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ABSTRACT

Motion Planning for Unmanned

Aerial Vehicles with Resource Constraints. (August 2012)

Kaarthik Sundar, B.E.,

College of Engineering Guindy, Anna University

Co–Chairs of Advisory Committee: Shankar P. Bhattacharyya
Sivakumar Rathinam

Small Unmanned Aerial Vehicles (UAVs) are currently used in several surveil-

lance applications to monitor a set of targets and collect relevant data. One of the

main constraints that characterize a small UAV is the maximum amount of fuel the

vehicle can carry. In the thesis, we consider a single UAV routing problem where there

are multiple depots and the vehicle is allowed to refuel at any depot. The objective

of the problem is to find a path for the UAV such that each target is visited at least

once by the vehicle, the fuel constraint is never violated along the path for the UAV,

and the total length of the path is a minimum. Mixed integer, linear programming

formulations are proposed to solve the problem optimally. As solving these formula-

tions to optimality may take a large amount of time, fast and efficient construction

and improvement heuristics are developed to find good sub-optimal solutions to the

problem. Simulation results are also presented to corroborate the performance of

all the algorithms. In addition to the above contributions, this thesis develops an

approximation algorithm for a multiple UAV routing problem with fuel constraints.

Dr
Dr
.
.
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CHAPTER I

INTRODUCTION

Motion planning for small Unmanned Aerial Vehicles is one of the research areas

that has received a lot of attention from the scientific community in the last decade.

Small Unmanned Aerial Vehicles (UAVs) have already been field tested in civilian

applications such as wild-fire management [1], weather and hurricane monitoring [2,

3, 4], and pollutant estimation [5] where the vehicles are used to collect relevant

sensor information and transmit the information to the ground (control) stations for

further processing. As compared to larger UAV platforms, small UAVs are relatively

easier to operate and are significantly cheaper. Small UAVs can fly at low altitudes

and can avoid obstacles or threats at low altitudes more easily. Even in military

applications, smaller vehicles [6] are used frequently for intelligence gathering and

damage assessment as they are easier to fly and can be hand launched by an individual

without any reliance on a runway or a specific type of terrain.

Even though there are several advantages with using smaller platforms, they also

come with other resource constraints due to their size and smaller payload. As small

UAVs typically have fuel constraints, it may not be possible for an UAV to complete

a surveillance mission before refueling at one of the depots. For example, consider a

typical surveillance mission where a vehicle starts at a depot and is required to visit

a set of targets. To complete this mission, the vehicle may have to start at the depot,

visit a subset of targets and then reach one of the depots for refueling before starting

a new path. One can reasonably assume that once the UAV reaches a depot, it will

be refueled to full capacity before it leaves again for visiting any remaining targets.

The journal model is IEEE Transactions on Automatic Control.
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If the goal is to visit each of the given targets at least once, then the UAV may

have to repeatedly visit some depots in order to refuel again before visiting all the

targets. In this scenario, the following fuel-constrained, UAV routing problem

naturally arises: Given a set of targets, depots, and an UAV where the vehicle is

initially stationed at one of the depots, find a path for the UAV such that each target

is visited at least once by the vehicle, the fuel constraint is never violated along the

path for the UAV, and the total cost of the edges present in the UAV path is a

minimum. Please refer to Fig.1 for an illustration of this problem.

Initial depot

Target

Depot

Fig. 1. A feasible plan for the UAV

This problem is quite different and more general compared to the regular fuel

constrained TSP addressed in the literature [7] where one is interested in maximizing

the number of targets visited by a vehicle subject to its fuel constraints. Apart from

the approximation algorithm in [8], we are not aware of any existing formulations

or heuristics or any computational results that are available for solving the fuel-

constrained, UAV routing problem.

In this article, we will first assume that it is always cheaper to travel directly
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from location A to location B than through any other intermediate location. If this

assumption is satisfied for the UAV, the distances (or the fuel costs) are said to satisfy

the triangle inequality. If this assumption is not satisfied, it is already known that

there cannot exist any constant factor approximation algorithm even for a TSP unless

P = NP . In addition to the above standard assumption, the authors in [8] assume

that each target has at least one depot at a distance at most equal to La/2 units

where a is a constant in the interval [0, 1) and L is the maximum distance the vehicle

can travel before it runs out of fuel. This is a reasonable assumption, as in any case,

one cannot have a feasible tour if there is a target that cannot be visited from any of

the depots. Using these assumptions, Khuller et al. [8] provide a 3(1 + a)/2(1 − a)-

approximation algorithm for the problem. The fuel constrained UAV routing problem

addressed in this article is more general than the tour problem considered in [8] in

the following way: we allow for the fuel required to travel from location A to location

B to be different compared to the fuel required to travel from location B to A. The

fuel costs are allowed to be asymmetric because the travel path for the UAV from

location A to B may be quite different from the travel path from location B to A.

The following are the contributions of this thesis:

1. We develop two mixed-integer linear programs for the fuel constrained, UAV

routing problem based on the single and multi-commodity flow formulations

available for standard network synthesis problems in the literature. These for-

mulations are mainly used to find the optimal solutions for the routing problem,

and for corroborating the quality of the solutions produced by the heuristics.

2. Fast construction and improvement heuristics are developed to find feasible

solutions to the fuel constrained, UAV routing problem. Even though the mixed

integer, linear programming formulations can be used to find optimal solutions,
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it may be time consuming to solve them. In addition, practical scenarios may

only provide approximate input data about the locations of the targets, and as

a result, it may be useful to find good, approximate solutions than find optimal

solutions that are more difficult to solve. For this reason, we focus on developing

several heuristics for the fuel constrained, UAV routing problem.

3. Computational results are presented to compare the performance of all the al-

gorithms with respect to the quality of the solutions produced by the algorithms

and their respective computation times. These computational results are pre-

sented for two scenarios: one where the vehicle does not have any kinematic

constraints and on the other scenario where there is a bound on the maximum

yaw rate of the vehicle.

4. We also consider a generalization of the fuel constrained UAV routing problem

with multiple vehicles and present an algorithm with an approximation ratio of

2(1+a)
(1−a) .

A. Organization of the thesis

The second chapter of the thesis defines the single vehicle problem with refueling

constraints. After formally defining the problem, it discusses two mixed integer linear

programming formulations to solve the problem to optimality. This is followed by

heuristics to find sub-optimal solutions to the problem. The third chapter presents the

computational results to corroborate the performance of all the algorithms. The final

chapter develops an approximation algorithm for the multiple vehicle UAV routing

problem with fuel constraints.
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CHAPTER II

SINGLE VEHICLE WITH REFUELING CONSTRAINTS

A. Problem statement

Let T denote the set of targets and D represent the set of depots. Let s ∈ D be the

depot where the UAV is initially located. The Fuel Constrained Routing Problem

(FCRP) is formulated on the complete directed graph G = (V,E) with V = T
⋃
D.

The cost of traveling from vertex i ∈ V to vertex j ∈ V is denoted by cij. Let fij

represent the amount of fuel required by the vehicle to travel from vertex i ∈ V to

vertex j ∈ V . It is assumed that both the fuel spent and the travel costs satisfy the

triangle inequality i.e., for all distinct i, j, k ∈ V , cij + cjk ≥ cik and fij + fjk ≥ fik.

Let L denote the maximum fuel capacity of the vehicle. We will assume that

there is at least one depot d such that fid + fdi ≤ L for any target i ∈ T . We will

also assume that it is always possible to travel from one depot to any another depot

(either directly or by passing through some intermediate depots) without violating

the fuel constraints. The objective of the problem is to find a tour such that

• the tour starts and terminates at the initial depot,

• each target is visited at least once by the UAV,

• the fuel required to travel any segment of the tour which joins two consecutive

depots in the tour must be at most equal to L, and,

• the sum of the cost of all the edges present in the tour is a minimum.
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B. Problem formulation

In this section, we provide two problem formulations for the FCRP based on the single

and multi commodity flow formulations [9] available for network synthesis problems.

We first formulate the problem using the multi-commodity flow constraints. In this

formulation, we pose the FCRP as a problem of synthesizing a network of edges such

that a unit of commodity can be shipped from the depot to each of the targets using

the vehicle. Essentially, the depot is the source of all the commodities and each

target receives a distinct commodity from the depot. A commodity destined for a

particular target may not accumulate at any of the intermediate locations. Let xij

denote the binary decision variable which determines the presence of the edge (i, j) in

the network; that is, xij is equal to one if the edge (i, j) is present in the network and

is equal to zero otherwise. The vehicle must use the edges in the network to ship the

commodities form the depot to the respective targets. For any target k ∈ T , let pkij

denote the kth commodity flowing from vertex i to vertex j. Also, let ri represent the

fuel left in the vehicle when the ith target is visited. Now, FCRP can be formulated

as a mixed integer linear program as follows:

min
∑

(i,j)∈E

cij xij,

subject to

Degree constraints:

∑
i∈V \{k}

xik =
∑

i∈V \{k}

xki ∀k ∈ V, (2.1)

∑
i∈V \{k}

xik = 1 ∀k ∈ T, (2.2)
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Capacity and flow constraints (Multiple-commodity):

∑
j∈V \{s}

(pkij − pkji) = 1 ∀k ∈ T and i = s, (2.3)

∑
j∈V \{i}

(pkij − pkji) = 0 ∀i, k ∈ T and i 6= k, (2.4)

∑
j∈V \{j}

(pkkj − pkjk) = −1 ∀k ∈ T, (2.5)

0 ≤ pkij ≤ xij ∀i, j ∈ V, ∀k ∈ T, (2.6)

Fuel constraints:

rj − ri + fij ≤M(1− xij) ∀i, j ∈ T, (2.7)

rj − ri + fij ≥ −M(1− xij) ∀i, j ∈ T, (2.8)

rj − L+ fij ≥ −M(1− xij) ∀i ∈ D and j ∈ T, (2.9)

rj − L+ fij ≤M(1− xij) ∀i ∈ D and j ∈ T, (2.10)

ri − fij ≥ −M(1− xij) ∀i ∈ T and j ∈ D, (2.11)∑
i∈V

∑
j∈V

fij xij ≤ L
∑
k∈D

∑
i∈V

xki, (2.12)

0 ≤ ri ≤ L ∀i ∈ T,

xij ∈ {0, 1} ∀(i, j) ∈ E, (2.13)

pkij ∈ R+ ∀i, j ∈ V and k ∈ T.

Equation (2.1) states that the in degree of a vertex is equal to the out degree of

a vertex, and equation (2.2) ensures that each target is visited once by the vehicle.

Note that these equations imply that a depot can be visited any number of times

for refueling. Equations (2.3), (2.4), and (2.5) formulate the requirement that each
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target must receive one unit of commodity and a commodity destined to a target

cannot accumulate at any intermediate locations. Constraint (2.6) states that any

commodity can only flow through edges that are present in the network. These flow

constraints ensure that there exists a path from the source depot s to each of the

targets.

If the UAV is traveling from target i to target j, equations (2.7) and (2.8) en-

sures that the fuel left in the vehicle after reaching target j is rj = di − fij. In

equations, (2.7)-(2.12), M denotes a large constant and can be chosen to be equal to

L+maxi,j∈V fi,j. If the UAV is traveling from a depot i to a target j, equations (2.9),

(2.10) ensures that the fuel left in the vehicle after reaching target j is rj = L− fij.

If the UAV is directly traveling from any target to a depot, constraint (2.11) states

that the fuel remaining at the target must be at least equal to the amount required

to reach the depot. Equation (2.12) states that the total fuel consumed by the UAV

must be at most equal to L times the total number of visits to all the depots.

In the above formulation, the capacity and the flow constraints mainly ensure

that each target is connected to the depot. There are also other ways of expressing

this connectedness. Specifically, instead of shipping a distinct unit of commodity to

each target, one can also ship |T | units of the same commodity from the source depot

to all the targets. In this method, the vehicle will deliver one unit of commodity at

each target as it travels along its path. Suppose pij denotes the amount of commodity

flowing from vertex i to vertex j. Then the multi-commodity flow constraints in (2.3-

2.6) can be replaced with the following single-commodity flow constraints as follows:
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Capacity and flow constraints (Single-commodity):

∑
i∈V \{s}

(psi − pis) = |T |, (2.14)

∑
j∈V \{i}

(pji − pij) = 1 ∀i ∈ T, (2.15)

∑
j∈V \{i}

(pji − pij) = 0 ∀i ∈ D \ {s}, (2.16)

0 ≤ pij ≤ |T |xij ∀i, j ∈ V. (2.17)

The constraints in (2.14)-(2.17) ensure that there are |T | units of commodity shipped

from the depot and the vehicle delivers exactly one of commodity at each target.

In summary, the single-commodity flow formulation of the FCRP aims to minimize∑
(i,j)∈E cij xij subject to the degree constraints in (2.1)-(2.2), flow constraints in

(2.14)-(2.17), fuel constraints in (2.7)-(2.12) and the constraints in (2.13). An advan-

tage of the single-commodity formulation is that it has a fewer number of flow vari-

ables. However, it is also known that the multi-commodity flow formulation provides

better lower bounds [9] as compared with the single-commodity flow formulation. The

effectiveness of these formulations will also depend on the specific application and the

size of the problem. Later, in the next chapter, we will present some numerical results

to compare the performance of both these formulations.

C. Heuristics for the FCRP

In the following sections, we first provide a tour construction heuristic which finds

an initial feasible solution to the problem. This heuristic is a generalization of the

approximation algorithm presented by Khuller et al. [8] for the symmetric version

of the problem. Then, we provide improvement heuristics based on the well known

k−opt methods available for sequencing problems.
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D. Construction heuristic

The first step of the construction heuristic aims to find a path for the vehicle to

travel from any target x ∈ T to any other target y ∈ T such that the path can be

a part of a feasible tour for the FCRP, the path satisfies all the refueling constraints

and the sum of the cost of traveling all the edges in the path is a minimum. Note

that the maximum amount of fuel available for the vehicle when it reaches target x

in any tour is L−mind fdx. Also, in any feasible tour, there must be at least mind fyd

units of fuel left when the vehicle reaches target y so that the vehicle can continue

to visit other vertices along its tour. For any target x ∈ T , let Cx := mind fdx and

Dx := mind fxd. The first step of the construction heuristic essentially finds a feasible

path of least cost (also referred as the shortest path) such that the vehicle starts at

target x with at most L−Cx units of fuel and ends at target y with at least Dy units

of fuel. If there is enough fuel available for the vehicle to travel from x to y (or, if

L−Cx −Dy ≥ fxy), the vehicle can directly reach y from x while respecting the fuel

constraints. In this case, we say that the vehicle can directly travel from x to y and

the shortest path is denoted by PATHxy := (x, y). The cost of traveling this shortest

path is just cxy.

If the vehicle cannot directly travel from x to y (if L − Cx − Dy < fxy), the

vehicle must visit some of the depots on the way before reaching target y. In this

case, we find a shortest path using an auxiliary directed graph, (V ′, E ′), defined on

all the depots and the targets x, y, i.e., V ′ = {T ⋃{x, y}} (illustrated in Figure 2).

An edge is present in this directed graph only if traveling the edge can satisfy the

fuel requirements of the vehicle. For example, as the vehicle has at most L−Cx units

of fuel to start with, the vehicle can reach a depot d from x only if fxd ≤ L − Cx.

Therefore, E ′ contains an edge (x, d) if the constraint fxd ≤ L − Cx is satisfied.
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Similarly, the vehicle can travel from a depot d to target y only if there are at least

Dy units of fuel remaining after the vehicle reaches y. Therefore, E ′ contains an edge

(d, y) if the constraint fdy ≤ L − Dy is satisfied. In summary, the following are all

the edges that are present in E ′:

E ′ :=


{(x, d) : ∀d ∈ D, fxd ≤ L− Cx},⋃{(d1, d2) : ∀d1, d2 ∈ D, fd1d2 ≤ L},⋃{(d, y) : ∀d ∈ D, fdy ≤ L−Dy}.

(2.18)

x
y

L− Cx

Depot

Target

The shortest path from x to y

L−Dy

Fig. 2. The first step of the construction heuristic: Computation of lxy for an indirect

edge from target x to target y.

In Fig.2 the solid edges represent the shortest path from target x to target y.

Any path starting at x and ending at y in this auxiliary graph will require the

vehicle to carry at most L − Cx units of vehicle at target x, satisfy all the fuel

constraints and reach target y with at least Dy units of fuel left. Also, we let the cost
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of traveling any edge (i, j) ∈ E ′ to be equal to cij (as defined in section A). Now, we

use Dijkstra’s algorithm to find a shortest path to travel from x to y. This shortest

path can be represented as PATHxy := (x, d1, d2, · · · , y).

In the second step (illustrated in Figure 3) of the construction heuristic, we use

the shortest path computed between any two targets to find a tour for the vehicle.

To do this, let lxy denote the length of the shortest path PATHxy that starts at x

and ends at y. Using lxy as the new cost metric, the Lin-Kernighan-Helsgaun (LKH)

heuristic [10] is applied to the graph (T,ET ) with ET := {(x, y) : x, y ∈ T} to obtain

a tour which visits each of the targets exactly once. If there is any edge (x, y) in this

tour such that the vehicle cannot directly travel from x to y, (x, y) is replaced with

all the edges present in the shortest path, PATHxy, from x to y. After replacing all

the relevant edges with the edges from the shortest paths, one obtains a Hamiltonian

tour which visits each of the targets exactly once and some of the intermediate depots

for refueling. This tour may still be infeasible because there may be a sequence of

vertices that starts at a depot and ends at a depot which may not satisfy the fuel

constraints for the vehicle. To correct this, we further augment this tour with more

visits to the depots as explained in the next step of the heuristic.
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Depot

Target
Indirect edges

Direct edges

(a) A sample tour after performing LKH with
the new cost matrix

Depot

Target

Indirect edges

Direct edges

(b) The tour with the indirect edges replaced with
the corresponding shortest paths

Fig. 3. The second step of the construction heuristic
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Depot

TargetA strand of the tour

Fig. 4. A strand in a tour

In the last step of the construction heuristic (illustrated in Figure 4), the entire

tour obtained from the second step is decomposed into a series of strands. A strand

is a sequence of consecutive vertices in the tour that starts at a depot, visits a set of

targets and ends at a depot. The tour must be infeasible if the total fuel required to

travel any one of these strands is greater than the fuel capacity of the vehicle (L).

Hence, in this step, all the infeasible strands are identified, and a greedy algorithm is

applied to each infeasible strand to transform it to a feasible strand (refer to Fig.5).

We present some definitions before we outline the greedy algorithm. A depot, mx, is

referred as a nearest starting depot for x if fmxx = mind fdx. Similarly, a depot nx is

referred as a nearest terminal depot for x if fxnx = mind fxd. As in the second step of

the construction heuristic, given any two depots d1, d2 ∈ D, one can find a path of

least cost that starts from d1 and ends at d2 while satisfying all the fuel constraints 1.

1Apply Dijkstra’s algorithm on the graph (D,Ed) where E := {(i, j) : i, j ∈
D, fij ≤ L} and cost of traveling from a vertex i ∈ D to vertex j ∈ D is cij.
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Let the sequence of all the intermediate depots in this path be denoted by PATHd1,d2 .

The greedy algorithm works as follows: Consider an infeasible strand represented

as (d1, t1, · · · , tk, d2) where d1 and d2 are the two depots of the strand and t1, · · · , tk
are the targets. For each target t in this infeasible strand, we add a refueling trip

such that

• The vehicle visits a nearest terminal depot nt after leaving t.

• The vehicle uses the sequence of depots specified in PATHnt,mt to travel from

nt to mt where mt is a nearest starting depot for t, and finally returns to t after

refueling.

After adding all the refueling trips, the modified strand can be denoted as (d1, t1, nt1 ,

PATH(nt1 ,mt1), t1, t2, nt2 , PATH(nt2 ,mt2), t2, . . . , PATH(ntk ,mtk), tk, d2). This new

modified strand must be feasible because the vehicle is allowed to refuel after visiting

each of the targets. Now, each of the refueling trips is chosen sequentially in the order

they are added and is shortcut if the strand that results after removing the refuel trip

still satisfies the fuel constraint.
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Depot

Target

(a) Infeasible strand

nt1

mt1

nt2

mt2

nt3

mt3

t1 t2 t3d1 d2

PATH(ntx,mtx) := Shortest path from ntx to mtx

(b) Strand with refuel trips to all targets

nt2

mt2

t1 t2 t3d1 d2

(c) Each refueling trip is sequentially shortcut if the
resulting strand is feasible. In the above example refuel
trips for t1 and t3 have been removed as the resulting
strand turns out to be feasible

Fig. 5. The greedy procedure to correct infeasibility

After the greedy procedure is applied, one obtains a feasible tour which visits

each of the targets exactly once. We now use this feasible tour produced by the

construction heuristic as an initial solution for the heuristics discussed in the next

section.
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E. Improvement heuristics

Now, we develop a combination of a k−opt heuristic and a depot exchange heuristic

to improve the quality of the tour obtained by the construction heuristic. A k−opt

heuristic is a local search method which iteratively attempts to improve the quality

of a solution until some termination criteria are met. We will first give some basic

definitions involved in a k−opt heuristic, and then see how it is applicable to the

fuel-constrained TSP. A tour S2 is defined to be in the k−exchange neighborhood of

the tour S1 if S2 can be obtained from S1 by replacing k edges in S1 with k new edges.

A tour S2 is said to be obtained from a feasible tour S1 by an improving k′−exchange

if S2 is in the k′−exchange neighborhood of S1, is feasible and has a travel cost lower

than S1. The k−opt heuristic starts with a feasible tour and iteratively improves

on this tour making successive improving k′−exchanges for any 2 ≤ k′ ≤ k until no

such exchanges can be made. A critical part of developing a k−opt heuristic deals

with choosing an appropriate k′−exchange neighborhood for a tour. In the following

sections, we discuss these selections for 2-opt and 3-opt. We also present a depot-

exchange heuristic which when combined with the k−opt heuristics produce very

good solutions for the fuel constrained problem.

1. General framework for improvement heuristics

One way to apply the k−opt heuristic is to consider all possible subset of k edges

in the tour and try an improving k−exchange. Initial implementations showed us

that substantial improvements in the quality of the tour were obtained when the

k−exchanges where performed around the refueling depots in the tour. In view of

this observation, we split a given feasible tour into segments. A segment with a span n

is defined as a subsequence of 2n+1 vertices of the tour centered around each depot of
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the tour. A segment of span n can be denoted by (s1, . . . , sn, d, sn+1, . . . , s2n), where

d is the depot around which the segment is centered. Following the definition of a

segment, one can infer that the number of segments in a feasible tour is equal to the

number of visits by the UAV to all the depots. When the span is bTour Length/2c

we get the entire tour as a segment.

For the k−opt heuristic, the k−exchange neighborhood in each iteration is re-

stricted to one of the segments of the given tour. Therefore, in each iteration of the

heuristic, we find all the possible improving k-exchanges with all the deletion and ad-

dition of edges restricted to a segment of the tour, and then move to the best possible

k-exchange that is feasible. Checking the feasibility of the new tour can be done by

keeping track of the fuel remaining in the UAV as it traverses the vertices in the tour.

In the depot exchange heuristic, the depots in the tour are replaced with better

refueling depots not present in the tour. In particular, we consider the depots in the

order they are visited and try replacing it with other depots. We iteratively do this

procedure until we exhaust all the improving depot exchanges. The condition for the

depot exchange is explained in the subsequent sections. A flow chart of the overall

procedure is given in Figure 6.
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Begin

T = Tour from construction heuristic

Perform k−opt and Depot exchange on T

T1 = New tour

Is Cost(T1)≥Cost(T) T = T1

Output T

End

No

Yes

Fig. 6. Flowchart for the improvement heuristics

a. k−opt

The k−opt heuristic requires a feasible tour which in this case is given by the con-

struction heuristic. As explained in the earlier section, the k-opt heuristic starts with

a feasible tour and iteratively improves on this tour making successive k′−exchanges

for any 2 ≤ k′ ≤ k, until the cost of the tour can no longer be improved. To restrict

the neighborhood space, we decompose the tour to segments with span n, and look for

improving k′− exchanges within each segment. Given a segment, k′ edges are deleted

from the segment, and subsequently k′ new edges are added to form new segment as

shown in Figures 7 and 8. The updated tour is then checked for feasibility, to ensure

the UAV never runs out of fuel. The pseudo code for the k−opt heuristic is shown in

Algorithm 1. An illustration for 2−opt and 3−opt is shown in Figures 7 and 8.
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Algorithm 1 : Pseudo code for the k-opt algorithm

Notations: Let cost(T) denote the sum of all the cost of traveling the edges in the

tour T. Let the segment corresponding to the ith visit to a depot be denoted by

S(i, s), where s is the search span for the segment.

1: T← Initial feasible tour

2: N ← Number of visits to the depots in T

3: T∗ ← T

4: loop

5: for p = 1, .., N do

6: for each S∗ ∈ k′−exchange neighborhood of S(p, s) and ∀ 2 ≤ k′ ≤ k do

7: Find the updated tour R, with segment S replaced with S∗.

8: if R is feasible and cost(R) < cost(T) then

9: T← R

10: end if

11: end for

12: end for

13: if cost(T) ≤ cost(T∗) then

14: break

15: else

16: T∗ ← T

17: end if

18: end loop

19: Output T∗ as the solution
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u v x y

(a) Segment considered for 2-opt

u v x y

(b) Edges (u, v) and (x, y) are removed

u v x y

(c) New edges are added to construct a
new segment

Fig. 7. Illustration of a 2-opt exchange

b p q ua v

(a) Segment considered for 3-opt

b p q ua v

(b) Edges (a, b), (p, q) and (u, v) are removed

b p q ua v

(c) One possible way of reconnecting edges to con-
struct a new segment

Fig. 8. Illustration of a 3-opt exchange

b. Depot exchange

The depot exchange heuristic works with the depots in a feasible tour. We consider

the depots in the order in which they are visited by the UAV and try replacing them

with some other depot which can reduce the cost of the tour. Consider a depot d, in

the tour. Let t1 and t2 be the targets that are visited immediately before and after

visiting d. We define a distance function D(d) = ct1d + cdt2 ∀ d ∈ D. Depot d is then
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replaced with dr where dr is defined as

dr = argmin
d∈D

D(d)

The new tour is also checked for feasibility, and is accepted if feasible. The pseudo

code for the same is presented in the Algorithm 2.

Algorithm 2 : Pseudo code for the depot exchange

Notations: Let di denote the ith depot visited in any given feasible tour. i takes values

from 2, 3, ... as we do not want to change the starting depot of the tour. D denotes

the set of depots.

1: T← Initial feasible tour

2: N ← Number of visits to the depots in T

3: for i = 2→ N do

4: t1 ← Target visited immediately before di in T.

5: t2 ← Target visited immediately after di in T.

6: dr = argmin
d∈D

ct1d + cdt2 .

7: Replace di with dr to form the updated tour R.

8: if R is feasible and cost(R) < cost(T) then

9: T← R

10: end if

11: end for

12: Output T as the solution

The next chapter gives a detailed computational study of the all the algorithms

explained in this chapter.
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CHAPTER III

COMPUTATIONAL STUDY FOR THE SINGLE VEHICLE PROBLEM

A. Comparison of the integer linear programming formulations

The integer linear programming formulations of the FCRP presented in the section

B of the previous chapter are solved to optimality using IBM ILOG CPLEX 12 in

a Dell Precision T5500 workstation (Intel Xeon E5630 processor @ 2.53GHz, 12GB

RAM). The formulations are solved for problem sizes ranging from 15 targets to 40

targets with increments in steps of 5. 50 instances were generated for each problem

size and all the targets were chosen randomly from a square area of 5000×5000 units

for each instance. In addition, all the instances of the problem had 5 depots chosen

at fixed locations in the square area.

The simulations were run two scenarios, one where the vehicle does not have any

kinematic constraints and the other scenario where there is a bound on the maximum

yaw rate of the vehicle. The vehicles with a bound on the maximum yaw rate is

referred to as the Dubins’ vehicle [11]. The problem of finding the minimum distance

path a vehicle must take between any two targets on a plane subject to the yaw

rate constraints had been solved by Dubins [11]. It is assumed that the minimum

turn radius for the vehicle is 100 units and the angle of approach for each target was

assigned a random value between 0 ann 2π radians. Now, for the Dubins’ vehicles,

cij is length the optimal path between i and j calculated by [11]. We also assume

that cij = fij ∀i, j ∈ V . It is important to note that the formulations and all our

heuristics do allow for the travel distances or the fuel costs to be asymmetric, i.e., the

distance to travel from location A to location B may be different from the distance

required to travel from location B to location A for the UAV. This is in fact the case
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for the simulations that are run on the instances with the Dubins’ distances (which

include the motion constraints). The average time taken by both the formulations

for instance sizes ranging from 15 to 40 are shown for the euclidean case (without the

motion constraints) in Table I. It emphasizes that the single-commodity formulation

is faster than the multi-commodity formulation for the FCRP with fuel constraints.

Since the single-commodity formulation out perfoms the multi-commodity for the

euclidean distances which is a special case of the Dubins’ case, it is natural to assume

that the single-commodity is also faster for the Dubins’ vehicle. Hence the table II

shows the average time taken to compute the optimal solutions for only the single-

commodity formulation for all the Dubins’ vehicles for instance sizes ranging from 15

to 35.

Table I. Time taken by MILP formulations to solve euclidean instances

No. of Nodes Single-commodity(sec) Multi-commodity(sec)

15 0.62 1.31
20 4.50 28.14
25 11.12 268.57
30 239.72 7051.42
35 3020.37 Optimal not reached in 3 hours
40 18032.451 Optimal not reached in 3 hours

1 The time is averaged over 10 instances. Other instances did not produce
optimal solutions after a 4-hour wait

Table II. Time taken by MILP formulations to solve Dubins’ instances
No. of Nodes Single-commodity(sec)

15 0.9
20 11.02
25 70.08
30 469.20
35 9002.5

B. Computational results for various search spans

All the heuristics were coded using Python 2.7.2 and run on a 2GHz Intel Core 2 Duo,

2GB RAM machine. The quality of a solution produced by applying an heuristic on
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an instance I is defined as

100.
Cheuristic
I − Coptimal

I

Coptimal
I

%

The flowchart in Figure 6 indicates that the improvement heuristics are executed

repeatedly on the best available feasible tour till no further improvement can be made

on the cost of the tour. In practice, the algorithm takes at most 2 passes to produce

its best possible feasible tour. To ensure consistency in implementation, the algorithm

is allowed only two passes of the feasible tour through the improvement heuristics.

Tables III and IV gives the variation of the solution quality and computation times

with the search span for a segment for instance sizes 25 to 40 (the smaller instances

were not conclusive enough to decide on a value for the search span) for euclidean

costs and 15 to 35 for dubins costs respectively. We decided on a search span of 4 for

the k−opt heuristic by taking into consideration both the average solution quality

and computation time.

Table III. Search span study for k-opt (euclidean cost matrix)

Span
25 nodes 30 nodes 35 nodes 40 nodes

Sol. Quality Time Sol. Quality Time Sol. Quality Time Sol. Quality Time

1 4.57 0.02 6.65 0.03 4.91 0.04 6.05 0.05
2 3.85 0.17 5.23 0.23 4.34 0.30 5.15 0.33
3 3.38 0.64 4.73 0.90 3.80 1.10 4.79 1.40
4 3.55 1.63 4.32 2.29 3.43 2.90 4.42 3.44
5 3.54 3.55 3.99 4.36 3.16 5.82 4.38 7.07
6 3.06 4.98 3.81 7.58 2.73 9.95 4.18 13.08

Table IV. Search span study for k−opt (Dubins’ cost matrix)

Span
20 nodes 25 nodes 30 nodes 35 nodes

Sol. Quality Time Sol. Quality Time Sol. Quality Time Sol. Quality Time

1 4.73 0.02 6.97 0.03 6.81 0.05 11.52 0.06
2 4.69 0.16 6.96 0.23 6.71 0.33 10.87 0.44
3 4.46 0.59 6.13 0.76 6.11 1.30 9.57 1.80
4 4.31 1.50 5.62 2.33 5.74 3.29 9.25 4.45
5 4.04 2.80 5.41 4.58 5.44 6.65 8.86 9.13
6 3.84 4.70 5.40 5.32 5.03 6.68 8.38 14.06
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C. Computational study for the heuristics

The approximation algorithm for this problem proposed by Khuller et. al [8] was also

implemented and run on the instances with the euclidean distances generated for this

problem and its solution quality is compared with that of the heuristics suggested

in this paper. A comparison of the heuristics proposed in the thesis is also done for

the Dubins’ instances in table VI. From the tables I and II, it can be observed that

the time taken for the computing the optimal solution increases significantly as the

number of nodes of the problem increases. In comparison, the running time of the

approximation algorithm by Khuller et al. [8] and all the proposed heuristics was less

than 5 seconds for each instance of the problem. It is evident from Table V that the

heuristics presented in this paper out perform the approximation algorithm in [8].

Table VI re-emphasizes that the algorithm is applicable and can perform reasonably

well for more general variants of the problem.

Table V. Solution quality of the heuristics for euclidean instances

No. of Nodes
Khuller et. al [8] Construction heuristics Improvement heuristics

Average Maximum Average Maximum Average Maximum

15 23.38 47.43 19.47 36.53 2.14 11.00
20 27.17 67.03 19.65 42.28 1.97 16.23
25 30.67 67.80 21.48 38.49 3.23 14.07
30 31.32 55.88 22.97 46.83 4.32 13.03
35 28.09 49.32 20.55 38.42 3.47 13.09
40 31.43 63.67 21.99 34.07 4.53 16.36
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Table VI. Solution quality of the heuristics for Dubins’ instances

No. of Nodes
Construction heuristics Improvement heuristics

Average Maximum Average Maximum

15 6.72 23.14 4.59 23.14
20 7.91 40.79 3.82 16.83
25 11.04 23.35 5.34 23.35
30 13.38 31.64 4.92 18.14
35 14.84 39.63 7.21 30.59

D. Effectiveness of using solutions from heuristics in CPLEX

The feasible solution produced by the heuristics was used as an initial feasible solution

to the single-commodity formulation. The formulation was now solved in CPLEX

with a time bound of 10 seconds. Using the initial feasible solution, CPLEX reduces

the size of the branch and bound tree by pruning various branches of the search tree.

The best feasible solution that could be obtained was sought after to re-emphasize

effectiveness of the heuristics. This procedure led to better solutions which can be

observed from the Tables VII and VIII. The single-commodity formulation for the

FCRP is also solved on all the instances without using the initial feasible solution

and allowed to run for 10 seconds. A comparison of the solution qualities for both

the cases is made in Tables VII and VIII.

Table VII. Effect of upper bounds on the MILP formulation (euclidean costs)

No. of Nodes
With initial feasible solution Without initial feasible solution

Average Maximum Average Maximum

25 0.40 2.90 3.95 25.88
30 1.07 7.56 13.66 77.01
35 1.80 13.94 14.03 38.44
40 2.13 6.21 21.73 74.11
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Table VIII. Effect of upper bounds on the MILP formulation (Dubins’ costs)

No. of Nodes
With initial feasible solution Without initial feasible solution

Average Maximum Average Maximum

20 0.09 2.29 0.18 2.94
25 0.26 3.46 0.86 9.64
30 1.39 7.90 2.58 10.30
35 6.22 28.49 19.17 269.52
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CHAPTER IV

APPROXIMATION ALGORITHM FOR MULTIPLE VEHICLE PROBLEM

A. Problem statement

The Multiple Vehicle Fuel Constrained Routing Problem (MVFCRP) can be for-

mally stated as follows. There are n vehicles v1, v2, v3, . . . , vn with fuel capacities

L1, L2, . . . , Ln. Without loss of generality, we can assume L1 ≥ L2 ≥ · · · ≥ Ln. Let T

denote the set of targets that need to be visited and D denote all the depots. Initially,

each vehicle is stationed at si ∈ D. Define S := {s1, s2, · · · , sn}. The MVFCRP is

defined on the graph G = (V,E) with V := T
⋃
D and E representing all the edges

joining any two vertices in V . Let fij denote the fuel required by any vehicle to

travel from vertex i to vertex j. It is assumed that the fuel costs are symmetric, i.e.,

fij = fji for all i, j ∈ V . It is also assumed that for every target t ∈ T , there exists at

least one depot d such that the fuel consumed to travel from t to d is at most Lkα
2

, for

some vehicle vk, where α ∈ (0, 1]. This assumption is reasonable, because if a target

has no depot which can be reached with Lk

2
units of fuel left in the vehicle vk for some

k, then the target cannot be visited by any vehicle.

A tour for vehicle vi is defined by a sequence of vertices (di, vi1, vi2, · · · , vi,ki , di)

where di ∈ D is the depot where the vehicle is initially stationed, vi1 is the first vertex

visited by the vehicle, vi2 is the second vertex visited by the vehicle and so on. The

objective of the problem is to find a tour for each vehicle so that each target is visited

at least once, the vehicles never run out of fuel and the sum of the fuel required by

all the vehicles to travel their paths is a minimum.

Remark: We have assumed that for any target x ∈ T there exists a depot d such
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that ftd ≤ Lkα
2

for some vehicle vk. We denote this depot by h(x) and let Dx represent

the fuel required to travel from x to h(x) (or vice versa). Now, we say that a target t

is reachable for vehicle vk if there exists a depot which satisfies the above condition.

Essentially, the assumption states that each target is reachable by at least one vehicle.

For this problem, we develop an algorithm with an approximation ratio of 2(1−α)
(1+α)

in the next section.

B. Approximation algorithm

The approximation algorithm can be described by the following steps:

1. For any two vertices x, y ∈ V and vehicle vk, find a path for vk such that the

path satisfies all the refueling constraints for vk and the sum of the fuel required

to travel the edges in the path is a minimum. The algorithm used in this step is

exactly the same as the one used in the first step of the construction heuristic

for the single vehicle problem. Let this path be denoted by PATHk
xy and let

the length of this path be represented by lk(x, y). As in the single vehicle

algorithm, a vehicle can either directly or indirectly travel from x to y. We

will later show that this new cost function satisfies the following monotonicity

property: l1(x, y) ≤ l2(x, y) · · · ≤ ln(x, y) for any two targets x, y ∈ T .

2. Consider the graph G := (V ,EV ) where V = S
⋃
T and EV denotes all the

edges joining any pair of vertices in V . Given the graph G and the new cost

function for each vehicle, we aim to solve the multiple vehicle routing problem

of finding a tour for each vehicle such that each target is visited at least once by

a vehicle and the sum of the cost of all the edges in the tours is a minimum. As

this problem is NP-Hard, we use the following algorithm to find a good feasible
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solution to the problem.

• Use the primal dual algorithm in Jung et al. [12] to find a collection of

edges such that each target is connected to one of the depots in S. These

collection of edges would essentially form a forest where each tree will have

exactly one depot. Let the tree corresponding to vehicle vk be denoted by

TREEk. Refer to Figure 9 for an illustration of this step. It was shown in

Jung et al. that this primal-dual algorithm produces a collection of edges

whose cost is at most equal to the optimal cost of the multiple vehicle

routing problem.

• Double the edges in each of the trees to obtain an Eulerian graph for each

vehicle. Let the Eulerian graph for vehicle vk be denoted by Ek.

• For k = 1, · · · , n do the following:

Use Ek to find an Eulerian tour for vehicle vk. If there is any edge (x, y)

in this tour such that the vehicle cannot directly travel from x to y, (x, y)

is replaced with all the edges present in the shortest path, PATHk
xy, from

x to y. Let the final Eulerian tour after replacing the indirect edges with

the edges from the shortest path be denoted by TOURk.

3. The Eulerian tours may still be infeasible for some vehicles as there may be a

sequence of vertices that starts at a depot and ends at a depot where a vehicle

runs out of fuel. To correct this, we further augment each of the infeasible

Eulerian tours with more visits to the depots (similar to the single vehicle

algorithm). The Eulerian tour for each vehicle, is decomposed into a series of

strands. A strand is a sequence of consecutive vertices in the tour that starts

at a depot, visits a set of targets and ends at a depot. The tour for vehicle vk
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must be infeasible if the total fuel required to traverse any one of these strands

in TOURk is greater than Lk. Hence, for each infeasible Eulerian tour, all

the infeasible strands are identified, and a greedy algorithm is applied to each

infeasible strand to transform it to a feasible strand. Refer to Figure 10 for an

illustration of this step.

Depot

Target

v1

v2v3

Direct Edges

Indirect Edges

Fig. 9. A forest obtained by the primal dual algorithm for a 3 vehicle problem. The

edges of the forst are doubled to get the Eulerian tour corresponding to each

vehicle
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d1 t1 t2 tk−1 tk d1

dt1 dtk−1

Lkα
2

Lkα
2

Lkα
2

Lkα
2

Refuel Trips
Depot

Target

Fig. 10. An infeasible strand of some vehicle vk, after the addition of a minimal set

of refuel trips to make it feasible. Each refuel trip at most consumes Lkα

amount of fuel for vk.

C. Proof of approximation ratio

In this section, we prove that the proposed algorithm has an approximation ratio

of 2
(
1+α
1−α

)
. It is easy to verify that the number of steps required to implement the

algorithm is polynomial in the size of the problem. The following lemma proves a

claim that was stated in the previous section.

Lemma 1. The new cost functions satisfy the following property: l1(x, y) ≤ l2(x, y) ≤

· · · ≤ ln(x, y) for any pair of targets x, y ∈ T .

Proof. Recall that lk(x, y) is defined as the length of a shortest path that starts at

x with at most Lk − Dx units of fuel left in the vehicle and ends at y with at least

Dy units of fuel left. Note that Dx := mind fxd and Dy := mind fyd are independent

of the capacities of the vehicles. Therefore, a vehicle with a larger fuel capacity will

have more units of fuel to start with at target x. For any two vehicles vk1 , vk2 with

k1 < k2, it follows that the length (lk1(x, y)) of the shortest path for the vehicle with

a larger fuel capacity would be at most equal to the length (lk2(x, y)) of the shortest

path for a vehicle with a lower fuel capacity. Hence proved.
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The next lemma bounds the cost of the refuel trips. This result is proved by

Khuller et al for the single vehicle problem [8].

Lemma 2. (Khuller et al. [8]) Let Ski be the length of the ith strand corresponding

to the vehicle vk in TOURk. Then the total cost of the refuel trips of the targets for

vk is at most 2α
1−αS

k
i .

Proof. Let us assume that the number of refuel trips in the ith strand be Ni. Label

the targets with refuel trips to the nearest depot be xj1i , x
j2
i , . . . , x

jNi
i . Also, let the

strand be denoted as (xj0i = d1, · · · , xj1i , · · · , xj2i , · · · , x
jNi
i , · · · , xjNi+1

i = d2) where

d1 and d2 are the depots at the ends of the strand. The cost of each refuel trip is

at most Lkα. Hence, the total cost for traversing all the refuel trips in the strand

is at most NiL
kα. Also, the cost incurred for vk when it travels from x

jp
i to x

jp+2

i ,

i.e., Cost(TOURk(x
jp
i , x

jp+2

i )) ≥ (1 − α)Lk. If this condition is not satisfied, then

the vehicle vk can directly go from x
jp
i to x

jp+2

i without refueling at the target x
jp+1

i .

Therefore,

2Ski ≥
∑

0≤p≤Ni−1

Cost(TOURk(x
jp
i , x

jp+2

i )) ≥ Ni(1− α)Lk =⇒ Ni ≤
2Ski

(1− α)Lk

Hence, the ratio of the cost of the refuel trips to the cost of the strand corresponding

to vehicle vk is at most αLkNi

Sk
i

which equals 2α
1−α .

Let the cost of the Eulerian tour found at the end of step 4 of the algorithm for

vehicle vk be denoted by Cost(TOURk). Also, let Cost(OPT ) denote the optimal

cost of the MVFCRP. Now, the cost of the feasible solution obtained by the algorithm

is upper bounded by the sum of the costs of the Eulerian tours and the refueling trips

corresponding to all the vehicles. That is, the cost of the feasible solution is bounded

by
∑

k[Cost(TOURk) +
∑

i=1,..,pk
αLkNik where pk denotes the number of strands in
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TOURk and Nik represents the ith strand in TOURk. Now,

∑
k

[Cost(TOURk) +
∑
i

αLkNik] ≤
∑
k

[Cost(TOURk) +
2α

1− αCost(TOURk)]

=

(
1 + α

1− α

)∑
k

Cost(TOURk)

≤ 2

(
1 + α

1− α

)∑
k

Cost(TREEk)

≤ 2

(
1 + α

1− α

)
Cost(OPT ).

Theorem 1. There is an algorithm with an approximation ratio of 2
(
1+α
1−α

)
C(OPT )

for the MVFCRP.
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CHAPTER V

CONCLUSION

Fast and efficient heuristics were developed to solve a new generalization of the single

vehicle routing problem with refueling constraints. A mixed-integer, linear program-

ming formulations were proposed to find optimal solutions for the problem. In addi-

tion, a construction heuristic and few improvement heuristics were presented to find

feasible solutions to the fuel constrained TSP. The computational results show that

the heuristics produce feasible solution within 3.27% of the optimal, on an average

for symmetric instances and 7.21% of optimal, on an average for Dubins’s vehicle

instances. Future work can be directed towards developing a branch and bound

algorithm tailored to the structure of the fuel constrained TSP and it may aid in

significantly reducing the computation time for optimal solutions.

Further, a multiple vehicle version of the problem for symmetric instances was

addressed. An approximation algorithm for the same was developed. Future work

can include formulating the multiple vehicle problem as a combinatorial problem to

solve it to optimality. Fast heuristics similar to the ones developed for the single

vehicle problem using neighborhood search methods is also another possible direction

for future work.
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