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ABSTRACT

Receding Horizon Covariance Control. (August 2012)

Eric Duong Ba Wendel, B.S., University of California Berkeley

Chair of Advisory Committee: Dr. Raktim Bhattacharya

Covariance assignment theory, introduced in the late 1980s, provided the only

means to directly control the steady-state error properties of a linear system subject

to Gaussian white noise and parameter uncertainty. This theory, however, does not

extend to control of the transient uncertainties and to date there exist no practical

engineering solutions to the problem of directly and optimally controlling the uncer-

tainty in a linear system from one Gaussian distribution to another. In this thesis

I design a dual-mode Receding Horizon Controller (RHC) that takes a controllable,

deterministic linear system from an arbitrary initial covariance to near a desired

stationary covariance in finite time.

The RHC solves a sequence of free-time Optimal Control Problems (OCP) that

directly control the fundamental solution matrices of the linear system; each problem

is a right-invariant OCP on the matrix Lie group GLn of invertible matrices. A

terminal constraint ensures that each OCP takes the system to the desired covariance.

I show that, by reducing the Hamiltonian system of each OCP from T ∗GLn to gl∗n ×
GLn, the transversality condition corresponding to the terminal constraint simplifies

the two-point Boundary Value Problem (BVP) to a single unknown in the initial or

final value of the costate in gl∗n.

These results are applied in the design of a dual-mode RHC. The first mode

repeatedly solves the OCPs until the optimal time for the system to reach the de-

sired covariance is less than the RHC update time. This triggers the second mode,

which applies covariance assignment theory to stabilize the system near the desired
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covariance. The dual-mode controller is illustrated on a planar system. The BVPs

are solved using an indirect shooting method that numerically integrates the fun-

damental solutions on R4 using an adaptive Runge-Kutta method. I contend that

extension of the results of this thesis to higher-dimensional systems using either in-

direct or direct methods will require numerical integrators that account for the Lie

group structure. I conclude with some remarks on the possible extension of a classic

result called Lie’s method of reduction to receding horizon control.
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NOMENCLATURE

Rm×n The vector space of m× n, R-valued matrices.

Df(x) The derivative of a smooth map f : M → N between manifolds;

a linear map TxM → Tf(x)N , where x ∈M and f(x) ∈ N .

Df(x) · z The derivative of f evaluated on a tangent vector z ∈ TxM .

X (M) The infinite-dimensional Lie algebra of smooth vector fields on a

smooth manifold M .

G A matrix Lie group.

THRX , THLX The derivatives of right- and left-multiplication on G; for all

X,H ∈ G, THRX = DRX(H) : THG → THXG and THLX =

DLX(H) : THG→ TXHG.

GLn The general linear group of n×n, real-valued invertible matrices.

gln The general linear Lie algebra of GLn, gln = Rn×n.

PDn Set of n× n covariance (positive-definite symmetric) matrices.

Skewn Set of n× n skew-symmetric matrices.

A The set of covariance matrices S that are solutions to the Lya-

punov equation 0 = (A+BK)S+S(A+BK)T , where A ∈ Rn×n,

B ∈ Rn×m, and K ∈ Rm×n.

λ The action of a Lie group G on a manifold M , a smooth map

λ : G×M →M .

Orbλ(S) The orbit of the action λ through the point S ∈M .

HλS The isotropy group of the action λ at S ∈M .

hλS The isotropy algebra of the action λ at S ∈M .
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1. INTRODUCTION

In many engineering applications, system parameters or initial conditions are not

known exactly and can only be measured with limited statistical certainty. Examples

include aircraft control applications [1] and chemical process control [2], where in both

cases the complexity of the physical processes (aero- and fluid-dynamics) and the

inability to directly measure the values of key states require a statistical approach to

quantifying system behavior. It is therefore necessary to design control systems that

can account for the modeled and estimated uncertainty in the states and parameters

of a control system; the controllers that can handle uncertainty while satisfying

necessary performance and stability requirements are called robust control systems.

A typical approach in the theory of robust linear and nonlinear control theory

is to design an optimal control problem [3] that simultaneously minimizes a cost

function while maximizing a measure that is inversely proportional to the largest

magnitude system disturbances. This min-max design is exemplary of a philosophy

where one accounts for the uncertainty in the system by designing a controller to

handle worst-case behavior. There has been a shift in paradigm in recent years

away from such worst-case designs towards risk-aware designs, wherein the actual

uncertainty is modeled and indirectly controlled. A popular approach is to minimize

the expected value of a suitable cost function in such a way that its minimization

implies the minimization of the uncertainty in the system [4].

This thesis adopts a risk-aware design philosophy but differs from most robust

controllers in that here we are able to directly control the uncertainty in the sys-

tem. This is accomplished by utilizing a basic result from the field of uncertainty

propagation, that the integral curves of a deterministic dynamical system induce a

semigroup of so-called Perron-Frobenius operators, which are operators on the space

of probability distribution functions. It is easy to find simple differential equations

This thesis follows the style of IEEE Transactions on Automatic Control .
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for the evolution of probability distributions along trajectories of a dynamical sys-

tem by specializing to the case of linear dynamical systems with normally-distributed

uncertainty. In particular, we desire controllers that take the first and second mo-

ments of a Gaussian distribution to prescribed values. This thesis focuses on the

optimal control of the second moment, or covariance, of a Gaussian distribution.

The covariance evolves on the space of symmetric, positive-definite matrices.

Early work by Anthony Hotz and Robert E. Skelton [5] showed that the steady-

state solutions of the covariance differential equation can be tackled using basic facts

about solutions of linear matrix equations. Their contribution represents the first

approach to the direct control of uncertainty in linear systems. Although restricted

to the steady-state case, their work paved the way for a characterization of all sta-

bilizing feedback control gains [6] and is the primary inspiration for this thesis. The

contributions of this theory may be summarily described as a theory of covariance

assignment.

Our objective is to complete this work to a theory of covariance control by design-

ing controllers that take a linear system from an arbitrary distribution of uncertain

system states and parameters to a stationary distribution representing desired root-

mean-square performance requirements and measures of statistical cross-correlation

error. To this end, I extend the work of Roger Brockett [7] and John Baillieul [8]

on optimal control of Lie groups and numerically solve an optimal control problem

on the fundamental matrix solutions of a linear system. Of particular importance in

this effort is the fact that the evolution of the system covariance is obtained by the

congruence action of the fundamental solutions on an initial covariance.

The main contribution of this thesis is the implementation of this optimal control

problem in a receding horizon fashion. Historically, receding horizon control has

been implemented in the chemical process industry [2] as a pragmatic, heuristic

approach to obtain a stabilizing controller for systems with high degrees of model and

parameter uncertainty. In this context, receding horizon control is sometimes called
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model predictive control, because the repeated, real-time solution of an optimization

problem at discrete time intervals provides a prediction of the future behavior of

the system, based on the given model. As the width of the discrete time intervals

approaches zero one obtains an optimal control problem solved at every instant of

time, and thus receding horizon control can be viewed as an approximation of a

feedback controller. To my knowledge this thesis designs the first receding horizon

controller on a matrix Lie group.

A secondary contribution of this thesis is the reduction of the Hamiltonian system

of equations from T ∗GLn to gl∗n × GLn. The resulting costate differential equation is

the infinitesimal generator of the coadjoint action of GLn on gl∗n. In [7] this result

is obtained essentially by hand, i.e. without recourse to the formal reduction of

the cotangent bundle. However, the formal reduction allows us to identify two so-

called equations of Lie type appearing in the optimal covariance control problem, the

first being the covariance differential equation and the second the costate differential

equation. Equations of Lie type are differential equations induced by the action

of a Lie group on a manifold. The formal reduction of the cotangent bundle also

allows us to effectively describe the transversality condition corresponding to the

terminal constraint on the covariance in the optimal control problem. In particular,

the transversality condition for the Hamiltonian system on gl∗n × GLn reduces the

number of scalar unknowns in the boundary value problem from 2n2 to n2 or n(n+

1)/2. I show that if it is stable to integrate backwards in time, the boundary value

problem has n(n+1)/2 many unknowns; integrating forward in time implies n2 many

unknowns.

This thesis makes a rare connection between the work of Skelton, Brockett and

Baillieul with the literature on robust optimal control of linear systems. I argue that

the successful extension of these results to more general linear systems will require Lie

group numerical integrators for solving boundary value problems using either direct

(collocation-based integration) or indirect (time-stepping integration) methods. I
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conclude with some remarks on a classic technique, called Lie’s method of reduction,

that has potential in either case to assist in the receding horizon implementation.

The organization of the thesis is as follows: in chapter 2, I briefly review uncer-

tainty propagation, the covariance assignment theory and its limitations. In chapter

3, I review concepts in Lie groups, algebras and Lie group actions, and formulate

the necessary conditions for optimality of solutions to the free-time, right-invariant

optimal control problem with a constraint on the terminal covariance. In the last

chapter 4, I discuss the implementation of the optimal control problem from chapter

3 in a receding horizon fashion and, in the conclusion, how to extend the results to

a complete theory of covariance control.
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2. STEADY-STATE COVARIANCE ASSIGNMENT

The objective of this chapter is to review concepts necessary for understanding

the effects of uncertainty in deterministic dynamical systems [9]. The propagation

of uncertainty associated with a dynamical system is defined via a time-varying

family of transformations of probability distributions, called the semigroup of Perron-

Frobenius operators. These operators describe how a continuous transformation of

points in a space induce a transformation in the probability distribution over the

space in which those points belong, essentially by means of a change-of-variables

formula.

More precisely, associated with any 1-parameter family of smooth maps ϕt (more

generally, with any 1-parameter family of continuous transformations of M) is a

1-parameter semi -group of operators on the space of probability densities. The un-

derlying intuitive notion is that instead of studying transformations of points (initial

conditions) in a state space, one may study instead transformations of point clouds

or distributions of initial conditions. This enables the shift in paradigm away from

controlling one possible configuration of a system to controlling a distribution of

configurations.

By specializing these constructions to the case of linear, time-invariant control

systems subject to linear state feedback, we arrive at equations for the first and

second moments of a Gaussian probability distribution evolving along trajectories of

the system. Then, I review the classic results of steady-state covariance assignment

theory, which studies the steady-state covariance equation describing stationary dis-

tributions of uncertainty in linear systems.

2.1 Uncertainty Propagation

This section reviews basic concepts in dynamical systems and the theory of un-

certainty propagation. There is a neat correspondence between flows of dynamical
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systems, their fundamental solutions and a certain semigroup of transfer operators

on the space of probability distributions.

Dynamical systems : Let M be a smooth manifold, TM its tangent bundle,

and π : TM → M the canonical projection. A deterministic, smooth dynamical

system is the pair (M, f), where f : M → TM is a vector field, i.e., a smooth

assignment of a vector in TM to every point in M . For the sake of simplicity, for the

remainder of this section we assume that M is an embedded submanifold of Rn. An

integral curve x(t) of f is a trajectory in M tangent to the vector field at all points

along the curve, i.e. f(x(t)) = ẋ(t). For every initial condition x0 ∈ M there exists

an ε > 0 and a neighborhood U of x0 such that x0 is taken into an integral curve x(t)

by the flow, which is the map given by ϕ : (−ε, ε)×U →M . We adopt the shorthand

ϕ(t, x0) =: ϕt(x0) = x(t). It is known that ϕt : U → ϕt(U) is a diffeomorphism onto

its image satisfying

• ϕ0(x) = x,

• ϕt+s(x) = ϕt ◦ ϕs(x) = ϕs ◦ ϕt(x),

• ϕ−1
t (x) = ϕ−t(x),

for all t, s ∈ (−ε, ε). In this way we obtain a local 1-parameter family of diffeomor-

phisms {ϕt} of M , t ∈ (−ε, ε).

Fundamental solutions : As above, let x(t) = ϕt(x0). The second derivative of

x(t) obeys the differential equation ẍ(t) = Df(x(t)) · ẋ(t), where Df(x) = ∂f(x)/∂x

is the Jacobian matrix of f(x). The fundamental solutions of this linear, time-

varying differential equation are invertible n × n matrices denoted X(t, t0), where

[t0, t] ⊂ (−ε, ε). The fundamental solutions satisfy the same differential equation as

for ẍ,

Ẋ(t, t0) =
∂f(x(t))

∂x
X(t, t0).
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The solutions of this differential equation are called fundamental solutions and live,

as we will see, in the matrix Lie group of invertible matrices. Fundamental solutions

also satisfy the following properties [10, 11]:

(P1) X(t, t) = In, for all t ∈ (−ε, ε),

(P2) X(t+ s, t0) = X(t, s)X(s, t0),

(P3) Dϕt(x0) = X(t, t0), Dϕ−1
t (x0) = X−1(t, t0).

In the engineering literature X(t, t0) is called the state transition matrix [12,13], and

due to property (P3) is often used as a measure of the sensitivity of the system flow

to perturbations in its initial conditions.

Perron-Frobenius operators : Associated with the flow ϕt(x0) and fundamental

solution X(t, t0) is a 1-parameter semigroup of operators on the space of probability

distributions.

Definition 2.1.1: The Perron-Frobenius operator Pt : D → D (where D is the

space of probability distributions on the manifold M) associated with the diffeo-

morphism ϕt : M → M is a so-called transfer operator on the space of probability

distributions, defined by the change-of-variables formula

Ptρ =

∫

M

ρ(ϕ−1
t (x)) det

(
Dϕ−1

t (x)
)
µ(dx), (2.1)

where µ(dx) is Lebesgue measure on M and ρ ∈ D is arbitrary. Furthermore,

the family of operators {Pt}t∈[0,ε) is a 1-parameter semigroup of Perron-Frobenius

operators satisfying

• P0ρ = ρ,

• Pt+sρ = Pt ◦ Psρ = Ps ◦ Ptρ,

and describes the time-evolution of ρ induced by the flow.
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Remark 2.1.2: The Perron-Frobenius operator describes how some initial distri-

bution of system uncertainty ρ ∈ D is propagated forward in time by the system

dynamics. The spectral properties of the operator are also key to the identification

and global analysis of the invariant sets of a dynamical system; see [9, 14] for dis-

cussion and examples of this approach to uncertainty propagation. This thesis, on

the other hand, takes a local approach in the sense that we attempt to control the

evolution of uncertainty along particular integral curves of (M, f).

The following proposition characterizes infinitesimal changes in the system un-

certainty. A proof can be found in [9].

Proposition 2.1.1 (Lasota & Mackey): Denote the semigroup of Perron-Frobenius

operators associated with the flow ϕt of a deterministic dynamical system by ρt(x) =

ρ(t, x) = Ptρ0(x), where ρ0 ∈ D is fixed and given. The Liouville equation

∂

∂t
ρt(x) +

n∑

i=1

∂

∂xi
(ρt(x) f(x)) = 0, (2.2)

is the unique infinitesimal generator of ρt(x).

Remark 2.1.3: Although this thesis is only concerned with deterministic dynam-

ics, it is worth noting that the infinitesimal generator of the semigroup of Perron-

Frobenius operators when the dynamical system is stochastic is a partial differential

equation called the Fokker-Planck equation. It is the counterpart of the Liouville

equation [9], and describes the propagation of system uncertainty when the system

evolution is itself random.

Throughout the remainder of this thesis we will be concerned with the analysis

and control of solutions to (2.2) when f(x) is a linear control system on Rn.
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2.2 Linear Systems

Consider the differential equation ẋ = Ax+Bu. The parameter u = u(t) ∈ Rm is

a column vector of functionals called the controls, A ∈ Rn×n is the drift matrix, and

B ∈ Rn×m is a full column-rank control matrix. This so-called linear time-invariant

control system has solution [15]

x(t) = ϕt−t0(x0) = X(t, t0)x0 +

∫ t

t0

X(t0, τ)B u(τ) dτ, (2.3)

where X(t, t0) is the fundamental matrix solution. We set t0 = 0 without loss of

generality and, for notational convenience, write X(t) := X(t, 0) and I = [0, t] ⊂
[0,∞).

Linear feedback control structure: We are interested in the case where the

controls depend linearly on the states, i.e. u = Kx, where K : I → Rm×n is a

matrix of time-varying control gains. Having fixed this closed-loop feedback structure

the dynamics become

ẋ = (A+BK)x, (2.4)

and the fundamental solutionX(t) satisfies the differential equation Ẋ = (A+BK)X.

Equation (2.3) for the integral curves of (2.4) simplifies to x(t) = ϕt(x0) = X(t)x0.

This feedback structure admits simple expressions for the time evolution of the

moments of the propagated uncertainty. Recall that a Gaussian probability distri-

bution function is of the form

ρ(x) =
1√

(2π)n det(S)

∫

M

exp
(
−1

2
(x− µ)TS−1(x− µ)

)
µ(dx),

where µ(dx) is Lebesgue measure on M , S is the covariance and µ is the mean of the

distribution. Let us also assume that ϕt, t ∈ I, is defined for all x ∈ M . We have

the following general result on the moments of Gaussian probability distributions

transformed by the flow.
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Proposition 2.2.1: Let ρ0(x) be a Gaussian probability distribution with mean µ0

and covariance S0 and let ρ(x, t) = Ptρ0(x) be the probability distribution induced

by the flow ϕt of the linear system (2.4). Then, ρ(x, t) is Gaussian, with mean µ(t) =

X(t)µ0 and covariance S(t) = X(t)S0X
T (t) satisfying the differential equations

µ̇(t) = (A+BK)µ(t)

Ṡ(t) = (A+BK)S(t) + S(t)(A+BK)T .
(2.5)

Proof. Note that ϕ−1
t (x) = X(t)−1x and det(Dϕt(x)) = detX(t), for all x ∈ M .

Then equation (2.1) becomes

Ptρ0(x) =

∫

M

exp
(
−1

2
(x−X(t)µ0)T X(t)−TS−1

0 X(t)−1 (x−X(t)µ0)
)

det(X(t))
√

(2π)n det(S0)
µ(dx)

Define S(t) := X(t)S0X
T (t), µ(t) = X(t)µ0 and differentiate directly to obtain

equations (2.5). The result follows by noting that det(S(t)) = det(X(t))2 det(S0)

and substituting these expressions into the above equation.

Remark 2.2.1: It is not always necessary to solve the Liouville equation (2.2) in

order to compute the propagation of uncertainty along integral curves of a dynamical

system. In the derivation of Proposition 2.2.1 we implicitly relied on the fact that any

continuous linear transformation induces a Frobenius-Perron operator that preserves

normal distributions. In the case of arbitrary nonlinear systems, computing Ptρ0(x)

for any ρ0 along integral curves is possible using Liouville’s formula [16, pg. 34];

see [17] for examples and applications.

2.3 Covariance Assignment Theory

This section reviews the main results of covariance assignment theory, as in-

troduced by Anthony Hotz and Robert E. Skelton in their seminal 1987 paper [5].

The objective of covariance assignment theory is to develop an effective means of
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controlling linear system (2.4) to achieve specific steady-state performance require-

ments in the presence of uncertainty. For example, the diagonal entries of a so-called

assignable covariance matrix may be interpreted as root-mean-square values of the

system states, while off-diagonal entries indicate the amount of statistical cross-

correlation between states. As a consequence, an appropriate choice of covariance

matrix specifies steady-state system behavior. More precisely, it specifies the steady-

state distribution of system states.

It is well-known that a given matrix A ∈ Rn×n is stable (it has eigenvalues

with negative real part) if and only if there exists a matrix S ∈ PDn satisfying the

Lyapunov equation 0 = AS + SAT +Q, where Q ∈ PDn is given. There exist many

efficient numerical methods [18–20] that search for a matrix S given A and Q.

The classic steady-state covariance control problem, first solved by Anthony Hotz

and Robert E. Skelton in [5], considers a Lyapunov equation that has special meaning

for linear systems subject to stochastic dynamics. Specifically, [5, 6] consider the

problem of finding the unknown matrices K ∈ Rm×n and S ∈ PDn that solve

0 = (A+BK)S + S(A+BK)T +Q,

where Q ∈ PDn is the given covariance of a white Gaussian process modeling stochas-

tic disturbances and noise; the stochastic effects are intended to account for unmod-

eled and unknown deterministic forces and sensor noise.

This thesis is only interested in the analysis of deterministic (smooth) dynamical

systems. We obtain a statement of the steady-state covariance control problem for

smooth dynamical systems by omitting the covariance matrix from the Lyapunov

equation.
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Definition 2.3.1: The covariance assignment problem is the problem of simulta-

neously finding a constant control gain K ∈ Rm×n and a symmetric, positive-definite

matrix S ∈ PDn solving the (deterministic) steady-state covariance equation

0 = (A+BK)S + S(A+BK)T , (2.6)

where A is a drift matrix and B a control matrix of a linear control system.

Remark 2.3.2: Note that B ∈ Rn×m and K ∈ Rm×n and so BK =
∑n

i=1BiK
i

is clearly a sum of rank-1 matrices, where Bi is the ith column of B and Ki is the

ith row of K. Consequently, the covariance assignment problem as defined is the

problem of finding the set of allowable rank-1 updates to the drift matrix A such

that a quadratic form defined by S ∈ PDn is preserved along trajectories of the linear

system.

To see this, define the function qS : Rn → R by qS(x) = xTS−1x. If the differential

of qS is 0 along all trajectories of the linear system ẋ = (A+BK)x then

0 =
d

dt
qS(x) = xT (A+BK)TS−1x+ xTS−1(A+BK)x

for all x ∈ Rn yields the equivalent condition (A + BK)TS−1 + S−1(A + BK) = 0,

which can be rearranged into (2.6) by multiplying on both sides by S.

Although we confine our attention to deterministic dynamical systems, we may

still use classic steady-state covariance control theory to describe the set of all feed-

back gains K solving (2.6). We obtain the following corollary by omitting the co-

variance of the white Gaussian process from the statement of Theorem 3.1 in [6].

First, recall that we defined the control matrix B ∈ Rn×m to have full column

rank, so rank(B) = m. Let B+ denote its Moore-Penrose pseudoinverse, a map

from the range of B to its nullspace, B+ : R(B) → N (B). Then, Π⊥ := BB+ and

Π := I −BB+ are orthogonal projections onto R(B) and N (B), respectively, where

I is the n× n identity matrix.
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Corollary 2.3.1 (Ohara & Kitamori): Any covariance matrix S ∈ PDn belonging

to the convex subset

A := {S ∈ PDn : Π(AS + SAT )Π = 0}, (2.7)

is a solution to (2.6), and moreover assignable by the constant feedback gain

K = −B+(AS + SAT )(I − 1
2
Π⊥)S−1 −B+QS−1, (2.8)

where Q = Π⊥Q = Π⊥QΠ⊥ ∈ Skewn is any skew-symmetric matrix preservingR(B).

The set of assignable covariances A ⊂ PDn is convex [21] by virtue of Π(AS +

SAT )Π = 0 being linear in S. Because we seek a steady-state covariance matrix

representing desirable steady-state behavior, in typical applications it is not sufficient

to simply choose any symmetric, positive-definite matrix from A. We address this

issue by breaking the covariance assignment problem into two separate steps:

Step 1. Find a S ∈ A satisfying steady-state performance requirements expressed

as linear inequality and equality constraints on the matrix entries of S.

Step 2. Specify the control gain (2.8) assigning S ∈ A by selecting a matrix

W ∈ Skewn that preservesR(B) (such thatR(B) is an invariant subspace

of the linear transformation W ).

It is natural to attempt to solve Step 1 using semidefinite programming [22],

because A is a convex set and such programs often have fast and efficient numerical

implementations. Although other approaches certainly exist [21, 23], semidefinite

programming is still a natural choice because it is widely applicable in linear systems

theory [20]. The minimizing argument, S ∈ A, of the following semidefinite program
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is the assignable covariance that is closest in the sense of relative entropy to a given

ideal system covariance matrix Ŝ ∈ PDn that might not be assignable.

min
S∈A

tr(Ŝ−1 S)− logdet(S)

s. t. QS ≤ α, CS = 0.

(2.9)

The matrices Q and C represent linear inequality and equality constraints on the

entries of S, in addition to constraint (2.7).

The relative entropy of two normal distributions is not a distance metric but a

divergence measure on the set of symmetric, positive-definite matrices, and plays

a significant role in information geometry [24] and Markov process stability theory

[9, Ch. 9], and is ubiquitous in semidefinite programming [22, 25]. It is of course

possible to replace the objective in (2.9) with any convex measure of distance on PDn.

This solves Step 1. To address the problem of choosing a control gain assigning

S ∈ A, it is sufficient to choose a constant skew-symmetric matrix W such that

W = Π⊥W = Π⊥WΠ⊥. This matrix can be solved for algebraically or with a

root-finding program (such as Matlab’s fsolve).

2.3.1 Application to a Planar Linear System

As a brief illustration of covariance assignment, let us consider the planar linear

system ẋ = (A+BK)x, where

A =


−1.417 1

2.86 −1.183


 , B =


 0

−3.157


 ,

Π⊥ = BB+ =


0 0

0 1


 , Π = I − Π⊥ =


1 0

0 0




(2.10)

We seek the assignable covariance S ∈ A that is closest in the sense of relative entropy

to the ideal covariance Ŝ = 1
10
I 6∈ A. The ideal covariance represents a desired



15

steady-state variance in each state variable of 0.1 units with no cross-correlation.

Setting Q = C = 0 in the semidefinite program (2.9), we solve using cvx [18] and

obtain

S =


0.033246 0.047109

0.047109 0.16675


 .

For this system, the control matrix B is such that there is no nontrivial matrix

W ∈ Skewn satisfying W = Π⊥WΠ⊥, so K = (2.4947,−0.82357) is the only solution

to 0 = (A+BK)S + S(A+BK)T .

I extend this example in the next two chapters, and show that a receding horizon

controller can bring the system from an arbitrary covariance close to a desired. It

is not possible to extend the methodology of [5, 6] to the transient control of the

covariance; a different approach is needed in order to tackle the complete problem

of optimal covariance control. Of course, the optimal steady-state covariance control

problem was considered in [21], but the main contribution of that work was the

extension of [5] with the analytical solution of a Procrustes matrix nearness problem

[26], and also unfortunately does not extend to the transient case.

A geometric formulation of the problem has the potential for a complete per-

spective of the covariance control problem. For example, consider the following

interpretation of the covariance assignment problem afforded by the fundamental

solutions of the linear system. If the linear system ẋ = (A + BK)x is stationary at

a desired covariance Sd, then S(t) = X(t)SdX
T (t) = Sd for all t, and differentiating

this expression yields (2.6). Because X(t) is an invertible matrix, it is immediate

that the fundamental solutions assigning the desired covariance evolve in the so-called

isotropy group of Sd, a subgroup of the Lie group of invertible matrices. The isotropy

group is an example of a quadratic matrix Lie group and equation (2.6) is the defin-

ing condition for the closed-loop matrix A + BK to be in its Lie algebra. See [27]

for definitions and discussion. From this geometric perspective we may consider an

optimal covariance assignment problem using Pontryagin’s Maximum Principle and
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the language of Lie groups and Lie algebras. This is the approach taken in [28] for

a driftless system on several classic Lie groups.

In the next chapter we adopt this geometric perspective for the transient co-

variance control problem, providing optimal, time-varying control gains that take a

linear system from some initial arbitrary covariance to a desired covariance. Future

work will consider the stationary case as an optimal control problem in a quadratic

matrix Lie group.
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3. OPTIMAL COVARIANCE CONTROL

In this chapter I solve the problem of optimally stabilizing a linear system from

some arbitrary covariance to a desired covariance. This problem is naturally formu-

lated in the language of Lie group actions on manifolds and, as a consequence, we

obtain two separate examples of so-called equations of Lie type. These are differential

equations induced by the action of fundamental solutions of an invariant vector field.

The first equation of Lie type is the covariance differential equation, induced by the

left action by congruence on PDn. The second is the costate differential equation on

gl∗n, induced by the left coadjoint action of the fundamental solutions. These facts

have many possible implications for the numerical solution of the boundary value

problem arising from solution of the optimal controls, and I discuss the limitations

and advantages of some indirect and direct methods.

The starting point for the results of this chapter are classic results on optimal

control in Lie groups and coset spaces [8,29]. The connection between optimal control

of fundamental solutions and covariance control was first made in [7]. This chapter

extends [7] with transversality conditions that numerical experimentation shows are

necessary for either direct and indirect numerical methods of solving the optimal

control problem to succeed. Finally, I show that formulating the optimal control

problem on gl∗n × GLn allows the resulting boundary value problem to be reduced

to the determination of a single initial condition for the system costate. If a stable

backwards numerical integrator is available, the problem can be even further reduced

from a problem with n2 unknowns to n(n+ 1)/2 unknowns.

To my knowledge, this chapter represents the first attempt at a practical en-

gineering solution to the covariance control problem while recasting it in modern

geometric language.
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3.1 Actions of Lie Groups

Lie groups and Lie algebras : A matrix Lie group G is a subset of Rn×n endowed

with the structure of both a topological group and a smooth manifold, meaning that

the group operations of multiplication and inversion are smooth. Matrix Lie groups

appear frequently in engineering applications. The special orthogonal group SO3 is

often used in spacecraft attitude control [30] and the special Euclidean group SE3

appears frequently in robotics [31]. Both of these Lie groups are subgroups of the

general linear group,

GLn = {X ∈ Rn×n : det(X) 6= 0},

a n2-dimensional manifold with two connected components, GLn = GL+
n t GL−n . The

component containing the identity is GL+
n := {X ∈ GLn : det(X) > 0}, while

GL−n := {X ∈ GLn : det(X) < 0}. As we will see, due to property (P1) of

fundamental matrix solutions, optimal trajectories of covariance matrices are always

generated by curves in GL+
n .

For any X, Y ∈ G, denote right- and left- matrix multiplication by RX(Y ) = Y X

and LX(Y ) = XY . The maps LX and RX are diffeomorphisms of G and their

derivatives linear isomorphisms of the tangent spaces of G: THLX(Z) = XZ and

THRX(Z) = ZX for all H ∈ G, Z ∈ THG.

Let X (G) denote the set of all smooth vector fields on G. The Lie bracket of two

vector fields F,G ∈ X (G), or Jacobi-Lie bracket [27], is given by

[F,G](X) := DG(X) ·F (X)−DF (X) ·G(X), (3.1)

whereDG(X) is the Jacobian matrix or derivative of the vector fieldG andDG(X) ·Z
is the Jacobian evaluated on a vector Z ∈ TXG. A vector field F ∈ X (G) is called

right-invariant if it satisfies TXRH F (X) = F (XH) and left-invariant if it satisfies
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TXLH F (X) = F (HX). Denote the set of all left-invariant vector fields on G by

XL(G), and the set of all right-invariant vector fields by XR(G).

Remark 3.1.1: The fundamental solutions of a nonlinear dynamical system are

integral curves of a right-invariant vector field on GL+
n . To see this, recall from section

2.1 that if ẋ = f(x) is a vector field on Rn with flow ϕt(x0) then F (X(t)) = A(t)X(t)

is the vector field for the fundamental matrix solution X(t), an invertible n × n

matrix, where A(t) := Df(ϕt(x0)). We readily verify that, for any Y0 ∈ GL+
n ,

TXRY0 F (X) = A(t)XY0 = F (XY0). More to the point, with X(t) an integral curve

of F through the identity at t = 0 (due to property (P1)), X(t)Y0 is the integral

curve of F through Y0 at t = 0.

The tangent space at the identity, TIG, is isomorphic to XL(G), with the isomor-

phism provided by mapping left-invariant vector fields to their value at the identity

and mapping vectors at the identity to their left-translate in G. For example, if

F (X) ∈ XL(G) such that F (I) = Z ∈ TIG, then the map F 7→ Z has inverse

mapping Z 7→ TILX Z = F (X).

An abstract Lie algebra is a vector space V equipped with a bilinear, skew-

symmetric operator [ · , · ] : g × g → g, satisfying the Jacobi identity [Y, [Z,W ]] +

[Z, [W,Y ]]+[W, [Y, Z]] = 0, for all Y, Z,W ∈ TIG. The Lie algebra g of the Lie group

G is defined to be the abstract Lie algebra on the space TIG equipped with a Lie

bracket defined by the Jacobi-Lie bracket of left-invariant vector fields evaluated at

the identity, as follows: let Z,W ∈ TIG and F,G ∈ XL(G) such that Z = F (I) and

W = G(I). Then,

[Z,W ] := [F,G](I) = DG(I) ·F (I)−DF (I) ·G(I). (3.2)

Note that the Lie bracket of F,G ∈ XL(G) is again left-invariant, e.g. if F (X) = XA

and G(X) = XB then [F (X), G(X)] = X[A,B]. On the other hand, if F,G ∈ XR(G)

and F (X) = AX, G(X) = BX then [F (X), G(X)] = −[A,B]X. For future reference
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we introduce the exponential map exp : g→ G which, when G is a matrix Lie group,

is simply the matrix exponential exp(A) =
∑∞

i=0
1
i!
Ai, A ∈ g.

For example, the Lie algebra of the general linear group is the general linear

algebra

gln = TIGLn = Rn×n.

Applying equation (3.2), the Lie bracket of left-invariant vector fields A,B ∈ gln is

simply the matrix commutator [A,B] = AB −BA.

The fundamental correspondences between matrix Lie groups and their Lie alge-

bras are often referred to as Lie’s theorems. Concise descriptions of these results can

be found in [32, Ch. 1] and [27].

Actions of Lie groups on manifolds : Lie group actions are central to an under-

standing of the role of symmetry in differential equations. We use Lie group actions

in this thesis to describe the solutions of the covariance differential equation (2.5)

and to understand the extremal solutions of invariant optimal control problems on

Lie groups in their proper context.

Definition 3.1.2: The left action of a Lie group G on a manifold M is a smooth

map λ : G × M → M such that λ(I, S) = S, where I ∈ G is the identity, and

λ(X, λ(Y, S)) = λ(XY, S). If, instead, λ(X, λ(Y, S)) = λ(Y X, S), λ is called a right

action. We often adopt the shorthand λX(S) := λ(X,S).

A left- or right-action is said to be:

• transitive if for all R, S ∈M there exists a X ∈ G such that λ(X,R) = S;

• effective if λ(X,S) = S for all S ∈M implies that X = I;

• free if λ(X,S) = S for any S ∈ M implies that X = I, i.e. the map λ(X, · ) :

M →M has no fixed points.

The orbit of λ through S ∈M is the subset Orbλ(S) = {λ(X,S) : X ∈ G} ⊂M .

A homogeneous space is a manifold M with a transitive action λ; that is, it is a space

with only one orbit.
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Definition 3.1.3: The action by congruence of GLn on PDn is the transitive, left

Lie group action Θ : GLn × PDn → PDn defined by ΘX(S) := Θ(X,S) = X SXT .

The transitivity is a consequence of Sylvester’s Law of Inertia [19], which states

that any two real symmetric matrices are congruent provided they have the same

eigenvalue signature. PDn is therefore a homogeneous space; see [32] for details.

Recall from section 2.1, Proposition 2.2.1 that the covariance of a linear dynamical

system with linear feedback controls u = Kx is given by S(t) = X(t)S0X(t)T =

ΘX(t)(S0), where X(t) is a fundamental solution and S0 the covariance given at time

t = 0. We say that the solutions of the covariance differential equation (2.5) are

generated by the action by congruence of fundamental solutions on PDn.

For the remainder of this thesis let the inner product on Rn×n be given by the

trace pairing of A,B ∈ Rn×n: 〈A,B〉 = tr(ATB). Denote the inverse transpose of

X ∈ GLn with the shorthand X−T := (X−1)
T

.

The following actions arise naturally in optimal control problems on Lie groups.

Definition 3.1.4: The adjoint action of G on g is the left-action Ad : G× g → g

defined by AdX(A) := Ad(X,A) = TI(RX−1 ◦ LX)(A).

Definition 3.1.5: The coadjoint action of G on g∗ is the left-action Ad∗ : G×g∗ →
g defined by Ad∗X(P ) := Ad∗(X,P ) = (AdX−1)∗(P ), where (AdX−1)∗ is the dual of

AdX−1 , i.e., (AdX−1)∗(P ) = (TI(RX ◦ LX−1))∗ (P ).

For the case G = GLn, the dual of AdX−1(A) = X−1AX is given by

〈(AdX−1)∗(P ), A〉 = 〈P,AdX−1(A)〉 = 〈P,X−1AX〉

= 〈X−T P XT , A〉,
(3.3)

for all X ∈ GLn, A ∈ gln, P ∈ gl∗n. That is, Ad∗(X,P ) = X−T P XT is the coadjoint

action. The adjoint action is, of course, Ad(X,A) = X AX−1.

A group representation of a Lie group G is a homomorphism φ : G → Aut(V ),

where Aut(V ) is the group of automorphisms of a vector space V . The adjoint and
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coadjoint actions define the adjoint and coadjoint representations Ad : G → Aut(g)

and Ad∗ : G→ Aut(g∗) by X 7→ AdX and X 7→ (AdX−1)∗. See [33] for an application

of concepts from representation theory to optimal control problems on Lie groups.

We now consider infinitesimal descriptions of Lie group actions. The infinitesimal

characterization is useful for describing tangent spaces to orbits of actions [27] and

necessary for defining so-called equations of Lie type [34]. Let X (M) denote the

infinite-dimensional Lie algebra of smooth vector fields on M .

Definition 3.1.6: Given either a left- or right-action λ : G ×M → M , define a

curve in M associated to some A ∈ g by ϕλA(t, S) := λ(exp(tA), S). The infinitesimal

generator of this curve is the vector field Φλ
A ∈ X (M) defined by

Φλ
A(S) =

d

dt

∣∣∣∣
t=0

λ(exp(tA), S).

The curve ϕλA(t, S) is an integral curve of Φλ
A(S) for all S ∈M by construction.

The infinitesimal generator for congruence is

ΦΘ
A(S) =

d

dt

∣∣∣∣
t=0

exp(tA)S exp(tA)T = AS + S AT , (3.4)

for all A ∈ GLn and S ∈ PDn.

We reproduce the calculations for the infinitesimal generator of the adjoint and

coadjoint actions from [27, Ch. 9.1, 9.3] for the sake of completeness. The infinites-

imal generator of Ad is the adjoint operator, which we denote

ΦAd
A (B) =: (adA)(B) = [A,B],
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for all A,B ∈ g. For the coadjoint action Ad∗, we compute

〈ΦAd∗

A (P ), B〉 = 〈 d
dt

∣∣∣∣
t=0

Ad∗exp(tA)(P ), B〉 =
d

dt

∣∣∣∣
t=0

〈P,Adexp(−tA)(B)〉

= 〈P,−(adA)(B)〉 = 〈−(adA)∗(P ), B〉

for all B ∈ g, P ∈ g∗. Therefore, the infinitesimal generator of the coadjoint action

is the negative of the dual of the adjoint operator: ΦAd∗

A (P ) = −(adA)∗(P ). For the

case G = GLn and g = gln, ΦAd∗

A (P ) = [P,AT ].

Equations of Lie type: In preparation for our brief discussion of Lie’s method

of reduction in chapter 4 we introduce a special type of differential equation that

is intimately related to Lie group actions. The infinitesimal generator of an action

plays a key role.

It is well-known that for a left action λ : G×M →M the map Φλ : g→ X (M),

defined by A 7→ Φλ
A, is a Lie algebra anti -homomorphism, i.e.

Φλ
[A,B] = −[Φλ

A,Φ
λ
B]

for all A,B ∈ g. See [27, 34] for proofs.

It is possible to make Φλ into a Lie algebra homomorphism by re-defining the

Jacobi-Lie bracket. This is accomplished in [35] by reversing the sign of the Jacobi-

Lie bracket (3.1) — giving the so-called negative Jacobi-Lie bracket — and defining

the Lie algebra bracket using right- instead of left-invariant vector fields on the Lie

group. Although, as noted in [34], this change of sign is not strictly necessary it does

make the following discussion slightly more convenient. For the remainder of this

section only we assume that the Jacobi-Lie bracket is the negative of (3.1) and that

Φλ is a Lie algebra homomorphism.
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Definition 3.1.7: Let Φλ : g→ X (M) be a Lie algebra homomorphism, where M

is a smooth manifold and g is the Lie algebra of the Lie group G, and A : R→ g. A

differential equation for a curve Y : R→ G of the form

Ẏ (t) = Φλ
A(t)(Y (t)) (3.5)

is called an equation of Lie type.

It is easy to see that the covariance differential equation is an equation of Lie

type. With the drift and control matrices A and B fixed, the time-varying control

gain K : [0, T ] → Rm×n makes (A + BK) : [0, T ] → g a curve in the Lie algebra

and S : R → PDn the evolution of the covariance. Then Ṡ(t) = ΦΘ
A+BK(S(t)) =

(A+BK)S(t) + S(t)(A+BK)T .

The solutions of equations of Lie type are determined by fundamental solutions.

The following is Proposition 3 in [34].

Proposition 3.1.1 (Bryant): Let A : R→ g be a curve in the Lie algebra of the Lie

group G, and let λ : G×M →M be a left action on M . If X : R→ G is the solution

to Ẋ = A(t)X(t) with initial condition X(0) = I, then it is called a right-invariant

fundamental solution and gives the solutions to equation (3.5) as Y (t) = λ(X(t), Y0)

where Y0 = Y (0) is the initial condition of the curve Y (t) ∈M .

This proposition rigorously generalizes what we already knew to be true from

Proposition 2.2.1, that S(t) = Θ(X(t), S0) = X(t)S0X(t)T . We will return, briefly,

to equations of Lie type at the end of chapter 4.
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3.2 Invariant Optimal Control Problems

The remainder of this chapter is concerned with solving the following right-

invariant optimal control problem on GLn:

min
K(t)∈U , T∈[0,∞)

∫ T

0

1

2
〈K,K〉 dt,

s. t. Ẋ = (A+BK)X, X(T )S0X(T )T = Sf .

(3.6)

where the final time T is free, Sf is the output of the semidefinite program (2.9), S0

is given and U ⊂ Rm×n is a closed, convex subset.

The optimal solution trajectory X(t) for (3.6) minimizes the matrix Frobenius

norm of the control gain along fundamental solutions of the closed-loop linear system

(2.4), while ensuring that the system reaches the covariance Sf in the unspecified

time T < ∞. This problem belongs to a class of so-called invariant optimal control

problems, in which the Hamiltonian can be represented by its value at the identity

in G; this is accomplished by the identification of the cotangent bundle of the Lie

group as T ∗G = g∗ × G. This identification — called trivialization of the cotangent

bundle [36] or simply reduction in the context of geometric mechanics [27] — has

the potential to reduce the complexity of numerical algorithms for solving invariant

optimal control problems. In [37] trivialization yielded closed-form solutions to op-

timal control problems on the special orthogonal group SO3 and special Euclidean

group SE3. Our problem is formulated on GLn and so does not readily lend itself to

generic closed-form solutions.

The Hamiltonian system on g∗×G corresponding to an invariant optimal control

problem always has the following properties:

(T1) The costate evolves on g∗ independently of the state.

(T2) The costate differential equation is a Lax equation with isospectral flow.
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These properties are highly desirable from a numerical perspective, since property

(T2) introduces n additional invariants that must be preserved by the numerical in-

tegration and (T1) implies that the costate equation can be integrated independently

of the state, or even possibly offline.

In this section I show that problem (3.6) benefits from these properties, but

trivialization has the additional unforeseen benefit of reducing the 2-point boundary

value problem to the determination of the initial or final value of the costate in g∗;

the transversality condition for the Hamiltonian system on the trivialized cotangent

bundle does not depend on the final value of the state, so the problem reduces to an

initial or final value problem on the costate.

Trivialization of the cotangent bundle: The identification T ∗G = g∗×G can be

made using either left or right translation, depending on whether the optimal control

problem is left- or right-invariant. Optimal control problem (3.6) is right-invariant

so we will need the correspondence due to right translation.

Definition 3.2.1: A trivialization of the cotangent bundle is a diffeomorphism

Ψ : E × G→ T ∗G, where E is a vector space of the same dimension as G, such that

1. for all P ∈ E and X ∈ G, π◦Ψ(P,X) = x, where π : T ∗G→ G is the canonical

projection;

2. the map P 7→ Ψ(P,X) is a linear isomorphism E → T ∗XG.

The trivialization identifies each fiber T ∗XG with the space E.

Let T ∗YLX : T ∗XY G → T ∗Y G and T ∗YRX : T ∗Y XG → T ∗Y G denote the cotangent lifts

of LX and RX at Y ∈ G. The cotangent lift T ∗YRX is defined by 〈T ∗YRX P,Z〉 =

〈P, TYRX Z〉 for all Z ∈ TY G and P ∈ T ∗Y XG. The cotangent lift T ∗YLX is defined

similarly.

Note that for all X ∈ G, T ∗XLX−1 and T ∗XRX−1 are maps from T ∗I G = g∗ to T ∗XG.

Following [38], we obtain a trivialization of the cotangent bundle using either the

correspondence (P,X)↔ T ∗XLX−1 P or (P,X)↔ T ∗XRX−1 P , where (P,X) ∈ g∗×G.
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Define the right trivialization Ψ : g∗×G→ T ∗G by the map (P,X) 7→ P̄X , where

P̄X := T ∗XRX−1 P is the right-invariant 1-form defined by its value at the identity,

〈P̄X , AX〉 = 〈P, TXRX−1AX〉 = 〈P,A〉,

for all A ∈ g. Following [36], for any X ∈ G consider the map Ψ( · , X) : g∗ → T ∗XG

and its dual, Ψ∗( · , X) : TXG → g. These are linear isomorphisms of the cotangent

and tangent spaces, respectively. For the right trivialization we find that, for P ∈ g∗

and Z ∈ g,

〈Ψ( · , X), Z〉 = 〈 · ,Ψ∗(Z,X)〉

= 〈 · , TXRX−1 Z〉,

that is, Ψ∗( · , X) = TXRX−1 ( · ). It is seen that the inverse map Ψ−1 : T ∗G→ g∗×G

is given by (P̄X) 7→ (T ∗XRX P̄X , X), since P = T ∗XRX(T ∗XRX−1 P ).

We want to derive the differential equations for Hamiltonian systems on g∗ × G.

These expressions are obtained in [36] as equations (18.14) for the left trivialization of

the cotangent bundle, (P,X) 7→ P̄X = T ∗XLX−1 P . The derivation of the Hamiltonian

differential equations for right trivialization are straightforward; the following is a

corollary to the results in [36, Sec 18.3]. I only provide a sketch of the proof. We

briefly recall some basic facts on differential forms.

A differential k-form ω on a smooth manifold M is a smooth assignment of a skew-

symmetric, k-multilinear map to every point x ∈M , that is, ωx : TxM×· · ·×TxM →
R. The interior product of a k-form ω is the k − 1 form obtained by contraction

with a vector field. It is the map ω 7→ ω(v, · ) denoted ιv ω, for v ∈ X (M). The

differential of a smooth 1-form ω on M is given by the formula

dω(X, Y ) = X〈ω, Y 〉 − Y 〈ω,X〉 − 〈ω, [X, Y ]〉, (3.7)
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where X, Y ∈ X (M).

Corollary 3.2.1: The Hamiltonian system on g∗×G corresponding to the smooth

Hamiltonian function H : g∗ × G→ R is given by the differential equations

Ẋ = TXRX

(
∂H

∂P

)

Ṗ = −T ∗XRX

(
∂H

∂X

)
−
(

ad
∂H

∂P

)∗
(P )

(3.8)

Proof (Sketch): For a given trivialization Ψ : E×G→ T ∗G, the system of differential

equations for a Hamiltonian H : E × G → R are provided as equations (18.13)

in [36, Sec 18.3]:

Ẋ = (Ψ∗)−1 ∂H

∂P
(P,X), Ṗ = −Ψ−1

(
∂H

∂X
(P,X) + ιẊ dΨ(P,X)

)
,

where the Ψ−1 is a slight abuse of notation, and for right trivialization evaluates to

Ψ−1 = T ∗XRX . From the discussion above we also note that (Ψ∗)−1 = TXRX and

dΨ(P,X) = dP̄X . To compute dP̄X we use equation (3.7). Recall that [AX,BX] =

−[A,B]X, for all X ∈ G, A,B ∈ g. Then the action of dP̄X on right-invariant vector

fields is

dP̄X(AX,BX) = (AX)〈P,B〉 − (BX)〈P,A〉 − 〈P, [AX,BX]X−1〉

= 〈P, [A,B]〉,

where 〈P,B〉 and 〈P,A〉 are just constants. This yields

ιẊdP̄X = dP̄X

(
TXRX

(
∂H

∂P

)
, ·
)

=

〈
P,

[
∂H

∂P
, ·
]〉

=

〈(
ad

∂H

∂P

)∗
(P ), ·

〉
,

from which we obtain Ψ−1ιẊdP̄X =
(
ad ∂H

∂P

)∗
(P ) and the result follows.
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Remark 3.2.2: In the engineering literature, the differential equation on G in

Corollary 3.2.1 is called the state equation, and the equation on T ∗G (or in this case,

on g∗ × G) the costate equation.

Note that the infinitesimal generator for the coadjoint action appears in the

expression for the costate. This means that the costate is generated by the coadjoint

action when ∂H
∂X
≡ 0. In [38] this very fact is obtained by instead considering the

negative Jacobi-Lie bracket and defining the Lie algebra bracket on g using right-

invariant vector fields. Arguably, this is because the optimal control problems of

interest in that reference are all left-invariant.

The left trivialization with our definition of the (positive) Jacobi-Lie bracket and

left-invariant Lie algebra bracket is, of course, covered in [36].

Transversality conditions : In preparation for our discussion of the necessary

conditions for optimality of solutions to (3.6), we study the constraint set {X ∈ GLn :

X S0X
T = Sf}, and determine its tangent and normal spaces.

Consider the terminal constraint function G : PDn × GLn → Symn defined by

GS0(X) := G(S0, X) = ΘX(S0)− Sf , where Symn = Rn(n+1)/2 is the vector space of

symmetric matrices. By the implicit function theorem, if GS0 has constant rank on

GLn then the level set G = G−1
S0

(0) is a smooth embedded submanifold of GLn with

tangent space given by

TXG = {Z ∈ TXGLn : DG(X) ·Z = 0}.

The derivative of GS0 is

DGS0(X) ·Z =
d

dt

∣∣∣∣
t=0

(X + tZ)S0 (X + tZ)T = ZS0X
T +XS0Z

T ,

and has full rank for all X ∈ GLn. It suffices to show that for every X ∈ GLn and

Ẑ ∈ Symn there exists a Z ∈ TXGLn such that DG(X) ·Z = Ẑ; see [39, 40] for
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similar computations in other matrix Lie groups. Note that because Ẑ ∈ Symn there

exists W ∈ Rn×n such that Ẑ = W + W T . Then, by setting Z = WX−TS−1
0 we

obtain DGS0(X) ·Z = Ẑ. Therefore, GS0 has constant rank and G is an embedded

submanifold of dimension n(n− 1)/2.

We now derive the conditions for a point P ∈ T ∗GLn to be transverse to the

tangent space TXG. Define the normal space to be (TXG)⊥ := {P ∈ Rn×n : 〈P,Z〉 =

0 for all Z ∈ TXG}. This is a vector space of dimension n(n+1)/2 because dim(G) =

n(n− 1)/2.

Lemma 3.2.2: (TXG)⊥ = {P = WXS0 ∈ Rn×n : W = W T ∈ Symn}.

Proof. Let Z ∈ TZG. Then QT (ZS0X
T +XS0Z

T ) = 0 for all Q ∈ Rn×n so certainly

〈Q, (ZS0X
T +XS0Z

T )〉 = 0. Simplifying,

0 = 〈Q, (ZS0X
T +XS0Z

T )〉

= 〈QXS0, Z〉+ 〈Z,QTXS0〉

= 〈(Q+QT )XS0, Z〉

This holds for all Q ∈ Rn×n, Z ∈ TXG and X ∈ GLn and therefore P ∈ (TXG)⊥ ⇔
P = WXS0, for some W = Q+QT ∈ Symn.

Pontryagin’s Maximum Principle: Summing up the previous results of this

chapter and applying Pontryagin’s Maximum Principle [36, Theorem 12.2, Theorem

12.4], we obtain the following characterization of optimal solutions to problem (3.6).

Proposition 3.2.3: The optimal trajectories of the right-invariant, free-time opti-

mal control problem (3.6) are given by the following Hamiltonian system of differen-

tial equations on gl∗n × GLn:

Ṗ =
[
P, (A+BK)T

]

Ẋ = TXRX (A+BK) = (A+BK)X,
(3.9)
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where the optimal controls are K = BTP , the maximized Hamiltonian is

H(P,X) = 〈P,A+
1

2
BBTP 〉 ≡ 0,

and the final costate satisfies P (T ) = WSf , where W ∈ Symn and Sf is the terminal

covariance.

Proof. The pre-Hamiltonian of the optimal control problem is a function h : gl∗n ×
GLn × Rm×n,

h(P,X,K) = 〈T ∗XRX−1P, (A+BK)X〉 − 1

2
〈K,K〉

= 〈P,A+BK〉 − 1

2
〈K,K〉

The optimal control gain K maximizes h(P,X,K), so that 0 = ∂h/∂K = BTP −
K. The maximized Hamiltonian H : gl∗n × GLn → R is therefore H(P,X) =

maxK(t)∈U h(P,X,K) = 〈P,A+ 1
2
BBTP 〉, and Theorem 12.2 of [36] establishes that

the Hamiltonian equals 0 along optimal solutions of a free-time problem.

Note that ∂H/∂P = A + BBTP , ∂H/∂X = 0, and recall that the infinitesimal

generator of the coadjoint action is (adA)∗(P ) = [AT , P ]. The differential equations

from Corollary 3.2.1 become

Ẋ = TXRX(A+BBTP ) = (A+BBTP )X

Ṗ = −[(A+BBTP )T , P ].

Finally, Theorem 12.4 of [36] establishes that a terminal constraint X(T ) ∈ G
implies a necessary transversality condition on the terminal costate P ∈ T ∗GLn:

P (T ) ⊥ TXG. This transversality condition can be translated to the identity to



32

obtain the equivalent condition on P ∈ g∗: P (T ) ⊥ TXGX−1. Applying Lemma

3.2.2, we find that at t = T ,

0 = 〈P, TXGX−1〉 = 〈PX−T , TXG〉,

which implies that P (T )X(T )−T = WX(T )S0 for some W ∈ Symn. If X ∈ G then

X(T )S0X(T )T = Sf and therefore P (T ) = WSf .

Remark 3.2.3: Properties (T2) and (T1) are apparent from the differential equa-

tions derived. The transversality condition reduces the number of unknowns in the

boundary value problem only for the Hamiltonian system on gl∗n × GLn. Otherwise

there are 2n2 scalar unknowns corresponding to X(T ) and P (T ) or X(T ) and P (0).

It is not expected that other right- or left-invariant optimal control problems are

always reducible in this manner to initial value problems.

As mentioned earlier, the same differential equations on gl∗n are derived in [7]

without formally trivializing T ∗GLn, and the transversality condition has the same

effect of reducing the number of unknowns in the boundary value problem in that

context, as well.

3.2.1 Application to a Planar Linear System

In this section I use a so-called indirect or shooting method to find the optimal

solutions according to Proposition 3.2.3. Numerical experimentation shows that cor-

rectly specifying the transversality conditions for problem (3.6) is essential; omitting

them can cause the solver to fail or converge to a local maximum of the Hamiltonian.

We discuss some of these issues in this section, where we simulate a simple planar

system.
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Let us apply the results of the preceding section to the planar system (2.10)

considered in section 2.3:

A =


−1.417 1

2.86 −1.183


 , B =


 0

−3.157


 ,

We construct our terminal constraint from (2.9),

Sf =


0.033246 0.047109

0.047109 0.16675


 .

Numerical solution: The numerical integration of the fundamental solutions

of this simple planar system presents several challenges that are only partially sur-

mounted by the standard direct and indirect methods for solving boundary value

problems that one may find in [41], for example.

In the engineering literature there are two different numerical methods that one

typically considers for solving an optimal control problem. In so-called indirect meth-

ods one guesses values for optimal solutions at the initial or final times and “shoots”

the system forward or backward in time. The resulting trajectory is checked for opti-

mality by an error function, which allows a root-finding algorithm, such as Matlab’s

fsolve, to be used to refine the initial guess. Indirect methods will not converge to

the optimal solution unless the initial guess is sufficiently close to the optimal.

For our optimal control problem (3.6), an indirect shooting method can either

guess a symmetric matrix W and integrate the costate equation (3.9) backwards

from P (T ) = WSf , or guess an initial matrix P (0) and then verify that P (T )S−1
f

is a symmetric matrix. Therefore, a shooting method that integrates backwards

in time has n(n + 1)/2 unknowns for W in the shooting method, while a forward-

time integration has n2 unknowns for P (0). Numerical experimentation shows that

backward-time integration in ode113 is unstable in the shooting method, so it is
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preferable to use a forward-time integration even though the number of unknowns is

greater.

So-called direct methods approximate the trajectories of a dynamical system using

piecewise polynomial splines. Such methods are often called collocation methods,

because the splines are chosen to exactly satisfy the dynamics at specific points in

time. Although it is preferable to construct splines that automatically lie in GLn, it

is possible to use direct methods on Rn2
, just as in indirect methods. The issue is,

however, that in collocation-based techniques, the interpolating spline is constructed

to satisfy the dynamics exactly at specific points, and the number and placement

of these points must be chosen carefully in order for the direct method to succeed.

It is perhaps not clear how to choose the placement of these interpolating points in

a matrix manifold; moreover, the direct method introduces n2 additional unknowns

for every set of spline parameters and interpolating points, so the dimensionality of

a direct method can grow very quickly. It is expected that the extension of recent

work on generating smooth splines on compact Lie groups [42] to the non-compact

case should assist in the formulation of a computationally efficient direct method for

this problem.

Because an indirect shooting method has fewer unknowns than a direct method, I

solve the optimal control problem with a standard numerical integrator designed for

problems on Rn2
in a shooting method using Matlab’s ode113, an adaptive step-size

integrator designed to handle problems with stringent error tolerances. The adoption

of ode113 is due mainly to the lack of availability of Lie group integrators. The only

publicly available package is called DiffMan1 [43], but it only provides fixed step-size

integrators. As noted in [44, pg. 129], and references therein, it is not possible to

preserve both the Hamiltonian and the isospectrality of the costate equations using

a fixed step-size numerical integrator; these are the very quantities that one must

1During the writing of this thesis DiffMan was updated from version 2.0.0 to 2.0.1 for the first time
in 12 years, on May 1, 2012.
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use to confirm that the numerical solution of an invariant optimal control problem

was accurate.

Using Matlab’s root-finding package fsolve the optimal solution is found fairly

quickly in a few iterations. ode113 is set with relative error tolerance 1e-9 and

absolute error tolerance 1e-10. With initial covariance S0 = ( 2 0
0 2 ) the optimal final

time is found to be T = 1.3493. The initial and final costates are

P (0) =


0.044591 −0.15823

−0.15823 −0.23386


 , P (T ) =


−0.34647 −0.53583

0.035464 0.1572


 = W Sf

W =


 −9.7856 −0.44878

−0.44878 1.0695


 , Sf =


0.033246 0.047109

0.047109 0.16675


 .

The optimal cost, maximized Hamiltonian, and costate eigenvalues are shown below

in figures 3.1, 3.2 and 3.3. Note that the Hamiltonian is essentially zero and the

costate eigenvalues are constant. This implies that our numerical solution is not

inaccurate and we have found, at the very least, a local maximum of the Hamil-

tonian. It is always a concern that the obtained numerical solution corresponds

not to a global maximum of the Hamiltonian, but to a local maximum. This can

happen, for example, when a terminal constraint is enforced in the boundary value

problem solver without its corresponding transversality condition. Verifying that a

numerical solution is in fact a global maximum is difficult. Confirming the necessary

condition that the Hamiltonian and costate eigenvalues are constant is much more

straightforward.

The covariance and controls are shown in figures 3.4 and 3.5. Note that the

controls do not settle at a constant value. In the next chapter I implement the optimal

control problem presented here in receding-horizon fashion in order to stabilize the

system near a desired covariance.
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Fig. 3.1. The running cost along optimal trajectories. The optimal cost
at the final time is

∫ 1.3493
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〈K,K〉 dt = 0.759.
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Fig. 3.2. The Hamiltonian of a free-time problem should be equal to 0.
The error in the H(P ) is on the order of 1e-11, an order of magnitude
smaller than the integration tolerance.
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Fig. 3.3. The eigenvalues of the costate in gl∗n over time. It is apparent
that the trajectories are isospectral up to plotting accuracy.
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4. RECEDING HORIZON COVARIANCE CONTROL

The philosophy and motivation underlying receding horizon control methods is

the desire to convert open-loop control laws into feedback control laws.

In the previous chapter we applied Pontryagin’s Maximum Principle to obtain the

time-varying controls that minimize a cost functional over a finite interval of time.

Generally speaking, the solution of finite-horizon optimal control problems always

yields time-dependent controls via solution of a two-point boundary value problem.

It is by far preferable to instead obtain optimal controls as functions of the system

state. Such feedback controls obtain from infinite-horizon control problems. The

prototypical example of such problems is the Linear Quadratic Regulator problem

[12], where the solution of a matrix Ricatti equation yields optimal feedback controls

provided the linear system is stabilizable. This prototypical example is, however,

far from typical. In general, the length of the horizon effectively prevents the use of

direct and indirect numerical methods and one solves the infinite horizon problem

using the Hamilton-Jacobi-Bellman equation, a PDE which has the Hamiltonian

differential equations as its characteristic equations [36, Ch. 17.2]. Depending on

the optimal control problem, the PDE can be significantly more difficult to solve [45].

Receding horizon control represents a pragmatic — and successful — compromise

to the dilemma presented by the fact that finite-horizon optimal control problems are

easier to solve than infinite-horizon optimal control problems, by repeatedly solving

a sequence of finite-horizon optimal control problems on the interval [t, t + T ] at

discrete time intervals of length δt; the corresponding receding horizon control law

takes the solution at time t of the optimal control problem over the interval [t, t+T ]

and applies it as a constant control over the interval [t, t+ δt]. At time t+ δt another

optimization problem is solved over [t+ δt, t+ δt+T ] and its optimal control at time

t+ δt is fixed over the interval [t+ δt, t+ 2δt]. In this manner we obtain a receding
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horizon control law that is inherently discrete because it samples the system state

every δt seconds.

In the limit as δt → 0 we obtain the idealized receding horizon controller, where

a finite-horizon optimal control problem is solved at every instant of time. In this

ideal case the receding horizon controller is said to be inverse optimal [45,46] because

it minimizes a modified cost function over the interval [0,∞). It is due to this

inverse optimal property of idealized receding horizon control strategies that we may

claim that general receding horizon controllers approximate closed-loop feedback

control laws. Note that this limiting case is very similar to Bellman’s method of

dynamic programming, as discussed in [36, Sec 17.3], the exception being that the

Hamilton-Jacobi-Bellman equation resulting from inverse optimality is not exactly

the Hamilton-Jacobi-Bellman equation for the optimal control problem solved at

every instant in time.

Regardless, implementation of the idealized receding horizon controller is essen-

tially equivalent to solving a Hamilton-Jacobi-Bellman equation. It is also impossible

to numerically solve a boundary value problem at every instant of time. The chal-

lenge presented by receding horizon control, therefore, is to find the largest update

interval δt and the smallest horizon length T such that the receding horizon control

strategy stabilizes the control system with desirable steady-state properties. The

update interval δt can be taken as an upper bound on the amount of time permitted

for numerically solving the boundary value problem for each optimal control on the

interval [t, t + T ]. The horizon length T is regarded as a truncation of the infinite

horizon problem. Intuitively speaking, an increase in the horizon length improves

system stability at the cost of increasing the time needed to numerically solve the

boundary value problem.

The situation is further complicated when one considers implementing receding

horizon control in real-time. In this setting hardware limitations impose a hard lower

upper bound on the update interval δt, which in turn implies a lower bound on the
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horizon length T . Recently it was shown that there always exist a sufficiently large

horizon T such that a receding horizon control strategy is stabilizing [47], but in

general the horizon length must be chosen according to some heuristic process.

The remainder of this thesis is concerned with a receding horizon implementation

of the results of the prior chapter, yielding, to my knowledge, the first implementa-

tion of a receding horizon control strategy to a control system on a matrix Lie group.

In the first section I design a heuristic control strategy modeled after the dual-mode

strategy of [48]. The first mode of the receding horizon controller solves a sequence

of free-time optimal control problems with a terminal constraint on the terminal

covariance. When the optimal time to reach the desired covariance falls below the

update time of the receding horizon controller, the second mode triggers and Skel-

ton’s controller assigns the system to a covariance close to the desired covariance. I

conclude the chapter with a discussion of the possible implications of solving families

of boundary value problems for equations of Lie type on homogeneous spaces. As

shown in chapter 3, geometric methods significantly reduced the complexity of the

resulting boundary value problem; it is expected that Lie’s method of reduction will

reduce the complexity of receding horizon implementations.

4.1 Dual-Mode Receding Horizon Control Strategy

Our control system of interest is given by the differential equation Ẋ = (A +

BK)X, and our receding horizon control strategy will be formed by solving optimal

control problem (3.6) repeatedly, but over different time intervals and with different

initial covariances.

With the terminal covariance fixed at a pre-determined value Sf , the optimal

control gain K and optimal final time T may be considered parameterized by an
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initial covariance S. To emphasize the dependence of the optimal controls on the

initial covariance, adopt the following notation for solutions of (3.6):

(
K( · , S), T (S)

)
= arg min

K,T

∫ T

0

1

2
〈K,K〉 dt,

s. t. X(T )S X(T )T = Sf ,

Ẋ = (A+BK)X,

(4.1)

where T : PDn → [0,∞) is the optimal time it takes the covariance to reach Sf from

S ∈ PDn and K : [0, T (S)]× PDn → Rm×n is the control achieving that transfer.

Remark 4.1.1: In order to justify the claim that the optimal control and optimal

terminal time are functions on S ∈ PDn it is necessary to show that optimal controls

exist for every S ∈ PDn. The notation in (4.1) is only for convenient exposition.

If there exists one optimal trajectory for some particular initial covariance S, then

there exists a sufficiently small neighborhood of that trajectory X(t)S X(t)T on

which we may define K(t, · ) and T as local functions. The question of existence and

uniqueness of optimal controls is outside the scope of this thesis, but some discussion

may be found in [36]. Questions of controllability are discussed in [7].

Using notation (4.1), we now implement our optimal control problem of interest

in a receding-horizon fashion, as follows.

Definition 4.1.2: An idealized receding horizon control strategy for (3.6), denoted

RH(0), is a state-feedback control law obtained from the repeated solution of (4.1)

at every instant of time.

Let S0 be the initial covariance given at the start of the receding horizon strategy.

The state-feedback control is the map KRH(0) : PDn → Rm×n defined by

KRH(0)(S) = K(0, S),
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where K(0, S) = BTP (0) is the initial value of the optimal controls taking S to

Sf in T (S) units of time. The closed-loop dynamics are given by Ẋ = (A +

BK(0, X S0X
T ))X.

First of all, the idealized receding horizon feedback control KRH(0) requires solu-

tion of a boundary value problem at every instant of time; unless a feedback control

law is already at hand — in which case a receding horizon implementation is unnec-

essary — the idealized receding horizon controller is impossible to implement. It is

therefore necessary to introduce a delay greater than the computational time nec-

essary to solve the boundary value problem when implementing (3.6) in a receding-

horizon fashion in real-time.

Secondly, the limiting behavior of the idealized controller may not be stabilizing.

The terminal constraint X(T )S X(T )T = Sf in problem (3.6) ensures that the re-

ceding horizon controller brings the system covariance arbitrarily close to Sf from

the initial covariance S. When S = Sf , however, the optimal time is T = 0 and so

the optimal controls cannot be found by applying Pontryagin’s Maximum Principle

to (3.6). This issue implies that a different control problem must be formulated in

order to stabilize the system at Sf .

Both of these concerns motivate the following dual-mode receding horizon control

strategy, modeled after the results of [48].

Definition 4.1.3: The dual-mode receding horizon control strategy for (3.6), de-

noted RH(δt), is a state-feedback control law obtained from the repeated solution

of (4.1) every δt seconds.

Let S be the system covariance at time ti. The optimal control K(0, S) ∈ Rm×n

is applied as a constant control over the interval [ti, ti + δt] if the optimal time T (S)

to reach Sf from S is greater than δt. If T (S) is less than the update time, the

constant feedback gain (2.8),

K(Sf ) := −B+(ASf + SfA
T )(I − 1

2
BB+)S−1

f −B+QS−1
f
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solving 0 = (A+BK(Sf ))Sf +Sf (A+BK(Sf )), is applied over the interval instead.

This dual-mode logic results in a state- and time-dependent, piecewise-constant

feedback control KRH : PDn → Rm×n defined by

KRH(S) =




K(0, S), if T (S) > δt

K(Sf ), if T (S) ≤ δt.

This control is fixed and constant over each interval [ti, ti + δt]. The closed-loop

dynamics are given by Ẋ = (A+BKRH)X.

4.1.1 Application to a Planar Linear System

We illustrate the dual-mode strategy on our running example. The update time

has a significant effect on the steady-state behavior of the system.

The figures below show the control effort and the evolution of the covariance

for the dual-mode controller RH(δt) with δt = 0.05 seconds (20Hz). As we can

see in Figure 4.1, the first-mode of the receding horizon controller terminates after

t = 1.3 seconds, with the second mode kicking in at t = 1.35 seconds and applying

the control K(Sf ) = (2.4947,−0.82357) computed in chapter 2. The dashed lines

show the desired covariance Sf , and it is clear that the steady-state behavior of

the covariance — which is stable due to the fact that K(Sf ) solves the steady-state

covariance equation 0 = (A+BK(Sf ))Sf +Sf (A+BK(Sf )) — is to oscillate about

the desired value Sf .

It is expected that with a smaller δt the first mode of the controller will termi-

nate at a covariance that is closer to the desired, and the oscillations will be smaller.

However, the update time cannot be made arbitrarily small, due to the practical con-

cerns mentioned above and also due to the fact that an indirect or direct numerical

method cannot solve an optimization problem of arbitrarily small duration. Numer-
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ical experimentation indicates that our indirect shooting method cannot solve the

boundary value problem when the optimal time is smaller than δt = 0.05 seconds.

It is worth noting the discontinuity in the controls caused by the switch in the

controller from the first to the second mode; see Figure 4.2. The switch to the

stabilizing mode of the controller results in a large discontinuity in the controls that

might be impossible to implement. It is natural to approximate the discontinuity

with an acceptably smooth curve using interpolating splines, for example. However,

smoothing the control gain in this manner could cause the system to deviate from

the desired covariance before K(Sf ) is reached.
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Fig. 4.1. The evolution of the covariance under the dual-mode receding
horizon controller RH(0.05). The first mode of the controller brings
the covariance as close as possible to the desired and the second applies
ensures the covariance remains close to the desired covariance, shown
dashed.
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Fig. 4.2. The controls corresponding to the dual-mode receding horizon
controller RH(0.05). Note the large discontinuity in the controls in the
switch from the first to the second mode of the controller.

4.2 Lie’s Method of Reduction

I conclude this chapter with a digression on a possible application of Lie’s Method

of Reduction, a classic approach to the integration of equations of Lie type, to the

solution of the boundary value problem resulting from optimal control problem (3.6).

First, recall that the isotropy subgroup of the action by congruence is the subgroup

HΘ
S := {X ∈ GLn : ΘX(S) = S}, and its Lie algebra is the isotropy algebra hΘ

S :=

{A ∈ gln : ΦΘ
A(S) = 0}.

Lie’s method of reduction begins with an arbitrary curve through a specified

initial condition. Let X0 : [0, T ]→ GLn be such a curve satisfying Θ(X0(T ), S0) = Sf .

Let X1 : [0, T ] → GLn be the fundamental solution with differential equation Ẋ1 =

(A+BK1)X1, satisfying Θ(X1(T ), S1) = Sf where S1 = Θ(Y, S0), for some Y ∈ GLn

(S1 and S0 are congruent by Y ). In this way we obtain two separate curves through

S1, Θ(X0(t)Y −1, S1) and Θ(X1(t), S1), terminating at the same point. Now, let X̃ :
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[0, T ]→ HΘ
S1

be a curve in the isotropy subgroup of S1. Then, Θ(X0(t)Y −1 X̃(t), S1)

is obviously also a curve through S1. Lie’s Method of Reduction is to find the

curve X̃(t) ∈ HΘ
S1

such that X0 Y
−1 X̃ = X1, that is, we seek the curve through

the isotropy group of S1 that transforms the arbitrary curve X0 into a fundamental

solution satisfying the differential equation Ẋ1 = (A+BK1)X1.

We proceed by deriving a differential equation for ˙̃X for our particular applica-

tion. Actually, this is a slight modification of Lie’s method, see [34] for details. If

X0 Y
−1 X̃ = X1 then

Ẋ1 = (A+BK1)X1 = Ẋ0Y
−1X̃ +X0Y

−1 ˙̃X

˙̃X = Y X−1
0

(
(A+BK1)X1 − Ẋ0Y

−1X̃
)

= Y X−1
0

(
(A+BK1)X0 − Ẋ0

)
Y −1X̃

If we assume that Ẋ0 = (A+BK0)X0 then this reduces to the right-invariant differ-

ential equation for X̃ ∈ HΘ
S1

,

˙̃X = Y X−1
0 (B(K1 −K0))X0Y

−1X̃.

That is, the difference between two different boundary value problems for the same

differential equation can be expressed using a curve in the isotropy group whose

evolution depends on the difference between controls. It remains to derive a numerical

algorithm that utilizes this result in a direct or indirect method.
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5. CONCLUSION

This thesis solved the problem of optimally controlling the covariance associated

with a linear system from an arbitrary initial condition to a desired terminal condi-

tion. I showed that the formulation of the Hamiltonian system on the trivialization of

the cotangent bundle resulted, with the transversality condition, in a boundary value

problem with significantly fewer scalar unknowns. I implemented these results in a

receding horizon control strategy suitable for implementation in a real-time setting.

Judging from the dearth of literature on the subject, the resulting strategy appears

to be the first example of a receding horizon controller formulated on a matrix Lie

group, but suffers from discontinuities in the controls caused by switching between

controller modes. I conclude with a number of recommendations for future work.

Geometric numerical integration and real-time optimal control : The conclu-

sions of this thesis were illustrated on a planar linear system. The extension of these

results, however, to linear systems of dimension n ≥ 3, and even to nonlinear systems,

necessitates numerical methods that are adapted to the geometric structure of the

general linear group. In Chapter 3, a fast adaptive step-size Runge-Kutta integrator

ode113 designed for problems on Rn2
was used to solve the boundary value problem.

However, very high tolerances were necessary in order to preserve the isospectrality

of the costate trajectories on gl∗n and to ensure the Hamiltonian remained constant.

Numerical experimentation also showed that the boundary value problem often could

not be solved by relaxing these tolerances. It is possible that these difficulties were

caused by the fact that ode113 does not generate points that lie on the manifold

of interest; it does not generate invertible matrices at every timestep. Noting also

that fixed step-size Runge-Kutta schemes cannot preserve polynomial invariants of a

dynamical system of degree n ≥ 3 [49, Theorem 3.3, pg. 106], I provide the following

conjecture.
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1) The extension of this work to higher dimensional linear systems necessitates

the use of fast algorithms that integrate on the manifold of interest.

It would be interesting to see how it might be possible to engineer trade-offs between

accuracy and speed of numerical integration in a geometric integrator. Once a suit-

able set of direct and indirect methods for integration on Lie groups is identified, one

might attempt to address the following question:

2) How can we achieve useful trade-offs between accuracy and computational

speed in the real-time optimal control of control systems on matrix Lie groups?

Alternative receding horizon control strategies : The dual-mode receding hori-

zon control strategy presented in the previous Chapter was based primarily on the

approach presented in [48].

As a rule, optimal control problems with terminal constraints are more difficult

to solve than those with terminal costs. According to the discussion in [47], it is

possible to design a stabilizing receding horizon controller that has neither terminal

costs nor terminal constraints, provided that the optimization horizon is sufficiently

long. In our particular case, longer optimization horizons results in longer com-

putational times and the inclusion of terminal costs usually resulted in an optimal

control problem that was not right- or left-invariant. For this reason we designed the

first mode of our receding horizon controller to solve a sequence of free-time optimal

control problems with a terminal constraint. This was acceptable because the time

to solve the boundary value problem decreased as the initial covariance neared the

desired, and because the transversality condition for the trivialized Hamiltonian sys-

tem reduced the number of scalar unknowns in the boundary value problem. As a

consequence, however, it was necessary to design a second mode in the receding hori-

zon control strategy to stabilize the system, introducing an unrealistic discontinuity

in the controls.
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3) Investigate alternative receding horizon implementations of optimal control

problems on gl∗n × GLn that do not rely on discontinuous controls.

Optimal control problems on quadratic matrix Lie groups : The objective of

this thesis was to drive the covariance of a system as close as possible to a desired

covariance. This goal was split into two separate objectives; the first was to control

the system to a desired covariance and the second to fix the system at that covariance

in steady-state. The latter objective is actually an example of an optimal control

problem on a quadratic matrix Lie group. A special type of these optimal control

problems was recently solved in [28].

4) Solve the problem of optimally controlling affine control systems in arbitrary

quadratic matrix Lie groups.
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