the excitation force and within frequency domain analysis. Following 

Ogilvie (Ogilvie, 1964), the modified time domain rolling equation with impulse 

response function is derived and analyzed using an extended state space method 

(Holappa and Falzarano, 1999). Instead of numerical simulation, the extended state 

space system can be studied in a stochastic conception. With the extended state space, 

time domain state space model will become more complicated, but the automatic tool 

developed in this dissertation will be able to handle the high dimensional stochastic 

system without difficulty. Additionally, all linear filter variables and extended state 

space variables (if extended by linear system) are all Gaussian variables, thus only 

Gaussian cumulant neglect method (second order) is needed to cut off those variables 

associated moment equations.  This will largely reduce the amount of moment equations. 

        With the automatic cumulant neglect tool, we should be able to calculate the 

response moment with arbitrary number of states and closed at any closure level 

theoretically. However, the cumulant neglect method provides good approximation only 

when the response of systems is close to Gaussian behavior. If the system posses any 

jump behavior, e.g. bimodal oscillator in case 5, the cumulant neglect method is not 

capable to capture the true displacement moments. Also the higher order moment 

equations involves many ordinary differential equations even for the low dimensional 

dynamical system, time domain simulation of those closed moment equations is 

necessary for stationary statistics.  Therefore it is difficult to find any moment jump 

phenomena.Equation Section (Next) 
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CHAPTER IV 

MARKOV AND MELNIKOV BASED APPROACHES FOR 

STABILITY ANALYSIS 

  

        Vessel stability or capsizing analysis in random beam sea has been approached 

using different analytical methods in the past decades. However, due to the strong 

softening nonlinear stiffness and stochastic excitation, there is still no general method of 

dealing with capsizing prediction in a random sea. The Fokker-Planck Equation (FPE) 

based on the continuous Markov process model and the phase space flux rate based on 

Melnikov function are two of the most attractive analytical approaches which provide 

different views of the capsizing criteria. In this chapter, both methods have been applied 

to the same vessel model to compare its capabilities and efficiencies and also discussed 

their limitations and advantages for capsizing criterion development. In the Markov 

based portion, both the shaping filter method and the stochastic averaging of energy 

envelope are applied to the SDOF freedom rolling equation. The rate of phase transport 

flux based on the Melnikov function and the mean first passage rate based on FPE are 

compared for capsizing prediction. The relationship, i.e., similarities and differences 

between the two is then demonstrated through various parameter studies. 
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4.1 Introduction  

      Stochastic analysis of nonlinear marine structures is used to examine the random 

response and stability of the ocean system. Ship rolling is the most typical strong 

nonlinear phenomena in ocean engineering.  All our cases are based on the ship rolling 

problem in the beam seas. However all methods mentioned and studied here could be 

applied to other nonlinear stochastic problems without loss of generality. Two different 

approaches are applied to the dead ship (zero speed) condition with random beam waves, 

the so called Markov and the Melnikov based method.  

        A random process can be recognized as a Markov process if its future probability 

depends only on its most recent values. The Fokker Planck equation (FPE) is the related 

equation governing probability density function of the system response distribution of a 

Markov process. The FPE is a partial differential equation with appropriate initial and 

boundary condition discussed in the second Chapter.  When the system is excited by 

purely Gaussian white noise, the response will be a Markov process and the probability 

density function is governed by the FPE. Unfortunately, the wave excitation is described 

by a non-white spectrum or even a narrow banded spectrum. The FPE cannot be applied 

to the rolling motion directly. Basically, researchers found two different ways to 

overcome this difficulty by using a shaping filter (Francescutto and Naito, 2004; Su and 

Falzarano, 2011) or stochastic averaging of energy envelope of response (Roberts, 1982; 

Roberts and Vasta, 2000). By applying the shaping filter technique, any wave excitation 

spectrum can be generated from the designed filter. When the dynamical system with 

filter variables are written into the Itô type differential equation, the related FPE 
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equation gives the transition probability density function with higher dimensions. The 

difficulty is solving the higher dimensional FPE. It should be noted that many 

researchers are still working on solving the higher dimensional FPE (Naess and Moe, 

2000; Di Paola and Sofi, 2002; Kumar et al., 2010; Er, 2011; Martens and Wagner, 

2011). The solution to the FPE is the transition probability density function of the 

response. The first passage type failure could be easily solved by defining the reliability 

function with transient probability density function. In this chapter, we do not focus on 

solving the FPE numerically due to its difficulty and efficiency. The Automatic neglect 

cumulant neglect tools was developed in the Chapter three to analyze the higher 

dimensional stochastic dynamical system approximately, but it is still far from 

satisfactory for capsizing analysis. Alternatively, stochastic averaging of the energy 

envelope was applied to analyze rolling motion by Roberts (Roberts, 1982; Roberts and 

Vasta, 2000). By reducing the dimension of the dynamical system to one dimension, the 

first passage time could be derived from the well-known Pontryagin equation (Andronov 

et al., 1933). And the first passage time is defined as the capsizing criterion based on the 

Markov method. The limitation of the stochastic averaging method is that the input 

spectrum bandwidth has to be much wider than the output spectrum bandwidth. Only 

when the damping is very light, can this condition be met. 

         As a global geometric method, the Melnikov method was introduced to naval 

architecture, ship rolling in harmonic waves by Falzarano (Falzarano, 1990; Falzarano et 

al., 1992). The method has already been applied to the rolling problems with stochastic 

excitation (Hsieh et al., 1994; Jiang et al., 2000; Vishnubhotla et al., 2000; Falzarano et 
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al., 2010).  Ship capsizing is described in the phase space plane by the escape of a 

trajectory from the safe basin or potential well to the unsafe area under random 

excitation. The normalized phase transport rate or phase flux rate was defined as a 

criterion for vessel capsizing analysis.  

         We applied both the Markov and the Melnikov method to the same vessel 

parameters in this chapter to compare their relative efficiency and discuss their 

advantages and disadvantages.  

4.2 Markov Modeling for Capsizing Analysis 

       Markov modeling of the stochastic dynamical system is based on the diffusion 

process. The general theory requires that the excitation force has to be a pure white noise 

process, while the random wave excitation spectrum normally has a limited bandwidth 

and a peak value. Basically, there are two different ways to deal with this problem. The 

first method is using a shaping filter to extend the two dimensional dynamical system to 

a higher order system by increasing the number of state space filter variables. The 

second is using the stochastic averaging of the energy envelope of the response by 

reducing the dimension of the stochastic system. Both methods are based on Markov 

process. 

       The shaping filter method was introduced in chapter III.  Numerical solution of the 

FPE for high dimensional stochastic dynamical system always involves convergence and 

accuracy issues. Even if it is possible, it will be difficult. As an alternative analytical 

method introduced in the third Chapter, the Moment equation, which governs the 
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response of statistical moments, can be solved after applying some reasonable 

assumptions and closure technique. There is no small perturbation parameters 

assumption in the shaping filter model. By increasing additional filter dimensions, the 

difficulty of the shaping filter model is how to accurately estimate the probability density 

function of the stochastic dynamical systems. Once the solution of the FPE is given, the 

reliability function, the first passage time distribution and the mean first passage time 

will be easily calculated based on the Kolmogorov backward equation(Lin and Cai, 

2004).   

4.2.1 Energy based stochastic averaging 

        Instead of increasing the dimensions, stochastic averaging of the energy envelope 

enables the two dimensional rolling model to be reduced to a one dimensional problems 

for the system energy, which can be modeled approximately as a continuous one 

dimensional Markov process. This approach has been applied to ship rolling analysis for 

decades (Roberts, 1982; Roberts, 1986; Roberts and Spanos, 1986; Roberts and Vasta, 

2000; Roberts and Vasta, 2000; Roberts and Vasta, 2001; Roberts and Vasta, 2002). The 

capsizing phenomenon is considered as a first passage type problem. Mean first passage 

time to reach a critical energy level can be evaluated from the associated FPE of the 

Markov process.  

4.2.1.1 Rescaling of the roll equation of motion 

            For analytical convenience, the single degree of freedom roll equation can be 

non-dimensionalized to (Roberts, 1986), 
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1 2( ) ( ) ( ) ( ) ( ) ( ) ( )x b x b x x x x Fτ τ τ τ τ τ τ+ + + − =�� � � �  (4.1) 

where the non-dimensionalized coefficients are defined as below 
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 (4.2) 

It is noted that the nonlinear coefficient of stiffness has been non-dimensionalized to 

unity for convenience, but it is not necessary. Also the wave excitation force can be 

assumed as a stationary Gaussian stochastic process with zero mean and its spectrum can 

be defined as 

 * 2
1

1
( ) ( ) / ( ) ( )cos( )

2FF ffS S C R v v dvω φ
π

∞

−∞
Ω = Δ = Ω∫  (4.3) 

 ( ) [ ( ) ( )]R v F F vτ τ= Ε +  (4.4) 

( )R v is the auto covariance function of ( )F τ  and frequency / nω ωΩ = is the non-

dimensional frequency. [ ]Ε i is expectation operator. The physical meaning of ( )ffS ω and 

( )rollingF ω  are defined in chapter three. In this chapter, ( )Sηη ω  is represented by the ISSC 

(International Ship Structure Congress) two parameter spectral formula given by 

 
4

2 4
5

( ) 0.11 exp( 0.44( ) )z z
sS Hηη

ω ω
ω

ωω
= −  (4.5) 

In the non-dimensionalized rolling model, we have only four parameters, linear damping

1b , nonlinear damping
2b , significant wave height 

sH and characteristic wave frequency
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zω . Both the Markov and Melnikov based approaches will be applied to analyze the 

effects of these four parameters.  

          The damping coefficients for rolling are small compared with the stiffness 

coefficients. For convenience in the derivation of the theory, equation (4.1) is rescaled 

using the perturbation parameter ε  as followed, 

 2 2
2 3

1 2
( ) ( )( ( ) ) ( ) ( ) ( )x x b b x x x Fεε ε
τ ε τ τ τ τ ε τ+ + + − =�� � �  (4.6) 

where 2
2

11
b b

ε
ε = , 2

2
22

b b
ε

ε = and ( ) ( )F Fεε τ τ= . The scaling parameters ε is used here 

help to indicate the order of magnitude of the damping and excitation terms. The scaling 

of the excitation ensures that the standard deviation of the response is of order 0ε as 

0ε → but this does not imply that the excitation is weak in an absolute sense (Roberts 

and Vasta, 2001).The total energy envelope   process ( )E τ of the oscillator is defined as: 

 
2

( ) ( )
2
x

E V xτ = +
�

 (4.7) 

where 
0

( ) ( )
x

V x k dξ ξ= ∫ , and 3( )k x x x= − is the softening stiffness and the total 

energy consists of the kinetic energy and the potential energy. In the absence of input 

noise excitation and dissipation, the quantity of ( )E τ  is conserved. This implies that the 

Hamiltonian system is integrable. It is possible to define ( )E τ and phase angle ( )τΦ  to 

rewrite the rolling equation followings (Roberts and Vasta, 2002): 

 sgn( ) ( ) cosx V x E= Φ  (4.8) 

 2 sinx E=− Φ�  (4.9) 
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The variable transformation gives two first order ordinary differential equation for ( )E τ

and ( )τΦ independently. 

 
2

1 1
2

22

( )
( )

( )

E
Fε

τ ε α εβ
τ

εβτ ε α γ
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�
�  (4.10) 

where, 

 2
1 2 sinEhα = Φ  (4.11) 

 
2 sin coshα = − Φ Φ  (4.12) 

 1 2 sinEβ = − Φ  (4.13)

 2 cos / 2Eβ = − Φ  (4.14) 

 ( , ) / ( , )k E V Eγ = Φ Φ  (4.15) 

 2 21 2
( )h b b x

ε ε
τ= + �  (4.16) 

4.2.1.2 The Markov process approximation 

        The Markov process of the energy ( )E τ is approximated by a one dimensional 

stochastic Itô differential equation: 

 ( ) ( ) ( )dE m E dt D E dBτ = +  (4.17) 

/ ( )dB d Wτ τ= and ( )W τ  is the Gaussian white noise excitation. ( )B τ is defined as a 

Wiener or Brownian process. ( )m E and ( )D E are defined as the drift and diffusion 

coefficients and are estimated from the known coefficients in equation(4.1). The FPE 

equation associated with (4.17) is given by: 
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2
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m E p E E D E p E E
E E

τ τ
τ τ τ τ

τ
∂ ∂ ∂
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 (4.18) 

0( | , )p E E τ is the transition probability density function of the oscillator energy. For this 

one dimensional partial differential equation, a numerical solution is possible to be 

calculated. Also an analytical solution of stationary response is given in (Roberts and 

Vasta, 2000). 

           There are two alternative ways to derive the drift and diffusion coefficients and 

they are explained by Roberts in two separate papers (Roberts, 1982; Roberts and Vasta, 

2000). The old theory is based on Stratonovich-Khasminskii (SK) limit theorem 

(Stratonovich, 1963; Khasminskii, 1966). The new derivation is based on physical 

reasoning, which gives a correction term to the drift coefficients. A fundamental 

assumption of the Markov model is
corrτ τΔ > , where 

corrτ is the correlation time scale 

of the excitation and τΔ is that the time step for energy increment. If the damping is 

sufficiently small, then this condition can be met. If the bandwidth of the excitation 

increases, and the correlation time reduces, then the restriction on the magnitude of 

damping reduces (Roberts and Vasta, 2000). Define ( ) ( ) ( )E E Eτ τ τ τΔ = +Δ − ,the 

drift coefficient ( )m E and drift coefficient ( )D E are given by 

 1
( ) [ ]m E E

τ
= ΕΔ

Δ
 (4.19) 

 21
( ) [( ) ]D E E

τ
= Ε Δ

Δ
 (4.20) 

These two coefficients are approximated by a perturbation to the free and undamped 

oscillation. It is necessary to find the solution for the undamped, unforced oscillator: 



 

 

 

Fig

giv

 

wh

fun

elli

am

 

 
 
 
 

g. 37 shows 

ven as 

here 0 A≤ <

nction. Whe

iptic integral

mplitudeA . 

the phase pl

1<  is the 

ere 1 (1ω = −

l. The natura

Fig. 37.  Ph

0x +��

lane of abov

0( )x Aτ =

amplitude o

2 1/2/ 2)A−

al frequency

0( ) 4T E =

hase plane fo

 

3
0 0x x+ − =

ve equation, 

1(Asn Kω τ +

of the oscill

and m A=

y of oscillato

4 ( ) / (1K m −

r undamped

0=

and the solu

( ) | )K m m

lator and sn

2 2/ (2 )A−

r is
0( )T E ,w

2 1/2/ 2)A−

d and unforce

ution for equ

n  is the Ja

. ( )K m is 

which is a co

ed oscillator 

(4.2

uation (4.21)

(4.2

acobian ellip

the compl

onstant for ea

(4.2

 

94 

21) 

) is 

22) 

ptic 

lete 

ach 

23) 



95 

 

 

 

The dissipation terms in equation (4.10)
1α and 

2α can be averaged over the period of the 

unforced undamped oscillation 
0( )T E  by treatingE  as a constant over one period and

0Φ = Φ . 
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 2
1 0

0

2
sin

( )
E

h dt
T E

Λ = Φ∫v  (4.25) 

 2 0 0
0

1
sin cos

( )
h dt

T E
Λ = − Φ Φ∫v  (4.26) 

By using the drift and diffusion definitions given by equation (4.19) and (4.20), and the 

first row of equation (4.24), ( )m E  and ( )D E can be obtained by following (Roberts and 

Vasta, 2000; Roberts and Vasta, 2002): 

 2 2 2
1

1,2...

1
( ) ( ) ( ) ( ( ))

2 n n FF
n

m E E s c S n Eε π ω
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= − Λ + +∑  (4.27) 
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where,  
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τ
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 (4.29) 

 0 0
0

1

sgn( ) ( )
cos cos( ( ))n

n

x V x
c n E

E
ω

∞

=

Φ = = ∑  (4.30) 

The derivation of drift and diffusion coefficients can be found in the Appendix B. Fig. 

38 to Fig. 40 demonstrated the Fourier expansion of 
0sin Φ and 

0cosΦ . At low energy 
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level, like Fig. 38, the coefficients of the expansion can be cut off at 1, which already 

gives a good approximation. However, when the system goes up to a higher energy orbit, 

Fig. 39 indicates the Fourier coefficients are not sufficient to provide a good 

approximation. While Fig. 40 gives an excellent estimation when the summation in 

equation  (4.29) and (4.30) are truncated at n=5. A truncation order at n=5 will be 

adopted in the following computations. 

           The drift and diffusion coefficients are depicted in Fig. 41 and Fig. 42 with a 

varying excitation force and the same characteristic wave frequency 2 / 9zω π= . It is 

clear to see that both the drift and diffusion coefficients will increase with increasing of 

excitation force. Fig. 43 and Fig. 44 demonstrate the effect of the characteristic wave 

frequency 
zω on the drift and diffusion coefficients.  It is interesting to observe that 

2 / 5zω π=  gives a very large value of drift and diffusion coefficients at the low 

energy level. The reason is ( ) 1Eω →  as 
0E  approach to zero, 

1s  and 
1c is the 

dominant value for 
ns and

nc , so ( / 1)FF nS ω ωΩ = =  will be dominant for ( )m E and

( )D E . Based on the numerical testing, the frequency of the peak value of ( )FFS Ω will be 

close to 1, as 2 / 4zω π→ .  This effect can be considered as kind of ‘stochastic 

resonance’. The damping coefficients effect on the drift coefficient are demonstrated at 

Fig. 45 and Fig. 46, it is expected that the larger damping will give a larger negative 

effect on drift value. The diffusion coefficients are not affected by the damping 

coefficients based on equation(4.28). 
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Fig. 38.  Fourier expansion of
0sin Φ and 

0cosΦ at 
0E =0.01 and n=1 

 
 
 

 

Fig. 39.  Fourier expansion of
0sin Φ and 

0cosΦ at 
0E =0.2499 and n=1...3 
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Fig. 40.  Fourier expansion of
0sin Φ and 

0cosΦ at 
0E =0.2499 and n=1...5 

 
 
 

 

Fig. 41.  Drift coefficients for various
sH , Unit: Meter 
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Fig. 42.  Diffusion coefficients for various
sH , Unit: Meter 

 
 
 

 

Fig. 43.  Drift coefficients for various
zω , 

sH =5m 
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Fig. 44.  Diffusion coefficients for various
zω , 

sH =5m 

 
 
 

 

Fig. 45.  Drift coefficients for various linear damping coefficients
1b , 

sH =5m,

2 / 9zω π=  
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Fig. 46.  Drift coefficients for various nonlinear damping coefficients
2b , 

sH =5m

2 / 9zω π=  

 
 
 

4.2.2 First passage failures 

         The one dimensional Markov model equation (4.17) derived before can be easily 

applied to study the first passage problem. We are concerned with the random time 
FPST

when the Markov processE first cross the critical boundary value
cE , given the condition 

that
0 0( )E Eτ = , where

0 cE E<  and 
cE corresponds to an absorbing boundary. We 

assume 
0 0( , | , )p E Eτ τ  to be the transition probability density of the Markov process

( )E τ . The reliability function
0 0( , ; , )cR E Eτ τ , which is defined as the probability of 

( )l cE E Eτ≤ < at timeτ , where 
lE is the lower bound and is a non-critical boundary.  
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If equation (4.18) can be solved for
0 0( , | , )p E Eτ τ , the reliability function can be 

determined by integrating equation (4.31). Also, reliability function satisfies the 

Kolmogorov backward equation (Lin and Cai, 2004): 

 
2

0 0 2
0 0

1
( ) ( ) 0

2FPS

R R R
m E D E

E Eτ
∂ ∂ ∂

− + + =
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 (4.32) 

where 
0FPSτ τ τ= − is the first passage time. Equation (4.32) can be solved given 

initial and boundary condition. Probability distribution function of first passage time 

FPST is given by 

 0 0( ) [ | ( ) ] 1 ( )
FPST FPS FPS FPS FPSF ProbT E E Rτ τ τ τ= < = = −  (4.33) 

The probability density function of 
FPST  is given by 

 ( ) ( ) ( )
FPS FPST FPS T FPS FPS

FPS FPS

p F Rτ τ τ
τ τ
∂ ∂

= = −
∂ ∂

 (4.34) 

The moments of first passage time 
FPST  satisfy the generalized Pontryagin equation (Lin 

and Cai, 2004).
nM is the nth moment of the first passage time variable

FPST  and 

[ ]n
n FPSM T= Ε  

 
2

0 1 0 12
0 0

1
( 1) ( ) ( ) 0

2n n n

d d
n M m E M D E M

dE dE+ ++ + + =  (4.35) 
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For the special cases,n =0, equation (4.35) is a two point boundary value problem for the 

mean first passage time 
1 0( )M E , which represents the mean first passage time to cross 

the upper boundary given the initial value 
0E . 

 
2

0 0 1 0 0 1 02
0 0

1
( ) ( ) ( ) ( ) 0

2
d d

M m E M E D E M E
dE dE

+ + =  (4.36) 

where 0
0

0

( ) 1
FPS FPST FPS FPSM p dτ τ τ

∞

= =∫ . The appropriate boundary conditions have 

been given in (Roberts, 1986) as following: 

 
1( ) 0cM E =  (4.37) 

 1

0

(0) 1
(1)FF

dM
dE Sπ

= −  (4.38) 

For the non-dimensional rolling model (4.17), 1 / 4cE = is the heteroclinic boundary in 

Fig. 37. Equation (4.36)with boundary (4.37) and (4.38) can be solved by using the 

shooting method to determine
1(0)M . The mean first passage time 

1 0( )M E  is given in 

Fig. 47 by the shooting method, with 3sH m= . where the horizontal axis represents the  

initial energy level. In order to compare this result with the Melnikov criterion discussed 

in the next section, here we define 
eR  as the inverse of the mean first passage time, 

which will be adopted as the capsizing criterion as below, 

 
11 / (0)eR M=  (4.39) 

As denoted in Fig. 48, the mean first passage time decreases strongly with wave height 

increase. For a better understanding of the capsizing criterion, at higher wave excitation, 
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Fig. 49 illustrates the escape rate, which is defined as 
11 / (0)M  . We will use the curve 

in Fig. 49 as one possible vessel capsizing criterion, and it will be directly compared 

with phase space flux determined from the Melnikov method described in next section. 

Note that there is a non-zero 
eR  for any non-zero significant wave height. However 

eR

starts to increase significantly beyond some critical wave height. 

 

 

Fig. 47.  Mean first passage time with initial condition
0E , 3sH m=  
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Fig. 48.  Logarithm of mean first passage time 
1log 10( 0 )M（ ） 

 
 
 

 

Fig. 49.  Mean first passage rate 
11/M 0（ ） 
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4.3 The Melnikov Criterion for Capsizing Prediction 

4.3.1 The fundamental background of the Melnikov function 

        Similar to the Markov model, given in equation(4.6), the rolling equation is 

rescaled by the perturbation parameter ε , 

 3
1 2( ) ( ) ( ) ( ) ( ) ( ) ( )x b x b x x x x Fε ε ετ ε τ τ τ τ τ ε τ+ + + − =�� � � �  (4.40) 

where
1 1b bεε = , 

2 2b bεε = and ( ) ( )F Fεε τ τ= .  However, the scaling order for the 

damping is different with Markov model; the scaling parameter ε is just for the 

derivation of the theory and does not affect the final result. Equation (4.40) can be 

rewritten in the state space format as: 

 
3

1 2

( ) ( )

( ) ( ) ( ) ( ( ) ( ) ( ) ( ))

x y

y x x b y b y y Fε ε ε

τ τ
τ τ τ ε τ τ τ τ

⎧ =⎪⎪⎨⎪ = − + + − − +⎪⎩

�
�

 (4.41) 

Equation (4.41)  becomes free undamped rolling motion when ε =0. The phase plane 

has a center at the origin and two saddles connected by heteroclinic orbits as shown in 

Fig. 37. The solution for ε = 0 is given by: 

 
0

2
0

( ) tanh( )
2

1
( ) sec ( )

2 2

x

y h

τ
τ

τ
τ

⎧⎪⎪ = ±⎪⎪⎪⎨⎪⎪ = ±⎪⎪⎪⎩

 (4.42) 

           The Melnikov function was first introduced to ship rolling research by Falzarano, 

see. e.g., (Falzarano et al., 1992), and its application to stochastic Melnikov method for 

constant coefficients was obtained by Hsieh, etc.(Hsieh et al., 1994). The memory effect 

was considered for hydrodynamics force by Jiang (Jiang et al., 2000). These analysis are 
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based on Melnikov function definition given by  (Wiggins, 2003) and originally by 

(Guckenheimer and Holmes, 1983), 

 0 0 1 0 2 0 0 0

0

( ) ( )( ( ) ( ) ( ) ( ))

( )

M y b y b y y F d

M M

ε ε ετ τ τ τ τ τ τ τ

τ

∞

−∞

= − − + +

= −

∫
�

 (4.43) 

where 
0( )M τ�  is the oscillatory part and M is the constant part of the Melnikov function, 

which are given by, 

 0 0 0( ) ( ) ( )M y F dετ τ τ τ τ
∞

−∞

= +∫�  (4.44) 

 0 1 0 2 0 0 1 1

2 2 8
( )( ( ) ( ) ( ) ) ( )

3 15
M y b y b y y d b bε ε ε ετ τ τ τ τ

∞

−∞

= + = +∫  (4.45) 

By setting
1 0τ τ τ= + and noticing the evenness of 

0( )y τ , equation (4.44) can be 

transformed as follows: 

0 0 1 0 1 1 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )M y F d y F d y F dε ε ετ τ τ τ τ τ τ τ τ τ τ τ τ
∞ ∞ ∞

−∞ −∞ −∞

= − = − = −∫ ∫ ∫� (4.46) 

Equation (4.46) is the Duhamel convolution integral, 
0 0( )y τ τ− which acts like an 

impulse response function of the linear system, ( )Fε τ is the random excitation and 

0( )M τ� is the system response. Assume that excitation force ( )Fε τ is stationary, the 

spectrum of 
0( )M τ�  is given by: 

 
0

22(2 ) ( ) ( ) 2 ( ) ( )MM F F y F FS Y S S S
ε ε ε ε

π π= Ω Ω = Ω Ω� �  (4.47) 
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where 
MMS � �  is the one sided spectral density function of the oscillatory part of the 

Melnikov function
0( )M τ� , and ( )F FS ε ε

Ω is the one sided spectral density function of the 

force ( )Fε τ . ( )Y Ω and
0
( )yS Ω are respectively the Fourier transform and the spectral 

density function of 
0( )y τ . 

 0

1
( ) ( )

2
iY y e dττ τ

π

∞

− Ω

−∞

Ω = ∫  (4.48) 

 
0

2

( )
sinh( / 2)

yS π
π

⎛ ⎞Ω ⎟⎜ ⎟Ω = ⎜ ⎟⎜ ⎟⎜⎝ Ω ⎠
 (4.49) 

The mean and variance of the Gaussian distributed random variable
0( )M τ�  are to be 

determined for phase space flux calculations. 

 0 0 0 0 0[ ( )] [ ( ) ( ) ] ( ) [ ( )] 0M y F d y F dε ετ τ τ τ τ τ τ τ τ
∞ ∞

−∞ −∞

Ε = Ε + = Ε + =∫ ∫  (4.50) 

           
0

2
0

0 0

[ ( ) ] ( ) 2 ( ) ( )MM y F FM S d S S d
ε ε

τ π
∞ ∞

Ε = Ω Ω = Ω Ω Ω∫ ∫� �
�                            (4.51) 

4.3.2 The rate of phase space flux 

        The amount of phase space transported out of the safe basin is related to the areas 

of lobes formed when the stable manifold is inside of the unstable manifold (Jiang et al., 

2000). If the Melnikov function is negative all the time, the stable manifold will be 

outside of unstable manifold all the time. This means the response will be bounded if 

they start from inside of safe basin. Fig. 50 is the Melnikov function time series, 

equation(4.43). With low excitation force 1sH m= , all values are below zero, which 
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indicates that there is no phase transport. Fig. 51 starts to have some positive value, but 

still very little.  For higher excitation force 5sH m= , Fig. 52 clearly indicates relatively 

stronger phase transport flux, which means more probability of capsizing even if the 

vessel starts from the safe basin. The quantity of phase space flux up to first order is 

measured by the average rate of phase space flux given by (Hsieh et al., 1994): 

 

2
0 0

2
0 0

2 lim ( ) ( )
2

2 lim ( ( ) ) ( )
2

T

flux T
T
T

T
T

M d O
T

M M d O
T

ε
τ τ ε

ε
τ τ ε

+

→∞
−

+

→∞
−

Φ = +

= − +

∫

∫ �
 (4.52) 

where 0( )M τ+  represents the positive part of Melnikov function. 
fluxΦ is the rate of 

phase space flux through both upper and lower bound of the heteroclinic orbits. This is 

because the Melnikov process is an ergodic stationary Gaussian process. The time 

average in (4.52) is equal to the ensemble average given by  

2

0 2

2

/

0 0 0

1
2 [( ( ) ) ] 2 ( ) exp( )

22

1
2 ( ) exp( )

22
2 ( ( / ) ( / ) )

2 ( ( / ( )) ( / ( )) )

flux

M

M

s s s

z
M M z M dz

x
x M dx

p M MP M M

H p M H MP M H M

σ

ε τ ε
σπσ

εσ
π

ε σ σ σ
ε σ σ σ

+∞

+

+∞

Φ = Ε − = − −

= − −

= + −
= + −

∫

∫

�

       (4.53)

 

where σ is the root mean square of
0( )M τ� , and σ  is a linear function of the significant 

wave height, which is
0 sHσ σ= , 

0σ is the RMS of 
0( )M τ� for unit significant wave 

height. ( )p z is the probability density function (PDF) of the standard Gaussian 
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distributed variable z and ( )P z  is the Cumulative distribution function (CDF) of z as 

given by: 

 21 1
( ) exp( )

22
p z z

π
= −  (4.54) 

 ( ) ( )
z

P z p x dx
−∞

= ∫  (4.55) 

fluxΦ can be normalized by the area of the unperturbed safe basin 4 2 / 3hA = for non 

dimensionalized oscillators in Fig. 37 as follows: 

 
0 0 02 ( ( / ( )) ( / ( )) )flux s s sH p M H MP M H Mε σ σ σΦ = + −  (4.56) 

 

 

Fig. 50.  Melnikov function for 1sH m=  
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Fig. 51.  Melnikov function for 3sH m=  

 
 
 

 

Fig. 52.  Melnikov function for 5sH m=  
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As 
sH → +∞ , the normalized phase space flux in equation (4.56) has an asymptotic 

form given by 

 0

2 1 1
( )

22
flux

s
h h

H M
A A

ε
σ

π

Φ
= −  (4.57) 

The asymptotic line intersects with 
sH axis at a value 

 *

0

2
2s

M
H

π
σ

=  (4.58) 

        In the Melnikov analysis for vessel capsizing criterion, *
sH is defined as the critical 

wave height at which substantial phase space flux starts to occur, which indicates higher 

probability of vessel capsizing.   

4.4 Comparison of Two Methods for Analysis of Vessel Capsizing 

        To compare these two different approaches for vessel capsizing prediction, the 

inverse of the mean first passage time, which is defined as the escape rate 

11 / (0)eR M= , based on Markov model is defined as a measurement of capsizing 

criterion(Roberts and Vasta, 2000), here 
1(0)M  is the mean first passage time given 

initial condition
0 0E = . Also normalized phase space flux rate, given in equation (4.56), 

based on stochastic Melnikov theory was defined as another kind of capsizing criterion 

in (Hsieh et al., 1994; Jiang et al., 2000). We calculated both mean first passage rate and 

phase space flux rate in this section to analyze the effects of linear damping coefficients, 

nonlinear damping coefficients, characteristic wave frequency and significant wave 

height on both criteria. The purpose of this section is to find some differences and 
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similarities of capsizing analysis between these two criteria. Equation (4.58) provides a 

very convenient asymptote of significant wave height for capsizing criterion, which can 

be estimated that phase space flux will start to significantly occur after this critical value. 

However, the first passage theory cannot provide such analytical value at which escape 

will start to significantly occur.  The plots given below indicate that both the escape rate 

and the phase transport rate have similar trends with increasing wave height, the 

question then become: is there any mathematical connection that can explain these 

similar trends?  

4.4.1 Effects of linear and nonlinear damping coefficients 

        Both derivations of the Markov and the Melnikov methods mentioned above 

require very small linear and nonlinear damping coefficients for perturbation analysis, 
1b

and 
2b are defined in equation(4.1) and scaled by perturbation parameters. Fig. 53 and 

Fig. 54 both indicate that the possibility of capsizing from two criteria will increase with 

significant wave height increasing and linear damping decreasing. This is easily 

understood when the dynamical system is excited only by additive noise given the same 

system coefficients (e.g. same mass, stiffness coefficients, etc). The interesting part of 

Fig. 55 is that both values for escape rate and phase transport rate are of the same order 

of magnitude, thus it is therefore expected that these two factors can be determined from 

the other in an approximate sense. The nonlinear damping coefficient for Fig. 53 to Fig. 

55 is
2 0.06b = , and wave characteristic frequency 2 / 9zω π= .Fig. 56 to Fig. 58 

demonstrate the nonlinear damping effects on both factors with
1 0.01b =  and
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2 / 9zω π= . They provide similar conclusion as linear damping’s effect.  However, 

strong dependence of phase space transport rate on nonlinear damping in Fig. 57 is 

different with Fig. 56 for the mean escape rate, which has very limited dependency on 

the nonlinear damping coefficients. 

 

Fig. 53.  Mean first passage rate for various linear damping coefficients and 
sH  
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Fig. 54.  Normalized phase transport rate for various linear damping coefficients and 
sH  

 
 
 

 

Fig. 55.  Relation between normalized phase transport rate and mean first passage rate 

with different linear damping coefficients 
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Fig. 56.  Mean first passage rate for various nonlinear damping coefficients and 
sH  

 
 
 

 

Fig. 57.  Normalized phase transport rate for various nonlinear damping coefficients and 

sH  
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Fig. 58.  Relation between normalized phase transport rate and mean first passage rate 

with different nonlinear damping coefficients 
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This is consistent with the result from Fig. 43 and Fig. 44, both drift and diffusion 

coefficients are larger, which means the system will be more easily moved to the critical 

boundary. However, the Melnikov based phase transport rate has its maximum for

2 / 8zω π=  as displayed in Fig. 60. This can be explained by equation (4.57), the larger  

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Normalized Phase Transport Rate

E
sc

ap
e 

R
at

e

 

 
b2=0

b2=0.015

b2=0.03

b2=0.045

b2=0.06



118 

 

 

 

variance 2
0σ for

0( )M τ� will give larger phase space transport. The variance for different 

characteristic wave frequency is given in Fig. 61. 

 
 
 
 

 

Fig. 59.  Mean first passage rate for various characteristic wave frequency and 
sH  
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Fig. 60.  Normalized phase transport rate for various characteristic wave frequency and 
sH  

 
 
 

 

Fig. 61.  Variance of 
0( )M τ� of unit significant wave height  
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CHAPTER V 

CONCLUSIONS AND FUTURE EXTENSIONS 

 

5.1 Conclusions     

      The purpose of this research is to understand the strongly nonlinear large amplitude 

rolling motion response and stability analysis using stochastic analytical techniques. In 

Chapter I, we first introduced the background and motivation of this dissertation. The 

next generation of stability criteria will be based on stochastic and probability 

approaches instead of just considering the static aspects. It is expected that the analytical 

methods studied and developed in this dissertation will contribute to the next generation 

of stability criterion.  Fundamentals of stochastic dynamics are introduced in the Chapter 

II, including the history of the Fokker Planck Equation (FPE), fundamentals of 

Brownian motion and stochastic differential equation, and the derivation of FPE.  

        In Chapter III and IV, we studied two Markov based method and one Melnikov 

based method for capsizing criteria. For the shaping filter Markov model in Chapter III, 

there is no scaling limitation for damping and excitation and no assumption of stationary 

response process. However, the higher dimensions of the extended system generate more 

difficulties for the FPE solutions. Instead of solving the FPE directly, an automatic 

cumulant neglect tool was developed in (Su and Falzarano, 2011) to analyze the higher 

order dimensional nonlinear roll systems. To verify the algorithm developed in the 
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dissertation, several dynamical systems, with analytical PDF stationary solution, are 

tested with the automatic tool, efficiency and limitation of the cumulant neglect method 

is discussed. 

     To avoid the difficulty of increasing dimension, stochastic averaging of the energy 

envelope reduces the dimension to two uncoupled energy and phase first order 

differential equations, which have an analytical solution for the related stationary FPE 

and allows us to obtain the mean first passage time easily. The inverse of the mean first 

passage time is defined as a capsizing criterion. Compared with the shaping filter 

technique, the stochastic averaging of energy envelope has a more strict limitation on 

damping and excitation magnitudes. 

     Instead of studying the energy process of the response, the Melnikov analytical 

method directly analyzes the energy of the heteroclinic separatrix and the phase space 

transport rate is defined as a capsizing criterion. The Markov based stochastic averaging 

method does not have an analytical formula to find the critical wave height for the mean 

first passage time like Melnikov method in equation (4.58). 

5.2 Future Recommendations     

   The energy Markov process has the same expression as the integral part of the 

Melnikov function in (4.43). The Melnikov function could be considered as the gained 

energy through the heteroclinic orbit. When the wave energy input is larger than the 

damping dissipation energy, the Melnikov function will have positive values and leads to 

the capsizing region. So stochastic averaging of the energy envelope based on the 
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Markov process provides information on the mean time to reach the stability boundary 

which is the heteroclinic orbit. The Melnikov function will predict the dynamical 

stabilities on the heteroclinic orbit.  To relate these two methods, the Melnikov function 

for suborbit (Wiggins, 2003) of the oscillation has to be considered for the low level of 

oscillation as the Markov method does.  

       The shaping filter technique seems to have no assumption on damping and 

excitation magnitude, the mathematical difficulty is solving the high dimensional 

stochastic dynamical system. Numerical solution for high dimensional systems, 

especially high dimensional Fokker Planck Equation, is still a challenge for engineers 

and scientists, and also a very popular research topic in the field of stochastic dynamics. 

Also considering the Gaussian property of the filter variables, the number of moment 

equations could be reduced significantly for the cumulant neglect method. The automatic 

cumulant neglect tool need to be adjusted to consider the Gaussian property of filter 

variables.  

        The moment statistics information from this analytical moment equations could 

possibly be used to guide the real engineering design problem, e.g., model testing data 

statistics and numerical simulations.  And reversely, the numerical simulation or model 

testing could also be used to refine and validate the methodology derived in the moment 

equation method. 

       Monte Carlo simulation of stochastic dynamical system is the most fundamental 

method to verify the true response distribution and extreme statistics.  The challenge of 

applying the Monte Carlo method is the long computation time and the difficulty of 
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predicting the extreme or rare event. With the development of computational capacity 

and efficient simulation algorithm, the obstacle could be possibly avoided in the future.  

        Modeling of vessel rolling dynamics in beam waves is simplified to a single degree 

freedom system in this dissertation, multiple degree of freedom modeling with the time 

domain convolution term in random seas and also the random parametric rolling 

dynamics in following and heading seas should be considered as next research direction.  

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



124 

 

 

 

REFERENCES 

 

Abkowitz, M. A., 1969. Stability and Motion Control of Ocean Vehicles, MIT Press,  
      Cambridge, MA 

Andronov, A., Pontryagin, L. and Vitt, A., 1933. On the statistical investigation of  
      dynamical systems. Journal of  Experimental and Theoretical Physics 3(3), 165-180. 

ANSYS, 2010. ANSYS Aqwa User's Manual, ANSYS Inc, Canonsburg, PA  

Bachelier, L., 1900. Théorie de la spéculation. English Translation: In: Cootner P.H.,  
      1965. The Random Character of Stock Market Prices, MIT Press, Cambridge, MA,  
      17-78. 

Beck, F. B. and Troesch, A. W., 1990. Documentation and user’s manual for the              
      computer program Shipmo, Department of Naval Architecture and Marine  
      Engineering, The University of Michigan, Ann Arbor. 

Belenky, V., de Kat, J. O. and Umeda, N., 2008. Toward performance-based criteria for  
      intact stability. Marine Technology, 45(2), 101-120. 

Belenky, V. and Sevastianov, N. B., 2007. Stability and Safety of Ships - Risk of  
      Capsizing (2nd Edition), Society of Naval Architects and Marine Engineers  
       (SNAME), Jersey City, NJ.  

Belenky, V., Yu, H. C. and Weems, K., 2006. Numerical procedures and practical  
      experience of assessment of parametric roll of container carriers. In: Proceeding of  
      International Conference on Stability of Ships and Ocean Vehicles (STAB-2006).  
      Rio de Janeiro, Brazil, September 22-29, 2006.  

Beran, M., 1965. Statistical continuum theories. Transactions of the Society of Rheology,  
      9(1): 339-355. 

Bikdash, M., Balachandran, B. and Navfeh, A., 1994. Melnikov analysis for a ship with        
      a general roll-damping model. Nonlinear Dynamics, 6(1), 101-124. 

Boltzmann, L., 1868. Studien über das Gleichgewicht der lebendigen Kraft zwischen        
      bewegten materiellen Punkten [in German].Wiener Berichte, 58, 517-560. 

Cardo, A., 1981. Ultraharmonics and subharmonics in the rolling motion of a ship:  
      steady-state solution. International Shipbuilding Progress, 28(326), 234-251. 



125 

 

 

 

Cardo, A., Francescutto, A. and Nabergoj, R., 1984. Subharmonic oscillations in  
      nonlinear rolling. Ocean Engineering, 11(6), 663-669. 

Caughey, T. K., 1963a. Derivation and application of the fokker-planck equation to  
      discrete nonlinear dynamic systems subjected to white random excitation. The  
      Journal of the Acoustical Society of America, 35(11), 1683-1692. 

Caughey, T. K., 1963b. Equivalent linearization techniques. The Journal of the  
      Acoustical Society of America, 35(11), 1706-1711. 

Caughey, T. K. and Dienes, J. K., 1961. Analysis of a nonlinear first-order system with a  
      white noise input. Journal of Applied Physics, 32(11), 2476-2479. 

Chen, S. L., 1999. A systematic approach to modeling nonlinear multi-DOF  ship         
      motions  in regular seas. Journal of Ship Research, 43(1), 25-37. 

Cottone, G., Di Paola, M., Ibrahim, R., Pirrotta, A. and Santoro, R., 2009. Ship roll  
      motion under stochastic agencies using path integral method. Editor: R. Ibrahim,  
      V. Babitsky and  M. Okuma, Vibro-Impact Dynamics of Ocean Systems and Related   
      Problems. Springer, Berlin, 44, 29-40. 

Crandall, S. H. and Mark, W. D., 1963. Random Vibration in Mechanical Systems.  
      Academic Press, New York. 

Cummins, W. E., 1962. The Impulse Response Function and Ship Motions. Report 1661,  
      Dept. of the Navy, David Taylor Model Basin, Washington, D.C . 

Dalzell, J. F., 1978. A note on the form of ship roll damping. Journal of Ship Research,  
      22, 178-185. 

Di Paola, M. and Sofi, A., 2002. Approximate solution of the Fokker-Planck- 
      Kolmogorov equation. Probabilistic Engineering Mechanics, 17(4), 369-384. 

Einstein, A., 1905. Über die von der molekularkinetischen Theorie der Wärme  
      geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [in  
      German]. Annalen Der Physik, 322(8), 549-560. 

Er, G. K., 1998. An improved closure method for analysis of nonlinear stochastic  
      systems. Nonlinear Dynamics, 17(3), 285-297. 

Er, G.-K., 2000a. Exponential closure method for some randomly excited non-linear       
      systems. International Journal of Non-Linear Mechanics, 35(1), 69-78. 

Er, G. K., 2000b. The probabilistic solutions to nonlinear random vibrations of multi- 



126 

 

 

 

      degree-of-freedom systems. Journal of Applied Mechanics-Transactions of the  
      ASME,  67(2), 355-359. 

Er, G. K., 2011. Methodology for the solutions of some reduced Fokker-Planck  
      equations in high dimensions. Annalen Der Physik. 523(3), 247-258. 

Falzarano, J., 1990. Predicting Complicated Dynamics Leading To Vessel Capsizing.  
      Ph.D. dissertation, Department of Naval Architecture, University of Michigan, Ann  
      Arbor. 

Falzarano, J., Shaw, S. W. and Troesch, A. W., 1992. Application of global methods for  
      analyzing dynamical systems to ship rolling motion and capsizing. International  
      Journal of Bifurcation and Chaos, 2(1), 101-115. 

Falzarano, J., Vishnubhotla, S. and Cheng, J., 2004. Nonlinear dynamic analysis of ship  
      capsizing in random waves. In: Proceedings of the Fourteenth International Offshore  
      and Polar Engineering Conference, Vol 3, 479-484. 

Falzarano, J. and Zhang, F., 1993. Multiple degree of freedom global analysis of  
      transient ship rolling motion. Symposium on Nonlinear Dynamics of Marine  
      Vehicles. In: Proceedings of the ASME Winter Annual Meeting, New Orleans,  
      LA, 57-72 

Falzarano, J. M., Vishnubhotla, S. and Juckett, S. E., 2005. Combined steady state and  
      transient analysis of a patrol vessel as affected by varying amounts of damping and  
      periodic and random wave excitation. in: Proceedings of the 24th International  
      Conference on Offshore Mechanics and Arctic Engineering, Vol 1, Pts A and B,  
      1081-1085. 

Fokker, A. D., 1913. Over Brown'sche bewegingen in het stralingsveld [in German],  
      Ph.D. Dissertation, Leiden Unversity, Netherlands.  

Fokker, A. D., 1914. Die mittlere Energie rotierender elektrischer Dipole im  
      Strahlungsfeld [in German]. Ann. Phys. Annalen der Physik, 348(5), 810-820. 

Francescutto, A., 1990. On the nonlinear motions of ships and structures in narrow band  
      sea. In: Proceedings of the IUTAM Symp. on Dynamics of Marine Vehicles and  
      Structures in Waves, London, Elsevier Publishing, 291-304. 

Francescutto, A. and Naito, S., 2004. Large amplitude rolling in a realistic sea.  
      International Shipbuilding Progress, 51(2), 221-235. 

Frey, M. and Simiu, E., 1993. Noise-induced chaos and phase space flux. Physica D,  
      Nonlinear Phenomena, 63(3–4), 321-340. 



127 

 

 

 

Froude, W., 1861. On the rolling of ships. Institution of Naval Architects Transactions,  
      11, 180-229. 

Fuller, A. T., 1969. Analysis of nonlinear stochastic systems by means of Fokker-Planck  
      equation. International Journal of Control, 9(6), 603-655. 

Guckenheimer, J. and Holmes, P., 1983. Nonlinear Oscillations,  Dynamical Systems,       
      and Bifurcations of  Vector Fields, Springer Verlag, New York. 

Holappa, K. W. and Falzarano, J. M., 1999. Application of extended state space to  
      nonlinear ship rolling. Ocean Engineering, 26(3), 227-240. 

Hsieh, S.-R., Troesch, A. W. and Shaw, S. W., 1994. A nonlinear probabilistic method  
      for predicting vessel capsizing in random beam seas. Transactions of the Royal  
      Society of London Series A-Mathematical and Physical Sciences, 446(1926), 195- 
      211. 

Huang, X., 2003. The invesitigation of the safe basin erosion under the action of  
      irregular waves. In: Proceedings of the 8th International Conference on Stability of  
      Ship and Ocean Vehicles (STAB), Madrid, Spain, September,  2003, 539-549. 

Huang, X., 2004. The study of ship capsize on random beam waves. In: Proceedings of  
      the 7th International Ship Stability Workshop, Shanghai, China, November 2004,  
      330-338. 

Ibrahim, R. A., 2007. Parametric Random Vibration. Dover Publications, Mineola, NY. 

Ibrahim, R. A. and Grace, I. M., 2010. Modeling of ship roll dynamics and its coupling  
      with heave and pitch. Mathematical Problems in Engineering,Vol 2010, 1-32. 

Itô, K., 1951. On a formula concerning stochastic differentials. Nagoya Math  Journal, 3,  
      55-65. 

Jamnongpipatkul, A., Su, Z. and Falzarano, J. M., 2011. Nonlinear ship rolling motion  
      subjected to noise excitation. Ocean Systems Engineering, 1(3), 33-43. 

Jiang, C., Troesch, A. W. and Shaw, S. W., 2000. Capsize criteria for ship models with  
      memory-dependent hydrodynamics and random excitation. Philosophical  
      Transactions of the Royal Society of London Series A-Mathematical Physical and  
      Engineering Sciences, 358(1771),1761-1791. 

Jiang, C. B., Troesch, A. W. and Shaw, S. W., 1996. Highly nonlinear rolling motion of  
      biased ships in random beam seas. Journal of Ship Research, 40(2), 125-135. 



128 

 

 

 

Khasminskii, R. Z., 1966. A limit theorem for the solutions of differential equations with  
      random right-hand sides. Theory of Probability and its Applications, 11(3), 390-406. 

Kim, C. H., 2008. Nonlinear Waves and Offshore Structures, World Scientific  
      Publishing Company, Hackensack, NJ. 

Kolmogoroff, A., 1931. Über die analytischen methoden in der  
      wahrscheinlichkeitsrechnung. English Translation: On analytical methods in  
      probability theory, Mathematische Annalen [in German]. 104(1), 415-458. 

Kolmogorov, A. N., 1933. Grundbegriffe der wahrscheinlichkeitsrechnung, English  
      Translation: Foundations of the Theory of Probability. Springer, Berlin. 

Kumar, M., Chakravorty, S. and Junkins, J. L., 2010. A semianalytic meshless approach  
      to the transient Fokker-Planck equation. Probabilistic Engineering Mechanics, 25(3),  
      323-331. 

Kumar, P. and Narayanan, S., 2006. Solution of Fokker-Planck equation by finite  
      element and finite difference methods for nonlinear systems. Sadhana-Academy  
      Proceedings in Engineering Sciences, 31, 445-461. 

Lee, C.-H. and Newman, J. N., 2009. WAMIT Theory Manual, Massachusetts Institute  
      of Technology. 

Lewandowski, E. M., 2004. The Dynamics of Marine Craft : Maneuvering and  
      Seakeeping. World Scientific Publishing Company, Hackensack, NJ. 

Lewis, E. V.,1989. Principles of Naval Architecture, Society of Naval Architects and  
      Marine Engineers, Jersey City, NJ. 

Lin, H. and Yim, S. C. S., 1995. Chaotic roll motion and capsize of ships under periodic  
      excitation with random noise. Applied Ocean Research, 17(3), 185-204. 

Lin, H. A. and Yim, S. C. S., 1995. Chaotic roll motion and capsize of ships under  
      periodic excitation with random noise. Applied Ocean Research, 17(3), 185-204. 

Lin, Y. K. and Cai, G. Q., 2004. Probabilistic Structural Dynamics: Advanced Theory        
      and Applications. McGraw-Hill, New York. 

Liqin, L. and Yougang, T., 2007. Stability of ships with water on deck in random beam  
      waves. Journal of Vibration and Control, 13(3), 269-280. 

Lutes, L. D., 1970. Approximate technique for treating random vibration of hysteretic  
      systems. The Journal of the Acoustical Society of America, 48(1B), 299-306. 



129 

 

 

 

Lutes, L. D. and Sarkani, S., 2004. Random Vibrations: Analysis of Structural and  
      Mechanical Systems. Elsevier, Boston, MA. 

Martens, W. and Wagner, U. v., 2011. Advances in solving high dimensional Fokker- 
      Planck equations. In: Proceedings of the European Nonlinear Oscillations  
      Conferences, 2011, Rome, Italy. 

Maxwell, J. C., 1860. Illustrations of the dynamical theory of gases. Philosophical  
      Magazine, 20 (130), 21-37. 

Maxwell, J. C., 1867. On the dynamical theory of gases. Philosophical Transactions of  
      the Royal Society of London, 157, 49-88. 

Moe, V., 1997. Nonlinear Random Vibrations - Numerical Analysis by Path Integration  
      Methods. Ph.D. dissertation, Norwegian University of Science and Technology,  
      Norway.  

Moseley, H., 1850. On the dynamical stability and on the oscillations of floating bodies.  
      Philosophical Transactions of the Royal Society of London, 140, 609-643. 

Naess, A. and Moe, V., 2000. Efficient path integration methods for nonlinear dynamic  
      systems. Probabilistic Engineering Mechanics, 15(2), 221-231. 

Nayfeh, A. H., 1986a. Nonlinear rolling of biased ships in regular beam waves.  
      International Shipbuilding Progress, 33(381), 84-93. 

Nayfeh, A. H., 1986b. Nonlinear rolling of ships in regular beam seas. International  
      Shipbuilding Progress. 33(379), 40-49. 

Nayfeh, A. H., 1990. Stability and complicated rolling responses of ships in regular  
      beam seas. International Shipbuilding Progress. 37(412), 331-352. 

Ness, O. B., McHenry, G., Mathisen, J. and Winterstein, S. R., 1989. Nonlinear analysis  
      of ship rolling in random beam waves. In: Proceedings of SNAME STAR  
      Symposium, New Orleans,LA, 49-66. 

Ogilvie, T., 1964. Recent progress towards the understanding and prediction of ship  
      motions. In: Proceedings of the 5th Symposium on Naval Hydrodynamics, Bergen,  
      Norway, 3-79. 

Planck, M., 1917. Zur theorie des rotationsspektrums [in German]. Ann. Phys. Annalen  
      der Physik, 358(11), 241-256. 

Rahola, J., 1939. The judging of the stability of ships and the determination of the  



130 

 

 

 

      minimum amount of stability, especially considering the vessels navigating Finnish  
      waters, Ph.D. dissertation, University of  Finland, Finland. 

Rayleigh, L., 1880. On the resultant of a large number of vibrations of the same pitch  
      and of  arbitrary phase. Philosophical Magazine, 10, 73-78. 

Rayleigh, L., 1891. Dynamical problems in illustration of the theory of gases.  
      Philosophical Magazine, 32(5), 424. 

Risken, H., 1996. The Fokker-Planck Equation: Methods of Solution and Applications,  
      Springer, New York. 

Roberts, J. B., 1982. Effect of parametric-excitation on ship rolling motion in random  
      waves. Journal of Ship Research, 26(4), 246-253. 

Roberts, J. B., 1982. A stochastic-theory for non-linear ship rolling in irregular seas.  
      Journal of Ship Research, 26(4), 229-245. 

Roberts, J. B., 1986. Response of an oscillator with non-linear damping and a softening  
      spring to non-white random excitation. Probabilistic Engineering Mechanics, 1(1),  
      40-48. 

Roberts, J. B., Dunne, J. F. and Debonos, A., 1994. Stochastic estimation methods for  
      nonlinear ship roll motion. Probabilistic Engineering Mechanics, 9(1-2), 83-93. 

Roberts, J. B. and Spanos, P. D., 1986. Stochastic averaging - an approximate method of  
      solving random vibration problems. International Journal of Non-Linear Mechanics,  
      21(2), 111-134. 

Roberts, J. B. and Spanos, P. D., 2003. Random Vibration and Statistical Linearization.  
      Dover Publications, Mineola, NY.  

Roberts, J. B. and Vasta, M., 2000. Markov modelling and stochastic identification for  
      nonlinear ship rolling in random waves. Philosophical Transactions of the Royal  
      Society of London Series A-Mathematical Physical and Engineering Sciences,  
      358(1771), 1917-1941. 

Roberts, J. B. and Vasta, M., 2000. Parametric identification of systems with non- 
      Gaussian excitation using measured response spectra. Probabilistic Engineering  
      Mechanics, 15(1), 59-71. 

Roberts, J. B. and Vasta, M., 2001. Response of non-linear oscillators to non-white  
      random excitation using an energy based method. In: the Proceedings of the IUTAM  
      Symposium on Nonlinearity and Stochastic Structural Dynamics, 85, 221-231. 



131 

 

 

 

Roberts, J. B. and Vasta, M., 2002. Energy based stochastic estimation of nonlinear  
      oscillators with parametric random excitation. Meccanica, 37(1-2), 33-49. 

Scheurkogel, A. and Elishakoff, I., 1988. Non-linear random vibration of a two-degree- 
      of-freedom system. In: the proceedings IUTAM Symposium on Non Linear        
      Stochastic Engineering Systems, Springer-Verlag, Berlin. 285-299. 

SLF50/4, 2006. Revision of the intact stability code. Report of the working group on  
      intact stability at SLF49 (part 2). Submitted by the chairman of the working group.       
      50st session of IMO Sub-Committee on Stability and Load Lines and on Fishing  
      Vessels Safety. 

SLF51/4, 2008. Revision of the intact stability code. report of the working group (part 2).  
      Submitted by the chairman of the working group. 51st session of IMO Sub- 
      Committee on Stability and Load Lines and on Fishing Vessels Safety. 

SLF52/3, 2009. Revision of the intact stability code. report of the working group (part 2).  
      Submitted by the chairman of the working grou. 52st session of IMO Sub-Committee  
      on Stability and Load Lines and on Fishing Vessels Safety. 

Sobczyk, K. and Trcebicki, J., 1999. Approximate probability distributions for stochastic  
      systems, maximum entropy method. Computer Methods in Applied Mechanics and  
      Engineering, 168(1-4), 91-111. 

Soize, C., 1994. The Fokker-Planck Equation for Stochastic Dynamical Systems and Its  
      Explicit Steady State Solutions. World Scientific, Teaneck, NJ.  

Soong, T. T. and Grigoriu, M., 1993. Random Vibration of Mechanical and Structural  
      Systems. PTR Prentice Hall, Englewood Cliffs, NJ.  

Spanos, P. T. D., 1983. ARMA algorithms for ocean wave modeling. Journal of Energy  
      Resources Technology, 105(3), 300-309. 

Spanos, P. T. D., 1986. Filter approaches to wave kinematics approximation. Applied  
      Ocean Research, 8(1), 2-7. 

Spencer, B. F. and Bergman, L. A., 1993. On the numerical solution of the Fokker- 
      Planck equation for nonlinear stochastic systems. Nonlinear Dynamics, 4(4), 357- 
      372. 

Spyrou, K. J., 1996a. Dynamic instability in quartering seas: The behavior of a ship  
      during broaching. Journal of Ship Research, 40(1), 46-59. 

Spyrou, K. J., 1996b. Dynamic instability in quartering seas: Analysis of ship roll and  



132 

 

 

 

      capsize for broaching. Journal of Ship Research, 40(4), 326-336. 

Spyrou, K. J., 1997. Dynamic instability in quartering seas: Nonlinear effects on periodic  
      motions. Journal of Ship Research, 41(3), 210-223. 

Stark, H. and Woods, J. W., 2002. Probability and Random Processes with Applications  
      to Signal Processing. Prentice Hall, Upper Saddle River, NJ.  

Stratonovich, R. L., 1963. Topics in the Theory of Random Noise. Gordon and Breach,  
      New York.  

Su, Z. and Falzarano, J. M., 2011. Gaussian and non-Gaussian cumulant neglect  
      application to large amplitude rolling in random waves. International Shipbuilding  
      Progress, 58(2), 97-113. 

Su, Z. and Falzarano, J. M., 2011. Gaussian and non Gaussian response of ship rolling in  
      random beam waves. In: Proceedings of the12th International Ship Stability  
      Workshop, Washington D.C., USA, June 12-15, 2011. 189-193. 

Thampi, S. K. and Niedzwecki, J. M., 1992. Filter approach to ocean structure response  
      prediction. Applied Ocean Research, 14(4), 259-271. 

Thompson, J. M. T., 1990. Ship stability criteria based on chaotic transients from  
      incursive fractals. Philosophical Transactions of the Royal Society of London Series  
      A-Mathematical Physical and Engineering Sciences, 332(1624), 149-167. 

Thompson, J. M. T., 1992. Mechanics of ship capsize under direct and parametric wave  
      excitation. Philosophical Transactions of the Royal Society of London Series A- 
      Mathematical Physical and Engineering Sciences, 338(1651), 471-490. 

To, C. W. S., 2000. Nonlinear Random Vibration: Analytical Techniques and  
      Applications, Swets & Zeitlinger Publishers, London, UK. 

Uhlenbeck, G. E. and Ornstein, L. S., 1930. On the theory of the brownian motion.  
      Physical Review, 36(5), 823-841. 

Ultramarine, 2010. Reference Manual for MOSES.Ultramarine, Inc, Houston,TX. 

Virgin, L. N., 1987. The nonlinear rolling response of a vessel including chaotic motions  
      leading to capsize in regular seas. Applied Ocean Research, 9(2), 89-95. 

Vishnubhotla, S. and Falzarano, J., 2009. Effect of more accurate hydrodynamic  
      modeling on calculating critical nonlinear ship rolling response. Vibro-Impact  
      Dynamics of Ocean Systems and Related Problems, 44, 269-274. 



133 

 

 

 

Vishnubhotla, S., Falzarano, J. and Vakakis, A., 2000. A new method to predict  
      vessel/platform critical dynamics in a realistic seaway. Philosophical Transactions of  
      the Royal Society of London Series A-Mathematical Physical and Engineering  
      Sciences, 358(1771), 1967-1981. 

Vugts, J. H., 1970. The hydrodynamic forces and ship motions in waves. Ph.D.  
      dissertation, University of Waltman, Delft. 

Wang, M. C. and Uhlenbeck, G. E., 1945. On the theory of the brownian motion II.  
      Reviews of Modern Physics. 17(2-3), 323-342. 

Wiggins, S., 2003. Introduction to Applied Nonlinear Dynamical Systems and Chaos,  
      Springer-Verlag, New York. 

Winterstein, S. R., 1988. Nonlinear vibration models for extremes and fatigue. Journal of  
      Engineering Mechanics, 114(10), 1772-1790. 

Wojtkiewicz, S. F., 2000. Contributions to the Computational Analysis of Multi- 
      Dimensional Stochastic Dynamical Systems. Ph.D. dissertation, Aeronautical and  
      Astronautical Engineering, University of Illinois at Urbana-Champaign.  

Wong, E. and Zakai, M., 1964. On the relation between ordinary and stochastic  
      differential equations. International Journal of Engineering, 3, 213-229. 

Wu, W. and McCue, L., 2008. Application of the extended Melnikov's method for  
      single-degree-of-freedom vessel roll motion. Ocean Engineering, 35(17-18), 1739- 
      1746. 

Yim, S. C. S., Nakhata, T. and Huang, E. T., 2005. Coupled nonlinear barge motions,  
      Part II, Stochastic models and stability analysis. Journal of Offshore Mechanics and  
      Arctic Engineering, Transactions of the ASME, 127(2), 83-95. 

Zhang, F. and Falzarano, J., 1994. Multiple degree of freedom global transient ship  
      rolling motion: large amplitude forcing. In: The proceedings of Stochastic Dynamics  
      and Reliability of Nonlinear Ocean Systems, Chicago, Illinois, 99-108. 

Zhu, W. Q., 1988. Stochastic averaging methods in random vibration. Applied  
      Mechanics Reviews, 41(5), 189-199. 
 



134 

 

 

 

APPENDIX A 

DERIVATION OF NONLINEAR COUPLED  

EQUATIONS OF MOTION 

      Equations (1.1) to (1.6) are derived in this Appendix following (Abkowitz, 1969). 

Newton’s law for a particle can be directly applied to the “rigid body” ship for both 

linear momentum and angular momentum equations: 

( )( ) Gd mUd Momentum
F

dt dt
= =

G
G

                                         (A.1) 

     
( ) ( )G

G

d Angular momentum d I
dt dt

Ω
Μ = =

G G
G

                                  (A.2) 

where F
r

 is the resultant of all external force;  m is the mass of ship; GU
r

is the velocity 

of the center of gravity; GΜ
r

is the resultant of the applied moments; I
r

 is moment of 

inertial about the body fixed coordination system.  

          For the origin not at the center of the gravity and in a system of axes fixed in and 

moving with the vehicle. 

G GU U R= +Ω×
G G G

                                                  (A.3) 

Ω is the angular velocity of the body about the origin of body fixed system; GR
r

is the 

vector distance of the gravity from the origin of body fixed system;U
r

 is the velocity of 

the origin; × is the cross product. 

           The definitions of above qualities are given as follows, 
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U ui v j wk= + +
G G GG

                                                  (A.4) 

pi q j rkΩ = + +
G G GG

                                                  (A.5) 

    G G G GR x i y j z k= + +
G G GG

                                           (A.6) 

F Xi Y j Zk= + +
G G GG

                                                (A.7) 

  Ki M j NkΜ = + +
G G GG

                                              (A.8) 

Substituting the above expressions back to (A.1), we get, 

( )

( ) ( )

G

G G

d RdU
Xi Yj Zk m m

dt dt
mU m R m R

Ω×
+ + = +

= + Ω× + Ω×

GGGG G

G G G� ��
                           (A.9) 

Considering the unit vector derivative with respect to time, we have following 

expressions, 

di
rj qk

dt
= −

G GG
                                                    (A.10) 

dj
pk ri

dt
= −

G G G
                                                    (A.11) 

dk
qi pj

dt
= −

G
G G

                                                    (A.12) 

  ( )

( ) ( ) ( )

d di dj dk
U ui vj wk ui u vj v wk w

dt dt dt dt
u qw rv i v ru pw j w pv qu k

= + + = + + + + +

= + − + + − + + −

GG GG G GG G G G� � ��
GG G

� ��
                     (A.13) 

            ( )

( ) ( ) ( )

G G G G G G G

G G G G G G

d di d j dk
R x i y j z k x y z

dt dt dt dt
z q y r i x r z p j y p x q k

= + + = + +

= − + − + −

G G GG G GG�
G G G                            (A.14) 
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                           ( )
d
pi q j rk pi q j rk

dt
Ω = + + = + +

G G G G G G
� � � �                                   (A.15) 

Substituting the equations (A.10) to (A.15) back to the force expression (A.9), we get, 

 2 2[ ( ) ( ) ( )]G G GX m u qw rv x q r y pq r z pr q= + − − + + − + +� � �       (A.16) 

 
2 2[ ( ) ( ) ( )]G G GY m v ru pw x pq r y r p z qr p= + − + + − + + −� � �       (A.17) 

                    
2 2[ ( ) ( ) ( )]G G GZ m w pv qu x rp q y rq p z p q= + − + − + + − +� � �        (A.18) 

The above equations for X Y Z components are for an origin not at the center of gravity. 

Practically, 0Gy =  for most ships and offshore structures, therefore we get the 

equations (1.1) ,(1.2) and  (1.3) in Chapter I.  

           For the origin not at the center of gravity, the moment expression becomes, 

G GR FΜ = Μ + ×
G G G G

                                               (A.19) 

Following equation (A.2), 

 

44 45 46

54 55 56

64 65 66

44 45 46 54 55 56

64 65 66

( )

( ) ( )

( )

G G G

G G G G

G G G

G G G G G G

G G G

I I I p

I I I I q

I I I r

I p I q I r i I p I q I r j

I p I q I r k

⎛ ⎞⎛ ⎞− − ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟Ω = − −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟− − ⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠
= − − + − + −

+ − − +

G G

G G
G

         (A.20) 

where GI ii indicates  the inertial moments are refer to the origin at the center of gravity.  

The relationship between different local coordination systems for moment of inertial are 

given by equation (A.20). The 44I , 55I and 66I , refer to the moment of inertia about the 

body fixed coordination system with origin at arbitrary point.  
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44 44

2 2
55 55

2 2
66 66

45 45

56 56

64 64

( )

( )

( )

G G G

G G G

G G G

G G G

G G G

G G G

I I m y z

I I m z x

I I m x y

I I mx y

I I my z

I I mz x

⎧⎪ = − +⎪⎪⎪ = − +⎪⎪⎪⎪ = − +⎪⎨⎪ = −⎪⎪⎪ = −⎪⎪⎪⎪ = −⎪⎩

                                                (A.21) 

Substituting the equation (A.21) back into (A.20), and using the angular moment 

equation (A.2), we will be able to get the moments expressions, 

G G G GK i M j N kΜ = + +
G GG G

                                      (A.22) 

The second term in the equation (A.19) is given by,  

( ) ( ) ( )G G G G G G GR F y Z z Y i z X x Z j x Z y Y k× = − + − + −
G G GG G

        (A.23) 

Substituting the equation (A.23) back to (A.19), moments about the body fixed system 

can be calculated by, 

( )

( )

( )

G G G

G G G

G G G

K K y Z z Y

M M z X x Z

N N x Z y Y

⎧⎪ = + −⎪⎪⎪ = + −⎨⎪⎪ = + −⎪⎪⎩

                                                (A.24) 

Equation (A.24) is totally same with the equation (1.4), (1.5) and (1.6) Chapter I, after 

considering the symmetry property of ships, Gy =0; 45 56I I= =0. 
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APPENDIX B 

DERIVATION OF THE DRIFT AND DIFFUSION COEFFICIENTS 

FOR STOCHASTIC AVERAGING 

       Deriving the drift and diffusion coefficients in the equation (4.27) and (4.28) is the 

most important step to apply Markov assumption to the rolling process of the energy 

envelope.  Following (Lin and Cai, 2004) and (Roberts and Vasta, 2000; Roberts and 

Vasta, 2002),  evaluation of the Markov coefficients are introduced in this Appendix.  

The first row of equation  (4.24) can be re written as below with integration from τ  to 

τ τ+Δ  : 

2
1 1( ) ( )E F du

τ τ

ε
τ

τ ε τ εβ τ
+Δ

Δ = − Λ Δ + ∫                                       (B.1) 

The drift coefficient is given by equation  (4.19)  and can be written as,             

     

2
1 1

2
1 1

1 1
( ) [ ] [ ( ) ]

[ ( )]

m E E F u du

F u du

τ τ

ε
τ

τ τ

ε
τ

ε τ εβ
τ τ

ε
ε β

τ

+Δ

+Δ

= Ε Δ = Ε− Λ Δ +
Δ Δ

= − Λ + Ε
Δ

∫

∫
                 

(B.2) 

1β  could be expanded by its deterministic evolution with ε=0, for uτ τ τ< < + Δ  

          1 1
1 1,0

0 0

( ) ( ) ( ) ( ) ...
u u

u u e u u
E
β β

β β θ
⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎜ ⎜= + + +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟∂ ∂Φ⎝ ⎠ ⎝ ⎠

                            (B.3) 

Where 1,0( )uβ = 1 0 0( , )Eβ Φ , and 0( ) ( )e u E u E= − , 0( ) ( )u uθ = Φ −Φ  are the 

perturbation terms about the free undamped solution 0E and 0Φ ; higher order expansion 
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terms are neglected. So the expansion order isε .  Substituting equation (B.3) back into 

(B.2), and notice that the first term in equation (B.3) does not contribute to the 

expectation operator, we obtain, 

2
1 1 2( ) ( )m E E I Iε= − Λ + +

                                              
(B.4)

                       
 

where                          1I
1

0

[ ( ) ( )]
u

e u F u du
E

τ τ

ε
τ

βε
τ

+Δ ⎛ ⎞∂ ⎟⎜= Ε⎟⎜ ⎟⎜ ⎟Δ ∂⎝ ⎠∫                                     (B.5)
                       

 

 1
2

0

[ ( ) ( )]
u

I u F u du
τ τ

ε
τ

βε
θ

τ

+Δ ⎛ ⎞∂ ⎟⎜= Ε⎟⎜ ⎟⎜ ⎟Δ ∂Φ⎝ ⎠∫                                    (B.6)
                       

 

    To evaluate the integral of 1I  , ( )e u  corresponding to the undamped oscillator needs 

to be obtained by first integrating the energy of the system from τ to u , 

                     2
1 1,0( ) ( )

u u

e u dv F v dvετ τ
ε ε β= − Λ +∫ ∫                                   (B.7)

                       
 

Considering the order up to ε , the first term on the RHS can be neglected. Combining 

equations (B.7) and (B.5), and considering the expression for 1β
  
in (4.13), we get 

                     1I
2

1
1,0

0

( ) [ ( ) ( )]
uu

v F u F v dvdu
E

τ τ

ε ε
τ τ

βε
β

τ

+Δ ⎛ ⎞∂ ⎟⎜= Ε⎟⎜ ⎟⎜ ⎟Δ ∂⎝ ⎠∫ ∫                        (B.8)
        

 

Considering the correlation function of ( )F uε , equation (4.3) and the Fourier expansion 

in (4.29). Refer to (Roberts and Vasta, 2002; Lin and Cai, 2004) for more details of the 

derivation of the transformation of variables, 

                 1I
2 2

1,2

1
( ( ))

2 n FF
n

s S n Eε π ω
∞

=

= ∑                                         (B.9)
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          The second integration 2I  could be analyzed in a similar way as the integration 1I . 

It is necessary to obtain the expressions for the phase increment ( )uθ corresponding to 

the undamped oscillator by integrating the second row of equation(4.24). Noticed that 

the variable γ  can be substituted by 0γ  based on some approximation proved by 

Roberts (Roberts and Vasta, 2000). 

2
2 2,0( ) ( )

u u

u dv F v dvετ τ
θ ε ε β= − Λ +∫ ∫                                   (B.10)

                       
 

Following the same rule of 1I , 2I  is given by, 

                 2I
2 2

1,2

1
( ( ))

2 n FF
n

c S n Eε π ω
∞

=

= ∑                                         (B.11)
     

Collecting (B.4), (B.8) and (B.11) and correct to the order 2ε , the drift coefficient is 

given by, 

2 2 2
1

1,2...

1
( ) ( ) ( ) ( ( ))

2 n n FF
n

m E E s c S n Eε π ω
∞

=

= − Λ + +∑
                   

(B.12)
    

 

The diffusion coefficient is given by equation (4.20), 

      

2
1,0 1,0

0 0

1 1
( ) [ ] ( ) ( ) ( )

2
sin ( )sin ( ) ( )

D E E u v R u v dvdu

E
u v R u v dvdu

τ τ τ τ

τ τ
τ τ τ τ

τ τ

β β
τ τ

τ

+Δ +Δ

+Δ +Δ

= Ε Δ = −
Δ Δ

= Φ Φ −
Δ

∫ ∫

∫ ∫
                 

(B.13) 

Combining the Fourier expansion of the 0sinΦ , the diffusion coefficient can be 

evaluated as: 

2

1,2...

( ) 2 ( ( ))n FF
n

D E E s S n Eπ ω
∞

=

= ∑
                                       

(B.14) 
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The rolling motion process under non-white noise can be considered as a Markov 

process with the drift and diffusion coefficients derived above.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



142 

 

 

 

VITA 

ZHIYONG SU 

        The author was born in Handan, Hebei, China. He graduated from Shanghai Jiao 

Tong University with B.S. and M.S. degree in naval architecture and ocean engineering 

in 2006 and 2009.  After that, he entered the graduate program of Ocean Engineering at 

Texas A&M University in 2009 for PhD degree with Professor Falzarano.  He can be 

reached at: louder024@gmail.com or through Prof. Falzarano.  

 

Department Address: 

Coastal and Ocean Engineering Division  

Department of Civil Engineering  

Texas A&M University  

3136 TAMU  

College Station, TX 77843-3136 




