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ABSTRACT

Comparison of Single, Double, and Triple Linear Flow Models
for Shale Gas/Oil Reservoirs. (August 2012)
Vartit Tivayanonda, B.Eng., Chulalongkorn University

Chair of Advisory Committee: Dr. Robert A. Wattenbarger

There have been many attempts to use mathematical method in order to
characterize shale gas/oil reservoirs with multi-transverse hydraulic fractures horizontal
well. Many authors have tried to come up with a suitable and practical mathematical
model. To analyze the production data of a shale reservoir correctly, an understanding
and choosing the proper mathematical model is required. Therefore, three models (the
homogeneous linear flow model, the transient linear dual porosity model, and the fully
transient linear triple porosity model) will be studied and compared to provide correct
interpretation guidelines for these models.

The analytical solutions and interpretation guidelines are developed in this work
to interpret the production data of shale reservoirs effectively. Verification and
derivation of asymptotic and associated equations from the Laplace space for dual
porosity and triple porosity models are performed in order to generate analysis
equations. Theories and practical applications of the three models (the homogeneous
linear flow model, the dual porosity model, and the triple porosity model) are presented.

A simplified triple porosity model with practical analytical solutions is proposed in order



to reduce its complexity. This research provides the interpretation guidelines with
various analysis equations for different flow periods or different physical properties.
From theoretical and field examples of interpretation, the possible errors are presented.
Finally, the three models are compared in a production analysis with the assumption of

infinite conductivity of hydraulic fractures.
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NOMENCLATURE

Cross-sectional area of fluid to flow, ft?

Cross-sectional area of fluid flow from matrix to fracture, ft?
Formation volume factor, rcf/scf

Total compressibility, psi™*

Effective reservoir thickness (assume to be same as hydraulic
fracture height), ft

Effective hydraulic fracture permeability, md

Intrinsic hydraulic fracture permeability, md

Effective natural fracture permeability, md

Intrinsic natural fracture permeability, md

Matrix permeability, md

Hydraulic fracture spacing (from one middle of hydraulic fracture
to another middle of hydraulic fracture), ft

Natural fracture spacing (from one middle of hydraulic fracture to
another middle of hydraulic fracture), ft

Slope of the fourth root of time plot

Slope of the square root of time plot

Pseudopressure (gas), psi%/cp (m(p) =27 Z(p,;;(p,) dp’)

Difference of initial and wellbore flowing pseudopressure, psi?/cp



viii

ng Number of hydraulic fractures

ns Number of natural fractures per one hydraulic fracture half-length

Pp Dimensionless pressure

p Pressure, psi

Ap Difference of initial and wellbore flowing pressure, psi

dpL Dimensionless rate

SRV Stimulated reservoir volume (Same as drainage area)

T Absolute temperature, °R

t Time, days

tpacw Dimensionless time based on A, and kx

tpacm Dimensionless time based on A.,, and k,,

Vo Pore volume, rcf

w Fracture width, ft

Xe Effective perforated interval (Effective well length), ft

Xf Fracture half length, ft

Ve Drainage area half-length (rectangular geometry, assumed to be
same as hydraulic fracture half length, ft

Yep Dimensionless reservoir half-length or dimensionless hydraulic

fracture half length, ft

z Compressibility factor



Greek symbols
A

w

¢

Subscripts
end

esr

max

min

Dimensionless interporosity parameter
Dimensionless storativity ratio

Porosity, fraction

End of the data point of the linear straight line
End of straight line of the square root of time plot or end of half-
slope line of log-log plot

Maximum

Minimum

Macro-fracture (hydraulic fracture)
Micro-fracture (natural fracture)

Gas

Initial condition

Matrix

Qil

Total system

Total system

Bottomhole flowing
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CHAPTER I

INTRODUCTION

Shale gas/oil reservoirs have become an important source of energy in the United
States with an updated production technique. Due to a very low permeability, producing
shale gas/oil reservoirs requires well stimulation treatment and horizontal well
technique. Recently, producing shale reservoirs through multi-transverse hydraulic
fractures in horizontal wells has become a standard production strategy. However, the
understanding of shale gas/oil characteristics and behaviors are still inadequate to
perform reservoir management effectively.

There have been many attempts to characterize the multi-transverse hydraulic
fractures horizontal shale well including numerical, analytical, and empirical methods.
While the numerical method is considered the most accurate way to characterize model,
it is time consuming to analyze a number of wells. The analytical method is an effective
method for analyzing wells when it fits with the mathematical model. The empirical
method is the fastest and easiest way to forecast production and to estimate reserves;
however, this method does not explain the characteristics of the reservoir.

Based on the analytical method, many authors have tried to come up with a
suitable and practical mathematical model to represent a shale well. Some (Bello and

Wattenbarger 2008, 2009, 2010) utilized the dual porosity model to represent the model.

This thesis follows the style of SPE Reservoir Evaluation & Engineering.



Some (Ozkan et al. 2009, Brown et al. 2009, Al-Ahmadi and Wattenbarger 2011)
utilized the triple porosity model.

Using the analytical methods to interpret the shale production data correctly
requires the proper model. Therefore, three models (the linear flow model, the dual
porosity model, and the triple porosity model will be studied and compared to provide
the correct interpretation guidelines for these models.

In this study, three types of model are considered and compared to analyze the
production data of a shale gas/oil reservoir. The first model is the transient linear
homogeneous flow which was firstly proposed to analyze a tight gas reservoir by
Wattenbarger and El-Banbi (1998). The second model is the transient linear dual
porosity model given by EI-Banbi (1998) and is applied to multi-transverse hydraulic
fractures horizontal well by Bello (2009). The last model is the fully transient linear

triple porosity model proposed by Al-Ahmadi and Wattenbarger (2011).

1.1 Objectives

The main objective of this research is to develop the analytical solutions and
interpretation guidelines in order to interpret production data of shale gas/oil reservoirs
effectively. Verification and derivation of asymptotic equations and associated equations
from Laplace space for dual porosity and triple porosity models are required in order to
generate analysis equations. With the interpretation guidelines, various analysis
equations for different flow periods or different physical properties are guided to use

with caution. From the examples of interpretation, the possible errors are presented.



1.2 Organization of Work

This thesis is divided into ten chapters as follows.

Chapter I is introduction and objectives of the thesis.

Chapter Il is the literature review of the linear homogeneous flow model, the
dual porosity model, and the triple porosity model.

Chapter 11l shows the application of linear homogeneous flow solution to
interpret the production data of shale gas and oil reservoirs in multi-transverse hydraulic
fractures horizontal well and the example of production data analysis.

Chapter IV shows the theory and associated equations of linear dual porosity
model in order to interpret shale gas and oil reservoirs. Furthermore, the dual porosity
model with the assumption of infinite conductivity hydraulic fractures are presented and
compared with the homogeneous linear flow model.

Chapter V shows interpretation guidelines and examples of interpretation of
shale gas and oil reservoirs in multi-transverse hydraulic fractures horizontal well by
using transient linear dual porosity model.

Chapter VI shows the theory and associated equations of the fully transient triple
porosity model in order to interpret shale gas and oil reservoirs. New 12 flow regions
and model characteristic of the triple porosity model are presented.

Chapter VII describes the mathematical model and solutions of the triple porosity
model with infinite conductivity of hydraulic fractures and also compares it with the

modified dual porosity model.



Chapter VIII shows interpretation guidelines and examples of interpretation of
shale gas and oil reservoirs in multi-transverse hydraulic fractures horizontal well when
assuming infinite conductivity hydraulic fractures by using the triple porosity model.

Chapter IX shows interpretation guidelines and examples of interpretation by
using both the transient dual porosity model and the fully transient triple porosity model
with the assumption of infinite conductivity hydraulic fractures.

Chapter X is conclusions and recommendations.



CHAPTER II

LITERATURE REVIEW

This chapter shows the literature review of linear homogeneous flow, dual
porosity model, and triple porosity model in terms of theory and application to multi-

transverse hydraulic fractures in horizontal shale gas and oil well.

2.1 Linear Homogeneous Flow

Linear Flow solutions in rectangle of constant pressure case were firstly adapted
into fractured tight gas reservoir wells to analyze production data by Wattenbarger and
El-Banbi (1998). It is indicated that the linear flow type curve for constant pressure and
constant rate cases are difference. End of linear flow or end of half-slope line is specified
as tpye = 0.5 for constant rate case and tp,, = 0.25 for constant pressure case.
Integrating of slope of square root of time plot and end of the half-slope line in log-log
plot of constant pressure case to interpret production data are introduced and utilized to
analyze in-place without assuming thickness, matrix permeability and porosity.

Then, Arevalo-Villagram et al. (2001) showed the production analysis of long
term linear flow in tight gas wells. It is believed that the production data of tight gas well
shows transient linear flow for long time because this linear is represented by the flow
from matrix to high permeability of fractures.

Ibrahim and Wattenbarger (2005) showed the effect of drawdown on transient

linear flow of gas and proposed the correction factor according to the level of drawdown



in constant pressure condition. Correspondingly, the mathematical solution of tight gas
well is presented by integrating the slope in square root of time plot equation and time
end of transient linear flow period with the correction factor.

After that, the transient linear flow is used as a tool to analyze multi-transverse

hydraulic fractures in horizontal well.

2.2 Dual Porosity Model

Analytical model of naturally fractured reservoirs which is defined by dual
porosity model was firstly introduced in petroleum field by Warren and Root (1963).
Warren and Root showed the analytical solution of natural fractured radial infinite-acting
reservoir in Laplace space and approximation in real domain. The model is assumed as
an idealized sugar cube model with pseudo-steady state flow in matrix system. The
solution is applied for pressure transient testing of reservoir composing two mediums
which have distinct properties, e.g. a naturally fractured or vugular reservoir. In the
naturally fractured system, the primary porosity is matrix system which is high
storativity and low flow capacity and the second porosity is fracture system which low
storativity and high flow capacity. The liquid flow to the well is assumed occurring in
fractures only and matrix feeds liquid to the fractures. Importantly, they presented two
dimensionless parameters, w and A, which is sufficient to characterize the reservoir
model. w is represented the storativity of the fracture system. A is related to the

heterogeneity of flow capacity of two mediums. After that, Da Prat et al. (1981)



proposed type curves of dual porosity system based on the model presented Warren and
Root (1963) for constant pressure case in both infinite and closed systems.

Kazemi (1969) proposed a matrix transient flow model of dual porosity model by
using numerical solution. The model is represented by slab matrix and horizontal
fracture model of radial closed reservoir which is composed of logarithmic grid size for
matrix layers and a thin layer of fracture. The result shows that the new transient dual
porosity and pseudo-steady state dual porosity models give the similar result except the
transition period in the semi-log plot for both drawdown and buildup test.

De Swaan-O (1976) developed the analytical solution of radial infinite naturally
fractured reservoir for both early and late time regions. The model assumes transient
flow from the matrix system to fracture system. The result shows two parallel straight
lines with analytical descriptions. There is no analytical description of the transition
period between two straight lines.

Lai et al. (1983) proposed transient flow solution between matrix and fracture
system of 3-D case by considering of three sets of orthogonal fractures. Matrix block is
represented by a cube and the flow in cubes can be approximated by one-dimensional
basic model or represented by one-sixth of a cube. Radial system is defined the fluid
flow from the system into the well. Laplace solution of three outer boundary conditions
(infinite, closed, and constant-pressure boundary) and asymptotic solutions for early and
late time were presented.

Serra et al. (1983) proposed the analytical solution of dual porosity model in

Laplace space and approximation in real domain. The model assumes the radial infinite



slab reservoir with equally spacing horizontal fractures same as De Swaan-O (1976) and
transient flow in matrix model. Three flow regimes were introduced. Regime 1 and 3 are
the classical two straight lines in semi-log plot. Regime 2 was introduced to represent the
transition between two straight lines.

Chen et al. (1985) used the model of Kazemi (1969) and De Swaan-O (1976) but
considered in closed reservoir. The model shows five possible flow regimes in
drawdown data which is extended from three flow regimes proposed by Serra et al.
(1983). From previous infinite reservoir, flow regime 1 is represented transient in
fractures, flow regime 2 is represented transient in both fractures and matrix, flow
regime 3 is represented transient in fractures and PSS in matrix by presence of no-flow
boundary at the center line of matrix. From the existing of bound reservoir, two new
flow regimes and the condition of whether regime 3 or 4 will be found are also
presented. Flow regime 4 is represented transient in matrix and PSS condition in
hydraulic fractures and flow regime 5 occurs when flow affects from both matrix and
fracture boundaries.

Ozkan et al. (1987) presented the five possible flow regimes and their asymptotic
equations of the vertical well penetrating the cylindrical closed boundary fractured
reservoir and producing under constant pressure condition. The analytical solution in
Laplace space for both infinite and closed boundary reservoir and associated asymptotic
equations are presented based on transient radial system.

Previously, all the models are represented for radial reservoir system. Then, the

dual porosity model for a linear flow was firstly presented by El-Banbi (1998). New



analytical solution of linear flow includes four different inner boundary conditions
(constant rate, constant pressure, constant rate with WBS and skin, and constant pressure
with skin) and three different outer boundary conditions (infinite reservoir, closed
reservoir, and constant pressure outer boundary reservoir). The five different reservoir
models were also proposed (homogeneous, PSS, transient slabs, transient match-sticks,
and transient cubs). It is also showed that the reservoir function, f(s), that is used in
Laplace space is the same for both radial and linear systems. In addition, linear flow and
bilinear flow which are a half-slope line and a quarter-slope line, respectively in the log-
log plot were introduced.

Normally, dual porosity model was intentionally used in naturally fractured
reservoir. Later, dual porosity model has been adapted to use for a fractured well and
multi-transverse hydraulic fractures in horizontal well which have two different storage
and flow capacity. In this case, the second porosity is characterized by hydraulic
fractures.

Bello and Wattenbarger (2008), Bello (2009), Bello and Wattenbarger (2009),
and Bello and Wattenbarger (2010) presented a mathematical model for analyzing the
multi-transverse hydraulic fractures in horizontal shale gas well. This model is based on
linear dual porosity model given by El-Banbi (1998). Five flow regions and their
asymptotic equations are presented by solving analytical solution in Laplace space for
both constant rate and constant pressure inner boundary cases. Nevertheless, only region
4 equation is used to analyze the long term linear line in production data because it is

believed that the long term linear flow in production data is represented by transient
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drainage from matrix to fractures. Also, it is showed that the transient linear
homogeneous flow and the region 4 of transient dual porosity model exhibit the same
response. Furthermore, a skin effect for region 4 is observed from the unanticipated early
production curve that does not exhibit a linear flow behavior. As a result, the new
mathematical solution included skin effect of region 4 of linear dual porosity was
proposed and a procedure to analyze the field data.

Al-Ahmadi et al. (2010) presented an application of linear flow analysis to
multiple hydraulic fractures in horizontal shale gas wells in constant well flowing
pressure case. Two linear dual porosity models are proposed. One is a transient slab
model. The other is a transient cube model. The second model assumes the natural
fracture system have created after proceeding hydraulic fracture treatment. The
mathematical solution applies the in-place equation incorporated linear flow region 4
equation and time end of transient linear flow period given by Ibrahim and Wattenbarger
to the two models.

Samandarli et al. (2011a and 2011b) applied the regression method to history
match the production data of multi-transverse hydraulic fractures in horizontal shale gas

well by using the solutions given by Bello and Wattenbarger (2010).

2.3 Triple Porosity Model
The triple porosity model is the model composed of three distinct property
mediums. Triple porosity model can be used to represent one fracture system and two

matrix systems which have different properties or one matrix system and two fracture
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systems which have different properties. The triple porosity model was firstly introduced
to the petroleum field by Abdassah and Ershaghi (1986). Two geometrical
configurations are used for investigation which are strata model and uniformly
distributed blocks model. The transient flow solution in fracture system and two matrix
systems with distinct properties are assumed in both models. Strata-type model is
represented by the horizontal matrix layers separated by fractures. While uniformly
distributed blocks model is based on the basic model of Lai et al. (1983).

Jalali and Ershaghi (1987) extended the Abdassah and Ershaghi (1986) model.
This model, each matrix system (from two distinct properties) has own porosity,
permeability, total compressibility, thickness, and flow regime which is either PSS or
transient flow.

Cinco-Ley and Meng (1988) introduced the analytical solution in Laplace space
and the approximation solution of the trilinear flow (exhibits 1/8 slope in a log-log plot)
from the model of finite conductivity vertical fractures in dual porosity reservoirs. Two
matrix flow models which are transient matrix linear flow and pseudo steady state matrix
linear flow were also presented.

Al-Ghamdi and Ershaghi (1996) introduced the triple porosity model with one
matrix system and dual fracture system to differentiate between microfractures and
macrofractures in radial system. Two models were proposed. One is modified from
Abdassah and Ershaghi (1986) model. The other is subdivided into two sub models —
flow to the well comes from macrofractures only and flow to the well comes from both

macro and microfractures. Liquid flow is assumed to be sequential which is matrix feeds
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liquid to microfractures and microfractures feeds liquid to macrofractures and the flow
between the two fracture systems and between the matrix and the microfracture systems
are PSS.

Liu et al. (2003) proposed a tri-continuum medium consisting of fractures, rock
matrices, and lithophysal cavities. The model defines radial flow to well occurs through
the homogeneous fracture while matrices and cavities supply fluid to the fractures. The
interporosity flow is assumed to be PSS condition.

Wu et al. (2007) offered analytical approach in naturally fractured vuggy
reservoirs based on triple-continuum model (Liu et al. 2003) which is consisting of large
fractures feed the well with radial flow, various sized vugs which are locally connected
to fractures, and rock matrix which is locally connected to fractures and/or vugs. PSS
flow condition is used for flow between continuums.

Ozkan et al. (2009) and Brown et al. (2009) introduced a trilinear-flow model to
interpret fractured horizontal well in unconventional reservoir. The model includes linear
flows in three connecting flow regions which are the outer reservoir, the inner reservoir
between fractures, and the hydraulic fracture. The analytical model is presented in
Laplace space and approximation asymptotic equations. The inner reservoir can be
identified as homogeneous, PSS dual porosity model, or transient dual porosity model by
using f(s).

Leguizamon and Aguilera (2011) presented the method for optimizing hydraulic
fracturing design in naturally fractured tight gas by using 3D fracture simulation. The

analytical solution is recommended to acquire preliminary estimation of key parameters.
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Al-Ahmadi and Wattenbarger (2011) proposed a new triple porosity model for
fractured horizontal wells in naturally fractured reservoir. The model is composed of
three contiguous porous mediums with the sequential flow. Matrix feeds natural
fractures and natural fractures feed hydraulic fractures and only hydraulic fractures
produce to the well. The new solutions are derived in Laplace space for linear reservoir
with 4 sub models based on the interporosity flow assumption between mediums — fully
transient model, mixed transient and PSS models, and fully PSS model. Model 1 (fully
transient model) is used to analyze multi-transverse hydraulic fractures in shale gas

horizontal wells by using non-linear regression.

2.4 Quadruple Porosity Model

In 2004, Dreier et al. (2004) firstly proposed a quadruple-porosity model
consisting of a triple-fracture network and a single-matrix system. The model was
developed in the Laplace space for a laterally infinite slab reservoir. Three types of
fracture systems are composed of microfractures, macrofractures, and megafractures.
While microfractures have the most dense and lowest conductivity, megafractures have
the largest spacing and highest conductivity. The model assumes anisotropic in
megafractures and isotropic in micro and macrofractures. The paper presented two sub
models — sequential-feed model and simultaneous-feed model. Only fluid from
megafractures flows to the wellbore while matrix feeds fluid to microfractures and
microfractures feed liquid to macrofractures and macrofractures feed liquid to the

megafractures in sequential-feed model. For simultaneous-feed model, only change from
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sequential-feed model is matrix can produce to both micro and macrofractures and both
micro and macrofractures can feed to megafractures. Flow is assumed to be radial in
megafractures while flow is assumed to be linear in microfractures and macrofractures.
Furthermore, it is assumed that flow between fractures is transient condition while

flowing of fracture-matrix is PSS condition.

2.5 SRV

The Stimulated Reservoir Volume (SRV) is the drainage area of the hydraulic
fractured horizontal well. In this study, SRV is defined as rectangular geometry limited
to the hydraulic fractures half-length and effective wellbore drainage length. Also, it is
assumed that the production of ultra-low permeability reservoirs will come from inside
the SRV only. This assumption is confirmed in many petroleum literatures. It is noted
that the Compound Linear Flow (CLF) or Compound Formation Linear (CFL) is the
fluid flow from non-stimulated volume in direction of perpendicular to the vertical well
plain.

Ozkan et al. (2009) used analytical solution of trilinear flow model and showed
that the effect of outside SRV will not affect the production during the life of the well
with practical matrix permeability of unconventional reservoir.

Luo et al. (2010) used streamline simulation and observed that CFL straight line
slope on log-log reciprocal rate derivative plot depends on the ratio of fracture length
(2%7) over fracture spacing. However, the starting time of CFL is sensitive to reservoir

permeability and delays when reservoir permeability decreases.
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Anderson et al. (2010) found that the amount of contribution outside SRV
depends on the matrix permeability and the interface area between SRV and non-
stimulated reservoir. It is showed that with matrix permeability of 1e-6 md, the effect of
outside SRV shows around 230 years after production and with matrix permeability of
le-4 md, the contribution outside SRV appears around 2 years.

Samandarli et al. (2011a) used the reservoir simulation model of typical shale gas
well to prove the assumption of no flow outside SRV. The result shows that CLF will
not occur in 30 years for matrix permeability less than 5E-5 md.

Nobakht (2011) found that the contribution from the region outside SRV starts at
toxr = 0.01. This means that the time that outside SRV starts contribute depends on
reservoir properties and length of fracture and is independent of outer reservoir boundary

and fracture spacing.
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CHAPTER IlI

LINEAR HOMOGENEOUS FLOW MODEL

3.1 Introduction

In this chapter, the application of linear homogeneous flow solution to interpret
the production data of shale gas and oil reservoirs in multi-transverse hydraulic fractures
horizontal well is reviewed and summarized. Also, the example of production data

analysis by using linear flow is presented.

3.2 Mathematical Model

The model that uses to represent linear flow behavior of the multi-transverse
hydraulic fractures horizontal well is shown in Figure 1. A horizontal well with multi-
transverse hydraulic fractures is defined by the rectangular model of Stimulated
Reservoir Volume (SRV) which is limited by uniform hydraulic fracture half-length, ye,
and effective perforated well length, x.. Matrix blocks are assumed to be uniform and
idealized as slab. In this case, the hydraulic fractures are assumed to be infinite

conductivity; therefore, only linear flow from matrix to hydraulic fractures is considered.
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Hydraulic Fractures

Horizontal Well

Horizoné:l
Well Hydraulic
Fractures

Figure 1 — Sketch of homogeneous linear flow in multi-transverse hydraulic
fractures horizontal well.

3.3 Modified Mathematical Solutions of Homogeneous Linear Flow

As discussed in the literature review, linear flow solution was originally applied
to tight gas fractured reservoir based on Wattenbarger and El-Banbi (1998). To apply the
equations to multi-transverse hydraulic fractures horizontal well, the definition of
parameters have to be modified. The derivation is shown in Appendix A and the

summary of equations for constant pressure case is given.
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3.4 Interpretation Guidelines

18

The interpretation of homogeneous linear flow solution focuses only for linear

flow from matrix block to hydraulic fractures. The flow in hydraulic fractures is not

considered because of assuming infinite conductivity of hydraulic fractures. Therefore,

the bilinear flow (considering flow in hydraulic fractures) or a quarter slope of log-log

plot that shows in the production profile cannot be interpreted by homogeneous linear

flow solution. Furthermore, from the industrial practice that producing at constant

wellhead pressure; the constant pressure solutions are applied.

Two production scenarios and interpretation guidelines are given.

3.4.1 Only linear flow period is found

k., has to be known
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Ye can be found from the slope of the square root of time plot, mggyqr. The

equations of gas and oil are given, respectively by

315.4T 1
Ve =
¢ hnF 4/ km*/ (¢.uct)i Msquare e, (3 6)
31.3BVK 1

Ye = thF \/E,/ ((I)Ct)i Msquare e (3 7)

In-place can be calculated from volumetric equation.
In case there is high uncertainty about the value of k,,, it is recommend to
calculate the minimum hydraulic fracture half-length, Yy min. Yemin Can be

calculated from the last point, t.,,4 and slope of the square root of time plot.

100.3T  /tena

Yemin = hxe (¢.Uct)i Msquare e (3 8)
_ 995B \/ tend
Ye,min hxo (BC)i Moguare e (3.9)

3.4.2 Linear and BDF periods are found

v, can be calculated from the end of straight line of the square root of time plot,

tesr and slope of the square root of time plot, mqy,qre-

100.3T  /tosr

©hxe (QUC)i Msquare e (3. 10)

9.95B  \/tesr

S ¢ - (3. 11)
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e k,, can be calculated from t.,, as given by

L%" (Pucy);

esr

Ky, = 9.89

e In-place can be calculated from volumetric equation.

3.5 Application to Field Example
Field production plot and data of the multi-transverse hydraulic fractures
horizontal well, well#314, is shown in Appendix B. In this interpretation, skin effect
and gas adsorption are neglected.
To analyze production data of this well, interpretation guidelines of the
production scenario case 2 (Linear and BDF periods are found) are used.
From Eq. 3.10, y, is 186 ft.
From Eq. 3.12, k,,, is 1.3E-4 md.
OGIP = 2x,y.h¢(1 — s,,)/By;

OGIP is 2.7 Bscf
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CHAPTER IV

LINEAR TRANSIENT DUAL POROSITY MODEL

4.1 Introduction

In this chapter, the linear transient dual porosity model proposed by El Banbi
(1998) is investigated to consider as a tool using interpret the production data of shale
gas and oil reservoirs in multi-transverse hydraulic fractures horizontal well. Previously,
this linear dual porosity model has already been studied and applied for shale gas well by
Bello (2009). Also, five regions and the asymptotic equations have been presented.
Furthermore, the dual porosity model with the assumption of infinite conductivity
hydraulic fractures are presented and compared with the homogeneous linear flow
model.

In this work, the theory of linear dual porosity model to interpret shale gas and
oil reservoirs is reviewed and summarized. Moreover, the mathematical model of the
asymptotic equations is re-derived systematically to fit the purpose of finding conditions
and periods of each region. The characteristic of the dual porosity model is presented

clearly with the specific conditions.

4.2 Mathematical Model
The dual porosity model that uses to represent flow behavior of the multi-
transverse hydraulic fractures in horizontal well is shown in Figure 2. Same as linear

homogeneous flow model, a horizontal well with multi-transverse hydraulic fractures is
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defined by the rectangular SRV and matrix blocks are assumed to be uniform and
idealized as slab. In this case, the hydraulic fractures have finite conductivity; therefore,
the bilinear flow which is combining transient linear flow from matrix to hydraulic
fractures and hydraulic fractures to well is considered. Two transient linear flows of

hydraulic fractures and matrix are considered as well.

) ¥, X /Matrlx
< 21

Horizontal Well

Horizontal

Well —Hydraulic

Fractures

Figure 2 — Sketch of dual porosity model in multi-transverse hydraulic fractures
horizontal well.
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4.3 Dimensionless Variables Definition
Referring to Warren and Root (1963), dual porosity model can be identified by
two dimensionless variable, 4 and w. In this study, the definition of these two variables

and other dimensionless variables are modified as given.

. _ 12kpAcy
M= 12k 4.1)
0 = (PVee)r _ (PV'cor
P (@Ve)r  @Vedr 4.2
where
[pVicdr = (@Viedr + @V'iedm (4. 3)
and
V., = L
X TVed+ Ve, (4. 4)
Yoy =
R 7 (4.5)
where
ACW=2Xxe><h=2><anLth (46)
1422q,T
dpL = 4.7
kpJAswDm(p) 4.7
141.2q,Bu

by = ———
o kA (4. 8)
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. _0.00633 kf .
DAcw = [PV cdrtAn 4.9

In case, Ct,F = Ct,m’

. _ 000633k
DAw = Ay e (4. 10)
where
d) — ¢FVF + d)me
r VetV (4. 11)

4.4 Mathematical Solution and Approximation (Dimensionless)

In this study, it is based on the linear transient dual porosity model proposed by
El-Banbi (1998). The mathematical derivation details of the model are shown in
Appendix C. Bello (2009) showed five possible regions to represent the linear transient
dual porosity model. The asymptotic equation of each region (region 1 — 4) has also been
derived; however, the derivation is not a systematic approach. Therefore, the asymptotic
equations were re-derived to fit the purpose of finding conditions and periods of each
region. The completed derivations of re-derived asymptotic equation and periods of each

region, and also condition of possible region are presented in Appendix D.

4.4.1 Asymptotic Equations
From constant pressure inner boundary and closed outer boundary, the Laplace

solution is given by
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i= omu coth( uf(uw)y D)
oL Juf(w T, (4.12)

For transient slab model,

/;1 m 3
f) = wp+ |57 (1 - wp) tanh ﬁ A-or) | (4.13)

The asymptotic equations are derived from the assumption of approximation terms in
Laplace space. The summary of the assumptions and the asymptotic equations of the

four regions in constant pressure case are shown in Table 1.

Table 1 - Assumptions and final asymptotic equations region 1 — 4 of the transient
linear dual porosity model (constant pressure)

Estimated Terms
_ oL f@) _ _
Region 3 Asymptotic Equations
u
coth( uf (u) yeD) Wr tanh< )l—(l - wp)>
Fm
1 1 _ VWF 1
Wr dpL = 20V g
A |
2 1 - 1 qpL = —m_
10.133 (1/4
DAcw
3 1 3u — L
‘ T (7P T 20V Jtonen
; _ YeD /1Fm 1
) uf (u) ' o1 = 3
Yep 2mVmy 3 Jtpacw
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4.4.2 Conditions and Periods of Dual Porosity Characteristic

For transient linear dual porosity model in closed boundary, only three
dimensionless parameters, Ag,,, wg, and y,p, control the curve characteristic. In this
study, one sensitivity set with 5 cases was run to see the curve characteristic of dual
porosity. The value of Ag, and wy are fixed at 1E-5 and 1E-3, respectively. The
sensitivity run is played with the value of y,, which is y,p =1, y.p = 17.32, y.p =
100, y.p = 547.72, and y,, = 5000 for run 1 — 5, respectively. All of the runs (5 runs)
are shown that each region has their specific conditions to happen except region 1 which
can be seen in any run. From this sensitivity set, dual porosity can be defined by 5
characteristic curves as shown in Figure 3. The characteristic of dual transient porosity

curve can be defined by 5 conditions in term of y,, as follows.

=

3 .
Vop < /aﬂ region 1 and 4 are observed
Fm

N

Yep = /jﬁ region 1 and 4 are observed

: /ﬂ < Yop < /i region 1, 2, and 4 are observed
AFm /1Fm

4. Yep = /ﬁ region 1 and 2 are observed

w

o

Yep > /ﬁ region 1, 2, and 3 are observed
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Figure 3 — Characteristic curves of transient linear dual porosity model with closed
boundary in dimensionless form

From the assumptions of each asymptotic equation and check with the sensitivity
run case, some of starting time and end time of each region in constant pressure case can

be determined as following.

Region 1 — The end of region 1 is at tp 4., = ye” E only when y,p < iﬂ
Fm

Region 2 — The end of region 2 is at tpue, = y;”—pm only when / < Yop <

/,1 and the end of region 2 is at tp 4., = only when y.p > =

Fm /1Fm

2
Region 3 — The start and the end of region 3 is at tp ., = % and tp e, = 22
Fm

respectively.
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4

. : : 2

Region 4 — The start of region 4 is at tp .y = y—eD3 £ only when _ij < Yep <
Fm

/li and the end of region 4 is at tpcy = =
Fm

22pm’

4.5 Mathematical Solution and Approximation (Dimensional)

To make it practical, the dimensional parameter should be used for understanding
the physical meaning and interpretation. The asymptotic equations of gas and oil for
analysis are showed in Table 2 and Table 3, respectively. The physical meaning of each
region has been described by Bello (2009). However, region 3 is always described by the
homogeneous reservoir. Actually, region 3 is considered as transient linear flow of total
system which is dominated by hydraulic fractures flowing to the well. Therefore, all the

regions are summarized as followings.

4.5.1 Region 1

This region represents the early linear flow period of the transient dual porosity
model. This region is showed in the first half slope of the log-log plot. This linear flow
behavior represents the transient linear flow in the hydraulic fractures producing fluid to
the well. With the high conductivity hydraulic fractures, the transient period is expected

to be very short and impossible to see in daily production data.
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4.5.2 Region 2

This region represents the bilinear flow of the dual porosity model. This region is
showed in a quarter slope of the log-log plot. This bilinear flow is formed by occurring
two transient linear flows simultaneously which are transient linear flows in hydraulic
fracture system (from hydraulic fractures to wellbore) and matrix system (from matrix
blocks to hydraulic fractures). This occurs while the transient flow dominated period in
hydraulic fractures has not ended while the transient flow dominated period in matrix
still appears. This region will not happen when infinite conductivity of hydraulic

fractures is considered.

4.5.3 Region 3

This region presents the late linear flow period of the dual porosity model. It
shows a half slope line in the log-log plot. It represents the transient linear flow of total
system which is dominated in hydraulic fractures. This occurs when the transient flow in
matrix has ended while transient flow in hydraulic fractures still presents. This case will
happen only when the conductivity of hydraulic fractures is very low comparing with

flow capacity of matrix.

4.5.4 Region 4
This region presents the late linear flow period of the dual porosity model. It
shows a half slope line in the log-log plot. It represents the transient linear flow of total

system which is dominated in matrix, while the transient flow in hydraulic fractures is
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already end. This case will happen when i’—e <% I’:—F or conductivity of hydraulic
F

m

fractures is quite high comparing with flow capacity of matrix.

4.5.5 Region 5

This region expresses the BDF or declined period of the dual porosity model that
all boundaries are dominated and the influence of transient periods of both hydraulic
fractures and matrix have faded. The boundary is defined by the SRV and the artifact no-

flow boundary (interference effect) between hydraulic fractures.

Table 2 — Asymptotic equations of dual porosity model for gas analysis in
dimensional (constant pressure)

Region Asymptotic Equation for Gas Analysis
. Am(p) 1
t ’
1 1% Linear 9 = To¢0T Apy K u(dV Ct)Fﬁ
Am(p)

1 1
1/2,1/4 1
Acw kF/ km/ T [M((l)V Ct)TP”W

N

St g = —————
2 — 1° Bilinear 99 = 5183.7T

o Am(p) o L
3 — Infinite-acting qg = WACW\//(—F u(@Vic)r %
_ Am(p)

1
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Table 3 — Asymptotic equations of dual porosity model for oil analysis in

dimensional (constant pressure)
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Region Asymptotic Equation for Oil Analysis

sty : Ap ! 1

1—1% Linear qo = mz‘lcw ke (9V Ct)Fﬁ
Ap 1 1/2),1/4
2 — 1% Bilinear 9o = ¢ [(pV'c)r]'*
216.8B u3/4 "W F o /_ /4
« . - A !

3 — Infinite-acting qo = W_ aw ke (@V'c)r T

nd : A ye 7
4 — 2" Linear 9 = 5255877 Acy ke (@V'c)r T

The condition of dual porosity that is considered in this study is the criteria of

whether region 3 or region 4 appears (y.p = /%) because the possible linear flow that
Fm

shows in production data is believed to be either region 3 or region 4. The criteria of

existing either region 3 or region 4 in dimensional is given by

Ye _ 1 |ke

Lp 2 |k,
or

Ye 1

—~—=_F
where

_kF,inWF
Pk ye
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Also, the time of ending region 3 and region 4 in dimensional are given by

¢ ~ yeu(@dVic)r

end3 = 000633 X 22k, e (4.17)
L%M(‘IbV’Ct)T

fenag =9874——=——" (4. 18)

4.6 Sensitivity Analysis of Dimensional Parameters
Various dimensional parameters, kg, k,,, Ve, ng,and h, are played sensitivity
analysis to see the effect of each parameters on the production curve. The sensitivity

plots and analysis of these parameters are showed in Appendix E.

4.7 Dual Porosity Model with Infinite Conductivity Hydraulic Fractures and
Homogeneous Linear Flow Model

Referring to the assumption of the dual porosity model, only two distinct medium
systems are defined as hydraulic fracture and homogeneous matrix systems. In this case,
the infinite conductivity of hydraulic fractures is assumed. Therefore, only matrix
medium is considered. This can be implied that only transient linear flow in matrix can
be presented in the production curve or only region 4 can be found in the linear period of
production data.

Then, the model assumption of dual porosity model with infinite conductivity
hydraulic fractures can be applied by the concept of homogeneous linear flow model in

multi-transverse hydraulic fractures horizontal well. This can be confirmed by the
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mathematical model comparison. The following comparison is used the gas equation for
proving.
The asymptotic equation of the transient linear flow in matrix of the dual porosity

model (region 4) is given as:

_Am(p) Ve —— 1
99 = 3o AVl VRV (4. 19)

The asymptotic equation of the homogeneous linear flow in a fractured well is

given as:
1
WL = 00w forr e (4. 20)
or
Am(p)
99 = 3157 VK V“‘l’mct .................... (4. 21)

Some modifications have to be done to correct the dimension of a fractured well
to a multi-transverse fractures in horizontal well as suggested in Appendix A. In this
case, x¢ of a hydraulically fractured well is converted to y, X np of a multi-transverse

hydraulic fractures horizontal well.

_ Am(p) =
g - 315T hyenF \//iquct\/— ZL

Am(p) Ve 1
99 = G301 AewVkm NHEmem L (4. 23)
Assume ¢,, = ¢ and ¢y, = Cir
Then, the asymptotic equation of the modified homogeneous flow for the multi-

transverse hydraulic fractures well is same as the Eq. 4.19.
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CHAPTER V

APPLICATION OF THE DUAL POROSITY MODEL

5.1 Introduction

In this chapter, the linear transient dual porosity model is used for production
data interpretation of shale gas and oil reservoirs in multi-transverse hydraulic fractures
horizontal well. The interpretation guidelines and the example of interpretation are
presented.

From dual porosity model, five flow regions have been proposed as discussed
earlier. Normally, the second linear flow (region 4) or transient linear effect of matrix
flow is mainly used in data interpretation. However, sometimes, misinterpreting can be
occurred by unawareness of existing of different flow region. The following summary
theory of dual porosity model, theoretical dual porosity model cases, and field example

will illustrate the procedures and cautions of interpreting the data.

5.2 Summary of Dual Porosity Model for Interpretation

For daily production data interpretation, the first linear period (linear transient
period in hydraulic fractures) is not supposed to be presented. Therefore, either region 3
or region 4, which is represented for second linear period, is supposed to be showed by

the linear period (a half-slope in log-log plot) in daily production data. The criteria of

either region 3 or 4 will be found is given by Z—e = % Fqp or % = % f:—"
F F m
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. . k
e Region 3 will be found only when 2¢ > F,, or 2> = /—F.
LF 4 LF 2 kﬂ@

. . 1 1 |k
e Region 4 will be found only when ¢ < = F., or 22 <= [ZE
Lp 4 Lr  2lkm

The summary of dual porosity model characteristic can be illustrated in Figure 4 and
Figure 5 which are dimensionless and dimensional forms, respectively.
The associated equations of dual porosity model for data interpretation are

summarized in Table 4, Table 5, and Table 6.

1E+02
=5 \ | |
s "Region 2" onl
1E+01 _ see "Reg i y
= wf
o whenb y,, > ’r
1E+00 ~ Pl i
=
i S IIR . 3" |v
~ see "Region 3" on
1E-01 \ = A —
T i wheny,.p > o
1E-02 \\ ;’}‘__\ T Fmo |
\ = i
1/4slope | -
2 1E-03 ~L 4
i \\ ..\ _/
1E-04 ~. \‘ NSl Al
~
\ \ .
1E-05 7 \\ \* .
1E-06 ™~
1E-07 I see "Region 4" I \
1E-08 \ \

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E+09
tDAc

yeD=1 yeD =100 yeD =547.72 yeD=5,000 - = Homogeneous Assymptotic Eq

Figure 4 — Summary of dual porosity model characteristic for interpretation in
dimensionless form
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Figure 5 — Summary of dual porosity model characteristic for interpretation in

dimensional form

Table 4 — Summary of associated equations for data interpretation of region 4

End of region for gas

= t
Ye = A, u(@V'c)r slopea ¥ end

Region 4 Equation Unknown
Asymptotic Equation Am(p) __630T Lp 1 Vi (k)
for gas G5 Ao Ye JH@VC)r Yertom
Asymptotic Equation Ap _6255BVuly 1 Ve Ve, (km)
for oil Qo AgySkm Ye J(@V' )7 o
_ L% u(pV’
End of region 4 tonda = 9.874M (km)
m
Combine Slope and 200.5T 1

Combine Slope and
End of region for oil

19.

9B 1

= At
Ve Ay (@V'c)r sloped end 4
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Table 5 — Summary of associated equations for data interpretation of region 3

end3 = 0.00633 x 22k

Region 3 Equation Unknown
Asymptotic Equation Am(p) _ 12607 1 N k
for gas 4y ACW\/k_p\/m ’
Asymptotic Equation Ap _ 125.1Bvp 1 k
for oil Qo Acy ke J(@V'c)r F
End of region 3 t ye i@V e kg, ye

Combine Slope and
End of region for gas

2005T 1
= t
Ye = A, u(@V'c))r slope3 ¥ o3

Combine Slope and
End of region for oil

19.9B 1
= At
Ye A, (pV'c)r slope3V 3

Table 6 — Summary of associated equations for data interpretation of region 2

2 and region 3

Region 2 Equation Unknown
Asymptotic Equation Am(p) _ 2183.7T VLr 1/4 ke, ()
for gas Qg Ay kKL (V' c)r]H* o
Asymptotic Equation Ap _ 216388 ult JLe (174 ke, ()
for oil Qo Ag, k2K 1@V c)r]! A
Intersection of region o Yok
H tin 2,4 = 144.37 /.l((l)V c )T__ kF! Ve, (km)
2 and region 4 t YLk
Intersection of region , L
1 tinizs = 9:023 (@V'c)r 1 k)
m
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The interpretation of dual porosity model focuses for possible bilinear and

second linear flow. The early linear flow is supposed not to be presented in daily

production data. Therefore, the possible five production scenarios are listed in Table 7.

Please note that in this interpretation guidelines, the total compressibility, c, is

assumed to be same for both hydraulic fracture and matrix systems in order to provide

the simplify equations for interpretation. Moreover, since the production of shale gas/oil

reservoirs normally produce at constant pressure, constant pressure solutions are applied.

Table 7 — Five possible production scenarios in daily production data

Case Bilinear Linear BDF
1 Yes
2 Yes Yes
3 Yes
4 Yes Yes
5 Yes Yes Yes

5.3.1 Production Scenario Case 1

e There are two possible answers from interpretation but only one answer

is

correct. Two possible answers are calculated from region 4 and region 3

asymptotic equations.

e Normally, it is believed that i’—e<%FCD or high conductivity in hydraulic
F

fractures, region 4 asymptotic equation is used.
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e Itis recommend to calculate the minimum hydraulic fracture half-length, v, 1in.
Yemin Can be calculated from the last point, tens and slope of the square root of

time plot.

Choice 1 — Region 4
k., has to be known
Ye can be found from slope of the square root of time plot, mgyqre

The equations of gas and oil are given, respectively by

_630TLr 1 1

Ve =
¢ ACWﬂ km N .u(l)TCt msquare .................... (5 1)

62.55BVu Ly 1

y =
¢ ACWW, km N ¢Tct msquare .................... (5 2)

In case the value of k,, is not certain, maximum k,,, can be find from t,, 4

L; pprc
Kmmax = 9874? .................... (5.3)

Choice 2 — Region 3

Y. cannot be determined but minimum y, can be calcualated

kr can be found from slope of the square root of time plot, mggyqre
The equations of gas and oil are given, respectively by

&

_ 1260T 1 1
ACW N ,Ll(pTCt msquare .................... (5 4)
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\/k__125.13\/H 1 1
F Acw  Jbrc, Msquare e (5. 5)

Minimum y,

The equations of gas and oil are given, respectively by

200.5T /tena
Yemin =
T Ao UPTCE Msquare e (5. 6)
19.9B tend
Yemin =
T Aoy Pree Msquare e (5.7)

5.3.2 Production Scenario Case 2
e Itisimpossible to determine whether region 3 or region 4 is found
e Unique solution of y, and in-place whether region 3 or region 4 is assumed
e By combining asymptotic equation and end of straight line on square rood of
time plot, calculated y, will be the same for both region 3 and region 4 cases

e The value of k,, is not required

For gas
_2005T tesr
Ye Ay BPTCt Msquare e (5.8)
0GIP (MMscf) 200.5X 1076 T (/tes, a ) 1
SC = — S, )—
U Ct Msquare By e (5.9)
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For oil
19.9B tosr
y =
© T Agy OrCc Mquare e (5. 10)
3.545 X 107° /toer
OO0IP (MMSTB) = (1 —=sy;)
( ) Ct Msquare WLZ (5.11)

In case assuming region 4 is found, k,,, can be calculated from

Ly poree

esr . e

5.3.3 Production Scenario Case 3
e kp can be calculated with assuming k,,
e y, cannot be determined

The equations of gas and oil are given, respectively by

\/k—:2183.7T JLr 1
F T Ak e A Mpguren e (5. 13)

3/4
Jir = 216.8B 1 JLr 1

Ay k71n/4 [pree VA Meguren, e (5.14)

5.3.4 Production Scenario Case 4
e Whether region 3 or 4 can be determined

e y, can be calculated only region 4 is found
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Procedures:

1. From bilinear flow period, find k from region 2 equation with assumingk,,,.
(Eq. 5.13 or EqQ. 5.14)

2. From linear flow period, find k from region 3 equation. (Eq. 5.4 or EQ. 5.5)

3. Check whether k from region 2 is close to region 3 or not.

4. If yes, the linear flow period is represented by region 3 and y, cannot be
determined. However, minimum y, can be calculated from Eq. 5.6 or Eq. 5.7.
If no, the linear flow period is represented by region 4 and y, can be calculated
from region 4 equation (Eq. 5.1 or EqQ. 5.2). The value of k,, is need. If the value

of k., is not certain, calculating maximum k,, by Eq. 5.3 is recommended.

5.3.5 Production Scenario Case 5
e Interpret the data as production scenario case 2.
e Determine whether region 3 or 4 is found by using the same method as

production scenario case 4.

5.4 Examples of Dual Porosity Interpretation

5.4.1 Well D01
The theoretical model of multi-transverse hydraulic fractures in horizontal well
of shale oil reservoir was generated by using dual porosity model. The data table and

generated daily production data are shown in Table 8 and Figure 6 below. This well
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represents a very good fracturing job with effective hydraulic fracturing of 0.4 md (with
fracture width 0.01 ft, intrinsic permeability is 10,000 md). The OOIP from this case is

5.48 MMSTB. The linear flow period of this well is represented by region 4.

Table 8 — Well D01 data

Thickness h 200 ft Hydraulic Fracture Half-Length Ve 500 ft
Perforation Interval Xe 5000 ft Hydraulic Fracture Effective Permeability k ¢ 0.4 md
Total Porosity @ 0.05 Hydraulic Fracture Width W g 0.01 ft
Hydraulic Fracture Spacing Le 250 ft Hydraulic Fracture Intrinsic Permeability kg, 10,000 md
Number of Hydraulic Fracture  ng 20 Hydraulic Fracture Porosity dr 0.5
Matrix Permeability kKm 1.0E-05 md Matrix Porosity ém 0.05
Water Saturation Sw 0.2 Viscosity u 13c¢cp
Formation VVolume Factor B, 1.3 rcffscf Total Compressibility Cyi 2.0E-07 psi-1
Initial Pressure Pi 3000 psia Bottomhole Flowing Pressure P wi 500 pisa

Daily Production Data Daily Production Data - sqrt(t) plot
1E+02 4000
3500
1E+01 g 3000 -
=
= 2 2500 t, =28
& g
= 1E+00 < 2000
— o
[ g
L) g 1500
o -
1€-01 & 1000 A slope = 73.75
500
1€-02 0
1 10 100 1,000 10,000 0 5 10 15 20 25 30 35 40
time (day) sqrt of time (day~0.5)

Figure 6 — Production data and square root of time plots of well D01
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To simulate the real situation when interpreting data, the provided information
for interpretation is same as provided data except hydraulic fracture half-length, y,, and
hydraulic fracture effective permeability, k.

To analyze production data of this well, interpretation guidelines of the
production scenario case 2 (Linear and BDF periods are found) are used.

From Eq. 5.10, y, is 497 ft.
From Eq. 5.11, OOIP is 5.38 MMSTB

In case, it is believed that region 4 is found, k,, is 1.02E-5 md. from Eq. 5.12.

5.4.2 Well D02

Another theoretical well was generated with the data as showed in Table 9 and
the production data was generated only 1,000 days as showed in Figure 7. No deviation
from the half-slope line on log-log plot. The linear flow period is represented by

region 3.

Table 9 — Well D02 data

Thickness h 200 ft Hydraulic Fracture Half-Length Ve 500 ft
Perforation Interval Xe 5000 ft Hydraulic Fracture Effective Permeability k ¢ 0.0001 md
Total Porosity @ 0.05 Hydraulic Fracture Width W g 0.01 ft
Hydraulic Fracture Spacing L 100 ft Hydraulic Fracture Intrinsic Permeability Kk ¢ i, 1md
Number of Hydraulic Fracture  ng 50 Hydraulic Fracture Porosity Pr 0.5
Matrix Permeability Knm 1.0E-04 md Matrix Porosity S m 0.05
Water Saturation Sw 0.2 Viscosity i 1.3 c¢cp
Formation VVolume Factor B, 1.3 rcfiscf Total Compressibility Cyi 2.0E-07 psi-1
Initial Pressure Pi 3000 psia Bottomhole Flowing Pressure P wi 500 pisa
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Daily Production Data
1E+02
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Daily Production Data - sqrt(t) plot

A slope = 92.5
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sqrt of time (day”0.5)

30 35 40

Figure 7 — Production data and square root of time plots of well D02

The values of hydraulic fracture half-length, y,, and hydraulic fracture effective

permeability, kz, are unknown. In this case, the early 10 days of the production data is

assumed to be skin effect from water flowing back from hydraulic fracturing treatment.

The interpretation guidelines of the production scenario case 1 (Only linear period is

found) are used to analyze production data of this well.

Choice 1 — Region 4 is selected
Assume k., is 10 md

From Eq. 5.2, y, is 50 ft.

Choice 2 — Region 3 is selected
Y, cannot be determined

From Eq. 5.5, k is 10 md



46

Minimum y,

From EQ. 5.7, Yo min IS 442 ft.

In summary, the last linear line is supposed to be region 3 rather than region 4
because the calculated y, from asymptotic equation of region 4 is much more less than
the minimum calculated y,. Therefore, the exact value of y, cannot be determined, only

minimum value (442 ft) can be found.

5.4.3 Well 314

Field production plot and data of the multi-transverse hydraulic fractures
horizontal well, well#314, is shown in Appendix B. In this interpretation, skin effect and
gas adsorption are neglected. To analyze production data of this well, interpretation
guidelines of the production scenario case 2 (Linear and BDF periods are found) are
used.
From Eq. 5.8, y, is 186 ft.
From Eq. 5.9, OGIP is 2.7E+3 MMscf

In case, it is believed that region 4 is found, k,,, is 1.3E-4 md from EqQ. 5.12.

5.4.4 Well B-86
Field production plot and data of the multi-transverse hydraulic fractures
horizontal well, well#B-86, is shown in Appendix B. In this interpretation, skin effect

and gas adsorption are neglected. To analyze production data of this well, interpretation
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guidelines of the production scenario case 4 (Bilinear and linear periods are found) are
used.
1. By assuming k,, is 1.5E-4 md, kg is 2.59E-3 md from Eq. 5.13 or by assuming
k., is 1E-5 md, k is 10E-3 md.
2. From Eq. 5.4, kg is 8.4E-4 md.
3. The calculated value of kr from region 3 equation is not close to the value of kg
from region 2 equation; therefore, the late linear flow period is supposed to be
region 4.
4. Maximum k,, from Eq. 5.3 is 2.5E-4 md; then, y, . from Eq. 5.1 is 131 ft.
In case the value of k,, is assumed to be 1E-4 md, y, from Eq. 5.1 is 205 ft.

In case, the value of k,, is assumed to be 1E-5 md, y, from Eq. 5.1 is 649 ft.
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CHAPTER VI

LINEAR TRANSIENT TRIPLE POROSITY MODEL

6.1 Introduction

In this chapter, the fully transient triple porosity model that proposed as Model 1
by Al-Ahmadi (2010) is investigated to consider as a tool using interpret the production
data of shale gas and oil reservoirs in multi-transverse hydraulic fractures horizontal
well. In this work, new 12 flow regions of the triple porosity model are defined. The
asymptotic equations are derived in Laplace space. The investigation of model

characteristic is presented.

6.2 Mathematical Model

The triple porosity model that uses to represent flow behavior of the multi-
transverse hydraulic fractures in horizontal well is shown in Figure 8. Same as linear
homogeneous flow model and dual porosity model, a horizontal well with multi-
transverse hydraulic fractures is defined by the rectangular geometry or the SRV. The
matrix blocks are assumed to be idealized as slab. Three mediums — the hydraulic
fractures, the natural fractures, and the matrix are assumed to be uniform. The flow
between mediums is assumed to be linear transient and sequential flow behaviors.
Matrix feeds liquid to natural fractures and natural fractures feed liquid to hydraulic
fractures and only hydraulic fractures produce the liquid to the well. Al-Ahmadi (2010)

also presented 6 flow regimes (3 linear flows, 2 bilinear flows, and BDF period) to
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represent his triple porosity model (Linear flows from matrix, natural fractures, and
hydraulic fractures, Bilinear flow from the combination of matrix and natural fractures
and natural fractures and hydraulic fractures). Actually, the transient linear triple
porosity model can be represented by 12 flow regimes which are 6 linear flow regions, 4
bilinear flow regions, 1 trilinear flow region, and BDF period. This can be confirmed by
deriving asymptotic equation systematically as shown in Appendix H. The asymptotic
equation of each region can be solved in the Laplace space. The new trilinear flow
behavior can be presented when all the flows in three mediums (hydraulic fractures,
natural fractures, and matrix) are dominated by transient linear flow simultaneously. To
see the transient period of all mediums simultaneously or the trilinear flow period, finite
conductivity of hydraulic fractures and natural fractures are assumed. The bilinear flow
can be showed by the conditions of two transients happen simultaneously. The two
transients can be the combination of hydraulic fractures-matrix, hydraulic fractures-
natural fractures, or natural fractures-matrix. The BDF period is found when all the

boundaries of the three mediums reaches.
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Figure 8 — Sketch of triple porosity model in multi-transverse hydraulic fractures

horizontal well.
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6.3 Dimensionless Variables Definition
In this study, the definition of triple porosity model variables which have not

mentioned in the dual porosity model are given by

1 = 12k, Acw
fm — lec—kp .................... (6.1)
P 12k¢Acy,
Ff = Li-—kp .................... (6.2)
0. = (PVerr _ (V')
F (@Ve)r (@VieHr (6. 3)
we = (¢Vct)f _ (¢V’Ct)f
F = (@Ve)r  @Vie)r (6. 4)
o = (PVe)m _ (PV'c)m
m (¢Vct)T (¢V,Ct)T .................... (6 5)
where
[pV'clr = (dV'c)r + (d)V,Ct)f +@Vem (6. 6)
and
;L Vs
x = m .................... (6.7)
_ d)FVF + ¢fo + ¢me
br =

Ve+ VitV . (6. 8)
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6.4 Mathematical Solution and Approximation (Dimensionless)

This study is based on the fully transient triple porosity model proposed as
Model 1 by Al-Ahmadi et al. (2010). The mathematical derivation details of the model
are shown in Appendix F. The triple porosity model is validated by numerical method
as showed in Appendix G. Previously; Samandarli (2011) showed the asymptotic
equation of 12 flow regimes by using empirical method. Some of the equations are
wrong due to the curve fitting. In this study, the asymptotic equation of each region is
solved in Laplace space. Therefore, the exact solution is found. The completed
derivations of 11 asymptotic equations (6 linear flow regions, 4 bilinear flow regions, 1

trilinear flow region) for constant pressure case are presented in Appendix H.

6.4.1 Asymptotic Equations
From constant pressure inner boundary and closed outer boundary, the Laplace

solution is given by

1 2Tu th ( f( ) )
— CcO ujyu
ToL YepD

1/uf(u) .................... (6 9)

For fully transient slab model (Model 1),

2
f@) = wp + 5 Jufy () tanh (,/uff(u)) .................... (6. 10)

a)f lfm 3wnu 3wnu
= h
fr @) T u / e P 6. 11)
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The asymptotic equations are derived from the assumption of approximation terms in
Laplace space. The summary of the assumptions and results of the eleven regions are

shown in Table 10.

6.4.2 Conditions and Periods of Triple Porosity Characteristic

For fully transient linear triple porosity model in closed boundary, three medium
systems affect the curve characteristic. The conditions to distinct one characteristic of
curve are defined by 5 dimensionless parameters,Agf, Afp, Wp, wr, and yep, Which is
much more complicate than the dual porosity model which has only 3 dimensionless
parameters. Moreover, from observation, the curve characteristic of triple porosity model
can vary more than 20 conditions. Therefore, in this section, only last linear line and the
possible bilinear line and trilinear line prior to the last linear period are considered only.
The derivation of conditions and periods associated to the last linear period are showed
in Appendix H.

From observation, the last linear line can be represented by possible 3 regions
which are region L3, L5, and L6. The possible bilinear can be represented by possible 3
regions which are region B2, B3, and B4. The possible trilinear is represented by region
T1. Moreover, it is found most of the time that bilinear and trilinear lines prior to the last
linear period are combined or overlapped and shows the long transition period which

cannot be identified the region.
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Table 10 - Assumptions and final asymptotic equations region 1 — 11 of the fully
transient linear triple porosity model (constant pressure)

Estimated Terms
5 T i) A _ _
> 30 S0, 1 Asymptotic Equations
@ coth( uf(u)yeD) wr | tanh ]uff(u) . tanh
Ff fm
VW 1
L1 1 - =—
“F ot Zﬂ\/E vV tDAcw
3w fw 1
i f
L2 1 - Iu u - - = —
ﬁ( ) AFf qpL Zn\/ﬁm
3w, U 1 1
L3 1 - ’u (w) - n Ao, = S ="F7——
f} Afm ZH\/E vV tDAcw
1 1/2  1/2
L4 D v B 1 Sﬂ - dpL = AFf 2 eD .
uf(u) YeD /‘lFf 277-'\/7? 31/2 VEtpacw
1/2
L5 o ) 1 i Bwpu oL = Apfc y 1
uf (u) yep Am PL T oy 312 7 e —
1 2172 1
L6 — - /uf ) - 1 - _fm
uf () Yep ! L= w31z 7P
1/4 1/4
B1 1 - 1 ey ] G
Ars 10.133 tzl)ﬁw
3w,u A 1
B2 1 - 1 - m K -
Am L = 10133 a7
P 1
B3 1 - - 1 =_Jn_
Jr@ oL = 10.133 (17
1/2 ,1/4
B4 ; - 1 - 1 qdpL = AF; Aﬂ/n YeD ;
uf ) yep 17.551 " gt
2L/8 41/4 1
T1 1 - 1 - 1 = Jm 7F
0L = 10337 (17
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From the last linear line, possible region is composed of 3 regions — region L3,
L5, and L6. The conditions of presenting each region are illustrated by Figure 9, Figure
10, and Figure 11 and given by
o When Ags > A,
o Ifyep < /3/Asm, region L6 is found.
o Ifyep > /3/Asm, region L3 is found.
e When Aps < Appy
o Ify.p < /3/Ars, region L5 is found.

o Ify.p > ./3/Arf, region L3 is found.

1E+03

1E+02 ;;L;-A.__
1E+01 I, | Region L3
1E+00 Yep Arm
1£-01 T
S 7
3 1E02 \;7: 7 ——veD=5
\ ——yeD=17.32
1E-03 / \\\ ve
. yeD=100
1F08 Region L63 // 77777777
Yep < A_ \

1E-05 Fm ‘ \
1E-06 \
€07 bbb L L

(=] )] [ee] I~ O w = o o~ — (=) — o oM = w

4 &5 49 3 &5 3 3 03 3 05 0wow W ow owow

tDAc

Figure 9 — Comparison plot of region L3 and L6 with Az = 100, A5, = 0.01,
wp =0.001, w;=0.01
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For the bilinear line, possible bilinear region is composed of 3 regions — region

B2, B3, and B4. The conditions of presenting each region are given by

e Among region B3, B4, and BDF can be appeared before region L6.

©)

Two set of plots are illustrated the possible region prior to region L6 in
Figure 12 and Figure 13.

The first set is either region B4 or BDF is presented prior to region L6.

. i . Aprw
The selective condition is f% =1
fm

The second set is either region B3 or BDF is presented prior to region L6.

. i . 3w
The selective condition is y,p = fl—f
fm

e Among region B2, B4, and BDF can be appeared before region L5.

o

Two set of plots are illustrated the possible region prior to region L5 in
Figure 14 and Figure 15.
The first set is either region B2 or B4 is presented prior to region L5. The

. .. . 3
selective condition is y,p = # .

Ff “fm

The second set is either region B2 or BDF is presented prior to region L5.

. o . 3
The selective condition is y,p = /%
Ff

e Either region B2 or B3 can be appeared before region L3.

o

The selective condition is A = Ag, and can be illustrated by Figure 16.
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Figure 12 — Comparison plot of region B4 and BDF prior to region L6 with
Yep = 0.005, Ar, = 0.1, wp =0.001, w; = 0.01
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Figure 13 — Comparison plot of region B3 and BDF prior to region L6 with
App = 1000, Ap, = 0.1, wp =0.001, wf =0.01
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Figure 14 — Comparison plot of region B2 and B4 prior to region L5 with Agf = 1,
Afm =100, wp = 0.001, wy =0.01
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B2 and BDF prior to region L5 with
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Figure 16 — Comparison plot of region B2 and B3 prior to region L3 with y,.p =
100, wp = 0.001, ws = 0.01

From the assumptions of the asymptotic equation and check with the sensitivity
run case, end time of region L3, L5, and L6 for constant pressure case can be derived in

Laplace space and convert to time domain as following.

2
Region L3 — The end of region is at tp ey ena 13 = 222

Region L5 — The end of region is at tpscp ena 15 = 23—2%
Ff

. . . 3 1
Region L6 — The end of region is tpscw end 1 = YT
fm
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6.5 Mathematical Solution and Approximation (Dimensional)

The asymptotic equations of gas and oil in dimensional form are showed in
Table 11 and Table 12, respectively.

The conditions of the triple porosity model characteristic as discussed in the
previous section are converted to the dimensional form and given by
From the last linear line,

Km
kr

L
o When Agp > App O L >
F

Ye 1 |k H :
o I yep </3/Apm oOF y < é region L6 is found.

e 1 [k . .
o I yep > /3/Am OF i’—f > = é region L3 is found.

2

Km
kg

L
o When Ay < Agp O L <
F

Ye 1 |k H :
o Ifyep <./3/Apfo0r o < ;\/:—;, region L5 is found.

e . 1 [k . .
o Ifyep >./3/Aps0Or Ze > > k—; region L3 is found.

Lp
For the bilinear line,
e Among region B3, B4, and BDF can be appeared before region L6.
o Two set of conditions are used to identify the possible region prior to
region L6.

o The first set is either region B4 or BDF is presented prior to region L6.

. —— kfl% (¢pV
The selective condition is |“£2L = 1 or f—’;M =1
Afm km L% (@Ve)T
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o The second set is either region B3 or BDF is presented prior to region L6.

The selective condition is y,p = fjﬂ ory, = %f H:—F /%
fm m t)T

e Among region B2, B4, and BDF can be appeared before region L5.
o Two set of conditions are used to identify the possible region prior to
region L5.

o The first set is either region B2 or B4 is presented prior to region L5. The

1/2,1/2,1/2
. . V3 1 Lp "Lf kp
selective condition is YeD = W ory, = > W.
Ff “fm f m

o The second set is either region B2 or BDF is presented prior to region L5.

. . . _ 30,)_): _ L_F k_p (pVeF
The selective condition is y,p = /Apf or ye == \/; /—(WQ)T.
e Either region B2 or B3 can be appeared before region L3.

. . . L
o The selective condition is Apf = Agy, OF L= fk—m .
Lr k

Also, the time of ending region L3, region L5, and region L6 in dimensional form are
given by

" ~ [pV'clru yé
end L3 — 22 % 0.00633 X kF .................... (6. 12)

2
tenars = 9.874 [¢V,Ct]7"/“lk_i ....................

2
tena e = 9.874 [¢V’Ctlrﬁé .................... (6. 14)
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Table 11 — Asymptotic equations of triple porosity model for gas analysis in
dimensional (constant pressure)

Region Gas Equation

L1 0 = Ty e A RBT r

L2 @y = o) Ry Ay [u@V s f

L3 10 = Ty i AWV D7

L4 qq = Aeglng) ow kf; u(@dV'cr ye %

LS qg = Agéz;) Acw kff u(dV'cr ye %

L6 qg = Aggng) Ay kgz 1(PV'c)r Ve %

Bl 9 = zi;ns(z;)T Ve A by /4\/1L_F Wiy ey tl%
B2 qq = % Vkr Acy k}”\/%—F I tl%
B3 o= % ke Acw k”“ﬂ_f WA@Y Y
B4 UG = 1()A;rll(g6)T ow kl}ﬂklrl/n:4 R CUEAS? 11/4

. Lp Lf t
T1 = % JFr Ay % LBV )V tl%
F Ly
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Table 12 — Asymptotic equations of triple porosity model for oil analysis in
dimensional (constant pressure)

Region Oil Equation
Vkr A |74 —
- T = 12518y 1B cw VPV c)p \f
L2 S a Taviey,
qo_lZS.lB,u F Ay |H( th\/E
L3 9o = 125 1 Ba kr Apyu(@V c)r — \/_
1/2
L4 __ M K ”
9o = 6255 Bu " Ly 1@Vcdrye —= NG
1/2
L5 __ar £ > 1
o 62.55Bu LF_ u(@V cr ye NG
Ap 1/2 1
L6 _ A
9o = 6255 Bu v Lf u@dV'edr ve —= NG
1
= Jk 1/4 /4 14 1
ot % = 2168 Bu 8 B VI A \/L_F @V'ed” 7
Ap 1/4 1 ' 1/4 1
=— Jkr A, k) — ut4(pV /4~
82 T =2168 Bu VoW S \/L—F pH @V ey t1/4
1
= 1/4 i/t 1 \1/4
B3 4o = Vkr Aok, @V et =
216.8 B 83 \/L—f 1/
1/2,1/4
Ap o e N1
= /4 /4
> 90 = T08.4 B v Ly 1 WOV edr Ve
Ap ;/4 1/8 )
=—/ g m /s 1/8
" T =3053Bu kr Acw L7 e (PV ey i

f
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CHAPTER VII
THE TRIPLE POROSITY MODEL WITH

INFINITE CONDUCTIVITY OF HYDRAULIC FRACTURES

7.1 Introduction

In this chapter, the fully transient triple porosity model described in Chapter VI
is assumed infinite conductivity of hydraulic fractures. Mathematical model and
solutions of the triple porosity model with infinite conductivity of hydraulic fractures are
presented. Also, the triple porosity model with infinite conductivity of hydraulic
fractures model is compared with the modified dual porosity model.

From the triple porosity model, 12 flow regimes (6 linear, 4 bilinear, 1 trilinear,
and BDF) have been presented. Three possible regions can represent the last linear flow.
Other three possible regions can represent the bilinear region prior to the last linear
period. Moreover, trilinear flow can appear prior to the last linear period or between the
bilinear. With this complexity of triple porosity model, it is too complicate to interpret
production data of shale gas/oil reservoir with the triple porosity model. Therefore,
infinite conductivity of hydraulic fractures is assumed to simplify the model. With
considering infinite conductivity of hydraulic fractures, only two mediums responses
which are natural fracture and matrix systems are expected to be found in production
analysis. This can be interpreted as modified dual porosity which is represented two

mediums (natural fracture and matrix).
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7.2 Mathematical Model

The triple porosity model that uses to represent flow behavior of the multi-
transverse (infinite conductivity) hydraulic fractures in horizontal well is shown in
Figure 17. The model is modified from the original fully transient linear triple porosity
model provided in Chapter VI by neglecting the hydraulic fracture transient flow effect.
With infinite conductivity of hydraulic fractures, the transient period of hydraulic
fractures will appear very early time compared to the rest mediums flowing period. This
means that only two medium systems are considered in this case — natural fracture and
matrix systems.

The new model can be identified the last linear period with only two possible
linear regions and the bilinear line prior to the last linear period with only one bilinear
region. For the last linear flow, one possible regime is represented the transient linear
flow of the total system dominated by matrix flow. The other is dominated by natural
fracture flow. For the bilinear, this bilinear regime represents two transient flows of

natural fractures and matrix happening simultaneously.
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Figure 17 — Sketch of the triple porosity model of the infinite conductivity hydraulic
fractures in horizontal well.

7.3 Physical Model Explanation

By assuming infinite conductivity hydraulic fractures, only five regions are
considered in the mathematical model. Two regions from the last linear line are region
L5 and L6. One region from the middle linear line is region L4. One region from the first
linear line is region L1. The other from the bilinear line is region B4. Nevertheless, in

practical, only last linear and the bilinear prior to it are considered. Two examples of the
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triple porosity model which have very high permeability in hydraulic fractures are

showed in Figure 18 and Figure 19. The physical meaning of each region is given.

7.3.1 Region L1

This region represents the first transient linear of the fully transient triple
porosity model. This region is showed by the first half slope of the log-log plot. This
linear flow behavior represents the transient linear flow in the hydraulic fractures
producing fluid to the well. With the high conductivity hydraulic fractures, the transient

period is expected to be very short or impossible to see in daily production data.

7.3.2 Region L4

This region represents the middle transient linear of the fully transient triple
porosity model. This region is showed in the second half slope of the log-log plot only
when the conductivity of hydraulic fractures is very high (infinite conductivity) or the
effect of transient linear flow of hydraulic fractures faded away. This linear flow
behavior represents the transient linear flow in the natural fractures feeding fluid to
hydraulic fractures. Normally, the conductivity of hydraulic fractures is not high enough
to completely fade away before this transient dominates; therefore, it is almost

impossible to see this region in the production data.
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7.3.3 Region B4

This region represents the bilinear flow of the fully transient triple porosity
model when infinite conductivity of hydraulic fractures is assumed. This region is
showed in a quarter slope of the log-log plot prior to the last linear period. This bilinear
flow is formed by occurring two transient linear flows simultaneously which are
transient linear flow in natural fracture system (from natural fractures to hydraulic
fractures) and matrix system (from matrix blocks to natural fractures). This occurs while
the transient flow dominated period in natural fractures has not ended and the transient

flow dominated period in matrix has started to appear.

7.3.4 Region L5

This region presents the late transient linear of the fully transient triple porosity
model. It shows the last half slope line in the log-log plot. It represents the transient
linear flow of total system which is dominated by natural fractures. This occurs when the
transient flow in matrix has ended while transient flow in natural fractures still presents.
This case will happen when the conductivity of natural fractures is very low comparing
with flow capacity of matrix or the natural fracture spacing (boundary of the matrix
flow) is small while the hydraulic fracture spacing (boundary of the natural fracture

flow) is large.
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7.3.5 Region L6

This region presents the late transient linear of the fully transient triple porosity
model. It shows the last half slope line in the log-log plot. It represents the transient
linear flow of total system which is dominated by matrix. This occurs when the transient
flow in natural fractures has ended while transient flow in matrix still presents. This case
will happen when the conductivity of natural fractures is high comparing with flow
capacity of matrix or the natural fracture spacing (boundary of the matrix flow) is large

while the hydraulic fracture spacing (boundary of the natural fracture flow) is small.
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1E+08 = Region L4
1E+07 ,,R,e,gl,op,l'!', _ - RegionL> — — Region B4
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Figure 18 — Example of triple porosity model with infinite conductivity hydraulic
fractures with region L6 as the last linear line
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Figure 19 — Example of triple porosity model with infinite conductivity hydraulic
fractures with region L5 as the last linear line

7.4 Modified Dual Porosity Model

As discussed earlier, the effect of hydraulic fracture flow period can be neglected
by assuming infinite conductivity of hydraulic fractures and only two mediums are left
to consider which are natural fractures system and matrix system. Consequently, triple
porosity model with infinite conductivity of hydraulic fractures can be reduced its form
to dual porosity model by considering hydraulic fractures in original dual porosity model
as natural fractures of triple porosity model.

From the original dual porosity system of hydraulic fracture and matrix to the
modified dual porosity system of natural fractures and matrix, the following changes

(Table 13) are required.
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Table 13 — Conversion table of parameters from original dual porosity model to

modified dual porosity model

Original Parameters  |Modified Parameters
Thickness h =h
Perforation Interval Xe =2*%y.*ng
Hydraulic Fracture Half-Length Ve =Lgl2
Hydraulic Fracture Effective Permeability |k ¢ =Ky
Hydraulic Fracture Spacing L =L;
Number of Hydraulic Fracture ne =2*n{*ng
Matrix Permeability Kn =Kn
Hydraulic Fracture Width W g =W;
Hydraulic Fracture Intrinsic Permeability |k g i, =K+in
Hydraulic Fracture Porosity dF =g
Matrix Porosity ém =¢n

To simulate the modified dual porosity model by using numerical simulator to

represent the triple porosity with infinite conductivity of hydraulic fractures, the

modification of parameter variables have to be changed as suggested earlier. The model

is simulated only one-fourth of a natural fracture. The parameters inside the model are

generated same as original dual porosity except using natural fracture dimension instead

of hydraulic fracture dimension as illustrated in Figure 20. The output production rate of

the simulator has to be multiplied by 8 X ns X ng to represent the well production.
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Figure 20 — Illustration of modified dual porosity model for numerical method

7.4.1 Theoretical Examples Comparison
The following examples illustrate this triple porosity model (high conductivity of
hydraulic fracture) and compare between the triple porosity model and the modified dual

porosity model.
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Example A

Theoretical data of triple porosity model is generated with the data as shown in
Table 14. The hydraulic fracture permeability is set to 2E+5 md to represent infinite
conductivity fractures. Then, modified dual porosity model (natural fracture and matrix

systems) is generated with the modified data as showed in Table 15.

Table 14 — Data of triple porosity model of example A

h 200 ft Ye 500 ft
X¢ 5000 ft W 0.01 ft
ke 10 md K Fin 2.00E+05 md
Le 200 ft PF 0.3

Ne 25 W 0.001 ft
ks 0.1md Ktin 2000 md
Ly 20 ft ' 0.3

ni 25 $m 0.05

Km 1.00E-05 md u 1.3¢cp
¢ 0.05 Cii 2.00E-07 psi-1
Sw 0.2 Pi 3000 psia
B, 1.3 rcfiscf P w 500 pisa

Table 15 — Data of modified dual porosity model of example A

h 200 ft Ve 100 ft

Xe 25000 ft W g 0.001 ft
ke 0.1 md K Ein 2000 md
Le 20 ft dr 0.3

ne 1250 ™ 0.05

Km 1.00E-05 md 7 1.3c¢cp

@ 0.05 Cyi 2.00E-07 psi-1
Sw 0.2 Pi 3000 psia
B, 1.3 bbl/STB P w 500 pisa

From the triple porosity model, region L1 follows by region B4, and L6 are

found respectively. While, region 1 follows by region 2 and 4 are found in dual porosity
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model, respectively. Plotting of the triple porosity model with the modified dual porosity
model is showed in Figure 21. It is shown that last bilinear and linear periods of triple
porosity model are overlaid with bilinear and second linear periods of dual porosity
model (B4 is overlaid with 2 and L6 is overlaid with 4). This case can be explained that
hydraulic fractures response disappears before the responses of natural fractures and
matrix appear simultaneously (bilinear period — region B4 of triple porosity and region 2
of dual porosity). Then, the matrix flow of both models appears as linear flow when the
effect of natural fractures fades away. Since the permeability of natural fractures is quite
high in this case (2,000 md), only transient in matrix is expected to be found in the daily

production data.

1E+07 Pl T T I I : Triple P ity A |yt |
~ = | riple FOrosi na ICa
i k / Region L1 of Triple Porosity SoIZtion v
1E+06 » o~
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1E+05 / 0k el T Analytical Solution
. T - Modified Dual Porosity
Region 1 of : Numerical Method
1E+04 Dual Porosity /
£ 16403 .
= Region B4 of Triple Porosity
o 1E+02 i i / o
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1E+01 3
Region L6 of Triple Porosit ]
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Figure 21 — Comparison plot of triple porosity model and modified dual porosity
model of example A
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Example B

Theoretical data of triple porosity model is generated with the data as shown in
table above. All data are same as Example A except natural fracture permeability. The
intrinsic natural fracture permeability is reduced from 2,000 md to 1 md. Then, modified
dual porosity model (natural fracture and matrix systems) is generated with the modified
data of hydraulic fracture permeability.

From the triple porosity model, region L1 follows by the BDF, region B4, and L5
are found respectively. While, region 1 follows by region 2 and 3 are found in dual
porosity model, respectively. Plotting the triple porosity model with the modified dual
porosity model, it is shown that last bilinear and linear periods of triple porosity model
are overlaid with bilinear and second linear periods of dual porosity model (B4 is
overlaid with 2 and L5 is overlaid with 3) as shown in Figure 22. In this case, the
responses of natural fractures and matrix of triple porosity model (bilinear flow — region
B4 of triple porosity and region 2 of dual porosity) dominate after transient period of
hydraulic fractures ends. Then, the transient period of matrix flow ends and the transient
period of natural fracture flow still dominates which is represented by region L5 and

region 3 of triple porosity and dual porosity, respectively.
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Figure 22 — Comparison plot of triple porosity model and modified dual porosity
model of example B

Example C

Theoretical data of triple porosity model and modified dual porosity model are
generated with the data as shown in Table 16 and Table 17, respectively. This example
case is generated to demonstrate the complicated case of specifying region before last
linear flow.

From the triple porosity model, region L1 follows by the transition period before
the region L6 is dominated. While, region 1 follows by region 3 is found in dual porosity
model, respectively. Plotting the triple porosity model with the modified dual porosity
model, it is shown that only last linear period of triple porosity model are overlaid with

the second linear period of dual porosity model (L6 is overlaid with 4) as shown in
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Figure 23. The period before last linear flow of triple porosity model does not fit with
dual porosity model because the effect of hydraulic fractures in triple porosity has still
appeared when natural fracture response is showed. Nevertheless, when the effects of
hydraulic and natural fractures fade out, the transient period of matrix linear flow of two
models (region L6 and 4 of triple and dual porosity models, respectively) will be
identical. Since the permeability of natural fractures is quite high in this case (5,000 md),

only transient in matrix is expected to be found in the daily production data.

Table 16 — Data of triple porosity model of example C

h 200 ft Ye 500 ft
Xe 5000 ft W 0.01 ft
ke 10 md K Fin 1.00E+05 md
Le 100 ft PF 0.3

Ne 50 W 0.001 ft
K+ 1md Ktin 5000 md
Ly 5 ft Pt 0.3

ny 100 $m 0.05

Km 1.00E-07 md u 1.3¢cp
¢ 0.05 Cii 2.00E-07 psi-1
Sw 0.2 Pi 3000 psia
B, 1.3 bblISTB P wt 500 pisa

Table 17 — Data of modified dual porosity model of example C

h 200 ft Ve 50 ft

Xe 50000 ft W g 0.001 ft
ke 1md KEin 5000 md
Le 5 ft dr 0.3

ne 10000 G m 0.05

Km 1.00E-07 md U 13cp

é 0.05 Cyi 2.00E-07 psi-1
Sw 0.2 Pi 3000 psia
B, 1.3 bbl/STB P wt 500 pisa
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Figure 23 — Comparison plot of triple porosity model and modified dual porosity
model of example C

7.4.2 Mathematic Solution Comparison
From the given examples, it can be implied that one region of modified dual
porosity model can be represented by one region of triple porosity model when infinite

conductivity of hydraulic fractures is applied.

Region 4 and Region L6

From region 4 of dual porosity model asymptotic equation,

Am(p) Ve 7 1
19 = 6301 (zxeh)mﬂ w@Viedr = (7.1)
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Modify parameters of dual porosity to triple porosity as following

B Am(p) Lp/2 - 1

99 = gzor X ene X WWhkn T =Nu@Viedrm o (7.2)
where

2hpnph =Aew (7.3)
Therefore,

Am(p) Ve ; 1

99 ="Gzor AewVhm L NB@VICDr 2 (7. 4)
which is region L6 of triple porosity model
Region 3 and Region L5
From region 3 of dual porosity model asymptotic equation,

_ Am(p) ; 1

9 = Togor FelV ke u(gV DT FE (7.5)

Modify parameters of dual porosity to triple porosity as following
m(p)
90 = Tag0r (2 X 2Veltr X h)\/T‘V HoVv’ Ct)T .................... (7.6)
Am(p)
99 = Tagor (& X Lrme X 1) X 2ye /L X \/7V (v’ Ct)T ................ (7.7)
Therefore,
Am(p) - 1
99 = G307 Aew ks L VKV Cr Vi (7. 8)

which is region L5 of triple porosity model



Region 2 and Region B4

From region 2 of dual porosity model asymptotic equation,

Am(p) 1 , 1
(2xeh)ky *ky* —=[u($V'c)r]* =

99 = 3183.7T m

Modify parameters of dual porosity to triple porosity as following

Am(p) 1/2,1/4 1 1
=—F(2 X2 XMWk k' — 174 1/4
99 = J1g3.77 (2 X 2Veltr X W)y hem \/L_f[”(d’ O v
—Am( p) 2Ye 172,174 1 1
2XLgng X h k k.. V' 1/4
99 = 218377 & X brnr X ) \/L—f[u(¢> el 7
Therefore,
= —Am(p) k; /Zk’I”M 1ag g N1/4 L
99 = Too1geT v Ye gz WOV wEm

F=r

which is region B4 of triple porosity model

Region 1 and Region L4

From region 1 of dual porosity model asymptotic equation,

_ m(p)
9 = 1260T

1
2xeW)\keJu(PV'c)r—

Modify parameters of dual porosity to triple porosity as following

m(p)
1260T

g = (2 X 2y,np X h) f .u(d)V Ct)f

g = 1316(57)1 (2 X Lpng X h) X 2y, /L X \/7 u(pV’ Ct)f\/—

Vi e

VT e
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(7.12)

(7. 13)



Therefore,

Am(p) Ve 1
=—— A |k 2= ' —
dg 630 T cw\/7f Ly ,u((,‘bV Ct)f \/E

which is region L4 of triple porosity model
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CHAPTER VIII

APPLICATION OF THE TRIPLE POROSITY MODEL

8.1 Introduction

In this chapter, the fully transient triple porosity model with the assumption of
infinite conductivity hydraulic fractures is used for production data interpretation of
shale gas and oil reservoirs in multi-transverse hydraulic fractures horizontal well. The
interpretation guidelines and the example of interpretation are presented.

From triple porosity model, 12 flow regimes (6 linear, 4 bilinear, 1 trilinear, and
BDF) have been proposed as discussed earlier. Also, to reduce the complexity and
confusion of the model, infinite conductivity of hydraulic fractures has been proposed.
With considering infinite conductivity of hydraulic fractures, only two mediums
responses which are natural fracture and matrix systems are expected to be found in
production analysis. This can be interpreted as modified dual porosity as discussed
earlier.

In this interpretation, 3 flow regimes (2 linear and 1 bilinear) remain to be
considered for production data analysis. The summary of triple porosity model with
infinite conductivity of hydraulic fractures, theoretical triple porosity model cases, and
field example will illustrate the procedures and cautions of interpreting the data with

triple porosity model.
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8.2 Summary of Triple Porosity Model for Interpretation
For daily production data interpretation, either region L5 or region L6, which is
represented for the last linear period, is supposed to be showed by the linear period (a

half-slope in log-log plot). The criteria of either region L5 or L6 will be found is given

Ly k_m
by ; = kf'
e Region L5 will be found only when Y < |
Lr kg
e Region L6 will be found only when Y |km
Lr kg

The summary of triple porosity model with infinite conductivity hydraulic fractures

characteristic can be illustrated in Figure 24 and Figure 25 which are dimensionless and

dimensional forms, respectively.

The associated equations of triple porosity model for data interpretation are

summarized in Table 18, Table 19, and Table 20.
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Figure 24 — Summary of triple porosity model characteristic for interpretation in

dimensionless form
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Figure 25 — Summary of triple porosity model characteristic for interpretation in

dimensional form
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Table 18 — Summary of associated equations for data interpretation of region L6

Region L6 Equation Unknown
Asymptotic Equation Am(p) _630T Ly 1 1 Vi oL (k)
for gas Qg Acw krln/z Ve 1/#(¢V’Ct)7~ e

Asymptotic Equation Ap _6255Bu Ly 1 1 L (K
for oil A 1/2 , Ve, Ly, (km)
do cw km Ve u(qbV Ct)T
: , L
End of region L6 tend 16 = 9.874 [V Ct]T:uk_f Ly, (k)

End of region for oil

m
Combine Slope and _2005T 1
End of region for gas Ye = A T4V ¢ ]y slope Y end L6
Combine Slope and 199 B 1

= 7 t
Ye = A, [V c]y slope ¥ 1

Table 19 — Summary of associated equations for data interpretation of region L5

Region L5 Equation Unknown

Asymptotic Equation Am(p) _630T Lp 1 1 N ke,

for gas 44 Ay k}}/2 Ye Ju(@V )7 fr Ve
Asymptotic Equation Ap _62.55Bu Ly 1 ! Vi K

for oil 4o Acw k}}/2 Ye @V )7 fr Ve

. , LZ
End of region L5 tond L5 = 9.874 [¢pV Ct]TMk_j: Ky
Combine Slope and 2005T 1
. = 7 t

End of region for gas Ye = 4 oV e,y slope ¥ end 15
Combine Slope and . 199B 1
End of region for oil Ye = A, [#V ¢, 17 slopeV tend L5
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Table 20 — Summary of associated equations for data interpretation of region B4

region L5

K

Region B4 Equation Unknown
1/2
Asymptotic | Am(p) _ 1091.86T Lr Ly LRV Yo, (k)
Equation for gas 4 Agy k,}/zkilM H1/4(¢V’Ct)%~/4 Ve Frlgy Yer (Km
] 1/2
Asymptotic Ap _ 1084 Bu Lp Ly L o ke, Le, Vo, (k)
Equation for oil 9. Agy k;/zkrln“ ,11/4(¢>V’ct)1T/4 Ve prpy e ki
Intersection of ) L% k,,
region B4 and tint Base = 9.023 u[pV Ct]TL_z %2 Ly, by, (o)
region L6 f
Intersection of 12
region B4 and tine pars = 9.023 [V ¢ lp = Ly, (k)

8.3 Interpretation Guidelines

The interpretation of triple porosity model focuses for possible bilinear and the

last linear flow. Same as dual porosity model, the possible five production scenarios are

listed in Table 7. Also, please note that in this interpretation guidelines, the total

compressibility, ¢, is assumed to be same for all medium systems in order to provide the

simplify equations for interpretation. Moreover, constant pressure solutions are applied

due to the normal production practice of shale gas/oil reservoir that producing at

constant wellhead pressure.

8.3.1 Production Scenario Case 1

e There are two possible answers from interpretation but only one answer is

correct. Two possible answers are calculated from region L5 and region L6

asymptotic equations.
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e Normally, if high conductivity in natural fractures and low permeability of
matrix is expected, region L6 asymptotic equation is recommended to use. On
the other hand, if low conductivity of natural fractures and high permeability of
matrix, region L5 asymptotic equation is recommended.

e There is a high uncertainty in calculation due to some natural fracture properties
have to be assumed.

e It is recommend to calculate the minimum hydraulic fracture half-length, v, 1in.
Yemin Can be calculated from the last point, tens and slope of the square root of

time plot.

Choice 1 — Region L6
L¢ and k,, have to be known
e can be found from slope of the square root of time plot, mqyqre

The equations of gas and oil are given, respectively by

_630TL; 1 1

y =
¢ ACWW, km 1/‘Ll¢TCt msquare .................... (8 1)

62.55BVuL; 1

ye B Acw1’km 1/ ¢Tct msquare .................... (8 2)

In case the value of k,, and L, are not certain, minimum L;/,/k,, can be find from t,,4

Lf tena
— = 0.318
<*/km> ] Udrce (8. 3)

min
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Choice 2 — Region L5
k; has to be assumed
Ye can be found from slope of the square root of time plot, mqyqre

The equations of gas and oil are given, respectively by

_630TLr 1 1

ye B ACW\/k_f 1/‘L[(I)TCt msquare .................... (8 4)

62.55B/u Ly 1
Ye =

B ACW\/k_f N d)TCt msquare .................... (8 5)

Maximum k can be calculated from ¢4

L% uprce
k =9.874 ——
fmax end e (8. 6)
Minimum vy,
The equations of gas and oil are given, respectively by
2005T tend
Yemin =
emin ACW :u¢TCt msquare .................... (8 7)
_199B tond
ye’mln ACW ¢Tct msquare .................... (8 8)

8.3.2 Production Scenario Case 2
e Itisimpossible to determine whether region L5 or region L6 is found

e Unique solution of y, and in-place whether region L5 or region L6 is assumed
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e By combining asymptotic equation and end of straight line on square rood of

time plot, calculated y, will be the same for both region L5 and region L6 cases

e The value of kg, k¢, k., Ly is not required

For gas
_2005T  \ftes
Ve = Ao i1 Mommare e 8. 9)
0GIP (MMscf) 200.5x 107°T /tosr (1 ) 1
SC = — S.,,:)—
e Msquare WIIB, s (8. 10)
For oil
_ 199B tosr
Ve S A b Meguare e 8. 11)
3.545 x 107 ./t
00IP (MMSTB) = = (1= 5,0) (8. 12)
Ct msquare |||||||||||||||||||| .
In case assuming region L5 is found, k; can be calculated from
L2 c
ky = 9874 e (8. 13)

esr

8.3.3 Production Scenario Case 3
e k¢, L, and k,,, have to be assumed
e Y. can be determined from slope of the fourth root of time plot, ms4yren

e There is a high uncertainty in calculation due to some natural fracture properties
have to be assumed

The equations of gas and oil are given, respectively by
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1091.86 T Lp L 1
y =
¢ Aow KPR urcd VA Mpouren e (8. 14)
108.4 By L L 1
y =
¢ Ao KL [upre ]Vt Mpowren e (8. 15)

8.3.4 Production Scenario Case 4
e Whether region L5 or L6 can be determined only when k., and Ly are assumed

and reliable.

Procedures:

1. From bilinear flow period, find \/k—fye from region B4 equation with
assumingk,, and L¢. (Eq. 8.14 or Eq. 8.15)

2. From linear flow period, find \/k_fye from region L5 equation. (Eq. 8.4 or
Eq. 8.5)

3. Check whether \/k_fye from region B4 is close to region L5 or not.

4. If yes, the linear flow period is represented by region L5 and y, can be
determined from \/k_fye term by assuming k. Furthermore, maximum k; can be
calculated from Eq. 8.6.

If no, the linear flow period is represented by region L6 and y, can be calculated
from region L6 equation by assuming k,, and L; (Eq. 8.1 or Eq. 8.2). The
minimum value of Lf/\/H is calculated by Eq. 8.3 and used for cross-checking

the value.



8.3.5 Production Scenario Case 5

e Interpret the data as production scenario case 2.
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e Determine whether region L5 or L6 is found by using the same method as

production scenario case 4.

8.4 Examples of Triple Porosity Interpretation

8.4.1 Well TO1

The theoretical model of multi-transverse hydraulic fractures in horizontal well of shale

oil reservoir was generated by using triple porosity model. High conductivity hydraulic

fractures is assumed. High permeability in natural fractures and low permeability in

matrix are also assumed in this case. The data table and generated daily production data

are shown in Table 21 and Figure 26. The OOIP of this well is 5.48 MMSTB. The

linear flow period of this well is represented by region L6.

Table 21 — Well T0O1 data

Thickness h

Perforation Interval Xe
Hydraulic Fracture Spacing Le
Number of Hydraulic Fracture  ng
Natural Fracture Spacing L¢
Number of Natural Fracture n¢
Matrix Permeability K m

Total Porosity

Water Saturation
Formation Volume Factor
Viscosity

Initial Pressure

T r W v S
o

200 ft
5000 ft
200 ft
25
20 ft
25
1.00E-07 md
0.05
0.2
1.3 rcfiscf
13cp
3000 psia

Hydraulic Fracture Half-Length
Hydraulic Fracture Effective Permeability
Hydraulic Fracture Width

Hydraulic Fracture Intrinsic Permeability
Hydraulic Fracture Porosity

Natural Fracture Effective Permeability
Natural Fracture Width

Natural Fracture Intrinsic Permeability
Natural Fracture Porosity

Matrix Porosity

Total Compressibility

Bottomhole Flowing Pressure

Ve 500 ft
ke 100 md
W 0.01 ft
kein 2.00E+06 md
. 0.3

k¢ 0.1md
W 0.001 ft
Ktin 2000 md
$s 03
- 0.05

Cyi 2.00E-07 psi-1
P wi 500 pisa
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Daily Production Data
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A slope = 58.75

5 10 15 20 25 30 35 40
sqrt of time (day”0.5)

Figure 26 — Production data and square root of time plots of well T01

To simulate the real situation when interpreting data, the provided information

for interpretation is same as provided data except hydraulic fractures and natural

fractures information e.g. y,, kr, k¢, Ly.

To analyze production data of this well, interpretation guidelines of the

production scenario case 2 (Linear and BDF periods are found) are used.

From Eq. 8.11, y, is 495 ft.

From Eq. 8.12, OOIP is 5.43 MMSTB

In case, region L5 is expected, k¢ is 1E-5 md. from Eq. 8.13.
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8.4.2 Well T02
Another theoretical shale oil well was generated by triple porosity model. This
well is assumed permeability in natural fractures is low. The data table and generated

daily production data are shown in Table 22 and Figure 27. The OOIP from this well is

5.48 MMSTB. The linear flow period is represented by region L5.

Table 22 — Well T02 data

Thickness h 200 ft Hydraulic Fracture Half-Length Ve 500 ft
Perforation Interval Xe 5000 ft Hydraulic Fracture Effective Permeability k 100 md
Hydraulic Fracture Spacing Le 200 ft Hydraulic Fracture Width W 0.01 ft
Number of Hydraulic Fracture  ng 25 Hydraulic Fracture Intrinsic Permeability kg, 2.00E+06 md
Natural Fracture Spacing L¢ 10 ft Hydraulic Fracture Porosity dF 0.3
Number of Natural Fracture n¢ 50 Natural Fracture Effective Permeability k¢ 0.00001 md
Matrix Permeability K m 1.00E-05 md Natural Fracture Width W 0.001 ft
Total Porosity ) 0.05 Natural Fracture Intrinsic Permeability Ktin 0.1md
Water Saturation Sw 0.2 Natural Fracture Porosity 'Y 0.3
Formation Volume Factor B, 1.3 rcfiscf Matrix Porosity dm 0.05
Viscosity U 1.3 ¢cp Total Compressibility Cyi 2.00E-07 psi-1
Initial Pressure pi 3000 psia Bottomhole Flowing Pressure P wi 500 pisa

Daily Production Data
1E+03

1E-02

1 10 100 1000
time (days)

Daily Production Data - sqrt(t) plot

3000
1E+02 = 2500 e
= -7
-
- E 2000 t.Y2=225
g 1E+01 = e =
& g
5 < 1500
2 1E400 g
$ 1000
2
1E-01 5

500

A slope = 58.75

10000 0 5 10 15 20 25 30 35 40

sqrt of time (day~0.5)

Figure 27 — Production data and square root of time plots of well T02
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To simulate the real situation when interpreting data, the provided information
for interpretation is same as provided data except hydraulic fractures and natural
fractures information e.9. ye, kr, k¢, L¢.

From the interpretation guide line, this case matches the production scenario case
2 which is linear and BDF period. Moreover, this case has the same parameters as case
well TO1; therefore, the calculated parameters will be the same as case well TO1 which

are y, = 495 ftand 00IP = 5.43 MMSTB.

8.4.3 Well TO3
Another theoretical well was generated with the same data as Well T02 as
showed in Table 22 and the production data was generated only 1,000 days as showed in

Figure 28. No deviation from the half-slope line on log-log plot.

Daily Production Data Daily Production Data - sqrt(t) plot
1E+03 800
700
1E+02 =
t.ne = 100 days = 600
2
wn
B 1E+01 \/ £ s00
= a
& < 400
o
2 1E+00 % 300
B 500 A slope = 58.75
1E-01 2
100
1E-02 0 £
1 10 100 1000 0 2 4 6 8 10 12
time (days) sqrt of time (day*0.5)

Figure 28 — Production data and square root of time plots of well T0O3
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The provided information for interpretation is same as provided data except
hydraulic fractures and natural fractures information e.g. ye, kg, ks. Assume Ly and k.,
are known from core data analysis.

In this case, the production data shows only linear flow or production curve have
not shown BDF yet. From the interpretation guide line, this case matches the production
scenario case 1 which is only linear period is found. Whether region L5 or region L6 is
found for the linear flow cannot be determined. Therefore, two asymptotic equations are

used to see the properties.

Choice 1 — Region L6 is selected

Ly and k., are known from core data analysis

From Eq. 8.2, y, is 25 ft.

Choice 2 — Region L5 is selected
k¢ has to be assumed with the maximum limit which is calculated by Eq. 8.6,
k¢ max 18 5.1E-5 md. Thus, k¢ of 1E-5 md is assumed (k¢ ;, 0.1 md with w, 0.001 ft).
From Eq. 8.5, y, is 499 ft.

If ks is assumed as 1E-6 md (k ;;, 0.01 md with w, 0.001 ft), y, is 1,578 ft.

Minimum y,

From Eq. 8.8, Y min is 220 ft.
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In summary, the last linear is supposed to be region L5 rather than region L6 because the
calculated y, from asymptotic equation of region L6 is much more less than the

minimum calculated y,. Therefore, the value of y, may be any value higher than 220 ft.

8.4.4 Well 314

Field production plot and data of the multi-transverse hydraulic fractures
horizontal well, well#314, is shown in Appendix B. In this interpretation, skin effect and
gas adsorption are neglected. To analyze production data of this well, interpretation
guidelines of the production scenario case 2 (Linear and BDF periods are found) are
used.
From Eq. 8.9, y, is 186 ft.
From Eq. 8.10, OGIP is 2.7E+3 MMscf

In case, region L5 is expected, k¢ is 1.3E-4 md. from Eq. 8.13.

8.4.5 Well B-86

Field production plot and data of the multi-transverse hydraulic fractures
horizontal well, well#B-86, is shown in Appendix B. In this interpretation, skin effect
and gas adsorption are neglected. To analyze production data of this well, interpretation
guidelines of the production scenario case 4 (Bilinear and linear periods are found) are

used.

1. By assuming ky, is 1.5E-4 md and Ly is 25 ft, \/k;y, is 1.5 from Eq. 8.14 or by

assuming k., is 5E-5 md, \/ksy is 2.
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2. From Eq. 8.4, [k, is 2.05.
3. The calculated value of \/k_fye from region L5 equation is close to the value of

\/k_fye from region B4 equation; therefore, the late linear flow period is supposed

to be region L5.

4. Maximum k; from Eq. 8.6 is 2.5E-4 md. If using maximum kg, minimum y,
from [k, in step 2 is 131 ft. In case, k; is assumed to be 1E-5 md, y, is 649 ft
from /ksy, = 2.05 in step 2.

In summary, region L5 is expected to represent the linear period, and the minimum value

of y, is 131 ft.
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CHAPTER IX

APPLICATION OF DUAL POROSITY MODEL AND TRIPLE POROSITY MODEL

In this chapter, the transient dual porosity model and the fully transient triple
porosity model with the assumption of infinite conductivity hydraulic fractures are used
for production data interpretation of shale gas and oil reservoirs in multi-transverse
hydraulic fractures horizontal well. The interpretation guidelines and the example of
interpretation are presented.

To reduce the complication of interpretation, all of the following interpretations
will focus on assumption of infinite conductivity of hydraulic fractures for interpreting
daily production data of shale gas/oil reservoir. With the assumption of homogeneous
reservoir and infinite conductivity hydraulic fractures of dual porosity model, only one
medium (matrix system) is left for considering. Therefore, only one region of linear flow
is considered for dual porosity model which is region 4. Regarding the assumption of
infinite conductivity hydraulic fractures of triple porosity model, two mediums (natural
fractures and matrix systems) are left for considering. Consequently, two regions of
linear flow are considered for triple porosity model which are region L5 and L6.

Moreover, region B4 of triple porosity model are considered as bilinear flow region.
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9.1 Interpretation Guidelines

To emphasize the solutions of the dual porosity model and the triple porosity
model, all the associated and guidelines are re-summarized from Chapter V and
Chapter VII1 as follows. The interpretation guidelines follow the possible five
production scenarios showed in Table 7. Also, please note that in the interpretation
guidelines, the total compressibility, c;, is assumed to be same for all medium systems in
order to provide the simplify equations for interpretation.

Referring to the assumption of infinite conductivity of hydraulic fractures,
production scenario case 3, 4, and 5, which have bilinear flow period in the production
profile, can be represented by the triple porosity model only because the dual porosity

model cannot present bilinear flow in this assumption.

9.1.1 Production Scenario Case 1

e There are three possible answers from interpretation but only one answer is
correct. One possible answer is calculated from the region 4 of dual porosity
model asymptotic equation. The other two possible answers are calculated from
the region L5 and L6 of triple porosity model asymptotic equations.

¢ If homogeneous reservoir is assumed, region 4 of dual porosity model is applied.
If reopen natural fractures is expected, triple porosity model is applied.
Normally, if high conductivity in natural fractures and low permeability of

matrix is expected, region L6 asymptotic equation is recommended to use. On
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the other hand, if low conductivity of natural fractures and high permeability of
matrix, region L5 asymptotic equation is recommended.

e There is a high uncertainty in calculation due to some natural fracture properties
have to be assumed for triple porosity model calculation.

e |t is recommend to calculate the minimum hydraulic fracture half-length, Y, 1min.
Yemin Can be calculated from the last point, tens and slope of the square root of
time plot. The equations for dual porosity and triple porosity models are the

same.

Choice 1 — Region 4 of Dual Porosity Model
k., has to be known
¥ can be found from slope of the square root of time plot, mqyqre

The equations of gas and oil are given, respectively by

_630TLr 1 1

Vo =
¢ ACWW, km N .u()bTCt msquare .................... (5 1)

62.55BVu Ly 1

ye B ACW"’ km ~/ ¢Tct msquare .................... (5 2)

In case the value of k,, is not certain, maximum k,,, can be find from t,,4

L% uprc
kmmax = 987411 (5. 3)

end e
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Choice 2 — Region L6 of Triple Porosity Model
L¢ and k., have to be known
Ye can be found from slope of the square root of time plot, mqyqre

The equations of gas and oil are given, respectively by

630T Ly 1 1

ye - ACW*, km 1/‘[,ld)TCt msquare .................... (8 1)

_ 6255ByuL 1

ye B ACW‘, km A/ d)TCt msquare .................... (8 2)

In case the value of k,, and Ly are not certain, minimum L; /,/k,,, can be find from t.,4

Lf lena
—— = 0.318
(, / km> Uprce (8.3)
min

Choice 3 — Region L5 of Triple Porosity Model
k¢ has to be assumed
Ye can be found from slope of the square root of time plot, mqy4re

The equations of gas and oil are given, respectively by

_630T Ly 1 1

ye B ACW\/k_f 1/‘[,1¢Tct msquare .................... (8 4)

62.55B+/u L 1
Ye =

B ACW\/k—f 1/ ¢Tct msquare .................... (8 5)

Maximum k can be calculated from t,,,4
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L% Uprce
kfmax = 9.874 ———— (8.6)

end e

Minimum y,

The equations of gas and oil are given, respectively by

2005T +/tona

y } . =
T A BOTC Msquare e 9.1)
19.9B tend
Yemin =
T Ay Pree Msquare e 9.2

9.1.2 Production Scenario Case 2

e |t is impossible to determine which region is found (region 4, region L5, or
region L6)

e Unique solution of y, and in-place whether dual porosity model or triple porosity
model is assumed

e By combining asymptotic equation and end of straight line on square rood of
time plot, calculated y, will be the same for any case (region 4, region L5, or
region L6)

e The value of kg, k¢, ky,, Ly is not required

For gas

200.5T tesr
Ay BPTC Msquare e (9.3)

Ye =
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0GIP (MMscf) 200.5X 1078 T /tes, (1 ) 1
SC == — S, )—
H Ct msquare wi Bg .................... (9 4)
For ol
19.9B tosr
y =
© Aew Orc Msquare e (9. 5)
3.545 x 107 /t
00IP (MMSTB) = (1 —sy) ©.6)
Ct msquare .................... .

In case assuming region 4 of dual porosity model is found, k,,, can be calculated from

L%" Uprce

esr

k,, = 9.874

In case assuming region L5 of triple porosity model is found, k can be calculated from

LZF Uprcy

2 L ELLRLLRLLRELEEL R

9.1.3 Production Scenario Case 3

e k¢, L, and k,,, have to be assumed
* Y. can be determined from slope of the fourth root of time plot, ms4yr¢n

e There is a high uncertainty in calculation due to some natural fracture properties
have to be assumed

The equations of gas and oil are given, respectively by

1091867  Lp L 1

y =
©T T Ao KPR apredV Mouren e (8. 14)
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108.4 By L L 1
y =
¢ Ao KL [upre ]Vt Mpowren e (8. 15)

9.1.4 Production Scenario Case 4
e Whether region L5 or L6 can be determined only when k., and L, are assumed

and reliable.

Procedures:

1. From bilinear flow period, find \/k_fye from region B4 equation with
assumingk,, and L¢. (Eq. 8.14 or Eq. 8.15)

2. From linear flow period, find \/k—fye from region L5 equation. (Eg. 8.4 or
Eq. 8.5)

3. Check whether \/k_fye from region B4 is close to region L5 or not.

4. If yes, the linear flow period is represented by region L5 and y, can be
determined from \/k_fye term by assuming k. Furthermore, maximum k; can be

calculated from Eq. 8.6.
If no, the linear flow period is represented by region L6 and y, can be calculated

from region L6 equation by assuming k,, and L; (Eq. 8.1 or Eq. 8.2). The

minimum value of Ly /,/k,, is calculated by Eq. 8.3 and used for cross-checking

the value.
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9.1.5 Production Scenario Case 5
e Interpret the data as production scenario case 2.

e Determine whether region L5 or L6 is found by using the same method as

production scenario case 4.

9.2 Examples of Interpretation

9.2.1 Well T02

The theoretical model of multi-transverse hydraulic fractures in horizontal well,
the same well of well TO2 of triple porosity model as generated in Chapter V11, is used
in this interpretation.

To simulate the real situation when interpreting data, the provided information
for interpretation is same as provided data except hydraulic fractures and natural
fractures information e.9. ye, kr, k¢, L¢.

From the interpretation guide line, this case matches the production scenario case
2 which is linear and BDF period. Both dual porosity and triple porosity interpretation
guidelines are shown the same equation for this production scenario case. Consequently,
there is a unique solution for the production scenario case 2 (linear and BDF).

From Eq. 9.5, y, is 495 ft.
From Eq. 9.6, 00IP is 5.43 MMSTB
In case, region 4 of dual porosity model is expected, k,, is 1E-5 md. from Eq. 5.12.

In case, region L5 of triple porosity model is expected, ks is 1E-5 md. from Eq. 8.13.
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9.2.2 Well TO4

Another theoretical shale oil well was generated by triple porosity model. This
well is assumed permeability in natural fractures is low. The data table and the generated
daily production data of 100 days are shown in Table 23 and Figure 29. The OOIP from

this well is 4.39 MMSTB. The linear flow period is represented by region L5.

Table 23 — Well T04 data

Thickness h 200 ft Hydraulic Fracture Half-Length Ve 400 ft
Perforation Interval Xe 5000 ft Hydraulic Fracture Effective Permeability k 100 md
Hydraulic Fracture Spacing Le 200 ft Hydraulic Fracture Width W 0.01 ft
Number of Hydraulic Fracture  ng 25 Hydraulic Fracture Intrinsic Permeability kg, 2.00E+06 md
Natural Fracture Spacing L¢ 10 ft Hydraulic Fracture Porosity dF 0.3
Number of Natural Fracture n¢ 40 Natural Fracture Effective Permeability k¢ 0.00001 md
Matrix Permeability K m 1.00E-04 md Natural Fracture Width W 0.001 ft
Total Porosity ) 0.05 Natural Fracture Intrinsic Permeability Ktin 0.1md
Water Saturation Sw 0.2 Natural Fracture Porosity 'Y 0.3
Formation Volume Factor B, 1.3 rcfiscf Matrix Porosity dm 0.05
Viscosity U 1.3 ¢cp Total Compressibility Cyi 2.00E-07 psi-1
Initial Pressure pi 3000 psia Bottomhole Flowing Pressure P wi 500 pisa
Daily Production Data Daily Production Data - sqrt(t) plot
1E+03 1000
900
1E+02 % 800 1
t..q = 100 days jE:- 700 -
8 1E:01 \/ = 600
g 2 500
- o
g 1E+00 '% 400
g 300 slope=73.33
1E-01 2 J00 A
100
1E-02 0
1 10 100 1000 0 2 4 6 8 10 12
time (days) sqrt of time (day”0.5)

Figure 29 — Production data and square root of time plots of well T04
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The provided information for interpretation is same as provided data except
hydraulic fractures and natural fractures information e.g. ye, kg, ks. Assume Ly and k.,
are known from core data analysis.

In this case, the production data shows only linear flow or production curve have
not shown BDF yet. From the interpretation guide line, this case matches the production
scenario case 1 which is only linear period is found. What region (region 4, region L5, or
region L6) is found for the linear flow cannot be determined. Therefore, three asymptotic

equations are used to see the properties.

Choice 1 — Region 4 of Dual Porosity Model
k., is known from core data analysis (10 md)

From Eq. 5.2, y, is 126 ft.

Choice 2 — Region L6 of Triple Porosity Model

L¢ and k,,, are known from core data analysis

From Eqg. 8.1, y, is 6.3 ft.

Choice 3 — Region L5 of Triple Porosity Model
k¢ has to be assumed with the maximum limit which is calculated by Eq. 8.6,
k¢ max 18 5.1E-5 md. Thus, k¢ of 1E-5 md is assumed (k¢ ;, 0.1 md with w, 0.001 ft).
From Eq. 8.5, y, is 400 ft.

If ks of 1E-6 md is assumed (ks ;;, 0.01 md with wy 0.001 ft), y, is 1264 ft.
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Minimum y,

From EQ. 9.2, Ye min is 176 ft.

In summary, the last linear is supposed to be region L5 rather than region L6
because the calculated y, from asymptotic equation of region L6 is much more less than
the minimum calculated y,. Moreover, the calculated y, from the region 4 of dual
porosity model is less than the minimum value of y,; therefore, dual porosity model is
not supposed to represent this case example. As a result, the value of y, should be
calculated from region L5 equation. However, there is high uncertainty of the value of

k. The value of y, can be any value which is higher than 176 ft.

9.2.3 Well 314

Again, well#314 (data in Appendix B) is used to show the interpretation of field
production data. It is noted that skin effect and gas adsorption are neglected in this case.
To analyze production data of this well, interpretation guidelines of the production
scenario case 2 (Linear and BDF periods are found) are used.
From Eq. 9.3, y, is 186 ft.
From Eq. 9.4, OGIP is 2.7 Bscf
In case, region 4 of dual porosity model is expected, k,,, is 1.3E-4 md. from Eq. 5.12.

In case, region L5 of triple porosity model is expected, k is 1.3E-4 md. from Eq. 8.13.
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9.2.4 Well B-145

Field production plot and data of the multi-transverse hydraulic fractures
horizontal well, well#B-145, is shown in Appendix B. In this interpretation, skin effect
and gas adsorption are neglected. To analyze production data of this well, interpretation

guidelines of the production scenario case 1 (only linear period is found) are used.

Choice 1 — Region 4 of Dual Porosity Model
k., is known from core data analysis (1.5x10™ md)
From Eq. 5.1, y, is 72 ft.

From Eq. 5.3, Ky max 1S 4.7E-5 md

Choice 2 — Region L6 of Triple Porosity Model

Assume Ly = 10 ft and from core analysis, k., = 1.5x10™* md

Ly \ . 05
<\/T—m) is 8.2E+2 ft/md"".

From Eq. 8.1, y, is 9 ft.

In case this region is found, from Eq. 8.3, (L—f> is 1.2E+4 ft/md®>.
‘/m min

Choice 3 — Region L5 of Triple Porosity Model

k¢ has to be assumed with the maximum limit which is calculated by Eq. 8.6,
ks max 1S 4.7TE-5 md.

In case, ky of 1E-5 md is assumed (k¢ ;, 0.1 md with wy 0.001 ft and L, 10 ft)
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From Eq. 8.4, y, is 277 ft.

In case, ky of 1E-6 md is assumed (k¢ ;, 0.01 md with wy 0.001 ft and L, 10 ft)

From Eq. 8.4, y, is 876 ft.

Minimum y,

From EQ. 9.1, Y min is 128 ft.

In summary, the linear flow period is supposed to be region L5. From choice 1 or
region 4 of dual porosity model, calculated y, is lower than minimum y, and calculated
k., is higher than maximum k,,; therefore, it is believed that the linear period is not

represented by the region 4. From choice 2 or region L6 of triple porosity model,

calculated y, is too low and calculated (L—f> is lower than minimum(L—f); therefore,

N Tkm
it is believed that the linear period is not represented by the region L6. As a result, the
value of y, should be calculated from region L5 equation. However, there is high

uncertainty of the value of kr. The value of y, can be any value which is higher than

128 ft.

9.3 Discussion and Conclusion
e In case linear and BDF periods are found, unique solution of y, can be calculated
for both dual and triple porosity models.

e In case only linear period is found,
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Three possible regions and equations are used for interpretation.

Using dual porosity model to interpret reservoir with natural fractures can
cause a significant error of value of y,.

An uncertainty of k; value causes a big range of calculated y.value from
region L5 asymptotic equation.

Minimum calculated y, can be found by using the last point of data.
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CHAPTER X

CONCLUSIONS AND RECOMMENDATIONS

10.1 Conclusions
The main conclusions can be summarized as follows.

e The linear homogeneous flow model can be used to analyze the transient linear
flow in matrix of the dual porosity model with the condition of infinite
conductivity hydraulic fractures.

e The dual porosity model can be used to analyze a fractured horizontal well with
the assumption of homogeneous matrix system.

e Five regions and their asymptotic equations can be presented in the dual porosity
model.

e In daily production data, long last linear flow is expected to be region 3 or
region 4, while possible bilinear flow is region 2. With high conductivity
hydraulic fractures, only region 4 is expected to present in production data.

e Region 4 is represented by the same equation as linear homogeneous flow model.

e The triple porosity model can be used to analyze a fractured horizontal well with
the naturally fractured reservoir.

e Twelve regions and their asymptotic equations can be represented in the triple

porosity model.
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e In daily production data, with the assumption of infinite conductivity hydraulic
fractures, long last linear flow is expected to be region L5 or region L6, while
possible bilinear flow is region B4.

e To interpret production data with the assumption of infinite conductivity
hydraulic fractures, if only long linear flow with no decline period is found,
different three answers can be calculated. If long linear flow with decline period

is found, only one unique solution can be calculated.

10.2 Recommendations

The followings are recommended for future work.

e Developing asymptotic equations and associated equations for constant rate case
of triple porosity model.

e Including gas adsorption in the analysis

e More investigation on gas correction factor

e Due to high uncertainty in the natural fracture properties, general values of
natural fracture properties of the field should be investigated to increase

confidence in calculation.
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APPENDIX A
DERIVATION OF MODIFIED LINEAR HOMOGENEOUS FLOW IN

MULIT-TRANSVERSE HYDRAULIC FRACTURES HORIZONTAL WELL

Based on Wattenbarger and EIl-Banbi (1998), the mathematical model of

hydraulic fracture well is represented by Figure 30.

Ye

P

Xe

Figure 30 - A hydraulically fractured well in a rectangular reservoir
(Wattenbarger and EI-Banbi 1998)

The definition of all dimensionless parameters is in terms of fracture half-length, x;, and

given by
0.00633 k,,
bpxf = ————t (A-1)
GmCetxf
N 0.00633 k,, . (xf)z .
bye ™ ncelt V2 y,) P, (A-2)
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_ 1422q,T 1422q,T
kmhAm®)  kph[m) —m(pws)] 0 e (A- 3)

dp

 1412q,Bu  141.2q,Bu
D= Tl hhp knh (i —Pwp) e (A- 4)

The solution for constant p,,, production from a closed linear reservoir is given

by
T(Ye
1 4 (xf)
= n2m2 /X2 1 e, (A-5)
v Z%Odd €xp [_ 4 (y_];) thf]

The short term approximation solution of homogeneous linear flow during the linear

flow period of constant pressure condition in terms of x is given.

2 1
dpLxf = ﬁ \/@ .................... (A-6)

Converting to dimensional parameters, the slope of square root of time plot of gas and
oil are given by equation A-7 and A-8, respectively.

315.4T 1

Msquare = hmmxf .................... (A-7)

_ 313Byi 1

Msquare = hmmxf .................... (A-8)

The end of half-slope line of the log-log plot or the end of straight line of the square root

of time plot is found when ¢,,. is 0.25 for constant p,, » case or when flow responds by

the outer boundary.
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kmtesr
= 0.159 /—
Ye (¢.uct)i .................... (A' 9)

Pore volume, V), can also be calculated by combining Eq. A-7, Eq. A-8, and Eq. A-9.

The V, for gas and oil

200.6T 1
V, o= At
PO (ue)i Mequare ¥ 0 e, (A- 10)

1998 1

Voo

Jeesr (A- 11)

Cti msquare ....................

To apply this model to multi-transverse hydraulic fractures horizontal well, the
definition of dimension parameters have to be modified as follows.
e y, of A hydraulically fractured well - Lz/2 of A multi-transverse hydraulic
fractures horizontal well
e x; of A hydraulically fractured well - y, X np of A multi-transverse hydraulic
fractures horizontal well
Therefore, the modified equations of linear flow for interpreting the multi-transverse
hydraulic fractures horizontal well are

\/HYenF =

315.4T 1
h 1[ (¢nl'lct)l mgquare .................... (A' 12)

N 31.3BVE 1
Neg =
m ye F h ,‘/ (¢Ct)l msquare .................... (A' 13)

LF kmtesr
— =0.159
2 (buc); (A- 14)
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200.6T 1
Voo = A
PO (ue)i Moquare ¥ 0 (A- 15)

19.9B 1
po —

Jtesr (A- 16)

Cti msquare ....................
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APPENDIX B

EXAMPLE FIELD DATA

Well 314

Field production plot and data of the multi-transverse hydraulic fractures
horizontal well, well#314, is shown in Figure 31 and Table 24, respectively. The well
has been produced with a constant bottom-hole pressure. The production plot shows a
half-slope on the log-log plot of rate versus time representing linear flow. Moreover,
deviation from the half-slope trend line at late time is observed. The early period that
does not follow the half-slope trend line may be from the effect of fractured treatment
water which causes the skin effect in the early part.

From plotting Am(p)/q versus t, slope is 1.75E+4 as shown in Figure 32. To
evaluate gas production data, correction factor is calculated from drawdown given by

Ibrahim and Wattenbarger (2005).

b ™) —m(puy)
D — m(pl) .................... (B' 1)

fcp =1 —0.0852Dp, — 0.0857D3
The calculated f.p is 0.838. Then, corrected slope is 20,883. The end of half-slope on
log-log plot or the end of straight line on square root of time plot, t,,., is around 225

days.
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Figure 31 — Log-log plot of production gas rate versus time of well 314

Table 24 — Well 314 data

Thickness h 300 ft
Perforation Interval Xe 2968 ft
Hydraulic Fracture Spacing Le 106 ft
Number of Hydraulic Fracture Ng 28
Porosity ¢ 0.06

Water Saturation Swi 0.3
Formation VVolume Factor Byi 0.00509 rcf/scf
Viscosity Ui 0.0201 cp
Total Compressibility Cii 2.20E-04 psi*t
Pseudo Initial Pressure m(pi) 5.97E+08 psi%/cp
Pseudo Bottomhole Flowing Pressure  m(pwi) | 2.03E+07 psi?/cp
Temperature T 610 °R
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Figure 32 — Square root of time plot of well 314

Well B-86

Field production plot and data of the multi-transverse hydraulic fractures
horizontal well, well#B-86, is shown in Figure 33 and Table 25, respectively. The well
has been produced with a constant bottom-hole pressure. The production plot shows a
quarter-slope and a half-slope on the log-log plot of rate versus time representing
bilinear and linear flows, respectively. There is no deviation from the half-slope trend
line at late time. The early period that does not follow the quarter-slope trend line may
be from the effect of fractured treatment water which causes the skin effect in the early
part.

From plotting Am(p)/q versus t, slope is 17,200. From plotting Am(p)/q
versus t%2°, slope is 45,000 as shown in Figure 34. To evaluate gas production data,

correction factor of gas properties given by Eq. B-1 and Eq. B-2 is applied to the slopes.
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The calculated fp is 0.838. Then, corrected slope is 20,525 and 53,700 for square root

of time and fourth root of time plots, respectively. The end of production data, t,,g, iS

around 300 days.
10000
4 4 ey S
] hd . *
=
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1 10 100 1,000

time, days

Figure 33 — Log-log plot of production gas rate versus time of well B-86

Table 25 — Well B-86 data

Thickness h 300 ft
Perforation Interval Xe 3550 ft
Hydraulic Fracture Spacing Le 142 ft
Number of Hydraulic Fracture Ng 25

Porosity ¢ 0.085

Water Saturation Swi 0.3
Formation VVolume Factor By 0.0051 rcf/scf
Viscosity L 0.0195 c¢p
Total Compressibility Cii 2.23E-04 psit
Pseudo Initial Pressure m(pi) 5.96E+08 psi%/cp
Pseudo Bottomhole Flowing Pressure  m(pws) 2.01E+07 psi®/cp
Temperature T 610 °R
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300,000
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Figure 34 — Square root of time (right) and fourth root of time (left) plots of well
B-86

Well B-145

Field production plot and data of the multi-transverse hydraulic fractures
horizontal well, well#B-145, is showed in Figure 35 and Table 26, respectively. The
well has been produced with a constant bottom-hole pressure. The production plot shows
a long half-slope on the log-log plot of rate versus time representing the linear flow.
There is no deviation from the half-slope trend line at late time. The early period that
does not follow the half-slope trend line may be from the effect of fractured treatment
water which causes the skin effect in the early part. Moreover, from core data analysis,
matrix permeability is estimated as 1.5x10™* md.

From plotting Am(p)/q versus +/t, slope is 24,000 as showed in Figure 36. To
evaluate gas production data, correction factor of gas properties given by Eq. B-1 and
Eq. B-2 is applied to the slopes. The calculated f.p is 0.838. Then, corrected slope is

28,640 for square root of time plot. The end of production data, t,,4, is around 500 days.
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Figure 35 — Log-log plot of production gas rate versus time of well B-145

Table 26 — Well B-145 data

Thickness

Perforation Interval

Hydraulic Fracture Spacing
Number of Hydraulic Fracture
Porosity

Water Saturation

Formation VVolume Factor
Viscosity

Total Compressibility

Pseudo Initial Pressure

Pseudo Bottomhole Flowing Pressure

Temperature

m(pi)
M(Pwi)

300

3360

80

42

0.085

0.3
0.0051
0.0195
2.23E-04
5.96E+08

2.01E+07

610

=

rcf/scf
cp

psi”
psi/cp

1

psi/cp
°R

128
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Figure 36 — Square root of time plot of well B-145
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APPENDIX C

LAPLACE SOLUTION OF LINEAR TRANSIENT DUAL POROSITY MODEL

Derivations of the linear transient dual porosity model with closed boundary
developed by El-Banbi (1998) are shown in this chapter. The solution is showed in
Laplace domain to solve the second-order differential equation. The solution in time
domain can be obtained by Stehfest algorithm. The derivation starts with constant rate
solution and converts to constant pressure solution by using the technique given by Van

Everdingen and Hurst (1949).

Matrix system

Diffusivity equation:

O0Pm

kin 0%Pm
™ ot

u 0z?

= [¢pV'c,]

azpmz ¢)V’Ct apm
022 M|k T

Inner boundary condition:

OPm

ozl °

z=0

Outer boundary condition:

pmlzsz/Z =Pr
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Hydraulic fracture system

Diffusivity equation:

kp 0°pr / 0pr
7 9y? = [pV Ct]FW_ drm
I

m wlp/2 0z l,opppn

O*pr _ [#V'ce] P Km  OPm
ayz M|k |9t " kelp/2 oz

Z=LF/2

Inner boundary condition:

_ keAcw aﬁ
Bu 0y

y=0

Outer boundary condition:

opr
oy

Y=Ye

Solution

From matrix system,

Z

1
Letzp = —7, pp =~ (pi = P) O p = pi — PpPen, and

kr Kp
= = t :therefore,
tDAcw = TGvicomt @Vieorian - [9Viedriaey b
azpo 3 (¢V,Ct)m apo

0zf uﬁﬂ (@V'cdr Otpacw (C-1)
Lkp
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_ 12kmAcw

_ (PVicy)m
Let Agy, = Zker —_—=

and wr =1 Ve

azPDm 3 OPpm
- (1-
aZI_Z) AFm ( (‘)F)

atDACW ....................

Take Laplace transform

d*pp, 3

dz2 Arm (1= op) Wom ~Pom(zp, ®) (C- 3)

From the initial condition of matrix system, pp.,(zp,0) = 0

d*pp, 3

a2 A ATenubm (C-4)

This can be shown by the general solution

3(1 —wr)u 3(1 —wr)u
—( r) Zp | + B sinh —( ) Zp

Dom = A cosh
Pom = A cos PP B (C-5)

AFm

dPpm 2 3(1 —wp)u b 3(1 — wp)u
= ————— sin 7
dzp Arm Arm b
3(1 — 3(1 —
p [PAzenu o BAzenu
AFm /1Fm

or




From the inner boundary condition of matrix system, a(%

z=0
0Ppm —0
0zp 2p=0
Take Laplace transform
dPom|  _,
dzp 2p=0
Therefore, where z, = 0, Eq. C-6 becomes
3(1 — wp)u 3(1 — wp)u
0=A (—F)sinh(O) + B gcosh(O)
/1Fm AFm

Since sinh 0 = 0 and cosh 0 = 1; therefore, B = 0.
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From the outer boundary condition of matrix system, p,,|,=./2 = Pr

po|ZD=1 = Ppr

Take Laplace transform

po|ZD=1 = Ppr

Therefore, where z, = 1, Eq. C-5 becomes

3(1 — wp)u

Ppr = A cosh
Arm
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Then,
_ Por
cosh < 3(1/1——wp)u> .................... (C-13)
Fm
Therefore,
Pom = cosh| [——— 7,
cosh < M) Arm (C- 14)
A
Fm
or
dPpm
dzp
Ppr 3(1 — wp)u . 3(1—wp)u e (C- 15)
= sinh{ [———— 2p
cosh ( _3(1; wp)U ) Arm Arm
Fm

From hydraulic fracture system,

zZ

y k
Let zp = 2 Y0 = Jao P = Pi = PoPen: and tpaew = mt,

0°ppr _ (@V'ct)r Oppr 1 12k Acw OPpm

= y +
ayg (¢V Ct)T atDACW 3 L%;-kp aZD Zp=1 e (C' 16)
_ 12kmAcw — 1 _ (PVict)m _ (pVice)r
Letdpm ==, andwp = 1= = Gvieor
0°ppr _ dppr | 1 OPpm
vz @Wry 2 Am S )
yD tDACW 3 aZD .................... (C 17)

ZD=1
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Take Laplace transform,

d*Ppr _ Arm OPpm

ayz ~Or WP P O) R E (C-18)
From the initial condition of hydraulic fracture system, ppr(yp,0) = 0

Por _ —_ rm Oom

dyZ TP G | (C- 19)

Substitute a;’ﬂ with Eq. C-15,

Zp zZp=1

dZm B L AFm_ 3(1 — wF)u h 3(1 - wF)u
g - Wp U Ppr + —3 Por A tan A ... (C- 20)
Define
Arm [3(1 — wp)u 3(1 — wp)u
= h - L
fw) = wp+o— / A an Arm | e (C-21)

Therefore,

TN
dy? DEZE (C-22)

This can be shown by the general solution

Por = Acosh (Vu f@yp) + Bsimh (Vuf@y) (C- 23)

or

dppr
dyp

= AJu f(w) sinh( u f(w) }’D)

+ Bu f(w) cosh( u f(w }’D)
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From the inner boundary condition of hydraulic fracture system, q = %z—?
y=0
Let p = p; = ppPen. and yp = ==,
0Ppr =__;L_ qBu
0Vpl, o Pen kpJAqw e (C- 25)
. 1 B 2w kp\JAcw
Define p., = ERF%; therefore, pp, = anT (i)
OPpr
= -2r
Oyply, o (C- 26)
Take Laplace transform,
0Ppr 21
dyp Yp=0 U e, (C-27)
Therefore, where y, = 0, Eq. C-24 becomes,
21
= Ayu f(uw) sinh(0) + Byu f(u) cosh() (C- 28)

Since sinh 0 = 0 and cosh 0 = 1,

21
B=——uw——
u+/u f(u) .................... (C- 29)
From the outer boundary condition of hydraulic fracture system, z—? =0
Y=Ye
: _ Ye

Define y.p = =

OPpr

=0
Oypl, .. (C- 30)
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Take Laplace transform,

dPor o
dypl, _,.. e (C-31)

Therefore, where y, = y.p and Eqg. C-29, Eq. C-24 becomes,

0=AJuf(u) sinh( uf(u)yeD)—zg cosh( uf(u)yeD)

Then,

A= ZTH COSh(\/“f(u) yeD)
= o) sinh( — o yeD) .................... (C-33)

Therefore, Eq. C-23 becomes,

. 2771 cosh(y/u fF(w) yep)
PP = e F ) sinh(ya F @) yen)

— 2—ﬂsinh( u f(u) yD)
uyu f(u)

cosh( u f(u) yD)

At wellbore, y, = 0,

L _ 21 cosh(w/u f(u) yeD)
PpF@weun um sinh(m }Ieu) .................... (C-35)

Re-arrange in exponential term, (define p,,p. = m@we”)

2T

" T

1+ e~2VW@W yeD]

1— e_z uf(u) Yep
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To change from constant rate solution to constant pressure solution, Van Everdingen and
Hurst (1949) introduced the relation between constant pressure solution and constant rate
in Laplace space.

1
PwpL X dpL = 75 (C- 37)

Consequently, the solution of constant pressure of transient linear slab dual porosity case

(El-Banbi, 1998) is shown.

_ 2mu

1
EPn Juf(w)

1 4+ e~2/uf@ yep
1— e_zvuf(u) YeD

Where
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APPENDIX D
ANALYSIS EQUATIONS DERIVATIONS OF
LINEAR TRANSIENT DUAL POROSITY MODEL

FOR CONSTANT PRESSURE CASE

From constant pressure inner boundary and closed outer boundary of linear
transient dual porosity model given by El-Banbi (1998)

1+ e 2V (W) yep

1 — e=2/4F @@ Yep

i 2mu
Ao \Juf(w)

Or this can be written in term of coth(x) function.

i= 2mu coth( uf(u)yD)
dor  Juf(w) L (D-2)

For transient slab model,
Arm [3(1 — wp)u 3(1 — wp)u
= h -
fa) = or +33 ’ 1 an F P R (D- 3)

Case 1

With the assumption of

wp > //1;—1’:1(1 — wr) tanh( /f—u(l — a)F))
Fm

uf (u) yep is large, = coth(yuf (W) yep) = 1

Therefore,

fw) = wp
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Then,

_ Nop 1
qDL_?\/_a .................... (D-4)

Inverting Laplace transform, the asymptotic equation of region 1 is

_ VJwr 1
Ry =y s, (D-5)

Case 2

With the assumption of

AFm 3
op < 2 - wp) anh ([ (1= 0p)
And Wis large, -~ tanh (W) ~ 1

And (1 — wp)~1

And Juf(u) y,p is large, - coth(,/uf(u) yeD) ~1

Therefore,
— [Am
flu) = /
Then,
__mE
=75 =30555075 (D- 6)

Inverting Laplace transform, the asymptotic equation of region 2 is

A |
_ m
L1033 A e (D-7)




Case 3

With the assumption of

141

tanh ( \/;—u (1- wF)) ~ \/;—u (1 — wp) from approximation of Taylor’s series
Fm Fm

. 3u .
expansion when /;1_ (1 — wp) is very low
Fm

Juf @) yep is large, - coth(,/uf(u) yeD) ~ 1

Therefore,
AFm
Fa) = wp + (52 (1 - 0p) [ (1 - wp)
fw=1
Then,
11
DL — 27_[\/&

Inverting Laplace transform, the asymptotic equation of region 3 is

1 1

o = Zﬂ\/E \/ tDAcw

Case 4

With the assumption of

AFm 3
wp K /;—u(l — wr) tanh( /ﬁ(l — O)F))
And /;—um(l — wp) islarge, - tanh( I;—:(l - wF)> ~1
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And coth(w/uf (uw) yeD) ~ m from approximation of Taylor’s series expansion

when Juf (u) y.p is very low

Therefore,
Fa = [l
Then,
—— _Ye» Apm 1
oL =75~ 3 0m (D- 10)

Inverting Laplace transform, the asymptotic equation of region 4 is

yeD AFm

oL = S = |72 T7/—— e, (D-11)
\ tDAcw

Case 5

With the assumption of

wp > /A;—;”(l — wr) tanh( /f—u(l — a)F))
Fm

And coth(yuf(u) yep) =

= ( —— from approximation of Taylor’s series expansion
uy(u) Yep

when Juf (u) y.p is very low

Therefore,

fw) = wp
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Then,

Do =%7%F (D- 12)

Inverting Laplace transform,

_ Ye
oL =5 wrd(t) (D-13)

which is not practical

Case 6

With the assumption of

tanh \/— 1- a)F) \/— (1 —wp) from approximation of Taylor’s series

expansion when /— (1 — wp) is very low

And coth(,/uf(u yeD)

- ( —— from approximation of Taylor’s series expansion
uy(u) Yep

when /uf (u) yep is very low

Therefore,
fw=1
Then,
__ Yep
AoL =57 (D- 14)

Inverting Laplace transform,

_Yen
dpL = o 8(t) (D- 15)

which is not practical
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In summary, assumptions and results of 6 cases are shown in Table 27.

Table 27 - Assumptions of 6 cases and the final asymptotic equations of the
transient linear dual porosity model (constant pressure)

Estimated Terms
Case/ oL f(w) . _
Asymptotic Equations
Region -
coth ( uf(u) yeD) Wr tanh( ’A_(l — wp))
Fm
1 1 \VWr 1
w - oL = —F—
F Zﬂ\/E Y, tDAcw
A%
2 1 - 1 dpL = e
10.133 ¢1/4
DAcw
3 1 Su __! .
) m (1 B wF) qDL 27'[\/; \/ tDAcw
; - yeD AFm 1
4 ) 1 dpL =
uf (W) yen 2Ty 3 \[tpacw
5 ! N/A
—_— w 1
uf(u) Yep F
1 3u
6 _ - 2% N/A
uf(u) Yep Arm ( @r)
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Conditions and periods of dual porosity characteristic

One sensitivity set was run to see the curve characteristic of dual porosity model. The

Run 1 — 5 plots are shown in Figure 37.

1E+01 Run1 1E+01 Run2
1E+00 1E+00
1E-01 1E-01
1E-02 1E-02
a 1E-03 ool a 03y
c 1E-04 Region 1 = 1E-04 Region 1
- - Region 2 - - Region 2
1E-05 8 1E-05 8
——Region 3 ——Region 3
1E06  _ gegions 1E06 - —pegion 4
1507 quarter slope 1607 quarter slope
half slope half slope
1E-08 1E-08
v L T m o o (=] — ~ m < w w ~ 0 @ o w hi m o W o — ~ m < o w ~~ o0 o
Howmom o o8 g4 d o8 L8588 R R R R
tDAC tDAC
1E+01 1E+01
1E+00 1E+00
1E-01 1E-01
1E-02 1E-02
1E-03 1E-03
'n; qDL _‘?.‘. qDL
1E-04 Region 1 1E-04 Region 1
- - Region 2 - = Region 2
1605 & 1605 &
——Region 3 ——Region 3
1E06  __ gegiona 1E06 © —pRegion4
1E-07 quarter slope 1E-07 quarter slope
half slope half slope
1E-08 1E-08
v W T m o o (=] - ~ m = wn w ~ 0 o u") ".7 t‘r r“‘\ o —It o — ~ o < w w0 r~ L] @
Bowom o o8 d 44 4 8 4 4 588 R R R R
tDAC tDAC

1E+01

1E+00

1E-01

1E-02

1E-03
2 — DL
T ’
1E-04 Region 1
- - Region 2
1E-05 8
——Region 3
106 Region 4
1807 quarter slope
half slope
1E-08
w T m (] - o — ~ m < w w ~ 0 @
S R R T I I
tDAC

Figure 37 — Sensitivity set (Run 1 —5) of curve characteristic of the dual porosity
model
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Runl—2Agm =1E-5, 0p = 1E-3,and y,p, = 1
Only two regions which are region 1 and region 4 are observed and region 4 jogs

down from trend line of region 1.

Run 2 — Agm = 1E-5, o = 1E-3, and y,p, = 17.32
Only two regions which are region 1 and region 4 are observed. Moreover,

region 1 and region 4 are on the same trend line.

Run 3 — A = 1E-5, oF = 1E-3, and y,p = 100
Three regions which are region 1, region 2 and region 4 are observed. Starting
with region 1, region 2 bends up from trend line of region 1. Then, from trend line of

region 2, region 4 bends down from region 2.

Run 4 — Ay = 1E-5, o = 1E-3, and y,, = 547.72
Only two regions which are region 1 and region 2 are observed. Starting with
region 1, region 2 bends up from trend line of region 1. Then, boundary dominated flow

is found directly from region 2.

Run 5 — Agm = 1E-5, o = 1E-3, and y,p, = 5000
Three regions which are region 1, region 2 and region 3 are observed. Starting
with region 1, region 2 bends up from trend line of region 1. Then, trend line of region 2

bends down and follows by the region 3 or homogeneous line.
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All of the runs (5 runs) are shown that each region has their specific conditions to

happen except region 1 which can be seen in any run. From this sensitivity set, the dual

porosity model can be defined by 5 characteristic curves as shown in Figure 38.

qDL

1E+02
- T
=
<
1E+01 i 3
. - - Yep = A

e m

100 | i
i~ i
Iies g 3wp < < 3
1E-01 X = dom 7P e Yoo > | |
‘ il eD Arm

1E-02 \ \‘ﬁ T \

\ """"" P—l Bt h\ / /
1E-03 S~ LT \-. h=dl1

T e~ 7
1E-04 P~ \ I /
1E-05 S ﬁ \‘\ \‘ ~
4 s, SNl SSHsT LN
1E-06 3wy 7l S VNN T
Yep < 2 \ .....
Fm _ 3wp \ i
1E-07 Yep = e \\ \
1E-08 ‘ '
1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E+09
tDAc
yeD=1 yeD=17.32 yeD =100 yeD =547.72 yeD = 5,000 = — Homogeneous Assymptotic Eq

Figure 38 — Combined plots of Run 1 —5 and the conditions
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The conditions of the 5 characteristics can be derived from the asymptotic
equations. The derivations are the followings.

From asymptotic equations of region 1 and region 4, the condition as run 2
(region 1 and region 4 are on the same trend line) can be derived.
Equate asymptotic equation of region 1 and region 4:

VWFE 1 Yo [Apm 1

Z”ﬁ\/m AR m .................... (D- 16)

Then,

_ |3wr
Yep = |57 (D- 17)

Arm

From asymptotic equation of region 3 and region 4, the condition as run 4 (region
3 and region 4 are on the same trend line, and neither region 3 nor region 4 are found)
can be derived.

Equate asymptotic equation of region 3 and region 4:

1 1 — YeD AFm 1
Znﬁm 2Tl 3 m .................... (D- 18)

f 3
Yeo = 7 (D- 19)

Then,
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Moreover, the conditions of run 1, run 3, and run 5 can be evaluated from these

conditions and showed below.

e The condition of run 1 is y,, < jﬂ
Fm

e The condition of run 3 is //3# <Yop < [
Fm

AFm

e The condition of run5is y,p, > =
AFm

In summary, the characteristic of the linear transient dual porosity curve can be

defined by 5 conditions in term of y, as follows.

3wr
1. YeD < A_
Fm
3wFr
2 — [2®F
yeD AFm
3wr 3
3. /—< < |—
/1Fm yeD lFm
3
4 Yep = |7
3
5 Yep > /1_
Fm
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From the assumptions of each asymptotic equation, some of starting time and end

time of each region can be determined as following.

Region 1

Referring to the assumption of coth(y/uf (W) yep) =~ 1, uf (w) yep has to be

closed to infinity number to get the most accurate value of coth function. From trial and
error, \Juf (u) y.p > 2 fits with the estimation.

From \Juf(u) y.p > 2 and f(u) = wp,

UOpYep > 2 (D- 20)
1 S 1 22
u” uryi o (D- 21)

Inverting Laplace transform,

22
1>t —
DAcw yeZD Wp (D- 22)
2
Yep WF
tpacw < 22 (D- 23)

From the sensitivity run case, it is found that end of region 1 is at tp ey, =

the first condition or when y,p < %
Fm

Region 2

Referring to the assumption of coth(y/uf(u) yep) ~ 1, same as region 1,

uf (u) y.p > 2 is used to estimate the time condition from trial and error.
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From Juf(w) y.p > 2 and (u) = /A;—;"

/u VAFm/3UYep > 2 (D- 24)

1 1 2*x3

>_—
uT WY Aem (D- 25)

Inverting Laplace transform,

L 2% %3
DAcw YV Apm (D- 26)
4
YVeD /1Fm
tpacw < %3 (D- 27)
4
From the sensitivity run case, it is found that the end of region 2 is at tp,,, = %

only in the third condition or /3“’—‘" < Yep < /i
/1Fm AFm
Furthermore, regarding the assumption of tanh( /;—u (1- a)F)) ~ 1,
Fm

/;—” (1 — wp) has to be closed to infinity number to get the most accurate value of tanh
Fm

function. Nevertheless, from trial and error, /;—” (1 — wp) > 2 gives the satisfy result.
Fm

From f;’—u(l —wp) >2and (1 — wp)~1,
Fm

22
u>=Aem (D- 28)
1 1 22

u’~ u? ?AFm
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Inverting Laplace transform,

t <5
DAcw 22/1Fm

3

From the sensitivity run case, it is found that the end of region 2 is at tpsq, = Py
Fm

only in the fifth condition or y.p > /3/Apm.

Region 3

Referring to the assumption of coth(,/uf(u) yeD) ~ 1, same as region 1,
uf (u) yop > 2 is used to estimate the time condition.

From \Juf(u) y.p > 2and f(u) =1,

1 122

> —_—
u”outyd e (D- 31)

Inverting Laplace transform,

2
YeD
tDAcw < 22

Referring to the assumption of tanh (\/;—u 1- wp)) ~ ;—u(l — wp) Which
Fm Fm

is the first approximation of Taylor’s series expansion, A—u (1 — wg) term is supposed
Fm

to be very low (close to 0). However, it is found that /;—u (1 — wp) < 1 already make a
Fm

satisfy result.
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From /371‘(1 —w)<1land(1-w)~1,

1 11

WSzt (D- 33)
Inverting Laplace transform,

3
tDAcw > /1_
Fm

From the sensitivity run case, it is found that the start and the end of region 3 is at
3 Yép ;
tpacw = ——and tp,e, = =57, respectively.
AFm 2
Region 4

Referring to the assumption of coth(y/uf (W) yep) = \/W+)y which is the first
eD

approximation of Taylor’s series expansion, /uf (u) y.p term is supposed to be very

low (close to 0). However, it is found that \/uf(u) y.p < 1 already make a satisfy

result.

From Juf(u) y.p < 1and f(u) = \/%,

1’u\/AFm/3uyeD <1 (D- 35)

1 1 3

< —
u u2 y:D AFm .................... (D' 36)

Inverting Laplace transform,

4
Yep Ar
toacw > =5 (D- 37)
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4
From the sensitivity run case, it is found that the start of region 4 is at tpsy = %

only in the third condition or /M—F < Yop < /i
)LFm /1Fm
Furthermore, regarding the assumption of tanh( /;—u (1- a)F)> ~ 1, same as
Fm

region 2 case, /;—”(1 — wp) > 2 gives the satisfy result. Also same as region 2 case,
Fm

3
Zzlpm

the end of region 4 isat t = . Moreover, from the sensitivity run case, this case will

occur when y,p < //,Li or from the condition 1% to 3".
Fm

Intersection of region 2 and region 4

Equate region 2 and region 4 asymptotic equations,

A%ﬁ 1 _ YeD 2'Fm 1
174 o = | 2 T e D- 38
10133 ¢1/* " 20y 3 \[tpacw (D- 38)
tpacw = 0.07615 Apmyep (D- 39)

Intersection of region 2 and region 3

Equate region 2 and region 3 asymptotic equations,

Mm 1 _ 1 1
1/4 -
10133 (/% " onVE Jtpmw e (D- 40)

1
tpacw = 0.6854 T (D- 41)
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In summary, all the time identifications of each region are shown in Figure 39, Figure

40, and Figure 41.
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Figure 39 — The dimensionless plot of the dual porosity model of Ary = 1E-5,
o =1E-3,and y.p =1
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dual porosity model of Ary,, = 1E-5,

1E+01

1E+00

1E-01

1E-02

1E-03

DL

7 1604
1E-05
1E-06
1E-07

1E-08

DL

——Region 1
— — Region 2
——Region 3
——Region 4

quarter slope
half slope

R
w w w
— — —

1E-6
1E-5

1E-1

1E+0

tDAL‘w -

End of Region 2

3

22AFm

Start of Region 3
tDAcw = 2

‘iFm
End of Region 3
2
t — YeD
DAcw 22

- o~ m <t [%s} o ~
+ + + + + + -
w w w w w w w
— — - — - — —
tDACc

1E+8

1E+9

Figure 41 — The dimensionless plot of the dual porosity model of Ary, = 1E-5,

or = 1E-3, and y.p = 5000
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APPENDIX E

DUAL POROSITY SENSITIVITY

The dimensional parameters, kg, k,,,, Ve, nr, and h, are played sensitivity analysis
to see the effect of each parameters on the production curve. To represent the base case,
one theoretical model was generated to represent the multi-transverse hydraulic fractures

horizontal shale oil well. The information of this well is showed in Table 28.

Table 28 — Data of the theoretical well to represent base case of sensitivity run of
dual porosity model

Thickness h 200 ft Hydraulic Fracture Half-Length Ye 500 ft
Perforation Interval Xe 5000 ft Hydraulic Fracture Effective Permeability k ¢ 0.4 md
Total Porosity ¢ 0.05 Hydraulic Fracture Width W 0.01 ft
Hydraulic Fracture Spacing Le 250 ft Hydraulic Fracture Intrinsic Permeability kg, 10,000 md
Number of Hydraulic Fracture  ng 20 Hydraulic Fracture Porosity dr 0.5
Matrix Permeability Km 1.0E-05 md Matrix Porosity ™ 0.05
Water Saturation Sw 0.2 Viscosity U 13 c¢cp
Formation VVolume Factor B, 1.3 rcfiscf Total Compressibility Cii 2.0E-07 psi-1
Initial Pressure Pi 3000 psia Bottomhole Flowing Pressure P wt 500 pisa

kr Sensitivity
The sensitivity of hydraulic fracture intrinsic permeability values, ranging from
0.1 to 10° md, is showed in Figure 42. The sensitivity result shows that while decreasing

the hydraulic fracture permeability from infinite conductivity, the last linear period

1

changes from region 4 to region 3 when i’—e > /:—F Moreover, it is confirmed that the
F m

last linear region 4 is not affected by ky as showed in the region 4 asymptotic equation.

On the other hand, region 3 is affected by ky as showed in the asymptotic equation.
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k., Sensitivity
The sensitivity of matrix permeability values, ranging from 10® to 10 md, is
showed in Figure 43. The sensitivity result shows that while increasing the matrix

permeability from 10 md, the last linear period changes from region 4 to region 3 when

2’—‘* >% /:—F Moreover, it is confirmed that the last linear region 4 is affected by k,,, as
F m

showed in the region 4 asymptotic equation. On the other hand, region 3 is not affected

by k,, as showed in the asymptotic equation.

Y. Sensitivity
The sensitivity of hydraulic fracture half-length values, ranging from 10 ft to
infinite value, is showed in Figure 44. The sensitivity result shows that while increasing

the hydraulic fracture half-length from 10 ft, the last linear period changes from region 4
to region 3 when 2’—6 > % /:—F Moreover, it is confirmed that y, affects the last linear line
F m

only the region 4. On the other hand, the end of last linear line is affected by y, only for

region 3.

ne and Lz Sensitivity

The sensitivity of the number of hydraulic fractures related to hydraulic fracture
spacing by fixing the effective well length, ranging from 1 to 40, is showed in Figure
45. By increasing the number of hydraulic fractures, the production rate increases while

the end of linear transient period is shorter.
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The sensitivity of reservoir thickness value, ranging from 10 to 5120 ft, is

showed in Figure 46. By increasing reservoir thickness, the production rate increases

while the end of linear transient period is same.
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Figure 42 — The hydraulic fracture permeability sensitivity analysis of dual porosity

model
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Figure 43 — The matrix permeability sensitivity analysis of dual porosity model
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Figure 44 — The hydraulic fracture half-length sensitivity analysis of dual porosity
model
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Figure 45 — The hydraulic fracture spacing sensitivity analysis of dual porosity
model
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Figure 46 — The reservoir thickness sensitivity analysis of dual porosity model
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APPENDIX F
LAPLACE SOLUTION OF

FULLY TRANSIENT LINEAR TRIPLE POROSITY MODEL

Derivations of the fully transient triple porosity model with closed boundary
developed by Al-Ahmadi (2010) are shown in this chapter. The solution is showed in
Laplace domain to solve the second-order differential equation. The solution in time
domain can be obtained by Stehfest algorithm. The derivation starts with constant rate
solution and converts to constant pressure solution by using the technique given by Van

Everdingen and Hurst (1949).

Matrix system

Diffusivity equation:

O0Pm

kin 0%Pm
™ ot

u 0z?

= [¢pV'c,]

azpmz ¢)V’Ct apm
az2 M|k o

Inner boundary condition:

OPm

ozl °

z=0

Outer boundary condition:

pmlzsz/Z =Pr
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Natural fracture system

Diffusivity equation:

k0% d
FO°Pr _ / Pr
7 9x2 [pV Ct]fW_Qfm

___Km_Opm
Afm ple/2 0z

Z=Lf/2

azpf= ¢V,Ct apf+ km  Opm
ox2 M7k | ot kL2 oz

Z=Lf/2
Inner boundary condition:

9py

=0
0x lx=o
Outer boundary condition:
Pflycrp2 = PF
Hydraulic fracture system
Diffusivity equation:
kr 0%pp _ Opr

Loy [¢V’Ct]F¥_ Grf

apy = ——_9Pr
Fr wlp/2 0x

X=LF/2

O*pr _ [9V'ee] Opr ke by
0yz |k | ot Tkelp/2 ox

X=LF/2
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Inner boundary condition:

— kFACW aﬁ
Bu ady

y=0

Outer boundary condition:

Solution

From matrix system,

1
Let zp = —and pp = —— (p; = ) OF p = P; — PpPen,

Lf/
_ kp _ kp
Let toacw = [(@Vicom+(@Vic) f+(dVic) rluAcw b= ovicdruam &
azpo — 3 (d)V,Ct)m apo
075 12Mmley ($V'cdr Otpaew L (F-1)
L2kg
f
_ 12kmAcw _ (PVice)m
Let Aep, = T and w,, = e
azpo — 3 w apo
ale) Afm m atDACW .................... (F' 2)
Take Laplace transform
d*pp, 3
dzZ Am T WPom = pom(@p,0) (F- 3)
From the initial condition of matrix system, pp,,(zp,0) = 0
dzpo — ia) UD—
Azl Ag omiPomo (F- 4)
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This can be shown by the general solution

4 cosh 3w,u + Bsinh 3wnu
Pom = A cos m Zp Sin Arm L (F-5)

or
dPpm 3w,u 3w, u 3w, u 3w, u
=A sinh zp |+ B cosh z
dz,, Afm Arm P Afm Am P | (F-6)
From the inner boundary condition of matrix system, a;% = 0
zZ=
apo =0
0zp =0 e, (F-7)
Take Laplace transform,
om|  _
dzp 1, .o (F- 8)
Therefore, where z, = 0,
Since sinh 0 = 0 and cosh0 = 1, B = 0 from Eq. F-6
From the outer boundary condition of matrix system, pmlzsz/2 =ps
Pomlzp=r=ppr (F-9)
Take Laplace transform,
Pomlop=1=Por (F- 10)

Therefore, where z, =1, A = L) from EqQ. F-5

cosh| [2Lm¥
Afm



Therefore, Eq. F-5 becomes

Ppr 3w, U
Dom = Pps cosh| |[—Z2— Zp
3w, U Afm
cosh /,[m
fm
or
dPpm Pos 3wau 3wnu
= sinh| |—— z,

d B A A
“p /Swmu fm fm y
cosh yl
fm

From natural fracture system,
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. S A - ke ___
Letxp = L2 %0 = 1,22 P = Pi ~ PpPen, and tpacw [oVicelrna b
12k, Ay
0%ppy _ 3 (¢V'ce)r Oppy LJZ‘kF OPpm
oxp 12kfAcw (PV'c)r Otpacw  12kfAcw  dzp zp=1
Ky Zky
_ 12kpmAcw _ 12kfAcw _ ((l)V’Ct)f
Lt Aym = tiep " FT T ke dwr = Gveor
0%ppy _ ia) Oppf +Afm OPpm
axg /1pf fatDACW /1Ff aZD zp=1
Take Laplace transform
dzm 3 Afm O0Dpm
=—wr \UpPpr — xp,0) ) +— ——
dx,% /1Ff i ( Ppr PDf( D )) /1Ff 9z, poet

From the initial condition of natural fracture system, pp¢(xp,0) = 0

d*ppr 3 Afm 0Ppm
[ A R — - + —_
dxg )LFf (Uf u pr )LFf aZD

Zp=1
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Substitute 222m with Eq. F-12,

0z Zp Zp=1
dx3 ~ WPor |3 Apf TN W I | I (F-17)
Define
3 Afm ’Sa)mu 3wmlU
u) = w tanh
ff( ) ,1Ff f /1Ff U /1fm /1fm .................... (F‘ 18)
Therefore,
dzpr —
dx% — uff(u) pr = O .................... (F' 19)

This can be shown by the general solution

Poy = Acosh  Ju f;(w) x, ) + B sinh (/” Fx) (F- 20)
C;T =A /u fr(w) sinh( /u frw) xD>

or

.................... (F- 21)
+B /u frw) cosh( /u frw) xD)
From the inner boundary condition of natural fracture system, axf = 0,
xX=

Oppyr —0

Oxple o (F- 22)
Take Laplace transform,

dm —0

dxp |l _ e, (F- 23)

xp=0
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Therefore, where x, = 0,
Since sinh 0 = 0 and cosh 0 = 1, B = 0 from Eq. F-20.

From the outer boundary condition of natural fracture system, pflx—L 12 = PP
—LF

= Ppr

Porlyyey =Por (F- 24)

Take Laplace transform,

Therefore, where xp, =1, A = 7] — from Eq. F-21.

cosh( /u fr@ )

Therefore, Eq. F-20 becomes,

N
pr - COSh(\W ) cosh (W xD) .................... (F' 26)

or

dPos _ Por . [
dxp  cosh(yu fr(u) ) wfrw) smh( ufy @ xD) .................... (F-27)

From hydraulic fracture system,

=Xy =Y =y — =k
Let xD —_ LF/Z y yD - \/ml p - pl prChl and tDACW —_ [(l)VlCt]Ty.ACW t,

azpDF _ (¢V'c)r Oppr 1 12kacw aPDf
0y (dV'c)rO0tpacw 3 L[Ekp  0xp P (F- 28)
_ 12kfAcw _ (@Vrco)F
Let ey = Lykr dwp = (¢vrcor’
aZPDF OPpr 1 apr
2 = Wy 347G F- 29
oy} tpacw 3 Xplepor ( )
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Take Laplace transform,

d*Ppr Apf apr
ayz ~OrWPor —porOm )t 2 0N (F- 30)
From the initial condition of hydraulic fracture system, ppr(yp,0) = 0
d*Por __ . Aps Opps
L P F (F- 31)
Substitute 2221 with Eq. F-27,
XD xp=1
d*Ppr _ Apg
By = e [or+ 5 Jupeo e (fugeo)] 3
Define
Arp
f@) = wp+37 [ufr(o) tanh (\/“ff(“) ) .................... (F- 33)
Therefore,
d*Ppr _
Gz W@Pr=0 (F- 34)
This can be shown by the general solution
m:ACOSh( uf(u)y”>+BSinh( uf(u)y”) .................... (F- 35)
or
4Por = AJu f(u) sinh( u f(u) yD)
dyp
.................... (F- 36)

+ Bu f(w) cosh( u f(w }’D)



From the inner boundary condition of hydraulic fracture system,

opr qBu

oy

y=0

Let p = p; — PpPch, Yp =

170

T kiAn, i, (F- 37)

ACW
0Ppr _ _i qBu
ayD yD=0 pCh kF\/ACW .................... (F' 38)
] _ 1 gqBu | _2m keAcw o

Define po, = Y- therefore, pp = —Bn (pi —p)

OPpr _

= -2r

yp yo=0 (F- 39)
Take Laplace transform,

0Ppr 21

dyp Yp=0 U e, (F- 40)
Therefore, where y, = 0,

- . — —_ —_ 2n -

Since sinh0 = 0 and cosh0 =1, B = eryon) from Eq. F-36,

CZ;'? = Am sinh( u f(u) yD) — 27” cosh( u f(u) yD)
From the outer boundary condition of hydraulic fracture system, z—? . =0
Define y,p = \/%’

OPpr

=0
dyp Yo=ver
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Take Laplace transform,

dPpr _,
dypl, _,. e (F-43)
“F cosh(Ju 7@ yep)
Therefore, where y, = yp, A = —= from EqQ. F-41.

JuF@ sinh(\uF@ yep)

Therefore, Eq. F-35 becomes,

- 27” cosh(yu f(w) yep)
p frm
PET T f@) sinh(yu f(u) yep)

— 2—T[sinh( u f(u) yD)
uyu f(uw)

cosh( u f(u) yD)

At wellbore, y, = 0,

L _ o cosh(yu f(w) yep)
PPFowell = FUFGD) sinh(Ya fQ@) yop) e (F- 45)

Re-arrange in exponential term, (define p,,p. = m@we”)

. 21
PwpL = RTen) )

To change from constant rate solution to constant pressure solution, Van Everdingen and

1+ e~ VW@ yeD]

1— e_z uf(u) yep

Hurst (1949) introduced the relation between constant pressure solution and constant rate

in Laplace space.

1
PwpL X 4oL = 73 (F- 47)

Consequently, the solution of constant pressure of fully transient triple porosity case

(model 1 in Al Ahmadi, 2010) is shown.
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1 2mu |14 e VW@ yep
ﬁ - Juf |1 —e Ww@yen| e (F- 48)

A
= +32 fufan(fupw) F-49)
3 Arm 1 [Bwpu b 3wnu
O =t s u o P T ] (F-50)
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APPENDIX G

VALIDATION OF THE TRIPLE POROSITY MODEL

To validate the triple porosity model (Al-Ahmadi, 2010), the numerical model
was used to compare the results. Although, Al-Ahmadi already compared the model with
the numerical simulation in different situation and gave a satisfy result, time period that
he compared is starting at the last linear flow (starting at 1E-3 days for oil case and 1 day
for gas case). Therefore, the early time (the first linear flow) will be compared in this
study.

The numerical model was built by the CMG reservoir simulator software. One
section (one-quarter) of hydraulic fractures with natural fractures and matrix blocks was
simulated in this study. Then, the simulated well production rate, which is output
production rate times four times number of hydraulic fractures, was compared to the
triple porosity model result. Also, both gas and liquid cases were run for comparison.
The synthetic data used in this comparison are shown in Table 29.

The model was built in 2-D model (1 cell in z-direction) with 20 grids in x-
direction and 200 grids in y-direction. To represent 10 natural fractures, 200 grids in y-
direction with logarithmic spacing from the middle of natural fracture to half of natural
fracture spacing were built to capture transient period flow from matrix cells to natural
fracture cells (20 grids per one natural fracture). And to represent transient flow from

natural fractures to hydraulic fractures, logarithmic length of 20 grids in x-direction were
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constructed. The first column of grids is represented a half of hydraulic fracture. The top

view of the model is shown in Figure 47.

Table 29 — Synthetic data of triple porosity model for validation

g @ |Porosity Dein 0.2
‘' 2 |Permeability K in 5000|md
S 2 |width We 0.1t
2= Spacing Le 100|ft
S . |Porosity Bt in 0.1
= £ [permeabiity Kein 50|md
o =
S 2 |width Wi 0.01|ft
= Spacing Ly 20|ft
Matrix Porosity _ (O 0.06
Permeability Km 0.00015|md
Thickness h 300|ft
Perforated Length Xe 2000|ft
Fracture Half-Length Ye 200|ft
g # of Macro-fractures Ne 20
g # of Micro-fractures L; 10
Rock Compressibility Ct 1.00E-06(1/psi
Initial Pressure Pi 3000|psi
Bottom-hole Pressure Pwt 500|psi

. L/2 =50 ft
% Hydraulic 20 Gridcells
Fractures , &
Ny

Ye = X; =200 ft
400 Gridcells

Figure 47 — Numerical model of one-fourth of hydraulic fracture

Ly=201t
40 Gridcells

10 Natural Fractures
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The analytical solution of water with the same model as numerical model was
run and compared the results with the reservoir simulation first to eliminate the effect of
non-linearity of gas properties as shown in Figure 48. The comparison shows that the
analytical solution can fit well almost completely with the numerical solution.

Then, the analytical solution of gas with the same model as water case was run
and compared the results with the reservoir simulation. The normalized time to correct
non linearity of gas properties was applied. However, gas adsorption was neglected in
this evaluation to reduce the confusion from gas adsorption calculation in simulator. The
plot comparison is shown in Figure 48. There is a narrow discrepancy between the
analytical solution and the numerical solution plot. It is believed that this small
inconsistent comes from the non-linearity of gas properties and the correlation in gas

properties calculation.
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Figure 48 — Comparison plots of analytical solution and numerical solution with the
synthetic water and gas data.
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Furthermore, more sensitivity cases were run to examine the analytical solution
and showed the satisfied results. For example, the Figure 49 shows the results of
changing the matrix permeability to 0.000015 md of water and gas cases. The Figure 50
shows the results of water and gas cases that the matrix and natural fractures
permeability are changed to 0.000015 md and 1 md, respectively. The Figure 51 shows

the results of changing the natural fractures permeability to 0.5 md for water case.
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Figure 49 — Comparison plots of analytical solution and numerical solution with the
synthetic water and gas data with modification of matrix permeability as 0.000015
md.
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Figure 50 — Comparison plots of analytical solution and numerical solution with the
synthetic water and gas data with modification of matrix permeability as 0.000015
md and natural fracture permeability as 1 md.
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synthetic water and gas data with modification of natural fracture permeability as

0.5 md.
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APPENDIX H
ANALYSIS EQUATIONS DERIVATIONS OF
FULLY TRANSIENT TRIPLE POROSITY MODEL

FOR CONSTANT PRESSURE CASE

This derivation is based on the fully transient triple porosity model (Model 1)
proposed by Al-Ahmadi (2010).

From constant pressure inner boundary and closed outer boundary

i 2mu
Ao Juf(u)

Or this can be written in term of coth(x) function.

14 e 2VW@ yeD]

1 — e=2/4F @@ Yep

1 2mu
—= coth (v/uf () yep)

1/uf(u) .................... (H- 2)

For fully transient slab model (Model 1),

Ap
fw=op+ 3L ufian(fufr@) (H-3)
B 3wf Afm Swmu 3wpu
frw) = Apf 7 Aem e (H- 4)

Case 1

. . A .
With the assumption of wy > 3%’ ufr (W) tanh(y/ufr W) and /uf (W) y.p is large,

« coth(yJuf (W) yep) ~ 1



Therefore,
fw) = wp
Then,
i = Vo
2mu

Inverting Laplace transform,

_ Wwr 1
o 27-[\/% \/ tDAcw

Case 2

With the assumption of

wp K % ufr(u) tanh(./uff(u))
And /ufr(u) is large, - tanh(,/uff(u)) ~ 1

An d3a)f s Am /'lfm 1 ’3wmu tanh ’3wmu
/1pf u

coth(,/uf(u) yeD) ~ 1

And \/uf (u) y,p is large, -
Therefore,
_3er
f f(u) = /1Ff
f@ ==L Jufrw
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@

dpL = W .................... (H- 10)

Then,

Ag}gsw}).ZS 1

9

DL = 753025 1,075 (H-11)

Inverting Laplace transform,

_ RFPwf?°0.816049
QDL = 27-[ 3025 t1/4 .................... (H- 12)
DAcw
1/4 1/4
B /’lFf g 1
L= 0133 A (H- 13)
DAcw

Case 3

With the assumption of
A
P << 3LJ ufr(u) tanh(,/uff(u))
And \/uf;(u) is large, -- tanh(uf; (W) = 1

An d3a)f « Mm /’Lfm 1 ’3wmu tanh ’3wmu
lpf u
And / = is large, - tanh< /?mo_mu>

And w,,~1

And \/uf (u) y.p is large, « coth(y/uf (W) yep) ~ 1
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Therefore,
frw) = Ay u ’Af_m .................... (H- 14)
fw=* e (H- 15)
_ JfW)
dpL = —Zn\/ﬂ .................... (H- 16)
Then,
AO 125 /10 .25 1
doL = o 33/8 w9875 (H-17)

Inverting Laplace transform,

A2m2® A%7° 0917724

o1 = 21 33/8 /8, (H- 18)
DAcw
1/8 ,1/4
B /’lfm /1Ff 1
o1 = 71337 8 (H-19)
DAcw

Case 4

With the assumption of
wp K %w/uff(u) tanh(w/uff(u))
And /ufr(u) is large, - tanh(,/uff(u)) ~ 1

An d3wf « Mm /'lfm 1 ,3wmu tanh ’3wmu
AFf u
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E 3 o : .
And tanh( %) ~ % from approximation of Taylor’s series expansion when
fm fm

3 .
=mZ is very low
Afm

And w,,~1

And \/uf (u) y.p is large, ~ coth(y/uf (W) yep) ~ 1

Therefore,

Aym 1 3u

frw = dor U dm (H- 20)

Aer |
fw) = 3_11 uff(u) .................... (H-21)

VW

dpL = N R (H- 22)
Then,
1/4
_ My 1
oL =5 317253/4 (H- 23)

Inverting Laplace transform,

A 0816049
DL=%p372 4 (H- 24)
DAcw
T
oL = 710133 A (H- 25)

DAcw
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Case 5

With the assumption of

Wp K % ufr(u) tanh(,/uff(u))

And tanh(y/uff(w)) ~ Juf;(w) from approximation of Taylor’s series expansion

when \Jufy(u) is very low

An d3a)f s Mm /'lfm 1 ’meu tanh ’3a)mu
/1Ff u

And \/uf (u) y,p is large, ~ coth(y/uf (W) yep) ~ 1

Therefore,

frw) = T (H- 26)

Arg
fy=—oufe@ (H- 27)
_ Nf@)
LT n s (H- 28)

Then,

TR

dpL = ?\/_ﬂ .................... (H- 29)

Inverting Laplace transform,

_Ner 1
v =5 n Ny — (H- 30)
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Case 6

With the assumption of

Wp K % ufr(u) tanh(,/uff(u))

And tanh(y/uff(w)) ~ Juf;(w) from approximation of Taylor’s series expansion

when \Jufy(u) is very low

An d3a)f « Mm /'lfm 1 ’meu tanh ’3a)mu
/1Ff u
And = is large, - tanh< 3wmu>
,I Afm

And w,,~1

And \/uf () y,p is large, - coth(y/uf (W) yep) = 1

Therefore,

Aps
f) =L uf;(w)

.................... (H- 32)
_ Nf@
dpr = . (H-33)

Then,

25 g
DL = 5 30 25,075 e, (H- 34)

|

)
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Inverting Laplace transform,

%25 0.816049

I =5pz02s a2 (H- 35)
DAcw
1/4
doL = 10 133 t1/4 .................... (H- 36)
DAcw

Case 7

With the assumption of

wp K % ufr(u) tanh(,/uff(u))

And tanh(\/ ufy W) = \/ ufr(u) from approximation of Taylor’s series expansion

when \/ufr(u) is very low

3w A 1 3 3
And f<< S /‘“m”t nh /“’m”
/1pf u
’3 ’3 S , . .
And tanh( %) = ;’mu from approximation of Taylor’s series expansion when
fm fm
3 .
=2mZ s very low
Afm

And w,,~1

And \/uf (u) y.p is large, « coth(y/uf (W) yep) ~ 1

Therefore,

frw = der U dm e (H-37)



_ Ay
£ = S uf

VW)

|

)

DL 27'[\/&
Then,
_ 1
dpL = i

Inverting Laplace transform,

1 1

oL = 27-[\/% \/ tDAcw

which is homogeneous reservoir

Case 8

With the assumption of

wp > %,/uff(u) tanh(,/uff(u))

186

And coth(w/uf (uw) yeD) ~ m from approximation of Taylor’s series expansion

when Juf (u) yep is very low

Therefore,
f(w) = wp
_f@w
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Then,
___ _ Wf
oo =75 Yep e, (H- 44)
Inverting Laplace transform,
j— wF 6
v =75 Yep0® (H- 45)

which is not practical

Case 9

With the assumption of

wp K % ufy(w) tanh(ufr (W)

And W is large, - tanh(\/m) ~ 1

And3“’f>>i’;’:i\/mt h\W

And coth(m yeD) e ( from approximation of Taylor’s series expansion

when Juf (u) y.p is very low

Therefore,
fr(w) = e (H- 46)
A
f@=3%Juf@ (H- 47)
_ f@
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Then,
. 237 @l 1
DL=Qp30s YePm (H- 49)

Inverting Laplace transform,

22 12

T e S
DL = o VT 31/2 eDm .................... (H-50)

Case 10

With the assumption of
P
P& 3LJ ufr(u) tanh(/ufy (W)
And \/uf;(u) is large, -- tanh({uf; (W) = 1

An d3a)f « Mm /’Lfm 1 ’3wmu tanh ’3wmu
lpf u
Andr is large, .- tanh <Jm>

And w,,~1

And coth(y/uf (W) yep) =

= ( from approximation of Taylor’s series expansion
ujyu) Yep

when /uf (u) y.p is very low

Therefore,
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fw=* e (H- 52)

_ fw

oL =5 "Yep (H- 53)
Then,

- AR AR 1

dpL = 2 3075 YeD w075 (H-54)

Inverting Laplace transform,

AR A2 0.816049

QDL = 271- 3075 yeD t1/4 .................... (H' 55)
DAcw
1/2 ,1/4
A A, 1
W= 7551 TP TT e (H-56)
DAcw
Case 11

With the assumption of
A
P << 3LJ ufr(u) tanh(,/uff(u))
And \/uf;(u) is large, -- tanh({uf; (W) = 1

And 3a>f « Mm Afm 1 ’3wmu tanh ’3wmu
Apf u

,3 3 N . .
And tanh( ;mu> ~ ;’mu from approximation of Taylor’s series expansion when
fm fm

3wmU -
—— is very low
,/ Afm

And w,,~1
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And coth(y/uf (W) yep) = m from approximation of Taylor’s series expansion

when Juf (u) y.p is very low

Therefore,
frw) = % % ,13; .................... (H-57)
fw=22 by (- 59
dpL = %%D .................... (H- 59)
Then,
dpL = 22?05 Yep ui-5 .................... (H- 60)

Inverting Laplace transform,

2172

1

Ff

dpL = YeD -
27w 31/2 7€ Jooaw e (H-61)

Case 12

With the assumption of

wp K % ufr(u) tanh(,/uff(u))

And tanh(\/uf;(w)) ~ Jufy(u) from approximation of Taylor’s series expansion

when /ufr(u) is very low
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And 3wf > /lfm 1 3wmu tanh 3wmu
}l.pf u lfm

And coth(y/uf (W) yep) =

= ( from approximation of Taylor’s series expansion
u

when Juf (uw) yep is very low

Therefore,

frw =7 e (H- 62)

_ Aer (w)
fy=—Z-ufe@ (H- 63)
_ f
pL="5"Yep (H- 64)

Then,

Wy

AoL =5 -Yep i, (H- 65)
Inverting Laplace transform,

_Yr 5
oL =5 _Yer0(® (H- 66)

which is not practical
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Case 13

With the assumption of

Wp K % ufr(u) tanh(,/uff(u))

And tanh(y/uff(w)) ~ Juf;(w) from approximation of Taylor’s series expansion

when \Jufy(u) is very low

An d3a)f « Mm /'lfm 1 ’meu tanh ’3a)mu
/1Ff u
And = is large, - tanh< 3wmu>
,I Afm

And w,,~1

And coth(w/uf (uw) yeD) ~ m from approximation of Taylor’s series expansion

when Juf (u) y.p is very low

Therefore,

Then,
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21/2
—_— fm 1
qDL - 27_[ 31/2 yeD \/a .................... (H- 70)

Inverting Laplace transform,

A2
q i y -
DL = D -
2/ 31/2 7€ [toaew e (H-71)

Case 14

With the assumption of

wp K % ufr(u) tanh(/ufy (W)

And tanh(\/ ufy W) = \/ ufr(u) from approximation of Taylor’s series expansion

when \/ufr(u) is very low

And 3a)f « Mm /'lfm 1 meu tanh 3wmu
A”~u
3wnu 3wmu . . . . .
And tanh( //,L—> ~ / ) from approximation of Taylor’s series expansion when
fm fm

=2mZ s very low
Afm

And w,,~1

And coth(y/uf (W) yep) =

= ( from approximation of Taylor’s series expansion
uf(u) yep

when Juf (u) y.p is very low
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Therefore,
Aem 1 3u
_m - 27
frw =7 U (H-72)
Arf
f=—rufp@ (H- 73)
_ fWw
pL= "~ Yep (H-74)
Then,
1
oL =5 Yep e, (H- 75)
Inverting Laplace transform,
1
oL =5-Yer0(O) (H- 76)

which is not practical

In summary, the assumptions and results of 14 cases are shown in Table 30.
Only 11 cases can be identified as the asymptotic equation. From total 11 regions, it is
composed of 6 linear flow regions, 4 bilinear flow regions, and 1 trilinear flow region.
The region name is defined as Table 31. The capital letter “L” is represented “Linear”,

“B” is represented “Bilinear”, and “T” is represented “Trilinear”.
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Table 30 — Assumptions of deriving asymptotic equations of triple porosity model

for constant pressure case

Estimated Terms
qpL f@) fr@w) . .
Case 3w, I Asymptotic Equations
coth( uf (u) yeD) Wr tanh( /uff(u)) E tanh p.
1 1 _yor 1
(O] dpL 2V ,—tDAcw
| s | Ao
Ars oL =710 133 1/
DAcw
1/8 ,1/4
3 1 - 1 - 1 q = ML
PL™"10.337 1/8
DAcw
4 1 1 i 3w, u _ 111:?4 1
Afm k= 10133 (17F
- ufr(u - - =—
N Apf L= v Vtoacw
U4 1
- - = —fm —
6 ! Jr®) ! 0L = 10133 (/4
DAcw
7 1 [ £ () 3w,,u QoL = 1 1
- u u - DL — o — —
f Afm ZT[\/EdtDACW
8 ! N/A
- w i
uf(u) YeD F
. 1 : 30y A !l !
uf (@) yeo Ary L = iz 312 7P —
0 | —— 1 . 1 _ 25 A 1
W@ Yoo or T 7 Es1 Y
__r 3w A 1
11 - 1 B 1 dpL = 172 YeD
uf(u) YeD fm 27{\/% 3 / A/ tDACW
12 . ) S N/A
T - ufr(u - -
W) Yoo N o
1 212 1
13 - ufr(u) - 1 = fm
W) Yoo Jr WL = w312 Y
1 3w, u
14 — - ufr(u - Ui N/A
WD) Yoo Jr@ pr




Table 31 — Region name definition with asymptotic e

Region Case Asymptotic Equations
ND) 1
L1 1 L =———
2”‘/5 vV tDAcw
1/4  1/4
B1 2 o =1
10.133 /4
DAcw
1/8 ,1/4
T1 3 apL = Apm Aep 1
PL™"10.337 (1/8
DAcw
JL/4 1
B2 4 L) S
0L =70.133 (/4
DAcw
Vo) 1
L2 5 qdpL = 4 B—————
21‘[\/; RV, tDAcw
2L/4 1
B3 6 —_gm -
L = 70133 (1/4
DAcw
1 1
L3 7 qdpL = Zﬂﬁm
8 N/A
1/2  1/2
La 9 o = AFf an y 1
bt ZH\/E 31/2 <P vV tDAcw
1/2 ,1/4
A A 1
_Ff Tfm
B4 10 4oL = 775y Yep tzl),/44
cwW
/11/2 1
L5 11 -
qpL 271_\/; 31/2 yeDm
12 N/A
/11/2 1
L6 13 = _Jm
qpL 27_[\/; 31/2 yeDm
14 N/A

uations
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Conditions and periods of triple porosity characteristic

The conditions of the triple porosity model characteristic are derived as follow.
From the last linear line, possible region is composed of 3 regions — region L3, L5, and
L6. The conditions of presenting each region are given by
o When Ags > A,
o Ifyep < /3/Asm, region L6 is found.
o Ifyep > /3/Asm, region L3 is found.
e When Aps < Appy
o Ify.p </3/Ars, region L5 is found.

o Ifyep >./3/Agg, region L3 is found.

The first criteria can be derived from equating asymptotic equation of region L5 and L6,

A T
27_[\/%31/2 yeDm_ZT[\/E31/2 yeDm .................... (H'??)
Arp =Am (H- 78)

The sub-criteria of the first condition can be derived from equating asymptotic equation

of region L3 and L6,

21/2

11 o 1
2T Jtppen | 2mNT 3117 Yep v — (H-79)

3
s = /Af_m .................... (H- 80)
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The sub-criteria of the second condition can be derived from equating asymptotic
equation of region L3 and L5,

212

1 1 Ff 1
2m\m [tpacw B 2m+\/m 31/2 Yep [toacw e (H- 81)

3
Yeo = 0 (H-82)

For the bilinear line, possible bilinear region is composed of 3 regions — region
B2, B3, and B4. The conditions of presenting each region are given by
e Among region B3, B4, and BDF can be appeared before region L6.
o Two set of conditions are used to identify the possible region prior to
region L6.

o The first set is either region B4 or BDF is presented prior to region L6.
The selective condition is /lflfﬂ = 1 by equating asymptotic equation of
fm

region L4 and L6,

1/2  1/2 1/2
Ary @ y 1 Am y 1
2\ 31/2 7P [toacw 27N 31/2 eb m .................... (H- 83)

Arr0r _
Aem (H- 84)
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o The second set is either region B3 or BDF is presented prior to region L6.
The selective condition is y.p = /jﬂ by equating asymptotic equation
fm

of region L2 and L6,

27_[ '_T[ r_tDACW 27.[ ,T[ 31/2 eD tDACW .................... (H' 85)
3wy
e v (H- 86)

e Among region B2, B4, and BDF can be appeared before region L5.
o Two set of conditions are used to identify the possible region prior to
region L5.

o The first set is either region B2 or B4 is presented prior to region L5. The

selective condition is y,p, = /11“—\/?1/4 by equating asymptotic equation of
Ff “fm
region B2 and B4,
1/4 1/2 ,1/4
Af 1 A A 1
10.133 /4 17.551 Y€ (A (H- 87)
DAcw DAcw
V3
Yep = 12 1/a -
AEAL (H- 88)

o The second set is either region B2 or BDF is presented prior to region L5.
The selective condition is y.p = /i‘"—F by equating asymptotic equation
Ff

of region L1 and L5,
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Vor 1 A 1
2m\m [tpacw 2m+\/m 31/2 Yep [toacw e (H- 89)

_ |3wr
e (H- 90)

Either region B2 or B3 can be appeared before region L3.
o The selective condition is Agf = A¢p, and can be derived by equating

asymptotic equation of region B2 and B3,

AR T PO
10.133 /4 10133 ¢4 (H-91)
DAcw DAcw
Aep=Amo (H- 92)

From the assumptions of the asymptotic equation and check with the sensitivity

run case, end time of region L3, L5, and L6 can be derived in Laplace space and convert

to time domain as following.

End Region L3

Referring to the assumption of coth(,/uf(u) yeD) ~ 1, Juf(u) y.p has to be closed to

infinity number to get the most accurate value of coth function. From trial and error,

uf (u) y.p > 2 fits with the estimation.

From yuf () yep > 2, f(w) = ZLuf, (u) and f; (u) =

/'lfm 1 3u
ﬂ.pf u lfm,
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AFf Afm 1 3u
M Z 2y > 2
\/u 3u u /1Ff u Afm YeD =4, (H- 93)
22
u>—
Y2, (H-94)

Inverting Laplace transform,

Yép
e
tpacw < 2_2 .................... (H- 95)

2
Therefore, the end of region L3 is at tpacy ena 13 = yZLZD

End Region L5

Referring to the assumption of tanh(,/uff(u)) ~ 1, JJuff(u) has to be closed to

infinity number to get the most accurate value of tanh function. From trial and error,

Jufr(w) > 2 fits with the estimation.

From \Juf,(u) > 2 and f,(u) = 2Lm 2 3

lpf u Afm’

Afm 1 3u

———>2
T (H- 96)
22
u>=Aee (H- 97)
Inverting Laplace transform,
31
aw <2270 (H- 98)

3 1

Therefore, the end of region L5 is at tpacy eng 15 = PYEIR
Ff
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End Region L6

Referring to the assumption of tanh< 3;""1“) ~ 1, 3:”"” has to be closed to infinity
fm fm

number to get the most accurate value of tanh function. From trial and error, 3/‘1"—’"” > 2
fm

fits with the estimation.

3wmu

fm

From

> 2 and w,,~1,

1 122

- >ﬁ?Afm .................... (H-99)

Inverting Laplace transform,

,o.31
PAW =22 Aem s (H- 100)

3 1

Therefore, the end of region L6 iS tpcw end 1. = I
fm



203

APPENDIX |
ANALYSIS OF LINEAR TRANSIENT DUAL POROSITY CYLINDER MODEL

FOR CONSTANT PRESSURE CASE

From constant pressure inner boundary and closed outer boundary of linear

transient dual porosity model given by EI-Banbi (1998)

i= 2mu coth( uf(w)y )
o Juf(w) ), (I- 1)

For transient slab model,

[ ( 8(1 — a)F)u>
_ Apm [B(1— wp)u Arm
f(w) = wp + 4w A I < 8(1 — wp)u> .................... (1-2)
0 AFm
Casel

With the assumption of

8(1-wp)u
Iy —AF
lpm 8(1—a)p)u m

(UF >> I
du AFm . ( 8(1—wp)u)
ol [BELRM

AFm

Juf (W) yep is large, - coth(yuf(w) yep) = 1

Therefore,

fw) = wp

Then,
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__ Wwr 1
QDL—?\/_E .................... (1-3)

Inverting Laplace transform, the asymptotic equation of region 1 is

_ VJwr 1
oL i Jfoe (I- 4)

Case 2

With the assumption of

I 8(1-wp)u
! AFm
Arm |8(1—wp)u

wp K —
du AFm . ( 8(1—wF)u>
ol = —

8(1-wp)u

And is large, .. ———¢
AFm . ( 8(1—wF)u>
of [z @r)u

And \Juf(u) yp is large, - coth(y/uf (w) yep) = 1

Therefore,

AFm
fa = [
Then,

g
QDLsz .................... (1-5)



Inverting Laplace transform, the asymptotic equation of region 2 is

A1
oL =9 156 L1/
DAcw

Case 3

With the assumption of

I;(x)
Io(x)

Juf ) yep is large, - coth(,/uf(u) yeD) ~ 1

8(1—wp)u)

~ x/2 when x is very low (x =
AFm

Therefore,

_ )lz:_m 8(1-wr)u 8(1—0)1:‘)111
f(u)—a)F+4u\/ AFm \/ Arm 2
fw) =1
Then,

. 11
dpL = N

Inverting Laplace transform, the asymptotic equation of region 3 is

1 1

oL = 2nVT \[tpacw

205
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Case 4

With the assumption of

I 8(1-wp)u
lpm 8(1—a)p)u AFm

LK —
wr AFm ( 8(1-wg)u )
lo AFm
I 8(1-wp)u
8(1— ) 1 AFm
And 22 is large, - ~ 1

AFm . ( 8(1—wp)u>
lo AFm

And (1 — wp)~1

And coth(,/uf(u yeD)

= ( from approximation of Taylor’s series expansion
uf(u) yep

when Juf (u) y.p is very low

Therefore,
fa) = i
Then,
S yeD Arm 1
=77 %" (1-9)

Inverting Laplace transform, the asymptotic equation of region 4 is

_ yeD AFm

oL = 5= | =5 77— e, (1- 10)
v tpacw
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In summary, assumptions and results of 4 cases are shown in Table 32. The dimensional
estimated asymptotic equations of gas and oil are shown in Table 33 and Table 34,

respectively.

Table 32 — Assumptions of 6 cases and the final asymptotic equations of the
transient linear dual porosity model (constant pressure)

Estimated Terms
Case / e fw
Asymptotic Equations
Region 11< 8(1/1_7“*)”)
Fm
coth (Vuf (w) ep) | @r ( - wF)u)
IO AFm
1 . oY 1
w - oL = - ——=
F 27-[\/; Y tDAcw
G
2 1 - 1 DL =5 156 174
DAcw
1 1
8(1 —wp)u —
3 1 - il dpL =
/1Fm /2 oL 27-[\/% vV tDAcw
4 ; - 1 dpy = Yep |Arm 1
uf (W) Yep PET2nviy 2 Jtoew
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Table 33 — Asymptotic equations of cylinder case of dual porosity model for gas

analysis in dimensional (constant pressure)

Region Asymptotic Equation for Gas Analysis
1 - 1% Linear Am(p) 1
= Aok Vic)r—
qg 1260T cw F H(d) t)F \/E
2 — 1% Bilinear Am(p) 1/2)1/4 1
3 — Infinite-acting Am(p) % /—
4 — 2" Linear Am(p) Ve ; 1
qg = WACWV km T Vr@V'c)pim NG
5 — Exponential decline
Table 34 — Asymptotic equations of cylinder case of dual porosity model for oil
analysis in dimensional (constant pressure)
Region Asymptotic Equation for Oil Analysis
1— 1% Linear Ap 1
=— A,k Vice)r—
4o 125-13\/ﬁ cw F ((p Ct)F \/E
2 — 1% Bilinear Ap 1 1/2,1/4 1
o = mm cwkp' "k [(¢V cdreml 77
3 — Infinite-acting \/— @V'e)
qo = 125. 1B\/_ cw t F+m
4 — 2" Linear Ap ye ———
L V’
4o = 31. 28B\/_ cw\/ (¢ Ct)F+m \/E
5 — Exponential decline
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