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ABSTRACT

Stability and Convergence of High Order Numerical Methods for Nonlinear

Hyperbolic Conservation Laws. (August 2012)

Orhan Mehmetoglu, B.S., Bilkent University

Chair of Advisory Committee: Dr. Bojan Popov

Recently there have been numerous advances in the development of numerical

algorithms to solve conservation laws. Even though the analytical theory (existence–

uniqueness) is complete in the case of scalar conservation laws, there are many nu-

merically robust methods for which the question of convergence and error estimates

are still open. Usually high order schemes are constructed to be Total Variation

Diminishing (TVD) which only guarantees convergence of such schemes to a weak

solution. The standard approach in proving convergence to the entropy solution is to

try to establish cell entropy inequalities. However, this typically requires additional

non-homogeneous limitations on the numerical method, which reduces the modified

scheme to first order when the mesh is refined. There are only a few results on

the convergence which do not impose such limitations and all of them assume some

smoothness on the initial data in addition to L∞ bound.

The Nessyahu-Tadmor (NT) scheme is a typical example of a high order scheme.

It is a simple yet robust second order non-oscillatory scheme, which relies on a non-

linear piecewise linear reconstruction. A standard reconstruction choice is based on

the so-called minmod limiter which gives a maximum principle for the scheme. Un-

fortunately, this limiter reduces the reconstruction to first order at local extrema.

Numerical evidence suggests that this limitation is not necessary. By using MAPR-

like limiters, one can allow local nonlinear reconstructions which do not reduce to
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first order at local extrema. However, use of such limiters requires a new approach

when trying to prove a maximum principle for the scheme. It is also well known that

the NT scheme does not satisfy the so-called strict cell entropy inequalities, which is

the main difficulty in proving convergence to the entropy solution.

In this work, the NT scheme with MAPR-like limiters is considered. A maximum

principle result for a conservation law with any Lipschitz flux and also with any k-

monotone flux is proven. Using this result it is also proven that in the case of strictly

convex flux, the NT scheme with a properly selected MAPR-like limiter satisfies an

one-sided Lipschitz stability estimate. As a result, convergence to the unique entropy

solution when the initial data satisfies the so-called one-sided Lipschitz condition is

obtained. Finally, compensated compactness arguments are employed to prove that

for any bounded initial data, the NT scheme based on a MAPR-like limiter converges

strongly on compact sets to the unique entropy solution of the conservation law with

a strictly convex flux.
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CHAPTER I

INTRODUCTION

A conservation law states that the rate of change of the total amount of a par-

ticular measurable quantity in a fixed domain Ω ⊂ Rd is governed by the flux of

the quantity across the boundary of Ω. The general set-up for the conservation

law consists of m equations in d spatial dimensions. Denoting the density vector

of the conserved quantities by u = u(x, t) = (u1(x, t), . . . , um(x, t)) and the flux by

f = f(u) = (f1(u), . . . , fd(u)), the conservation law is

d

dt

∫
Ω

u dx = −
∫
∂Ω

f(u) · n dS, (1.1)

where n denotes the outward unit normal along Ω, so that the integral on the right

measures the outflow. From (1.1) we derive the initial-value problem for a general

system of conservation laws:
ut +∇x · f(u) = 0, (x, t) ∈ Rd × (0,∞),

u = u0, (x, t) ∈ Rd × {t = 0},
(1.2)

where u0 = (u0
1, . . . , u

0
m) is the given function describing the initial distribution of u.

The system is called hyperbolic when for each τ ∈ Rd and ω ∈ Rm, the m×m matrix∑d
j=1 τjf

′
j(ω) is diagonalizable with real eigenvalues.

In general, even for smooth initial data the classical solutions of nonlinear con-

servation laws (1.2) fail to exist for all time because of the formation of shock discon-

tinuities. For this reason, it is necessary to extend the notion of solution to (1.2) to

the class of weak solutions.

The journal model is SIAM Journal of Numerical Analysis.
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Definition 1. A function u ∈ L∞loc(Rd× (0,∞))m is said to be a weak solution of the

initial value problem (1.2) if∫ ∞
0

∫
Rd

{
u · ∂φ

∂t
+

d∑
j=1

fj(u) · ∂φ
∂xj

}
dx dt+

∫
Rd
u0(x) · φ(x, 0) dx = 0, (1.3)

for all φ ∈ C1
0(Rd × (0,∞))m.

However, it turns out that there can be infinitely many weak solutions of (1.2)

with the same initial data. In order to select a unique weak solution, that has physical

significance, a viscosity limit solution may be considered. For this, we associate with

(1.2) the following parabolic system

uεt +∇x · f(uε) = ε∆uε, ε > 0, (1.4)

where ε∆uε is the viscosity term. For a more general form of parabolic regularization,

see [61].

Definition 2. A function u is said to be a viscosity limit solution of (1.2), if for a

given compact set K ∈ Rd × [0,∞), there exists a sequence of sufficiently smooth

solution (uε)ε of (1.4) such that

||uε||L∞(K) ≤ C(K), (1.5)

where C(K) is a constant that might depend on K, but is independent of ε, and

uε → u as ε→ 0 a.e. on K. (1.6)

The notion of viscosity solution is closely related to the concept of entropy solu-

tion. A convex function S : Ω→ R is called an entropy for the system of conservation

laws (1.2) if there exist d entropy fluxes Qj : Ω→ R, j = 1, . . . , d such that

S ′(u)tf ′j(u) = Q′j(u)t, j = 1, . . . , d. (1.7)
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The entropy condition is described as the following inequality

St(u) +∇x ·Q(u) ≤ 0, (1.8)

which is satisfied in the distributional sense, where Q(u) := (Q1(u), . . . , Qd(u)).

Definition 3. A weak solution u of (1.2) is called an entropy solution, if the inequality∫ ∞
0

∫
Rd

{
S(u)

∂φ

∂t
+

d∑
j=1

Qj(u)
∂φ

∂xj

}
dx dt+

∫
Rd
S(u0(x))φ(x, 0) dx ≥ 0, (1.9)

is satisfied for all test functions φ ∈ C1
0(Rd × (0,∞)), φ ≥ 0 and for all possible

entropy pairs (S,Q).

It is easy to see that a viscosity limit solution of (1.4) is a weak entropy solution

of (1.2). However, the reverse implication, that a weak entropy solution, is a viscosity

limit solution requires a special treatment. Although it is known to be correct in the

scalar case, there is a limited success of its extension to the case of systems in one

dimension, not to mention general systems.

Very little is known about the multidimensional systems of conservation laws.

The fundamental questions of existence, uniqueness and stability remain open for

general systems, see [9, 13, 59]. One of the few achievements in the area is due to

Kato [30] who proved a short time existence of Hs-solution for a time interval [0, T ],

with T = T (||u0||Hs).

More is known for one-dimensional systems. The first existence result in this

context is due to Glimm [19] who proved convergence of his random choice method

to a weak entropy solution of strictly hyperbolic systems of conservation laws subject

to initial condition with sufficiently small total variation. This result is based on

a compactness argument which, by itself, does not guarantee the uniqueness. The

uniqueness of the solutions obtained as limits of Glimm was proven by Bressan for
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a special case in [6], where he also showed that these solutions depend Lipschitz

continuously on the initial data, in the L1 norm. There are many more results based

on the ideas of Glimm that we do not discuss here. More recently, Bianchini and

Bressan [4] proved the existence of a viscosity limit solution to the strictly hyperbolic

system under the assumption that the initial data is of small total variation and that

the vanishing viscosity limit is precisely the limit of the Glimm solution of (1.2) in

one dimension (d = 1). Another approach to prove existence, using the theory of

compensated compactness, was introduced by Tartar and Murat [46, 62] and further

developed by DiPerna [15], Chen [7] and many others. The solutions found in this

setting are in the much larger space L∞, and since the known uniqueness results apply

only to BV solutions with small variations, see [4, 19], it remains a difficult open

problem to prove the uniqueness in the class of large initial data (BV or L∞). In [15],

DiPerna established convergence of the artificial viscosity method for the isentropic

equations of gas dynamics (2× 2 system) in one space dimension for γ belonging to

the sequence (2k + 3)/(2k + 1) with k = 2, 3, . . . . This result was later extended for

γ ∈ (1,∞) by Lions, Perthame and Souganidis in [40]. Similar to Glimm’s method,

there are many results based on the compensated compactness arguments which we

don’t mention here.

The analytical theory is complete in the case of scalar conservation laws. The

existence, uniqueness and global stability of vanishing viscosity and “entropy” solu-

tions for a scalar conservation law in one space dimension was first established by

Oleinik in [49]. Oleinik proved that in the case of a strictly convex flux f , there exists

a unique solution u of (1.2) with m = 1, d = 1 and u0 ∈ L∞(R), such that

u(x+ z, t)− u(x, t) ≤ C

t
z, (1.10)

for all t > 0 and x, z ∈ R, z > 0. The inequality (1.10) is called Oleinik entropy
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condition. This result can also be considered as a regularity result since an L∞

solution u satisfying (1.10) is of locally bounded total variation for t > 0 and therefore,

the solution immediately becomes more regular in time (BV ), even though the initial

data is merely bounded (L∞). A more general existence and uniqueness result of a

weak entropy solution, see (1.8), in several space dimensions was proven by Volpert

in [67] for BV initial data. He also showed that the unique entropy solution in this

class coincides with the viscosity limit solution. Later, these results were extended by

Kruzkov [33] to the class of L∞ solutions. The proof relies on doubling the variables

and using the family of Kruzkov’s entropy pairs

S(u) = |u− c|, Q(u) = sgn(u− c)(f(u)− f(c)), c ∈ R, (1.11)

to show an L1-contraction property and thus, uniqueness. A more recent result due

to Panov [53] shows that in the case of convex flux and one space dimension, a single

entropy inequality is enough to select the unique entropy solution.

Next let us mention some numerical methods for hyperbolic conservation laws.

Early constructions of approximate solutions for conservation laws relied on non-

physical stabilization techniques such as artificial viscosity proposed by von Neumann

and Richtmyer [68]. In 1959 Godunov [20] proposed a new approach for approximat-

ing solutions of one dimensional compressible fluid flow. His scheme, as originally

presented, is based on solving Riemann problem exactly for one time step, and then

averaging the exact solution over each cell. The time step in the scheme needs to

be chosen sufficiently small so that the Riemann fans emerging from the interfaces

between two cells do not interact. This can be achieved by employing a Courant-

Friedrichs-Lewy (CFL) condition [11]. Godunov’s method preserves monotonicity,

but it is only first order accurate, and this fact was explained in his theorem that

monotonicity preserving constant coefficient schemes can be no better than first order
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accurate. Also in 1965, Glimm [19] introduced a first order method which instead of

averaging, randomly samples the exact solution of piecewise constant initial data.

In order to construct higher order methods a lot of research has been done in

the area of nonlinear schemes for conservation laws. The pioneering works are due to

Boris and Book [5] and van Leer [63, 64, 65, 66]. In his series of papers, van Leer, de-

veloped a second order Godunov-type scheme, monotone upstream-centered scheme

for conservation laws (MUSCL), which uses Riemann solvers on piecewise linear re-

constructions. Later, Woodward and Colella [69], developed the piecewise parabolic

method (PPM), which may be considered as a further refinement of MUSCL. Par-

allel to these developments Roe [57], Osher and Solomon [51], Harten, Lax and van

Leer [24], Einfeldt [16] and many others proposed approximate Riemann solvers and

generated variants of the original Godunov method.

The construction of high order total-variation-diminishing (TVD) schemes was

initiated by Harten [21]. The TVD property guarantees convergence to a weak so-

lution. Earlier constructions of approximate solutions in the finite-difference setting

used monotonicity property to guarantee convergence, see [12, 58]. However, as it was

proven by Harten, Hyman and Lax [23], these schemes can be at most first order accu-

rate. TVD schemes, on the other hand, may be higher order accurate away from the

extrema, see [50]. The conditions on the limiters used in MUSCL and TVD schemes

to establish the desired properties were considered by Sweby in [60]. The develop-

ment of higher order non-oscillatory schemes based on different limiters started with

the introduction of essentially non-oscillatory (ENO) schemes by Harten, Engquist,

Osher and Chakravarthy [22, 25]. In order to improve the order of accuracy of these

type of schemes weighted ENO (WENO) schemes were introduced in [27, 42].

The main difficulty in Godunov-type schemes is the requirement of a detailed

solution of Riemann problem at each time step. A well-known method to avoid the
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solution of a Riemann problem is grid staggering in time. A prototype of a central

difference approximation that uses this approach is the first order Lax-Friedrichs

(LxF) scheme [18] which relies on piecewise constant reconstruction. Although LxF

scheme is robust and stable, it suffers from excessive dissipation. To circumvent

this problem Nessyahu and Tadmor [47] used the same philosophy with piecewise

linear reconstruction and developed a second order non-oscillatory central scheme for

one dimensional scalar conservation law. This method was later extended to two

dimensional case by Jiang and Tadmor [28] and higher order of accuracy by Liu and

Tadmor [43]. Due to their simplicity and stability there is a continued interest in the

development of high order non-oscillatory central schemes. Some of the successful

implementations and improvements are due to Levy and Tadmor [39], Kurganov and

Tadmor [35], Kurganov, Noelle and Petrova [34] for Euler equations, Tadmor and

Wu [2] for magneto-hydrodynamics equations, Bereux and Sainsaulieu for hyperbolic

systems with relaxation source terms [3].

The central type schemes are numerically efficient and observed to have better

accuracy than first order schemes, but there are only a few theoretical results known

about them, see for example [22, 25, 26, 27, 28, 35, 47, 55]. This study considers the

NT scheme with modified minmod limiter inspired by the so-called minimum angle re-

construction (MAPR) introduced by Christov and Popov in [10], and intends to prove

stability and convergence results for the largest possible class of initial conditions.

Chapter II briefly describes the NT scheme with the MAPR-like limiter. In

Chapter III, a maximum principle for the NT scheme with the new limiter is proven

for a conservation law with a Lipschitz flux and also with any k-monotone flux for

k ≥ 2. Chapter IV considers a conservation law with strictly convex flux, and es-

tablishes an one-sided Lipschitz stability estimate for the NT scheme with a properly

selected MAPR-like limiter. In Chapter V, the compensated compactness arguments
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together with the stability results from previous chapters are used to prove that for

any bounded initial data, the NT scheme converges strongly on compact sets to the

unique entropy solution. Chapter VI summarizes the results and open problems.
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CHAPTER II

NESSYAHU-TADMOR (NT) SCHEME

In this chapter, we are going to recall the setup of second order non-oscillatory

central difference approximations to the scalar conservation law
ut + f(u)x = 0, (x, t) ∈ R× (0,∞),

u = u0, (x, t) ∈ R× {t = 0}.
(2.1)

We restrict our attention to the one-dimensional staggered Nessyahu-Tadmor

(NT) scheme [47], which was the motivation for the construction of many other central

staggered schemes, see for example [1, 10, 28, 35]. Unlike the upwind schemes, central

schemes avoid the intricate and time consuming Riemann solvers. A fundamental step

in the design of such numerical algorithms is a piecewise linear slope reconstruction,

see for example [25, 47]. In order to guarantee the overall non-oscillatory nature of

the approximate solution, nonlinear limiters such as minmod, generalized minmod,

UNO, ENO and WENO are widely used. An unfortunate requirement of all proofs is

that the piecewise linear reconstruction used must reduce to first order (zero slope) at

local extrema in order to prove a maximum principle for the scheme, see for example

[47]. Imposing such a limitation could deteriorate the performance of the methods.

When this limitation is not imposed, there are typically no theoretical results for

the methods, see for example [10, 22, 25, 47]. We consider a class of nonlinear

reconstructions which include and are motivated by the so-called minimum angle

plane reconstruction (MAPR) introduced in [10]. The key idea is that at local extrema

the slope of the reconstruction is not set to zero but it is limited by the smallest local

slope.
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Let v(x, t) be an approximate solution to (2.1), and assume that the space mesh

∆x and the time mesh ∆t are uniform. Let xj := j∆x, j ∈ Z and tn = n∆t, n ∈ N.

We define

vnj :=
1

∆x

∫ x
j+1

2

x
j− 1

2

v(x, tn) dx (2.2)

to be the average of v at time tn over (xj− 1
2
, xj+ 1

2
). Next, assume that v(·, tn) is a

piecewise linear function of the form

v(x, tn) =
∑

Lj(x, t
n) :=

∑(
vnj + (x− xj)

1

∆x
v′j

)
χj(x), (2.3)

where χj is the characteristic function over (xj− 1
2
, xj+ 1

2
) and 1

∆x
v′j is the numerical

derivative of v(x = xj, t
n) which is yet to be determined. We proceed by integrating

(2.1) over (xj, xj+1)× (tn, tn+1) which yields

vj+ 1
2
(tn+1) =

1

∆x

∫ x
j+1

2

xj

Lj(x, t
n) dx+

∫ xj+1

x
j+1

2

Lj+1(x, tn) dx


− 1

∆x

(∫ tn+1

tn
f(v(xj+1, τ)) dτ −

∫ tn+1

tn
f(v(xj, τ)) dτ

)
.

(2.4)

The first two integrands on the right-hand side of (2.4), Lj(x, t
n) and Lj+1(x, tn), can

be integrated exactly and if the CFL condition (with mesh ratio λ := ∆t
∆x

)

λ max
xj≤x≤xj+1

|f ′(v(x, t))| ≤ 1

2
, j ∈ Z, (2.5)

is satisfied, then the last two integrands on the right-hand side of (2.4), f(v(xj, τ)) and

f(v(xj+1, τ)), can be integrated approximately by the midpoint rule at the expense

of O(∆t)3 local truncation error. Thus, we arrive at

vn+1
j+ 1

2

=
1

2
(vnj + vnj+1) +

1

8
(v′j − v′j+1)− λ

(
f(v

n+ 1
2

j+1 )− f(v
n+ 1

2
j )

)
. (2.6)

The approximate midpoint value in time v
n+ 1

2
j , satisfying second order accuracy re-
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quirement, can be chosen as

v
n+ 1

2
j = vnj −

1

2
λf ′j, (2.7)

owing to Taylor expansion and (2.1). Here, 1
∆x
f ′j stands for an approximate numerical

derivative of the flux f(v(x = xj, t
n)), which is yet to be specified. Although there

are many different recipes to construct v′j and f ′j, in this paper we only consider the

following approximations of the numerical derivatives

v′j = m(vnj+1 − vnj , vnj − vnj−1), (2.8)

f ′j = f ′(vnj )v′j, (2.9)

where m(·, ·) is the MAPR-like minmod limiter

m(a, b) :=


sgn(a) min(|a|, |b|), ab ≥ 0,

σmin(|a|, |b|), ab < 0,

(2.10)

with σ ∈ R, |σ| ≤ 1.

Remark 1. Note that, the standard minmod limiter is included as a special case of

(2.10) for σ = 0 and the choice

σ = sgn(s), where s =


a, |a| ≤ |b|,

b, |b| ≤ |a|,
(2.11)

recovers the MAPR limiter introduced in [10].

Using the approximate slopes (2.8) and the approximate flux derivatives (2.9),

we end up with a family of central differencing schemes in the predictor-corrector

form

v
n+ 1

2
j = vnj −

1

2
λf ′j, (2.12)

vn+1
j+ 1

2

=
1

2
(vnj + vnj+1) +

1

8
(v′j − v′j+1)− λ

(
f(v

n+ 1
2

j+1 )− f(v
n+ 1

2
j )

)
. (2.13)
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The global approximate solution v(x, t) is defined to be piecewise constant in time:

v(x, t) = vnj for (x, t) ∈ (xj− 1
2
, xj+ 1

2
)× [tn, tn+1), where j ∈ Z if n is even and j+ 1

2
∈ Z

if n is an odd integer.
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CHAPTER III

MAXIMUM PRINCIPLE

A. Introduction

The advantage of our limiters introduced in Chapter II is that we do not need

to restrict the slope of the reconstruction to zero at local extrema. However, using

a second order reconstruction at local extrema requires a new approach when trying

to prove a maximum principle. Note that (2.10) allows the predicted values {vn+ 1
2

j }j,

see (2.12), to violate maximum principle. That is, the minimum/maximum of the

sequence {vn+ 1
2

j }j could be smaller/larger than that of {vnj }j. This is going to be the

main difficulty in proving maximum principle under a fixed CFL.

This chapter is organized as follows. In Section B, first a maximum principle

for globally Lipschitz flux is proven, see Theorem 1, and then, the same kind of

result is proven for a more general class of flux functions, namely for k-monotone

flux functions, which is the main result of this chapter, see Theorem 2. The class

of k-monotone functions include all strictly convex functions (for k = 2) and also

any polynomial flux of a fixed degree ≤ k, see Definition 4 in Section B or [32] for

a definition of k-monotonicity. In Section C, it is shown that this type of maximum

principle implies the usual Total Variation Diminishing (TVD) bound as described

in [47], see Lemma 2. Finally, in Section D, we try to find an “optimal” σ for the

MAPR-like limiters defined in (2.10).

B. Maximum principle of the NT scheme

We begin with a maximum principle result in a simpler setting when the flux is

globally Lipschitz continuous.
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Theorem 1. Let v′j be chosen by (2.8) and f ′j = f ′(vnj )v′j. If f is globally Lipschitz

continuous, then the scheme described by (2.12)–(2.13) under the CFL condition

λ ‖f ′‖L∞(R) ≤ κ ≤
√

2− 1

2
(3.1)

satisfies the maximum principle

min(vnj , v
n
j+1) ≤ vn+1

j+ 1
2

≤ max(vnj , v
n
j+1). (3.2)

Proof. First, we rewrite the term f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j ) in (2.13) as

f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j ) = f ′(ξ
n+ 1

2

j+ 1
2

)(v
n+ 1

2
j+1 − v

n+ 1
2

j ), (3.3)

where min(v
n+ 1

2
j , v

n+ 1
2

j+1 ) ≤ ξ
n+ 1

2

j+ 1
2

≤ max(v
n+ 1

2
j , v

n+ 1
2

j+1 ). Observe that,

∣∣∣vn+ 1
2

j+1 − v
n+ 1

2
j

∣∣∣ =

∣∣∣∣vnj+1 − vnj −
λ

2
(f ′(vnj+1)v′j+1 − f ′(vnj )v′j)

∣∣∣∣
≤
(

1 +
λ

2

(
|f ′(vnj+1)|+ |f ′(vnj )|

))
|vnj+1 − vnj |

≤ (1 + κ)|vnj+1 − vnj |.

(3.4)

Using (3.1), (3.3) and (3.4) we find an upper bound for (2.13),

vn+1
j+ 1

2

≤ 1

2
(vnj + vnj+1) +

1

8
|v′j − v′j+1|+ λ

∣∣∣f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j )
∣∣∣

≤ 1

2
(vnj + vnj+1) +

(
1

2
+ κ

)2

|vj+1 − vj|

≤ 1

2
(vnj + vnj+1) +

1

2
|vj+1 − vj| = max(vnj , v

n
j+1),

(3.5)

and similarly a lower bound,

vn+1
j+ 1

2

≥ 1

2
(vnj + vnj+1)− 1

8
|v′j − v′j+1| − λ

∣∣∣f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j )
∣∣∣

≥ 1

2
(vnj + vnj+1)−

(
1

2
+ κ

)2

|vj+1 − vj|

≥ 1

2
(vnj + vnj+1)− 1

2
|vj+1 − vj| = min(vnj , v

n
j+1).

(3.6)
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The above two bounds prove the theorem.

Remark 2. This proof also fixes an inaccuracy in the maximum principle proof given

in [47] which is correct for the flux choice

f ′j = m(fj − fj−1, fj+1 − fj), (3.7)

but the proof as written in [47] does not hold for the Jacobian form (2.8)–(2.9) even

for the standard minmod limiter (σ = 0 in (2.10)).

Next, we are going to prove the maximum principle for a more general class of

flux functions. We start with the following definition and properties of k-monotone

functions, see [32, 54, 56] for more details on k-monotone functions.

Definition 4. A function f : [a, b] → R is said to be k-monotone, k ≥ 1, on [a, b] if

and only if for all choices of (k + 1) distinct nodes x0, ..., xk in [a, b] the inequality

[x0, ..., xk] f ≥ 0 (3.8)

holds, where [x0, ..., xk] f :=
∑k

j=0(f(xj)/w
′(xj)) denotes the kth divided difference of

f at x0, ..., xk and w(x) =
∏k

j=0(x − xj). f is said to be k-strictly monotone if the

inequality (3.8) is strict.

Remark 3. If f ∈ Ck[a, b], then f is k-strictly monotone if and only if there exists

γ1 ∈ R such that 0 < γ1 ≤ f (k)(x), x ∈ [a, b].

Example 1. Some well known examples of k-monotone fluxes are

1. Polynomial fluxes: f(u) =
∑k

i=0 ai u
i ∈ Pk, ak > 0. A special case is the

Burgers’ flux, f(u) = u2

2
, which is 2-strictly monotone, i.e., strictly convex.

2. Buckley-Leverett flux: f(u) = u2/(u2 + a(1− u)2), a > 0, which is 1-monotone

for 0 ≤ u ≤ 1.
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We also need the following definition:

Definition 5. The range of a function g : R→ R is defined to be the interval

R(g) := [essinfx∈R g(x), esssupx∈R g(x)]. (3.9)

Now, we are ready to state and prove the main result of this section.

Theorem 2. Let v′j be chosen as in (2.8) and f ′j = f ′(vnj )v′j. If f satisfies the

following properties

1. f or (−f) is (m+ 2)-strictly monotone on R(u0),

2. f ∈ Cm+2(R) and there exists a constant γ2 ∈ R such that
∣∣f (m+2)(x)

∣∣ ≤ γ2, for

all x ∈ R,

then the NT-scheme described by (2.12)–(2.13) satisfies the maximum principle

min(vnj , v
n
j+1) ≤ vn+1

j+ 1
2

≤ max(vnj , v
n
j+1), (3.10)

under the CFL condition

λ max
w∈R(u0)

|f ′(w)| ≤ κ, (3.11)

where κ is a fixed constant which depends only on γ1, γ2 and m, see (3.25).

Remark 4. Note that the CFL condition (3.11) depends only on the maximum initial

speed and smoothness properties of the flux. The CFL condition, see (3.25), amounts

to solving a quadratic inequality similar to the one in [47]. For example, for the

Burgers’ equation, (3.11) is valid with κ = 1
8
, see [47] for details.

Proof. It suffices to prove the theorem for the case when f is (m+2)-strictly monotone

on R(u0). By Remark 3 and the second property of f , we have that there exist
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γ1, γ2 ∈ R such that

f (m+2)(x) ≤ γ2, for all x ∈ R,

0 < γ1 ≤ f (m+2)(x), for all x ∈ R(u0).

(3.12)

We recall the definition of the open Newton-Cotes quadrature formula. For any given

interval [a, b], we define h = (b−a)/(m+2) and introduce the nodes xi = a+(i+1)h,

where i = −1, 0, ...,m+ 1. Note that each xi, 0 ≤ i ≤ m, is a convex combination of

a and b, that is

xi = θa+ (1− θ)b, θ ∈
{

1

m+ 2
,

2

m+ 2
, ...,

m+ 1

m+ 2

}
. (3.13)

Next, we define

`i(x) =
m∏
j=0
j 6=i

x− xi
xi − xj

, Lm(x) =
m∑
i=0

f ′(xi)`i(x), and Ai =

∫ b

a

`i(x)dx, (3.14)

and estimate∣∣∣∣∫ b

a

f ′(x)dx

∣∣∣∣ ≤
∣∣∣∣∣ 1

(m+ 1)!

∫ b

a

f (m+2)(ξx)
m∏
i=0

(x− xi) dx

∣∣∣∣∣+

∣∣∣∣∣
m∑
i=0

Aif
′(xi)

∣∣∣∣∣
≤

∣∣∣∣∣ γ2

(m+ 1)!

∫ b

a

m∏
i=0

(x− xi) dx

∣∣∣∣∣+
m∑
i=0

|Ai| |f ′(xi)|

≤ cmγ2|b− a|m+2 +
m∑
i=0

|Ai| |f ′(xi)|

≤ cm|b− a|
(
γ2|b− a|m+1 + max

0≤i≤m
|f ′(xi)|

)
,

(3.15)

where cm is a constant depending only on m, whose value may change at each occur-

rence. With this convention, let x 1
2

= x0 + h
2

and observe that

∣∣∣f ′(x 1
2
)− Lm(x 1

2
)
∣∣∣ =

∣∣∣∣f (m+2)(ξ)

(m+ 1)!

∣∣∣∣ h2
m∏
i=1

(2i− 1)
h

2

= cm
∣∣f (m+2)(ξ)

∣∣ |b− a|m+1,

(3.16)
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for some ξ ∈ [x0, xm]. From (3.12) and (3.16) it follows that

|b− a|m+1 ≤ cm
γ1

∣∣∣f ′(x 1
2
)− Lm(x 1

2
)
∣∣∣

≤ cm
γ1

max
0≤i≤m

|f ′(xi)| .
(3.17)

Together (3.15) and (3.17) imply,∣∣∣∣∫ b

a

f ′(x) dx

∣∣∣∣ ≤ cm

(
γ2

γ1

+ 1

)
max

0≤i≤m
|f ′(xi)| |b− a|. (3.18)

Let a = v
n+ 1

2
j and b = v

n+ 1
2

j+1 in the above calculations and introduce the notation

vθ
j+ 1

2

:= θv
n+ 1

2
j + (1− θ)vn+ 1

2
j+1 . Then,

vθ
j+ 1

2
= θvnj + (1− θ)vnj+1 −

λ

2

(
θf ′(vnj )v′j + (1− θ)f ′(vnj+1)v′j+1

)
. (3.19)

Note that,

vθ
j+ 1

2
≥ min(vnj , v

n
j+1) +

(
min(θ, 1− θ)−max(θ, 1− θ)λ ‖f ′‖L∞(R(vn))

)
|∆v|

≥ min(vnj , v
n
j+1) + (min(θ, 1− θ)−max(θ, 1− θ)κ) |∆v| ,

vθ
j+ 1

2
≤ max(vnj , v

n
j+1)−

(
min(θ, 1− θ)−max(θ, 1− θ)λ ‖f ′‖L∞(R(vn))

)
|∆v|

≤ max(vnj , v
n
j+1)− (min(θ, 1− θ)−max(θ, 1− θ)κ) |∆v| ,

(3.20)

where ∆v := vnj+1 − vnj . Under the CFL condition κ ≤ 1
m+1

the above inequalities

imply

min(vnj , v
n
j+1) ≤ vθ

j+ 1
2
≤ max(vnj , v

n
j+1). (3.21)

Therefore, we conclude that min(vnj , v
n
j+1) ≤ xi ≤ max(vnj , v

n
j+1), for i = 0, ...,m.

Next we rewrite (3.18) with a = v
n+ 1

2
j and b = v

n+ 1
2

j+1 ,∣∣∣f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j ))
∣∣∣ ≤ cm

(
γ2

γ1

+ 1

)
max

0≤i≤m
|f ′(xi)|

∣∣∣vn+ 1
2

j+1 − v
n+ 1

2
j

∣∣∣
≤ cm

(
γ2

γ1

+ 1

)
(1 + κ) ‖f ′‖L∞(R(vn))

∣∣vnj+1 − vnj
∣∣ . (3.22)
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Using this result in (2.13) yields the estimates

vn+1
j+ 1

2

≤ 1

2
(vnj + vnj+1) +

1

8

∣∣v′j − v′j+1

∣∣+ λ
∣∣∣f(v

n+ 1
2

j+1 )− f(v
n+ 1

2
j )

∣∣∣
≤ 1

2
(vnj + vnj+1) +

(
1

4
+ κ(1 + κ)cm

(
γ2

γ1

+ 1

)) ∣∣vnj+1 − vnj
∣∣ , (3.23)

and

vn+1
j+ 1

2

≥ 1

2
(vnj + vnj+1)− 1

8

∣∣v′j − v′j+1

∣∣− λ ∣∣∣f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j )
∣∣∣

≥ 1

2
(vnj + vnj+1)−

(
1

4
+ κ(1 + κ)cm

(
γ2

γ1

+ 1

)) ∣∣vnj+1 − vnj
∣∣ . (3.24)

Thus, under the CFL condition

κ ≤ 1

m+ 1
and κ(1 + κ)cm

(
γ2

γ1

+ 1

)
≤ 1

4
, (3.25)

we get the maximum principle (3.10).

C. Total Variation Diminishing (TVD) bound

In this section, we show that the usual TVD bound, see [47], follows from the

maximum principle (3.2). We need the following two lemmas to prove this result.

Lemma 1. Given any non-constant sequence {xi}ni=m (i.e. not all xi’s are equal)

with n > m, there exist piecewise monotone subsequences {xij}kj=1 (with k ≥ 2) such

that if {xij , xij+1, . . . , xij+1
} is non-decreasing, then {xij+1

, xij+1+1, . . . , xij+2
} is non-

increasing, and vice versa, with the property that
∣∣xij − xij+1

∣∣ > 0 for all j.

Proof. We will construct a subsequence Sk := {xij}kj=1 of {xi}ni=m that satisfies the

conditions in the lemma. Let S = {x̄is}ls=1 denote the set of all local extrema of

{xi}ni=m such that all the x̄is ∈ S excluding the endpoints, namely xn and xm, satisfy

|x̄is − x̄is−1|+ |x̄is − x̄is+1| > 0, (3.26)
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sgn(x̄is − x̄is−1) 6= sgn(x̄is+1+1 − x̄is+1). (3.27)

Observe that x̄i1 = xm and x̄il = xn. In order to construct Sk ⊂ S we remove x̄is+1

from S if x̄is = x̄is+1 for 1 ≤ s ≤ l − 2, and we remove x̄il−1
from S if x̄il−1

= x̄il .

Finally, we reindex the remaining elements of S to get Sk = {xij}kj=1.

Lemma 2. Given sequences {xj}nj=m and {yj}n−1
j=m with m ≤ n− 1, satisfying

min(xj, xj+1) ≤ yj ≤ max(xj, xj+1), m ≤ j ≤ n− 1, (3.28)

we have
n−2∑
j=m

|yj+1 − yj| ≤
n−1∑
j=m

|xj+1 − xj| . (3.29)

Proof. We consider the subsequence {xij}kj=1 of the sequence {xi}ni=m described in

Lemma 1. For any given j with 2 ≤ j ≤ k−1, without loss of generality, assume that

{xij−1
, xij−1+1, . . . , xij} is non-decreasing. That is, {yij−1

, yij−1+1, . . . , yij−1} is non-

decreasing, and {xij , xij+1, . . . , xij+1
} and {yij , yij+1, . . . , yij+1−1} are non-increasing.

There are two possible cases: yij−1 ≤ yij and yij−1 ≥ yij . Since the proofs are

analogous, we will only carry out the first case.

We consider the sequences {yij−1
, yij−1+1, . . . , yij} and {yij+1, . . . , yij+1−1}, which

are non-decreasing and non-increasing, respectively. Then,

ij+1−2∑
k=ij−1

|yk+1 − yk| =
ij−1∑
k=ij−1

(yk+1 − yk) +

ij+1−2∑
k=ij

(yk − yk+1)

= 2yij − yij−1
− yij+1−1 ≤ 2xij − xij−1

− xij+1

=

ij−1∑
k=ij−1

(xk+1 − xk) +

ij+1−1∑
k=ij

(xk − xk+1)

=

ij+1−1∑
k=ij−1

|xk+1 − xk| ,

(3.30)

which implies Var ({yk}
ij+1−1
k=ij−1

) ≤ Var ({xk}
ij+1

k=ij−1
). Similar arguments apply for the
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case when {xij−1
, xij−1+1, . . . , xij} is non-increasing. Therefore,

Var ({yk}
ij+1−1
k=ij−1

) ≤ Var ({xk}
ij+1

k=ij−1
), for 2 ≤ j ≤ k − 1, (3.31)

which implies

Var ({yj}n−1
j=m) =

n−2∑
j=m

|yj+1 − yj| ≤
n−1∑
j=m

|xj+1 − xj| = Var ({xj}nj=m). (3.32)

Remark 5. Lemma 2 applied to the sequences {vnj }j and {vn+1
j+ 1

2

}j gives that our

maximum principle (Theorem 2) implies the usual TVD bound for the NT scheme.

D. Optimal choice for σ

In this section, we will try to find an “optimal” σ for the MAPR-like limiters

defined in (2.10). The goal is to make the l∞-norm of the staggered averages when the

MAPR-like limiter is used bigger than the l∞-norm of the staggered averages when

standard minmod limiter is used for the same initial data. The following lemma

motivates our “optimal” choice of σ, see (3.33).

Lemma 3. Let
{
vnj
}
j

be a sequence with isolated local extrema. Let
{
vn+1
j+ 1

2

}
j

and{
v̄n+1
j+ 1

2

}
j

denote the staggered averages for standard MAPR-like limiter and minmod

limiter, respectively. If the parameter σ in the MAPR-like limiter (2.10) is chosen as

σ = sgn
(
v̄n+1
j+ 1

2

− v̄n+1
j− 1

2

)
, (3.33)

then we have ∥∥∥∥{v̄n+1
j+ 1

2

}
j

∥∥∥∥
l∞

≤
∥∥∥∥{vn+1

j+ 1
2

}
j

∥∥∥∥
l∞

. (3.34)

Proof. We will only consider the case of isolated local maxima with the case of isolated

local minima being analogous. If the sequence
{
v̄n+1
i+ 1

2

}
i

assumes its local maximum
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at v̄n+1
j+ 1

2

, then we need to choose σ such that the difference ∆vn+1
j+ 1

2

:= vn+1
j+ 1

2

− v̄n+1
j+ 1

2

is

positive. Let us rewrite the formula (2.13) for the staggered averages,

vn+1
j+ 1

2

=
1

2
(vnj + vnj+1) +

1

8
(v′j − v′j+1)− λ

(
f(v

n+ 1
2

j+1 )− f(v
n+ 1

2
j )

)
,

v̄n+1
j+ 1

2

=
1

2
(vnj + vnj+1) +

1

8
(v̄′j − v̄′j+1)− λ

(
f(v̄

n+ 1
2

j+1 )− f(v̄
n+ 1

2
j )

)
.

(3.35)

Subtracting the above equations and using v̄′j = 0, and v̄′j+1 = v′j+1, we obtain

∆vn+1
j+ 1

2

=
1

8
v′j + λ

(
f(v

n+ 1
2

j )− f(v̄
n+ 1

2
j )

)
=

1

2

(
1

4
− λ2f ′(ξ

n+ 1
2

j )f ′(vnj )

)
v′j,

(3.36)

where min(v̄
n+ 1

2
j , v

n+ 1
2

j ) ≤ ξ
n+ 1

2
j ≤ max(v̄

n+ 1
2

j , v
n+ 1

2
j ). By our maximum principle for

MAPR-like limiters, see Theorem 2, we conclude that
∣∣∣λ2f ′(ξ

n+ 1
2

j )f ′(vnj )
∣∣∣ ≤ 1

4
. Thus,

for ∆vn+1
j+ 1

2

> 0 we need v′j > 0.

If the sequence
{
v̄n+1
i+ 1

2

}
i

assumes its local maximum at v̄n+1
j− 1

2

, we need to choose

σ such that the difference ∆vn+1
j− 1

2

is positive. By similar arguments we get

∆vn+1
j− 1

2

=
1

2

(
λ2f ′(ξ

n+ 1
2

j )f ′(vnj )− 1

4

)
v′j. (3.37)

Hence, for ∆vn+1
j− 1

2

> 0 we need v′j < 0. This motivates our MAPR-like limiter choice

which takes σ such that we maximize the l∞ norm of the staggered averages in one

time step.

Remark 6. The inequality (3.34) is strict if the l∞- norm of the sequence
{
vnj
}
j

is achieved in one cell only. That is, if |vni | = ‖
{
vnj
}
j
‖l∞ , |vni − vni−1| > 0 and

|vni − vni+1| > 0, then ∥∥∥∥{v̄n+1
j+ 1

2

}
j

∥∥∥∥
l∞

<

∥∥∥∥{vn+1
j+ 1

2

}
j

∥∥∥∥
l∞

. (3.38)

Remark 7. Note that the choice of σ in (3.33) is not just a function of cell averages

(like a standard slope reconstruction) but also depends on the flux in a nonlinear way.
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Our numerical experiments suggest that the above choice of σ always gives bigger

l∞-norms of the numerical solutions, but at this point it is not feasible to prove this

result for multiple time steps.
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CHAPTER IV

STABILITY

A. Introduction

Usually second order schemes are constructed to be Total Variation Diminishing

(TVD) but that property only guarantees the convergence of such schemes to a weak

solution, see for example [37]. The standard approach for proving convergence towards

the entropy solution is to try to establish cell entropy inequalities. However, this

usually leads to additional non-homogeneous limitations on the numerical method

in order to fit it into the existing convergence theory. Unfortunately, this typically

means that the modified method is reducing to a first order method when the mesh

is refined. There are only few results on convergence of non-oscillatory second order

schemes which do not require non-homogeneous limitations [38, 41, 70, 71]. All of the

above references are tied in one way or another with local properties of the schemes

and restrict to initial data with bounded total variation or even piecewise smooth

data with finitely many extrema.

In this chapter, it is proven that in the case of strictly convex flux the NT scheme

satisfies an one-sided Lipschitz stability estimate and converges to the entropy solution

for any initial data satisfying some type of an one-sided condition, see [55], when the

MAPR-like limiter is properly selected. This is a generalization of the result in [55]

for minmod slope reconstruction.

B. One-sided l2 stability and convergence of the NT scheme

Recall that {vnj }j∈Z and {vn+1
j+ 1

2

}j∈Z are the sequences of cell averages of the nu-

merical solution of NT scheme at time tn and tn+1, respectively. Let us introduce the
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following notation for the jump sequences of the NT solution

∆vj+ 1
2

:= vnj+1 − vnj and ∆vj := vn+1
j+ 1

2

− vn+1
j− 1

2

, j ∈ Z, (4.1)

at times tn and tn+1, respectively. With this notation we have the following theorem

which is the main result of this section.

Theorem 3. Let u0 ∈ L∞(R), f be strictly convex in R(u0) and f ′′ be bounded on R.

That is, there exist constants γ1 and γ2 such that

0 < γ1 ≤ f ′′(w), for all w ∈ R(uo), (4.2)

0 ≤ f ′′(x) ≤ γ2, for all x ∈ R. (4.3)

Then there exists a constant κ which depends only on the ratio γ1/γ2 such that under

the CFL condition

λ max
w∈R(u0)

|f ′(w)| ≤ κ, (4.4)

the NT scheme with the limiter (2.10) and 0 ≤ σ ≤ 1 satisfies the following one-sided

Lipschitz condition

||{(∆vj)+}j∈Z||l2 ≤ ||{(∆vj+ 1
2
)+}j∈Z||l2 , (4.5)

where we use the standard “+” notation: x+ = max(x, 0). In other words, the l2

norm of the positive jumps does not increase in time.

Remark 8. Taking σ = 0 in (2.10), we obtain the original minmod limiter. It is easy

to see that among all σ, |σ| ≤ 1, the choice σ = 1 in (2.10) minimizes the size of

the positive jumps in the piecewise linear numerical solution. These are the so-called

entropy violating jumps for convex flux, see [52] and Remark 1 on page 422 in [47],

and one needs to have control of their size in order to prove convergence to the entropy

solution.
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Proof. It is an easy exercise in real analysis to show that every bounded sequence can

be decomposed into a union of monotone subsequences. That is, given the sequence

{vnj }j∈Z there exists a non-empty collection of index sets Λk := {j | jkmin ≤ j ≤ jkmax}

such that jkmax = jk+1
min for all k ∈ Z, and {vnj }j∈Λk is non-decreasing if k is even, and

non-increasing if k is odd. This decomposition is not necessarily unique. To fix one,

we choose {Λk}k such that Λk has maximum number of terms for each even k. That

is, for all even k such that Λk is non-empty, we have

vjkmin−1 > vjkmin
, (4.6)

vjkmax+1 < vjkmax
. (4.7)

Note that we have a single set Λk if the data is monotone and that (4.6) and (4.7)

only make sense if −∞ < jkmin and jkmax <∞, respectively. With this notation, there

are only two possibilities to generate non-negative jumps ∆vj in the new sequence

{vn+1
j+1/2}j∈Z starting from the old sequence {vnj }j∈Z:

(1) If vnj−1 ≤ vnj ≤ vnj+1, i.e. j − 1, j, j + 1 ∈ Λk for some even k, then we have

an internal jump, i.e., generated from the interior of a non-decreasing monotone

subsequence Λk.

(2) If (vnj − vnj−1)(vnj+1 − vnj ) ≤ 0 and at least one of these jumps (∆vj− 1
2

or ∆vj+ 1
2
)

is not zero. That is, j − 1, j ∈ Λk and j, j + 1 ∈ Λk+1 for some k, then we have a

boundary jump, i.e., generated on the boundary of Λk and Λk+1.

The jumps generated in (1) are always non-negative, whereas the jumps generated in

(2) may have different signs.

Next, without loss of generality, we assume that there exists at least one non-

decreasing subsequence of {vnj }j∈Z, say with index set Λ0 = {0, . . . ,m}. Otherwise,
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there is nothing to prove. We define the modified cell averages {v̄nj }j∈Z, as

v̄nj :=


vn0 , j ≤ 0,

vnj , 0 < j < m,

vnm, m ≤ j,

(4.8)

which is the so-called constant extension of {vnj }mj=0, see [55]. The jumps of the

modified cell averages are given by

∆v̄j+ 1
2

:= v̄nj+1 − v̄nj and ∆v̄j := v̄n+1
j+ 1

2

− v̄n+1
j− 1

2

, j ∈ Z. (4.9)

The following facts follow from the definition of {v̄nj }j∈Z:

v̄n+1
j+ 1

2

= vn0 , j ≤ −1,

v̄n+1
j+ 1

2

= vnm, j ≥ m,

v̄n+1
j+ 1

2

= vn+1
j+ 1

2

, 1 ≤ j ≤ m− 2.

(4.10)

Using the above we get

∆v̄j = (. . . , 0,∆v̄0,∆v̄1,∆v2, . . . ,∆vm−2,∆v̄m−1,∆v̄m, 0, . . . ),

∆v̄j+ 1
2

= (. . . , 0,∆v 1
2
,∆v 3

2
, . . . ,∆vm− 1

2
, 0, . . . ),

(4.11)

with the convention that we drop any terms that do not make sense when m ≤ 3. In

view of (1) and (2) the non-negative jumps of the new sequence can be decomposed

into (interior and boundary) jumps generated by each Λk, for even k. Therefore, to

prove the theorem it is enough to show that

||{(∆vj)+}mj=0||l2 ≤ ||{(∆vj+ 1
2
)+}m−1

j=0 ||l2 , (4.12)

because the left hand side includes all non-negative jumps that may be generated

by Λ0. For the sequence (4.8) the limiter (2.10) coincides with the minmod limiter.
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Hence, we can apply the one-sided stability result from [55] for a single non-decreasing

sequence
m∑
j=0

(∆v̄j)
2 ≤

m−1∑
j=0

(∆vj+ 1
2
)2. (4.13)

Having (4.13) it suffices to show that

m∑
j=0

(∆vj)
2
+ ≤

m∑
j=0

(∆v̄j)
2. (4.14)

We split the proof of (4.14) into four cases.

Case 1: m ≥ 4.

We need the following lemma.

Lemma 4. The following inequality holds when σ ≥ 0 in (2.10)

(∆v1)2
+ + (∆v0)2

+ ≤ (∆v̄1)2 + (∆v̄0)2. (4.15)

Proof. We will prove the argument in two steps:

Step 1: First, we will show that (∆v1)2 − (∆v̄1)2 ≤ 0. Observe that,

(∆v1)2 − (∆v̄1)2 = (∆v1 + ∆v̄1)(∆v1 −∆v̄1)

= kn+1
1

(
(vn+1

3
2

− vn+1
1
2

)− (v̄n+1
3
2

− v̄n+1
1
2

)
)

= kn+1
1 (v̄n+1

1
2

− vn+1
1
2

),

(4.16)

where kn+1
1 := ∆v1 + ∆v̄1 > 0 as ∆v1 and ∆v̄1 are both positive. Next, we need to

check the sign of v̄n+1
1
2

− vn+1
1
2

, where

v̄n+1
1
2

=
1

2
(v̄n0 + v̄n1 ) +

1

8
(v̄′0 − v̄′1)− λ

(
f(v̄

n+ 1
2

1 )− f(v̄
n+ 1

2
0 )

)
, (4.17)

vn+1
1
2

=
1

2
(vn0 + vn1 ) +

1

8
(v′0 − v′1)− λ

(
f(v

n+ 1
2

1 )− f(v
n+ 1

2
0 )

)
. (4.18)

Note that v′1 = m(vn1 − vn0 , vn2 − vn1 ) = v̄′1 , and v
n+ 1

2
1 = vn1 − λ

2
f ′(vn1 )v′1 = v̄

n+ 1
2

1 , which

follows from (4.10). Also observe that v̄′0 = m(0, vn1 − vn0 ) = 0 and v′0 ≥ 0 since σ ≥ 0
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in (2.10). Subtract (4.18) from (4.17) to get

v̄n+1
1
2

− vn+1
1
2

=
1

8
(v̄′0 − v′0) + λ

(
f(v̄

n+ 1
2

0 )− f(v
n+ 1

2
0 )

)
= −1

8
v′0 + λ

(
f(vn0 )− f(v

n+ 1
2

0 )
)

≤ −1

8
v′0 +

λ2

2
|f ′(vn0 )|v′0 max

(
|f ′(vn0 )|,

∣∣∣∣f ′(vn0 − λ

2
f ′(vn0 )v′0)

∣∣∣∣) .
(4.19)

There are two possibilities:

(I) max
(
|f ′(vn0 )|, |f ′(vn0 − λ

2
f ′(vn0 )v′0))|

)
= |f ′(vn0 )|. Then, we rewrite (4.19) as

v̄n+1
1
2

− vn+1
1
2

≤ −1

8
v′0 +

1

2
|λf ′(vn0 )|2v′0

≤
(
−1

8
+
κ2

2

)
v′0 ≤ 0.

(4.20)

(II) max
(
|f ′(vn0 )|, |f ′(vn0 − λ

2
f ′(vn0 )v′0)|

)
= |f ′(vn0 − λ

2
f ′(vn0 )v′0)|. Then, by the mean

value theorem and (4.2) we have

|vn1 − vn0 | ≤
2

γ1

max(|f ′(vn1 )|, |f ′(vn0 )|). (4.21)

Now, by the above inequality, Taylor expansion and (4.3) we have∣∣∣∣f ′(vn0 − λ

2
f ′(vn0 )v′0)

∣∣∣∣ ≤ |f ′(vn0 )|
(

1 +
λ

2
γ2v
′
0

)
≤ |f ′(vn0 )|

(
1 + λ

γ2

γ1

max(|f ′(vn1 )|, |f ′(vn0 )|
)

≤ |f ′(vn0 )|
(

1 + κ
γ2

γ1

)
.

(4.22)

We use this result in (4.19) to get

v̄n+1
1
2

− vn+1
1
2

≤ −1

8
v′0 +

λ2

2

∣∣∣∣f ′(vn0 − λ

2
f ′(vn0 )v′0

)∣∣∣∣ |f ′(vn0 )|v′0

≤ −1

8
v′0 +

λ2

2

(
1 + κ

γ2

γ1

)
|f ′(vn0 )|2v′0

≤
(
−1

8
+
κ2

2

(
1 + κ

γ2

γ1

))
v′0 ≤ 0.

(4.23)
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Therefore, in both cases (I) and (II), we conclude that

v̄n+1
1
2

− vn+1
1
2

≤ 0. (4.24)

We finish the proof of Step 1 by observing that the above inequality and (4.16) imply

(∆v1)2 − (∆v̄1)2 ≤ 0. (4.25)

Step 2: We now prove that (∆v0)2
+ − (∆v̄0)2 ≤ 0. If ∆v0 < 0, then (∆v0)+ = 0 and

there is nothing to prove. If ∆v0 > 0, we proceed as in the proof of Step 1 as follows,

(∆v0)2 − (∆v̄0)2 = (∆v0 + ∆v̄0)(∆v0 −∆v̄0)

= kn+1
0

(
(vn+1

1
2

− vn+1
− 1

2

)− (v̄n+1
1
2

− v̄n+1
− 1

2

)
)

= kn+1
0

(
(vn+1

1
2

− v̄n+1
1
2

) + (vn0 − vn+1
− 1

2

)
)
,

(4.26)

where kn+1
0 := ∆v0 + ∆v̄0 > 0. We still need to check the sign of ∆v0 − ∆v̄0 so we

rewrite (3.24) for vn+1
− 1

2

and subtract it from vn0 to get

vn0 − vn+1
− 1

2

≤ 1

2
(vn0 − vn−1) +

(
1

4
+ κ(1 + κ)cm

(
γ2

γ1

+ 1

))
|vn0 − vn−1|

≤
(

1

4
− κ(1 + κ)cm

(
γ2

γ1

+ 1

))
(vn0 − vn−1).

(4.27)

By similar arguments used in (4.20) and (4.23), we have

vn+1
1
2

− v̄n+1
1
2

≤
(

1

8
+
κ2

2
c

)
v′0, (4.28)

where c = 1 if the assumption in (I) holds, or c = (1 + κγ2/γ1) if the assumption in

(II) holds. Now we apply these bounds to ∆v0 −∆v̄0,

∆v0 −∆v̄0 ≤
(

1

8
+
κ2

2
c

)
v′0 +

(
1

4
− κ(1 + κ)cm

(
γ2

γ1

+ 1

))
(vn0 − vn−1)

≤
(

1

8
− κ2

2
c− κ(1 + κ)cm

(
γ2

γ1

+ 1

))
(vn0 − vn−1) ≤ 0.

(4.29)
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Finally, (4.26) and (4.29) imply

(∆v0)2
+ − (∆v̄0)2 ≤ 0. (4.30)

This proves Step 2 and Lemma 4.

By symmetric arguments it can also be shown that (∆vm−1)2
+ − (∆v̄m−1)2 ≤ 0

and (∆vm)2
+ − (∆v̄m)2 ≤ 0. Gathering all the results we have established so far, we

end up with

(∆v0)2
+ + (∆v1)2

+ + (∆vm−1)2
+ + (∆vm)2

+ ≤ (∆v̄0)2
+ + (∆v̄1)2

+

+ (∆v̄m−1)2
+ + (∆v̄m)2

+,

(4.31)

which leads us to

m∑
j=0

(∆vj)
2
+ = (∆v0)2

+ + (∆v1)2
+ + (∆vm−1)2

+ + (∆vm)2
+ +

m−2∑
j=2

(∆vj)
2
+

≤ (∆v̄0)2
+ + (∆v̄1)2

+ + (∆v̄m−1)2
+ + (∆v̄m)2

+ +
m−2∑
j=2

(∆v̄j)
2
+

=
m∑
j=0

(∆v̄j)
2.

(4.32)

This completes the proof for m ≥ 4. Next, we consider the remaining cases.

Case 2: m = 3.

It is the same as Case 1 except that there are no middle jumps (∆v2, . . . ,∆vm−2)

in (4.11). Hence, we have

(∆v0)2
+ + (∆v1)2

+ + (∆v2)2
+ + (∆v3)2

+ ≤ (∆v̄0)2 + (∆v̄1)2 + (∆v̄2)2 + (∆v̄3)2. (4.33)

Case 3: m = 2.

We have already proved that

(∆v0)2
+ − (∆v̄0)2 ≤ 0. (4.34)
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By symmetric arguments it is also true that

(∆v2)2
+ − (∆v̄2)2 ≤ 0. (4.35)

Next, we need to show that ∆v1 ≤ ∆v̄1 since both are positive. From (4.19) we have

v̄n+1
1
2

≤ vn+1
1
2

and by analogous arguments v̄n+1
3
2

≥ vn+1
3
2

. Together they imply

∆v1 = vn+1
3
2

− vn+1
1
2

≤ v̄n+1
3
2

− v̄n+1
1
2

= ∆v̄1. (4.36)

Therefore, we conclude that

(∆v0)2
+ + (∆v1)2

+ + (∆v2)2
+ ≤ (∆v̄0)2 + (∆v̄1)2 + (∆v̄2)2. (4.37)

Case 4: m = 1.

We already have (∆v0)2
+ ≤ (∆v̄0)2. We still need to show that (∆v1)2

+ ≤ (∆v̄1)2.

If ∆v1 ≤ 0, then we are done. So suppose ∆v1 > 0 and observe that

∆v1 = vn+1
3
2

− vn+1
1
2

≤ vn1 − vn+1
1
2

= v̄n+1
3
2

− vn+1
1
2

≤ v̄n+1
3
2

− v̄n+1
1
2

= ∆v̄1, (4.38)

and hence,

(∆v0)2
+ + (∆v1)2

+ ≤ (∆v̄0)2 + (∆v̄1)2. (4.39)

Therefore, in all four cases (m = 1, 2, 3, 4), we have

m∑
j=0

(∆vj)
2
+ ≤

m∑
j=0

(∆v̄j)
2. (4.40)

Now, we restrict the choice of σ in the modified minmod limiter (see (2.10)), to

be like the one in MAPR (see (2.11)). Namely, we define m(a, b) in (2.10) with σ

sgn(σ) = sgn(s), where s =


a, |a| ≤ |b|,

b, |b| ≤ |a|.
(4.41)
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Under this assumption on the limiter, we have the following result.

Theorem 4. Let u0 ∈ L∞(R), f be strictly convex in R(u0) and f ′′ be bounded on R.

Then there exists constant κ which depends only on the ratio γ1/γ2 and an absolute

constant c, c ≥ 1
9000

, such that under the CFL condition

λ max
w∈R(u0)

|f ′(w)| ≤ κ, (4.42)

the NT scheme with the minmod limiter m(a, b) defined as in (2.10)–(4.41) satisfies

the one-sided Lipschitz condition (4.5) provided that

−min

(
1,
c

2

max(a+, b+)

min(|a|, |b|)

)
≤ σ ≤ 1. (4.43)

Proof. The case σ ≥ 0 follows from Theorem 3. Hence, we only consider the case

σ ≤ 0. This implies that we take a negative slope reconstruction at local minima and

local maxima. Following the same steps as in the proof of Theorem 3, in the general

case (m ≥ 4) we get

∆v1 −∆v̄1 ≤ −
1

4
v′0 and ∆v0 −∆v̄0 ≤ 0, (4.44)

where we recall that ∆v− 1
2
< 0 ≤ ∆v 1

2
and σ < 0 implies that |∆v− 1

2
| ≤ ∆v 1

2
. Thus,

(∆v0)2
+ + (∆v1)2

+ ≤ (∆v̄0)2 +

(
∆v̄1 +

1

4
|σ|d

)2

, (4.45)

where d := min
(
|∆v− 1

2
|, |∆v 1

2
|
)

. Notice that by (4.43), we obtain

1

2
∆v̄1|σ|d+

1

16
|σ|2d2 ≤ c

(
5

16
(∆v 1

2
)2 +

1

4
∆v 1

2
∆v 3

2

)
≤ c

(
(∆v 1

2
)2 + (∆v 3

2
− 2∆v 1

2
)2
)
,

(4.46)

which implies

(∆v0)2
+ + (∆v1)2

+ ≤ (∆v̄0)2 + (∆v̄1)2 + c
(

(∆2∆v̄− 1
2
)2 + (∆2∆v̄ 1

2
)2
)
. (4.47)
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By symmetric arguments, it can also be shown that

(∆vm−1)2
++(∆vm)2

+ ≤ (∆v̄m−1)2+(∆v̄m)2+c
(

(∆2∆v̄m− 1
2
)2 + (∆2∆v̄m+ 1

2
)2
)
. (4.48)

The remaining cases, 1 ≤ m ≤ 3, can be handled in a similar way and we skip their

proofs. We conclude that

m∑
j=0

(∆vj)
2
+ ≤

m∑
j=0

(∆v̄j)
2 + c

∑
j

(∆2∆v̄j+ 1
2
)2 ≤

m−1∑
j=0

(∆vj+ 1
2
)2, (4.49)

where the last inequality follows from the one-sided stability result proven in [55] for

any non-negative jump sequence, see (56) on page 553 in [55].

Remark 9. If the local jumps a, b in the minmod limiter (2.10)–(4.41) are such that

c

2

max(a+, b+)

min(|a|, |b|)
≥ 1, (4.50)

we can recover the MAPR limiter taking σ as in (2.11). Note that (4.50) is always

true if c ≥ 2. However, even though the bound c ≥ 1
9000

can be improved, the current

approach does not allow to prove the one-sided Lipschitz condition (4.5) with c ≥ 2.

Therefore, the minmod limiter (2.10)–(4.41) is more restrictive than MAPR in some

cases.

Analogous to [55], a maximum principle and an one-sided stability result implies

a convergence result. To state the convergence theorem we briefly introduce the space

of functions of bounded variation and one-sided Lipschitz classes which are used in

the context of conservation laws.

Definition 6. The space Lip(1,L1(R)) consists of all functions g ∈ L1(R) such that

the seminorm

|g|Lip(1,L1(R)) := lim sup
y>0

1

y

∫
R
|g(x+ y)− g(x)| dx (4.51)

is finite.
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For functions g ∈ Lip(1,L1(R)) we consider the classes Lip(s,Lp(R))+ defined

by

‖ (g(· − y)− g(·))+ ‖Lp(R) ≤Mys, y > 0. (4.52)

The smallest M ≥ 0 for which (4.52) holds is denoted by |g|Lip(s,Lp(R))+. When we set

p = ∞ and s = 1, we obtain the class Lip(1, L∞(R))+ which is the usual one-sided

Lipschitz class used in conservation laws denoted by Lip+, see for example [47]. With

this notation, by repeating exactly the same steps as in section 4 in [55], we obtain

the following convergence result.

Theorem 5. Let u0 ∈ Lip(1,L1(R))∩ Lip(1,L2(R))+. Then, there exists κ > 0 such

that under the CFL condition λ||f ′||L∞(R) ≤ κ the NT scheme based on the limiter

(2.10)–(4.41)–(4.43) converges to the unique entropy solution of (2.1).
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CHAPTER V

CONVERGENCE

A. Introduction

In the previous chapter, we proved an one-sided stability result for the NT scheme

based on the minmod limiter and also on MAPR-like limiters. That implies the con-

vergence of the second order NT scheme for any initial data satisfying some type of an

one-sided condition, see [55]. This seemed to be unavoidable restriction when proving

convergence for methods satisfying the so-called one-sided Lipschitz condition, see for

example [41, 48]. In this chapter, we use the one-sided stability results from Chap-

ter IV and [55], and prove, using compensated compactness arguments, that the NT

scheme converges strongly to a weak solution and the limit satisfies a weak form of an

entropy inequality. Because a single entropy inequality is enough to select the unique

entropy solution in the case of a scalar strictly convex flux [14, 53], we conclude that

the NT scheme converges to the unique entropy solution for any bounded initial data.

The main contribution of this result is that we prove convergence of the NT scheme

without imposing any one-sided conditions on the initial data and the result holds for

the largest possible class of initial conditions, i.e., the class of initial data where we

have existence-uniqueness of the entropy solution of the PDE and finite global speed

of propagation. It should be possible to generalize the results of this paper to other

second order schemes because there is a lot of numerical evidence that many other

schemes also satisfy the one-sided stability property from [55] but we do not explore

this here.

Section B proves our main result, Theorem 6: the NT scheme converges strongly

on compact sets to the entropy solution of a scalar strictly convex conservation law
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with bounded initial data. Also in Subsection 1, an entropy production bounds for

the NT scheme are derived, which are interesting in their own right.

B. Convergence of the NT scheme

We recall the definition of the range of a function, see Definition 5: for a given

function g : R→ R the range of g is defined to be the interval

R(g) := [essinfx∈R g(x), esssupx∈R g(x)]. (5.1)

The following theorem is the main result of this chapter.

Theorem 6. Let f ∈ C4(R(u0)). Then, under the assumptions of Theorem 3, there

exists a constant κ0 > 0 such that under the CFL condition

λ max
w∈R(u0)

|f ′(w)| ≤ κ0, (5.2)

the NT scheme described by (2.12)-(2.13) converges strongly on compact sets of

R× [0,∞) to the unique entropy solution of (2.1).

Remark 10. Note that the result is also valid for σ (see (2.10)) chosen as in (4.43).

Even in the special case of the minmod limiter, σ = 0, this is the first convergence

result for the NT scheme for conservation laws with just bounded initial data.

Proof. In order to prove the strong convergence result we are going to employ the

following compensated compactness lemma, see [8, 44] for details on compensated

compactness.

Lemma 5. Suppose {uε} is a sequence of measurable functions on R × (0,∞) that

satisfies the following two conditions:
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(1) There exist constants −∞ < m < M <∞, both independent of ε, such that

m ≤ uε ≤M for a.e. (x, t) ∈ R× (0,∞);

(2) The two sequences

{Si(uε)t +Qi(u
ε)x}ε>0, i = 1, 2, (5.3)

belong to a compact subset of W−1,2
loc (R× (0,∞)), where

S1(u) = u− k, Q1(u) = f(u), (5.4)

and

S2(u) = f(u)− f(k), Q2(u) =

∫
(f ′(u))2du, (5.5)

and k is an arbitrary constant. Then, there exists a subsequence of {uε}ε>0 that

converges a.e. to a function u ∈ L∞(R× (0,∞)).

We already know that the NT scheme with the limiter (2.10), under the assump-

tions of Theorem 6, satisfies a maximum principle, see Theorem 2. To verify that

(5.3) is a compact subset of W−1,2
loc (R × (0,∞)) we are going to use the following

well-known functional analysis lemma:

Lemma 6 (Murat Lemma). Let Ω ∈ Rd be a bounded open set. Let q and r be

constants satisfying 1 < q ≤ 2 < r <∞. Then

{
compact set of W−1,q

loc (Ω)
}
∩
{

bounded set of W−1,r
loc (Ω)

}
⊂
{

compact set of W−1,2
loc (Ω)

}
.

In the proof we will use the the following index set:

Definition 7. Let Ω be a fixed subset of R× [0,∞). Given n and mesh size (∆x,∆t),
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we define an index set

Λn(Ω) := {j : (j∆x, n∆t) ∈ Ω, and j ∈ Z, n = even, and j ∈ Z + 1/2, n = odd}.

When there is no ambiguity we will denote Λn(Ω) simply by Λn. The com-

pensated compactness proof follows the framework of [29]. In order to make the

presentation simpler we break the rest of the proof into three main steps.

1. Entropy production bounds

We are going to establish an entropy dissipation estimate as follows: (i) a cu-

bic bound involving the l3 norm of the jumps {∆vn
j+ 1

2

}; (ii) a possibly degenerate

quadratic bound involving a weighted l2 norm of the jumps. The approach is based

on a discrete entropy production representation first established by Lax for the first

order LxF scheme [36] and later extended by Nessyahu and Tadmor for the second

order NT scheme [47], see Appendix B for details. We start with the cubic bound.

Lemma 7. Let Ω = [−X,X]× [0, T ] where X > 0 and T > 0, and let N = bT/∆tc.

Under the assumptions of Theorem 6 the NT scheme described by(2.12)-(2.13) satis-

fies the bound

∆x
N∑
n=0

∑
j∈Λn

|∆vn
j+ 1

2
|3 ≤ C, (5.6)

where C is a constant that may depend on γ1, γ1/γ2, |Ω|, λ, κ0 and ||u0||L∞(R) but it is

independent of the mesh size.

Proof. Following [47], we will establish a discrete entropy production identity, see

(5.38), and then use it to prove the lemma. We define,

g(v) :=
∆g

∆v
(v−vj)+gj, where gj := f(v

n+ 1
2

j )+
1

8λ
v′j and ∆g := gj+1−gj, (5.7)
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where ∆v := ∆vn
j+ 1

2

. Next, we rewrite (2.13) as

vn+1
j+ 1

2

=
1

2
(vnj + vnj+1)− λ(gj+1 − gj). (5.8)

For a given entropy pair (S,Q) we approximate the entropy production St(v)+Qx(v)

at (xj+ 1
2
, tn+ 1

2 ) by

S(vn+1
j+ 1

2

)− 1

2

(
S(vnj ) + S(vnj+1)

)
+ λ

(
Q(vnj+1)−Q(vnj )

)
= −

∫ 1

0

∫ 1

0

s

4
S ′′(u(r, s)) (1− 2λg′(w(r, s))) (1 + 2λg′(v(s))) (∆v)2 dr ds

+

∫ 1

0

λS ′(v(s))(f ′(v(s))− g′(v(s)))∆v ds,

(5.9)

where

v(s) = svnj + (1− s)vnj+1, (5.10)

w(r, s) = r(v(s)) + (1− r)vnj+1, (5.11)

u(r, s) =
v(s) + w(r, s)

2
+ λ(g(v(s))− g(w(r, s))). (5.12)

We refer the reader to the Appendix B for all details of the derivation of (5.9),

see also [36, 47]. Let S(u) = u2

2
and let us denote the integrals in (5.9) by I and J ,

respectively. After exact integration, we obtain

I = −1

8

[
1−

(
2λ

∆g

∆v

)2
]

(∆v)2. (5.13)

For the second integral J , we use integration by parts and the trapezoidal rule to get

J = λ

∫ vnj+1

vnj

z (f ′(z)− g′(z)) dz

= λz(f(z)− g(z))

∣∣∣∣vnj+1

vnj

− λ∆v

2
(f(vnj )− gj + f(vnj+1)− gj+1)

+
λ(∆v)3

12
f ′′(ξ1),

(5.14)



41

for some ξ1 between vnj and vnj+1. From now on ξi will be used in the same spirit

as an arbitrary point in the remainder term of an expansion. Next, we introduce a

numerical entropy flux following the NT paper [47],

G(vnj ) := Q(vnj )− vnj (f(vnj )− gj), (5.15)

and define

J̄ := J − λz(f(z)− g(z))

∣∣∣∣vnj+1

vnj

. (5.16)

We restrict our attention to the numerical entropy production E
n+ 1

2

j+ 1
2

= St + Gx at

(xj+ 1
2
, tn+ 1

2 ), which is given by

E
n+ 1

2

j+ 1
2

:= S(vn+1
j+ 1

2

)− 1

2

(
S(vnj ) + S(vnj+1)

)
+ λ

(
G(vnj+1)−G(vnj )

)
= −1

8

[
1−

(
2λ

∆g

∆v

)2
]

(∆v)2

− λ∆v

2
(f(vnj )− gj + f(vnj+1)− gj+1) +

λ(∆v)3

12
f ′′(ξ1)

= I + J̄ .

(5.17)

We introduce the notation aj := f ′(vnj ) and start working with the term J̄ . By Taylor

expansion, we have

gj = f(vnj )−
v′j
8λ

(
(2λaj)

2 − 1
)

+
1

8

(
λajv

′
j

)2
f ′′(ξ2),

gj+1 = f(vnj+1)−
v′j+1

8λ

(
(2λaj+1)2 − 1

)
+

1

8

(
λaj+1v

′
j+1

)2
f ′′(ξ3).

(5.18)

Thus, J̄ can be rewritten as

J̄ =
∆v

16

[
v′j + v′j+1 − ((2λaj)

2v′j + (2λaj+1)2v′j+1)
]

+
λ(∆v)3

16

[
(λaj)

2

(
v′j
∆v

)2

f ′′(ξ2) + (λaj+1)2

(
v′j+1

∆v

)2

f ′′(ξ3) +
4

3
f ′′(ξ1)

]

=:
∆v

16
A1 +

λ(∆v)3

16
A2.

(5.19)
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We now transform A1. Applying Taylor expansion to f ′(vnj ) and f ′(vnj+1) yields

aj = f ′(vnj ) = f ′(vj+ 1
2
)− ∆v

2
f ′′(ξ4) = aj+ 1

2
− ∆v

2
f ′′(ξ4),

aj+1 = f ′(vnj+1) = f ′(vj+ 1
2
) +

∆v

2
f ′′(ξ5) = aj+ 1

2
+

∆v

2
f ′′(ξ5),

(5.20)

where vj+ 1
2

=
vnj +vnj+1

2
. This enables us to write A1 as

A1 = v′j + v′j+1 −
(

(2λaj+ 1
2
− λ∆vf ′′(ξ4))2v′j + (2λaj+ 1

2
+ λ∆vf ′′(ξ5))2v′j+1

)
= (1− 4β2)(v′j + v′j+1)− λ(∆v)2

[
4βf ′′(ξ5)

(
v′j+1

∆v

)
− 4βf ′′(ξ4)

(
v′j
∆v

)
+ f ′′(ξ4)(λf ′′(ξ4)v′j) + f ′′(ξ5)(λf ′′(ξ5)v′j+1)

]
=: (1− 4β2)(v′j + v′j+1)− λ(∆v)2A3,

(5.21)

where β = λaj+ 1
2
. Thus, we obtain

J̄ =
(∆v)2

8
(1− 4β2)

v′j + v′j+1

2∆v
+
λ(∆v)3

16
(A2 − A3). (5.22)

Observe that (5.20) implies

|λf ′′(ξ4)∆v|, |λf ′′(ξ5)∆v| ≤ 4κ, where κ := λ max
w∈R(u0)

|f ′(w)|. (5.23)

Using the above estimate and the convexity of f , we have the following bounds for

A2 and A3,

4

3
γ1 ≤ A2 and |A3| ≤ 8γ2(β + κ). (5.24)

Next, we turn our attention to I in (5.17). By Taylor expansion we have,

f(vnj ) = f(vj+ 1
2
)− ∆v

2
aj+ 1

2
+

(∆v)2

8
f ′′(ξ6)

f(vnj+1) = f(vj+ 1
2
) +

∆v

2
aj+ 1

2
+

(∆v)2

8
f ′′(ξ7).

(5.25)
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Using (5.20) and (5.25) in (5.18), we derive

λ∆g

∆v
= β +

1

8
(1− 4β2)

∆v′

∆v
+
λ∆v

8
(f ′′(ξ7)− f ′′(ξ6))

− β

2
(λf ′′(ξ5)v′j+1 + λf ′′(ξ4)v′j)

− 1

8

[
(λ∆vf ′′(ξ5))

2 v
′
j+1

∆v
− (λ∆vf ′′(ξ4))

2 v′j
∆v

]
+
λ∆v

8

[
(λaj+1)2

(
v′j+1

∆v

)2

f ′′(ξ3)− (λaj)
2

(
v′j
∆v

)2

f ′′(ξ2)

]

=: β +
1

8
(1− 4β2)

∆v′

∆v
+ A4,

(5.26)

where ∆v′ := v′j+1 − v′j. Recall that

f(v
n+ 1

2
j ) = f(vnj −

λ

2
ajv
′
j) = f(vnj )− λ

2
a2
jv
′
j +

1

8
(λajv

′
j)

2f ′′(ξ2),

f(v
n+ 1

2
j+1 ) = f(vnj+1 −

λ

2
aj+1v

′
j+1) = f(vnj+1)− λ

2
a2
j+1v

′
j+1

+
1

8
(λaj+1v

′
j+1)2f ′′(ξ3).

(5.27)

Then we obtain

λ∆v

8

[
(λaj+1)2

(
v′j+1

∆v

)2

f ′′(ξ3)− (λaj)
2

(
v′j
∆v

)2

f ′′(ξ2)

]

= − λ

∆v

[
f(vnj+1)− f(vnj )

]
+

λ

∆v

[
f(v

n+ 1
2

j+1 )− f(v
n+ 1

2
j )

]
+

1

2

[
(λaj+1)2

v′j+1

∆v
− (λaj)

2
v′j
∆v

]
.

(5.28)

Now, we need to bound |f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j )|. In Appendix A, we have derived such a

bound which is needed to prove a maximum principle of the NT scheme with convex

flux , see (A.10). We recall that estimate here:

|f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j )| ≤
(
γ2(1 + κ)

2γ1

+ 1

)
(1 + κ) max

j
|f ′(vnj )||∆v|. (5.29)
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Using the above in (5.28) we get

|A4| ≤ Cκ, (5.30)

and similar to (5.24) we have

|A4| ≤ Cγ2λ|∆v|, (5.31)

where C denotes a constant independent of the mesh size, which might change on

each occurrence later in this paper. We proceed by substituting (5.26) into (5.13) to

get

I = −1

8

[
(1− 4β2)

(
1− 1

16
(1− 4β2)

(
∆v′

∆v

)2

− β∆v′

∆v

)

−
(

8β + (1− 4β2)
∆v′

∆v

)
A4 − 4(A4)2

]
(∆v)2.

(5.32)

Using this bound together with (5.22), we have

I + J̄ = −1

8
(∆v)2(1− 4β2)

[
1− 1

16
(1− 4β2)

(
∆v′

∆v

)2

− (β + A4)
∆v′

∆v
−
v′j + v′j+1

2∆v

]
+
λ(∆v)3

16

(
A2 − A3 +

16βA4

λ∆v
+

8(A4)2

λ∆v

)
=: −1

8
µj+ 1

2
(∆v)2 +

1

16
λνj+ 1

2
(∆v)3.

(5.33)

Next, we are going to show that µj+ 1
2

and νj+ 1
2

are non-negative. We start with µj+ 1
2

and use the inequality (5.30) to derive

µj+ 1
2

1− 4β2
≥ 1− 1

16
(1− 4β2)

(
∆v′

∆v

)2

− (β + Cκ)

∣∣∣∣∆v′∆v

∣∣∣∣− v′j + v′j+1

2∆v

=

(
1

2
− (β + Cκ)− 1

16
(1− 4β2)

∣∣∣∣∆v′∆v

∣∣∣∣) ∣∣∣∣∆v′∆v

∣∣∣∣
+ 1−

( |v′j+1 − v′j|
2|∆v|

+
v′j + v′j+1

2∆v

)
≥ 0.

(5.34)



45

Note that, using (5.30) and (5.31) we obtain∣∣∣∣8(A4)2

λ∆v

∣∣∣∣ ≤ Cγ2κ and

∣∣∣∣16βA4

λ∆v

∣∣∣∣ ≤ Cγ2β. (5.35)

Using (5.24) and (5.35), we get the following bound for νj+ 1
2
:

νj+ 1
2

= A2 − A3 +
16βA4

λ∆v
+

8(A4)2

λ∆v
≥ 4

3
γ1 − Cγ2(β + κ) ≥ 0. (5.36)

Hence, there exists κ0 > 0 such that for all κ ≤ κ0 we have

0 < γ1 ≤ νn
j+ 1

2
≤ Cγ2. (5.37)

So far, we have shown that

E
n+ 1

2

j+ 1
2

= S(vn+1
j+ 1

2

)− 1

2

(
S(vnj ) + S(vnj+1)

)
+ λ

(
G(vnj+1)−G(vnj )

)
= −1

8
µj+ 1

2
(∆v)2 +

1

16
λνj+ 1

2
(∆v)3,

(5.38)

where µj+ 1
2
, νj+ 1

2
≥ 0 for sufficiently small κ0.

Before we proceed, let us recall the so-called cone of dependence for the numerical

solution, see [31]. The numerical solution v(·, T ) on [−X,X] depends only on the

values of u0 on [−X−d,X+d], where d = b3T
2λ
c+2h. Next, let us defineM :=bX+2d

∆x
c+1

and Ω̄ := [−M∆x,M∆x]×[0, (N+1)∆t], and introduce the numerical solution w(x, t)

on Ω̄, with the initial condition

w0(x) =


u0(x), −X − d ≤ x ≤ X + d,

u0(X + d), X + d < x,

u0(−X − d), x < −X − d.

(5.39)

Observe that the numerical solutions w(x, t) and v(x, t) agree on the domain Ω. Next,
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we rewrite (5.38) for w(x, t),

Ẽ
n+ 1

2

j+ 1
2

= S(wn+1
j+ 1

2

)− 1

2

(
S(wnj ) + S(wnj+1)

)
+ λ

(
G(wnj+1)−G(wnj )

)
= −1

8
µ̃j+ 1

2
(∆w)2 +

1

16
λν̃j+ 1

2
(∆w)3,

(5.40)

where µ̃j+ 1
2
≥ 0 and ν̃j+ 1

2
≥ 0 are the corresponding quantities for w(·, ·).

We proceed by summing over all n and j such that (j∆x, n∆t) ∈ Ω̄,

N∑
n=0

∑
j∈Λn(Ω̄)

Ẽ
n+ 1

2

j+ 1
2

=
N∑
n=0

∑
j∈Λn(Ω̄)

−1

8
µ̃n
j+ 1

2
(∆w)2 +

1

16
λν̃n

j+ 1
2
(∆w)3. (5.41)

Note that the left-hand side can be written as

N∑
n=0

∑
j∈Λn(Ω̄)

Ẽ
n+ 1

2

j+ 1
2

=
M∑

j=−M+1

S(wN+1
j )− S(w0

j )

+ λ(N + 1)
(
G(w0

M+1)−G(w0
−M)

)
,

(5.42)

if N is odd and

N∑
n=0

∑
j∈Λn(Ω̄)

Ẽ
n+ 1

2

j+ 1
2

=
M∑

j=−M

S(wN+1
j+ 1

2

)− 1

2

(
S(w0

−M) + S(w0
M+1)

)
−

M∑
j=−M+1

S(w0
j )

+ λ(N + 1)
(
G(w0

M+1)−G(w0
−M)

)
,

(5.43)

if N is even. Thus,

−
M+1∑
j=−M

S(w0
j ) + λ(N + 1)

(
G(w0

M+1)−G(w0
−M)

)
≤

N∑
n=0

∑
j∈Λn(Ω̄)

−1

8
µ̃n
j+ 1

2
(∆w)2 +

1

16
λν̃n

j+ 1
2
(∆w)3

=
N∑
n=0

∑
j∈Λn(Ω̄)

[
−1

8
µ̃n
j+ 1

2
(∆w)2 +

1

16
λν̃n

j+ 1
2
(∆w)3

− +
1

16
λν̃n

j+ 1
2
(∆w)3

+

]
,

(5.44)

where we use the standard + and − notation: x+ = max(x, 0) and x− = min(x, 0).
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Thus, we obtain,

−
N∑
n=0

∑
j∈Λn(Ω̄)

1

16
λν̃n

j+ 1
2
(∆w)3

− ≤
∑
j

S(w0
j )− λ(N + 1)

(
G(w0

M+1)−G(w0
−M)

)
+

N∑
n=0

∑
j∈Λn(Ω̄)

1

16
λν̃n

j+ 1
2
(∆w)3

+.

(5.45)

We now need the key one-sided stability result for the NT scheme from [55], see

(56) on page 553 in [55]:

c γ1λ
∑
j

(∆w)3
+ ≤

∑
j

(∆w)2
+ −

∑
j

(∆w̄)2
+, (5.46)

where ∆w̄ := ∆w̄n+1
j = w̄n+1

j+ 1
2

− w̄n+1
j− 1

2

are the jumps generated by the limiter (2.10)

with σ = 0, and c > 0 is an absolute constant. Note that (5.46) holds for any κ ≤ κ0

when κ0 is sufficiently small but fixed. In the case of a MAPR-like minmod limiter,

as described in Theorem 3, if the jump sequence is generated starting with the same

{wnj }, we have that the l2 norm of the jumps generated with the MAPR-like limiter

is dominated by the l2 norm of the jumps generated with the minmod limiter. That

is ∑
j

(∆w̃)2
+ ≤

∑
j

(∆w̄)2
+, (5.47)

where ∆w̃ := ∆wn+1
j = wn+1

j+ 1
2

− wn+1
j− 1

2

and {wn+1
j+ 1

2

} is generated with the MAPR-like

limiter. This result is proven in [45], see (3.13) and Theorem 3.1 there. Therefore,

we have

c γ1λ
∑
j

(∆w)3
+ ≤

∑
j

(∆w)2
+ −

∑
j

(∆w̃)2
+. (5.48)

Summing (5.48) over n yields

cγ1λ
N∑
n=0

∑
j∈Λn(Ω̄)

(∆w)3
+ ≤

∑
j

(∆w0)2
+ −

∑
j

(∆w̃N)2
+ ≤

∑
j

S(w0
j ). (5.49)
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Using (5.49) in (5.45), we derive

−λ
N∑
n=0

∑
j∈Λn(Ω̄)

(∆w)3
− ≤ C

∑
j

S(w0
j )− Cλ(N + 1)

(
G(wnM+1)−G(wn−M)

)
. (5.50)

Thus, we obtain

λ∆x
N∑
n=0

∑
j∈Λn(Ω̄)

|∆w|3 ≤ C ∆x
∑
j

(w0
j )

2 + C ≤ C

∫ (M+1)∆x

−M∆x

(u0(x))2dx+ C

≤ 2C(M + 1)∆x||u0||2L∞ + C ≤ C
(
||u0||2L∞(R) + 1

)
.

(5.51)

Since w(x, t) and v(x, t) agree on the domain Ω ⊂ Ω̄, we get

λ∆x
N∑
n=0

∑
j∈Λn(Ω)

|∆v|3 ≤ C
(
||u0||2L∞(R) + 1

)
. (5.52)

Now we proceed with the quadratic entropy production bound.

Lemma 8. Under the assumptions of Lemma 7, the NT scheme described by (2.12)-

(2.13) satisfies the bound

∆x
N∑
n=0

∑
j∈Λn

µ̄j+ 1
2
|∆vn

j+ 1
2
|2 ≤ C, (5.53)

where C is a constant independent of the mesh size and µ̄j+ 1
2

is defined by

µ̄j+ 1
2

:=
1

8
(1− 4β2)f ′′(vj+ 1

2
)

(
1− 1

16
(1− 4β2)

(
∆v′

∆v

)2

− β∆v′

∆v
−
v′j + v′j+1

2∆v

)
,

and we recall that β = λaj+ 1
2

= λf ′(vj+ 1
2
).

Proof. As in the proof of Lemma 7, for any given entropy pair (S,Q) we approximate
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the entropy production St(v) +Qx(v) at (xj+ 1
2
, tn+ 1

2 ) by

S(vn+1
j+ 1

2

)− 1

2
(S(vnj ) + S(vnj+1)) + λ(Q(vnj+1)−Q(vnj ))

= −
∫ 1

0

∫ 1

0

s

4
S ′′(u(r, s)) (1− 2λg′(w(r, s))) (1 + 2λg′(v(s))) (∆v)2 dr ds

+

∫ 1

0

λS ′(v(s))(f ′(v(s))− g′(v(s)))∆v ds.

(5.54)

Let k be the unique constant such that f(k) = min
u∈R(u0)

f(u) and let S(u) = f(u)−f(k).

As before, we denote the first and second term in the right-hand side of (5.54) by I and

J , respectively. Using (5.31) in (5.32) and the definition of u(r, s), see (5.10)–(5.12),

we transform I as follows:

I = −1

4

(
1−

(
2λ

∆g

∆v

)2
)

(∆v)2

∫ 1

0

∫ 1

0

sf ′′(u(r, s)) dr ds

= −1

8

(
1−

(
2λ

∆g

∆v

)2
)
f ′′(vj+ 1

2
)(∆v)2 +O((∆v)3)

= −1

8
f ′′(vj+ 1

2
)(1− 4β2)

(
1− 1

16
(1− 4β2)

(
∆v′

∆v

)2

− β∆v′

∆v

)
(∆v)2

+O((∆v)3),

(5.55)

where we use the standard O((∆v)3) notation, |O((∆v)3)| ≤ c|∆v|3, with constant c

only depending on R(u0), κ0 and ||f ||C4(R(u0)). For the term J we use integration by

parts and the trapezoidal integration formula to get

J = λ

∫ vnj+1

vnj

f ′(z) (f ′(z)− g′(z)) dz

= λf ′(z)(f(z)− g(z))

∣∣∣∣vnj+1

vnj

− λ∆v

2
(f ′′(vnj )(f(vnj )− gj) + f ′′(vnj+1)(f(vnj+1)− gj+1)) +O((∆v)3),

(5.56)

where the error of the numerical integration is absorbed in the O((∆v)3) term. Similar
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to the proof of Lemma 7 we introduce a numerical entropy flux

G(vnj ) := Q(vnj )− f ′(vnj )(f(vnj )− gj), (5.57)

and define

J̄ := J − λf ′(z)(f(z)− g(z))

∣∣∣∣vnj+1

vnj

. (5.58)

We define the numerical entropy production E
n+ 1

2

j+ 1
2

(which approximates St + Gx at

(xj+ 1
2
, tn+ 1

2 )) as follows

E
n+ 1

2

j+ 1
2

:= S(vn+1
j+ 1

2

)− 1

2

(
S(vnj ) + S(vnj+1)

)
+ λ

(
G(vnj+1)−G(vnj )

)
= I + J̄ . (5.59)

By using the same arguments as before, see (5.18)–(5.22), and the smoothness of f ,

we write J̄ as

J̄ =
1

8
(1− 4β2)

v′jf
′′(vnj ) + v′j+1f

′′(vnj+1)

2∆v
(∆v)2 +O((∆v)3)

=
1

8
(1− 4β2)f ′′(vj+ 1

2
)
v′j + v′j+1

2∆v
(∆v)2 +O((∆v)3).

(5.60)

Then,

I + J̄ = −1

8
(1− 4β2)f ′′(vj+ 1

2
)

[
1− 1

16
(1− 4β2)

(
∆v′

∆v

)2

− β
∆v′

∆v
−
v′j + v′j+1

2∆v

]
(∆v)2 +O((∆v)3)

= −µ̄j+ 1
2
(∆v)2 +O((∆v)3).

(5.61)

Exactly as in (5.34), we derive again that µ̄j+ 1
2
≥ 0 for sufficiently small κ0. Thus,

the numerical entropy production defined in (5.59) can be written as

S(vn+1
j+ 1

2

)− 1

2

(
S(vnj ) + S(vnj+1)

)
+ λ

(
G(vnj+1)−G(vnj )

)
= −µ̄j+ 1

2
(∆v)2 +O((∆v)3).

(5.62)
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Similar to the quadratic case (S(u) = u2

2
), see (5.44) and (5.45), we obtain

N∑
n=0

∑
j∈Λn(Ω̄)

µ̂j+ 1
2
(∆w)2 ≤

∑
j

(f(w0
j )− f(k)) + C

N∑
n=0

∑
j∈Λn(Ω̄)

|∆w|3

− λ(N + 1)
(
G(wnM+1)−G(wn−M)

)
,

(5.63)

where Ω̄, w(·, ·) and M are defined in Lemma 7, and µ̂ is the corresponding quantity

for w(·, ·). Thus, using Lemma 7 and that G is bounded on R(u0), we obtain

∆x
N∑
n=0

∑
j∈Λn

µ̄j+ 1
2
(∆v)2 ≤ ∆x

∑
j

(f(w0
j )− f(k)) + C. (5.64)

Next, we employ Jensen’s inequality to get

f

 1

∆x

∫ x
j+1

2

x
j− 1

2

u0(x) dx

− f(k) ≤ 1

∆x

∫ x
j+1

2

x
j− 1

2

(f(u0(x))− f(k)) dx. (5.65)

Therefore,

∆x
N∑
n=0

∑
j∈Λn

µ̄j+ 1
2
(∆v)2 ≤

∫ (M+1)∆x

−M∆x

(f(u0(x))−f(k)) dx+C ≤ C ||f ||L∞(R(u0)). (5.66)

2. Strong convergence via compensated compactness

The following two lemmas imply that the NT solution is a compact subset of

W−1,2
loc (R × (0,∞)), see Lemma 6, and thus, converges strongly on compact sets,

Lemma 5. Recall that v(x, t) is the NT solution defined in Chapter II.

Lemma 9. Let Ω be a fixed open subset of R× (0,∞). For the entropy pairs (S,Q)

given by (5.4) and (5.5), the sequence of distributions

L(v) := S(v)t +Q(v)x (5.67)

lies in a compact subset of W−1,q
loc (Ω), 1 < q ≤ 6

5
.
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Proof. Let φ ∈ C∞0 (Ω) and Ω := [−M∆x,M∆x]× [0, N∆t] be the smallest rectangle

such that Ω ⊂ Ω and M,N are positive integers. We consider

−
〈
L, φ

〉
=

∫ ∞
0

∫
R

(S(v)φt +Q(v)φx) dx dt, (5.68)

and decompose it as follows

−
〈
L, φ

〉
=

N−1∑
n=0

∑
j∈Λn

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

(S(v)φt +Q(v)φx) dx dt

=
N−1∑
n=0

∑
j∈Λn

∫ x
j+1

2

x
j− 1

2

Snj (φ(x, tn+1)− φ(x, tn)) dx

+
N−1∑
n=0

∑
j∈Λn

∫ tn+1

tn
Qn
j (φ(xj+ 1

2
, t)− φ(xj− 1

2
, t)) dt

= −
N∑
n=1

∑
j∈Λn

∫ xj

x
j− 1

2

(
Snj − Sn−1

j− 1
2

)
φ(x, tn) dx

−
N∑
n=1

∑
j∈Λn

∫ x
j+1

2

xj

(
Snj − Sn−1

j+ 1
2

)
φ(x, tn) dx

−
N∑
n=1

∑
j∈Λn

∫ tn

tn−1

(
Qn−1
j+ 1

2

−Qn−1
j− 1

2

)
φ(xj, t) dt,

(5.69)

where Snj := S(vnj ), Qn
j := Q(vnj ) and Λn = Λn(Ω). After some rearrangements,

−
〈
L, φ

〉
=

N∑
n=1

∑
j∈Λn

∫ xj

x
j− 1

2

(
Snj − Sn−1

j− 1
2

) (
φnj − φ(x, tn)

)
dx

+
N∑
n=1

∑
j∈Λn

∫ x
j+1

2

xj

(
Snj − Sn−1

j+ 1
2

) (
φnj − φ(x, tn)

)
dx

+
N∑
n=1

∑
j∈Λn

∫ tn

tn−1

(
Qn−1
j+ 1

2

−Qn−1
j− 1

2

) (
φnj − φ(xj, t)

)
dt

−
N∑
n=1

∑
j∈Λn

∆xφnj

[
Snj −

1

2

(
Sn−1
j+ 1

2

+ Sn−1
j− 1

2

)
+ λ

(
Qn−1
j+ 1

2

−Qn−1
j− 1

2

)]
=:

〈
L1 + L2 + L3 + L4, φ

〉
.

(5.70)
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As in Lemma 8 we take k to be the unique constant such that f(k) = min
u∈R(u0)

f(u).

In order to apply the compensated compactness arguments, we need to consider the

following two entropies: S(u) = u− k and S(u) = f(u)− f(k), see (5.4) and (5.5).

Case 1: S(u) = u−k. The treatment of all the terms
〈
Li, φ

〉
, i = 1, . . . , 4 is the same

as in Case 2.

Case 2: S(u) = f(u) − f(k), ||S ′′||L∞(Ω) = γ2. We transform the term
〈
L4, φ

〉
as

follows

〈
L4, φ

〉
=

N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

[
Sn+1
j+ 1

2

− 1

2

(
Snj+1 + Snj

)
+ λ

(
Qn
j+1 −Qn

j

)]

= −
N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

∫ 1

0

∫ 1

0

s

4
S ′′(u(r, s))(1− 2λg′(w(r, s)))

(1 + 2λg′(v(s)))(∆v)2 dr ds

+
N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

∫ 1

0

λS ′(v(s)) (f ′(v(s))− g′(v(s))) ∆v ds

=
N−1∑
n=0

∑
j∈Λn

1

4
∆xφn+1

j+ 1
2

((
2λ

∆g

∆v

)2

− 1

)
(∆v)2

∫ 1

0

∫ 1

0

sS ′′(u(r, s))drds

−
N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

λ

∫ vnj+1

vnj

S ′′(z)(f(z)− g(z)) dz

+
N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

λS ′(z)(f(z)− g(z))

∣∣∣∣vnj+1

vnj

.

(5.71)

We write
〈
L4, φ

〉
=
〈
L4,1, φ

〉
+
〈
L4,2, φ

〉
where

〈
L4,1, φ

〉
=

N−1∑
n=0

∑
j∈Λn

1

4
∆xφn+1

j+ 1
2

((
2λ

∆g

∆v

)2

− 1

)
(∆v)2

∫ 1

0

∫ 1

0

sS ′′(u(r, s))dr ds

−
N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

λ

∫ vnj+1

vnj

S ′′(z)(f(z)− g(z)) dz,

(5.72)
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and

〈
L4,2, φ

〉
=

N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

λS ′(z)(f(z)− g(z))

∣∣∣∣vnj+1

vnj

= λ∆x
N−1∑
n=0

∑
j∈Λn

(φn+1
j− 1

2

− φn+1
j+ 1

2

)S ′(vnj )(f(vnj )− g(vnj )).

(5.73)

We recall the identity (5.61)

− 1

4

(
1−

(
2λ

∆g

∆v

)2
)

(∆v)2

∫ 1

0

∫ 1

0

s f ′′(u(r, s)) dr ds

+ λ

∫ vnj+1

vnj

f ′′(z)(f(z)− g(z)) dz

= −µ̄j+ 1
2
(∆v)2 +O((∆v)3),

(5.74)

where µ̄j+ 1
2
≥ 0. Using the above in (5.72) we get

∣∣〈L4,1, φ
〉∣∣ ≤ ||φ||L∞(Ω)

(
∆x

N−1∑
n=0

∑
j∈Λn

µ̄j+ 1
2
(∆v)2 + C∆x

N−1∑
n=0

∑
j∈Λn

|∆v|3
)

≤ C||φ||L∞(Ω),

(5.75)

where the last inequality follows from Lemma 7 and Lemma 8. To estimate
〈
L4,2, φ

〉
,

we use the bound

λ(f(vnj )− g(vnj )) =
v′j
8

((2λaj)
2 − 1)− λ

8
(λajv

′
j)

2f ′′(ξ)

≤ |∆v|
8

((4κ2 + 1) + κ3) ≤ C|∆v|,
(5.76)
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in (5.73) and derive

|
〈
L4,2, φ

〉
| ≤ C∆x

N−1∑
n=0

∑
j∈Λn

|∆φ̄||∆v|

≤ C

(
N−1∑
n=0

∑
j∈Λn

∆x|∆φ̄|
3
2

) 2
3
(
N−1∑
n=0

∑
j∈Λn

∆x|∆v|3
) 1

3

≤ C

(
||φ||

3
2
Cα0

(∆x)
3
2
α+1

N−1∑
n=0

∑
j∈Λn

1

) 2
3

≤ C||φ||Cα0
(∆x)α+ 2

3

(∆x)
4
3

= C||φ||Cα0 (∆x)α−
2
3 ,

(5.77)

where ∆φ̄ := ∆φn+1
j = φn+1

j+ 1
2

− φn+1
j− 1

2

. Combining (5.75) and (5.77), we conclude

|
〈
L4, φ

〉
| ≤ C

(
||φ||L∞(Ω) + ||φ||Cα0 (∆x)α−2/3

)
. (5.78)

Next, we estimate the term
〈
L1, φ

〉
. We have

|
〈
L1, φ

〉
| =

∣∣∣∣∣∣
N∑
n=1

∑
j∈Λn

∫ xj

x
j− 1

2

(Snj − Sn−1
j− 1

2

)(φnj − φ(x, tn)) dx

∣∣∣∣∣∣
≤

N∑
n=1

∑
j∈Λn

∣∣∣Snj − Sn−1
j− 1

2

∣∣∣ ∫ xj

x
j− 1

2

∣∣φnj − φ(x, tn)
∣∣ dx

≤
N∑
n=1

∑
j∈Λn

|S ′(ξnj )|
∣∣∣vnj − vn−1

j− 1
2

∣∣∣ ∫ xj

x
j− 1

2

||φ||Cα0 |∆x|
α dx,

(5.79)

where ξnj ∈ R(u0). Observe that

|vn+1
j+ 1

2

− vnj | ≤
1

2
|∆v|+ λ|∆g|

≤ 1

2
|∆v|+ λ

∣∣∣f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j )
∣∣∣+

1

8
|v′j+1 − v′j|

≤ 3

4
|∆v|+ λ

∣∣∣f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j )
∣∣∣ ≤ C|∆v|,

(5.80)
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where the last estimate follows from (5.29). Hence,

|
〈
L1, φ

〉
| ≤ C

N∑
n=1

∑
j∈Λn

|∆v| ||φ||Cα0 |∆x|
α+1

≤ C||φ||Cα0 |∆x|
α+ 2

3

(
∆x

N∑
n=1

∑
j∈Λn

|∆v|3
) 1

3
(

N∑
n=1

∑
j∈Λn

1

) 2
3

≤ C||φ||Cα0 |∆x|
α− 2

3 .

(5.81)

Similarly, we have the following estimates for the remaining two terms

|
〈
L2, φ

〉
|+ |

〈
L3, φ

〉
| ≤ C||φ||Cα0 (Ω)|∆x|α−

2
3 . (5.82)

Now, we use the above two estimates, together with (5.78), to get

|
〈
L1 + L2 + L3 + L4, φ

〉
| ≤ |

〈
M1, φ

〉
|+ |

〈
M2, φ

〉
|, (5.83)

where M1 = L4,1, M2 = L1 + L2 + L3 + L4,2 and the following two bounds hold

|
〈
M1, φ

〉
| ≤ C||φ||L∞(Ω) and |

〈
M2, φ

〉
| ≤ C||φ||Cα0 (Ω)(∆x)α−

2
3 . (5.84)

The estimate of the term
〈
M1, φ

〉
yields a uniform bound

||M1||C?0 (Ω) ≤ C, (5.85)

where C?
0(Ω) denotes the space of bounded measures on Ω. Using the Sobolev embed-

ding theorem, we have C?
0(Ω) ⊂ W−1,q1(Ω) with compact injection for any q1 ∈ (1, 2).

Therefore, we have

{M1} is compact in W−1,q1(Ω). (5.86)

For the term
〈
M2, φ

〉
, we use the Sobolev embedding W 1,p(Ω) ↪→ Cα

0 (Ω) for p > 2
1−α

and α ∈ (2
3
, 1). Hence,

||M2||W−1,q2 (Ω) ≤ C∆xα−
2
3 , (5.87)
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where q2 = p
p−1
∈
(
1, 2

α+1

)
. Thus, we get

{M2} is compact in W−1,q2(Ω). (5.88)

We conclude that the sequence of distributions {L} is compact in W−1,q(Ω), 1 < q =

min(q1, q2) < 2
α+1

< 6
5

and this finishes the proof of Lemma 9.

Now, we are ready to prove the following lemma which ends this section.

Lemma 10. Let Ω be a fixed open subset of R× (0,∞). For the entropy pairs (S,Q)

given by (5.4) and (5.5), the sequence of distributions

L(v) = S(v)t +Q(v)x (5.89)

lies in a bounded subset of W−1,r
loc (Ω), 1 < r <∞.

Proof. Let φ ∈ W 1,q
0 (Ω), where q is the conjugate exponent to r, and consider

〈
L, φ

〉
= −

∫ ∞
0

∫
R
(S(v)φt +Q(v)φx)dxdt. (5.90)

We choose the two entropy pairs (S,Q) as before, see (5.4)–(5.5). Using the uniform

bounds ||S(v)||L∞(Ω) ≤ C and ||Q(v)||L∞(Ω) ≤ C, we conclude

|
〈
L, φ

〉
| ≤ C

∫ ∫
Ω

|φt|+ |φx| dx dt ≤ C |Ω|1/r||φ||W 1,q
0 (Ω). (5.91)

3. Convergence towards the unique entropy solution

In the previous subsection, we proved that NT solution converges on compact

sets. Now, we will prove that the limit is the unique entropy solution of the conser-

vation law (2.1).



58

Lemma 11. For the entropy pair (S,Q) such that S(u)= u2

2
and Q(u)=

∫ u
wf ′(w)dw,

we have the following inequality

〈
L(u), φ

〉
=
〈
S(u)t +Q(u)x, φ

〉
≤ 0

for all φ ≥ 0, φ ∈ C∞0 (R× (0,∞)), where u is the strong limit of the NT scheme.

Proof. Let’s fix a test function φ ≥ 0 and define Ω := [−M∆x,M∆x] × [0, N∆t] to

be the smallest rectangle such that supp(φ) ⊂ Ω with M,N positive integers. Given

the numerical solution v(x, t), after integration by parts we rewrite
〈
L(v), φ

〉
as

〈
L, φ

〉
= −

∫ ∞
0

∫
R

(
v2

2
φt +Q(v)φx

)
dx dt = −

〈
L1 + L2 + L3 + L4, φ

〉
, (5.92)

where
〈
Li, φ

〉
for i = 1, . . . , 4 are the same as in (5.70). We know that

〈
L1 + L2 + L3, φ

〉
= o(1), (5.93)

where we use the standard o(1)-notation. Thus, we restrict our attention to
〈
L4, φ

〉
,

−
〈
L4, φ

〉
=

N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

E
n+ 1

2

j+ 1
2

+ λ
N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

∆Hn
j+ 1

2
, (5.94)

where we recall that

E
n+ 1

2

j+ 1
2

= −1

8
(∆v)2µn

j+ 1
2

+ λ(∆v)3νn
j+ 1

2

= λ(∆v)3
+ν

n
j+ 1

2
+

[
−1

8
(∆v)2µn

j+ 1
2

+ λ(∆v)3
−ν

n
j+ 1

2

]
=: (E

n+ 1
2

j+ 1
2

)+ + (E
n+ 1

2

j+ 1
2

)−

(5.95)

and we define

∆Hn
j+ 1

2
= vnj+1(f(vnj+1)− g(vnj+1))− vnj (f(vnj )− g(vnj )). (5.96)

Note that the expression λ
∑N−1

n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

∆Hn
j+ 1

2

is equal to (5.73) with
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S ′(u) = u. Hence, using the bound (5.77) with S ′(u) = u, we write

−
〈
L4, φ

〉
=

N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

(E
n+ 1

2

j+ 1
2

)− +
N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

(E
n+ 1

2

j+ 1
2

)+ + o(1), (5.97)

where o(1) absorbs the term O(∆xα−
2
3 ). For the second summand above we use the

estimate (5.49),

cγ1λ
N∑
n=0

∑
j∈Λn

(∆v)3
+ ≤

∑
j

(∆v0)2
+, (5.98)

which gives

N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

(E
n+ 1

2

j+ 1
2

)+ = ∆x
N−1∑
n=0

∑
j∈Λn

λ(∆v)3
+ φ

n+1
j+ 1

2

νn
j+ 1

2

≤ C||φ||L∞(Ω)∆x
∑
j

(∆v0)2
+.

(5.99)

Therefore, we have

−
〈
L4, φ

〉
≤

N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

(E
n+ 1

2

j+ 1
2

)− + C||φ||L∞(Ω)∆x
∑
j

(∆v0)2
+ + o(1). (5.100)

Observe that
N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

(E
n+ 1

2

j+ 1
2

)− ≤ 0 (5.101)

and

∑
j

∆x(v0
j+1 − v0

j )
2
+ ≤ ∆x

∑
j∈Z

 1

∆x

∫ x
j+1

2

x
j− 1

2

(v0(x+ ∆x)− v0(x))dx

2

≤ 1

∆x

∑
j

∫ x
j+1

2

x
j− 1

2

(v0(x+ ∆x)− v0(x))2dx

∫ x
j+1

2

x
j− 1

2

1dx

=

∫
R
|v0(x+ ∆x)− v0(x)|2dx = o(1),

(5.102)

where the last part follows from continuity of translation in the L2 norm, see for
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example [17]. Hence, we conclude

−
〈
L1 + L2 + L3 + L4, φ

〉
≤

N−1∑
n=0

∑
j∈Λn

∆xφn+1
j+ 1

2

(E
n+ 1

2

j+ 1
2

)− + o(1), (5.103)

and when ∆x→ 0, for any strong limit u, we have

〈
L(u), φ

〉
≤ 0. (5.104)

Based on the result of E. Yu. Panov [53] , see also [14], a single entropy inequality

is enough to select the unique entropy solution. Thus, we conclude that the NT scheme

converges strongly and the limit is the unique entropy solution of (2.1).
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CHAPTER VI

CONCLUSION

In this thesis, stability and convergence results were proven for the second or-

der non-oscillatory Nessyahu-Tadmor (NT) scheme with a modified minmod limiter

inspired by the so-called minimum angle plane reconstruction (MAPR), see [10].

The advantage of MAPR-like limiters is that at local extrema, the slope of the

local reconstruction is not set to zero and the local approximation is second order.

It is shown that the NT scheme with the new limiter satisfies a maximum principle

for a conservation law with any Lipschitz flux and also with any k-monotone flux for

k ≥ 2. It is also proven that the usual TVD bound follows from the local maximum

principle. The maximum principle result is later employed to prove that, in the case

of strictly convex flux, the NT scheme with a properly selected MAPR-like limiter

satisfies an one-sided Lipschitz stability estimate. As a result, the numerical solution

converges to the unique entropy solution when the initial data satisfies some type of

an one-sided Lipschitz condition. Finally, using the stability results from previous

chapters and compensated compactness arguments, it is proven that the NT scheme

with the modified limiter converges strongly on compact sets to a weak solution and

the limit satisfies a weak form of an entropy inequality. Based on the result that a

single entropy inequality is enough to select the unique entropy solution in the case

of a scalar strictly convex flux, see [53], we conclude that the NT scheme converges

to the entropy solution of the conservation law for any given bounded initial data.

The main contribution of this thesis is that convergence of the NT scheme is proven

without imposing any non-homogenous limitations on the numerical method or one-

sided conditions on the initial data, and the result holds for the largest possible class of

initial conditions, that is, the class of initial data where we have existence-uniqueness
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of the entropy solution of the PDE. This is a new result even in the case of the classical

minmod limiter.

It should be possible to generalize these results in the case of scalar conservation

laws to other second and higher order schemes as numerical evidence suggests that

many other schemes also satisfy the one-sided stability property, see Lemma 7 and

Lemma 8. In the case of systems, one of the fundamental problems is to establish the

existence of an invariant domain and prove that the numerical solution stays bounded

for a large class of initial data. For instance, once having this kind of result for the LxF

scheme for the Lagrangian p-system, DiPerna’s compensated compactness arguments

will imply that up to a subsequence, the numerical solution converges to an entropy

solution. Trying to prove the existence of an invariant domain for the NT scheme

for the systems such as chromatography and p-system, for example, suggests that

characteristic-wise limiting is needed. Thus, one possible future direction of study

is to devise numerical schemes using flux and space dependent limiters, which allow

to define an invariant domain or prove compactness without reducing the accuracy

order of the scheme.
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zengleichungen der mathematischen Physik, Math. Ann., 100 (1928), pp. 32–74.

[12] M. G. Crandall and A. Majda, Monotone difference approximations for

scalar conservation laws, Math. Comp., 34 (1980), pp. 1–21.

[13] C. M. Dafermos, Hyperbolic systems of conservation laws, in Systems of non-

linear partial differential equations (Oxford, 1982), vol. 111 of NATO Adv. Sci.

Inst. Ser. C Math. Phys. Sci., Reidel, Dordrecht, 1983, pp. 25–70.

[14] C. De Lellis, F. Otto, and M. Westdickenberg, Minimal entropy con-

ditions for Burgers equation, Quart. Appl. Math., 62 (2004), pp. 687–700.

[15] R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynam-

ics, Comm. Math. Phys., 91 (1983), pp. 1–30.

[16] B. Einfeldt, On Godunov-type methods for gas dynamics, SIAM J. Numer.

Anal., 25 (1988), pp. 294–318.



65

[17] G. B. Folland, Real analysis, Pure and Applied Mathematics (New York),

John Wiley & Sons Inc., New York, second ed., 1999. Modern techniques and

their applications, A Wiley-Interscience Publication.

[18] K. O. Friedrichs and P. D. Lax, Systems of conservation equations with a

convex extension, Proc. Nat. Acad. Sci. U.S.A., 68 (1971), pp. 1686–1688.

[19] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,

Comm. Pure Appl. Math., 18 (1965), pp. 697–715.

[20] S. K. Godunov, A difference method for numerical calculation of discontinuous

solutions of the equations of hydrodynamics, Mat. Sb. (N.S.), 47 (89) (1959),

pp. 271–306.

[21] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Com-

put. Phys., 49 (1983), pp. 357–393.

[22] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly

high-order accurate essentially nonoscillatory schemes. III, J. Comput. Phys., 71

(1987), pp. 231–303.

[23] A. Harten, J. M. Hyman, and P. D. Lax, On finite-difference approxima-

tions and entropy conditions for shocks, Comm. Pure Appl. Math., 29 (1976),

pp. 297–322. With an appendix by B. Keyfitz.

[24] A. Harten, P. D. Lax, and B. van Leer, On upstream differencing and

Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25 (1983),

pp. 35–61.

[25] A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory

schemes. I, SIAM J. Numer. Anal., 24 (1987), pp. 279–309.



66

[26] G.-S. Jiang, D. Levy, C.-T. Lin, S. Osher, and E. Tadmor, High-

resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic

conservation laws, SIAM J. Numer. Anal., 35 (1998), pp. 2147–2168 (electronic).

[27] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO

schemes, J. Comput. Phys., 126 (1996), pp. 202–228.

[28] G.-S. Jiang and E. Tadmor, Nonoscillatory central schemes for multidimen-

sional hyperbolic conservation laws, SIAM J. Sci. Comput., 19 (1998), pp. 1892–

1917 (electronic).

[29] K. H. Karlsen and J. D. Towers, Convergence of the Lax-Friedrichs scheme

and stability for conservation laws with a discontinous space-time dependent flux,

Chinese Ann. Math. Ser. B, 25 (2004), pp. 287–318.

[30] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,

Arch. Rational Mech. Anal., 58 (1975), pp. 181–205.

[31] K. Kopotun, M. Neamtu, and B. Popov, Weakly nonoscillatory schemes

for scalar conservation laws, Math. Comp., 72 (2003), pp. 1747–1767.

[32] K. A. Kopotun, Approximation of k-monotone functions, J. Approx. Theory,

94 (1998), pp. 481–493.
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APPENDIX A

MAXIMUM PRINCIPLE OF NT SCHEME WITH CONVEX FLUX

Here, we give an alternative proof for the maximum principle, see Theorem 2,

for the case when the flux is convex.

Theorem 7. Let v′j be chosen as in (2.8) and f ′j = f ′(vnj )v′j. If f is strictly convex,

that is, there exists constants γ1 ≤ γ2 such that

0 < γ1 ≤ f ′′ ≤ γ2 (A.1)

then the scheme described by (2.12), (2.13) satisfies the maximum principle

min(vnj , v
n
j+1) ≤ vn+1

j+ 1
2

≤ max(vnj , v
n
j+1), (A.2)

under the CFL condition

λ max
w∈R(u0)

|f ′(w)| ≤ κ, (A.3)

where κ is a fixed constant which depends only on γ1 and γ2, see (A.13).

Proof. First, we observe

|f(b)− f(a)| =
∣∣∣∣∫ b

a

f ′(t)dt

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

(∫ t

a+b
2

f ′′(s)ds+ f ′
(
a+ b

2

))
dt

∣∣∣∣∣
≤
(
γ2

4
|b− a|+

∣∣∣∣f ′(a+ b

2

)∣∣∣∣) |b− a|.
(A.4)

Let a = v
n+ 1

2
j and b = v

n+ 1
2

j+1 in the above inequality,

∣∣∣f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j )
∣∣∣ ≤

∣∣∣∣∣∣f ′
vn+ 1

2
j + v

n+ 1
2

j+1

2

∣∣∣∣∣∣
∣∣∣vn+ 1

2
j+1 − v

n+ 1
2

j

∣∣∣
+
γ2

4

∣∣∣vn+ 1
2

j+1 − v
n+ 1

2
j

∣∣∣2 .
(A.5)
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Next, we bound the terms appearing on the right hand side. We start with,∣∣∣vn+ 1
2

j+1 − v
n+ 1

2
j

∣∣∣ =

∣∣∣∣vnj+1 − vnj −
λ

2
(f ′(vnj+1)v′j+1 − f ′(vnj )v′j)

∣∣∣∣
≤
(

1 +
λ

2

(
|f ′(vnj+1)|+ |f ′(vnj )|

))
|vnj+1 − vnj |

≤ (1 + κ)|vnj+1 − vnj | ≤
1 + κ

γ1

|f ′(vnj+1)− f ′(vnj )|

≤ 2(1 + κ)

γ1

max
j

∣∣f ′(vnj )
∣∣ .

(A.6)

Note that the inequality∣∣∣∣λ4 (f ′(vnj )v′j + f ′(vnj+1)v′j+1

)∣∣∣∣ ≤ κ

2
|vnj+1 − vnj | (A.7)

implies

min(vnj , v
n
j+1) ≤

v
n+ 1

2
j + v

n+ 1
2

j+1

2
≤ max(vnj , v

n
j+1), (A.8)

for all κ ≤ 1. From (A.1) and (A.8) it follows that∣∣∣∣∣∣f ′
vn+ 1

2
j+1 + v

n+ 1
2

j

2

∣∣∣∣∣∣ ≤ max
j

∣∣f ′(vnj )
∣∣ . (A.9)

We use (A.5), (A.6) and (A.9) and derive∣∣∣f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j )
∣∣∣ ≤ (γ2(1 + κ)

2γ1

+ 1

)
max
j
|f ′(vnj )|

∣∣∣vn+ 1
2

j+1 − v
n+ 1

2
j

∣∣∣
≤
(
γ2(1 + κ)

2γ1

+ 1

)
(1 + κ) max

j
|f ′(vnj )||vnj+1 − vnj |.

(A.10)

Using (A.10) in (2.13) gives the estimates

vn+1
j+ 1

2

≤ 1

2
(vnj + vnj+1) +

1

8
|v′j − v′j+1|+ λ

∣∣∣f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j )
∣∣∣

≤ 1

2
(vnj + vnj+1) +

(
1

4
+ κ(1 + κ)

(
γ2(1 + κ)

2γ1

+ 1

))
|vnj+1 − vnj |,

(A.11)
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and

vn+1
j+ 1

2

≥ 1

2
(vnj + vnj+1)− 1

8
|v′j − v′j+1| − λ

∣∣∣f(v
n+ 1

2
j+1 )− f(v

n+ 1
2

j )
∣∣∣

≥ 1

2
(vnj + vnj+1)−

(
1

4
+ κ(1 + κ)

(
γ2(1 + κ)

2γ1

+ 1

))
|vnj+1 − vnj |.

(A.12)

Hence, under the CFL condition

κ(1 + κ)

(
γ2(1 + κ)

2γ1

+ 1

)
≤ 1

4
, (A.13)

we have

min(vnj , v
n
j+1) ≤ vn+1

j+ 1
2

≤ max(vnj , v
n
j+1). (A.14)
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APPENDIX B

ENTROPY PRODUCTION ESTIMATES

In this appendix, we will restate the proof given in [36]. That is, in the case of sys-

tems of conservation laws in one space dimension, the first order Lax-Friedrichs(LxF)

scheme satisfies a discrete entropy inequality for any given entropy pair, see Lemma 12.

Following [47], we will also derive a discrete entropy production identity for the sec-

ond order Nessyahu-Tadmor scheme in the case of scalar conservation laws in one

space dimension, see Lemma 13. The goal is to provide the reader with a reference

which is free of typos and unifies the notations in [36] and [47].

First, we consider systems of conservation laws in one space dimension:
ut + f(u)x = 0, (x, t) ∈ R× (0,∞),

u = u0, (x, t) ∈ R× {t = 0},
(B.1)

where u = (u1, . . . , um) : R → Rm is the conservative variable, f = (f1, . . . , fm) :

Rm → Rm is the flux function, and u0(x) : R → Rm is the given function describing

the initial distribution of u = (u1, . . . , um).

The Lax-Friedrichs scheme for (B.1) is given by

vn+1
j+ 1

2

=
1

2
(vnj + vnj+1)− λ(f(vnj+1)− f(vnj )), (B.2)

which is initialized with

v0
j :=

1

∆x

∫ x
j+1

2

x
j− 1

2

u0(x) dx. (B.3)

The global approximate solution v(x, t) is defined to be piecewise constant in time:

v(x, t) = vnj for (x, t) ∈ (xj− 1
2
, xj+ 1

2
)× [tn, tn+1), where j ∈ Z if n is even and j+ 1

2
∈ Z

if n is an odd integer.
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Lemma 12. For a given entropy pair (S,Q), there exists a constant κ0 > 0, which

only depends on the maximum and minimum eigenvalues of S ′′, see (B.20), such that

under the CFL condition

λ max
w∈R(u0)

||f ′(w)||2 ≤ κ0, (B.4)

where || · ||2 is the l2-matrix norm, the Lax-Friedrichs scheme described by (B.2)

satisfies the following discrete entropy inequality

1

∆t

(
S(vn+1

j+ 1
2

)−
S(vnj ) + S(vnj+1)

2

)
+

1

∆x
(Q(vnj+1)−Q(vnj )) ≤ 0. (B.5)

Proof. Given entropy pair (S,Q), define

E
n+ 1

2

j+ 1
2

:= S(vn+1
j+ 1

2

)−
S(vnj ) + S(vnj+1)

2
+ λ(Q(vnj+1)−Q(vnj )). (B.6)

We introduce the notations u := vn+1
j+ 1

2

, v := vnj , w := vnj+1 and rewrite E
n+ 1

2

j+ 1
2

as

E
n+ 1

2

j+ 1
2

= S(u)− S(v) + S(w)

2
+ λ(Q(w)−Q(v)). (B.7)

We define

v(s) := sv + (1− s)w,

u(s) :=
v(s) + w

2
+ λ(f(v(s))− f(w)),

(B.8)

and set

G(s) :=
S(v(s)) + S(w)

2
+ λ(Q(v(s))−Q(w)),

H(s) := S(u(s)).

(B.9)

Observe that G(0) = H(0) = S(w), H(1) = S(u) and

G(1) =
S(v) + S(w)

2
+ λ(Q(w)−Q(v)). (B.10)
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Thus,

−En+ 1
2

j+ 1
2

=
S(v) + S(w)

2
+ λ(Q(w)−Q(v))− S(u)

= G(1)−H(1) =

∫ 1

0

d

ds
(G(s)−H(s)) ds.

(B.11)

We now consider

d

ds
(G(s)−H(s)) =

d

ds

(
S(v(s))

2
− S(u(s)) + λQ(v(s))

)
=

1

2
S ′(v(s)) · v′(s)− S ′(u(s)) · u′(s) + λQ′(v(s)) · v′(s)

=
1

2
S ′(v(s)) · (v − w)− S ′(u(s)) ·

(
v′(s)

2
+ λf ′(v(s))v′(s)

)
+ λS ′(v(s)) · f ′(v(s))(v − w)

=
1

2
S ′(v(s)) · (I + 2λf ′(v(s)))(v − w)

− 1

2
S ′(u(s)) · (I + 2λf ′(v(s)))(v − w)

=
1

2
(S ′(v(s))− S ′(u(s))) · (I + 2λf ′(v(s)))(v − w).

(B.12)

Next, we introduce

w(r, s) := rv(s) + (1− r)w = rsv + (1− rs)w,

u(r, s) :=
v(s) + w(r, s)

2
+ λ(f(v(s))− f(w(r, s))),

(B.13)

and note that

w(1, s) = v(s), w(0, s) = w,

u(1, s) = v(s), u(0, s) = u(s).

(B.14)

Using the above definitions and properties we write

S ′(v(s))− S ′(u(s)) =

∫ 1

0

∂

∂r
S ′(u(r, s)) dr, (B.15)
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and consider

∂

∂r
S ′(u(r, s)) = S ′′(u(r, s))

∂

∂r
u(r, s)

= S ′′(u(r, s))

(
1

2
s(v − w)− λf ′(w(r, s))s(v − w)

)
=
s

2
S ′′(u(r, s))(I − 2λf ′(w(r, s)))(v − w).

(B.16)

Substituting the above into (B.12) we get

d

ds
(G(s)−H(s))

=

∫ 1

0

s

4
S ′′(u(r, s))(I − 2λf ′(w(r, s)))(v − w) dr · (I + 2λf ′(v(s)))(v − w)

=

∫ 1

0

s

4
(v − w)t(I − 2λf ′(w(r, s)))t(S ′′(u(r, s)))t(I + 2λf ′(v(s)))(v − w) dr.

(B.17)

Using this identity in (B.11) yields

E
n+ 1

2

j+ 1
2

= −
∫ 1

0

∫ 1

0

s

4
(v − w)t(I − 2λf ′(w(r, s)))t(S ′′(u(r, s)))t

(I + 2λf ′(v(s)))(v − w) dr ds.

(B.18)

Let us denote the minimum and maximum eigenvalues of S ′′ bym andM , respectively.

Since S ′′ is symmetric positive definite matrix we have

E
n+ 1

2

j+ 1
2

≤ −1

4
m+M(λ||f ′||2 + λ2||f ′||22)||v − w||2 ≤ 0, (B.19)

where the last inequality is true under the CFL condition

λ||f ′||2 ≤
√

1 + m
M
− 1

2
. (B.20)

Next, we will establish an entropy production identity for the Nessyahu-Tadmor

scheme described by (2.12)–(2.13). We will use the formulation in (5.8) for the stag-
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gered averages at time tn+1:

vn+1
j+ 1

2

=
1

2
(vnj + vnj+1)− λ(g(vnj+1)− g(vnj )). (B.21)

Lemma 13. For a given entropy pair (S,Q), the NT scheme satisfies the following

entropy production identity

E
n+ 1

2

j+ 1
2

= −
∫ 1

0

∫ 1

0

s

4
S ′′(u(r, s))(1− 2λg′(w(r, s)))(1 + 2λg′(v(s)))(v − w)2drds

+

∫ 1

0

λS ′(v(s))(f ′(v(s))− g′(v(s)))(w − v) ds.

(B.22)

where E
n+ 1

2

j+ 1
2

is defined as in (B.6):

E
n+ 1

2

j+ 1
2

= S(vn+1
j+ 1

2

)−
S(vnj ) + S(vnj+1)

2
+ λ(Q(vnj+1)−Q(vnj )). (B.23)

Proof. We use the same notations u = vn+1
j+ 1

2

, v = vnj , w = vnj+1 and approximate the

entropy production as in (B.6),

E
n+ 1

2

j+ 1
2

= S(u)− S(v) + S(w)

2
+ λ(Q(w)−Q(v)). (B.24)

We define

v(s) := sv + (1− s)w,

u(s) :=
v(s) + w

2
+ λ(g(v(s))− g(w)),

(B.25)

and use the same definitions for G(s) and H(s) as in (B.9). From (B.11) we know

−En+ 1
2

j+ 1
2

=

∫ 1

0

d

ds
(G(s)−H(s)) ds. (B.26)
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Now, we consider

d

ds
(G(s)−H(s))

=
d

ds

(
S(v(s))

2
− S(u(s)) + λQ(v(s))

)
=

1

2

(
S ′(v(s))(1 + 2λf ′(v(s)))− S ′(u(s))(1 + 2λg′(v(s)))

)
(v − w)

=
1

2

(
(S ′(v(s))− S ′(u(s)))(1 + 2λg′(v(s)))

)
(v − w)

+ λS ′(v(s))(f ′(v(s))− g′(v(s)))(v − w).

(B.27)

Similar to (B.13) we set

w(r, s) := rv(s) + (1− r)w = rsv + (1− rs)w,

u(r, s) :=
v(s) + w(r, s)

2
+ λ(g(v(s))− g(w(r, s))),

(B.28)

and use (B.14) to write

S ′(v(s))− S ′(u(s)) =

∫ 1

0

∂

∂r
S ′(u(r, s)) dr

=

∫ 1

0

s

2
S ′′(u(r, s))(1− 2λg′(w(r, s)))(v − w) dr.

(B.29)

Substituting the above identity into (B.27) and rewriting (B.26), we derive

E
n+ 1

2

j+ 1
2

= −
∫ 1

0

∫ 1

0

s

4
S ′′(u(r, s))(1− 2λg′(w(r, s)))(1 + 2λg′(v(s)))(v − w)2drds

+

∫ 1

0

λS ′(v(s))(f ′(v(s))− g′(v(s)))(w − v) ds.

(B.30)
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