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ABSTRACT 

 

Comparison of Single, Double, and Triple Linear Flow Models  

for Shale Gas/Oil Reservoirs. (August 2012) 

Vartit Tivayanonda, B.Eng., Chulalongkorn University 

Chair of Advisory Committee: Dr. Robert A. Wattenbarger 

 

 

 There have been many attempts to use mathematical method in order to 

characterize shale gas/oil reservoirs with multi-transverse hydraulic fractures horizontal 

well. Many authors have tried to come up with a suitable and practical mathematical 

model. To analyze the production data of a shale reservoir correctly, an understanding 

and choosing the proper mathematical model is required. Therefore, three models (the 

homogeneous linear flow model, the transient linear dual porosity model, and the fully 

transient linear triple porosity model) will be studied and compared to provide correct 

interpretation guidelines for these models. 

 The analytical solutions and interpretation guidelines are developed in this work 

to interpret the production data of shale reservoirs effectively. Verification and 

derivation of asymptotic and associated equations from the Laplace space for dual 

porosity and triple porosity models are performed in order to generate analysis 

equations. Theories and practical applications of the three models (the homogeneous 

linear flow model, the dual porosity model, and the triple porosity model) are presented. 

A simplified triple porosity model with practical analytical solutions is proposed in order 
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to reduce its complexity. This research provides the interpretation guidelines with 

various analysis equations for different flow periods or different physical properties. 

From theoretical and field examples of interpretation, the possible errors are presented. 

Finally, the three models are compared in a production analysis with the assumption of 

infinite conductivity of hydraulic fractures. 
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NOMENCLATURE 

 

       Cross-sectional area of fluid to flow, ft
2
 

       Cross-sectional area of fluid flow from matrix to fracture, ft
2  

    Formation volume factor, rcf/scf 

     Total compressibility, psi
-1

 

   Effective reservoir thickness (assume to be same as hydraulic 

fracture height), ft 

     Effective hydraulic fracture permeability, md 

         Intrinsic hydraulic fracture permeability, md 

     Effective natural fracture permeability, md 

         Intrinsic natural fracture permeability, md 

      Matrix permeability, md 

    Hydraulic fracture spacing (from one middle of hydraulic fracture 

to another middle of hydraulic fracture), ft 

    Natural fracture spacing (from one middle of hydraulic fracture to 

another middle of hydraulic fracture), ft 

        Slope of the fourth root of time plot 

        Slope of the square root of time plot 

      Pseudopressure (gas), psi
2
/cp (      ∫

  

          
    

 
) 

       Difference of initial and wellbore flowing pseudopressure, psi
2
/cp 



 viii 

      Number of hydraulic fractures 

      Number of natural fractures per one hydraulic fracture half-length 

     Dimensionless pressure 

    Pressure, psi 

     Difference of initial and wellbore flowing pressure, psi 

      Dimensionless rate  

       Stimulated reservoir volume (Same as drainage area) 

    Absolute temperature, 
o
R 

     Time, days 

         Dimensionless time based on     and    

         Dimensionless time based on     and    

     Pore volume, rcf 

     Fracture width, ft 

     Effective perforated interval (Effective well length), ft 

      Fracture half length, ft 

    Drainage area half-length (rectangular geometry, assumed to be 

same as hydraulic fracture half length, ft 

     Dimensionless reservoir half-length or dimensionless hydraulic 

fracture half length, ft 

  Compressibility factor 
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Greek symbols 

  Dimensionless interporosity parameter 

  Dimensionless storativity ratio 

  Porosity, fraction 

 

Subscripts 

    End of the data point of the linear straight line 

    End of straight line of the square root of time plot or end of half-

slope line of log-log plot 

     Maximum 

    Minimum 

  Macro-fracture (hydraulic fracture) 

  Micro-fracture (natural fracture) 

  Gas 

  Initial condition 

  Matrix 

  Oil 

   Total system 

  Total system 

   Bottomhole flowing  
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CHAPTER I  

INTRODUCTION 

 

Shale gas/oil reservoirs have become an important source of energy in the United 

States with an updated production technique. Due to a very low permeability, producing 

shale gas/oil reservoirs requires well stimulation treatment and horizontal well 

technique. Recently, producing shale reservoirs through multi-transverse hydraulic 

fractures in horizontal wells has become a standard production strategy. However, the 

understanding of shale gas/oil characteristics and behaviors are still inadequate to 

perform reservoir management effectively.  

There have been many attempts to characterize the multi-transverse hydraulic 

fractures horizontal shale well including numerical, analytical, and empirical methods. 

While the numerical method is considered the most accurate way to characterize model, 

it is time consuming to analyze a number of wells. The analytical method is an effective 

method for analyzing wells when it fits with the mathematical model. The empirical 

method is the fastest and easiest way to forecast production and to estimate reserves; 

however, this method does not explain the characteristics of the reservoir. 

 Based on the analytical method, many authors have tried to come up with a 

suitable and practical mathematical model to represent a shale well. Some (Bello and 

Wattenbarger 2008, 2009, 2010) utilized the dual porosity model to represent the model. 

 

____________ 

This thesis follows the style of SPE Reservoir Evaluation & Engineering. 
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Some (Ozkan et al. 2009, Brown et al. 2009, Al-Ahmadi and Wattenbarger 2011) 

utilized the triple porosity model.  

Using the analytical methods to interpret the shale production data correctly 

requires the proper model. Therefore, three models (the linear flow model, the dual 

porosity model, and the triple porosity model will be studied and compared to provide 

the correct interpretation guidelines for these models. 

In this study, three types of model are considered and compared to analyze the 

production data of a shale gas/oil reservoir. The first model is the transient linear 

homogeneous flow which was firstly proposed to analyze a tight gas reservoir by 

Wattenbarger and El-Banbi (1998). The second model is the transient linear dual 

porosity model given by El-Banbi (1998) and is applied to multi-transverse hydraulic 

fractures horizontal well by Bello (2009). The last model is the fully transient linear 

triple porosity model proposed by Al-Ahmadi and Wattenbarger (2011).  

 

1.1 Objectives 

 The main objective of this research is to develop the analytical solutions and 

interpretation guidelines in order to interpret production data of shale gas/oil reservoirs 

effectively. Verification and derivation of asymptotic equations and associated equations 

from Laplace space for dual porosity and triple porosity models are required in order to 

generate analysis equations. With the interpretation guidelines, various analysis 

equations for different flow periods or different physical properties are guided to use 

with caution. From the examples of interpretation, the possible errors are presented. 
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1.2 Organization of Work 

 This thesis is divided into ten chapters as follows. 

 Chapter I is introduction and objectives of the thesis. 

 Chapter II is the literature review of the linear homogeneous flow model, the 

dual porosity model, and the triple porosity model. 

 Chapter III shows the application of linear homogeneous flow solution to 

interpret the production data of shale gas and oil reservoirs in multi-transverse hydraulic 

fractures horizontal well and the example of production data analysis. 

 Chapter IV shows the theory and associated equations of linear dual porosity 

model in order to interpret shale gas and oil reservoirs. Furthermore, the dual porosity 

model with the assumption of infinite conductivity hydraulic fractures are presented and 

compared with the homogeneous linear flow model. 

 Chapter V shows interpretation guidelines and examples of interpretation of 

shale gas and oil reservoirs in multi-transverse hydraulic fractures horizontal well by 

using transient linear dual porosity model.  

 Chapter VI shows the theory and associated equations of the fully transient triple 

porosity model in order to interpret shale gas and oil reservoirs. New 12 flow regions 

and model characteristic of the triple porosity model are presented. 

 Chapter VII describes the mathematical model and solutions of the triple porosity 

model with infinite conductivity of hydraulic fractures and also compares it with the 

modified dual porosity model. 
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 Chapter VIII shows interpretation guidelines and examples of interpretation of 

shale gas and oil reservoirs in multi-transverse hydraulic fractures horizontal well when 

assuming infinite conductivity hydraulic fractures by using the triple porosity model. 

 Chapter IX shows interpretation guidelines and examples of interpretation by 

using both the transient dual porosity model and the fully transient triple porosity model 

with the assumption of infinite conductivity hydraulic fractures. 

 Chapter X is conclusions and recommendations. 
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CHAPTER II  

LITERATURE REVIEW 

 

This chapter shows the literature review of linear homogeneous flow, dual 

porosity model, and triple porosity model in terms of theory and application to multi-

transverse hydraulic fractures in horizontal shale gas and oil well. 

 

2.1 Linear Homogeneous Flow 

Linear Flow solutions in rectangle of constant pressure case were firstly adapted 

into fractured tight gas reservoir wells to analyze production data by Wattenbarger and 

El-Banbi (1998). It is indicated that the linear flow type curve for constant pressure and 

constant rate cases are difference. End of linear flow or end of half-slope line is specified 

as          for constant rate case and           for constant pressure case. 

Integrating of slope of square root of time plot and end of the half-slope line in log-log 

plot of constant pressure case to interpret production data are introduced and utilized to 

analyze in-place without assuming thickness, matrix permeability and porosity.  

Then, Arevalo-Villagram et al. (2001) showed the production analysis of long 

term linear flow in tight gas wells. It is believed that the production data of tight gas well 

shows transient linear flow for long time because this linear is represented by the flow 

from matrix to high permeability of fractures.  

Ibrahim and Wattenbarger (2005) showed the effect of drawdown on transient 

linear flow of gas and proposed the correction factor according to the level of drawdown 
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in constant pressure condition. Correspondingly, the mathematical solution of tight gas 

well is presented by integrating the slope in square root of time plot equation and time 

end of transient linear flow period with the correction factor. 

After that, the transient linear flow is used as a tool to analyze multi-transverse 

hydraulic fractures in horizontal well.  

 

2.2 Dual Porosity Model 

Analytical model of naturally fractured reservoirs which is defined by dual 

porosity model was firstly introduced in petroleum field by Warren and Root (1963). 

Warren and Root showed the analytical solution of natural fractured radial infinite-acting 

reservoir in Laplace space and approximation in real domain. The model is assumed as 

an idealized sugar cube model with pseudo-steady state flow in matrix system. The 

solution is applied for pressure transient testing of reservoir composing two mediums 

which have distinct properties, e.g. a naturally fractured or vugular reservoir. In the 

naturally fractured system, the primary porosity is matrix system which is high 

storativity and low flow capacity and the second porosity is fracture system which low 

storativity and high flow capacity. The liquid flow to the well is assumed occurring in 

fractures only and matrix feeds liquid to the fractures. Importantly, they presented two 

dimensionless parameters,   and  , which is sufficient to characterize the reservoir 

model.   is represented the storativity of the fracture system.   is related to the 

heterogeneity of flow capacity of two mediums. After that, Da Prat et al. (1981) 
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proposed type curves of dual porosity system based on the model presented Warren and 

Root (1963) for constant pressure case in both infinite and closed systems.  

Kazemi (1969) proposed a matrix transient flow model of dual porosity model by 

using numerical solution. The model is represented by slab matrix and horizontal 

fracture model of radial closed reservoir which is composed of logarithmic grid size for 

matrix layers and a thin layer of fracture.  The result shows that the new transient dual 

porosity and pseudo-steady state dual porosity models give the similar result except the 

transition period in the semi-log plot for both drawdown and buildup test.   

De Swaan-O (1976) developed the analytical solution of radial infinite naturally 

fractured reservoir for both early and late time regions. The model assumes transient 

flow from the matrix system to fracture system. The result shows two parallel straight 

lines with analytical descriptions. There is no analytical description of the transition 

period between two straight lines.  

Lai et al. (1983) proposed transient flow solution between matrix and fracture 

system of 3-D case by considering of three sets of orthogonal fractures. Matrix block is 

represented by a cube and the flow in cubes can be approximated by one-dimensional 

basic model or represented by one-sixth of a cube. Radial system is defined the fluid 

flow from the system into the well. Laplace solution of three outer boundary conditions 

(infinite, closed, and constant-pressure boundary) and asymptotic solutions for early and 

late time were presented.  

Serra et al. (1983) proposed the analytical solution of dual porosity model in 

Laplace space and approximation in real domain. The model assumes the radial infinite 
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slab reservoir with equally spacing horizontal fractures same as De Swaan-O (1976) and 

transient flow in matrix model. Three flow regimes were introduced. Regime 1 and 3 are 

the classical two straight lines in semi-log plot. Regime 2 was introduced to represent the 

transition between two straight lines.  

 Chen et al. (1985) used the model of Kazemi (1969) and De Swaan-O (1976) but 

considered in closed reservoir. The model shows five possible flow regimes in 

drawdown data which is extended from three flow regimes proposed by Serra et al. 

(1983). From previous infinite reservoir, flow regime 1 is represented transient in 

fractures, flow regime 2 is represented transient in both fractures and matrix, flow 

regime 3 is represented transient in fractures and PSS in matrix by presence of no-flow 

boundary at the center line of matrix. From the existing of bound reservoir, two new 

flow regimes and the condition of whether regime 3 or 4 will be found are also 

presented. Flow regime 4 is represented transient in matrix and PSS condition in 

hydraulic fractures and flow regime 5 occurs when flow affects from both matrix and 

fracture boundaries. 

Ozkan et al. (1987) presented the five possible flow regimes and their asymptotic 

equations of the vertical well penetrating the cylindrical closed boundary fractured 

reservoir and producing under constant pressure condition. The analytical solution in 

Laplace space for both infinite and closed boundary reservoir and associated asymptotic 

equations are presented based on transient radial system. 

Previously, all the models are represented for radial reservoir system. Then, the 

dual porosity model for a linear flow was firstly presented by El-Banbi (1998). New 
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analytical solution of linear flow includes four different inner boundary conditions 

(constant rate, constant pressure, constant rate with WBS and skin, and constant pressure 

with skin) and three different outer boundary conditions (infinite reservoir, closed 

reservoir, and constant pressure outer boundary reservoir). The five different reservoir 

models were also proposed (homogeneous, PSS, transient slabs, transient match-sticks, 

and transient cubs). It is also showed that the reservoir function,     , that is used in 

Laplace space is the same for both radial and linear systems. In addition, linear flow and 

bilinear flow which are a half-slope line and a quarter-slope line, respectively in the log-

log plot were introduced.   

Normally, dual porosity model was intentionally used in naturally fractured 

reservoir. Later, dual porosity model has been adapted to use for a fractured well and 

multi-transverse hydraulic fractures in horizontal well which have two different storage 

and flow capacity. In this case, the second porosity is characterized by hydraulic 

fractures. 

Bello and Wattenbarger (2008), Bello (2009), Bello and Wattenbarger (2009), 

and Bello and Wattenbarger (2010) presented a mathematical model for analyzing the 

multi-transverse hydraulic fractures in horizontal shale gas well. This model is based on 

linear dual porosity model given by El-Banbi (1998). Five flow regions and their 

asymptotic equations are presented by solving analytical solution in Laplace space for 

both constant rate and constant pressure inner boundary cases. Nevertheless, only region 

4 equation is used to analyze the long term linear line in production data because it is 

believed that the long term linear flow in production data is represented by transient 



 10 

drainage from matrix to fractures. Also, it is showed that the transient linear 

homogeneous flow and the region 4 of transient dual porosity model exhibit the same 

response. Furthermore, a skin effect for region 4 is observed from the unanticipated early 

production curve that does not exhibit a linear flow behavior. As a result, the new 

mathematical solution included skin effect of region 4 of linear dual porosity was 

proposed and a procedure to analyze the field data. 

Al-Ahmadi et al. (2010) presented an application of linear flow analysis to 

multiple hydraulic fractures in horizontal shale gas wells in constant well flowing 

pressure case. Two linear dual porosity models are proposed. One is a transient slab 

model. The other is a transient cube model. The second model assumes the natural 

fracture system have created after proceeding hydraulic fracture treatment. The 

mathematical solution applies the in-place equation incorporated linear flow region 4 

equation and time end of transient linear flow period given by Ibrahim and Wattenbarger 

to the two models. 

Samandarli et al. (2011a and 2011b) applied the regression method to history 

match the production data of multi-transverse hydraulic fractures in horizontal shale gas 

well by using the solutions given by Bello and Wattenbarger (2010).   

 

2.3 Triple Porosity Model 

The triple porosity model is the model composed of three distinct property 

mediums. Triple porosity model can be used to represent one fracture system and two 

matrix systems which have different properties or one matrix system and two fracture 
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systems which have different properties. The triple porosity model was firstly introduced 

to the petroleum field by Abdassah and Ershaghi (1986). Two geometrical 

configurations are used for investigation which are strata model and uniformly 

distributed blocks model. The transient flow solution in fracture system and two matrix 

systems with distinct properties are assumed in both models. Strata-type model is 

represented by the horizontal matrix layers separated by fractures. While uniformly 

distributed blocks model is based on the basic model of Lai et al. (1983). 

Jalali and Ershaghi (1987) extended the Abdassah and Ershaghi (1986) model. 

This model, each matrix system (from two distinct properties) has own porosity, 

permeability, total compressibility, thickness, and flow regime which is either PSS or 

transient flow. 

Cinco-Ley and Meng (1988) introduced the analytical solution in Laplace space 

and the approximation solution of the trilinear flow (exhibits 1/8 slope in a log-log plot) 

from the model of finite conductivity vertical fractures in dual porosity reservoirs. Two 

matrix flow models which are transient matrix linear flow and pseudo steady state matrix 

linear flow were also presented. 

Al-Ghamdi and Ershaghi (1996) introduced the triple porosity model with one 

matrix system and dual fracture system to differentiate between microfractures and 

macrofractures in radial system. Two models were proposed. One is modified from 

Abdassah and Ershaghi (1986) model. The other is subdivided into two sub models – 

flow to the well comes from macrofractures only and flow to the well comes from both 

macro and microfractures. Liquid flow is assumed to be sequential which is matrix feeds 
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liquid to microfractures and microfractures feeds liquid to macrofractures and the flow 

between the two fracture systems and between the matrix and the microfracture systems 

are PSS. 

 Liu et al. (2003) proposed a tri-continuum medium consisting of fractures, rock 

matrices, and lithophysal cavities. The model defines radial flow to well occurs through 

the homogeneous fracture while matrices and cavities supply fluid to the fractures. The 

interporosity flow is assumed to be PSS condition. 

Wu et al. (2007) offered analytical approach in naturally fractured vuggy 

reservoirs based on triple-continuum model (Liu et al. 2003) which is consisting of large 

fractures feed the well with radial flow, various sized vugs which are locally connected 

to fractures, and rock matrix which is locally connected to fractures and/or vugs. PSS 

flow condition is used for flow between continuums. 

Ozkan et al. (2009) and Brown et al. (2009) introduced a trilinear-flow model to 

interpret fractured horizontal well in unconventional reservoir. The model includes linear 

flows in three connecting flow regions which are the outer reservoir, the inner reservoir 

between fractures, and the hydraulic fracture. The analytical model is presented in 

Laplace space and approximation asymptotic equations. The inner reservoir can be 

identified as homogeneous, PSS dual porosity model, or transient dual porosity model by 

using     . 

Leguizamon and Aguilera (2011) presented the method for optimizing hydraulic 

fracturing design in naturally fractured tight gas by using 3D fracture simulation. The 

analytical solution is recommended to acquire preliminary estimation of key parameters. 



 13 

Al-Ahmadi and Wattenbarger (2011) proposed a new triple porosity model for 

fractured horizontal wells in naturally fractured reservoir. The model is composed of 

three contiguous porous mediums with the sequential flow. Matrix feeds natural 

fractures and natural fractures feed hydraulic fractures and only hydraulic fractures 

produce to the well. The new solutions are derived in Laplace space for linear reservoir 

with 4 sub models based on the interporosity flow assumption between mediums – fully 

transient model, mixed transient and PSS models, and fully PSS model. Model 1 (fully 

transient model) is used to analyze multi-transverse hydraulic fractures in shale gas 

horizontal wells by using non-linear regression.  

 

2.4 Quadruple Porosity Model 

 In 2004, Dreier et al. (2004) firstly proposed a quadruple-porosity model 

consisting of a triple-fracture network and a single-matrix system. The model was 

developed in the Laplace space for a laterally infinite slab reservoir. Three types of 

fracture systems are composed of microfractures, macrofractures, and megafractures. 

While microfractures have the most dense and lowest conductivity, megafractures have 

the largest spacing and highest conductivity. The model assumes anisotropic in 

megafractures and isotropic in micro and macrofractures. The paper presented two sub 

models – sequential-feed model and simultaneous-feed model. Only fluid from 

megafractures flows to the wellbore while matrix feeds fluid to microfractures and 

microfractures feed liquid to macrofractures and macrofractures feed liquid to the 

megafractures in sequential-feed model. For simultaneous-feed model, only change from 



 14 

sequential-feed model is matrix can produce to both micro and macrofractures and both 

micro and macrofractures can feed to megafractures. Flow is assumed to be radial in 

megafractures while flow is assumed to be linear in microfractures and macrofractures. 

Furthermore, it is assumed that flow between fractures is transient condition while 

flowing of fracture-matrix is PSS condition. 

 

2.5 SRV 

The Stimulated Reservoir Volume (SRV) is the drainage area of the hydraulic 

fractured horizontal well. In this study, SRV is defined as rectangular geometry limited 

to the hydraulic fractures half-length and effective wellbore drainage length. Also, it is 

assumed that the production of ultra-low permeability reservoirs will come from inside 

the SRV only. This assumption is confirmed in many petroleum literatures. It is noted 

that the Compound Linear Flow (CLF) or Compound Formation Linear (CFL) is the 

fluid flow from non-stimulated volume in direction of perpendicular to the vertical well 

plain.  

Ozkan et al. (2009) used analytical solution of trilinear flow model and showed 

that the effect of outside SRV will not affect the production during the life of the well 

with practical matrix permeability of unconventional reservoir.  

Luo et al. (2010) used streamline simulation and observed that CFL straight line 

slope on log-log reciprocal rate derivative plot depends on the ratio of fracture length 

(2xf) over fracture spacing. However, the starting time of CFL is sensitive to reservoir 

permeability and delays when reservoir permeability decreases. 
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 Anderson et al. (2010) found that the amount of contribution outside SRV 

depends on the matrix permeability and the interface area between SRV and non-

stimulated reservoir. It is showed that with matrix permeability of 1e-6 md, the effect of 

outside SRV shows around 230 years after production and with matrix permeability of 

1e-4 md, the contribution outside SRV appears around 2 years. 

Samandarli et al. (2011a) used the reservoir simulation model of typical shale gas 

well to prove the assumption of no flow outside SRV. The result shows that CLF will 

not occur in 30 years for matrix permeability less than 5E-5 md. 

Nobakht (2011) found that the contribution from the region outside SRV starts at 

tDxf  = 0.01. This means that the time that outside SRV starts contribute depends on 

reservoir properties and length of fracture and is independent of outer reservoir boundary 

and fracture spacing. 
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CHAPTER III  

LINEAR HOMOGENEOUS FLOW MODEL 

 

3.1 Introduction 

 In this chapter, the application of linear homogeneous flow solution to interpret 

the production data of shale gas and oil reservoirs in multi-transverse hydraulic fractures 

horizontal well is reviewed and summarized. Also, the example of production data 

analysis by using linear flow is presented.  

  

3.2 Mathematical Model 

 The model that uses to represent linear flow behavior of the multi-transverse 

hydraulic fractures horizontal well is shown in Figure 1. A horizontal well with multi-

transverse hydraulic fractures is defined by the rectangular model of Stimulated 

Reservoir Volume (SRV) which is limited by uniform hydraulic fracture half-length, ye, 

and effective perforated well length, xe. Matrix blocks are assumed to be uniform and 

idealized as slab. In this case, the hydraulic fractures are assumed to be infinite 

conductivity; therefore, only linear flow from matrix to hydraulic fractures is considered.  
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Figure 1 – Sketch of homogeneous linear flow in multi-transverse hydraulic 

fractures horizontal well. 

 

 

3.3 Modified Mathematical Solutions of Homogeneous Linear Flow 

As discussed in the literature review, linear flow solution was originally applied 

to tight gas fractured reservoir based on Wattenbarger and El-Banbi (1998). To apply the 

equations to multi-transverse hydraulic fractures horizontal well, the definition of 

parameters have to be modified. The derivation is shown in Appendix A and the 

summary of equations for constant pressure case is given. 
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3.4 Interpretation Guidelines 

 The interpretation of homogeneous linear flow solution focuses only for linear 

flow from matrix block to hydraulic fractures. The flow in hydraulic fractures is not 

considered because of assuming infinite conductivity of hydraulic fractures. Therefore, 

the bilinear flow (considering flow in hydraulic fractures) or a quarter slope of log-log 

plot that shows in the production profile cannot be interpreted by homogeneous linear 

flow solution. Furthermore, from the industrial practice that producing at constant 

wellhead pressure; the constant pressure solutions are applied. 

 Two production scenarios and interpretation guidelines are given. 

 

3.4.1 Only linear flow period is found 

    has to be known 
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    can be found from the slope of the square root of time plot,        . The 

equations of gas and oil are given, respectively by 
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    √  √      

 

       
 

.................... (3. 7) 

 In-place can be calculated from volumetric equation. 

 In case there is high uncertainty about the value of   , it is recommend to 

calculate the minimum hydraulic fracture half-length,       .        can be 

calculated from the last point,      and slope of the square root of time plot. 
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3.4.2 Linear and BDF periods are found 

    can be calculated from the end of straight line of the square root of time plot, 

     and slope of the square root of time plot,        . 
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    can be calculated from     , as given by 

        
  
        

    
 

.................... (3. 12) 

 In-place can be calculated from volumetric equation. 

 

3.5 Application to Field Example 

 Field production plot and data of the multi-transverse hydraulic fractures 

horizontal well, well#314, is shown in Appendix B.  In this interpretation, skin effect 

and gas adsorption are neglected. 

 To analyze production data of this well, interpretation guidelines of the 

production scenario case 2 (Linear and BDF periods are found) are used.  

From Eq. 3.10,    is 186 ft. 

From Eq. 3.12,    is 1.3E-4 md. 

                       .................... (3. 13) 

     is 2.7 Bscf 
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CHAPTER IV  

LINEAR TRANSIENT DUAL POROSITY MODEL 

 

4.1 Introduction 

 In this chapter, the linear transient dual porosity model proposed by El Banbi 

(1998) is investigated to consider as a tool using interpret the production data of shale 

gas and oil reservoirs in multi-transverse hydraulic fractures horizontal well. Previously, 

this linear dual porosity model has already been studied and applied for shale gas well by 

Bello (2009). Also, five regions and the asymptotic equations have been presented. 

Furthermore, the dual porosity model with the assumption of infinite conductivity 

hydraulic fractures are presented and compared with the homogeneous linear flow 

model. 

 In this work, the theory of linear dual porosity model to interpret shale gas and 

oil reservoirs is reviewed and summarized. Moreover, the mathematical model of the 

asymptotic equations is re-derived systematically to fit the purpose of finding conditions 

and periods of each region. The characteristic of the dual porosity model is presented 

clearly with the specific conditions. 

  

4.2 Mathematical Model 

The dual porosity model that uses to represent flow behavior of the multi-

transverse hydraulic fractures in horizontal well is shown in Figure 2. Same as linear 

homogeneous flow model, a horizontal well with multi-transverse hydraulic fractures is 
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defined by the rectangular SRV and matrix blocks are assumed to be uniform and 

idealized as slab. In this case, the hydraulic fractures have finite conductivity; therefore, 

the bilinear flow which is combining transient linear flow from matrix to hydraulic 

fractures and hydraulic fractures to well is considered. Two transient linear flows of 

hydraulic fractures and matrix are considered as well. 

 

 

 

Figure 2 – Sketch of dual porosity model in multi-transverse hydraulic fractures 

horizontal well. 
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4.3 Dimensionless Variables Definition 

 Referring to Warren and Root (1963), dual porosity model can be identified by 

two dimensionless variable,   and  . In this study, the definition of these two variables 

and other dimensionless variables are modified as given. 
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In case,          , 

      
          

        
  

.................... (4. 10) 

where 

    
         

     
 

.................... (4. 11) 

 

4.4 Mathematical Solution and Approximation (Dimensionless) 

In this study, it is based on the linear transient dual porosity model proposed by 

El-Banbi (1998). The mathematical derivation details of the model are shown in 

Appendix C. Bello (2009) showed five possible regions to represent the linear transient 

dual porosity model. The asymptotic equation of each region (region 1 – 4) has also been 

derived; however, the derivation is not a systematic approach. Therefore, the asymptotic 

equations were re-derived to fit the purpose of finding conditions and periods of each 

region. The completed derivations of re-derived asymptotic equation and periods of each 

region, and also condition of possible region are presented in Appendix D. 

 

4.4.1 Asymptotic Equations 

From constant pressure inner boundary and closed outer boundary, the Laplace 

solution is given by  
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For transient slab model, 
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.................... (4. 13) 

The asymptotic equations are derived from the assumption of approximation terms in 

Laplace space. The summary of the assumptions and the asymptotic equations of the 

four regions in constant pressure case are shown in Table 1.  

 

 

Table 1 - Assumptions and final asymptotic equations region 1 – 4 of the transient 

linear dual porosity model (constant pressure) 

 

 

 

Region 

Estimated Terms 

Asymptotic Equations 
   ̅̅ ̅̅ ̅      

coth (√         )    tanh (√
3 

   

 1     ) 

1 1    -    =
√  

2 √ 

1

√     

 

2 1 - 1    =
   

1/4

10.133
 

1

     
1/4

 

3 1 - √
3 

   

 1         =
1

2 √ 
 

1

√     

 

4 
1

√         

 - 1    =
   

2 √ 
√
   

3

1

√     
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4.4.2 Conditions and Periods of Dual Porosity Characteristic 

For transient linear dual porosity model in closed boundary, only three 

dimensionless parameters,       , and    , control the curve characteristic. In this 

study, one sensitivity set with 5 cases was run to see the curve characteristic of dual 

porosity. The value of     and    are fixed at 1E-5 and 1E-3, respectively. The 

sensitivity run is played with the value of     which is      ,          ,     

   ,           , and          for run 1 – 5, respectively. All of the runs (5 runs) 

are shown that each region has their specific conditions to happen except region 1 which 

can be seen in any run. From this sensitivity set, dual porosity can be defined by 5 

characteristic curves as shown in Figure 3. The characteristic of dual transient porosity 

curve can be defined by 5 conditions in term of     as follows. 

1.     √
   

   
, region 1 and 4 are observed 

2.     √
   

   
, region 1 and 4 are observed 

3. √
   

   
     √

 

   
, region 1, 2, and 4 are observed 

4.     √
 

   
, region 1 and 2 are observed 

5.     √
 

   
, region 1, 2, and 3 are observed 
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Figure 3 – Characteristic curves of transient linear dual porosity model with closed 

boundary in dimensionless form 

 

 

From the assumptions of each asymptotic equation and check with the sensitivity 

run case, some of starting time and end time of each region in constant pressure case can 

be determined as following. 

Region 1 – The end of region 1 is at       
   
    

  
 only when     √

   

   
. 

 Region 2 – The end of region 2 is at       
   
     

    
 only when √

   

   
     

√
 

   
 and the end of region 2 is at       

 

   
 only when     √

 

   
. 

 Region 3 – The start and the end of region 3 is at       
 

   
 and       

   
 

  , 

respectively. 
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 Region 4 – The start of region 4 is at       
   
     

 
 only when √

   

   
     

√
 

   
 and the end of region 4 is at       

 

     
.  

 

4.5 Mathematical Solution and Approximation (Dimensional) 

To make it practical, the dimensional parameter should be used for understanding 

the physical meaning and interpretation. The asymptotic equations of gas and oil for 

analysis are showed in Table 2 and Table 3, respectively. The physical meaning of each 

region has been described by Bello (2009). However, region 3 is always described by the 

homogeneous reservoir. Actually, region 3 is considered as transient linear flow of total 

system which is dominated by hydraulic fractures flowing to the well. Therefore, all the 

regions are summarized as followings. 

 

4.5.1 Region 1 

This region represents the early linear flow period of the transient dual porosity 

model. This region is showed in the first half slope of the log-log plot. This linear flow 

behavior represents the transient linear flow in the hydraulic fractures producing fluid to 

the well. With the high conductivity hydraulic fractures, the transient period is expected 

to be very short and impossible to see in daily production data.  
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4.5.2 Region 2 

This region represents the bilinear flow of the dual porosity model. This region is 

showed in a quarter slope of the log-log plot. This bilinear flow is formed by occurring 

two transient linear flows simultaneously which are transient linear flows in hydraulic 

fracture system (from hydraulic fractures to wellbore) and matrix system (from matrix 

blocks to hydraulic fractures). This occurs while the transient flow dominated period in 

hydraulic fractures has not ended while the transient flow dominated period in matrix 

still appears. This region will not happen when infinite conductivity of hydraulic 

fractures is considered. 

 

4.5.3 Region 3 

This region presents the late linear flow period of the dual porosity model. It 

shows a half slope line in the log-log plot. It represents the transient linear flow of total 

system which is dominated in hydraulic fractures. This occurs when the transient flow in 

matrix has ended while transient flow in hydraulic fractures still presents. This case will 

happen only when the conductivity of hydraulic fractures is very low comparing with 

flow capacity of matrix. 

 

4.5.4 Region 4 

This region presents the late linear flow period of the dual porosity model. It 

shows a half slope line in the log-log plot. It represents the transient linear flow of total 

system which is dominated in matrix, while the transient flow in hydraulic fractures is 
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already end. This case will happen when  
  

  
 

 

 
√

  

  
  or conductivity of hydraulic 

fractures is quite high comparing with flow capacity of matrix. 

 

4.5.5 Region 5 

 This region expresses the BDF or declined period of the dual porosity model that 

all boundaries are dominated and the influence of transient periods of both hydraulic 

fractures and matrix have faded. The boundary is defined by the SRV and the artifact no-

flow boundary (interference effect) between hydraulic fractures. 

 

 

Table 2 – Asymptotic equations of dual porosity model for gas analysis in 

dimensional (constant pressure) 

 

 

Region Asymptotic Equation for Gas Analysis 

1 – 1
st
 Linear   =

     

1260 
   √  √         

1

√ 
 

2 – 1
st
 Bilinear   =

     

2183.7 
     

1/2
  

1/4 1

√  

[         ]
1/4

1

 1/4
 

3 – Infinite-acting   =
     

1260 
   √  √         

1

√ 
 

4 – 2
nd

 Linear   =
     

630 
   √  

  
  

 √         
1

√ 
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Table 3 – Asymptotic equations of dual porosity model for oil analysis in 

dimensional (constant pressure) 

 

 

The condition of dual porosity that is considered in this study is the criteria of 

whether region 3 or region 4 appears (    √
 

   
 ) because the possible linear flow that 

shows in production data is believed to be either region 3 or region 4. The criteria of 

existing either region 3 or region 4 in dimensional is given by 

  
  

 
 

 
√

  

  
 

.................... (4. 14) 

or 

  
  

 
 

 
     

.................... (4. 15) 

where 

    
       

     
 

.................... (4. 16) 

Region Asymptotic Equation for Oil Analysis 

1 – 1
st
 Linear   =

  

125.1 √ 
   √  √        

1

√ 
 

2 – 1
st
 Bilinear   =

  

216.8 

1

 3/4
     

1/2
  

1/4 1

√  

[        ]
1/4

1

 1/4
 

3 – Infinite-acting   =
  

125.1 √ 
   √  √        

1

√ 
 

4 – 2
nd

 Linear   =
  

62.55 √ 
   √  

  
  

 √        
1

√ 
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Also, the time of ending region 3 and region 4 in dimensional are given by 

      
  

          
            

 
.................... (4. 17) 

           
  
          

  
 

.................... (4. 18) 

 

4.6 Sensitivity Analysis of Dimensional Parameters 

 Various dimensional parameters,                  , are played sensitivity 

analysis to see the effect of each parameters on the production curve. The sensitivity 

plots and analysis of these parameters are showed in Appendix E. 

 

4.7 Dual Porosity Model with Infinite Conductivity Hydraulic Fractures and 

Homogeneous Linear Flow Model 

 Referring to the assumption of the dual porosity model, only two distinct medium 

systems are defined as hydraulic fracture and homogeneous matrix systems. In this case, 

the infinite conductivity of hydraulic fractures is assumed. Therefore, only matrix 

medium is considered. This can be implied that only transient linear flow in matrix can 

be presented in the production curve or only region 4 can be found in the linear period of 

production data.  

 Then, the model assumption of dual porosity model with infinite conductivity 

hydraulic fractures can be applied by the concept of homogeneous linear flow model in 

multi-transverse hydraulic fractures horizontal well. This can be confirmed by the 
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mathematical model comparison. The following comparison is used the gas equation for 

proving. 

 The asymptotic equation of the transient linear flow in matrix of the dual porosity 

model (region 4) is given as: 
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.................... (4. 19) 

 The asymptotic equation of the homogeneous linear flow in a fractured well is 

given as: 
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 Some modifications have to be done to correct the dimension of a fractured well 

to a multi-transverse fractures in horizontal well as suggested in Appendix A. In this 

case,    of a hydraulically fractured well is converted to       of a multi-transverse 

hydraulic fractures horizontal well. 
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Assume       and         

Then, the asymptotic equation of the modified homogeneous flow for the multi-

transverse hydraulic fractures well is same as the Eq. 4.19. 
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CHAPTER V  

APPLICATION OF THE DUAL POROSITY MODEL 

 

5.1 Introduction 

 In this chapter, the linear transient dual porosity model is used for production 

data interpretation of shale gas and oil reservoirs in multi-transverse hydraulic fractures 

horizontal well. The interpretation guidelines and the example of interpretation are 

presented.  

From dual porosity model, five flow regions have been proposed as discussed 

earlier. Normally, the second linear flow (region 4) or transient linear effect of matrix 

flow is mainly used in data interpretation. However, sometimes, misinterpreting can be 

occurred by unawareness of existing of different flow region.  The following summary 

theory of dual porosity model, theoretical dual porosity model cases, and field example 

will illustrate the procedures and cautions of interpreting the data. 

 

5.2 Summary of Dual Porosity Model for Interpretation  

 For daily production data interpretation, the first linear period (linear transient 

period in hydraulic fractures) is not supposed to be presented. Therefore, either region 3 

or region 4, which is represented for second linear period, is supposed to be showed by 

the linear period (a half-slope in log-log plot) in daily production data. The criteria of 

either region 3 or 4 will be found is given by 
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√

  

  
. 
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 Region 3 will be found only when 
  

  
 

 

 
     or  

  

  
 

 

 
√

  

  
.  

 Region 4 will be found only when 
  

  
 

 

 
     or  

  

  
 

 

 
√

  

  
.  

The summary of dual porosity model characteristic can be illustrated in Figure 4 and 

Figure 5 which are dimensionless and dimensional forms, respectively.  

 The associated equations of dual porosity model for data interpretation are 

summarized in Table 4, Table 5, and Table 6. 

 

 

 

Figure 4 – Summary of dual porosity model characteristic for interpretation in 

dimensionless form 
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Figure 5 – Summary of dual porosity model characteristic for interpretation in 

dimensional form 

 

 

Table 4 – Summary of associated equations for data interpretation of region 4 

 

Region 4 Equation Unknown 

Asymptotic Equation 

for gas 

     

  
=

630 

   √  

  

  

1

√         
 √    , (  ) 

Asymptotic Equation 

for oil 

  

  
=

62.55 √ 

   √  

  

  

1

√        
 √    , (  ) 

End of region 4     4  9.874
  

2           
  

 (  ) 

Combine Slope and 

End of region for gas 
  =

200.5  

             

1

 𝑙   4
√    4  

Combine Slope and 

End of region for oil 
  =

19.9 

            

1

 𝑙   4
√    4  
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Table 5 – Summary of associated equations for data interpretation of region 3 

 

 

 

Table 6 – Summary of associated equations for data interpretation of region 2 

 

 

 

 

Region 3 Equation Unknown 

Asymptotic Equation 

for gas 

     

  
=

1260 

   √  

1

√         
 √     

Asymptotic Equation 

for oil 

  

  
=

125.1 √ 

   √  

1

√        
 √     

End of region 3     3  
  

2         
0.00633 × 22  

   ,    

Combine Slope and 

End of region for gas 
  =

200.5  

             

1

 𝑙   3
√    3  

Combine Slope and 

End of region for oil 
  =

19.9 

            

1

 𝑙   3
√    3  

 

Region 2 Equation Unknown 

Asymptotic Equation 

for gas 

     

  
=

2183.7 

     
1/2

  
1/4

√  

[         ]
1/4

  1/4   , (  ) 

Asymptotic Equation 

for oil 

  

  
=

216.8   3/4

     
1/2

  
1/4

√  

[        ]1/4
  1/4   , (  ) 

Intersection of region 

2 and region 4 
    2,4 = 144.37          

  
4

  
2

  

  
2    ,   , (  ) 

Intersection of region 

2 and region 3 
    2,3 = 9.023          

  
2

  
 (  ) 
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5.3 Interpretation Guidelines 

 The interpretation of dual porosity model focuses for possible bilinear and 

second linear flow. The early linear flow is supposed not to be presented in daily 

production data. Therefore, the possible five production scenarios are listed in Table 7. 

 Please note that in this interpretation guidelines, the total compressibility, ct, is 

assumed to be same for both hydraulic fracture and matrix systems in order to provide 

the simplify equations for interpretation. Moreover, since the production of shale gas/oil 

reservoirs normally produce at constant pressure, constant pressure solutions are applied. 

 

Table 7 – Five possible production scenarios in daily production data 

 

 

5.3.1 Production Scenario Case 1 

 There are two possible answers from interpretation but only one answer is 

correct. Two possible answers are calculated from region 4 and region 3 

asymptotic equations. 

 Normally, it is believed that 
  

  
 

 

 
     or high conductivity in hydraulic 

fractures, region 4 asymptotic equation is used.  

Case Bilinear Linear BDF 

1  Yes  

2  Yes Yes 

3 Yes   

4 Yes Yes  

5 Yes Yes Yes 
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 It is recommend to calculate the minimum hydraulic fracture half-length,       . 

       can be calculated from the last point,      and slope of the square root of 

time plot. 

 

Choice 1 – Region 4 

   has to be known 

   can be found from slope of the square root of time plot,         

The equations of gas and oil are given, respectively by 

   
        

   √  

 

√     

 

       
 

.................... (5. 1) 

   
      √    

   √   √    

 

       
 

.................... (5. 2) 

In case the value of    is not certain, maximum    can be find from      

            
  
       
    

 
.................... (5. 3) 

 

Choice 2 – Region 3 

   cannot be determined but minimum    can be calcualated 

    can be found from slope of the square root of time plot,         

The equations of gas and oil are given, respectively by 

√   
     

   

 

√     

 

       
 

.................... (5. 4) 
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√   
      √ 

   

 

√    

 

       
 

.................... (5. 5) 

 

Minimum    

The equations of gas and oil are given, respectively by 

       
       

         

√     

       
 

.................... (5. 6) 

       
     

        

√    

       
 

.................... (5. 7) 

 

5.3.2 Production Scenario Case 2 

 It is impossible to determine whether region 3 or region 4 is found 

 Unique solution of    and in-place whether region 3 or region 4 is assumed 

 By combining asymptotic equation and end of straight line on square rood of 

time plot, calculated    will be the same for both region 3 and region 4 cases   

 The value of    is not required 

For gas 

   
       

         

√     

       
 

.................... (5. 8) 

             
            

    

√    

       

       
 

  
 

.................... (5. 9) 
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For oil 

   
     

        

√    

       
 

.................... (5. 10) 

             
          

  

√    

       

        .................... (5. 11) 

In case assuming region 4 is found,    can be calculated from 

        
  
       
    

 
.................... (5. 12) 

 

5.3.3 Production Scenario Case 3 

    can be calculated with assuming    

    cannot be determined 

The equations of gas and oil are given, respectively by 

√   
       

     
   

√  

[     ]   
 

       
 

.................... (5. 13) 

√   
           

     
   

√  

[    ]   
 

       
 

.................... (5. 14) 

 

5.3.4 Production Scenario Case 4 

 Whether region 3 or 4 can be determined 

    can be calculated only region 4 is found 
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Procedures: 

1. From bilinear flow period, find    from region 2 equation with assuming  . 

(Eq. 5.13 or Eq. 5.14) 

2. From linear flow period, find    from region 3 equation. (Eq. 5.4 or Eq. 5.5) 

3. Check whether    from region 2 is close to region 3 or not.  

4. If yes, the linear flow period is represented by region 3 and    cannot be 

determined. However, minimum    can be calculated from Eq. 5.6 or Eq. 5.7. 

If no, the linear flow period is represented by region 4 and    can be calculated 

from region 4 equation (Eq. 5.1 or Eq. 5.2). The value of    is need. If the value 

of    is not certain, calculating maximum    by Eq. 5.3 is recommended. 

 

5.3.5 Production Scenario Case 5 

 Interpret the data as production scenario case 2. 

 Determine whether region 3 or 4 is found by using the same method as 

production scenario case 4. 

 

5.4 Examples of Dual Porosity Interpretation 

 

5.4.1 Well D01 

The theoretical model of multi-transverse hydraulic fractures in horizontal well 

of shale oil reservoir was generated by using dual porosity model. The data table and 

generated daily production data are shown in Table 8 and Figure 6 below. This well 
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represents a very good fracturing job with effective hydraulic fracturing of 0.4 md (with 

fracture width 0.01 ft, intrinsic permeability is 10,000 md). The OOIP from this case is 

5.48 MMSTB. The linear flow period of this well is represented by region 4. 

 

Table 8 – Well D01 data 

 

 

 

 

Figure 6 – Production data and square root of time plots of well D01 

 

  

Thickness h 200 ft Hydraulic Fracture Half-Length y e 500 ft

Perforation Interval x e 5000 ft Hydraulic Fracture Effective Permeability k F 0.4 md

Total Porosity ɸ 0.05 Hydraulic Fracture Width w F 0.01 ft

Hydraulic Fracture Spacing L F 250 ft Hydraulic Fracture Intrinsic Permeability k F,in 10,000 md

Number of Hydraulic Fracture n F 20 Hydraulic Fracture Porosity ɸ F 0.5

Matrix Permeability k m 1.0E-05 md Matrix Porosity ɸ m 0.05

Water Saturation S w 0.2 Viscosity m 1.3 cp

Formation Volume Factor B o 1.3 rcf/scf Total Compressibility c ti 2.0E-07 psi-1

Initial Pressure p i 3000 psia Bottomhole Flowing Pressure p wf 500 pisa
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 To simulate the real situation when interpreting data, the provided information 

for interpretation is same as provided data except hydraulic fracture half-length,   , and 

hydraulic fracture effective permeability,   . 

 To analyze production data of this well, interpretation guidelines of the 

production scenario case 2 (Linear and BDF periods are found) are used.  

From Eq. 5.10,    is 497 ft. 

From Eq. 5.11,      is 5.38 MMSTB 

In case, it is believed that region 4 is found,    is 1.02E-5 md. from Eq. 5.12. 

 

5.4.2 Well D02 

 Another theoretical well was generated with the data as showed in Table 9 and 

the production data was generated only 1,000 days as showed in Figure 7. No deviation 

from the half-slope line on log-log plot. The linear flow period is represented by 

region 3.  

 

Table 9 – Well D02 data 

 

 

Thickness h 200 ft Hydraulic Fracture Half-Length y e 500 ft

Perforation Interval x e 5000 ft Hydraulic Fracture Effective Permeability k F 0.0001 md

Total Porosity ɸ 0.05 Hydraulic Fracture Width w F 0.01 ft

Hydraulic Fracture Spacing L F 100 ft Hydraulic Fracture Intrinsic Permeability k F,in 1          md

Number of Hydraulic Fracture n F 50 Hydraulic Fracture Porosity ɸ F 0.5

Matrix Permeability k m 1.0E-04 md Matrix Porosity ɸ m 0.05

Water Saturation S w 0.2 Viscosity m 1.3 cp

Formation Volume Factor B o 1.3 rcf/scf Total Compressibility c ti 2.0E-07 psi-1

Initial Pressure p i 3000 psia Bottomhole Flowing Pressure p wf 500 pisa
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Figure 7 – Production data and square root of time plots of well D02 

  

 

 The values of hydraulic fracture half-length,   , and hydraulic fracture effective 

permeability,   , are unknown. In this case, the early 10 days of the production data is 

assumed to be skin effect from water flowing back from hydraulic fracturing treatment. 

The interpretation guidelines of the production scenario case 1 (Only linear period is 

found) are used to analyze production data of this well. 

 

Choice 1 – Region 4 is selected  

 Assume    is 10
-4

 md 

 From Eq. 5.2,    is 50 ft. 

 

Choice 2 – Region 3 is selected 

    cannot be determined 

 From Eq. 5.5,    is 10
-4

 md 
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Minimum    

 From Eq. 5.7,        is 442 ft. 

  

 In summary, the last linear line is supposed to be region 3 rather than region 4 

because the calculated    from asymptotic equation of region 4 is much more less than 

the minimum calculated   . Therefore, the exact value of    cannot be determined, only 

minimum value (442 ft) can be found. 

 

5.4.3 Well 314 

 Field production plot and data of the multi-transverse hydraulic fractures 

horizontal well, well#314, is shown in Appendix B. In this interpretation, skin effect and 

gas adsorption are neglected. To analyze production data of this well, interpretation 

guidelines of the production scenario case 2 (Linear and BDF periods are found) are 

used.  

From Eq. 5.8,    is 186 ft. 

From Eq. 5.9,      is 2.7E+3 MMscf 

In case, it is believed that region 4 is found,    is 1.3E-4 md from Eq. 5.12. 

 

5.4.4 Well B-86 

 Field production plot and data of the multi-transverse hydraulic fractures 

horizontal well, well#B-86, is shown in Appendix B. In this interpretation, skin effect 

and gas adsorption are neglected. To analyze production data of this well, interpretation 
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guidelines of the production scenario case 4 (Bilinear and linear periods are found) are 

used. 

1. By assuming    is 1.5E-4 md,    is 2.59E-3 md from Eq. 5.13 or by assuming 

   is 1E-5 md,    is 10E-3 md. 

2. From Eq. 5.4,    is 8.4E-4 md. 

3. The calculated value of    from region 3 equation is not close to the value of    

from region 2 equation; therefore, the late linear flow period is supposed to be 

region 4. 

4. Maximum    from Eq. 5.3 is 2.5E-4 md; then,        from Eq. 5.1 is 131 ft. 

In case the value of    is assumed to be 1E-4 md,    from Eq. 5.1 is 205 ft. 

In case, the value of    is assumed to be 1E-5 md,    from Eq. 5.1 is 649 ft. 
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CHAPTER VI  

LINEAR TRANSIENT TRIPLE POROSITY MODEL 

 

6.1 Introduction 

 In this chapter, the fully transient triple porosity model that proposed as Model 1 

by Al-Ahmadi (2010) is investigated to consider as a tool using interpret the production 

data of shale gas and oil reservoirs in multi-transverse hydraulic fractures horizontal 

well. In this work, new 12 flow regions of the triple porosity model are defined. The 

asymptotic equations are derived in Laplace space. The investigation of model 

characteristic is presented. 

   

6.2 Mathematical Model 

The triple porosity model that uses to represent flow behavior of the multi-

transverse hydraulic fractures in horizontal well is shown in Figure 8. Same as linear 

homogeneous flow model and dual porosity model, a horizontal well with multi-

transverse hydraulic fractures is defined by the rectangular geometry or the SRV. The 

matrix blocks are assumed to be idealized as slab. Three mediums – the hydraulic 

fractures, the natural fractures, and the matrix are assumed to be uniform. The flow 

between mediums is assumed to be linear transient and sequential flow behaviors. 

Matrix feeds liquid to natural fractures and natural fractures feed liquid to hydraulic 

fractures and only hydraulic fractures produce the liquid to the well. Al-Ahmadi (2010) 

also presented 6 flow regimes (3 linear flows, 2 bilinear flows, and BDF period) to 
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represent his triple porosity model (Linear flows from matrix, natural fractures, and 

hydraulic fractures, Bilinear flow from the combination of matrix and natural fractures 

and natural fractures and hydraulic fractures). Actually, the transient linear triple 

porosity model can be represented by 12 flow regimes which are 6 linear flow regions, 4 

bilinear flow regions, 1 trilinear flow region, and BDF period. This can be confirmed by 

deriving asymptotic equation systematically as shown in Appendix H. The asymptotic 

equation of each region can be solved in the Laplace space. The new trilinear flow 

behavior can be presented when all the flows in three mediums (hydraulic fractures, 

natural fractures, and matrix) are dominated by transient linear flow simultaneously. To 

see the transient period of all mediums simultaneously or the trilinear flow period, finite 

conductivity of hydraulic fractures and natural fractures are assumed. The bilinear flow 

can be showed by the conditions of two transients happen simultaneously. The two 

transients can be the combination of hydraulic fractures-matrix, hydraulic fractures-

natural fractures, or natural fractures-matrix. The BDF period is found when all the 

boundaries of the three mediums reaches. 
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Figure 8 – Sketch of triple porosity model in multi-transverse hydraulic fractures 

horizontal well. 
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6.3 Dimensionless Variables Definition 

 In this study, the definition of triple porosity model variables which have not 

mentioned in the dual porosity model are given by 

 

    
       

  
   

 
.................... (6. 1) 

    
       

  
   

 
.................... (6. 2) 

   
       
       

 
        
        

 
.................... (6. 3) 

   
       
       

 
        
        

 
.................... (6. 4) 

   
       
       

 
        
        

 
.................... (6. 5) 

where 

[     ]                             
.................... (6. 6) 

and 

  
   

  
        

 
.................... (6. 7) 

 

    
              

        
 

.................... (6. 8) 
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6.4 Mathematical Solution and Approximation (Dimensionless) 

This study is based on the fully transient triple porosity model proposed as 

Model 1 by Al-Ahmadi et al. (2010). The mathematical derivation details of the model 

are shown in Appendix F. The triple porosity model is validated by numerical method 

as showed in Appendix G. Previously; Samandarli (2011) showed the asymptotic 

equation of 12 flow regimes by using empirical method. Some of the equations are 

wrong due to the curve fitting. In this study, the asymptotic equation of each region is 

solved in Laplace space. Therefore, the exact solution is found. The completed 

derivations of 11 asymptotic equations (6 linear flow regions, 4 bilinear flow regions, 1 

trilinear flow region) for constant pressure case are presented in Appendix H.  

 

6.4.1 Asymptotic Equations 

From constant pressure inner boundary and closed outer boundary, the Laplace 

solution is given by 

 

   ̅̅ ̅̅̅
 

   

√     
    (√         ) 

.................... (6. 9) 

For fully transient slab model (Model 1), 

        
   

  
√          (√      ) 

.................... (6. 10) 

      
   

   
 

   

   
 
 

 
 √

    

   
     √

    

   
 

.................... (6. 11) 
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The asymptotic equations are derived from the assumption of approximation terms in 

Laplace space. The summary of the assumptions and results of the eleven regions are 

shown in Table 10.  

 

6.4.2 Conditions and Periods of Triple Porosity Characteristic 

 For fully transient linear triple porosity model in closed boundary, three medium 

systems affect the curve characteristic. The conditions to distinct one characteristic of 

curve are defined by 5 dimensionless parameters,          ,   , and    , which is 

much more complicate than the dual porosity model which has only 3 dimensionless 

parameters. Moreover, from observation, the curve characteristic of triple porosity model 

can vary more than 20 conditions. Therefore, in this section, only last linear line and the 

possible bilinear line and trilinear line prior to the last linear period are considered only. 

The derivation of conditions and periods associated to the last linear period are showed 

in Appendix H. 

 From observation, the last linear line can be represented by possible 3 regions 

which are region L3, L5, and L6. The possible bilinear can be represented by possible 3 

regions which are region B2, B3, and B4. The possible trilinear is represented by region 

T1. Moreover, it is found most of the time that bilinear and trilinear lines prior to the last 

linear period are combined or overlapped and shows the long transition period which 

cannot be identified the region. 
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Table 10 - Assumptions and final asymptotic equations region 1 – 11 of the fully 

transient linear triple porosity model (constant pressure) 

 

 

 

 

R
eg

io
n

 Estimated Terms 

Asymptotic Equations 

   ̅̅ ̅̅̅            

coth (√        )    tanh √       
3  

   

 tanh √
3   

   
 

L1 1    -      =
√  

2 √ 

1

√     

 

L2 1 - √       
3  

   

 -    =
√  

2 √ 

1

√     

 

L3 1 - √       - √
3   

   
    =

1

2 √ 

1

√     

 

L4 
1

√         

 - 1 
3  

   

 -    =
   

1/2
   

1/2

2 √  31/2
    

1

√     

 

L5 
1

√         

 - 1 - √
3   

   
    =

   
1/2

 

2 √  31/2
    

1

√     

 

L6 
1

√         

 - √       - 1    =
   

1/2
 

2 √  31/2
    

1

√     

 

B1 1 - 1 
3  

   

 -    =
   

1/4
   

1/4

10.133

1

     
1/4

 

B2 1 - 1 - √
3   

   
    =

   
1/4

10.133
 

1

     
1/4

 

B3 1 - √       - 1    =
   

1/4

10.133
 

1

     
1/4

 

B4 
1

√         

 - 1 - 1    =
   

1/2
    

1/4

17.551
    

1

     
1/4

 

T1 1 - 1 - 1    =
   

1/8
    

1/4

10.337

1

     
1/8
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 From the last linear line, possible region is composed of 3 regions – region L3, 

L5, and L6. The conditions of presenting each region are illustrated by Figure 9, Figure 

10, and Figure 11 and given by 

 When        , 

o If     √     , region L6 is found.  

o If     √     , region L3 is found.  

 When         ,  

o If     √     , region L5 is found.  

o If     √     , region L3 is found.  

  

 

 

Figure 9 – Comparison plot of region L3 and L6 with                  
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Figure 10 – Comparison plot of region L3 and L5 with                  

                 

 

 

 

Figure 11 – Comparison plot of region L5 and L6 with                  
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 For the bilinear line, possible bilinear region is composed of 3 regions – region 

B2, B3, and B4. The conditions of presenting each region are given by 

 Among region B3, B4, and BDF can be appeared before region L6. 

o Two set of plots are illustrated the possible region prior to region L6 in 

Figure 12 and Figure 13. 

o The first set is either region B4 or BDF is presented prior to region L6. 

The selective condition is √
     

   
  . 

o The second set is either region B3 or BDF is presented prior to region L6. 

The selective condition is     √
   

   
. 

 Among region B2, B4, and BDF can be appeared before region L5. 

o Two set of plots are illustrated the possible region prior to region L5 in 

Figure 14 and Figure 15. 

o The first set is either region B2 or B4 is presented prior to region L5. The 

selective condition is     
√ 

   
   

    
    . 

o The second set is either region B2 or BDF is presented prior to region L5. 

The selective condition is     √
   

   
. 

 Either region B2 or B3 can be appeared before region L3. 

o The selective condition is         and can be illustrated by Figure 16. 
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Figure 12 – Comparison plot of region B4 and BDF prior to region L6 with 

                                   

 

 

 

Figure 13 – Comparison plot of region B3 and BDF prior to region L6 with 
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Figure 14 – Comparison plot of region B2 and B4 prior to region L5 with       

                         

 

 

 

Figure 15 – Comparison plot of region B2 and BDF prior to region L5 with 
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Figure 16 – Comparison plot of region B2 and B3 prior to region L3 with     
                     

   

 

 

From the assumptions of the asymptotic equation and check with the sensitivity 

run case, end time of region L3, L5, and L6 for constant pressure case can be derived in 

Laplace space and convert to time domain as following. 

Region L3 – The end of region is at              
   
 

  . 

Region L5 – The end of region is at              
 

  

 

   
. 

Region L6 – The end of region is              
 

  

 

   
. 
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6.5 Mathematical Solution and Approximation (Dimensional) 

The asymptotic equations of gas and oil in dimensional form are showed in 

Table 11 and Table 12, respectively.  

The conditions of the triple porosity model characteristic as discussed in the 

previous section are converted to the dimensional form and given by 

From the last linear line, 

 When         or 
  

  
 √

  

  
 , 

o If     √      or  
  

  
 

 

 
√

  

  
, region L6 is found.  

o If     √      or  
  

  
 

 

 
√

  

  
, region L3 is found.  

 When         or 
  

  
 √

  

  
 ,  

o If     √      or  
  

  
 

 

 
√

  

  
, region L5 is found.  

o If     √      or  
  

  
 

 

 
√

  

  
, region L3 is found.  

For the bilinear line, 

 Among region B3, B4, and BDF can be appeared before region L6. 

o Two set of conditions are used to identify the possible region prior to 

region L6. 

o The first set is either region B4 or BDF is presented prior to region L6. 

The selective condition is √
     

   
   or  

     
 

     
 

       

       
  . 
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o The second set is either region B3 or BDF is presented prior to region L6. 

The selective condition is     √
   

   
 or    

  

 
 √

  

  
 √

       

       
. 

 Among region B2, B4, and BDF can be appeared before region L5. 

o Two set of conditions are used to identify the possible region prior to 

region L5. 

o The first set is either region B2 or B4 is presented prior to region L5. The 

selective condition is     
√ 

   
   

    
     or    

 

 
 
  
   

  
   

  
   

  
   

  
   . 

o The second set is either region B2 or BDF is presented prior to region L5. 

The selective condition is     √
   

   
 or    

  

 
 √

  

  
 √

       

       
. 

 Either region B2 or B3 can be appeared before region L3. 

o The selective condition is         or 
  

  
 √

  

  
 . 

 

Also, the time of ending region L3, region L5, and region L6 in dimensional form are 

given by 

        
[     ]     

 

             
 

.................... (6. 12) 

              [     ]  
  
 

  
 

.................... (6. 13) 

              [     ]  
  
 

  
 

.................... (6. 14) 
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Table 11 – Asymptotic equations of triple porosity model for gas analysis in 

dimensional (constant pressure) 

 

Region Gas Equation 

L1   =
     

1260  
 √      √          

1

√ 
 

L2   =
     

1260  
 √      √          

1

√ 
 

L3   =
     

1260  
 √      √          

1

√ 
 

L4   =
     

630  
     

  
1/2

  
 √             

1

√ 
 

L5   =
     

630  
     

  
1/2

  
 √             

1

√ 
 

L6   =
     

630  
     

  
1/2

  
 √             

1

√ 
 

B1   =
     

2183.7  
 √         

1/4 1

√  

  1/4        
1/4

 
1

 1/4
 

B2   =
     

2183.7  
 √         

1/4 1

√  

  1/4        
1/4

 
1

 1/4
 

B3   =
     

2183.7  
 √         

1/4 1

√  
  1/4        

1/4
 

1

 1/4
 

B4   =
     

1091.86  
     

  
1/2

  
1/4

     
1/2

  1/4        
1/4

    
1

 1/4
 

T1   =
     

3074.5  
 √       

  
1/4

  
1/8

  
1/2

  
1/4

  1/8        
1/8

 
1

 1/8
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Table 12 – Asymptotic equations of triple porosity model for oil analysis in 

dimensional (constant pressure) 

 

 

 

 

Region Oil Equation 

L1   =
  

125.1   
 √      √          

1

√ 
 

L2   =
  

125.1   
 √      √          

1

√ 
 

L3   =
  

125.1   
 √      √          

1

√ 
 

L4   =
  

62.55   
     

  
1/2

  
 √             

1

√ 
 

L5   =
  

62.55   
     

  
1/2

  
 √             

1

√ 
 

L6   =
  

62.55   
     

  
1/2

  
 √             

1

√ 
 

B1   =
  

 216.8   
 √         

1/4 1

√  

  1/4        
1/4

 
1

 1/4
 

B2   =
  

 216.8   
 √         

1/4 1

√  

  1/4        
1/4

 
1

 1/4
 

B3   =
  

 216.8   
 √         

1/4 1

√  
  1/4        

1/4
 

1

 1/4
 

B4   =
  

108.4   
     

  
1/2

  
1/4

     
1/2

  1/4        
1/4

    
1

 1/4
 

T1   =
  

305.3   
 √       

  
1/4

  
1/8

  
1/2

  
1/4

  1/8        
1/8

 
1

 1/8
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CHAPTER VII  

THE TRIPLE POROSITY MODEL WITH  

INFINITE CONDUCTIVITY OF HYDRAULIC FRACTURES 

 

7.1 Introduction  

 In this chapter, the fully transient triple porosity model described in Chapter VI 

is assumed infinite conductivity of hydraulic fractures. Mathematical model and 

solutions of the triple porosity model with infinite conductivity of hydraulic fractures are 

presented. Also, the triple porosity model with infinite conductivity of hydraulic 

fractures model is compared with the modified dual porosity model. 

 From the triple porosity model, 12 flow regimes (6 linear, 4 bilinear, 1 trilinear, 

and BDF) have been presented. Three possible regions can represent the last linear flow. 

Other three possible regions can represent the bilinear region prior to the last linear 

period. Moreover, trilinear flow can appear prior to the last linear period or between the 

bilinear. With this complexity of triple porosity model, it is too complicate to interpret 

production data of shale gas/oil reservoir with the triple porosity model. Therefore, 

infinite conductivity of hydraulic fractures is assumed to simplify the model. With 

considering infinite conductivity of hydraulic fractures, only two mediums responses 

which are natural fracture and matrix systems are expected to be found in production 

analysis. This can be interpreted as modified dual porosity which is represented two 

mediums (natural fracture and matrix). 
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7.2 Mathematical Model 

The triple porosity model that uses to represent flow behavior of the multi-

transverse (infinite conductivity) hydraulic fractures in horizontal well is shown in 

Figure 17. The model is modified from the original fully transient linear triple porosity 

model provided in Chapter VI by neglecting the hydraulic fracture transient flow effect. 

With infinite conductivity of hydraulic fractures, the transient period of hydraulic 

fractures will appear very early time compared to the rest mediums flowing period. This 

means that only two medium systems are considered in this case – natural fracture and 

matrix systems. 

The new model can be identified the last linear period with only two possible 

linear regions and the bilinear line prior to the last linear period with only one bilinear 

region. For the last linear flow, one possible regime is represented the transient linear 

flow of the total system dominated by matrix flow. The other is dominated by natural 

fracture flow. For the bilinear, this bilinear regime represents two transient flows of 

natural fractures and matrix happening simultaneously. 
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Figure 17 – Sketch of the triple porosity model of the infinite conductivity hydraulic 

fractures in horizontal well. 
 

 

7.3 Physical Model Explanation 

 By assuming infinite conductivity hydraulic fractures, only five regions are 

considered in the mathematical model. Two regions from the last linear line are region 

L5 and L6. One region from the middle linear line is region L4. One region from the first 

linear line is region L1. The other from the bilinear line is region B4. Nevertheless, in 

practical, only last linear and the bilinear prior to it are considered. Two examples of the 
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triple porosity model which have very high permeability in hydraulic fractures are 

showed in Figure 18 and Figure 19. The physical meaning of each region is given. 

 

7.3.1 Region L1 

 This region represents the first transient linear of the fully transient triple 

porosity model. This region is showed by the first half slope of the log-log plot. This 

linear flow behavior represents the transient linear flow in the hydraulic fractures 

producing fluid to the well. With the high conductivity hydraulic fractures, the transient 

period is expected to be very short or impossible to see in daily production data. 

 

7.3.2 Region L4 

This region represents the middle transient linear of the fully transient triple 

porosity model. This region is showed in the second half slope of the log-log plot only 

when the conductivity of hydraulic fractures is very high (infinite conductivity) or the 

effect of transient linear flow of hydraulic fractures faded away. This linear flow 

behavior represents the transient linear flow in the natural fractures feeding fluid to 

hydraulic fractures. Normally, the conductivity of hydraulic fractures is not high enough 

to completely fade away before this transient dominates; therefore, it is almost 

impossible to see this region in the production data.  
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7.3.3 Region B4 

This region represents the bilinear flow of the fully transient triple porosity 

model when infinite conductivity of hydraulic fractures is assumed. This region is 

showed in a quarter slope of the log-log plot prior to the last linear period. This bilinear 

flow is formed by occurring two transient linear flows simultaneously which are 

transient linear flow in natural fracture system (from natural fractures to hydraulic 

fractures) and matrix system (from matrix blocks to natural fractures). This occurs while 

the transient flow dominated period in natural fractures has not ended and the transient 

flow dominated period in matrix has started to appear.  

 

7.3.4 Region L5 

This region presents the late transient linear of the fully transient triple porosity 

model. It shows the last half slope line in the log-log plot. It represents the transient 

linear flow of total system which is dominated by natural fractures. This occurs when the 

transient flow in matrix has ended while transient flow in natural fractures still presents. 

This case will happen when the conductivity of natural fractures is very low comparing 

with flow capacity of matrix or the natural fracture spacing (boundary of the matrix 

flow) is small while the hydraulic fracture spacing (boundary of the natural fracture 

flow) is large. 
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7.3.5 Region L6 

This region presents the late transient linear of the fully transient triple porosity 

model. It shows the last half slope line in the log-log plot. It represents the transient 

linear flow of total system which is dominated by matrix. This occurs when the transient 

flow in natural fractures has ended while transient flow in matrix still presents. This case 

will happen when the conductivity of natural fractures is high comparing with flow 

capacity of matrix or the natural fracture spacing (boundary of the matrix flow) is large 

while the hydraulic fracture spacing (boundary of the natural fracture flow) is small. 

 

 

 

Figure 18 – Example of triple porosity model with infinite conductivity hydraulic 

fractures with region L6 as the last linear line 
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Figure 19 – Example of triple porosity model with infinite conductivity hydraulic 

fractures with region L5 as the last linear line 

 

 

7.4 Modified Dual Porosity Model 

 As discussed earlier, the effect of hydraulic fracture flow period can be neglected 

by assuming infinite conductivity of hydraulic fractures and only two mediums are left 

to consider which are natural fractures system and matrix system. Consequently, triple 

porosity model with infinite conductivity of hydraulic fractures can be reduced its form 

to dual porosity model by considering hydraulic fractures in original dual porosity model 

as natural fractures of triple porosity model.  

 From the original dual porosity system of hydraulic fracture and matrix to the 

modified dual porosity system of natural fractures and matrix, the following changes 

(Table 13) are required.  
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Table 13 – Conversion table of parameters from original dual porosity model to 

modified dual porosity model 

 

 

 

 To simulate the modified dual porosity model by using numerical simulator to 

represent the triple porosity with infinite conductivity of hydraulic fractures, the 

modification of parameter variables have to be changed as suggested earlier. The model 

is simulated only one-fourth of a natural fracture. The parameters inside the model are 

generated same as original dual porosity except using natural fracture dimension instead 

of hydraulic fracture dimension as illustrated in Figure 20. The output production rate of 

the simulator has to be multiplied by         to represent the well production. 

Original Parameters Modified Parameters 

Thickness h = h

Perforation Interval x e = 2*y e *n F

Hydraulic Fracture Half-Length y e = L F /2

Hydraulic Fracture Effective Permeability k F = k f

Hydraulic Fracture Spacing L F = L f

Number of Hydraulic Fracture n F = 2*n f *n F

Matrix Permeability k m = k m

Hydraulic Fracture Width w F = w f

Hydraulic Fracture Intrinsic Permeability k F,in = k f,in

Hydraulic Fracture Porosity ɸ F = ɸ f

Matrix Porosity ɸ m = ɸ m
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Figure 20 – Illustration of modified dual porosity model for numerical method 

 

 

7.4.1 Theoretical Examples Comparison 

 The following examples illustrate this triple porosity model (high conductivity of 

hydraulic fracture) and compare between the triple porosity model and the modified dual 

porosity model. 
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Example A 

 Theoretical data of triple porosity model is generated with the data as shown in 

Table 14. The hydraulic fracture permeability is set to 2E+5 md to represent infinite 

conductivity fractures. Then, modified dual porosity model (natural fracture and matrix 

systems) is generated with the modified data as showed in Table 15. 

 

Table 14 – Data of triple porosity model of example A 

 

 

Table 15 – Data of modified dual porosity model of example A 

 

 

 From the triple porosity model, region L1 follows by region B4, and L6 are 

found respectively. While, region 1 follows by region 2 and 4 are found in dual porosity 

h 200 ft y e 500 ft

x e 5000 ft w F 0.01 ft

k F 10 md k F,in 2.00E+05 md

L F 200 ft ɸ F 0.3

n F 25 w f 0.001 ft

k f 0.1 md k f,in 2000 md

L f 20 ft ɸ f 0.3

n f 25 ɸ m 0.05

k m 1.00E-05 md m 1.3 cp

ɸ 0.05 c ti 2.00E-07 psi-1

S w 0.2 p i 3000 psia

B o 1.3 rcf/scf p wf 500 pisa

h 200 ft y e 100 ft

x e 25000 ft w F 0.001 ft

k F 0.1 md k F,in 2000 md

L F 20 ft ɸ F 0.3

n F 1250 ɸ m 0.05

k m 1.00E-05 md m 1.3 cp

ɸ 0.05 c ti 2.00E-07 psi-1

S w 0.2 p i 3000 psia

B o 1.3 bbl/STB p wf 500 pisa
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model, respectively. Plotting of the triple porosity model with the modified dual porosity 

model is showed in Figure 21. It is shown that last bilinear and linear periods of triple 

porosity model are overlaid with bilinear and second linear periods of dual porosity 

model (B4 is overlaid with 2 and L6 is overlaid with 4). This case can be explained that 

hydraulic fractures response disappears before the responses of natural fractures and 

matrix appear simultaneously (bilinear period – region B4 of triple porosity and region 2 

of dual porosity). Then, the matrix flow of both models appears as linear flow when the 

effect of natural fractures fades away. Since the permeability of natural fractures is quite 

high in this case (2,000 md), only transient in matrix is expected to be found in the daily 

production data. 

 

 

Figure 21 – Comparison plot of triple porosity model and modified dual porosity 

model of example A 
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Example B 

 Theoretical data of triple porosity model is generated with the data as shown in 

table above. All data are same as Example A except natural fracture permeability. The 

intrinsic natural fracture permeability is reduced from 2,000 md to 1 md. Then, modified 

dual porosity model (natural fracture and matrix systems) is generated with the modified 

data of hydraulic fracture permeability. 

 From the triple porosity model, region L1 follows by the BDF, region B4, and L5 

are found respectively. While, region 1 follows by region 2 and 3 are found in dual 

porosity model, respectively. Plotting the triple porosity model with the modified dual 

porosity model, it is shown that last bilinear and linear periods of triple porosity model 

are overlaid with bilinear and second linear periods of dual porosity model (B4 is 

overlaid with 2 and L5 is overlaid with 3) as shown in Figure 22. In this case, the 

responses of natural fractures and matrix of triple porosity model (bilinear flow – region 

B4 of triple porosity and region 2 of dual porosity) dominate after transient period of 

hydraulic fractures ends. Then, the transient period of matrix flow ends and the transient 

period of natural fracture flow still dominates which is represented by region L5 and 

region 3 of triple porosity and dual porosity, respectively. 
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Figure 22 – Comparison plot of triple porosity model and modified dual porosity 

model of example B 

 

 

Example C 

 Theoretical data of triple porosity model and modified dual porosity model are 

generated with the data as shown in Table 16 and Table 17, respectively. This example 

case is generated to demonstrate the complicated case of specifying region before last 

linear flow.  

 From the triple porosity model, region L1 follows by the transition period before 

the region L6 is dominated. While, region 1 follows by region 3 is found in dual porosity 

model, respectively. Plotting the triple porosity model with the modified dual porosity 

model, it is shown that only last linear period of triple porosity model are overlaid with 

the second linear period of dual porosity model (L6 is overlaid with 4) as shown in 
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Figure 23. The period before last linear flow of triple porosity model does not fit with 

dual porosity model because the effect of hydraulic fractures in triple porosity has still 

appeared when natural fracture response is showed. Nevertheless, when the effects of 

hydraulic and natural fractures fade out, the transient period of matrix linear flow of two 

models (region L6 and 4 of triple and dual porosity models, respectively) will be 

identical. Since the permeability of natural fractures is quite high in this case (5,000 md), 

only transient in matrix is expected to be found in the daily production data. 

 

 

Table 16 – Data of triple porosity model of example C 

 

 

Table 17 – Data of modified dual porosity model of example C 

 

h 200 ft y e 500 ft

x e 5000 ft w F 0.01 ft

k F 10 md k F,in 1.00E+05 md

L F 100 ft ɸ F 0.3

n F 50 w f 0.001 ft

k f 1 md k f,in 5000 md

L f 5 ft ɸ f 0.3

n f 100 ɸ m 0.05

k m 1.00E-07 md m 1.3 cp

ɸ 0.05 c ti 2.00E-07 psi-1

S w 0.2 p i 3000 psia

B o 1.3 bbl/STB p wf 500 pisa

h 200 ft y e 50 ft

x e 50000 ft w F 0.001 ft

k F 1 md k F,in 5000 md

L F 5 ft ɸ F 0.3

n F 10000 ɸ m 0.05

k m 1.00E-07 md m 1.3 cp

ɸ 0.05 c ti 2.00E-07 psi-1

S w 0.2 p i 3000 psia

B o 1.3 bbl/STB p wf 500 pisa
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Figure 23 – Comparison plot of triple porosity model and modified dual porosity 

model of example C 

 

 

7.4.2 Mathematic Solution Comparison  

 From the given examples, it can be implied that one region of modified dual 

porosity model can be represented by one region of triple porosity model when infinite 

conductivity of hydraulic fractures is applied.  

 

Region 4 and Region L6 

From region 4 of dual porosity model asymptotic equation, 

   
     

    
      √  

  
  

 √         
 

√ 
 

.................... (7. 1) 
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Modify parameters of dual porosity to triple porosity as following 

   
     

    
           √  

    

  
 √         

 

√ 
 

.................... (7. 2) 

where 

           
.................... (7. 3) 

Therefore, 

   
     

     
    √   

  
  

 √           
 

√ 
 

.................... (7. 4) 

which is region L6 of triple porosity model 

 

Region 3 and Region L5 

From region 3 of dual porosity model asymptotic equation, 

   
     

     
      √  √         

 

√ 
 

.................... (7. 5) 

Modify parameters of dual porosity to triple porosity as following 

   
     

     
           √  √         

 

√ 
 

.................... (7. 6) 

   
     

     
                  √  √         

 

√ 
 

................ (7. 7) 

Therefore, 

   
     

     
    √   

  
  

 √           
 

√ 
 

.................... (7. 8) 

which is region L5 of triple porosity model 
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Region 2 and Region B4 

From region 2 of dual porosity model asymptotic equation, 

   
     

       
        

   
  
    

√  

[         ]
   

 

    
 

.................... (7. 9) 

Modify parameters of dual porosity to triple porosity as following 

   
     

       
             

   
  
    

√  
[         ]

   
 

    
 

.... (7. 10) 

   
     

       
          

   
  

  
   

  
    

√  
[         ]

   
 

    
 

 .. (7. 11) 

Therefore, 

   
     

         
       

  
   

  
   

     
   

             
   

 
 

    
 

.................... (7. 12) 

which is region B4 of triple porosity model 

 

Region 1 and Region L4 

From region 1 of dual porosity model asymptotic equation, 

   
     

     
      √  √         

 

√ 
 

.................... (7. 13) 

Modify parameters of dual porosity to triple porosity as following 

   
     

     
           √  √         

 

√ 
 

.................... (7. 14) 

   
     

     
                  √  √         

 

√ 
 

.............. (7. 15) 
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Therefore, 

   
     

     
    √   

  
  

 √           
 

√ 
 

.................... (7. 16) 

which is region L4 of triple porosity model 
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CHAPTER VIII  

APPLICATION OF THE TRIPLE POROSITY MODEL 

 

8.1 Introduction 

 In this chapter, the fully transient triple porosity model with the assumption of 

infinite conductivity hydraulic fractures is used for production data interpretation of 

shale gas and oil reservoirs in multi-transverse hydraulic fractures horizontal well. The 

interpretation guidelines and the example of interpretation are presented.  

 From triple porosity model, 12 flow regimes (6 linear, 4 bilinear, 1 trilinear, and 

BDF) have been proposed as discussed earlier. Also, to reduce the complexity and 

confusion of the model, infinite conductivity of hydraulic fractures has been proposed. 

With considering infinite conductivity of hydraulic fractures, only two mediums 

responses which are natural fracture and matrix systems are expected to be found in 

production analysis. This can be interpreted as modified dual porosity as discussed 

earlier.  

 In this interpretation, 3 flow regimes (2 linear and 1 bilinear) remain to be 

considered for production data analysis. The summary of triple porosity model with 

infinite conductivity of hydraulic fractures, theoretical triple porosity model cases, and 

field example will illustrate the procedures and cautions of interpreting the data with 

triple porosity model. 
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8.2 Summary of Triple Porosity Model for Interpretation  

 For daily production data interpretation, either region L5 or region L6, which is 

represented for the last linear period, is supposed to be showed by the linear period (a 

half-slope in log-log plot). The criteria of either region L5 or L6 will be found is given 

by 
  

  
 √

  

  
. 

 Region L5 will be found only when 
  

  
 √

  

  
.  

 Region L6 will be found only when 
  

  
 √

  

  
.  

The summary of triple porosity model with infinite conductivity hydraulic fractures 

characteristic can be illustrated in Figure 24 and Figure 25 which are dimensionless and 

dimensional forms, respectively.  

 The associated equations of triple porosity model for data interpretation are 

summarized in Table 18, Table 19, and Table 20. 
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Figure 24 – Summary of triple porosity model characteristic for interpretation in 

dimensionless form 

 

 

 

Figure 25 – Summary of triple porosity model characteristic for interpretation in 

dimensional form 
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Table 18 – Summary of associated equations for data interpretation of region L6 

 

 

 

Table 19 – Summary of associated equations for data interpretation of region L5 

 

 

 

Region L6 Equation Unknown 

Asymptotic Equation 

for gas 

     

  
=

630  

   
 
  

  
1/2

1

  

1

√         
√    ,   , (  ) 

Asymptotic Equation 

for oil 

  

  
=

62.55   

   
 
  

  
1/2

1

  

1

√         
√    ,   , (  ) 

End of region L6       6  9.874 [     ]  
  

2

  
   , (  ) 

Combine Slope and 

End of region for gas 
  =

200.5  

    [     ] 
 

1

 𝑙   
√      6  

Combine Slope and 

End of region for oil 
  =

19.9  

    [     ] 
 

1

 𝑙   
√      6  

 

Region L5 Equation Unknown 

Asymptotic Equation 

for gas 

     

  
=

630  

   
 
  

  
1/2

1

  

1

√         
√    ,    

Asymptotic Equation 

for oil 

  

  
=

62.55   

   
 
  

  
1/2

1

  

1

√         
√    ,    

End of region L5       5  9.874 [     ]  
  

2

  
    

Combine Slope and 

End of region for gas 
  =

200.5  

    [     ] 
 

1

 𝑙   
√      5  

Combine Slope and 

End of region for oil 
  =

19.9  

    [     ] 
 

1

 𝑙   
√      5  

 



 87 

Table 20 – Summary of associated equations for data interpretation of region B4 

 

 

8.3 Interpretation Guidelines 

 The interpretation of triple porosity model focuses for possible bilinear and the 

last linear flow. Same as dual porosity model, the possible five production scenarios are 

listed in Table 7. Also, please note that in this interpretation guidelines, the total 

compressibility, ct, is assumed to be same for all medium systems in order to provide the 

simplify equations for interpretation. Moreover, constant pressure solutions are applied 

due to the normal production practice of shale gas/oil reservoir that producing at 

constant wellhead pressure.   

 

8.3.1 Production Scenario Case 1 

 There are two possible answers from interpretation but only one answer is 

correct. Two possible answers are calculated from region L5 and region L6 

asymptotic equations. 

Region B4 Equation Unknown 

Asymptotic 

Equation for gas 

     

  
=

1091.86  

   
 

     
1/2

  
1/2

  
1/4

  1/4        
1/4

 
1

  
  1/4   ,   ,   ,      

Asymptotic 

Equation for oil 

  

  
=

108.4   

   
 

     
1/2

  
1/2

  
1/4

  1/4        
1/4

 
1

  
  1/4   ,   ,   ,      

Intersection of 

region B4 and 

region L6 

      4, 6 = 9.023  [     ] 
  

4

  
2  

  

  
2    ,   ,      

Intersection of 

region B4 and 

region L5 
      4, 5 = 9.023  [     ] 

  
2

  
   ,      

 



 88 

 Normally, if high conductivity in natural fractures and low permeability of 

matrix is expected, region L6 asymptotic equation is recommended to use. On 

the other hand, if low conductivity of natural fractures and high permeability of 

matrix, region L5 asymptotic equation is recommended. 

 There is a high uncertainty in calculation due to some natural fracture properties 

have to be assumed. 

 It is recommend to calculate the minimum hydraulic fracture half-length,       . 

       can be calculated from the last point,      and slope of the square root of 

time plot. 

 

Choice 1 – Region L6 

   and    have to be known 

   can be found from slope of the square root of time plot,         

The equations of gas and oil are given, respectively by 

   
        

   √  

 

√     

 

       
 

.................... (8. 1) 

   
      √    

   √   √    

 

       
 

.................... (8. 2) 

In case the value of    and    are not certain, minimum    √   can be find from      

(
  

√  

)

   

      √
    

     
 

.................... (8. 3) 
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Choice 2 – Region L5 

   has to be assumed 

   can be found from slope of the square root of time plot,         

The equations of gas and oil are given, respectively by 

   
        

   √  

 

√     

 

       
 

.................... (8. 4) 

   
      √    

   √   √    

 

       
 

.................... (8. 5) 

Maximum    can be calculated from      

            
  
       
    

 
.................... (8. 6) 

 

Minimum    

The equations of gas and oil are given, respectively by 

       
       

         

√     

       
 

.................... (8. 7) 

       
     

        

√    

       
 

.................... (8. 8) 

 

8.3.2 Production Scenario Case 2 

 It is impossible to determine whether region L5 or region L6 is found 

 Unique solution of    and in-place whether region L5 or region L6 is assumed 
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 By combining asymptotic equation and end of straight line on square rood of 

time plot, calculated    will be the same for both region L5 and region L6 cases   

 The value of              is not required 

For gas 

   
       

         

√     

       
 

.................... (8. 9) 

             
            

    

√    

       

       
 

  
 

.................... (8. 10) 

For oil 

   
     

        

√    

       
 

.................... (8. 11) 

             
          

  

√    

       

        .................... (8. 12) 

In case assuming region L5 is found,    can be calculated from 

        
  
       
    

 
.................... (8. 13) 

 

8.3.3 Production Scenario Case 3 

        and    have to be assumed 

    can be determined from slope of the fourth root of time plot,         

 There is a high uncertainty in calculation due to some natural fracture properties 

have to be assumed 

The equations of gas and oil are given, respectively by 
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 [     ]   

 

       
 

.................... (8. 14) 

   
        

   
 

     
   

  
   

  
   

 [     ]   
 

 

       
 

.................... (8. 15) 

 

8.3.4 Production Scenario Case 4 

 Whether region L5 or L6 can be determined only when    and    are assumed 

and reliable. 

Procedures: 

1. From bilinear flow period, find √      from region B4 equation with 

assuming   and   . (Eq. 8.14 or Eq. 8.15) 

2. From linear flow period, find √      from region L5 equation. (Eq. 8.4 or 

Eq. 8.5) 

3. Check whether √      from region B4 is close to region L5 or not.  

4. If yes, the linear flow period is represented by region L5 and    can be 

determined from √      term by assuming   . Furthermore, maximum    can be 

calculated from Eq. 8.6. 

If no, the linear flow period is represented by region L6 and    can be calculated 

from region L6 equation by assuming    and    (Eq. 8.1 or Eq. 8.2). The 

minimum value of    √    is calculated by Eq. 8.3 and used for cross-checking 

the value. 
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8.3.5 Production Scenario Case 5 

 Interpret the data as production scenario case 2. 

 Determine whether region L5 or L6 is found by using the same method as 

production scenario case 4. 

 

8.4 Examples of Triple Porosity Interpretation 

 

8.4.1 Well T01 

The theoretical model of multi-transverse hydraulic fractures in horizontal well of shale 

oil reservoir was generated by using triple porosity model. High conductivity hydraulic 

fractures is assumed. High permeability in natural fractures and low permeability in 

matrix are also assumed in this case. The data table and generated daily production data 

are shown in Table 21 and Figure 26. The OOIP of this well is 5.48 MMSTB. The 

linear flow period of this well is represented by region L6. 

 

 

Table 21 – Well T01 data 

 

Thickness h 200 ft Hydraulic Fracture Half-Length y e 500 ft

Perforation Interval x e 5000 ft Hydraulic Fracture Effective Permeability k F 100 md

Hydraulic Fracture Spacing L F 200 ft Hydraulic Fracture Width w F 0.01 ft

Number of Hydraulic Fracture n F 25 Hydraulic Fracture Intrinsic Permeability k F,in 2.00E+06 md

Natural Fracture Spacing L f 20 ft Hydraulic Fracture Porosity ɸ F 0.3

Number of Natural Fracture n f 25 Natural Fracture Effective Permeability k f 0.1 md

Matrix Permeability k m 1.00E-07 md Natural Fracture Width w f 0.001 ft

Total Porosity ɸ 0.05 Natural Fracture Intrinsic Permeability k f,in 2000 md

Water Saturation S w 0.2 Natural Fracture Porosity ɸ f 0.3

Formation Volume Factor B o 1.3 rcf/scf Matrix Porosity ɸ m 0.05

Viscosity m 1.3 cp Total Compressibility c ti 2.00E-07 psi-1

Initial Pressure p i 3000 psia Bottomhole Flowing Pressure p wf 500 pisa
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Figure 26 – Production data and square root of time plots of well T01 

 

 

 

 To simulate the real situation when interpreting data, the provided information 

for interpretation is same as provided data except hydraulic fractures and natural 

fractures information e.g.            . 

 To analyze production data of this well, interpretation guidelines of the 

production scenario case 2 (Linear and BDF periods are found) are used.  

From Eq. 8.11,    is 495 ft. 

From Eq. 8.12,      is 5.43 MMSTB 

In case, region L5 is expected,    is 1E-5 md. from Eq. 8.13.  
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8.4.2 Well T02 

 Another theoretical shale oil well was generated by triple porosity model. This 

well is assumed permeability in natural fractures is low. The data table and generated 

daily production data are shown in Table 22 and Figure 27. The OOIP from this well is 

5.48 MMSTB. The linear flow period is represented by region L5. 

 

 

Table 22 – Well T02 data 

 

 

 

 

Figure 27 – Production data and square root of time plots of well T02 

Thickness h 200 ft Hydraulic Fracture Half-Length y e 500 ft

Perforation Interval x e 5000 ft Hydraulic Fracture Effective Permeability k F 100 md

Hydraulic Fracture Spacing L F 200 ft Hydraulic Fracture Width w F 0.01 ft

Number of Hydraulic Fracture n F 25 Hydraulic Fracture Intrinsic Permeability k F,in 2.00E+06 md

Natural Fracture Spacing L f 10 ft Hydraulic Fracture Porosity ɸ F 0.3

Number of Natural Fracture n f 50 Natural Fracture Effective Permeability k f 0.00001 md

Matrix Permeability k m 1.00E-05 md Natural Fracture Width w f 0.001 ft

Total Porosity ɸ 0.05 Natural Fracture Intrinsic Permeability k f,in 0.1 md

Water Saturation S w 0.2 Natural Fracture Porosity ɸ f 0.3

Formation Volume Factor B o 1.3 rcf/scf Matrix Porosity ɸ m 0.05

Viscosity m 1.3 cp Total Compressibility c ti 2.00E-07 psi-1

Initial Pressure p i 3000 psia Bottomhole Flowing Pressure p wf 500 pisa
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 To simulate the real situation when interpreting data, the provided information 

for interpretation is same as provided data except hydraulic fractures and natural 

fractures information e.g.            . 

 From the interpretation guide line, this case matches the production scenario case 

2 which is linear and BDF period. Moreover, this case has the same parameters as case 

well T01; therefore, the calculated parameters will be the same as case well T01 which 

are     495 ft and       5.43 MMSTB. 

 

8.4.3 Well T03 

 Another theoretical well was generated with the same data as Well T02 as 

showed in Table 22 and the production data was generated only 1,000 days as showed in 

Figure 28. No deviation from the half-slope line on log-log plot.  

 

 

 

Figure 28 – Production data and square root of time plots of well T03 
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 The provided information for interpretation is same as provided data except 

hydraulic fractures and natural fractures information e.g.         . Assume    and    

are known from core data analysis. 

 In this case, the production data shows only linear flow or production curve have 

not shown BDF yet. From the interpretation guide line, this case matches the production 

scenario case 1 which is only linear period is found. Whether region L5 or region L6 is 

found for the linear flow cannot be determined. Therefore, two asymptotic equations are 

used to see the properties. 

 

Choice 1 – Region L6 is selected 

    and    are known from core data analysis 

 From Eq. 8.2,    is 25 ft. 

 

Choice 2 – Region L5 is selected 

    has to be assumed with the maximum limit which is calculated by Eq. 8.6, 

       is 5.1E-5 md. Thus,    of 1E-5 md is assumed (      0.1 md with    0.001 ft). 

 From Eq. 8.5,    is 499 ft. 

 If    is assumed as 1E-6 md (      0.01 md with    0.001 ft),    is 1,578 ft. 

 

Minimum    

 From Eq. 8.8,        is 220 ft. 
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In summary, the last linear is supposed to be region L5 rather than region L6 because the 

calculated    from asymptotic equation of region L6 is much more less than the 

minimum calculated   . Therefore, the value of    may be any value higher than 220 ft. 

 

8.4.4 Well 314 

 Field production plot and data of the multi-transverse hydraulic fractures 

horizontal well, well#314, is shown in Appendix B. In this interpretation, skin effect and 

gas adsorption are neglected. To analyze production data of this well, interpretation 

guidelines of the production scenario case 2 (Linear and BDF periods are found) are 

used.  

From Eq. 8.9,    is 186 ft. 

From Eq. 8.10,      is 2.7E+3 MMscf 

In case, region L5 is expected,    is 1.3E-4 md. from Eq. 8.13.  

 

8.4.5 Well B-86 

 Field production plot and data of the multi-transverse hydraulic fractures 

horizontal well, well#B-86, is shown in Appendix B. In this interpretation, skin effect 

and gas adsorption are neglected. To analyze production data of this well, interpretation 

guidelines of the production scenario case 4 (Bilinear and linear periods are found) are 

used. 

1. By assuming    is 1.5E-4 md and    is 25 ft, √     is 1.5 from Eq. 8.14 or by 

assuming    is 5E-5 md, √     is 2. 
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2. From Eq. 8.4, √     is 2.05. 

3. The calculated value of √     from region L5 equation is close to the value of 

√     from region B4 equation; therefore, the late linear flow period is supposed 

to be region L5. 

4. Maximum    from Eq. 8.6 is 2.5E-4 md. If using maximum   , minimum    

from √     in step 2 is 131 ft. In case,    is assumed to be 1E-5 md,    is 649 ft 

from √      2.05 in step 2. 

In summary, region L5 is expected to represent the linear period, and the minimum value 

of     is 131 ft. 
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CHAPTER IX  

APPLICATION OF DUAL POROSITY MODEL AND TRIPLE POROSITY MODEL 

 

 In this chapter, the transient dual porosity model and the fully transient triple 

porosity model with the assumption of infinite conductivity hydraulic fractures are used 

for production data interpretation of shale gas and oil reservoirs in multi-transverse 

hydraulic fractures horizontal well. The interpretation guidelines and the example of 

interpretation are presented.  

 To reduce the complication of interpretation, all of the following interpretations 

will focus on assumption of infinite conductivity of hydraulic fractures for interpreting 

daily production data of shale gas/oil reservoir. With the assumption of homogeneous 

reservoir and infinite conductivity hydraulic fractures of dual porosity model, only one 

medium (matrix system) is left for considering. Therefore, only one region of linear flow 

is considered for dual porosity model which is region 4. Regarding the assumption of 

infinite conductivity hydraulic fractures of triple porosity model, two mediums (natural 

fractures and matrix systems) are left for considering. Consequently, two regions of 

linear flow are considered for triple porosity model which are region L5 and L6. 

Moreover, region B4 of triple porosity model are considered as bilinear flow region. 
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9.1 Interpretation Guidelines 

 To emphasize the solutions of the dual porosity model and the triple porosity 

model, all the associated and guidelines are re-summarized from Chapter V and 

Chapter VIII as follows. The interpretation guidelines follow the possible five 

production scenarios showed in Table 7. Also, please note that in the interpretation 

guidelines, the total compressibility, ct, is assumed to be same for all medium systems in 

order to provide the simplify equations for interpretation.  

 Referring to the assumption of infinite conductivity of hydraulic fractures, 

production scenario case 3, 4, and 5, which have bilinear flow period in the production 

profile, can be represented by the triple porosity model only because the dual porosity 

model cannot present bilinear flow in this assumption. 

 

9.1.1 Production Scenario Case 1 

 There are three possible answers from interpretation but only one answer is 

correct. One possible answer is calculated from the region 4 of dual porosity 

model asymptotic equation. The other two possible answers are calculated from 

the region L5 and L6 of triple porosity model asymptotic equations. 

 If homogeneous reservoir is assumed, region 4 of dual porosity model is applied. 

If reopen natural fractures is expected, triple porosity model is applied. 

Normally, if high conductivity in natural fractures and low permeability of 

matrix is expected, region L6 asymptotic equation is recommended to use. On 
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the other hand, if low conductivity of natural fractures and high permeability of 

matrix, region L5 asymptotic equation is recommended. 

 There is a high uncertainty in calculation due to some natural fracture properties 

have to be assumed for triple porosity model calculation. 

 It is recommend to calculate the minimum hydraulic fracture half-length,       . 

       can be calculated from the last point,      and slope of the square root of 

time plot. The equations for dual porosity and triple porosity models are the 

same. 

 

Choice 1 – Region 4 of Dual Porosity Model 

   has to be known 

   can be found from slope of the square root of time plot,         

The equations of gas and oil are given, respectively by 

   
        

   √  

 

√     

 

       
 

.................... (5. 1) 

   
      √    

   √   √    

 

       
 

.................... (5. 2) 

In case the value of    is not certain, maximum    can be find from      

            
  
       
    

 
.................... (5. 3) 
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Choice 2 – Region L6 of Triple Porosity Model 

   and    have to be known 

   can be found from slope of the square root of time plot,         

The equations of gas and oil are given, respectively by 

   
        

   √  

 

√     

 

       
 

.................... (8. 1) 

   
      √    

   √   √    

 

       
 

.................... (8. 2) 

In case the value of    and    are not certain, minimum    √   can be find from      

(
  

√  

)

   

      √
    

     
 

.................... (8. 3) 

 

Choice 3 – Region L5 of Triple Porosity Model 

   has to be assumed 

   can be found from slope of the square root of time plot,         

The equations of gas and oil are given, respectively by 

   
        

   √  

 

√     

 

       
 

.................... (8. 4) 

   
      √    

   √   √    

 

       
 

.................... (8. 5) 

Maximum    can be calculated from      
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.................... (8. 6) 

 

Minimum    

The equations of gas and oil are given, respectively by 

       
       

         

√     

       
 

.................... (9. 1) 

       
     

        

√    

       
 

.................... (9. 2) 

 

9.1.2 Production Scenario Case 2 

 It is impossible to determine which region is found (region 4, region L5, or 

region L6) 

 Unique solution of    and in-place whether dual porosity model or triple porosity 

model is assumed 

 By combining asymptotic equation and end of straight line on square rood of 

time plot, calculated    will be the same for any case (region 4, region L5, or 

region L6) 

 The value of              is not required 

For gas 

   
       

         

√     

       
 

.................... (9. 3) 
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√    

       

       
 

  
 

.................... (9. 4) 

For oil 

   
     

        

√    

       
 

.................... (9. 5) 

             
          

  

√    

       

        .................... (9. 6) 

In case assuming region 4 of dual porosity model is found,    can be calculated from 

        
  
       
    

 
.................... (5. 12) 

In case assuming region L5 of triple porosity model is found,    can be calculated from 

        
  
       
    

 
.................... (8. 13) 

 

9.1.3 Production Scenario Case 3 

        and    have to be assumed 

    can be determined from slope of the fourth root of time plot,         

 There is a high uncertainty in calculation due to some natural fracture properties 

have to be assumed 

The equations of gas and oil are given, respectively by 

   
         

   
 

     
   

  
   

  
   

 [     ]   

 

       
 

.................... (8. 14) 
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 [     ]   
 

 

       
 

.................... (8. 15) 

 

9.1.4 Production Scenario Case 4 

 Whether region L5 or L6 can be determined only when    and    are assumed 

and reliable. 

Procedures: 

1. From bilinear flow period, find √      from region B4 equation with 

assuming   and   . (Eq. 8.14 or Eq. 8.15) 

2. From linear flow period, find √      from region L5 equation. (Eq. 8.4 or 

Eq. 8.5) 

3. Check whether √      from region B4 is close to region L5 or not.  

4. If yes, the linear flow period is represented by region L5 and    can be 

determined from √      term by assuming   . Furthermore, maximum    can be 

calculated from Eq. 8.6. 

If no, the linear flow period is represented by region L6 and    can be calculated 

from region L6 equation by assuming    and    (Eq. 8.1 or Eq. 8.2). The 

minimum value of    √    is calculated by Eq. 8.3 and used for cross-checking 

the value. 
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9.1.5 Production Scenario Case 5 

 Interpret the data as production scenario case 2. 

 Determine whether region L5 or L6 is found by using the same method as 

production scenario case 4. 

 

9.2 Examples of Interpretation 

 

9.2.1 Well T02 

 The theoretical model of multi-transverse hydraulic fractures in horizontal well, 

the same well of well T02 of triple porosity model as generated in Chapter VII, is used 

in this interpretation.  

 To simulate the real situation when interpreting data, the provided information 

for interpretation is same as provided data except hydraulic fractures and natural 

fractures information e.g.            .  

 From the interpretation guide line, this case matches the production scenario case 

2 which is linear and BDF period. Both dual porosity and triple porosity interpretation 

guidelines are shown the same equation for this production scenario case. Consequently, 

there is a unique solution for the production scenario case 2 (linear and BDF). 

From Eq. 9.5,    is 495 ft. 

From Eq. 9.6,      is 5.43 MMSTB 

In case, region 4 of dual porosity model is expected,    is 1E-5 md. from Eq. 5.12. 

In case, region L5 of triple porosity model is expected,    is 1E-5 md. from Eq. 8.13.  
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9.2.2 Well T04 

 Another theoretical shale oil well was generated by triple porosity model. This 

well is assumed permeability in natural fractures is low. The data table and the generated 

daily production data of 100 days are shown in Table 23 and Figure 29. The OOIP from 

this well is 4.39 MMSTB. The linear flow period is represented by region L5. 

 

 

Table 23 – Well T04 data 

 

 

 

Figure 29 – Production data and square root of time plots of well T04 

 

Thickness h 200 ft Hydraulic Fracture Half-Length y e 400 ft

Perforation Interval x e 5000 ft Hydraulic Fracture Effective Permeability k F 100 md

Hydraulic Fracture Spacing L F 200 ft Hydraulic Fracture Width w F 0.01 ft

Number of Hydraulic Fracture n F 25 Hydraulic Fracture Intrinsic Permeability k F,in 2.00E+06 md

Natural Fracture Spacing L f 10 ft Hydraulic Fracture Porosity ɸ F 0.3

Number of Natural Fracture n f 40 Natural Fracture Effective Permeability k f 0.00001 md

Matrix Permeability k m 1.00E-04 md Natural Fracture Width w f 0.001 ft

Total Porosity ɸ 0.05 Natural Fracture Intrinsic Permeability k f,in 0.1 md

Water Saturation S w 0.2 Natural Fracture Porosity ɸ f 0.3

Formation Volume Factor B o 1.3 rcf/scf Matrix Porosity ɸ m 0.05

Viscosity m 1.3 cp Total Compressibility c ti 2.00E-07 psi-1

Initial Pressure p i 3000 psia Bottomhole Flowing Pressure p wf 500 pisa



 108 

 The provided information for interpretation is same as provided data except 

hydraulic fractures and natural fractures information e.g.         . Assume    and    

are known from core data analysis. 

 In this case, the production data shows only linear flow or production curve have 

not shown BDF yet. From the interpretation guide line, this case matches the production 

scenario case 1 which is only linear period is found. What region (region 4, region L5, or 

region L6) is found for the linear flow cannot be determined. Therefore, three asymptotic 

equations are used to see the properties. 

 

Choice 1 – Region 4 of Dual Porosity Model 

    is known from core data analysis (10
-4

 md) 

 From Eq. 5.2,    is 126 ft. 

 

Choice 2 – Region L6 of Triple Porosity Model 

    and    are known from core data analysis 

 From Eq. 8.1,    is 6.3 ft. 

 

Choice 3 – Region L5 of Triple Porosity Model 

    has to be assumed with the maximum limit which is calculated by Eq. 8.6, 

       is 5.1E-5 md. Thus,    of 1E-5 md is assumed (      0.1 md with    0.001 ft). 

 From Eq. 8.5,    is 400 ft. 

 If    of 1E-6 md is assumed (      0.01 md with    0.001 ft),    is 1264 ft. 
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Minimum    

 From Eq. 9.2,        is 176 ft. 

 

 In summary, the last linear is supposed to be region L5 rather than region L6 

because the calculated    from asymptotic equation of region L6 is much more less than 

the minimum calculated   . Moreover, the calculated    from the region 4 of dual 

porosity model is less than the minimum value of   ; therefore, dual porosity model is 

not supposed to represent this case example. As a result, the value of    should be 

calculated from region L5 equation. However, there is high uncertainty of the value of 

  . The value of    can be any value which is higher than 176 ft.  

 

9.2.3 Well 314 

 Again, well#314 (data in Appendix B) is used to show the interpretation of field 

production data. It is noted that skin effect and gas adsorption are neglected in this case. 

To analyze production data of this well, interpretation guidelines of the production 

scenario case 2 (Linear and BDF periods are found) are used.  

From Eq. 9.3,    is 186 ft. 

From Eq. 9.4,      is 2.7 Bscf 

In case, region 4 of dual porosity model is expected,    is 1.3E-4 md. from Eq. 5.12. 

In case, region L5 of triple porosity model is expected,    is 1.3E-4 md. from Eq. 8.13.  
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9.2.4 Well B-145 

 Field production plot and data of the multi-transverse hydraulic fractures 

horizontal well, well#B-145, is shown in Appendix B. In this interpretation, skin effect 

and gas adsorption are neglected. To analyze production data of this well, interpretation 

guidelines of the production scenario case 1 (only linear period is found) are used. 

 

Choice 1 – Region 4 of Dual Porosity Model 

    is known from core data analysis (1.5x10
-4

 md) 

 From Eq. 5.1,    is 72 ft. 

 From Eq. 5.3,        is 4.7E-5 md 

 

Choice 2 – Region L6 of Triple Porosity Model 

 Assume    = 10 ft and from core analysis,     1.5x10
-4 

md 

 (
  

√  
) is 8.2E+2 ft/md

0.5
. 

 From Eq. 8.1,    is 9 ft. 

 In case this region is found, from Eq. 8.3, (
  

√  
)
   

 is 1.2E+4 ft/md
0.5

. 

 

Choice 3 – Region L5 of Triple Porosity Model 

    has to be assumed with the maximum limit which is calculated by Eq. 8.6, 

       is 4.7E-5 md.  

 In case,    of 1E-5 md is assumed (      0.1 md with    0.001 ft and    10 ft) 
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 From Eq. 8.4,    is 277 ft. 

 In case,    of 1E-6 md is assumed (      0.01 md with    0.001 ft and    10 ft) 

 From Eq. 8.4,    is 876 ft. 

 

Minimum    

 From Eq. 9.1,        is 128 ft. 

  

 In summary, the linear flow period is supposed to be region L5. From choice 1 or 

region 4 of dual porosity model, calculated    is lower than minimum    and calculated 

   is higher than maximum   ; therefore, it is believed that the linear period is not 

represented by the region 4. From choice 2 or region L6 of triple porosity model, 

calculated    is too low and calculated (
  

√  
)  is lower than minimum(

  

√  
); therefore, 

it is believed that the linear period is not represented by the region L6. As a result, the 

value of    should be calculated from region L5 equation. However, there is high 

uncertainty of the value of   . The value of    can be any value which is higher than 

128 ft.  

 

9.3 Discussion and Conclusion 

 In case linear and BDF periods are found, unique solution of    can be calculated 

for both dual and triple porosity models. 

 In case only linear period is found,  
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o Three possible regions and equations are used for interpretation.  

o Using dual porosity model to interpret reservoir with natural fractures can 

cause a significant error of value of   . 

o An uncertainty of    value causes a big range of calculated   value from 

region L5 asymptotic equation. 

o Minimum calculated    can be found by using the last point of data. 
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CHAPTER X  

CONCLUSIONS AND RECOMMENDATIONS 

 

10.1 Conclusions 

 The main conclusions can be summarized as follows. 

 The linear homogeneous flow model can be used to analyze the transient linear 

flow in matrix of the dual porosity model with the condition of infinite 

conductivity hydraulic fractures. 

 The dual porosity model can be used to analyze a fractured horizontal well with 

the assumption of homogeneous matrix system. 

 Five regions and their asymptotic equations can be presented in the dual porosity 

model. 

 In daily production data, long last linear flow is expected to be region 3 or 

region 4, while possible bilinear flow is region 2. With high conductivity 

hydraulic fractures, only region 4 is expected to present in production data. 

 Region 4 is represented by the same equation as linear homogeneous flow model. 

 The triple porosity model can be used to analyze a fractured horizontal well with 

the naturally fractured reservoir. 

 Twelve regions and their asymptotic equations can be represented in the triple 

porosity model. 
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 In daily production data, with the assumption of infinite conductivity hydraulic 

fractures, long last linear flow is expected to be region L5 or region L6, while 

possible bilinear flow is region B4. 

 To interpret production data with the assumption of infinite conductivity 

hydraulic fractures, if only long linear flow with no decline period is found, 

different three answers can be calculated. If long linear flow with decline period 

is found, only one unique solution can be calculated.  

 

10.2 Recommendations 

 The followings are recommended for future work. 

 Developing asymptotic equations and associated equations for constant rate case 

of triple porosity model. 

 Including gas adsorption in the analysis  

 More investigation on gas correction factor  

 Due to high uncertainty in the natural fracture properties, general values of 

natural fracture properties of the field should be investigated to increase 

confidence in calculation. 
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APPENDIX A 

DERIVATION OF MODIFIED LINEAR HOMOGENEOUS FLOW IN 

MULIT-TRANSVERSE HYDRAULIC FRACTURES HORIZONTAL WELL 

 

Based on Wattenbarger and El-Banbi (1998), the mathematical model of 

hydraulic fracture well is represented by Figure 30.  

 

 

Figure 30 – A hydraulically fractured well in a rectangular reservoir 

(Wattenbarger and El-Banbi 1998) 

 

 

The definition of all dimensionless parameters is in terms of fracture half-length, xf, and 

given by 

     
          

        
   

.................... (A- 1) 
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.................... (A- 2) 
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.................... (A- 3) 
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 The solution for constant     production from a closed linear reservoir is given 

by 

 

  
 

 
 (

  
  

)

∑    [ 
    

 (
  
  

)
 

    ] 
    

  
.................... (A- 5) 

The short term approximation solution of homogeneous linear flow during the linear 

flow period of constant pressure condition in terms of xf is given. 

      
 

 √ 
 

 

√    

 
.................... (A- 6) 

Converting to dimensional parameters, the slope of square root of time plot of gas and 

oil are given by equation A-7 and A-8, respectively. 

        
      

  √       

 

√    
 

.................... (A- 7) 

        
     √ 

  √      

 

√    
 

.................... (A- 8) 

The end of half-slope line of the log-log plot or the end of straight line of the square root 

of time plot is found when      is 0.25 for constant     case or when flow responds by 

the outer boundary. 
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        √
      
       

 
.................... (A- 9) 

Pore volume, Vp, can also be calculated by combining Eq. A-7, Eq. A-8, and Eq. A-9. 

The Vp for gas and oil  

     
      

      

 

       
 √     

.................... (A- 10) 

     
     

   

 

       
 √     

.................... (A- 11) 

  

 To apply this model to multi-transverse hydraulic fractures horizontal well, the 

definition of dimension parameters have to be modified as follows. 

    of A hydraulically fractured well       of A multi-transverse hydraulic 

fractures horizontal well 

    of A hydraulically fractured well        of A multi-transverse hydraulic 

fractures horizontal well 

Therefore, the modified equations of linear flow for interpreting the multi-transverse 

hydraulic fractures horizontal well are  

√        
      

  √       

 

       
 

.................... (A- 12) 

√        
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  √      
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APPENDIX B 

EXAMPLE FIELD DATA 

 

Well 314 

Field production plot and data of the multi-transverse hydraulic fractures 

horizontal well, well#314, is shown in Figure 31 and Table 24, respectively. The well 

has been produced with a constant bottom-hole pressure. The production plot shows a 

half-slope on the log-log plot of rate versus time representing linear flow. Moreover, 

deviation from the half-slope trend line at late time is observed. The early period that 

does not follow the half-slope trend line may be from the effect of fractured treatment 

water which causes the skin effect in the early part.  

 From plotting         versus √ , slope is 1.75E+4 as shown in Figure 32. To 

evaluate gas production data, correction factor is calculated from drawdown given by 

Ibrahim and Wattenbarger (2005). 

   
       (   )

     
 .................... (B- 1) 

                       
  

.................... (B- 2) 

The calculated     is 0.838. Then, corrected slope is 20,883. The end of half-slope on 

log-log plot or the end of straight line on square root of time plot,     , is around 225 

days. 
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Figure 31 – Log-log plot of production gas rate versus time of well 314 

 

 

Table 24 – Well 314 data 

Thickness h 300 ft 

Perforation Interval xe 2968 ft 

Hydraulic Fracture Spacing LF 106 ft 

Number of Hydraulic Fracture nF 28   

Porosity ɸ 0.06   

Water Saturation Swi 0.3   

Formation Volume Factor Bgi 0.00509 rcf/scf 

Viscosity mi 0.0201 cp 

Total Compressibility cti 2.20E-04 psi
-1

 

Pseudo Initial Pressure m(pi) 5.97E+08 psi
2
/cp 

Pseudo Bottomhole Flowing Pressure m(pwf) 2.03E+07 psi
2
/cp 

Temperature T 610 
o
R 
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Figure 32 – Square root of time plot of well 314 

 

 

Well B-86 

Field production plot and data of the multi-transverse hydraulic fractures 

horizontal well, well#B-86, is shown in Figure 33 and Table 25, respectively. The well 

has been produced with a constant bottom-hole pressure. The production plot shows a 

quarter-slope and a half-slope on the log-log plot of rate versus time representing 

bilinear and linear flows, respectively. There is no deviation from the half-slope trend 

line at late time. The early period that does not follow the quarter-slope trend line may 

be from the effect of fractured treatment water which causes the skin effect in the early 

part.  

 From plotting         versus √ , slope is 17,200. From plotting         

versus      , slope is 45,000 as shown in Figure 34. To evaluate gas production data, 

correction factor of gas properties given by Eq. B-1 and Eq. B-2 is applied to the slopes.  
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The calculated     is 0.838. Then, corrected slope is 20,525 and 53,700 for square root 

of time and fourth root of time plots, respectively. The end of production data,     , is 

around 300 days. 

 

 

Figure 33 – Log-log plot of production gas rate versus time of well B-86 

 

Table 25 – Well B-86 data 

Thickness h 300 ft 

Perforation Interval xe 3550 ft 

Hydraulic Fracture Spacing LF 142 ft 

Number of Hydraulic Fracture nF 25   

Porosity ɸ 0.085   

Water Saturation Swi 0.3   

Formation Volume Factor Bgi 0.0051 rcf/scf 

Viscosity mi 0.0195 cp 

Total Compressibility cti 2.23E-04 psi
-1

 

Pseudo Initial Pressure m(pi) 5.96E+08 psi
2
/cp 

Pseudo Bottomhole Flowing Pressure m(pwf) 2.01E+07 psi
2
/cp 

Temperature T 610 
o
R 
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Figure 34 – Square root of time (right) and fourth root of time (left) plots of well 

B-86 

 

 

Well B-145 

Field production plot and data of the multi-transverse hydraulic fractures 

horizontal well, well#B-145, is showed in Figure 35 and Table 26, respectively. The 

well has been produced with a constant bottom-hole pressure. The production plot shows 

a long half-slope on the log-log plot of rate versus time representing the linear flow. 

There is no deviation from the half-slope trend line at late time. The early period that 

does not follow the half-slope trend line may be from the effect of fractured treatment 

water which causes the skin effect in the early part. Moreover, from core data analysis, 

matrix permeability is estimated as 1.5x10
-4

 md. 

 From plotting         versus √ , slope is 24,000 as showed in Figure 36. To 

evaluate gas production data, correction factor of gas properties given by Eq. B-1 and 

Eq. B-2 is applied to the slopes. The calculated     is 0.838. Then, corrected slope is 

28,640 for square root of time plot. The end of production data,     , is around 500 days. 
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Figure 35 – Log-log plot of production gas rate versus time of well B-145 

 

 

Table 26 – Well B-145 data 

Thickness h 300 ft 

Perforation Interval xe 3360 ft 

Hydraulic Fracture Spacing LF 80 ft 

Number of Hydraulic Fracture nF 42   

Porosity ɸ 0.085   

Water Saturation Swi 0.3   

Formation Volume Factor Bgi 0.0051 rcf/scf 

Viscosity mi 0.0195 cp 

Total Compressibility cti 2.23E-04 psi
-1

 

Pseudo Initial Pressure m(pi) 5.96E+08 psi
2
/cp 

Pseudo Bottomhole Flowing Pressure m(pwf) 2.01E+07 psi
2
/cp 

Temperature T 610 
o
R 
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Figure 36 – Square root of time plot of well B-145 
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APPENDIX C 

LAPLACE SOLUTION OF LINEAR TRANSIENT DUAL POROSITY MODEL 

  

Derivations of the linear transient dual porosity model with closed boundary 

developed by El-Banbi (1998) are shown in this chapter. The solution is showed in 

Laplace domain to solve the second-order differential equation. The solution in time 

domain can be obtained by Stehfest algorithm. The derivation starts with constant rate 

solution and converts to constant pressure solution by using the technique given by Van 

Everdingen and Hurst (1949).  

 

Matrix system 

 Diffusivity equation: 

  

 

    

   
 [     ] 

   

  
 

    

   
  [

     
 

]
 

   

  
 

Inner boundary condition:  

   

  
|
   

   

Outer boundary condition:  

  |          
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Hydraulic fracture system 

Diffusivity equation: 

  

 

    

   
 [     ] 

   

  
     

     
  

      
 
   

  
|
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]
 

   

  
 

  

       
 
   

  
|
      

 

Inner boundary condition:  

  
     

  

   

  
|
   

 

Outer boundary condition:  

   

  
|
    

   

 

Solution 

From matrix system, 

Let    
 

    
,    

 

   
        or           , and 

      
  

[                 ]    
  

  

[     ]     
  ;therefore,  

 

     

   
  

 

       

  
   

        
        

 
    

      
 

.................... (C- 1) 
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Let     
       

  
   

 and      
        

        
, 

     

   
  

 

   

       
    

      
 

.................... (C- 2) 

 

Take Laplace transform 

     ̅̅ ̅̅ ̅

   
  

 

   

       (    ̅̅ ̅̅ ̅           ) 
.................... (C- 3) 

 

From the initial condition of matrix system,             

     ̅̅ ̅̅ ̅

   
  

 

   

            ̅̅ ̅̅ ̅ 
.................... (C- 4) 

 

This can be shown by the general solution 

   ̅̅ ̅̅ ̅       (√
         

   
   )       (√

         

   
   ) 

..... (C- 5) 

or 

    ̅̅ ̅̅ ̅

   
  √

        

    
    (√
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  √
        

   
    (√
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............. (C- 6) 
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From the inner boundary condition of matrix system, 
   

  
|
   

   

    

   
|
    

   
.................... (C- 7) 

Take Laplace transform 

    ̅̅ ̅̅ ̅

   
|
    

   
.................... (C- 8) 

 

Therefore, where       Eq. C-6 becomes 

   √
        

   
         √

        

   
        .................... (C- 9) 

Since         and        ; therefore,    . 

 

From the outer boundary condition of matrix system,   |          

   |         
.................... (C- 10) 

Take Laplace transform 

   ̅̅ ̅̅ ̅|        ̅̅ ̅̅ ̅ 
.................... (C- 11) 

 

Therefore, where       Eq. C-5 becomes 

   ̅̅ ̅̅ ̅       (√
        

   
 ) 

.................... (C- 12) 
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Then, 

  
   ̅̅ ̅̅ ̅

    (√
        

   
)

 

.................... (C- 13) 

 

Therefore, 

   ̅̅ ̅̅ ̅  
   ̅̅ ̅̅ ̅

    (√
        

   
 )
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.................... (C- 14) 

or 

    ̅̅ ̅̅ ̅
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√
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...... (C- 15) 

 

From hydraulic fracture system, 

Let    
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,           , and       
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Take Laplace transform, 

     ̅̅ ̅̅ ̅

   
     (     ̅̅ ̅̅ ̅           )  

    

 
 
    ̅̅ ̅̅ ̅

   
|
    

 
.................... (C- 18) 

From the initial condition of hydraulic fracture system,             

     ̅̅ ̅̅ ̅

   
          ̅̅ ̅̅ ̅  

   

 
 
    ̅̅ ̅̅ ̅

   
|
    

 
.................... (C- 19) 

Substitute 
    ̅̅ ̅̅ ̅̅ ̅

   
|
    

 with Eq. C-15, 

     ̅̅ ̅̅ ̅

   
          ̅̅ ̅̅ ̅  

   

 
   ̅̅ ̅̅ ̅√

        

   
     (√

        

   
 ) 

… (C- 20) 

Define  

        
   

   
√
        

   
     (√

        

   
 ) 

.................... (C- 21) 

Therefore, 

     ̅̅ ̅̅ ̅

   
            ̅̅ ̅̅ ̅    

.................... (C- 22) 

This can be shown by the general solution 

   ̅̅ ̅̅ ̅       (√         )       (√         ) 
.................... (C- 23) 

or 

    ̅̅ ̅̅ ̅

   
  √           (√         )

  √           (√         ) 

.................... (C- 24) 
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From the inner boundary condition of hydraulic fracture system,   
     

  

   

  
|
   

 

Let           , and    
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.................... (C- 25) 

Define     
 

  

   

  √   
; therefore,    

     √   

   
        

    

   
|
    

     
.................... (C- 26) 

Take Laplace transform, 

    ̅̅ ̅̅ ̅

   
|
    

  
  

 
 

.................... (C- 27) 

 

Therefore, where       Eq. C-24 becomes, 

 
  

 
  √                √               

.................... (C- 28) 

Since         and        ,  

   
  

 √      
 

.................... (C- 29) 

 

From the outer boundary condition of hydraulic fracture system, 
   

  
|
    

   

Define     
  

√   
, 

    

   
|
      

   
.................... (C- 30) 
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Take Laplace transform, 

    ̅̅ ̅̅ ̅

   
|
      

   
.................... (C- 31) 

 

Therefore, where        and Eq. C-29, Eq. C-24 becomes,  

   √           (√          )  
  

 
     (√          ) 

......... (C- 32) 

Then, 

  

  
      (√          )

√           (√          )
 .................... (C- 33) 

Therefore, Eq. C-23 becomes, 

   ̅̅ ̅̅ ̅  

  
      (√          )

√           (√          )
    (√         )

 
  

 √      
    (√         ) 

.................... (C- 34) 

 

At wellbore,     ,  

   ̅̅ ̅̅ ̅
     

 
      (√          )

 √           (√          )
 

.................... (C- 35) 

Re-arrange in exponential term, (define     ̅̅ ̅̅ ̅̅     ̅̅ ̅̅ ̅
     

) 

    ̅̅ ̅̅ ̅̅  
   

 √       
[
     √         

     √         

] 
.................... (C- 36) 
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To change from constant rate solution to constant pressure solution, Van Everdingen and 

Hurst (1949) introduced the relation between constant pressure solution and constant rate 

in Laplace space. 

    ̅̅ ̅̅ ̅̅     ̅̅ ̅̅̅  
 

  
 

.................... (C- 37) 

 

Consequently, the solution of constant pressure of transient linear slab dual porosity case 

(El-Banbi, 1998) is shown. 
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Where  
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APPENDIX D 

ANALYSIS EQUATIONS DERIVATIONS OF 

 LINEAR TRANSIENT DUAL POROSITY MODEL  

FOR CONSTANT PRESSURE CASE 

 

From constant pressure inner boundary and closed outer boundary of linear 

transient dual porosity model given by El-Banbi (1998) 

 

   ̅̅ ̅̅̅
 

   

√     
[
     √         

     √         

] 
.................... (D- 1) 

Or this can be written in term of         function. 

 

   ̅̅ ̅̅̅
 

   

√     
    (√         ) 

.................... (D- 2) 

For transient slab model, 

        
   

   
√
        

   
     (√

        

   
 ) 

.................... (D- 3) 

 

Case 1 

With the assumption of 

   √
   

  
          (√

  

   
      )  

√                         (√         )     

Therefore, 
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Then,  

   ̅̅ ̅̅̅  
√  

  

 

√ 
 

.................... (D- 4) 

Inverting Laplace transform, the asymptotic equation of region 1 is 

    
√  

  √ 

 

√     

 
.................... (D- 5) 

 

Case 2 

With the assumption of 

   √
   

  
          (√

  

   
      )   

And √
  

   
                     (√

  

   
      )     

And          

And  √                         (√         )     

Therefore, 
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Then, 

   ̅̅ ̅̅̅  
   
    

       

 

     
 .................... (D- 6) 

Inverting Laplace transform, the asymptotic equation of region 2 is 

    
   
   

      
 

 

     
   

 
.................... (D- 7) 
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Case 3 

With the assumption of  

    (√
  

   
      )  √

  

   
       from approximation of Taylor’s series 

expansion when √
  

   
       is very low 

√                         (√         )      

Therefore, 

        √
   

  
      √

  

   
        

        

Then, 

   ̅̅ ̅̅̅  
 

  

 

√ 
 

.................... (D- 8) 

Inverting Laplace transform, the asymptotic equation of region 3 is 

    
 

  √ 
 

 

√     

 
.................... (D- 9) 

 

Case 4 

With the assumption of  

   √
   

  
          (√

  

   
      )   

And √
  

   
                      (√

  

   
      )     

And          
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And     (√         )  
 

√         
  from approximation of Taylor’s series expansion 

when √          is very low 

 

Therefore, 

     √
   

  
  

Then, 

   ̅̅ ̅̅̅  
   

  
√
   

 

 

√ 
 .................... (D- 10) 

Inverting Laplace transform, the asymptotic equation of region 4 is 

    
   

  √ 
√
   

 

 

√     

 .................... (D- 11) 

 

Case 5 

With the assumption of  

   √
   

  
          (√

  

   
      )  

And      (√         )  
 

√         
 from approximation of Taylor’s series expansion 

when √          is very low 

 

Therefore, 
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Then,  

   ̅̅ ̅̅̅  
   

  
   

.................... (D- 12) 

Inverting Laplace transform, 

    
   

  
       .................... (D- 13) 

which is not practical 

 

Case 6 

With the assumption of  

    (√
  

   
      )  √

  

   
       from approximation of Taylor’s series 

expansion when √
  

   
       is very low 

And      (√         )  
 

√         
 from approximation of Taylor’s series expansion 

when √          is very low 

Therefore, 

        

Then, 

   ̅̅ ̅̅̅  
   

  
 

.................... (D- 14) 

Inverting Laplace transform, 

    
   

  
      

.................... (D- 15) 

which is not practical 
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In summary, assumptions and results of 6 cases are shown in Table 27. 

 

Table 27 - Assumptions of 6 cases and the final asymptotic equations of the 

transient linear dual porosity model (constant pressure) 

Case / 

Region 

Estimated Terms 

Asymptotic Equations 
   ̅̅ ̅̅̅      

    (√         )        (√
  

   

      ) 

1 1    -     
√  

  √ 

 

√     

 

2 1 - 1     
   
   

      
 

 

     
   

 

3 1 - √
  

   

           
 

  √ 
 

 

√     

 

4 
 

√         

 - 1     
   

  √ 
√
   

 

 

√     

 

5 
 

√         

      N/A 

6 
 

√         

 - √
  

   

       N/A 
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Conditions and periods of dual porosity characteristic 

One sensitivity set was run to see the curve characteristic of dual porosity model. The 

Run 1 – 5 plots are shown in Figure 37. 

 

 

Figure 37 – Sensitivity set (Run 1 – 5) of curve characteristic of the dual porosity 

model 
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Run 1 – λFm = 1E-5, ωF = 1E-3, and       

Only two regions which are region 1 and region 4 are observed and region 4 jogs 

down from trend line of region 1. 

 

Run 2 – λFm = 1E-5, ωF = 1E-3, and           

Only two regions which are region 1 and region 4 are observed. Moreover, 

region 1 and region 4 are on the same trend line.  

 

Run 3 – λFm = 1E-5, ωF = 1E-3, and         

Three regions which are region 1, region 2 and region 4 are observed. Starting 

with region 1, region 2 bends up from trend line of region 1. Then, from trend line of 

region 2, region 4 bends down from region 2. 

 

Run 4 – λFm = 1E-5, ωF = 1E-3, and            

Only two regions which are region 1 and region 2 are observed. Starting with 

region 1, region 2 bends up from trend line of region 1. Then, boundary dominated flow 

is found directly from region 2. 

 

Run 5 – λFm = 1E-5, ωF = 1E-3, and          

Three regions which are region 1, region 2 and region 3 are observed. Starting 

with region 1, region 2 bends up from trend line of region 1. Then, trend line of region 2 

bends down and follows by the region 3 or homogeneous line. 
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All of the runs (5 runs) are shown that each region has their specific conditions to 

happen except region 1 which can be seen in any run. From this sensitivity set, the dual 

porosity model can be defined by 5 characteristic curves as shown in Figure 38. 

 

 

 

Figure 38 – Combined plots of Run 1 – 5 and the conditions 
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The conditions of the 5 characteristics can be derived from the asymptotic 

equations. The derivations are the followings. 

From asymptotic equations of region 1 and region 4, the condition as run 2 

(region 1 and region 4 are on the same trend line) can be derived. 

Equate asymptotic equation of region 1 and region 4: 

√  

  √ 

 

√     

 
   

  √ 
√
   

 

 

√     

 .................... (D- 16) 

Then,  

    √
   

   
 

.................... (D- 17) 

 

From asymptotic equation of region 3 and region 4, the condition as run 4 (region 

3 and region 4 are on the same trend line, and neither region 3 nor region 4 are found) 

can be derived. 

Equate asymptotic equation of region 3 and region 4: 

 

  √ 
 

 

√     

 
   

  √ 
√
   

 

 

√     

 .................... (D- 18) 

Then,  

    √
 

   
 

.................... (D- 19) 
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Moreover, the conditions of run 1, run 3, and run 5 can be evaluated from these 

conditions and showed below. 

 The condition of run 1 is     √
   

   
 

 The condition of run 3 is √
   

   
     √

 

   
 

 The condition of run 5 is     √
 

   
 

 

In summary, the characteristic of the linear transient dual porosity curve can be 

defined by 5 conditions in term of     as follows. 

1.     √
   

   
 

2.     √
   

   
 

3. √
   

   
     √

 

   
 

4.     √
 

   
 

5.     √
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 From the assumptions of each asymptotic equation, some of starting time and end 

time of each region can be determined as following. 

 

Region 1 

 Referring to the assumption of     (√         )   , √          has to be 

closed to infinity number to get the most accurate value of coth function. From trial and 

error, √            fits with the estimation. 

From √            and        , 

√           
.................... (D- 20) 

 

 
 

 

  

  

   
    

 
.................... (D- 21) 

Inverting Laplace transform, 

       

  

   
    

 
.................... (D- 22) 

      
   

    

  
 .................... (D- 23) 

From the sensitivity run case, it is found that end of region 1 is at       
   
    

   only in 

the first condition or when     √
   

   
. 

 

Region 2 

 Referring to the assumption of     (√         )   , same as region 1, 

√            is used to estimate the time condition from trial and error. 
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From √            and     √
   

  
 , 

√  √             .................... (D- 24) 

 

 
 

 

  
 
    

   
     

 
.................... (D- 25) 

Inverting Laplace transform, 

       

    

   
     

 
.................... (D- 26) 

      
   

     

    
 .................... (D- 27) 

From the sensitivity run case, it is found that the end of region 2 is at       
   
     

    
 

only in the third condition or √
   

   
     √

 

   
. 

 Furthermore, regarding the assumption of     (√
  

   
      )   , 

√
  

   
       has to be closed to infinity number to get the most accurate value of tanh 

function. Nevertheless, from trial and error, √
  

   
          gives the satisfy result. 

 From √
  

   
         and         , 

  
  

 
    .................... (D- 28) 

 

 
 

 

  
 
  

 
    .................... (D- 29) 
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Inverting Laplace transform, 

      
 

     
 

.................... (D- 30) 

From the sensitivity run case, it is found that the end of region 2 is at       
 

     
 

only in the fifth condition or      √     . 

 

Region 3 

 Referring to the assumption of     (√         )   , same as region 1, 

√            is used to estimate the time condition. 

From √            and       , 

 

 
 

 

  

  

   
  

.................... (D- 31) 

Inverting Laplace transform, 

      
   

 

  
 .................... (D- 32) 

  

 Referring to the assumption of     (√
  

   
      )  √

  

   
       which 

is the first approximation of Taylor’s series expansion, √
  

   
       term is supposed 

to be very low (close to 0). However, it is found that √
  

   
         already make a 

satisfy result. 
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From √
  

 
        and        , 

 

 
 

 

  
 
 

 
    

.................... (D- 33) 

Inverting Laplace transform, 

      
 

   
 

.................... (D- 34) 

From the sensitivity run case, it is found that the start and the end of region 3 is at 

      
 

   
 and       

   
 

  , respectively. 

 

Region 4 

 Referring to the assumption of     (√         )  
 

√         
 which is the first 

approximation of Taylor’s series expansion, √          term is supposed to be very 

low (close to 0). However, it is found that √            already make a satisfy 

result. 

From √            and      √
   

  
, 

√  √             .................... (D- 35) 

 

 
 

 

  
 

 

   
     

 
.................... (D- 36) 

Inverting Laplace transform, 

      
   

     

 
 .................... (D- 37) 
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From the sensitivity run case, it is found that the start of region 4 is at       
   
     

 
 

only in the third condition or √
   

   
     √

 

   
. 

 Furthermore, regarding the assumption of     (√
  

   
      )   , same as 

region 2 case, √
  

   
          gives the satisfy result. Also same as region 2 case, 

the end of region 4 is at   
 

     
. Moreover, from the sensitivity run case, this case will 

occur when     √
 

   
  or from the condition 1

st
 to 3

rd
. 

 

Intersection of region 2 and region 4 

Equate region 2 and region 4 asymptotic equations,  

   
   

      
 

 

     
   

 
   

  √ 
√
   

 

 

√     

 .................... (D- 38) 

                     
  

.................... (D- 39) 

 

Intersection of region 2 and region 3 

Equate region 2 and region 3 asymptotic equations,  

   
   

      
 

 

     
   

 
 

  √ 

 

√     

 
.................... (D- 40) 

             
 

   
 

.................... (D- 41) 
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In summary, all the time identifications of each region are shown in Figure 39, Figure 

40, and Figure 41. 

 

 

 

Figure 39 – The dimensionless plot of the dual porosity model of λFm = 1E-5, 

ωF = 1E-3, and      1 
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Figure 40 – The dimensionless plot of the dual porosity model of λFm = 1E-5, 

ωF = 1E-3, and      100 

 

 

 

Figure 41 – The dimensionless plot of the dual porosity model of λFm = 1E-5, 

ωF = 1E-3, and      5000 
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APPENDIX E 

DUAL POROSITY SENSITIVITY 

 

 The dimensional parameters,                  , are played sensitivity analysis 

to see the effect of each parameters on the production curve. To represent the base case, 

one theoretical model was generated to represent the multi-transverse hydraulic fractures 

horizontal shale oil well. The information of this well is showed in Table 28.  

 

Table 28 – Data of the theoretical well to represent base case of sensitivity run of 

dual porosity model 

 

 

   Sensitivity 

 The sensitivity of hydraulic fracture intrinsic permeability values, ranging from 

0.1 to 10
6
 md, is showed in Figure 42. The sensitivity result shows that while decreasing 

the hydraulic fracture permeability from infinite conductivity, the last linear period 

changes from region 4 to region 3 when 
  

  
 

 

 
√

  

  
. Moreover, it is confirmed that the 

last linear region 4 is not affected by    as showed in the region 4 asymptotic equation. 

On the other hand, region 3 is affected by    as showed in the asymptotic equation. 

Thickness h 200 ft Hydraulic Fracture Half-Length y e 500 ft

Perforation Interval x e 5000 ft Hydraulic Fracture Effective Permeability k F 0.4 md

Total Porosity ɸ 0.05 Hydraulic Fracture Width w F 0.01 ft

Hydraulic Fracture Spacing L F 250 ft Hydraulic Fracture Intrinsic Permeability k F,in 10,000 md

Number of Hydraulic Fracture n F 20 Hydraulic Fracture Porosity ɸ F 0.5

Matrix Permeability k m 1.0E-05 md Matrix Porosity ɸ m 0.05

Water Saturation S w 0.2 Viscosity m 1.3 cp

Formation Volume Factor B o 1.3 rcf/scf Total Compressibility c ti 2.0E-07 psi-1

Initial Pressure p i 3000 psia Bottomhole Flowing Pressure p wf 500 pisa
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   Sensitivity 

 The sensitivity of matrix permeability values, ranging from 10
-8

 to 10 md, is 

showed in Figure 43. The sensitivity result shows that while increasing the matrix 

permeability from 10
-8

 md, the last linear period changes from region 4 to region 3 when 

  

  
 

 

 
√

  

  
. Moreover, it is confirmed that the last linear region 4 is affected by    as 

showed in the region 4 asymptotic equation. On the other hand, region 3 is not affected 

by    as showed in the asymptotic equation. 

 

   Sensitivity 

 The sensitivity of hydraulic fracture half-length values, ranging from 10 ft to 

infinite value, is showed in Figure 44. The sensitivity result shows that while increasing 

the hydraulic fracture half-length from 10 ft, the last linear period changes from region 4 

to region 3 when 
  

  
 

 

 
√

  

  
. Moreover, it is confirmed that    affects the last linear line 

only the region 4. On the other hand, the end of last linear line is affected by    only for 

region 3.  

 

   and    Sensitivity 

 The sensitivity of the number of hydraulic fractures related to hydraulic fracture 

spacing by fixing the effective well length, ranging from 1 to 40, is showed in Figure 

45. By increasing the number of hydraulic fractures, the production rate increases while 

the end of linear transient period is shorter. 
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  Sensitivity 

 The sensitivity of reservoir thickness value, ranging from 10 to 5120 ft, is 

showed in Figure 46. By increasing reservoir thickness, the production rate increases 

while the end of linear transient period is same. 

 

 

 

Figure 42 – The hydraulic fracture permeability sensitivity analysis of dual porosity 

model  
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Figure 43 – The matrix permeability sensitivity analysis of dual porosity model  

 

 

 

Figure 44 – The hydraulic fracture half-length sensitivity analysis of dual porosity 

model  
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Figure 45 – The hydraulic fracture spacing sensitivity analysis of dual porosity 

model  

 

 

 

Figure 46 – The reservoir thickness sensitivity analysis of dual porosity model  
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APPENDIX F 

LAPLACE SOLUTION OF  

FULLY TRANSIENT LINEAR TRIPLE POROSITY MODEL 

 

 Derivations of the fully transient triple porosity model with closed boundary 

developed by Al-Ahmadi (2010) are shown in this chapter. The solution is showed in 

Laplace domain to solve the second-order differential equation. The solution in time 

domain can be obtained by Stehfest algorithm. The derivation starts with constant rate 

solution and converts to constant pressure solution by using the technique given by Van 

Everdingen and Hurst (1949). 

 

Matrix system 

 Diffusivity equation: 

  

 

    

   
 [     ] 

   

  
 

    

   
  [

     
 

]
 

   

  
 

Inner boundary condition:  

   

  
|
   

   

Outer boundary condition:  

  |          
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Natural fracture system 

 Diffusivity equation: 

  

 

    

   
 [     ] 

   

  
     

     
  

      
 
   

  
|
      

 

    

   
  [

     
 

]
 

   

  
 

  

       
 
   

  
|
      

 

Inner boundary condition:  

   

  
|
   

   

Outer boundary condition:  

  |      
    

 

Hydraulic fracture system 

Diffusivity equation: 

  

 

    

   
 [     ] 

   

  
     

     
  

      
 
   

  
|
      

 

    

   
  [

     
 

]
 

   

  
 

  

       
 
   

  
|
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Inner boundary condition:  

  
     

  

   

  
|
   

 

Outer boundary condition:  

   

  
|
    

   

 

Solution 

From matrix system, 

Let    
 

    
 and    

 

   
        or           , 

Let       
  

[                          ]    
  

  

[     ]     
 , 

     

   
  

 

       

  
   

        
        

 
    

      
 

.................... (F- 1) 

Let     
       

  
   

 and    
        

        
 

     

   
  

 

   
   

    

      
 

.................... (F- 2) 

Take Laplace transform 

     ̅̅ ̅̅ ̅

   
  

 

   
   (    ̅̅ ̅̅ ̅           ) 

.................... (F- 3) 

From the initial condition of matrix system,             

     ̅̅ ̅̅ ̅

   
  

 

   
        ̅̅ ̅̅ ̅ 

.................... (F- 4) 
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This can be shown by the general solution 

   ̅̅ ̅̅ ̅       (√
    

   
   )       (√

    

   
   ) 

.................... (F- 5) 

or 

    ̅̅ ̅̅ ̅

   
  √

    

   
    (√

    

   
   )   √

    

   
    (√

    

   
   ) 

(F- 6) 

From the inner boundary condition of matrix system, 
   

  
|
   

   

    

   
|
    

   
.................... (F- 7) 

Take Laplace transform, 

    ̅̅ ̅̅ ̅

   
|
    

   
.................... (F- 8) 

Therefore, where       

Since         and        ,     from Eq. F-6 

From the outer boundary condition of matrix system,   |          

   |         
.................... (F- 9) 

Take Laplace transform, 

   ̅̅ ̅̅ ̅|        ̅̅ ̅̅ ̅ 
.................... (F- 10) 

Therefore, where         
   ̅̅ ̅̅ ̅̅

    (√
    

   
 )

 from Eq. F-5 
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Therefore, Eq. F-5 becomes 

   ̅̅ ̅̅ ̅  
   ̅̅ ̅̅ ̅

    (√
    
   

 )

    (√
    

   
   ) 

.................... (F- 11) 

or 

    ̅̅ ̅̅ ̅

   
 

   ̅̅ ̅̅ ̅

    (√
    
   

 )

√
    

   
    (√

    

   
   ) 

.................... (F- 12) 

From natural fracture system, 

Let    
 

    
 ,    

 

    
,           , and       

  

[     ]     
 , 

     

   
  

 

       

  
   

        
        

    

      
 

       

  
   

       

  
   

 
    

   
|
    

 
........... (F- 13) 

Let     
       

  
   

,     
       

  
   

 and    
        

        
, 

     

   
  

 

   
  

    

      
 

   

   
 
    

   
|
    

 
.................. (F- 14) 

Take Laplace transform 

     ̅̅ ̅̅ ̅

   
  

 

   
   (    ̅̅ ̅̅ ̅           )  

   

   
 
    ̅̅ ̅̅ ̅

   
|
    

 
.................. (F- 15) 

From the initial condition of natural fracture system,             

     ̅̅ ̅̅ ̅

   
  

 

   
        ̅̅ ̅̅ ̅  

   

   
 
    ̅̅ ̅̅ ̅

   
|
    

 
.................... (F- 16) 
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Substitute 
    ̅̅ ̅̅ ̅̅ ̅

   
|
    

 with Eq. F-12, 

     ̅̅ ̅̅ ̅

   
       ̅̅ ̅̅ ̅ [

 

   
   

   

   

 

 
√
    

   
    (√

    

   
 )] 

......... (F- 17) 

Define 

      
 

   
   

   

   

 

 
√
    

   
    (√

    

   
 ) 

.................... (F- 18) 

Therefore, 

     ̅̅ ̅̅ ̅

   
             ̅̅ ̅̅ ̅    

.................... (F- 19) 

This can be shown by the general solution 

   ̅̅ ̅̅ ̅       (√          )       (√          ) 
.................... (F- 20) 

or 

    ̅̅ ̅̅ ̅

   
  √            (√          )

  √            (√          ) 

.................... (F- 21) 

From the inner boundary condition of natural fracture system, 
   

  
|
   

  , 

    

   
|
    

   
.................... (F- 22) 

Take Laplace transform, 

    ̅̅ ̅̅ ̅

   
|
    

   
.................... (F- 23) 
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Therefore, where       

Since         and        ,     from Eq. F-20. 

From the outer boundary condition of natural fracture system,   |      
   , 

   |    
     

.................... (F- 24) 

Take Laplace transform, 

   ̅̅ ̅̅ ̅|
    

    ̅̅ ̅̅ ̅ 
.................... (F- 25) 

Therefore, where        
   ̅̅ ̅̅ ̅̅

    (√        )
  from Eq. F-21. 

Therefore, Eq. F-20 becomes, 

   ̅̅ ̅̅ ̅  
   ̅̅ ̅̅ ̅

    (√        )
    (√          ) 

.................... (F- 26) 

or 

    ̅̅ ̅̅ ̅

   
 

   ̅̅ ̅̅ ̅

    (√        )
√            (√          ) 

.................... (F- 27) 

 

From hydraulic fracture system, 

Let    
 

    
 ,    

 

√   
,           , and       

  

[     ]     
 , 

     

   
  

        
        

    

      
 

 

 
 
       

  
   

 
    

   
|
    

 
.................... (F- 28) 

Let     
       

  
   

 and    
        

        
, 

     

   
    

    

      
 

 

 
     

    

   
|
    

 
.................... (F- 29) 



 169 

Take Laplace transform, 

     ̅̅ ̅̅ ̅

   
     (    ̅̅ ̅̅ ̅           )  

   

 
 
    ̅̅ ̅̅ ̅

   
|
    

 
.................... (F- 30) 

From the initial condition of hydraulic fracture system,             

     ̅̅ ̅̅ ̅

   
          ̅̅ ̅̅ ̅  

   

 
 
    ̅̅ ̅̅ ̅

   
|
    

 
.................... (F- 31) 

Substitute 
    ̅̅ ̅̅ ̅̅

   
|
    

 with Eq. F-27, 

     ̅̅ ̅̅ ̅

   
       ̅̅ ̅̅ ̅ [   

   

   
  √            (√        )] .................. (F- 32) 

Define 

        
   

   
  √            (√        ) 

.................... (F- 33) 

Therefore, 

     ̅̅ ̅̅ ̅

   
            ̅̅ ̅̅ ̅    

.................... (F- 34) 

This can be shown by the general solution 

   ̅̅ ̅̅ ̅       (√         )       (√         ) 
.................... (F- 35) 

or 

    ̅̅ ̅̅ ̅

   
  √           (√         )

  √           (√         ) 

.................... (F- 36) 
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From the inner boundary condition of hydraulic fracture system, 

   

  
|
   

 
   

     
 

.................... (F- 37) 

Let           ,    
 

√   
 

    

   
|
    

  
 

   
 

   

  √   

 
.................... (F- 38) 

Define     
 

  

   

  √   
; therefore,    

     √   

   
        

    

   
|
    

     
.................... (F- 39) 

Take Laplace transform, 

    ̅̅ ̅̅ ̅

   
|
    

  
  

 
 

.................... (F- 40) 

Therefore, where       

Since         and        ,    
  

 √      
 from Eq. F-36, 

    ̅̅ ̅̅ ̅

   
  √           (√         )  

  

 
     (√         ) 

...... (F- 41) 

From the outer boundary condition of hydraulic fracture system, 
   

  
|
    

   

Define     
  

√   
, 

    

   
|
      

   
.................... (F- 42) 
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Take Laplace transform, 

    ̅̅ ̅̅ ̅

   
|
      

   
.................... (F- 43) 

Therefore, where       ,   
  

 
     (√          )

√           (√          )
 from Eq. F-41. 

Therefore, Eq. F-35 becomes, 

   ̅̅ ̅̅ ̅  

  
      (√          )

√           (√          )
    (√         )

 
  

 √      
    (√         ) 

.................... (F- 44) 

At wellbore,     ,  

   ̅̅ ̅̅ ̅
     

 
      (√          )

 √           (√          )
 

.................... (F- 45) 

Re-arrange in exponential term, (define     ̅̅ ̅̅ ̅̅     ̅̅ ̅̅ ̅
     

) 

    ̅̅ ̅̅ ̅̅  
   

 √       
[
     √         

     √         

] 
.................... (F- 46) 

To change from constant rate solution to constant pressure solution, Van Everdingen and 

Hurst (1949) introduced the relation between constant pressure solution and constant rate 

in Laplace space. 

    ̅̅ ̅̅ ̅̅     ̅̅ ̅̅̅  
 

  
 

.................... (F- 47) 

Consequently, the solution of constant pressure of fully transient triple porosity case 

(model 1 in Al Ahmadi, 2010) is shown. 
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   ̅̅ ̅̅̅
 

   

√     
[
     √         

     √         

] 
.................... (F- 48) 

Where  

        
   

   
  √            (√        ) 

.................... (F- 49) 

      
 

   
   

   

   

 

 
√
    

   
    (√

    

   
 ) 

.................... (F- 50) 
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APPENDIX G 

VALIDATION OF THE TRIPLE POROSITY MODEL 

 

 To validate the triple porosity model (Al-Ahmadi, 2010), the numerical model 

was used to compare the results. Although, Al-Ahmadi already compared the model with 

the numerical simulation in different situation and gave a satisfy result, time period that 

he compared is starting at the last linear flow (starting at 1E-3 days for oil case and 1 day 

for gas case). Therefore, the early time (the first linear flow) will be compared in this 

study. 

 The numerical model was built by the CMG reservoir simulator software. One 

section (one-quarter) of hydraulic fractures with natural fractures and matrix blocks was 

simulated in this study. Then, the simulated well production rate, which is output 

production rate times four times number of hydraulic fractures, was compared to the 

triple porosity model result. Also, both gas and liquid cases were run for comparison. 

The synthetic data used in this comparison are shown in Table 29. 

 The model was built in 2-D model (1 cell in z-direction) with 20 grids in x-

direction and 200 grids in y-direction. To represent 10 natural fractures, 200 grids in y-

direction with logarithmic spacing from the middle of natural fracture to half of natural 

fracture spacing were built to capture transient period flow from matrix cells to natural 

fracture cells (20 grids per one natural fracture). And to represent transient flow from 

natural fractures to hydraulic fractures, logarithmic length of 20 grids in x-direction were 
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constructed. The first column of grids is represented a half of hydraulic fracture. The top 

view of the model is shown in Figure 47. 

 

Table 29 – Synthetic data of triple porosity model for validation  

 

 

 

Figure 47 – Numerical model of one-fourth of hydraulic fracture 

Porosity ΦF,in 0.2

Permeability kF,in 5000 md

Width wF 0.1 ft

Spacing LF 100 ft

Porosity Φf ,in 0.1

Permeability kf,in 50 md

Width wf 0.01 ft

Spacing Lf 20 ft

Porosity Φm 0.06

Permeability km 0.00015 md

Thickness h 300 ft

Perforated Length xe 2000 ft

Fracture Half-Length ye 200 ft

# of Macro-fractures nF 20

# of Micro-fractures nf 10

Rock Compressibility cf 1.00E-06 1/psi

Initial Pressure pi 3000 psi

Bottom-hole Pressure pwf 500 psi
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  The analytical solution of water with the same model as numerical model was 

run and compared the results with the reservoir simulation first to eliminate the effect of 

non-linearity of gas properties as shown in Figure 48. The comparison shows that the 

analytical solution can fit well almost completely with the numerical solution.  

 Then, the analytical solution of gas with the same model as water case was run 

and compared the results with the reservoir simulation. The normalized time to correct 

non linearity of gas properties was applied. However, gas adsorption was neglected in 

this evaluation to reduce the confusion from gas adsorption calculation in simulator. The 

plot comparison is shown in Figure 48. There is a narrow discrepancy between the 

analytical solution and the numerical solution plot. It is believed that this small 

inconsistent comes from the non-linearity of gas properties and the correlation in gas 

properties calculation. 

 

 

 

Figure 48 – Comparison plots of analytical solution and numerical solution with the 

synthetic water and gas data. 
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 Furthermore, more sensitivity cases were run to examine the analytical solution 

and showed the satisfied results. For example, the Figure 49 shows the results of 

changing the matrix permeability to 0.000015 md of water and gas cases. The Figure 50 

shows the results of water and gas cases that the matrix and natural fractures 

permeability are changed to 0.000015 md and 1 md, respectively. The Figure 51 shows 

the results of changing the natural fractures permeability to 0.5 md for water case. 

 

 

 

Figure 49 – Comparison plots of analytical solution and numerical solution with the 

synthetic water and gas data with modification of matrix permeability as 0.000015 

md. 
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Figure 50 – Comparison plots of analytical solution and numerical solution with the 

synthetic water and gas data with modification of matrix permeability as 0.000015 

md and natural fracture permeability as 1 md. 

 

 

 

 

Figure 51 – Comparison plots of analytical solution and numerical solution with the 

synthetic water and gas data with modification of natural fracture permeability as 

0.5 md. 

 



 178 

APPENDIX H 

ANALYSIS EQUATIONS DERIVATIONS OF 

 FULLY TRANSIENT TRIPLE POROSITY MODEL  

FOR CONSTANT PRESSURE CASE 

 

 This derivation is based on the fully transient triple porosity model (Model 1) 

proposed by Al-Ahmadi (2010). 

From constant pressure inner boundary and closed outer boundary 

 

   ̅̅ ̅̅̅
 

   

√     
[
     √         

     √         

]  
.................... (H- 1) 

Or this can be written in term of         function. 

 

   ̅̅ ̅̅̅
 

   

√     
    (√         )  

.................... (H- 2) 

For fully transient slab model (Model 1), 
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 √

    

   
     √

    

   
  

.................... (H- 4) 

 

Case 1 

With the assumption of    
   

  
√          (√      ) and √          is large, 

      (√         )     
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Therefore,  

         .................... (H- 5) 

Then, 

   ̅̅ ̅̅̅  
√  

  √ 
  

.................... (H- 6) 

Inverting Laplace transform, 

    
√  

  √ 

 

√     

  
.................... (H- 7) 
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Inverting Laplace transform, 
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Therefore,  
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Inverting Laplace transform, 
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Case 4 

With the assumption of 
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And     (√
    

   
)  √

    

   
 from approximation of Taylor’s series expansion when 

√
    

   
 is very low 
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And √                         (√         )     
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Inverting Laplace transform, 
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Case 5 

With the assumption of 
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.................... (H- 26) 

     
   

  
        .................... (H- 27) 

   ̅̅ ̅̅̅  
√    

  √ 
  .................... (H- 28) 

Then, 

   ̅̅ ̅̅̅  
√  

  

 

√ 
  .................... (H- 29) 

Inverting Laplace transform, 

    
√  

  √ 

 

√     

  
.................... (H- 30) 
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Case 6 

With the assumption of 

   
   

  
√          (√      )   

And     (√      )  √        from approximation of Taylor’s series expansion 

when √       is very low 

And 
   

   
 

   

   
 
 

 
 √

    

   
     √

    

   
 

And √
    

   
               (√

    

   
)    

And      

And √                         (√         )     

 

Therefore,  

      
   

   
 
 

 
 √

  

   
  

.................... (H- 31) 

     
   

  
        .................... (H- 32) 

   ̅̅ ̅̅̅  
√    

  √ 
  .................... (H- 33) 

Then, 

   ̅̅ ̅̅̅  
   
    

        

 

     
  .................... (H- 34) 
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Inverting Laplace transform, 

    
   
    

        

        

     
   

 
.................... (H- 35) 

    
   
   

      
 

 

     
   

 
.................... (H- 36) 

 

Case 7 

With the assumption of 

   
   

  
√          (√      )   

And     (√      )  √        from approximation of Taylor’s series expansion 

when √       is very low 

And 
   

   
 

   

   
 
 

 
 √

    

   
     √

    

   
 

And     (√
    

   
)  √

    

   
 from approximation of Taylor’s series expansion when 

√
    

   
 is very low 

And      

And √                         (√         )     

 

Therefore,  

      
   

   
 
 

 
 
  

   
  

.................... (H- 37) 
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       .................... (H- 38) 

   ̅̅ ̅̅̅  
√    

  √ 
  .................... (H- 39) 

Then, 

   ̅̅ ̅̅̅  
 

  √ 
  

.................... (H- 40) 

Inverting Laplace transform, 

    
 

  √ 

 

√     

 
.................... (H- 41) 

which is homogeneous reservoir 

 

Case 8 

With the assumption of 

   
   

  
√          (√      )   

And     (√         )  
 

√         
 from approximation of Taylor’s series expansion 

when √          is very low 

 

Therefore,  

         .................... (H- 42) 

   ̅̅ ̅̅̅  
    

  
    .................... (H- 43) 
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Then, 

   ̅̅ ̅̅̅  
  

  
     .................... (H- 44) 

Inverting Laplace transform, 

    
  

  
          .................... (H- 45) 

which is not practical 

 

Case 9 

With the assumption of 

   
   

  
√          (√      )   

And √                     (√      )     

And 
   

   
 

   

   
 
 

 
 √

    

   
     √

    

   
 

And     (√         )  
 

√         
 from approximation of Taylor’s series expansion 

when √          is very low 

 

Therefore,  

      
   

   
  

.................... (H- 46) 

     
   

  
√       .................... (H- 47) 

   ̅̅ ̅̅̅  
    

  
     .................... (H- 48) 
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Then, 

   ̅̅ ̅̅̅  
   
      

   

       
    

 

√ 
  

.................... (H- 49) 

Inverting Laplace transform, 

    
   
   

   
   

  √      
    

 

√     

  
.................... (H- 50) 

 

Case 10 

With the assumption of 

   
   

  
√          (√      )   

And √                     (√      )     

And 
   

   
 

   

   
 
 

 
 √

    

   
     √

    

   
 

And √
    

   
               (√

    

   
)    

And      

And     (√         )  
 

√         
 from approximation of Taylor’s series expansion 

when √          is very low 

 

Therefore,  

      
   

   
 
 

 
 √

  

   
  

.................... (H- 51) 
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√       .................... (H- 52) 

   ̅̅ ̅̅̅  
    

  
     .................... (H- 53) 

Then, 

   ̅̅ ̅̅̅  
   
       

    

        
    

 

     
  .................... (H- 54) 

Inverting Laplace transform, 

    
   
       

    

        
    

        

     
   

  
.................... (H- 55) 

    
   
   

    
   

      
    

 

     
   

  
.................... (H- 56) 

 

Case 11 

With the assumption of 

   
   

  
√          (√      )   

And √                     (√      )     

And 
   

   
 

   

   
 
 

 
 √

    

   
     √

    

   
 

And     (√
    

   
)  √

    

   
 from approximation of Taylor’s series expansion when 

√
    

   
 is very low 

And      
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And     (√         )  
 

√         
 from approximation of Taylor’s series expansion 

when √          is very low 

 

Therefore,  

      
   

   
 
 

 
 
  

   
  

.................... (H- 57) 

     
   

  
√       .................... (H- 58) 

   ̅̅ ̅̅̅  
    

  
     .................... (H- 59) 

Then, 

   ̅̅ ̅̅̅  
   
   

       
   

 

    
  .................... (H- 60) 

Inverting Laplace transform, 

    
   
   

 

  √      
    

 

√     

  
.................... (H- 61) 

 

Case 12 

With the assumption of 

   
   

  
√          (√      )   

And     (√      )  √        from approximation of Taylor’s series expansion 

when √       is very low 
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And 
   

   
 

   

   
 
 

 
 √

    

   
     √

    

   
 

And     (√         )  
 

√         
 from approximation of Taylor’s series expansion 

when √          is very low 

 

Therefore,  

      
   

   
  

.................... (H- 62) 

     
   

  
       .................... (H- 63) 

   ̅̅ ̅̅̅  
    

  
     .................... (H- 64) 

Then, 

   ̅̅ ̅̅̅  
  

  
     .................... (H- 65) 

Inverting Laplace transform, 

    
  

  
         .................... (H- 66) 

which is not practical 
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Case 13 

With the assumption of 

   
   

  
√          (√      )   

And     (√      )  √        from approximation of Taylor’s series expansion 

when √       is very low 

And 
   

   
 

   

   
 
 

 
 √

    

   
     √

    

   
 

And √
    

   
               (√

    

   
)    

And      

And     (√         )  
 

√         
 from approximation of Taylor’s series expansion 

when √          is very low 

 

Therefore,  

      
   

   
 
 

 
 √

  

   
  

.................... (H- 67) 

     
   

  
       .................... (H- 68) 

   ̅̅ ̅̅̅  
    

  
     .................... (H- 69) 

Then, 
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   ̅̅ ̅̅̅  
   
   

       
   

 

√ 
  .................... (H- 70) 

Inverting Laplace transform, 

    
   
   

 

  √      
    

 

√     

  
.................... (H- 71) 

 

Case 14 

With the assumption of 

   
   

  
√          (√      )   

And     (√      )  √        from approximation of Taylor’s series expansion 

when √       is very low 

And 
   

   
 

   

   
 
 

 
 √

    

   
     √

    

   
 

And     (√
    

   
)  √

    

   
 from approximation of Taylor’s series expansion when 

√
    

   
 is very low 

And      

And     (√         )  
 

√         
 from approximation of Taylor’s series expansion 

when √          is very low 
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Therefore,  

      
   

   
 
 

 
 
  

   
  

.................... (H- 72) 

     
   

  
       .................... (H- 73) 

   ̅̅ ̅̅̅  
    

  
     .................... (H- 74) 

Then, 

   ̅̅ ̅̅̅  
 

  
     .................... (H- 75) 

Inverting Laplace transform, 

    
 

  
         .................... (H- 76) 

which is not practical 

 

 In summary, the assumptions and results of 14 cases are shown in Table 30. 

Only 11 cases can be identified as the asymptotic equation. From total 11 regions, it is 

composed of 6 linear flow regions, 4 bilinear flow regions, and 1 trilinear flow region. 

The region name is defined as Table 31. The capital letter “L” is represented “Linear”, 

“B” is represented “Bilinear”, and “T” is represented “Trilinear”. 
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Table 30 – Assumptions of deriving asymptotic equations of triple porosity model 

for constant pressure case 

  

Case 

Estimated Terms 

Asymptotic Equations 
   ̅̅ ̅̅ ̅            

coth (√         )    tanh (√      ) 
3  

   

 tanh √
3   

   
 

1 1    -      =
√  

2 √ 

1

√     

 

2 1 - 1 
3  

   

 -    =
   

1/4
   

1/4

10.133

1

     
1/4

 

3 1 - 1 - 1    =
   

1/8
    

1/4

10.337

1

     
1/8

 

4 1 - 1 - √
3   

   
    =

   
1/4

10.133
 

1

     
1/4

 

5 1 - √       
3  

   

 -    =
√  

2 √ 

1

√     

 

6 1 - √       - 1    =
   

1/4

10.133
 

1

     
1/4

 

7 1 - √       - √
3   

   
    =

1

2 √ 

1

√     

 

8 
1

√         

    -   N/A 

9 
1

√         

 - 1 
3  

   

 -    =
   

1/2
   

1/2

2 √  31/2
    

1

√     

 

10 
1

√         

 - 1 - 1    =
   

1/2
    

1/4

17.551
    

1

     
1/4

 

11 
1

√         

 - 1 - √
3   

   
    =

   
1/2

 

2 √  31/2
    

1

√     

 

12 
1

√         

 - √       
3  

   

 - N/A 

13 
1

√         

 - √       - 1    =
   

1/2
 

2 √  31/2
    

1

√     

 

14 
1

√         

 - √       - √
3   

   
 N/A 
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Table 31 – Region name definition with asymptotic equations 

 

 

 

 

Region Case Asymptotic Equations 

L1 1    =
√  

2 √ 

1

√     

 

B1 2    =
   

1/4
   

1/4

10.133

1

     
1/4

 

T1 3    =
   

1/8
    

1/4

10.337

1

     
1/8

 

B2 4    =
   

1/4

10.133
 

1

     
1/4

 

L2 5    =
√  

2 √ 

1

√     

 

B3 6    =
   

1/4

10.133
 

1

     
1/4

 

L3 7    =
1

2 √ 

1

√     

 

 8 N/A 

L4 9    =
   

1/2
   

1/2

2 √  31/2
    

1

√     

 

B4 10    =
   

1/2
    

1/4

17.551
    

1

     
1/4

 

L5 11    =
   

1/2
 

2 √  31/2
    

1

√     

 

 12 N/A 

L6 13    =
   

1/2
 

2 √  31/2
    

1

√     

 

 
14 N/A 
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Conditions and periods of triple porosity characteristic 

 The conditions of the triple porosity model characteristic are derived as follow. 

From the last linear line, possible region is composed of 3 regions – region L3, L5, and 

L6. The conditions of presenting each region are given by 

 When        , 

o If     √     , region L6 is found.  

o If     √     , region L3 is found.  

 When         ,  

o If     √     , region L5 is found.  

o If     √     , region L3 is found.  

The first criteria can be derived from equating asymptotic equation of region L5 and L6, 

   
   

 

  √      
    

 

√     

 
   
   

 

  √      
    

 

√     

  
.................... (H- 77) 

         
.................... (H- 78) 

The sub-criteria of the first condition can be derived from equating asymptotic equation 

of region L3 and L6, 

 

  √ 

 

√     

 
   
   

 

  √      
    

 

√     

  
.................... (H- 79) 

    √
 

   
  

.................... (H- 80) 



 198 

The sub-criteria of the second condition can be derived from equating asymptotic 

equation of region L3 and L5, 

 

  √ 

 

√     

 
   
   

 

  √      
    

 

√     

  
.................... (H- 81) 

    √
 

   
  

.................... (H- 82) 

 

 For the bilinear line, possible bilinear region is composed of 3 regions – region 

B2, B3, and B4. The conditions of presenting each region are given by 

 Among region B3, B4, and BDF can be appeared before region L6. 

o Two set of conditions are used to identify the possible region prior to 

region L6. 

o The first set is either region B4 or BDF is presented prior to region L6. 

The selective condition is √
     

   
   by equating asymptotic equation of 

region L4 and L6, 

   
   

   
   

  √      
    

 

√     

 
   
   

 

  √      
    

 

√     

  
.................... (H- 83) 

√
     

   
    

.................... (H- 84) 
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o The second set is either region B3 or BDF is presented prior to region L6. 

The selective condition is     √
   

   
 by equating asymptotic equation 

of region L2 and L6, 

√  

  √ 

 

√     

 
   
   

 

  √      
    

 

√     

  
.................... (H- 85) 

    √
   

   
  

.................... (H- 86) 

 

 Among region B2, B4, and BDF can be appeared before region L5. 

o Two set of conditions are used to identify the possible region prior to 

region L5. 

o The first set is either region B2 or B4 is presented prior to region L5. The 

selective condition is     
√ 

   
   

    
     by equating asymptotic equation of 

region B2 and B4, 

   
   

      
 

 

     
   

 
   
   

    
   

      
    

 

     
   

  
.................... (H- 87) 

    
√ 

   
   

    
   

  
.................... (H- 88) 

o The second set is either region B2 or BDF is presented prior to region L5. 

The selective condition is     √
   

   
 by equating asymptotic equation 

of region L1 and L5, 
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√  

  √ 

 

√     

 
   
   

 

  √      
    

 

√     

  
.................... (H- 89) 

    √
   

   
  

.................... (H- 90) 

 

 Either region B2 or B3 can be appeared before region L3. 

o The selective condition is         and can be derived by equating 

asymptotic equation of region B2 and B3, 

   
   

      
 

 

     
   

 
   
   

      
 

 

     
   

  
.................... (H- 91) 

         
.................... (H- 92) 

 

From the assumptions of the asymptotic equation and check with the sensitivity 

run case, end time of region L3, L5, and L6 can be derived in Laplace space and convert 

to time domain as following. 

 

End Region L3 

Referring to the assumption of     (√         )   , √          has to be closed to 

infinity number to get the most accurate value of coth function. From trial and error, 

√            fits with the estimation. 

From √           ,      
   

  
       and       

   

   
 
 

 
 
  

   
, 
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√ 
   

  
 
   

   
 
 

 
 
  

   
        

.................... (H- 93) 

  
  

   
   

.................... (H- 94) 

Inverting Laplace transform, 

      
   

 

  
  .................... (H- 95) 

Therefore, the end of region L3 is at              
   
 

  . 

 

End Region L5 

Referring to the assumption of     (√      )   , √       has to be closed to 

infinity number to get the most accurate value of tanh function. From trial and error, 

√         fits with the estimation. 

From √         and       
   

   
 
 

 
 
  

   
, 

√ 
   

   
 
 

 
 
  

   
    

.................... (H- 96) 

  
  

 
     .................... (H- 97) 

Inverting Laplace transform, 

      
 

  

 

   
 

.................... (H- 98) 

Therefore, the end of region L5 is at              
 

  

 

   
. 
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End Region L6 

Referring to the assumption of     (√
    

   
)   , √

    

   
 has to be closed to infinity 

number to get the most accurate value of tanh function. From trial and error, √
    

   
   

fits with the estimation. 

From √
    

   
   and     , 

 

 
 

 

  

  

 
    .................... (H- 99) 

Inverting Laplace transform, 

      
 

  

 

   
 

.................... (H- 100) 

Therefore, the end of region L6 is              
 

  

 

   
. 
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APPENDIX I 

ANALYSIS OF LINEAR TRANSIENT DUAL POROSITY CYLINDER MODEL  

FOR CONSTANT PRESSURE CASE 

 

From constant pressure inner boundary and closed outer boundary of linear 

transient dual porosity model given by El-Banbi (1998) 

 

   ̅̅ ̅̅̅
 

   

√     
    (√         ) 

.................... (I- 1) 

For transient slab model, 

        
   

   
√
        

   
 

  (√
        

   
 )

  (√
        

   
 )

 
.................... (I- 2) 

 

Case 1 

With the assumption of 

   
   

   
√

        

   
 

  (√
 (    ) 

   
 )

  (√
 (    ) 

   
 )

  

√                         (√         )     

Therefore, 

         

Then,  
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   ̅̅ ̅̅̅  
√  

  

 

√ 
 

.................... (I- 3) 

Inverting Laplace transform, the asymptotic equation of region 1 is 

    
√  

  √ 

 

√     

 
.................... (I- 4) 

 

Case 2 

With the assumption of 

   
   

   
√

        

   
 

  (√
 (    ) 

   
 )

  (√
 (    ) 

   
 )

   

And √
        

   
           

  (√
 (    ) 

   
 )

  (√
 (    ) 

   
 )

    

And          

And  √                         (√         )     

 

Therefore, 

     √
   

  
   

Then, 

   ̅̅ ̅̅̅  
   
    

       

 

     
 .................... (I- 5) 
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Inverting Laplace transform, the asymptotic equation of region 2 is 

    
   
   

     
 

 

     
   

 
.................... (I- 6) 

 

Case 3 

With the assumption of  

      

      
     when   is very low (  √

        

   
) 

√                         (√         )      

 

Therefore, 

        
   

   
√

        

   
 √

        

   

 

 
  

        

Then, 

   ̅̅ ̅̅̅  
 

  

 

√ 
 

.................... (I- 7) 

 

Inverting Laplace transform, the asymptotic equation of region 3 is 

    
 

  √ 
 

 

√     

 
.................... (I- 8) 
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Case 4 

With the assumption of  

   
   

   
√

        

   
 

  (√
 (    ) 

   
 )

  (√
 (    ) 

   
 )

   

And √
        

   
           

  (√
 (    ) 

   
 )

  (√
 (    ) 

   
 )

    

And          

And     (√         )  
 

√         
  from approximation of Taylor’s series expansion 

when √          is very low 

 

Therefore, 

     √
   

  
  

Then, 

   ̅̅ ̅̅̅  
   

  
√
   

 

 

√ 
 .................... (I- 9) 

Inverting Laplace transform, the asymptotic equation of region 4 is 

    
   

  √ 
√
   

 

 

√     

 .................... (I- 10) 
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In summary, assumptions and results of 4 cases are shown in Table 32. The dimensional 

estimated asymptotic equations of gas and oil are shown in Table 33 and Table 34, 

respectively. 

 

Table 32 – Assumptions of 6 cases and the final asymptotic equations of the 

transient linear dual porosity model (constant pressure) 

Case / 

Region 

Estimated Terms 

Asymptotic Equations 

   ̅̅ ̅̅̅      

    (√         )    

  (√
        

   
 )

  (√
        

   
 )

 

1 1    -     
√  

  √ 

 

√     

 

2 1 - 1     
   
   

     
 

 

     
   

 

3 1 - √
        

   

       
 

  √ 
 

 

√     

 

4 
 

√         

 - 1     
   

  √ 
√
   

 

 

√     
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Table 33 – Asymptotic equations of cylinder case of dual porosity model for gas 

analysis in dimensional (constant pressure) 

 

 

Table 34 – Asymptotic equations of cylinder case of dual porosity model for oil 

analysis in dimensional (constant pressure) 

 

Region Asymptotic Equation for Gas Analysis 

1 – 1
st
 Linear 

  =
     

1260 
   √  √         

1

√ 
 

2 – 1
st
 Bilinear 

  =
     

1544.1  
     

1/2
  

1/4 1

√ 
[         + ]1/4

1

 1/4
 

3 – Infinite-acting 
  =

     

1260 
   √  √         + 

1

√ 
 

4 – 2
nd

 Linear 
  =

     

315 
   √  

  
 

 √         + 

1

√ 
 

5 – Exponential decline  

 

Region Asymptotic Equation for Oil Analysis 

1 – 1
st
 Linear 

  =
  

125.1 √ 
   √  √        

1

√ 
 

2 – 1
st
 Bilinear 

  =
  

153.3 

1

 3/4
     

1/2
  

1/4 1

√ 
[        + ]1/4

1

 1/4
 

3 – Infinite-acting 
  =

  

125.1 √ 
   √  √        + 

1

√ 
 

4 – 2
nd

 Linear 
  =

  

31.28 √ 
   √  

  
 

 √        + 

1

√ 
 

5 – Exponential decline  
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