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ABSTRACT 

 

Landscape Scale Impacts of Sea Level Rise and Elevation 

Changes Along the Matagorda Fault in Matagorda, Texas. (August 2012) 

Marie Denise Cline, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Rusty Feagin 

 

Movement of growth faults, a type of normal fault which is formed during 

sedimentation and is characterized by having greater vertical thickness on the 

downthrown fault side, on barrier islands contributes to wetland losses. The opening 

objective of this study was to quantify land cover change within a Matagorda, Texas 

wetland that results from sea level rise and elevation change over time due to coastal 

faulting.  The closing objective of this study was to simulate land cover conversion as a 

function of relative sea level rise (RSLR) within the wetland and to compare and 

contrast the impact of specific rates of both fault-induced elevation change and predicted 

International Panel on Climate Change (IPCC) sea level rise projections. 

To accomplish these objectives a time series of aerial images was classified using 

automated unsupervised classification and hand digitization. After classification, total 

wetland losses on both the upthrown and downthrown sides of the fault were evaluated 

as a function of spatial distance from the fault plane. This classified product was draped 

over a digital elevation model (DEM) layer to evaluate elevations of land cover classes 

and model potential future outcomes based on RSLR. 



 

 

iv 

iv
 

Classification results show that while wetland loss occurred on both sides of the 

fault, losses were far more extensive on the downthrown side. It was concluded that this 

vertical fault movement impacts wetland losses, especially on the downthrown side. 

Modeling results show that rapid water level rise can force wetland land cover class 

conversion regardless of whether this relative rise is caused by vertical fault 

displacement or eustatic sea level rise, resulting in the destruction of vital wetland areas.  

Current recorded conditions of sea level rise along the Texas Gulf Coast leave a grim 

outlook for regions similar to this study area.   
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NOMENCLATURE 

 

RSLR Relative Sea Level Rise  

IPCC International Panel on Climate Change 

GIS Geographical Information System 
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1. INTRODUCTION 

 

 Wetlands perform a variety of essential services for society and are an essential 

component of a balanced coastal ecosystem.  Both climate change and relative sea level 

rise (RSLR) threaten the stability of these important ecosystems.  The submergence of 

these coastal ecosystems will have significant impacts.  As our wetland ecosystems 

become increasingly fragile and vulnerable, an enhanced understanding of changes at the 

landscape level will be crucial to their preservation. 

 Faults are found in wetlands along the Gulf Coast region and have been 

recognized by geologists for many years; however, the use of these faults to study the 

impacts of elevation and land cover change has yet to be conducted.  Faults provide a 

point of reference to the impacts of RSLR on wetland habitats; they can be used as key 

geologic reference features in evaluating the impacts of RSLR on local ecosystems.  The 

use of coastal faults in wetlands offers the ability to identify threshold rates of RSLR that 

can negatively affect wetland sustainability at the landscape scale allowing coastal 

managers to better be able to manage these important natural resources though 

mitigation of land loss and coastal change and restoration projects. There has been 

limited exploration of the spatially-explicit nature of coastal faulting on wetland 

vegetation and wetland land cover. 

 Change detection, through remote sensing, senses environmental changes 

through the use of multiple scenes covering the same geographic area acquired over a  

____________ 

This thesis follows the style of Geocarto International. 
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period of time and is useful in many applications including land use and land cover 

change, habitat fragmentation, coastal change, and urban sprawl.  Image processing 

techniques aid in analyzing the changes within ecosystems of interest.  This practice 

provides scientists the ability to closely monitor and understand the dynamics of 

landscapes of interest. 

A geographical information system (GIS) database quantifies, manipulates, and 

analyzes the geographic information derived from remote sensing products.  The 

geographic information data is useful for decision making, inventorying the 

environment, observing change, and prediction based on current situations.  This is 

accomplished through spatial, temporal, and statistical analysis techniques with digital 

image processing techniques. 

The opening objective of this study was to demonstrate and document land cover 

change within a wetland that results from sea level rise and elevation change over time 

due to coastal faulting.  The closing objective of this study was to simulate land cover 

conversion as a function of RSLR within a Matagorda, Texas wetland and to compare 

and contrast the impact of specific rates of both fault-induced elevation change and 

predicted International Panel on Climate Change (IPCC) sea level rise projections. 
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2. FAULT-INDUCED WETLAND LOSS AT MATAGORDA, TEXAS, USA:  

LAND COVER CHANGES FROM 1943 TO 2008 

 

2.1  Introduction 

 Wetlands perform a variety of essential services for society, including flood 

control, coastal protection and stabilization, carbon storage, aquifer recharge, water 

purification and filtration, exportation of nutrients to coastal waters, fish production and 

biodiversity maintenance (e.g. Richardson 1994, Mitsch and Gosslink 2000b, Keddy 

2009).  Accelerated sea level rise presents many dangers for coastal wetlands, as well as 

for the 53% of the U.S. population who live in the coastal zone (e.g. Mitsch and 

Gosslink 2000a, LaFever et al. 2007, Craft et al. 2009, Ross et al. 2009).  The 

submergence of these coastal ecosystems, where rates of relative sea level rise (RSLR) 

are greater than rates of vertical accretion, will have significant impacts (Day et al. 1995, 

Jallow et al. 1996, Leatherman 2001).  Under recent projections, global eustatic sea level 

rise is expected to increase over the next decade due to global warming (IPCC 2007).  

An accelerated rate of sea level rise is a threat to the biodiversity within the wetlands, 

potentially causing ecoregions to shrink, disappear, or fragment (Menon et al. 2010).  As 

our wetland ecosystems become increasingly fragile and vulnerable, an enhanced 

understanding of the impacts of fundamental change at the landscape level is crucial to  

 

____________ 

*Reprinted with permission from “Fault-induced wetland loss at Matagorda, Texas, 

USA: Land cover changes from 1943 to 2008” by M.D. Cline, R.A. Feagin, K.M. 

Yeager, and J.M. Van Alstyne, 2011. Geocarto International, 26, 633-645, Copyright 

[2011] by Taylor & Francis. 
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their preservation. 

 Faults provide a point of reference to the impacts of RSLR on wetland habitat; 

they can be used as key geologic reference features in evaluating the impacts of RSLR 

on local ecosystems.  Faults are important geological features in that they allow for the 

evaluation of potential sea level scenarios, under current conditions and due to natural 

factors (Morton et al. 2000).  It has also been proven that surface faults commonly are 

related to subsurface faults, allowing for the evaluation of subsurface activity (White and 

Tremblay 1995). 

 Surface expressions of subsurface faults can be found in wetlands along the Gulf 

Coast occur for multiple reasons, and their activity can be driven by both natural and 

anthropogenic processes.  Natural processes generally can include the formation and 

motion of subsurface structures, such as salt bodies and deep growth faults (Salvador 

1987, Diegel et al. 1995, Dokka et al. 2006).    In contrast, faulting driven by human 

activities is generally a result of hydrocarbon production, subsurface water removal, 

reservoir compaction and reduced sedimentation (White and Tremblay 1995, White and 

Morton 1997, Hartig et al. 2002, Dokka et al. 2006, Morton et al. 2006, Chan and 

Zoback 2007, Mallman and Zoback 2007, Morton and Bernier 2010). 

 Rates of sea level rise and subsidence are likely to affect both vertical accretion 

of wetland vegetation (Moorhead 1995) and the rate of lateral migration across the 

landscape (Feagin et al. 2010a).  According to some studies, human induced subsidence 

and faulting associated with subsurface fluid withdrawal has accelerated RSLR, 

impacting coastal erosion rates, and ultimately resulted in the destruction of vital 
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wetland areas (White and Tremblay 1995, Feagin et al. 2005).  From an ecological 

standpoint, RSLR/subsidence can significantly alter the vegetation makeup of wetland 

communities (White and Morton 1997), can severely hamper the ability of wetlands to 

fulfill their natural functions, and can affect biodiversity (LaFever et al. 2007, Ross et al. 

2005). 

 There has been limited exploration of the spatially-explicit nature of coastal 

faulting on wetland vegetation and wetland land cover.  As such, the primary objective 

of this study was to demonstrate and document land cover change within a wetland that 

results from sea level rise and elevation change due to coastal faulting.  Methods utilized 

included the classification of aerial photography on both sides of the immediate fault 

area ranging from 1943 until 2008 into four specific categories: water, low marsh, salt 

flat, and high marsh.  Once complete, a Geographic Information System (GIS) database 

was used to quantify the amount of change over time for each category of land cover. 

2.2  Methods  

2.2.1  Study Area 

 This study area is a salt marsh wetland located on East Matagorda Peninsula, 

near the town of Matagorda, Texas, USA (Figure 1(a)).  The East Matagorda Peninsula 

is a transgressive barrier island feature that was connected to the mainland in the early 

1920s as a result of human modification.  The study area lies in the southwestern corner 

of Matagorda Bay on this peninsula and can be seen in relation to surrounding features 

in a 1995 SPOT image at 5 m spatial resolution, which delineates the study area as well 

as the surface expression of the subsurface fault (Figure 1(b)). 
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 The wetland vegetation at this site is comprised of salt marsh plant cover typical 

for this region, with zonation strongly dependent upon elevation: open water with some 

Ruppia maritima L. and Halodule wrightii Asch., low marsh dominated by Spartina 

alterniflora Loisel., mid marsh dominated by Salicornia virginica Standl. and Batis 

maritima L., unvegetated salt flat with some Monanthocloe littoralis Engelm. around the 

edges, and high marsh dominated by Spartina spartinae (Trin.) Merr. ex Hitchc. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. a) Geographic location of the study site on the Texas coast.  b) SPOT imagery of the study site in 

relation to surrounding features in 1995.  Delineation of the study area is represented by the solid line and 

delineation of the surface fault expression is represented by the dashed line.  

 

 

 A normal growth fault bisects our study area (Figure 1(b)).  Subsurface seismic 

imaging, litho- and biostratigraphic contacts, and ground survey datasets have confirmed 

the presence of this fault (Feagin et al. 2010b).  Kreitler (1976) traced a possible fault in 

this location, as an extrapolation of a subsurface fault that stretched several kilometers 

offshore. 
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 Based upon visual inspection of imagery from 1943, the surface at our study site 

shows no apparent fault-produced features.  By the 1960s and 1970s, exploratory drilling 

for natural gas and oil was occurring in this region (Railroad Commission of Texas 

2011).  In an image from 1978, a clear, linear feature can be seen bisecting the study site.  

In this same image, a drilling rig can be seen and the Railroad Commission of Texas 

(2011) records a horizontal well at this location, though it was apparently a dry well (no 

gas found).  By the 1980s, natural gas extraction began from a reservoir that was directly 

adjacent to the subsurface fault described by Kreitler (1976), though 4 km offshore of its 

surficial expression.  Natural gas extraction from this reservoir continued until the early 

2000s.  Today, extensive natural gas extraction continues from several other reservoirs, 

located approximately 12 km offshore. 

2.2.2  Image Classification and Analysis 

 A large set of aerial imagery was acquired for the study area.  From this set, four 

images were chosen, one each from 1943, 1978, 1996, and 2008.  Images were selected 

to achieve a representative time sequence over a span of many years, as well as to 

maximize image quality.  The 1943 and 1978 images were black and white.  The 1996 

and 2008 images were color-infrared (CIR).  The 1943, 1978, and 1996 images were 

acquired at 1 m
2
 horizontal resolution.  The 2008 image was acquired at 0.1 m

2
 

horizontal resolution.  This 2008 image was then resampled by majority rule to 1 m
2
, in 

order to match the resolution of the other images. 

 An area of interest (AOI) vector polygon was created within a Geographic 

Information System (GIS) and all raster images were clipped to its extent (Arc10.0, 



 

 

8 

8
 

ESRI, Redlands, California).  The AOI contained a landscape-scale view of both sides of 

the fault, and extended the length of the fault’s expression within the salt marsh.   

 Each of the four images was then classified in ENVI 4.7 (ITT Visual Information 

Solutions, Boulder, CO, USA), using the iterative self-organizing data analysis 

technique (ISODATA) unsupervised algorithm.  Thirty spectral classes were initially 

identified and were then combined into four information classes: water, low marsh, salt 

flat, and high marsh.  Classified images were then smoothed using a 7 x 7 majority filter 

to remove noise. 

 Visual inspection of the classified images revealed that this procedure had 

resulted in several obviously misclassified locations for the 1943 and 1978 data sets.  

Primarily, this classification method was able to distinguish the differences between 

water and land; however, it proved unsuccessful at distinguishing differences between 

land classes.  In both black and white images, the classification algorithm was unable to 

detect subtle differences in shading and apparent reflectance between these surfaces.  We 

initially sought to correct these errors by hand-digitizing the entire set of four images.  

However, we quickly realized that the landscape in our study area was extremely 

heterogeneous at a fine scale; there were small patches of the various classes 

interspersed with one another throughout the AOI.  Due to this interspersion, hand 

digitization required digitizing class-specific polygons within other differing-class 

polygons.  Several levels of embedded polygons-within-polygons were going to be 

required of this digitization effort.  Moreover, digitization would have required that all 

polygon edges matched the edges of other adjacent polygons, and any small errors 
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would have added up to significant areas of land when this procedure was iterated across 

the landscape.  We thus felt that a combination procedure was warranted.  We chose to 

use the classified images as the base layer, smoothed them with the 7 x 7 filter to solve a 

portion of the interspersion problem, and then systematically corrected all apparent 

errors by hand. 

2.2.3  Digitization 

 In order to capture the detail and heterogeneity of the landscape, the water class 

polygons produced by the classification were visually inspected for accuracy and then 

used in the digitized product.  The water class polygon was overlaid onto the AOI 

polygon and then clipped, producing a product containing two classes—water and land.  

The specific land cover classes were then hand digitized using both the editor and 

advanced editor toolbars in a GIS, utilizing functions such as creating features, clipping, 

merging, exploding, cutting, and reshaping (Arc10.0, ESRI, Redlands, California).  In 

order to maintain detail consistency, a constant scale (1:3,000) was used throughout the 

process and a minimum feature size was established (10 m
2
).  Land cover type 

classification was influenced by our knowledge of marsh functions, as well as contrast 

and spectral differences noted in the imagery.  The final outputs included a classified 

product for the full extent of the landscape, as well as classifications for the upthrown 

and downthrown extents for the years 1943, 1978, 1996, and 2008. 

2.2.4  Data Analysis 

 The final digitized product resulted in a rich collection of data for analysis 

(Figure 2).  Using the classified image product, areas were calculated using the GIS for 
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all land cover classes considered.  The quantitative area data for each classification type 

(water, low marsh, salt flat, and high marsh) was extracted using the GIS attribute table 

and logic statements for the full AOI, and for the upthrown and downthrown extents 

during each time period.   

 In order to evaluate the presence of a relationship between subsidence and 

distance from the fault, class areas were calculated for strips of equal thickness at normal 

fixed distances from the fault.  To accomplish this, a multiple ring buffer geoprocessing 

technique was applied to the fault location, stretching the length of the fault within the 

AOI.  The upthrown fault strips were located 20 m, 40 m, and 60 m from the fault and 

the downthrown fault strips identically spaced.  Quantitative area data was extracted for 

all classes, and within each measurement strip, using the methods described above in 

each 20 m strip. 

 

 

 

 

 

 

 

 

 

Figure 2. Classified images of the study area located in Matagorda, Texas. 
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 A change detection analysis was conducted from 1943 to 2008 using the 

classified imagery.  This was performed in the GIS by applying the union function to the 

classified imagery and utilizing the output attribute table and logic statements to extract 

the necessary quantitative data.  This method was applied to the full extent imagery, 

upthrown and downthrown imagery, as well as the fault strip imagery. 

2.2.5  Accuracy Assessment 

 An accuracy assessment was conducted by collecting 68 in situ ground control 

points (GCP) in 2011.  The in situ data were recorded to a point feature shape file which 

was then compared to the final classification product using the GIS by extracting the 

class values to the GCP.  These data were then exported to Microsoft Excel in order to 

generate precise accuracy calculations.  Based on the comparison of the GCP to the 

classified data, a confusion matrix was generated to evaluate the accuracy of the 

classification.  The result of this matrix indicated an overall accuracy of 88.06% and a 

kappa coefficient of 0.83.  The producer accuracies for water, low marsh, salt flat, and 

high marsh were 95.83%, 70.00%, 100.00%, and 85.71% respectively.  Similarly, the 

user accuracies were 100.00%, 100.00%, 66.67%, and 100.00% for water, low marsh, 

salt flat, and high marsh respectively.  The errors of omission for water, low marsh, salt 

flat, and high marsh were 4.17%, 30.00%, 0.00%, and 14.29% while the errors of 

commission were 0.00%, 0.00%, 33.33%, and 0.00% respectively. 
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2.3  Results  

2.3.1  Full Extent 

 The full extent of the study area is approximately 373 ha.  From 1943 to 2008, a 

significant decrease in the total area of land can be seen (Figure 3(a)).  Land accounted 

for 337.7 ha of the AOI in 1943, and 197.5 ha in 2008.  This decrease in land area was 

inversely proportional to the increase in water area.  Over this time, shifts in land cover 

classes can also be noted (Figure 3(b)).  An overall decrease in the total area of low 

marsh is demonstrated with 100.1 ha of low marsh in 1943, and 50.3 ha in 2008.  

Similarly, salt flats also experienced a net decrease in total area, with 222.5 ha in 1943, 

and 133 ha in 2008.  The high marsh class remained relatively constant over the time 

range of interest, with 14.9 ha in 1943, and 14.2 ha in 2008; however, area fluctuations 

did occur. 

 

 

Figure 3. a) Line graph displaying transition of land area loss and water area gain from 1943 to 2008 in ha.  

b) Bar graph displaying transition of specific land cover classes in 1943, 1978, 1996, and 2008 in ha. 

 

2.3.2  Upthrown Extent 

 The upthrown extent of the AOI is approximately 160 ha.  From 1943 to 2008, a 

decrease in the total area of land can be seen (Figure 4(a)).  Land accounted for 145.5 ha 
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of the upthrown extent in 1943 and 99.7 ha in 2008.  With the decrease in land area, a 

simultaneous increase in water area occurred.  Over this time, shifts in land cover classes 

can also be noted (Figure 4(c)).  An overall decrease in the total area of low marsh was 

observed, with 52.7 ha of low marsh in 1943, and 8.6 ha in 2008.  Salt flats remain 

relatively constant over the time of interest, with 90.2 ha in 1943 and 84.1 ha in 2008; 

however, area fluctuations did occur.  The high marsh class experienced an overall 

increase in total area, with 2.8 ha in 1943 and 6.9 ha in 2008. 

 

 

Figure 4. Line graphs displaying transition (in ha) from 1943 to 2008 of a) upthrown land area loss and 

upthrown water area gain; and b) downthrown land area loss and downthrown water area gain.  Bar graphs 

displaying transition of specific land cover classes (in ha) in 1943, 1978, 1996, and 2008 c) within the 

upthrown extent; and d) within the downthrown extent. 
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2.3.3  Downthrown Extent 

 The downthrown extent of the AOI is approximately 213 ha.  From 1943 to 

2008, a decrease in total land area can be seen (Figure 4(b)).  Land accounted for 192.1 

ha of the downthrown extent in 1943, and 97.8 ha in 2008.  The decrease in land area 

was matched by an increase in water area.  Over this time, shifts in land cover classes 

can also be noted (Figure 4(d)).  Low marsh remained relatively constant over the time 

range of interest, with 47.6 ha in 1943, and 41.7 ha in 2008; however, area fluctuations 

did occur.  Salt flats experienced an overall decrease in total area, with 132.3 ha in 1943, 

and 48.9 ha in 2008.  The high marsh class revealed a small net decrease in the total 

area, with 12.2 ha in 1943, and 7.2 ha in 2008. 

2.3.4  Change Detection Analysis 

 The change detection analysis from 1943 to 2008 demonstrates shifts in land 

cover classes within both the upthrown and downthrown extents (Figure 5).   

 Within the upthrown extent, water increased significantly in area, with 16.2 ha of 

low marsh and 30.3 ha of salt flat converting to water.  Significant low marsh trends 

included a 16.2 ha conversion to water, and a 29.9 ha conversion to salt flat.  Minimal 

amounts of water and salt flat converted to low marsh over time, resulting in a 

significant loss for total area of low marsh during this time period.  Notable trends 

within the salt flat class included a 30.3 ha conversion to water; however, 29.9 ha of low 

marsh converted to salt flat, resulting in minimal net change from 1943 to 2008 (Figure 

4(c)).  Within the high marsh class, a 0.4 ha conversion to salt flat was observed; 
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however, 1.9 ha of low marsh and 2.6 ha of salt flat converted to high marsh, leading to 

a net increase in high marsh from 1943 to 2008. 

 

Figure 5. Display of from-to change analysis (1943 to 2008, in ha) for (a) water area, (b) low marsh area, 

(c) salt flat area, and (d) high marsh area. 

 

 In the downthrown extent, water experienced a significant increase, with 22.3 ha 

of low marsh, 71.8 ha of salt flat, and 0.2 ha of high marsh converting to water.  

Relevant low marsh trends included a 22.3 ha conversion to water, and a 15.7 ha 

conversion to salt flat; however, 32.4 ha of salt flat converted to low marsh, resulting in 

minimal net change from 1943 to 2008 (Figure 4(d)).  Significant trends within the salt 

flat class included a 71.8 ha conversion to water, and a 32.4 ha conversion to low marsh, 

with only 15.7 ha of low marsh and 6.3 ha of high marsh converting to salt flat, resulting 

in a significant net decrease in  salt flat area by 2008.  Notable trends within the high 
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marsh class included a 1.3 ha conversion to low marsh, and a 6.3 ha conversion to salt 

flat, with minimal conversion of other classes to high marsh, resulting in a net decrease 

in high marsh from 1943 to 2008. 

2.3.5  Fault Strips 

 The upthrown fault strips, occurring at 20 m, 40 m, and 60 m from the fault, 

account for 8 ha, 7.8 ha, and 7.7 ha respectively.  Similarly, the downthrown strips 

occurring at 20 m, 40 m, 60 m, and 80 m from the fault, account for 8 ha, 7.8 ha, 7.6 ha, 

and 7.5 ha, respectively.  Over the time interval from 1943 to 2008, two important 

observations are made.  Specifically, land losses are greater on the downthrown versus 

the upthrown side of the fault, and land losses on either side of the fault decrease as 

distance from the fault increases (Figure 6). 

 

 

 

 

 

 

 

 

 

Figure 6. Change of area (ha) between 1943 and 2008 at designated distances from the fault in 20 m strips, 

with 0 m representing the fault trace at the surface.  Positive and negative values on the x-axis represent 

increasing distances from the fault trace on the downthrown, and upthrown sides, respectively. 
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2.4  Discussion  

 This study presents evidence of significant changes in wetland land cover classes 

over time.  From 1943 to 2008, a shift in water and land area was notable, with water 

increasing and land decreasing at the landscape scale across the AOI.  By examining 

these results independently within the upthrown and downthrown extents, the effects of 

differential subsidence can be visually observed.  The shifts in land cover classes on the 

downthrown extent were both more rapid and greater in magnitude as compared to those 

on the upthrown extent.   

 Transitions between specific land cover classes were also observed, primarily 

within the low marsh and salt flat classes.  Within the upthrown extent, as water 

increases, low marsh largely overtakes salt flat; however, this encroachment results in 

very little expansion of salt flat at the expense of high marsh.  Within the downthrown 

extent, as water increases, salt flat and low marsh areas are re-distributed, with some salt 

flat area transitioning to low marsh and an even larger portion of low marsh transitioning 

into salt flat.  Once more, these shifts elicit little change with respect to the area 

occupied by the high marsh class.  These shifts in land cover class were further 

examined proximal to the fault scarp.  As distance from the fault decreases, these effects 

also decrease, indicating greater activity at the fault location.   

 Wetland land cover classification is often a challenge due to the complexity of 

wetland landscapes and the influence of biophysical variables such as water levels, salt 

content, phonological vegetation variations, and density (Zhang et al. 2011).  The 

historical dates used in this study presented multiple challenges in regards to 
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classification methods, further compounding the complex nature of land cover 

classification in wetlands.  Manual image interpretation of aerial photography has been 

used to map landscape features and identify wetlands since the 1930s and is still 

considered useful, producing high quality, detailed maps (Ozesmi et al. 2002, Halabisky 

et al. 2011).  However, due to the time consuming nature of the method, it would be 

beneficial to explore computerized classification methods.  Due to the nature of the 

dataset used in this study, texture transformation extraction as presented by Irons and 

Petersen (1981) would be a beneficial addition to the imagery for the classification 

process.  In addition, a method utilizing an object-oriented classifier similar to that 

presented by Halabisky et al. (2011) could prove to be beneficial, as could the use of 

advanced, nonparametric classifiers (Baker et al. 2006), which could further improve 

wetland vegetation classification performance.  Due to the inherent value that wetlands 

contribute to coastal ecosystems, and the extensive technology now available, further 

inquiry into the application of remote sensing techniques with respect to wetland 

classification would provide significant benefit to researchers across a broad range of 

disciplines. 
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3. MODELING RELATIVE SEA LEVEL RISE IN COASTAL WETLANDS: 

GROWTH FAULT MOVEMENT AS A PROXY FOR UNDERSTANDING THE 

IMPACT OF CLIMATE CHANGE 

 

3.1  Introduction 

 Accelerated sea level rise presents many dangers for coastal wetlands, as well as 

for the 53% of the US population who live in the coastal zone (e.g. Mitsch and Gosslink 

2000a, LaFever et al. 2007, Craft et al. 2009, Ross et al. 2009). The submergence of 

these coastal ecosystems through relative sea level rise (RSLR), where rates of eustatic 

water level rise and subsidence are greater than rates of vertical accretion, will have 

significant negative ecological impacts (e.g. Day et al. 1995, Jallow et al. 1996, 

Leatherman 2001). By identifying threshold rates of RSLR that can negatively affect 

wetland sustainability at the landscape scale, coastal managers may be better able to 

manage these important natural resources.    

 RSLR can be due to subsidence, and this component of relative elevation change 

can be associated with growth fault activity, particularly on the US Gulf Coast (White 

and Tremblay 1995; White and Morton 1997).  Surface expressions of subsurface faults 

can be found in Gulf Coast wetlands and their activity can be driven by both 

anthropogenic and natural processes. Faulting driven by human activities is generally a 

result of hydrocarbon production, subsurface water removal, and reservoir compaction 

(White and Tremblay 1995, White and Morton 1997, Hartig et al. 2002, Dokka et al. 

2006, Morton et al. 2006, Chan and Zoback 2007, Mallman and Zoback 2007, Morton 
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and Bernier 2010).  These human activities may be overlain on top of natural processes 

that formed the pre-existing subsurface structures that are subject to motion, typically at 

longer time scales, such as salt bodies and deep growth faults (Salvador 1987, Diegel et 

al. 1995, Dokka et al. 2006).   

 RSLR can also be due to eustatic water level change.  Under the most recent 

Intergovernmental Panel on Climate Change projections, global eustatic sea level is 

expected to rise and accelerate over the next century due to global warming (IPCC 

2007).  An accelerated rate of sea level rise will present a further threat to the 

biodiversity with the wetlands, potentially causing ecoregions to shrink, disappear or 

fragment (Menon et al. 2010).  

 Accordingly, modeling has been an area of interest to quantify the potential 

impacts of RSLR on coastal ecosystems (Costanza et al. 1990, Titus and Richman 

2001).   These models often employ digital elevation models (DEMs) in conjunction 

with geographic information system (GIS) technology to model RSLR in coastal areas 

(Hennecke and Cowell 2000, LaFever et al. 2007, Snow and Snow 2009, Feagin et al. 

2010a) at both large scales (Thieler and Hammar-Klose 2000, McFadden et al. 2007) 

and small scales (Lee et al. 1992, Craft et al. 2009).  There are several other documented 

approaches to evaluating RSLR in wetlands.  One such method is to measure nitrogen, 

salinity, and biomass readings to provide an accurate evaluation of saltwater 

encroachment (Craft et al. 2009).  Markov chain analysis and cellular automaton have 

been used to project future land cover change as well (Shirley and Battaglia 2008, Ross 

et al. 2009).  Regression modeling and extrapolation techniques incorporating output 
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from sea level modeling, IPCC predictions, and local tide gauges in conjunction with 

plausible accretion rates have also been used to project RSLR at broad scales (Titus & 

Richman 2001, Hartig et al. 2002).  Fine-scaled GIS-based terrain analysis and 

geostatical techniques have been used to provide quantitative data and spatially explicit 

visualization of complex ecological patterns and processes occurring in coastal dunes 

(Kim et al. 2008).  In addition, simulation modeling of hydrology, topography, nutrient 

biogeochemistry, and community dynamics has been used to forecast the structure and 

function of a landscape and its response to changes (Twilley and Rivera-Monroy 2005).  

Simulation techniques have also been utilized to project RSLR (Yin et al. 2010), as well 

as the importance and influence of barrier island relative location on esturine ecosystems 

(Reyes et al. 2005).  Still, no work has predictively modeled the impact of growth fault 

movement on wetlands, or applied multiple RSLR rates differentially across a single 

landscape. 

 The primary objective of this study was to simulate land cover conversion as a 

function of RSLR within a Matagorda, Texas wetland.  The secondary objective was to 

compare and contrast the impact of specific rates of both fault-induced elevation change 

and predicted IPCC sea level rise projections.  To accomplish these objectives, land 

cover classes were first identified as water, tidal wetland, and non-tidal wetland, and a 

GIS model was then constructed to quantify the amount of expected change in the 

wetland given specific RSLR rates. 
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3.2  Methods  

3.2.1  Study Area 

 This study area is a salt marsh wetland located on East Matagorda Peninsula, 

near the town of Matagorda, Texas, USA (Figure 7(a)). The East Matagorda Peninsula is 

a transgressive barrier island feature that was connected to the mainland in the early 

1920s as a result of human modification. The study area lies in the southwestern corner 

of Matagorda Bay on this peninsula and can be seen in relation to surrounding features 

in this 1995 SPOT image at 5 m spatial resolution.  A growth fault bisects the study area 

(Figure 7(b)). Subsurface seismic imaging, litho- and biostratigraphic contacts, and 

ground survey datasets have confirmed the presence of this fault (Feagin et al. 2012).  

Kreitler (1976) traced a fault in this location, as an extrapolation of a subsurface fault 

that stretched several kilometers offshore. 

 The wetland vegetation at this site is comprised of salt marsh plant cover typical 

for this region, with zonation strongly dependent upon elevation: open water with some 

Ruppia maritima L. and Halodule wrightii Asch., low marsh dominated by Spartina 

alterniflora Loisel., mid marsh dominated by Salicornia virginica Standl. and Batis 

maritima L., unvegetated salt flat with some Monanthocloe littoralis Engelm. around the 

edges, and high marsh dominated by Spartina spartinae (Trin.) Merr. ex Hitchc. 

3.2.2  Imagery and Classification of Vegetation Zones 

 A classified image, originally developed in Cline et al. (2011) as based on 2008 

aerial photography, was acquired for the study area.  This classified image was of 1 m 

horizontal resolution, clipped to an area that gave a landscape-scale view of both sides of 
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Figure 7. (a)  Geographic location of the study site on the Texas coast.  (b) SPOT imagery of the study site 

in relation to surrounding features in 1995.  Delineation of the study area is represented by the solid line 

and delineation of the surface fault expression is represented by the dashed line.  (c) fault strip locations in 

relation to the study area and the surface expression of the fault. (d) fault strip numbers 1-7, as described 

in the text and Table 1. 

 

the fault and extended the length of the fault’s surface expression within the salt marsh, 

and had an overall classification accuracy of 88.06% and kappa coefficient of 0.83 

(Cline et al. 2011).  A 2008 light detection and ranging (LiDAR) dataset was then 

acquired for this same area from the Texas Natural Resource Information System 

(TNRIS).  TNRIS had converted the original point cloud data from .LAS file format into 

a DEM with 1 m horizontal resolution and 0.01 m of vertical resolution. 
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3.2.3  Elevation Range Definition of the Zones 

 The elevation ranges of the existing vegetation zones were defined by overlaying 

the LiDAR DEM with the 2008 classified image.  To accomplish this, the DEM was 

vertically sliced every 0.01 m using the spatial analysis and raster calculator tools in 

ArcGIS 10.0 (ESRI, Redlands, CA, USA). The area of each vegetation zone on the 

classified image that fell within each DEM slice was then recorded, and summarized in 

order to create a frequency distribution (Figure 8).  Due to the tidal nature of the study 

area and the interests of the study, we combined all low marsh, mid marsh, and salt flat 

vegetation zones into a single zone (tidal wetland) and the high marsh vegetation zone 

was considered separately (non-tidal wetland). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The frequency distribution of each vegetation zone with respect to elevation. 

 

 

 Using the defined elevation ranges, the DEM was then converted into a classified 

map, where each pixel was classified to a specific zone based upon their ranges. The 
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final elevation ranges of the zones of interest were defined as: water < 0.17 m; 0.17 m ≤ 

tidal wetland < 0.65 m; and non-tidal wetland ≤ 0.65 m. 

3.2.4  Accretion 

 Multiple sediment cores were collected at the site as described in Feagin et al. 

(2012), and analyzed for 210Pb and 137Cs radioisotope reactivity to quantify marsh 

accretion rates at centennial and decadal time scales.  In these cores, the maximum 

average accretion rate was 0.28 cm/yr in the lowest elevations of the tidal wetland.  The 

minimum accretion rate was recorded from the highest elevations of the tidal wetland 

zone at 0.05 cm/yr.  Using this data as a guide, a linear decrease from 0.28 cm/yr to 0.05 

cm/yr was calculated and assumed across the tidal wetland class, while the non-tidal 

wetland class was assumed to have a constant accretion rate of 0.05 cm/yr (Figure 8). 

3.2.5  Fault Strips 

 Multiple sediment cores were collected at the site at 20 m intervals along 

transects that ran perpendicular to the fault, as described in Feagin et al. (2012). In 

accordance with these 20 m intervals, strips were created within the GIS using the 

multiple ring buffer tool, with the surface expression of the fault as the buffered feature.  

The location of each fault strip from the surface fault expression was thus concordant 

with this set of coring data (Figure 7(c-d)).    

 To obtain the average annual rate of vertical movement within each fault strip 

(Table 1), we measured lithostratigraphic offsets in the field coring data, and divided 

these offsets by the number of years since apparent fault activation.  More specifically, 

we quantified the relative vertical offset in a distinct clay-to-sand layer contact several 
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meters down core, in North American Vertical Datam of 1988 (NAVD88) units, among 

the cores that were arrayed perpendicular to the fault plane (Feagin et al. 2012).  We 

then divided offsets by 40, the time in years between apparent fault activation and core 

extraction.  These displacement quantities were then vertically referenced relative to 

fault strip 3, which is immediately on the upthrown side of the fault plane, given the 

assumption that this location was relatively stationary in global vertical datum units, 

relative to on-going changes in sea level.  The choice of this reference location was 

based on a relatively low rate of land cover change over ~70 year period in this fault 

strip (Cline et al. 2011), field site inspection of modern day vegetation distributions 

relative to elevation, and three years of survey grade global positioning system (GPS) 

data along multiple transects detailing a lower rate of movement in this strip than in the 

other fault strip locations.  This procedure yielded annual rates of RSLR within each 

strip, as based on the previous 40 years of fault movement. 

 

 
Table 1. Fault strip reference numbers with location proximal to fault location and vertical fault strip 

movement rate.  
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3.2.6  RSLR Simulation 

 To predict future vegetation distribution under a regime of continued faulting, 

each fault strip was individually modeled using the average annual rate of vertical 

movement.  In order to implement one time step (10 years), the following formula was 

calculated at each pixel: 

                 

where e is the elevation, a is the accretion rate based on vegetation type and elevation, r 

is the projected vertical movement of the landscape within a strip, and i is the time step.  

Each scenario began from the initial classified map created from the original DEM.  

Each pixel was then evaluated by its elevation value and classed based on the elevation 

ranges of each zone.  At each time step, the elevation value of each pixel was adjusted 

according to the calculation of the equation above. Maps were created after 4 time steps 

for a 40 year projection (year 2050) and after 9 time steps for a 90 year projection (year 

2100). 

 In order to further examine the effects of subsidence at the landscape scale, the 

fault strip rates were then individually applied to the study area as a whole (simulating a 

homogeneous rate of vertical movement across the entire landscape, with movement 

quantity equal to a given fault strip rate).  Each of these rates was applied to the entire 

study area in the absence of any other component of RSLR.  This provided the ability to 

examine the effect of relative elevation change on the land cover classes at the landscape 

scale. 
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 Separate simulations were then conducted across the entire landscape for 3 

different IPCC (2007) scenarios and 1 additional scenario based on projections in 

Rahmstorf et al. (2007).  These 4 scenarios include a low rise of 0.18 m by 2100, a mid 

rise of 0.39 m by 2100, a high rise of 0.59 m by 2100, and a more extreme rise of 1.40 m 

by 2100.  In these scenarios, r in the RSLR simulation equation represented the 

projected global eustatic sea level rise rate.  No fault movement was simulated on top of 

these rates. 

 To verify the model, a reverse modeling procedure was run to hindcast our 2008 

classification results to our 1943 classification results.  The forecast version of the model 

utilized the current time step elevation and accretion rate data to calculate the next time 

step elevation; in other words, the current time step accretion rate is dependent upon the 

previous time step accretion rate.  When running in reverse to hindcast, the model was 

unable to properly evaluate and apply accretion rates due to the change in evaluation 

direction and was, therefore, applying the incorrect accretion rate to the current time step 

evaluation.  The hindcast resulted in a relatively poor approximation of the 1943 

classification results.   

3.3  Results 

 Fault movement changed the wetland land cover.  Compared to the 2008 map 

(Figure 9(a)), the differential fault movement simulation for 2050 (Figure 9(b)) 

demonstrated notable changes proximal to the fault.  In areas where the fault dropped, 

the tidal wetland class converted to water, yet the non-tidal wetlands were minimally 

affected.  Due to the uplift of the fault in two of the strips on the upthrown side, water 
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converted into tidal wetland, and tidal wetland converted into non-tidal wetland.  

Locations outside of the seven strips did not change in this simulation. 

 The effects of faulting were further examined by applying a single strip rate over 

the entire landscape.  When fault strip rate 1 (-0.156 cm/yr) was applied to the entire 

landscape, by 2050 the tidal wetland expanded into water, while the non-tidal wetland 

zone was minimally affected (Figure 10(a)).  By 2100, more tidal wetland expanded into 

water (Figure 10(b)).   The landscape responded in a similar manner to fault strip rate 3        

(-0.400 cm/yr), though with even more expansion of both tidal and non-tidal wetlands 

(Figure 10(e), 10(f)). 

 

  

 

 

 

 

 

 

 

 

 

 
Figure 9. (a) Vegetation zone distribution in 2008, as based on the classified LIDAR data (b) Predicted 

vegetation zone distribution in 2050.   

 

 When fault rate 2 (0.411 cm/yr) was applied to the entire landscape, by 2050 the 

non-tidal wetland was apparently unaffected while the majority of tidal wetland was 

inundated by water, leaving fragmented remnants of this zone (Figure 10(c)).  By 2100, 

the tidal wetland was nearly completely inundated by water, leaving only the non-tidal 

wetland, which experienced a minimal conversion into tidal wetland (Figure 10(d)).  
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 Under the constraints of fault rate 4 (0.400 cm/yr), by 2050 the tidal wetland was 

significantly inundated by water and non-tidal wetland experienced a slight expansion 

(Figure 10(g)).  By 2100, the tidal wetland was nearly completely consumed by water, 

leaving only the non-tidal wetland, which experienced an expansion (Figure 10(h)).  

 When fault rate 5 (1.167 cm/yr), fault rate 6 (0.733 cm/yr), and fault rate 7 (1.856 

cm/yr) were applied to the entire landscape through the year 2050, the water increasingly 

inundated the existing tidal wetland with losses accordant to each rate.  Non-tidal 

wetland also experienced a decrease (Figures 10(i), 10(k), 10(m)).  By 2100, water 

completely inundated the existing tidal wetlands.  Non-tidal wetlands significantly 

decreased.  The encroachment of water on the non-tidal wetland converted some non- 

tidal wetland to tidal wetland for the lower rate; however, for the highest rate of fault 

strip 7, water had completely inundated the landscape (Figures 10(j), 10(l), and 10(n)).   

 For the projected eustatic rise scenarios, the IPCC low scenario map was 

significantly altered by 2050 and 2100 (Figures 11(a), 11(b), respectively) when 

compared with the 2008 map (Figure 9(a)).  The tidal wetlands throughout the area were 

overcome by water and created an irregular and fragmented landscape.  The non-tidal 

wetlands were minimally affected.  The IPCC mid and high scenarios consumed the 

majority of tidal wetlands; while the non-tidal wetlands began to experience a transition 

to tidal wetlands (Figures 11(c)-11(f)).  The more extreme scenario consumed all of the  
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Figure 10. Predicted vegetation zone distribution, assuming the following conditions implemented across 

the entire landscape: (a) fault strip 1 rate in 2050, (b) fault strip 1 rate in 2100, (c) fault strip 2 rate in 2050, 

(d) fault strip rate 2 in 2100, (e) fault strip 3 rate in 2050, (f) fault strip 3 rate in 2100, (g) fault strip 4 rate 

in 2050, (h) fault strip 4 rate in 2100, (i) fault strip 5 rate in 2050, (j) fault strip 5 rate in 2100, (k) fault 

strip 6 rate in 2050, (l) fault strip 6 rate in 2100, (m) fault strip 7 rate in 2050, and (n) fault strip 7 rate in 

2100.  North is to the top of each image.  Relative scale and color legend is the same as Figure 9. 
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Figure 11. Predicted vegetation zone distribution assuming the: (a) IPCC low scenario 0.18 m) in 2050, (b) 

IPCC low SLR scenario (0.18 m) in 2100, (c) IPCC mid SLR scenario (0.39) in 2050, (d) IPCC mid SLR 

scenario (0.39) in 2100, (e) IPCC high SLR scenario (0.59) in 2050, (f) IPCC high SLR scenario (0.59) in 

2100, (g) an extreme SLR scenario (1.4 m) after in 2050, and (h) an extreme SLR scenario (1.4 m) in 

2100.  Map orientation, scale, and legend features are consistent to that of Figure 9.  North is to the top of 

each image.  Relative scale and color legend is the same as Figure 9. 
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tidal and non-tidal wetlands, leaving only the highest elevation non-tidal wetlands to 

remain which were converted to tidal wetlands (Figures 11(g), 11(h)). 

 The quantity of tidal marsh loss was positively related to the quantity of decrease 

in elevation (Figure 12).  This relationship held for both eustatic rise projections and 

fault-induced elevation changes that were homogeneously implemented across the entire 

landscape. With RSLR, or a relative dropping of the landscape relative to water level, 

tidal marsh coverage decreased.  With relative uplift implemented across the entire 

landscape, tidal marsh coverage increased. 

3.4  Discussion 

 Rapid water level rise can force tidal wetlands to convert into open water, 

regardless of whether this relative rise is caused by vertical fault displacement or eustatic 

sea level rise. Our research shows a threshold relative rise rate of approximately 0.400 

cm/yr for a near-complete loss of the Matagorda wetland by the year 2100.  This 

threshold is based on our model of tidal wetland conversion, and is ultimately tied to 

field data collected from fault strip 4, which is the portion of the landscape that sits 

immediately to the southeast of the fault line itself.  As can be seen in historical imagery 

of this portion of the landscape (Cline et al. 2011) and the modern day wetland-to-open 

water edge that is present along the fault line, the elevation change rate within fault strip 

4 has been enough to convert tidal wetland coverage into open water.  

 The inflection point in Figure 12(a) for the 2050 projection, at which tidal 

wetland losses began to accelerate, occurred between the IPCC 2007 low and mid 

projections.  This inflection point generally coincides with RSLR rates of approximately 
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0.30 cm/yr.   Historical tide gauge records from Freeport (0.96 cm/yr), Galveston (0.65 

cm/yr), and Rockport (0.49 cm/yr) all exceed this value.  Indeed, this section of the Gulf  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 12. Percent conversion of tidal wetland (gains exceed 100%, losses are less than 100%) into open 

water, as a function of RSLR for all scenarios, for the years (a) 2050, and (b) 2100.  Numerical labeled 

data points refer to fault strip rates of vertical change (see Table 1 and Figure 10).  For alpha labeled data 

points: L is IPCC low scenario, M is IPCC mid scenario, H is IPCC high scenario, and E is the more 

extreme Rahmstorf et al. (2007) scenario. 
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Coast has experienced great amounts of tidal wetland loss.  Considering the relatively 

high organic production of herbaceous wetland grasses such as Spartina alterniflora in 

this region due to a warm temperate climate, relatively high amounts of rainfall and 

nutrient-rich soils, the long-term outlook for other regions with similar wetland species 

is not good for RSLR rates above 0.30 cm/yr.  

 We contend that faults can provide a key point of reference to understanding the 

impacts of climate-induced RSLR on wetland habitat.  In our study, fault strips 1 and 3 

increased tidal wetland cover, and fit along the curve above the IPCC low scenario.   

Strips 2 and 4 best approximated the IPCC mid scenario, while strip 6 roughly accorded 

with the IPCC high scenario.  Strips 5 and 7 bounded the Rahmstorf et al. (2007) more 

extreme scenario.  In the future, studies could investigate the long-term ecological 

response of plants in different portions of an elevation-variable, faulted landscape.   

 Faulting, and more generally RSLR, is likely to affect vertical accretion and 

sedimentation.  Indeed, we have quantified accretion rates as a function of differential 

fault throw in cores in these same fault strips, in related work (Feagin et al. 2012).  

However in the present study, we did not simulate these differential accretion rates as 

specific to each fault strip, since there were different plant types and surface elevations 

in each fault strip.  Rather used maximum observed accretion values from across our 

landscape, as dependent on elevation. Other factors exist which could affect future 

landscape change which have not been considered in this model, including land cover 

redistribution, barrier island migration, and overwash processes.  Extreme storm forces 

are capable of affecting horizontal spatial pattern formation of land cover through 
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overwash processes (Feagin and Williams 2008).  The spatial resolution of the DEM can 

also influence the spatial variability of topography derived from the DEM in low-relief 

systems, such as coastal dunes (Kim and Zheng 2001). 

 As corroborated by our findings, both eustatic- and faulting-induced changes can 

ultimately result in the destruction of vital wetland areas (White and Tremblay 1995, 

Feagin et al. 2005). From an ecological standpoint, RSLR can significantly alter the 

vegetation makeup of wetland communities (White and Morton 1997), can severely 

hamper the ability of wetlands to fulfill their natural functions, and can affect 

biodiversity (LaFever et al. 2007, Ross et al. 2009).   

 The findings in this study support the ability of simulation modeling techniques 

to project sea level rise and GIS data to predict RSLR and its impact on coastal regions 

(Yin et al. 2010); as the predictive modeling of the impacts of faulting in wetlands 

simulated land cover conversion as a function of fault-induced elevation change and 

compared the impact of specific rates of fault movement with predicted IPCC sea level 

rise projections.  These findings further support the ability of GIS modeling to quantify 

the amount of expected change in wetlands and the potential impacts of climate change 

on coastal ecosystems (Costanza et al. 1990, Titus and Richman 2001) through the use 

of LiDAR and DEMs (Hennecke and Cowell 2000, LaFever et al. 2007, Snow and Snow 

2009, Feagin et al. 2010) at a landscape scale. 
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4. SUMMARY AND CONCLUSIONS 

 

 This study presents evidence of significant changes in wetland land cover classes 

over time.  The results demonstrate the different effects of RSLR through the changes 

and transitions between land cover classes in contrasting situations.   Further 

examination of these shifts in land cover classes proximal to the fault scarp demonstrated 

the relationship between distance from the fault and faulting activity.  

 Faulting and RSLR affect vertical accretion and sedimentation.  Rapid water 

level rise can force wetland land cover class conversion regardless of whether this 

relative rise is caused by vertical fault displacement or eustatic sea level rise, resulting in 

the destruction of vital wetland areas.  Through the monitoring of coastal faulting, this 

research presents a threshold relative rise rate where the elevation change rate exceeds 

the wetlands ability to compensate for the change occurring.  Current recorded 

conditions of sea level rise along the Texas Gulf Coast exceed this threshold value and 

leave a grim outlook for regions similar to this study area.  Coastal faulting activity 

provided a key point of reference to understanding and evaluating the potential impacts 

of climate-induced RSLR on wetland ecosystems.   

 Though the use and employment of remote sensing, change detection, and GIS, 

sea level rise, RSLR, and their impacts on coastal wetland ecosystems, were monitored, 

evaluated, visualized, and quantified, further supporting the ability of these tools to 

provide useful information to ecosystem managers to mitigate change. 
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 Wetland land cover classification is often a challenge and the use of historical 

imagery can present further challenges in regards to classification methods, further 

compounding the complex nature of land cover classification in wetlands.  Preprocessing 

techniques can be useful and are valuable when using automated classification methods.  

Despite technology advancements, manual image interpretation can often still be a 

valuable tool; however, methods exist which can ease the intensity.  For example, object 

oriented approaches can prove useful through the segmentation of an image into 

homogenous segments, followed by the export of the segmentation polygons to a GIS to 

then be manually classified by an analyst.   

 Further development in this field will further improve wetland vegetation 

classification performance.  Due to the inherent value that wetlands contribute to coastal 

ecosystems, and the extensive technology now available, further inquiry into the 

application of remote sensing techniques with respect to wetland classification would 

provide significant benefit to researchers across a broad range of disciplines. 
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