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ABSTRACT 

 

Essays on Forecasting and Hedging Models in the Oil Market and Causality Analysis in 

the Korean Stock Market. (August 2012) 

Hankyeung Choi, B.A., Yonsei University;  

M.E., Korean Advanced Institute of Science and Technology 

Chair of Advisory Committee: Dr. David J. Leatham 

 

 In this dissertation, three related issues concerning empirical time series models 

for energy financial markets and the stock market were investigated. The purpose of this 

dissertation was to analyze the interdependence of price movements, focusing on the 

forecasting models for crude oil prices and the hedging models for gasoline prices, and 

to study the change in the contemporaneous causal relationship between investors’ 

activities and stock price movements in the Korean stock market.  

 In the first essay, the nature of forecasting crude oil prices based on financial data 

for the oil and oil product market is examined. As crack spread and oil-related 

Exchange-Traded Funds (ETFs) have enabled more consumers and investors to gain 

access to the crude oil and petroleum products markets, I investigated whether crack 

spread and oil ETFs were good predictors of oil prices and attempted to determine 

whether crack spread or oil ETFs were better at explaining oil price movements.                                     

In the second essay, the effectiveness of diverse hedging models for the unleaded 

gasoline price is examined using futures and ETFs. I calculated the optimal hedge ratios 
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for gasoline futures and gasoline ETF utilizing several advanced econometric models 

and then compared their hedging performances.  

In the third essay, the contemporaneous causal relationship between multiple 

players’ activities and stock price movements in the Korean stock market was 

investigated using the framework of a DAG model. The causal impacts of three players’ 

activities in regard to stock return and stock price volatility are examined, concentrating 

on foreign investor activities. Within this framework, two Korean stock markets, the 

KSE and KOSDAQ markets, are analyzed and compared. Recognizing the global 

financial crisis of 2008, the change in casual relationships was examined in terms of pre- 

and post-break periods.    

 In conclusion, when a multivariate econometric model is developed for multi-

markets and multi-players, it is necessary to consider a number of attributes on data 

relations, including cointegration, causal relationship, time-varying correlation and 

variance, and multivariate non-normality. This dissertation employs several econometric 

models to specify these characteristics. This approach will be useful in further studies of 

the information transmission mechanism among multi-markets or multi-players.  
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CHAPTER I 

INTRODUCTION 

 

Modeling and analyzing the price relationships in the oil markets reflecting the 

increase in information transmission between the spot and derivatives markets is 

currently one of the most interesting subjects in empirical economics research. An 

understanding of the individual price movements of vertical chains in the oil market is 

important in its own right. Especially, when these markets experience an increase of 

interaction and interdependence between the markets and a high volatility in price 

movement, this will drive the demand for more accurate forecasting and more elaborate 

hedging models. For this reason, diverse financial instruments are utilized, including 

futures contracts, options, and additional new financial tools like Exchange-Traded 

Funds (ETFs). Especially, the recent advent of oil ETF market enables consumers and 

investors to access crude oil and petroleum products in diverse ways, since the hedging 

and investment effects of these funds are very similar to those of futures contracts. 

Therefore, for traders seeking the cheapest means to reduce the uncertainty of their 

market exposures, in this study, crack spread futures and ETF spread were evaluated as 

predictors of crude oil prices, and gasoline futures and its corresponding ETFs were 

assessed as hedging tools.  

 

 

 

____________ 

This dissertation follows the style of American Journal of Agricultural Economics. 
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In addition, using the Korean stock market data, the empirical causal 

relationships between stock price movement and the activities of three types of investors 

are investigated using the Directed Acyclical Graph (DAG). This study divides investors 

or players in the Korean stock market into three types: foreign investors, domestic 

institutional investors, and domestic individual investors. It is of interest to determine 

which of the trading activities associated with these three groups are highly related with 

stock price movements and the manner in which traders’ activities affect each other, 

taking into consideration of the recent fluctuation in the stock market during the 2008 

global financial crisis.    

 The purpose of this dissertation is to analyze the interdependence of price 

movements by developing a forecasting model for crude oil prices using diverse oil 

financial derivatives and a hedging model for gasoline spot prices, and to study the 

dynamic changes in the causal relationship between investors’ activities and stock price 

movements, in the case of Korean stock market from 2005 to 2010. In the first essay, the 

nature of forecasting crude oil prices based on financial data for oil and the oil products 

market is examined. Traditionally, petroleum refiners have used crack spread futures as 

an effective risk management tool and a good indicator of oil market prices, because the 

crack spread intrinsically represents one of a refiner’s goals, that of protecting the 

margin between the crude oil and oil product. Recently, the advent of diverse oil-related 

ETFs has enabled more consumers and investors to gain access to the crude oil and 

petroleum product market. In this research, I investigated whether crack spread and oil 

ETFs were good predictors of oil prices and attempted to determine whether crack 
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spread or oil ETFs were better at explaining oil price movements. Based on the Error 

Correction Model (ECM) and ECM Multivariate Generalized Autoregressive 

Conditional Heteroskedasticity Model (GARCH), I examined the causal relationships 

between crude oil and both crack spread and oil ETFs and the forecasting abilities of 

these two tools.                                                

The purpose of the second essay was to examine the effectiveness of a dynamic 

hedging model for unleaded gasoline spot price, using gasoline futures and gasoline 

exchange-traded funds (ETFs). I calculated the most efficient hedge ratio for gasoline 

futures and gasoline ETF utilizing several advanced econometric models and then 

compared their hedging performance. As the relationship between spot and futures data 

for gasoline is cointegrated, the basic static hedge model was based on the Vector Error 

Correction (VEC) model. The Dynamic Conditional Correlation Multivariate GARCH 

(DCC MGARCH) model, in which time-varying dependence allows the use of the 

conditional covariance to capture the updated information, derives the dynamic hedge 

ratio. Compared to these symmetric and multivariate normal distribution-based VEC and 

DCC MGARCH models, the copula function allows the development of an asymmetric 

and non-normal multivariate distribution-based model. Both static and dynamic copula-

based GARCH models were exploited to analyze time-varying optimal hedge ratios in 

the case of gasoline. 

While the previous two essays focused on multi-markets analyses, such as an 

examination of crude oil and its products markets or spot, futures and ETF markets of 

unleaded gasoline, in the third essay, the causal relationship between multiple players in 
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a single market is investigated within the framework of the DAG model. In this research, 

the contemporaneous causal impacts of three market players’ activities on stock returns 

and stock price volatilities were investigated. The question I sought to answer in this 

essay was how did the dynamics of causal relationships between stock price movement 

and three investors’ activities change during the period from 2005 to 2010. The fifth, and 

final, chapter of this dissertation provides the summary of this research as well as 

discussing its implications.   
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CHAPTER II 

OIL PRICE FORCASTING USING CRACK SPREAD FUTURES  

AND OIL EXCHANGE-TRADED FUNDS 

 

Introduction  

 

Investors, who are interested in entering the oil market, resort to many diverse 

traditional types of trading in the market, such as purchasing the stock of oil firms, 

investing in oil-related mutual funds, and trading on the commodity futures market for 

crude oil or petroleum products.  However, the stock price for each oil company reflects 

not only prospective oil prices, but also the individual company’s diverse issues. For 

example, investing in mutual funds is very restrictive in terms of liquidity. The futures 

market usually requires all participants to open a futures account with margin 

requirements, which entails relatively high transaction costs, in order to maintain the 

timely implementation of transactions in the market. All of these conditions present a 

strong entry barrier to private investors. Thus, most of the transactions in the futures 

market are completed by refinery companies or institutional investors.  

Especially, from the perspective of the refiners, there is more interest in crack 

spread futures rather than individual commodity futures for crude oil, heating oil, and 

unleaded gasoline. This is because crack spread entails the simultaneous purchase or sale 

of crude futures against the sale or purchase of refined petroleum products futures. 

Simply put, the difference in price between crude oil and its derived products is called 
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“crack spread”. Therefore, refineries are naturally more concerned about the difference 

between input and output prices, rather than solely the price of crude oil, since the profits 

of refineries are tied directly to the crack spread. Crack spread derivatives aid market 

participants to better manage the inherent price risks of the energy market. In addition, 

crack spread has been reported to be a good predictor of spot oil prices, because the 

refineries are major participants in oil markets, and they are primarily concerned with 

crack spread (Murat and Tokat 2009). 

However, the recent advent of energy Exchange-Traded Funds (ETFs) has 

enabled diverse investors to directly access the energy market with strong liquidity and 

without high entry costs, as with futures accounts. Originally, an ETF was an investment 

fund traded on the stock exchange, much like trading in shares, however, commodity 

ETFs invest in commodities, such as precious metals, oil, and agricultural products. The 

number of ETFs is still increasing, since they are attractive to investors because of their 

low costs, tax efficiency, and stock-like features. After the first oil ETF, USO, was 

introduced in April 2006, various other oil-related ETFs have been introduced in the 

market
1
, reflecting the high volatility and price level hikes in the oil market. In addition, 

the use of combinations of individual oil-related EFTs
2
 also enables the cracking margin 

for refineries with traditional crack spreads to be locked in; therefore, the cracking 

margin is no longer the exclusive property of refiners. After the last ETF (SCO) utilizing 

                                                 
1
 United States Gasoline Fund (NYSE, UGA), United States Heating Oil Fund (NYSE, UHN), and 

ProShares UltraShort DJ-UBS Crude Oil ETF (NYSE, SCO) were launched Feb. 26, 2008, Apr. 29, 2008, 

and Nov. 24, 2008, respectively.  
2
 Buying equal lots of the SCO, the UHN and the UGA effectively puts an investor short two units of 

crude oil and long one unit each of gasoline and heating oil. In other words, this three-legged purchase 

simulates buying a 2:1:1 crack spread. (Hereafter, an ETF spread will indicate an ETF version of crack 

spread with combined trades of SCO, UGA and UHN).  
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this combination was introduced on November 2008, a substantial trade volume for SCO 

was recorded at the beginning of Jan. 2009
3
. Figure A-1 shows that the trade volumes of 

all three ETFs have fluctuated, with SCO having a trend of increasing volume during the 

period from January 2009 to December 2011. Considering the convenient trading system 

for ETFs and increased interest by investors in ETFs, oil ETFs are becoming one of the 

most important factors in understanding the spot and futures oil markets. 

Recently, this increased interest in the energy market has resulted in a high 

volume of ETF and crack spread future trading and a high volatility in the price levels 

and returns for these markets. Considering the dynamic changes in the oil market, I 

further examined the interaction between the oil market and related finance markets, 

such as in crack spreads and oil ETFs. The questions to be posed are whether these ETFs 

and crack spread futures will be good predictors of spot price movement for crude oil 

and whether crack spread and oil ETF spreads are better at explaining oil price 

movement focusing on the recent fluctuations in the oil market. Therefore, the data for 

this research examining the effect on the market of holding ETFs was collected for the 

period of 2009-2011. To further study the interaction and interdependence between the 

oil spot market and oil-related financial markets, the spot price of crude oil, the crack 

spread, and the ETF spread are explained sequentially in more detail in the following 

sections. 

 

                                                 
3
 SCO was introduced on Nov. 14, 2008, and the average trade volume of SCO in 2008 was 18,339. 

However, trade volume has increased to more than 200,000 since Jan. 2009. Therefore, this research deals 

with ETF trade data from Jan. 2009 to Dec. 2011.   
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Crude Oil  

In 2008, the US economy experienced a serious financial crisis as a result of the 

mortgage market collapse and market unrest, and this shock spread globally as an 

economic depression. Due to the strong dollar and reduced consumption, most of the 

resource markets also experienced a plunge in prices. The spot price of crude oil also 

dropped from $140 per barrel (June 2008) to less than $40 per barrel (February 2009). 

With the recovery of the world economy since 2009, the spot prices of crude oil have 

shown an increasing trend. In Figure 2-2, the spot prices of West Texas Intermediate 

(WTI) crude oil and Organization of the Petroleum Exporting Countries (OPEC) 

Reference Basket Price (ORB)
4
 are compared. As lighter and sweet crude oil, like WTI's, 

usually yields more gasoline than heavier crude oil like that of ORB, WTI’s spot price is 

higher than OPEC’s. Especially, in 2011, a series of unsettled political situations in the 

Middle East and North African area, such as the revolution in Tunisia in 2010 and 

domestic turmoil in Egypt and Libya in 2011, increased the uncertainty of the supply-

side of crude oil in some OPEC-member countries, while the US crude oil inventory of 

WTI was stably maintained at a sufficient level. This difference in certainty on the 

supply side between the two main crude oil producers is the main reason for the price 

reverse phenomenon in 2011. In addition, structural breaks in oil prices were observed 

around the time of the 2008 financial crisis. These structural breaks will be tested in 

                                                 
4
 The new OPEC Reference Basket (ORB) introduced on  June 16, 2005, is currently made up of the crude 

oil from OPEC members, such as Saharan Blend (Algeria), Girassol (Angola), Oriente (Ecuador), Iran 

Heavy (Islamic Republic of Iran), Basra Light (Iraq), Kuwait Export (Kuwait), Es Sider (Libya), Bonny 

Light (Nigeria), Qatar Marine (Qatar), Arab Light (Saudi Arabia), Murban (UAE) and Merey (Venezuela). 

OPEC collects price data on this “basket” of crude oils, and uses average prices of these oils to develop an 

OPEC reference price. The ORB price is considered as representative of heavier oil as compared to light 

oil like WTI and Brent (http://www.opec.org/opec_web/en/data_graphs/40.htm). 

http://www.opec.org/opec_web/en/data_graphs/40.htm
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more detail to determine the change in causal relationship among oil price, crack spread, 

and ETF spread.  

 

Crack Spread 

The most popular crack spread contract is the 3-2-1 crack spread, which is 

computed from the daily futures prices of crude oil, heating oil and unleaded gasoline of 

the same term structures, and involves three contracts of crude oil, two contracts of 

unleaded gasoline, and one contract of heating oil. Essentially, traders buying or selling 

3-2-1 crack spreads take advantage of 75% margin credits, which is very attractive to 

traders in the futures market. The refining of lighter, sweeter crudes, such as those 

produced by WTI, are best represented by the 3-2-1 spread. Alternative ratios, such as 2-

1-1 and 5-3-2, may also be utilized for crack spread margins. Especially, the 2-1-1 crack 

spread, signifying that two barrels of crude yield a barrel each of gasoline and heating oil, 

is a better description of the case of heavy crude oils like OPEC basket grades
5
, because 

heavy crudes do not yield as much gasoline as light crude. 

 In Figure A-2, the 3-2-1 and 2-1-1 crack spreads are compared during January 

2005 to November 2011. Although crude yields varied depending upon the refining 

model employed, the two crack spread models show similar movement patterns and had 

a very strong correlation of 0.98. One of their interesting features is the fact that 3-2-1 

crack spreads are more volatile than 2-1-1 ones before the summer driving season, 

                                                 
5
 Crude oil is traded on a barrel basis, while heating oil and gasoline are traded on a gallon basis. The 2-1-

1 crack spread is calculated by the formula; 2-1-1 Crack spread ($/barrel) = Gasoline price ($/gal) × 21 + 

Heating oil price ($/gal) × 21 – Crude oil price ($/bbl). The 3-1-1 crack spread ($/bbl) is derived by the 

following formula; 3-1-1 Crack spread ($/bbl) = Gasoline price ($/gal) × 28 + Heating oil price ($/gal) × 

14 – Crude oil price ($/bbl). 
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because the 3-2-1 spread, double-weighted in gasoline, tends to outperform the 2-1-1 

spread when gasoline prices rise in relation to heating oil. On the contrary, the 2-1-1 

crack spread commands a premium over the 3-2-1 spread typically in the fall and winter, 

as the demand for heating oil increases.    

 

Oil ETF Spread 

Instead of trading crack spreads in the futures market, a trader can capture spread 

change without resorting to the futures market with the advent of diverse ETFs and 

combinations of three specific ETFs (SCO, UHN, and UGA). ETF spread
6
 allows 

investors to trade the spread margin free in at least the 2-1-1 version of crack spread, in 

which two contracts of crude oil are converted into one contract of heating oil and one 

contract of unleaded gasoline. Investors without a futures account can use ETFs in their 

portfolio to trade margin variances. While futures are traded with significant margin 

requirements for entering this market, there are few restrictions in this ETFs market. 

Contracts don't have to be rolled over, there's no contango or backwardation to deal with 

and investors don't have to worry about changes in margin requirements. Even the small 

private investor can be a hydrocarbon cracker using ETF spreads. Traditional mutual 

                                                 
6
  The concept of ETF crack spread was suggested in 2009 by Brad Zigler, who is the managing editor of 

Hard Assets Investor and the alternative investments editor of Registered Rep. magazine. Conceptually, he 

combined three ETFs; UGA for gasoline prices, UHN for heating oil prices, and SCO for crude oil. While 

UGA and UHN track the near month future price of gasoline and heating oil, respectively, SCO 

corresponds to twice the inverse of crude oil prices. The simultaneous purchase of these three ETFs is 

conceptually similar to buying a 2-1-1 crack spread, which indicates the trade of selling a crude oil 

contract and purchasing heating oil and gasoline contracts simultaneously. He proposed this ETF spread as 

a substitute investment vehicle for crack spreads. For a consistent value of ETF spread, the SCO index is 

modified to reflect the ratio change from the reverse stock split of SCO in Feb. 2011. 

(http://www.hardassetsinvestor.com/interviews/1450-accounting-for-crack-spread-

differences.html?showall=&start=1) 

http://www.hardassetsinvestor.com/interviews/1450-accounting-for-crack-spread-differences.html?showall=&start=1
http://www.hardassetsinvestor.com/interviews/1450-accounting-for-crack-spread-differences.html?showall=&start=1
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funds for energy commodities, which were heavily invested in by private investors 

before the advent of ETFs, are usually contract based with restrictions for not selling 

within a certain period of time. An ETF investor, however, can easily buy and sell this 

security without any time limits. There are also a lot of hedging and investing tools 

available to refiners in the oil market.  

The price of crude oil is basically established by supply and demand conditions 

in the global market overall, and more particularly, in the main refining centers of the 

US Gulf Coast, Northwest Europe, and Singapore. Demand for petroleum products by 

consumers, as well as for agricultural, manufacturing, household heating, and 

transportation uses, determines the demand for crude oil by refiners. Product demand is 

also linked to economic conditions and may also be influenced by other factors, like 

weather conditions. Therefore, there are many ways to forecast demand for crude oil. 

However, this research focuses on the financial instruments crack spread and ETF spread, 

which have recently received intense scrutiny from refiners and oil market investors as 

hedging and investment tools. In addition, both crack spread and ETF spread may reflect 

the daily change in spot price of crude oil effectively and comprehensively, compared to 

other less flexible factors such as oil stock changes, capacity change, and capacity 

utilization.  

While the spot price of OPEC crude oils and 2-1-1 crack spread data can be 

compared for the periods covering 2005 to 2011, ETF spread data only covers the period 

from 2009 to 2011, considering that the launch of SCO was in November 2008. In 

previous research, Murat and Tokat (2009) showed that a 3-2-1 crack spread can be a 
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good predictor of WTI based on weekly data from January 2001 to February 2008. 

However, the current research investigates whether a 2-1-1 crack spread and ETF spread, 

utilized as daily financial tools of the oil market, are good predictors of crude oil prices, 

in the case of OPEC Reference Basket Price (ORB).  

                           

Theoretical Background  

 

In order to investigate the relationships among spot price (crude oil), commodity 

futures (crack spread), and commodity ETFs (ETF spread), we selected two cases, in 

particular, to examine in further detail; crude oil and crack spread, and crack spread and 

ETF spread. 

 

Relationship between Crude Oil and Crack Spread 

The relationship between the spot price and commodity futures is generally 

defined as convenience yield (Heinkel, Howe, and Hughes 2006), which is defined as 

the benefit of owing a particular good physically rather than owning a futures contract 

for that good (Working 1949; Brennan and Schwartz 1985). These researchers proposed 

that there is a positive relationship between marginal production costs and convenience 

yield, because if the marginal cost of production is relatively low, unexpected demands 

arising in the market can be met by immediate production of the commodity. Conversely, 

if marginal production costs are relatively expensive, increased demand can only be 

compensated by taking from inventory. Edwards and Ma (1992) found that variation in 
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profit margins can be attributed mainly to a change in cost factors. The fluctuations in 

crack spread can be explained as changes in the cost of production of heating oil and 

gasoline and are used to obtain information about marginal production costs (Murat and 

Tokat 2009). Kocagil (2004) demonstrated a positive relationship between convenience 

yield and production cost by examining the convenience yield behavior for crack spread 

futures. In addition, (Anon.)Zigler (2009) suggested that crude oil tends to re-price more 

quickly than its products, so crack spreads tend to widen or narrow when crude oil prices 

move precipitously. He noted that there is a negative correlation between crude oil price 

and crack spread, especially when oil prices increase and decrease suddenly, because 

there is a difference in adjustment rates for prices of crude oil and its products. Therefore, 

obtaining data from the energy financial market, which is more responsive than the 

commodity market, is a good source of getting updated information on crude oil for 

analysis. 

 

Relationship between Crack Spread and Oil ETF Spread 

Crack spread is calculated from the individual futures prices of crude oil, heating 

oil, and gasoline. Both heating oil and gasoline must use the same contract month as 

crude oil, because these two petroleum products contracts follow the same contract. 

Therefore, front month data from the futures market are usually used for calculation of 

crack spread. As is the case in many commodity ETFs, the so-called front month futures 

contracts are simply rolled from month to month. In the case of UGA, the trust invests in 

futures contracts on unleaded gasoline delivered to the New York harbor and traded on 
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the NYMEX that is near the month contract to expire. The UHN fund basically seeks to 

track the movement of heating oil prices; this fund consists of listed heating oil futures 

contracts, and other heating oil-related futures, forwards, and swaps contracts. Unlike 

UGA and UHN, SCO is designed to track the daily performance that corresponds to 

twice (200%) the opposite of the performance of the Dow Jones-AIG Crude Oil Sub-

index, which is intended to reflect the performance of crude oil as measured by the price 

of future contracts of crude oil traded on the NYMEX. This fund invests in any one of or 

combination of futures contracts, forward contracts, swap contracts, and option contracts.   

As crack spread is based on the date of the front month for crude oil futures, the 

base prices of crude oil utilized in calculation of crack spread and ETF spread have very 

similar data sources and a strong correlation. The correlation level of data for gasoline 

futures and UGA is 0.9746 and the correlation of daily returns is 0.9098.  In the case of 

heating oil futures and UHN, the correlation level and daily return are 0.9707 and 0.9043, 

respectively. Due to the inverse relationship between crude oil and SCO, the correlation 

level is -0.9873, but the correlation of daily returns is 0.9043. However, as there are 

some differences between gasoline futures and UGA, in terms of trading markets, 

management cost, the main investor types, and so forth, daily returns and the volatility of 

these two financial tools are not the same. To obtain crack spread futures prices, most 

researchers use the daily settlement prices for all NYMEX-traded futures contracts with 

front months on crude oil, heating oil, and unleaded gasoline. Therefore, the positive 

relationship between crack spread and ETF spread can easily be expected and the ETF 

spread is observed to track the crack spread fairly well, as shown in Figure A-2, during 
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the period from January 2009 to November 2011, although it is not exactly the same. In 

addition, both crack spread and ETF spread serve the similar functions of diversification 

and as hedging instruments in the market. However, there are some factors that differ 

between crack spread and ETF spread. For one thing, as the entry barrier in the ETF 

market is not as strict as in the futures market, more diverse types of investors may enter 

the ETF market. In the futures market, the data is based on settlement values, while the 

individual ETF index typically reflects the last sale data available to retail investors. In 

addition, no contango is reflected in the ETF market, as the product ETFs are designed 

to be continuously invested in front-month futures, rather than the back-month contracts 

dictated by refiners. 

In addition to a review of the relationships among oil, crack spread, and ETF 

spread, previous research on crack spread and ETFs are presented here in more detail. 

First of all, there has been little research on the effect of oil ETFs on the energy market 

considering their recent advent in the market. After USO, the first oil ETF, was 

introduced to the market in April 2006, many oil ETFs have been added, especially since 

the oil price hike in 2008. Only a little empirical research on financial EFTs has been 

conducted, with the focus on volatility increases by leveraged ETFs and the effect of 

inverse ETFs. Most of the literature on crack spread has mainly focused on modeling of 

hedging strategies with the use of crack spread derivatives (Haigh and Holt 2002; 

Carmona and Durrleman 2003). Murat and Tokat (2009) showed that crack spread 

futures are almost as good as crude oil futures in predicting oil prices, using data from 

January 2000 to February 2008. In addition, they used 3-2-1 crack spreads for 
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forecasting West Texas Intermediate (WTI) crude oil prices.  

Based on this literature review, the objective of the current research is to further 

explore the interaction between the oil and oil product markets, specifically focusing on 

two relationships; the first, between crude oil and crack spread prices as traded on the 

New York Mercantile Exchange (NYMEX), and the second, between oil prices and 

ETFs traded on the New York Stock Exchange (NYSE). Based on the structural breaks 

observed during the sample periods, we evaluated the forecasting performances of ETFs 

and crack spread futures. While Murat and Tokat (2009) showed that 3-2-1crack spreads 

were almost as good as crude oil futures in predicting the movement in spot prices of a 

light and sweet crude oil, West Texas Intermediate (WTI) crude oil, in this study I 

investigated whether a 2-1-1 crack spread and its corresponding oil ETFs are good 

predictors of the price of a relatively heavy crude oil, as in the case of the Organization 

of the Petroleum Exporting Countries (OPEC) Reference Basket Price.   

 

Methodology 

 

The current research studies the possibility that a 2-1-1 crack spread and oil ETF 

spread are significant predictors of crude oil prices based on the Error Correction Model 

(ECM) and additionally the Multivariate GARCH (Generalized Autoregressive 

Conditional Heteroskedasticity) model. Murat and Tokat’s study (2009) on forecasting 

WTI crude oil prices with a 3-2-1 crack spread utilized the Error Correction Model 

(ECM), which defines the mean equation using the homoskedasticity of variance. If 
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hetroskedastic features of volatility are observed in the data, adding a volatility equation 

might be a more appropriate model specification. In Figure A-3, a volatility-clustering 

characteristic in the financial market was observed in the data for OPEC crude oil and a 

2-1-1 crack spread. Daily squared returns of crude oil and crack spread are one evaluator 

of time varying volatility features. Specifically, the Dynamic Conditional Correlation 

(DCC) MGARCH model, among the various MGARCH models, will be applied to 

explain the volatility characteristic. Therefore, in this research, I analyzed the data, first, 

utilizing the Error Correction Model and, second, by applying the ECM-MGARCH 

model. Additional reviews of methodological tools for the structural break test and 

forecasting methods are presented sequentially.  

 

Error Correction Model 

In the previous research of Murat and Tokat (2009), as the estimation of an ECM 

model requires the data series to be cointegrated, they investigated the unit root behavior 

of a series;  a 3-1-1 crack spread and WTI oil prices. Based on weekly oil price and 

crack spread data from January 2000 to February 2008, they showed that the WTI oil 

series is integrated on the order of one, I(1), while crack spread futures are on the order 

of zero, I(0). In the current research, the first bivariate case of the ECM model for OPEC 

crude oil and a 2-1-1 crack spread is explored in equation (2.1). Following Engle and 

Granger (1987), if both the log of OPEC crude oil prices, oilt, and the log of 2-1-1 crack 

spread futures prices, cst, are integrated on the order of one and the stochastic error term 

is stationary, then oilt and cst are said to be cointegrated, and an error correction 
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representation must be made that may take the following form in the mean equation: 
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where t is the conditional mean based on the past information set 1tI  , t is the 

stationary disturbance term with conditional heteroskedasticity, and tECT is the error 

correction term. In this frame, oil  and cs is the estimated coefficient of the long run 

error term, which reflects the adjustment of the short run to long run equilibrium.  

 In equation (2.2), the second ECM model, for OPEC crude oil and oil ETF 

spread, has a bivariate equation form with the replacement of etf for oil in equation (2.1). 

As both the log of OPEC crude oil prices, oilt, and the log of ETF spread prices, etft, are 

integrated on the order of one and the stochastic error term is stationary, then oilt and etft 

are said to be cointegrated, and an error correction representation must be made that may 

take the following form in the mean equation:      
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where t is the conditional mean based on the past information set 1tI  , t is the 

stationary disturbance term with conditional heteroskedasticity, and tECT is the error 

correction term. oil  and 
etf is the estimated coefficient of the long run error term, 

which explain the adjustment speed. In this system, 0i  is similar to a Vector 
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Autoregressive (VAR) model for the first difference.  

 

DCC MGARCH Model with Error Correction Term 

The modeling of volatility as a time-varying function is required to explain this 

characteristic of heterogeneous volatility. Engle (1982) proposed an autoregressive 

conditional heteroskedastic (ARCH) process to describe the time-varying essence of 

conditional variances which depend on past information. Bollerslev (1986) proposed a 

more parsimonious and flexible model than Engle’s ARCH model, that is, the 

Generalized ARCH (GARCH) model. This model takes past error terms and conditional 

variances into its variance equation simultaneously, to avoid the problem of the number 

of parameters to be estimated becoming too large, as the number of lagging periods to be 

considered increases in the ARCH model. The multivariate GARCH class of models was 

first introduced and formulated empirically by Bollerslev, Engle, and Wooldridge (1988). 

In a multivariate sense, Bollerslev (1990) extended a seemingly unrelated regression 

model which parameterized each conditional variance as a single univariate GARCH 

process. Multivariate GARCH (MGARCH) model allows the conditional covariance 

matrix of the dependent variables to follow a flexible dynamic structure and allows the 

conditional mean to follow a vector-autoregressive (VAR) form. As the general 

MGARCH model is too flexible to perform parameterization, many restricted MGARCH 

models have been introduced. Among these models, the dynamic conditional correlation 

(DCC) MGARCH model and the constant conditional correlation (CCC) MGARCH 

model are investigated to explain the variance equation in this study. Specifically, the 
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DCC MGARCH model was introduced to explain the conditional quasicorrelations that 

follow a GARCH (1, 1) process. The DCC model is more flexible than the CCC model 

and does not introduce an inestimable number of parameters for a reasonable number of 

series (Engle 2002). In this study, the first bivariate case for OPEC crude oil and a 2-1-1 

crack spread uses equation (2.1) as a mean equation and equation (2.3) as a variance 

equation, which follows the DCC MGARCH formulation proposed by Engle (2002). 

The variance equation of this first bivariate case can be written in the following form: 
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where tH is a time-varying conditional covariance matrix, tD is a time-varying diagonal 

matrix of conditional standard deviation, tR is a time varying conditional correlation 

matrix, 2

,i th is the estimated conditional variance from the individual univariate GARCH 

model, and t is a standardized residual vector with a mean of zero and variance of one, 

which, in this research, is a 2×1 vector of normal , independent, and identically 

distributed (iid) innovation. 

In order to explore the vector representation of equation (2.3) in more detail, the 

variance equation, dependence equation, and conditional correlation are introduced 

sequentially. First, with regard to the conditional variance, each 2

,  ( , )i t i oil cs  evolves 

according to a univariate GARCH model of the following form: 
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 (2.4)    
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where i is a constant term, 11 and 21 are ARCH parameters, and 12 and 22 are 

GARCH parameters. In this model, I assume each conditional variance follows the 

GARCH (1, 1) model. Therefore, k equals 1 in the variance equation (2.4). From the 

above basic construction, secondly, I note that the dynamic conditional correlation 

coefficient matrix ( tR ) of the DCC model has a time varying form, as a n ×  n symmetric 

positive definite matrix (
,Qt ij tq ) that is specified in the following formula: 

 (2.5)    1/2 1/2Q =diag(Q ) Q diag(Q )t t t t t t tR J J  

 

where 
, 2 2Q ( )t ij tq   is a positive definite matrix, 1/2 1/2
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where 1( )t t tD   is the standardized disturbance vector, Q  is the unconditional 

correlation matrix of the standardized residual ( t ), and 1 and 2 are parameters that 

govern the dynamics of conditional quasicorrelation. 1  and 2 are nonnegative and 

satisfy the formula, 1 20 1    .  

 In sum, MGARCH models are dynamic multivariate regression models in which 

the conditional variances and covariances of the errors follow an autoregressive-moving-

average structure. The DCC MGARCH model uses a nonlinear combination of 

univariate GARCH models with time-varying cross equation weights to model the 

conditional covariance matrix ( tH ) of the errors. The diagonal elements of tH are 
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modeled as univariate GARCH models, whereas the off-diagonal elements are modeled 

as nonlinear functions of diagonal terms. Bollerslev (1990) proposed a constant 

conditional correlation MGARCH model in which the correlation matrix is time 

invariant. For this reason the model is known as a constant conditional correlation 

(CCC) MGARCH model. Restricting tR to a constant matrix ( R ) reduces the number of 

parameters and simplifies estimations but may be too strict for many empirical 

applications. I also compared the CCC MGARCH and DCC MGARCH models; 

however, the DCC MGARCH model is more flexible than the CCC MGARCH model.   

 

Evaluating Forecasting Accuracy 

Forecasting model may be selected utilizing diverse criteria. However, Smeral, 

Witt, and Witt (1992) listed the error magnitude accuracy, directional change accuracy, 

and turning point accuracy as forecasting accuracy criteria. Most researchers have used 

error magnitude accuracy for evaluating forecasting performance. In this research, the 

evaluation of forecasting ability by error magnitude accuracy is based on the root mean 

squared error (RMSE) and the mean absolute error (MAE). Both are somewhat similar 

measures and generally give comparable results. While the MAE is simply the actual 

error without regard to sign, the RMSE takes into account the greater penalty associated 

with very large forecasting errors. A forecasting error is simply the difference between 

the forecasted value ( ˆ
ty ) and actual value ( ty ). 

(2.7)   
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Within the time frame 0T to kT , basic model estimations and within sample 

forecasting evaluations are done. Model fitness within the sample period is usually 

evaluated by measuring a residual, the difference between the fitted value and actual 

value ( ˆ
t t ty y   ). Within the time frame 1kT  to nT , the forecasting error is evaluated 

by measuring the difference between the forecasted and actual values. One step ahead of 

the forecasted value is derived by applying the recursive forecasting model at time k+1 

to n. Therefore, this residual concept may be applied both within and outside of the 

sample periods when I use the ECM. 

Normally, residual can be thought of as an element of variation that is not 

explained by the fitted model. Therefore, the hetroskedastic variance in the MGARCH 

model could reduce the unexplained variance, or residual, in the ECM. While the ECM 

model assumes homoskedasticity, the MGARCH model basically enables the 

conditional covariance matrix of the dependent variables to follow the flexible dynamic 

structure of heteroskedasticity. In order to measure statistical loss by the MGARCH 

forecasting model, I used the standardized residual ( t ) in place of the residual ( t ) of 

ECM. In equation (2.3), the standardized residual is derived by dividing the residual by 

the square root of conditional variance ( 1

t t tD  ).This is one of the modified methods 

for scaling residuals, which usually divide the forecasting error by the square rooted 

value of variance. This change could reduce the effect of strong outliers in forecasting 

performance evaluations and penalize these outliers by dividing hetroskedastic variance. 
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Data  

 

The data set includes daily spot prices for the OPEC Reference Basket (ORB), 

daily time series for prices of NYMEX futures contracts written on a 2-1-1 crack spread, 

and daily close prices of oil ETFs trading on the NYSE. Spot prices for the ORB were 

comprised of averages of the OPEC member’s crude oil prices, as the OPEC collects 

price data on a ‘basket’ of crude oils and calculates an average price from these oils to 

use as the OPEC reference price. For the crack spread futures price, I utilized the daily 

settlement price for all NYMEX-traded futures contracts on crude oil, heating oil and 

unleaded gasoline. Specifically, a 2-1-1 crack spread indicates that two barrels of crude 

oil yield one barrel, each, of gasoline and heating oil, which is characteristic of heavy 

crude oils, similar to OPEC basket grades, because heavy crude oils do not yield as 

much gasoline as light crude oils.  

As the use of a combination of individual oil-related ETFs enables us to lock in 

the cracking margins of refiners by traditional crack spread trading, I derived the daily 

ETF crack spread value using the daily close price of three oil ETFs, Pro Shares Ultra 

Short DJ-UBS Crude Oil ETF (NYSE Arca: SCO), United States Gasoline Fund (NYSE 

Arca: UGA), and United States Heating Oil Fund (NYSE Arca: UHN). Buying equal 

lots of SCO, UHN and UGA effectively puts an investor short two units of crude oil and 

long one unit, each, of gasoline and heating oil, which simulates the buying of a 2-1-1 

crack spread in the futures market. Each data set was obtained from OPEC, NYMEX, 

and NYSE data sources, respectively.  



 25 

The oil ETFs data spans the period from January 2009 to December 2011, 

encompassing the launch of the SCO ETF on November 2008. Basic statistics on level 

data and first difference data is described in Table B-1. Dependant variables in the ECM 

comprised the first difference data, and three series in the first difference of log prices 

exhibited negative skewness and higher kurtosis than in the normal distribution. After 

performing the Jarque-Berra test for normality of distribution, all three series were 

significantly different from a normal return distribution.  

In order to examine the relationships among oil prices, crack spread, and ETF 

spread, I plotted two correlations: one was between oil prices and crack spread, and the 

other was between oil prices and ETFs, on the left side of Figure A-4. Using the 50 daily 

data points, I calculated the correlation by the moving window method. The dashed line 

represents the unconditional correlation, which is derived from all the data. The overall 

correlation between oil prices and ETFs is higher than the one between oil prices and 

crack spread. In addition, correlations using the moving window method change very 

quickly in both of the two relationships. Therefore, the time-varying correlation model 

was more appropriate for use than the time-invariant correlation model. Among the 

diverse multivariate correlation model of MGARCH, time-varying conditional 

correlation model, which includes dynamic conditional correlation or varying 

conditional correlation model, is more appropriate than constant correlation model. This 

topic will be revisited later by an examination of MGARCH model specifications for 

conditional correlation.  
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Empirical Results and Discussion 

 

Estimation of an ECM model requires that the data series be cointegrated. In the 

current research, the unit root behavior of a series was investigated; the Dickey-Fuller 

and Kiwatkowski-Phillips-Schmidt-Shin (KPSS) tests were applied to measure the unit 

root and first difference of log data. These two tests were utilized to investigate the 

opposite null hypotheses: the ADF test used the unit test as the null hypothesis and the 

KPSS test used the stationarity test as the null hypothesis. Table B-2 shows the unit root 

test results. Based on the KPSS test, a basically level data series indicates that the 

stationarity hypothesis is rejected at the 1% significance level, but the stationarity 

hypothesis cannot be rejected by the first difference data. The results of the ADF test are 

similar to the KPSS results, except for the crack spread level data. The ADF test 

suggests that the unit root hypothesis is rejected at the 5% significance level by the crude 

oil level data series, which indicates that the crack spread futures series are integrated on 

the order of zero, I(0). This finding corresponds with the unit root test results for the 

crack spread 3-2-1 by Murat and Tokat (2009).  

Therefore, the ADF test suggests that the crude oil and ETF series are integrated 

on the order of one I(1), while crack spreads are integrated on the order of zero, I(0). 

However, the KPSS test results suggest that all three level series are integrated on the 

order of one I(1). In sum, although there is a dispute regarding the stationarity of crack 

spread, the crude oil and ETF level data are integrated on the order of I(0). Johansen 
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(1995) defined a stochastic vector process to be I(1), if the highest order of integration of 

any of its elements was I(1).  

Cointegration of the series was assessed by the Johansen Maximum Likelihood 

(ML) Test. The null hypothesis that no cointegration occurred was tested in two systems 

of equations, first oil prices and crack spread, and, second, oil prices and ETFs. In the 

first set of equations, for oil prices and crack spread, the trace statistic of 19.7725 at rank 

= 0 exceeds the critical value of 15.41. Thus, the null hypothesis that no cointegration 

equations exist is rejected. However, since the trace statistic of 2.1320 at rank = 1 is less 

than its critical value of 3.76, the null hypothesis that there are one or fewer 

cointegrating equations cannot be rejected from the test result. Since Johansen’s method 

for estimating rank entails accepting the first rank at which the null hypothesis is not 

rejected, I accepted rank 1 as an estimate of the number of cointegrating equations for 

these two variables. In the case of the second set of equations, for oil prices and ETFs, 

the no cointegration hypothesis was also rejected at the 5% significance level. In order to 

perform the Johansen ML procedure in Table B-3 for the system of two equations, the 

lag selection was based on the Final Prediction Error, using Akaike, Schwarz and 

Hannan-Quinn information criteria. A lag structure is selected as a result of majority rule 

among four criteria. Based on this criterion, the optimum lag length for the system is 2.  

 

Granger-Causality Test 

In this research, the data sample periods were from October 2005 to December 

2011. However, if a structural break occurred within a sample period, an empirical 
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estimation using the entire sample might fail to provide reliable results (Clements and 

Hendry 2006). As the sample periods included the global financial crisis in 2008, taking 

into account any changes in the financial environment would be desirable for parameter 

stability. To explain the major changes occurring during the financial crisis and identify 

other unknown changes within the sample periods, the model coefficient should be 

flexible for one, or several, dates. And, since the actual dates were unknown, I had to 

estimate them as well as the model parameters. In this study, I adopted Zivot and 

Andrews’ model (1992) to determining the break point endogenously from the data. 

Zivot and Andrews (1992) endogenous structural break test is a sequential test which 

utilizes the full sample and uses a different dummy variable for each possible break date. 

The break date is selected where t-statistic from the Augmented Dickey-Fuller test of 

unit root is at a minimum. Consequently a break date will be chosen where the evidence 

is least favorable for the unit root null.  

When the first structural break point is detected and identified, we still do not 

know whether more than one break exists. After identifying the first break point, a 

second break point among unstable parameters is tested to investigate whether more than 

one break exists. Also, when structural breaks occur within the sample period, an Error 

Correction Model analysis for each subsample period will provide further insights into 

the structural relationship between crude oil and other oil-related financial investment 

tools such as crack spread and oil ETF spread.  

Based on the results of the unknown structural break test, which is described in 

the methodology section, two structural break points were found; one on September 2, 
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2008 and the other on April 29, 2009. Those times are consistent with the period of the 

2008 financial crisis, which was related to subprime mortgages. On September 2008, 

Lehman Brothers submitted a bankruptcy petition and Merrill Lynch was sold to Bank of 

America. During this month, the global stock markets, including the Dow Jones 

Industrial Average, FTSE of England, CAC40 of France, Dax30 of Germany, and Hang 

Seng of HongKong, dropped precipitously. Likewise, the price of oil decreased 

significantly, after a record peak of US$145 in July 2008. On December 23, 2008, the 

WTI crude oil spot price fell to US$30.28 a barrel, the lowest since the financial crisis of 

2008 began, and traded at between US$35 and US$82 a barrel in 2009. After April 2009, 

the global oil market recovered from the price collapse resulting from the financial crisis. 

The possibility of multiple structural breaks was investigated by applying the structural 

break test for each sub-sample period. As no further break points were detected, the 

entire sample period was divided into three-sub groups; the 1
st
 period (October 2005 to 

September 2008), 2
nd

 period (October 2008 to April 2009), and 3
rd

 period (May 2009 to 

December 2011). These divisions can be denoted as the pre-crisis, crisis, and post-crisis 

periods. 

 Based on the detected structural breaks, I conducted a Granger-causality test for 

oil prices and crack spread on the entire period and the three sub-sample periods. As 

ETF spread data could only be obtained beginning in January 2009, the causality test 

between oil prices and ETFs was only done in the 3
rd

 period (May 2009 to December 

2011). A variable, x, can be said to Granger-cause a variable, y, if, given the past values 

of y, the past values of x are useful in predicting y. A common method for testing 
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Granger causality is to regress y on the lagged values of x that are jointly zero. Failure to 

reject the null hypothesis is equivalent to failing to reject the hypothesis that x does not 

Granger-cause y. Table B-4 gives the Wald test-Granger Causality statistics. The null 

hypothesis is that the coefficients of all the lags of an endogenous variable are jointly 

zero. In the whole sample, where no structural breaks were accounted for, I found that 

crack spread had no causal impact on crude oil prices, but the causal impact of oil prices 

on crack spread was observed. Based on the structural breaks, the 1
st
 and 2

nd
 periods 

exhibited the same results as the whole sample, while in the 3
rd

 period the dynamic 

between oil prices and crack spread started to change and crack spread futures became a 

significant leading factor in the crude oil market. The causality test for oil prices and 

ETFs resulted in the 3
rd

 period also showing a strong unidirectional causal relationship 

from ETFs to the crude oil market.   

This result is consistent with our expectations. After the financial crisis, the 

global economy experienced a dramatic drop in stock prices and commodity prices both 

before and after the crisis. This trend of synchronization between financial and 

commodity markets is accelerated by increased trading of oil-related futures and the 

advent of new financial investment tools, like oil ETFs, that link the two markets. 

Especially, while the futures market has a relatively limited number of investors due to 

margin requirements, ETF investors were able to easily enter the financial market by 

selling and buying on the NYSE market. Dynamic changes in the global oil market has 

caused oil market investors to depend on more sophisticated financial tools, such as 

crack spread and oil ETFs, for both investing and hedging. For the analysis of the 3
rd
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period, the level and first difference data for the three series are indicated in Figure A-5. 

Compared to oil prices and ETF spread, the crack spread shows more pronounced 

fluctuations.  

 

Estimation of the ECM model 

Based on the structural breaks and Granger-causality results, ECM estimations 

for oil prices and crack spread during the entire sample period, 1
st
-2

nd
 period, and 3

rd
 

period were given in Table B-5. Contrary to the 1
st
 and 2

nd
 periods, the crack spread at t-

1 in equation ∆oilt   had a significant positive coefficient (0.0219) during the 3
rd

 period. 

Considering that data for ETFs was only available after 2009, results of the estimation of 

ECM for oil prices and ETFs series were also obtained. In the 3
rd

 period, ETFs at t-1 in 

equation ∆oilt  had a significant positive coefficient (0.7450), which indicates the robust 

effect of the independent variables on the dependent variable. This estimation result is 

consistent with the Granger-causality results. In order to discuss and compare the 

forecasting performance of crack spread and ETFs, I focused on the 3
rd

 period data to 

extend this analysis. Hence, the MGARCH analysis and predictions are based on the 3
rd

 

period hereafter. The estimate coefficient results were consistent with the Granger 

causality results. In the 3
rd

 period, the coefficient ∆cst-1 in the equation ∆oilt of ECM 3 

and the coefficient ∆etft-1 in the equation ∆oilt of ECM 4 had positive significant values, 

which indicates positive causal relationships between crack spread and crude oil, and 

between ETFs and oil, respectively. In addition, the coefficient of the error correction 

term for both ECM 3 and ECM 4 indicated the adjustment speed.  
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Generalized impulse responses to one standard error shock are estimated in order 

to analyze the relative responses of oil prices by crack spread and ETF spread. The 

estimations for ECM 3 and ECM 4 are compared in Figure A-6. As crack spread and 

ETF spread both have Granger causality to oil prices in this period, an increase in the 

orthogonal shock in crack spread and ETF spread causes an increase in oil price 

movement. However, a shock in ETF spread has a relatively stronger effect on oil prices 

than a shock in crack spread. The speed of adjustment toward the long-run equilibrium 

of crack spread and ETF spread is the same for the two periods. In addition, in terms of a 

shock from oil prices, there is little effect on crack spread and ETF, but ETF response 

disappeared after two periods while crack spread response disappeared after one.  

After applying the two ECM models (ECM 3 and ECM 4) to the 3
rd

 period, the 

residuals of oil and CS in the ECM 3 model and the residuals of oil and ETFs in the 

ECM 4 model were plotted on the left side of Figure A-7. The heteroskedasticity of 

residuals were tested using the Breusch-Pagan (BP) and White tests. While the BP test 

measures whether the estimated variance of the residuals from a regression is dependent 

on the values of the independent variable, the White test is a statistical test that 

establishes whether the residual variance of a variable is constant. The results of both 

tests suggest that the null hypothesis of homoskedasticity is rejected at the 1% 

significance level for the residual of CS in ECM 3, residual of oil in ECM 4, and residual 

of ETF in ECM 4, and the null hypothesis of homoskedasticity is rejected at the 5% 

significance level for the residual of oil in ECM 3. Therefore, I utilized an estimation 

model to estimate the time varying variance.  
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Estimation of ECM-MGARCH model 

As heteroskedasticity, shown on the left side of Figure A-7, and volatility 

clustering, shown in Figure A-3, were observed, the application of a time varying 

variance model was needed. In this study, I applied the MGARCH model, which enabled 

the conditional variance to be dynamic. Next, it was important to define the correlation 

in a multivariate model. However, the general MGARCH model is too flexible. Among 

the following diverse models, the diagonal vech model (DVECH), the constant 

conditional correlation model (CCC), the dynamic conditional correlation model (DCC), 

and the time-varying conditional correlation model (VCC), I compared the correlations 

of the CCC MGARCH and DCC MGARCH models in order to decide which 

specification of correlation was appropriate for this model. The DCC MGARCH model 

was as flexible as the closely related VCC model, more flexible than the CCC model, 

and more parsimonious than the DVECH model. I finally utilized the DCC MGARCH 

model, in which the conditional variances are modeled as univariate generalized 

autoregressive conditionally hetroskedastic models and conditional covariances are 

modeled as nonlinear functions of the conditional variances. We used the ECM-DCC 

MGACH model to investigate the dynamic interaction between oil prices and crack 

spread, and between oil prices and ETFs. Thus, the ECM framework was applied to 

investigate the causality relationship among variables and a DCC MGARCH model took 

into account the variables’ hetroskedastic properties of variances and covariance. I first 

used the bivariate ECM-MGARCH (1, 1) model to probe the transmission effects among 

oil prices and crack spread in their first and second moments. Secondly, the other 
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bivariate ECM-MGARCH (1, 1) model was estimated for crude oil spot prices and ETF 

spread. 

The mean equation estimation and test statistics for the ECM-DCC MGARCH 

model are presented in Table B-6. As this ECM-MGARCH model focuses on the 

volatility model, I omitted the condition mean by the ECM model. For the MGARCH 

model comparison, the ECM-MGARCH constant conditional correlation (CCC) model 

is additionally estimated, which basically assumes a constant conditional correlation. 

The estimated correlation results for CCC were different from those of ECM-MGARCH 

1 and ECM-MGARCH 2. If the sum of the coefficients of arch (1) and garch (1) are 

estimated as being close to 1, which implies that shocks cause a high persistence in 

volatility. In the ECM-MGARCH model 1 for oil prices and crack spread, this sum in oil 

equation is lower than that in crack spread equation. The shock effect of crack spread is 

more persistent than the shock effect of oil. This relationship is also observed in the 

ECM-MGARCH model 2. In addition, the 1 2  estimates of the both DCC ECM-

MGARCH model are close to (but less than) 1, which implies that the correlations 

between oil prices and ETFs in case of ECM MGARCH 2 are highly persistent. Such 

high persistence means that a shock can move the correlation away from its long-run 

average for a considerable time, although the correlation is eventually mean-reverting. 

Therefore, the DCC MGARCH model may capture the variation in correlation between 

crude oil spot prices and ETF spread more effectively than the CCC MGARCH model 

does.  
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On the right side of Figure A-4, the straight line represents the conditional 

correlation of the ECM-CCC MGARCH model and the time-varying correlation line 

represents the conditional correlation of the model. While the correlation between oil 

prices and crack spread in the CCC model is very low (0.1051), the correlation between 

oil prices and ETFs in the CCC model is relatively high (0.5990). In terms of the DCC, 

the conditional correlation between oil prices and crack spread is low and sometimes 

negative, while the conditional correlation between oil prices and ETFs, although a little 

low after the financial crisis increased to more than 0.5 as the economy recovered. As 

the dynamic correlations change strongly in both ECM-MGARCH 1 and ECM-

MGARCH 2 models, the DCC model is more appropriate than the CCC model, which 

assumes the correlation is constant. This result for conditional correlation is consistent 

with comparisons of unconditional correlation among oil prices, crack spread and ETFs, 

as shown on the left side of Figure A-4. 

Additionally, the time-varying variance of the ECM-MGARCH model and the 

time invariant variance of the ECM model are compared in Figure A-8. The graph shows 

relatively large fluctuations in the volatility of crack spread. The conditional variances of 

the same variable, oil prices, were different for the ECM-MGARCH 1 and ECM-

MGARCH 2 models. Oil return which is estimated by crack spread is more volatile than 

oil return as estimated by ETFs. From Figures A-4 and A-8, ETFs can be used to obtain 

a relatively higher dynamic correlation with less volatility to estimate an oil series than 

for crack spread.  
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Forecasting Performance 

The predictive ability of a model to fit and explain oil price movements is 

assessed by using the random walk model (RWM) as a benchmark. The RWM is a 

univariate model of oil return data, which moves randomly around the mean and is 

widely used in the area of finance. Therefore, a better prediction of performance than the 

univariate approach, such as the random walk model, supports the validity of the 

multivariate approach for forecasting oil price returns. In this study, two multivariate 

approaches are suggested for oil prices and crack spread, and for oil prices and ETFs. 

Dynamic forecasts of oil returns were computed based on crack spread, first, and ETFs, 

second, and then these forecasts were compared with those provided by the RWM. 

For outside of sample forecasting, the data was divided into two periods, the first 

was May 2009 to September 2011, and the second was October 2011 to December 2011. 

Outside of sample forecasting may be made one step ahead by the recursive method. 

Forecasting performance was evaluated on the basis of MAE and RMSE in equation 

(2.7). Table B-7 reports the forecasting error statistics.  

In terms of the ECM, the evaluation of the forecasting performance of the three 

models shows that, first, two ECMs for crack spread and ETFs outperform the random 

walk model and, second, ETFs exhibit a better ability to predict oil prices than crack 

spread does. Therefore, the ECM model with a 2-1-1crack spread shows superior 

predictive ability for heavier crude oils than the RWM, which is consistent with the 

results of Murat and Tokat (2009), who showed that an ECM model for a 3-2-1crack 

spread outperformed the RWM model. In addition, ETFs are better predictors of oil price 
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movement than crack spread. The Diebold and Mariano (1995) test is used to check if 

the difference between the MSE produced by the two alternative model forecasts are 

statistically significant. The result of the DM test indicates the better forecasting 

performance of ETF as compare to CS because the difference between the models is 

statistically significant at 0.1% level in favor of ETF forecasting model. The null 

hypothesis of DM test can also be rejected at the 5% significance level in comparison 

with RWM.  

In terms of the ECM-MGARCH model, it is difficult to derive consistent results 

among the three models. Overall, the evaluation of forecasting performance for ETFs 

does not differ from the crack spread model, both in the ECM and ECM-MGARCH 

models. However, by taking into account heteroskedasticity and volatility clustering by 

implementation of the MGARCH model, less volatile ETFs shows a better predictive 

ability than relatively strong volatile crack spread. In addition, this result is consistent 

with the fact that the relationship between ETFs and oil prices shows a higher dynamic 

correlation than the one between crack spread and oil prices.   

Several limitations of this study are noteworthy. First, the daily data of this 

research covers only a period of 32 months, from May 2009 to December 2011, which 

also corresponds to the post-2008 financial crisis period. Most of the previous studies on 

crack spread used a relatively long period of data reported on a weekly basis (Haigh and 

Holt 2002, 1984 to 1997; Murat and Tokat 2009, 2000 to 2008). In fact, the data used in 

this study reflects the launch of oil ETFs around 2008 and the causal relationship change 

in crude oil prices in April 2009. Second, the forecasting performance was evaluated by 
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both the ECM model and ECM MGARCH model framework. The results of the ECM 

MGARCH model confirm the results of the ECM model; however, recent forecasting 

models based on the GARCH model focus on volatility forecasting, which require the 

realized volatility level as actual data. There are diverse disputed methods used to define 

the realized volatility, such as computing the difference between weekly maximum and 

minimum data. Taking into account the 32 months of data utilized, this study focus only 

on forecasting price level. Therefore, further research on forecasting crude oil prices 

using longer periods of ETF data would be helpful in identifying the unique effect of 

ETFs in the oil market. More research is recommended to include volatility forecasting 

by crack spread and ETF spread to further test the forecasting performance of volatility-

based models. 

  

Summary and Concluding Remarks 

 

A number of studies have investigated the relationship between spot oil prices in 

the oil market and crack spread in the futures market. In this study, I call attention to a 

new financial instrument; oil-related Exchange-Traded Funds (ETFs), in predicting the 

movement of spot oil prices. To evaluate the performance of crack spread and ETFs in 

managing oil price risk, the random walk model (RWM) was applied as a benchmark. 

Furthermore, I compared the predictive abilities of crack spread and ETFs, both in the 

error correction model (ECM) and ECM-multivariate GARCH (ECM-MGARCH) model.  

 In this study, based on the unknown structural break test, a change in causal 
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relationship between crack spread and oil was observed after a break point. The 

relationship between ETFs and oil prices, however, remained the same after a break 

point. The results of this study reveal that crack spread futures and oil ETF spread are 

good predictors of oil price movement and, in a comparison of crack spread and ETFs, 

ETFs are better predictors than crack spread. In case of crude oil forecasting by crack 

spread, the Granger causal relationship was compared depending on the sub-sample 

periods. The change in this causal relationship can be explained by the fact of the 

increasing need of the oil-related financial market for oil price hedging and investments. 

The break points corresponded to the beginning of the global financial crisis in 2008 and 

the start of the recovery in 2009. As a result of the economic crisis in 2008, the financial 

and commodity markets experienced a similar pattern of price decreases and increases. 

This was also observed in the oil market, which indicates the synchronization of price 

movement and volatility. In addition, the entry of new investors in the oil market with 

new financial products like oil ETFs, and the increasing need of refiners for hedging and 

speculation in the more volatile oil market with crack spread, has increased the 

importance of these financial tools in the entire oil market. In summary, the ECM and 

MGARCH models were used to provide valuable information on the relationship 

between crack spread and oil-related ETFs, and the forecasting performance of these two 

models for oil-related financial markets was compared.  
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CHAPTER III 

OPTIMAL DYNAMIC HEDGING OF UNLEADED GASOLINE 

USING FUTURES AND EXCHANGE-TRADED FUNDS 

 

Introduction 

 

The purpose of this study was to examine the effectiveness of dynamic hedging 

of the unleaded gasoline spot price, using gasoline futures and gasoline exchange-traded 

funds (ETFs). Basically, futures contracts are standardized forward contracts with an 

inherent obligation to take delivery of or to deliver a set quantity of a specific financial 

instrument at an agreed price on a specific date. Therefore, gasoline futures can be 

utilized as a direct hedging or investment tool for the spot price for unleaded gasoline. 

Since 2006, diverse oil related-ETFs have been introduced in the market and they can be 

used in an active or passive way to construct a portfolio. An ETF market can function as 

an alternative to hedging tools for the traders who seek the cheapest means to reduce the 

uncertainty of their market exposures. 

The participants in an oil ETF market may buy or sell on their own account to 

counteract temporary imbalances in supply and demand and hence stabilize prices. 

While a long position for an ETF produces a return similar to that of an index or the 

underlying portfolio, a short position for an ETF offers inverse returns. The ability to 

short sell, coupled with low transaction costs, has fuelled a significant increase in ETF 

usage. An underlying feature of most ETFs is an index, and the price of an ETF basically 
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follows the movement of its underlying index. For example, if an index loses 5% within 

a one day period, a short ETF with this underlying index would rise by 5%. In addition, 

the ability to trade an ETF with put or call options at a given time in the future also 

indicates that ETFs are robust alternative tool for futures trading.  

In the futures market, high trading costs and costly trading information has 

caused temporary divergences in the equilibrium relationship between spot and futures 

prices. Alexander and Barbosa (2007) addressed the effect of an ETF launch on spot and 

futures relationships. As transaction costs drop and spot-futures arbitrage is facilitated by 

ETFs, the correlation between spot and futures returns increases and basis risk declines.    

In the unleaded gasoline market, gasoline futures generally provide an 

opportunity to hedge risk, but they are volatile and are not suitable for all investors. 

However, the introduction of diverse oil ETFs has enabled a wide array of investors to 

access the energy market with strong liquidity and without high entry costs. Especially, 

the United States Gasoline Fund (UGA)
7
 has been traded actively on the New York 

Stock Exchange market (NYSE) since February 26, 2008. The UGA is designed to 

reflect changes in percentage of the price of gasoline futures contracts traded on the New 

York Mercantile Exchange (NYMEX). Therefore, portfolio selection of futures or ETFs 

involves not only the maximization of return, but also the issue of risk management.  

In this study, first, I calculated the most efficient hedge ratio for gasoline futures 

utilizing several diverse advanced econometric models and then compared their hedging 

                                                 
7
 This fund tracks the change in percentage of the price of gasoline and invests in the nearest futures 

contract on unleaded gasoline delivered to the New York harbor traded on the New York Mercantile 

Exchange (NYMEX). 
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performance. Second, using this framework of futures hedging, I extended the current 

research by comparing the hedging performance of ETFs to that of futures hedging. In 

Figure A-9, it is apparent that these three data series exhibit very similar price 

movements. During the period of data collection, the financial crisis in 2008 resulted in 

the sudden price drop, around September 2008, and a slow price recovery, beginning in 

2009.  

An evaluation of futures hedging is principally of interest in the oil market due to 

problems with the limited storage capacity of oil and its products, high volatility in 

prices, and the recent price hike. The optimal proportion of futures contracts that should 

be held to offset a spot position is called the optimal hedge ratio. The optimal hedge ratio 

is traditionally estimated by calculating the ratio of the unconditional covariance 

between spot and futures prices and the unconditional variance in the price of futures. 

This method is called static hedging, and the optimal hedge ratio can be estimated by 

utilizing ordinary least squares (OLS) regression. Although the extant literature places 

emphasis on estimating a static hedge ratios using the ordinary least square technique, 

more recent studies employ various bivariate conditional volatility models to estimate a 

time-varying hedge ratio and have demonstrated that a dynamic hedging strategy can 

result in greater risk reduction that a static one (Hsu, Tseng, and Wang 2008; Liu, Jian, 

and Wang 2010). The static regression method is often criticized because all financial 

assets and commodities have time-varying second moments, and, thus, hedge ratios will 

be time-varying and arguably best modeled in a dynamic framework (Chen, Lee, and 

Shrestha 2003).  
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There are many methods available for estimating optimal hedge ratios. Among 

these methods, multivariate generalized autoregressive conditional heteroskedasticity 

(MGARCH) models has demonstrated the superiority of time varying hedge ratios by 

taking into account the changing joint distribution of spot and futures returns. Most of 

the earlier dynamic hedge ratio models were based on the dynamic conditional 

correlation multivariate GARCH (DCC MGARCH) model (Engle and Sheppard 2001; 

Engle 2002). Hedging performance depends on the marginal distributions and 

dependence structure of the variables. However, most of these dynamic hedging models 

assume that the spot and futures returns follow a multivariate normal distribution with 

linear dependence. As the typical assumption of joint multivariate normality is made, 

this is an important limitation of the multivariate GARCH model, because this 

assumption is at odds with numerous empirical studies, in which it has been shown that 

many asset returns are skewed, leptokurtic, and asymmetrically dependent. Recently, an 

important development in modeling dependence structures, known as a copula, was 

proposed by Sklar (1959). The copula function completely describes the dependence 

between N variables. If we do not make the assumption of multivariate normality, a joint 

distribution can be decomposed into its marginal distributions and a copula, which can 

be considered both separately and simultaneously. The various copula functions allow 

great flexibility in modeling joint distributions. Moreover, especially in this study, static 

copula models are extended to dynamic copula functions in order to apply a dynamic 

optimizing hedge model. This dynamic copula theory was recently developed in an 

analysis of time-varying conditional dependence (Patton 2006). This research 
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investigates the diverse range of copula functions and compares the hedging strategies of 

each model using futures and ETF prices.  

Table B-8 shows the basic framework of the models examined in this research. 

As the relationship between spot and futures data for gasoline is cointegrated, the basic 

static hedge model is based on the Vector Error Correction (VEC) model. The time 

invariant dependence allows the use of the conditional covariance to capture the updated 

information. In this frame work, the DCC MGARCH model generates the time varying 

covariance and variance structure in order to derive the dynamic hedge ratio. Compared 

to these symmetric and multivariate normal distribution-based VEC and DCC 

MGARCH models, the copula function allows the consideration of an asymmetric and 

non-normal multivariate distribution-based model. Both static and dynamic copula-based 

GARCH models are exploited to analyze the time varying optimal hedge ratio in the 

case of gasoline.  

This study is organized as follows. After the introduction, the second section 

discusses the theoretical background of copula methodology. The third section describes 

the estimation methods for the models considered, including the Vector Error Correction 

Model (VEC), the dynamic conditional correlation multivariate GARCH model (DCC 

MGARCH), and the copula-based GARCH model (CGARCH), divided into static and 

dynamic copula models. The fourth section details the data used in this study and 

provides a comparison of the empirical results from the different hedging models, 

presenting the optimal hedge ratio and hedge effectiveness. The conclusions drawn from 

this study are presented in the last section.  
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Theoretical Background on Copula Methodology 

 

The copula function describes the dependence structure of a set of variables and 

this has become a standard tool in modeling dependence among time series, especially 

when the researcher does not want to make the highly debatable assumption of 

multivariate normality. In addition, dynamic copula functions can describe the time-

varying dependence without making the multivariate normality assumption. Examples of 

the application of dynamic copula functions to the field of finance can be found in 

(Patton 2006, 2009; Rodriguez 2007; Hsu, Tseng, and Wang 2008; Liu, Jian, and Wang 

2010). In this section, I introduce the basic concept of the copula function, the bivariate 

static copula functions, and the bivariate dynamic copula functions. 

 

The Copula Function 

A copula function represents a flexible dependence structure for a set of variables, 

and Sklar’s theorem (1959) provides a link between a joint distribution and the 

corresponding copula. As a hedge ratio is derived from the relationship between two 

variables, I focus on the bivariate case of the copula function. According to Sklar’s 

theorem, for every n dimensional distribution function F, with marginal 

distribution ( 1, , )iF i n , there exists a copula C, such that: 

(3.1)   
1 1 1( , , ) ( ( ), ( ))n n nF x x C F x F x  
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where ( )i iF x is the cumulative distribution function (CDF) respectively, 
1( , , )nF x x  is a 

joint CDF of 
1x , …, 

nx with margin 
1 1( )F x , …, ( )n nF x . The copula defined in (3.1) will 

be unique, if all marginal distributions are continuous.  

In order to apply the copula function in bivariate cases of spot and futures returns 

In hedging application, I define
tsp and 

tfu  as random variables denoting spot returns, 

and futures returns of gasoline at period t, and denote 
, 1( | )s t t tF sp I 

 and  
, 1( | )f t t tF fu I 

as 

their conditional cumulative distribution functions (CDF), respectively, where 

1tI 
denotes all past return information. The conditional copula function 

1( , | )t t t tC u v I 
 is 

defined by the time varying CDF of spot returns and returns of its hedging tools, futures 

or ETFs, in equation (3.2), where 
, 1( | )t s t t tu F sp I   and 

, 1( | )t f t t tv F fu I  are 

distributed as continuous uniform variables on (0, 1). From Sklar’s theorem, I know the 

bivariate conditional CDFs of 
tsp and 

tfu can be written as  

 (3.2)   
1 1( , | ) ( , | )t t t t t t tF sp fu I C u v I   

 Assuming all F (CDFs) in equation (3.2) are differentiable, the joint density can 

be obtained by; 

(3.3)   

2

1

                            1 , 1 , 1

( , | )
( , )

( , | ) ( | ) ( | )

t t t
t t

t t

t t t t s t t t f t t t

F sp fu I
f sp fu

s f

c u v I f sp I f fu I



  




 

  

 

where 2

1 1( , | ) ( , | ) /t t t t t t t t t tc u v I C u v I u v      is the conditional copula density function.  

 From (3), the log-likelihood functions for 
tu and 

tv is; 
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(3.4)   1 1

          , 1 , 2 , 1 , 2 3

1 1 1

( ) ln ( , ; )

ln ( ; ) ln ( ; ) ln ( ( ; ), ( ; ); )

T T

t t t

t t

T T T

s t t f t t t s t t f t t

t t t

L l f sp fu

f sp f fu c F sp F fu

 

    

 

  

 

  

 

  

 

where T is the number of observations and 
1 2 3( , , )     is the parameters in the 

marginal densities
, ,( ) and ( )s t f tf f  , and the copula shape parameter.  

The log-likelihood is decomposed into two parts, the first two terms related to the 

marginal distributions and the last term related to the copula. In order to apply the 

bivariate case of spot and ETF returns, the ,tetf ETF return at period t, is used in place of 

tfu in equations (3.1), (3.2), (3.3) and (3.4). 

 

Bivariate Static Copula Functions  

There are many types of copula functions; in generally, they can be divided into 

elliptical and Archimedean copulas, and each category has a number of specific 

connection functions. Since the copula function determines the dependence structure, its 

selection should depend on the type of dependence observed in the data set. The usual 

choice is an elliptical copula such as a Normal (Gaussian) copula or Student’s t copula. 

In the case of the Gaussian copula, following equation (3.2), the bivariate Gaussian 

copula is defined as: 

(3.5)   1 1( , ; ) ( ( ), ( ))Gaussian

t t t R t tC u v R u v     

where R is a correlation matrix and ( )  represents the CDF of the standard normal 

distribution. 

 The density function of the Gaussian copula in equation (3.5) is:  
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(3.6)   
1

1/2

1 1
( , ; ) exp{ ( ) }

| | 2

Gaussian

t t tc u v R R I
R

     

where R is a correlation matrix, 1 1( ( ), ( ))t tu v     , and 1( )   is the inverse of the 

univariate normal CDF.  

The density function of the bivariate Gaussian copula using correlation (  ) 

rather than the correlation matrix (R) is: 

 (3.7)   
2 2 2 2

22

1 1 1
( , ; ) exp{ [ 2 ] [ ]}

2(1 ) 21

Gaussian

t t t t t t t t tc u v a b a b a b 


     


 

where  is the linear correlation coefficient and constrained within the interval (-1, 1), 

1( )t ta u and 1( )t tb v .   

The family of Archimedean copulas, in contrast to the elliptical ones, could be 

used to describe the asymmetric tail dependency of variables. An Archimedean copula 

can be expressed as:  

(3.8)   1( , ) ( ( ) ( ))t t t tC u v u v     

where  is a convex decreasing function, called a generator. Different generators will 

induce different copulas in the family of Archimedean copulas.  

 To capture potential asymmetric tail dependency, the Clayton and Gumbel 

copulas, in the Archimedean family, have been used broadly. While the Clayton copula 

considers the lower tail, the Gumbel copula focuses on the upper tail. In these two 

Archimedean copulas, there is a one-to-one mapping relationship between Kendall’s   

and  (parameter), which clearly shows that the copula shape parameter determines the 
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dependence structure. The generator for the Clayton copula is ( ) ( 1) /C

C Cx x


 
  . For 

C  > 0, the CDF and PDF for the Clayton copula are 

(3.9)   1
( , ; ) ( 1)C C CClayton

t t t C t tC u v u v
     

    

(3.10)   

1
2

1

(1 )( 1)
( , ; )

( )

C C C

C

Clayton C t t
t t t C

t t

u v
c u v

u v

  






 
 



  
  

Kendall’s  for the Clayton copula is / ( 2)C C   . The upper tail dependence is 

0Clayton

U   and the lower tail dependence is 
1

2 CClayton

L




 .  

The generator for the Gumbel copula is ( ) ( ln ) G

G
x x



   . For 1G 
 
(

G =1 for 

independence and 
G → for increased dependence), the CDF and PDF for the Gumbel 

copula are 

(3.11)   1/
( , ; ) exp{ [( ln ) ( ln ) ] }G G GGumbel

t t t G t tC u v u v
         

(3.12)   

1/

2 (1/ )

1 1/

exp{ [[ ln( )] [ ln( )] ] }
( , ; )

[[ ln( )] [ ln( )] ]

                        [ln( ) ln( )] {[[ ln( )] [ ln( )] ] 1}

G G G

G G G

G G G G

Gumbel t t
t t t G

t t t t

t t t t G

u v
c u v

u v u v

u v u v

  

  

   









   


  

     

 

Kendall’s  for the Gumbel copula is 1 1/ G . The upper tail dependence is 

1/2 2
GGumbel

U

    and the lower tail dependence is 0Gumbel

L  .  

While the Clayton and Gumbel copulas only consider asymmetric cases, the 

symmetrized Joe-Clayton (SJC) copula is regarded as a more comprehensive 

Archimedean copula that takes into consideration both symmetric and asymmetric cases, 

as defined in Patton (2006). The SJC copula is based on the Joe-Clayton (JC) copula, as 

it is derived by taking a particular Laplace transformation of Clayton’s copula. Thus, the 
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SJC copula is a more comprehensive specification model than the JC copula. SJC 

copulas have two parameters, U and L , which are measures of dependence known as 

upper tail dependence and lower tail dependence, respectively. While an SJC copula 

nests symmetry as a special case, by constructing it symmetrically when U L  , it does 

not impose symmetric dependence on the variables as do the Normal copula and the 

Student’s t copula.  

The CDF and PDF for an SJC copula are: 

(3.13)   ( , ; , )SJC U L

t t tC u v  

 

         

1
( ( , | , ) (1 ,1 | , ) 1)

2

JC U L JC U L

t t t t t tC u v C u v u v           

where 

1/

1/

1
( , ; , ) 1 1

1 1
1

(1 (1 ) ) (1 (1 ) )

k

JC U L

t t t

k k

t t

C u v

u v



 

 

 
 
 

   
          

 

             with 
2 21/ log (2 ),   1/ log ( )   &  (0,1)U L U Uk and          

 (3.14)   
2

( , ; , )
SJS

SJC U L t
t t t

t t

C
c u v

u v
 



   

           
2 2( , | , ) (1 ,1 | , )1

2

JC U L JC U L

t t t t

t t t t

C u v C u v

u v u v

       
  

    
 

 where 
2 ( , | , )JC U L

t t

t t

C u v
A B

u v

 
 

 
 

1/ 2 1/ 1 1

1 1 2 1/

1/ 2 1/ 1 1

1 1 2 2/

(1 1 ) (1/ 1)(1 ) (1 )

(1 (1 ) ) (1 (1 ) )
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  
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  

     
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         with 
1 1

1
(1 (1 ) ) (1 (1 ) )k k

t t

Z
u v 

  
   

 

 

Bivariate Dynamic Copula Functions  

While the static copula function models estimate the time invariant parameters of 

each model based on the unconditional copula theory, the dynamic copula model 

investigates the time-varying conditional dependence. This research attempts to capture 

time-varying dependence by allowing the parameters of copulas to evolve over time. 

Time variation in the conditional first and second moments of financial data are reported 

in many research studies and may be explained by diverse GARCH models. In this study, 

I used four time-varying copula functions. While time-varying Gaussian copula can be 

used to capture the symmetric behaviors of linear correlation, time-varying Clayton and 

Gumbel copulas may be used to capture the asymmetric behavior of lower or upper tail 

dependence. And, time-varying SJC copula models can reflect the symmetric and 

asymmetric tail dependence for both the upper and lower tails. 

Patton (2006) proposed the several time-varying copula models utilizing a 

parametric function of transformations of the lagged data and an autoregressive term. I 

followed the functional form of the evolution equation suggested by Patton (2006) and 

consider four types of dynamic copula models, which correspond to four forms of static 

copula models. The evolution model for the dynamics of the correlation for a bivariate 

Normal (Gaussian) copula model is: 

(3.15)   
10

1 1

1 ,1 ,2 1 ,3

1

1
( ) ( )

10
t t t j t j

j

u v        

  



 
       

 
  
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where 
t is the time-varying correlation coefficient, constrained within the interval (-1, 

1), 1( )   is the inverse of the standard univariate normal CDF, and 

1

1( ) (1 )(1 )x xx e e      is the modified logistic transformation, designed to keep 

t constrained within (-1, 1) at all times.  

 The evolution equations for a time-varying Clayton copula model and a time-

varying Gumbel copula model are:  

(3.16)   
10

3 ,1 ,2 1 ,3

1

1
| |

10
t t t j t j

j

u v        



 
      

 
  

where 
t is the time-varying Kendall tau coefficient , and 1

3( ) (1 )xx e     is the 

modified logistic transformation, designed to keep the parameters within the interval (0, 

1). 

(3.17)   
10

3 ,1 ,2 1 ,3

1

1
| |

10
t t t j t j

j

u v        



 
      

 
  

where 
t is the time varying Kendall tau coefficient , and 

3( ) 1 exp( )x x    is the 

modified logistic transformation, designed to keep the parameters in (0, 1). 

 The evolution equations of the upper and lower tail dependences for a time-

varying SJC copula model are:  

(3.18)   

10

4 ,1 ,2 1 ,3

1

10

4 ,1 ,2 1 ,3

1

1
| |

10

1
| |

10

U U

t U U t U t j t j
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L L

t L L t L t j t j
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u v
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    

    

  



  



 
      

 

 
      

 




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where 
t is the time varying tail dependence , and 1

4( ) (1 )xx e     is the modified 

logistic transformation, used to keep the parameters within the interval (0, 1) at all times. 

All of the evolution equations contain an autoregressive term and a forcing 

variable for a time varying limit probability over the previous 10 observations. The 

unconditional correlation from the static Gaussian copula, and the upper and lower tail 

dependences from the static SJC copula are used as initial values for equations (3.18). 

Especially, we expect that this distance measure in the SJC evolution equation would be 

inversely related to the concordance ordering of the copulas; under perfect positive 

dependence it would equal zero, under independence it would equal 1/3, and under 

perfect negative dependence it would equal 1/2. 

  

Estimation Methodology for Optimal Hedge Ratios 

 

In this study, three categorical models, the Vector Error Correction (VEC), 

Multivariate GARCH (MGARCH), and static and dynamic copula-based GARCH 

(CGARCH) models, were employed to estimate optimal hedge ratios. The VEC model 

estimates a constant hedge ratio whereas time-varying optimal hedge ratios are 

calculated using MGARCH and CGARCH models. Before detailing the model 

specifications for each of three categorical models, I discuss hedge ratios and hedge-

effectiveness.  

In portfolio theory, hedging with futures can be regarded as a portfolio selection 

issue and futures may be chosen as one of the assets in the portfolio to minimize the 
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overall risk or to maximize utility function. From this perspective, hedging with an ETF 

may be considered as an alternative asset in portfolio selection. The optimal hedge ratio 

may be defined as the ratio of futures holdings to a spot position that minimizes the total 

risk of the hedged portfolio. In this research, traders use futures or ETFs as hedging 

instruments of the spot market. Let 
,Fu tpf and 

,ETF tpf represent the return of a portfolio 

with futures and the return of a portfolio with ETFs, respectively. Therefore, each 

portfolio return may be given as follows: 

(3.19)   
,Fu t t Fu tpf sp fu   

(3.20)   
,ETF t t ETF tpf sp etf   

where tsp is the return of the spot price, which is derived from the first difference of the 

natural logarithm of spot price, tfu is the return of futures prices, 
Fu is the optimal 

hedge ratio of futures, and 
ETF  is the optimal hedge ratio of ETFs. 

As a tool for evaluating hedge performance, the variances of the hedged 

portfolios, in both cases are: 

(3.21)  
,( ) ( )Fu t t Fu tVar pf Var sp fu   

(3.22)   
,( ) ( )Fu t t ETF tVar pf Var sp etf   

In this study, using the calculated optimal hedge ratio, I compared the variance of 

hedged portfolios to evaluate the hedging effectiveness. The hedging effectiveness of a 

dynamic hedge model can be evaluated by the proportional reduction in variance of the 

hedged portfolio in comparison to that of the hedged position of a static VEC model.  
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Hedge ratio calculation depends on how we define the multivariate relationship 

between spot return and futures return. Therefore, the specific defining hedge ratio is 

presented for each estimation methodology. Time-varying minimum variance hedge 

ratios are also obtained using two different frameworks of dynamic econometric models; 

a multivariate GARCH model (MGARCH) and a dynamic copula-based GARCH model 

(CGARCH) model.  

 

Vector Error Correction Model  

As time invariant optimal hedge ratio models, the conventional Ordinary Least 

Squares Model (OLS) and Vector Autoregressive Model (VAR) do not take into 

consideration the possibility of long term integration between spot and futures returns, 

which are, in fact, widely observed in the relationship between spot and futures returns. 

Therefore, if two prices are co-integrated in the long run, then the Vector Error 

Correction Model (VEC) is more appropriate (Lien and Luo 2006). If the futures and 

spot series are co-integrated on the order of one and each series is not dependent on its 

autoregressive value, the VEC model of the spot and futures series is given as: 

(3.23)   
0 1 1 ,

0 1 1 ,

t s s t s t

t f f t f t

sp ECT

fu ECT

  

  





  

  
 

 where 1tECT   is the error correction term, which is a function of
1 0 1t tSp Fu  + 

Constant. 
1tSp 
and 

1tFu 
are the spot and futures prices, respectively.  

I utilized a bivariate error correction model to obtain the static hedge ratio,
Fu , 

following Kroner and Sultan (1993). They proposed the following bivariate error-
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correction model for
tsp and 

tfu . The error terms in the equations, 
,s t  and 

,f t , are 

independently identically distributed (iid) random vectors. The minimum variance hedge 

ratio for futures hedging is calculated as: 

(3.24)   , ,

,

( , )

( )

s t f tECM

Fu

f t

Cov

Var

 



  

 

Multivariate GARCH Model  

A multivariate GARCH model enables the conditional covariance matrix of the 

dependent variables to follow a flexible dynamic structure and allow the conditional 

mean to follow a vector autoregressive or vector error corrections structure. In the mean 

equation, the non-stationarity and cointegration relationship has been observed in 

previous research on spot and futures prices of oil commodities.  

I used a bivariate error correction model as a mean equation, which is the same 

as equation (3.23) in the VEC model. Kroner and Sultan (1993) proposed the following 

bivariate error correction model for 
tsp and 

tfu with a constant conditional correlation 

(CCC) GARCH (1, 1) structure for the estimation of hedge ratios: 

(3.25)   
0 1 1 ,

0 1 1 ,

t s s t s t

t f f t f t

sp ECT

fu ECT

  

  





  

  
 

where 1tECT   is the error correction term, which is a function of
1 0 1t tSp Fu  + 

Constant. 
1tSp 
and 

1tFu 
are the spot and futures prices, respectively. 

(3.26)   
,

1

,

| (0, )
s t

t t

f t

I N H


 

 
 
   
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where
,s t and 

,f t are error terms following the GARCH (1,1) model with a zero mean 

and a conditional covariance matrix 
tH  with a constant correlation  .  

 (3.27)   
2

, , , ,

2

, , , ,

0 01

0 01

s t sf t s t s t

t

sf t s t f t f t

h h h h
H

h h h h




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       
           

 

 (3.28)   

2 2 2

, 0 1 , 1 2 , 1

2 2 2

, 0 1 , 1 2 , 1

s t s s s t s s t

f t f f f t f f t

h h

h h

   

   

 

 

  
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where 2

,s th and 2

,f th are the conditional variance for the spot and futures returns, which 

follows the GARCH (1, 1) model.  

 Since the assumption of constant correlation may be too restrictive to fit reality, I 

adopted the DCC MGARCH model based on the multivariate normal distribution to 

remove this restriction and improve the flexibility of the hedging models. In contrast to 

the CCC MGARCH model, the DCC MGARCH model allows a time-varying 

correlation
t : 

(3.29)   , ,

, ,

10 0

10 0

ts t s t

t

tf t f t

h h
H

h h





    
     
       

 

where 
,i th is the diagonal matrix of the conditional standard deviation matrix from  the 

univariate GARCH model, t  satisfies:

 

(3.30)    
1 2 1 1 2 , 1 , 1(1 )t t i t j t              

 

where 2ˆ( / )t t th   is the standardized disturbance vector,   is the unconditional 

correlation of the standardized residual (
t ), and 

1 and 
2 are parameters that govern 

the dynamics of a conditional quasi-correlation. 
1  and 

2 are nonnegative and satisfy 
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1 20 1    .  

 Engle (2002) proposed the use of a two-step maximum likelihood method for the 

estimation of the parameters for the DCC MGARCH model. In the first step, the 

parameters in the univariate GARCH models are estimated for each residual series. As a 

second step, the parameters of the dynamic correlation are estimated using the results of 

the first step and the transformed residuals 2

, , ,
ˆ ˆ /i t i t i th  . 

 Given the estimates ˆ
tH obtained in the DCC MGARCH models, the optimal 

dynamic hedge ratio in the case of futures hedging is estimated by: 

(3.31)    , ,

, 2

, ,

sf t s tDCC

Fu t t

f t f t

h h

h h
  

 

where 
,sf th  is the conditional covariance between the errors 

,s t  and  
,f t , 2

,s th and 2

,f th are  

the conditional variances of the errors 
,s t  and 

,f t , respectively, and, t is the 

conditional correlation.  

 Regarding the bivariate case of spot and ETF returns, the ,tetf ETF return at 

period t, is used in place of 
tfu in equations (3.25) - (3.31). Generally, returns for 

financial data in time series possesses a time-varying hetroskedastic volatility structure. 

Due to this ARCH effect (Bollerslev, Engle, and Wooldridge 1988) on the returns of 

spot and futures prices and their time-varying joint distribution, the simple estimation of 

hedge ratios and hedge effectiveness using the conventional OLS method may be 

inappropriate. Therefore, I modeled time-varying hedge ratios based on a conditional 

bivariate GARCH of unexpected returns, exploring a variety of GARCH (1,1) 
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parameterizations such as DCC MGARCH(1,1) (Engle 2002) and copula 

MGARCH(1,1) (Hsu, Tseng, and Wang 2008). Alexander and Barbosa (2007) define the 

dynamic hedge ratio as the minimum variance hedge ratio for each day, which 

determines the position to be taken at the end of the day through the following day.  

 

Copula-based GARCH Model  

Though MGARCH models consider the time-varying characteristics of hedge 

ratios in their dynamic frameworks, an important limitation of MGARCH models is the 

typical assumption of joint multivariate normality. Methodological developments on 

defining diverse joint distributions by the copula function enable it to reflect the 

asymmetry of the dependence structure. The use of diverse copula functions including 

asymmetric equity correlation and financial contagion, and the calculation of the Value 

at Risk (VaR) for a portfolio of assets has been actively studied. In addition, a recent 

study on time-varying copula models has presented time variation as a conditional 

dependence without the restriction of the multivariate normal distribution assumption.  

Marginal distribution and copula function may be defined in two ways, 

parametrically or non-parametrically.  I choose the parametric approach for both 

marginal distribution and copula function, based on the statistics for each data series; the 

proposed hedging model uses the GARCH-Student’s t specification for marginal 

distributions in the first step, and four static copula functions (Gaussian, Clayton, 

Gumbel, and SJC copulas) and four dynamic copula functions (time-varying Gaussian, 

time-varying Clayton, time-varying Gumbel, and time-varying SJC copulas) for joint 
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distributions, to allow for a wide range of possible dependence structures in the second 

step.  

 First, I specify the conditional marginal density for spot and futures returns of 

gasoline prices using a Student’s t distribution and GARCH (1,1) framework, defined by 

(3.32)   
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(3.33)   
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where 1tECT   is the error correction term with  unconditional correlation, which is a 

function of
1 0 1 Constantt tSp Fu   . The two individual marginal equations are the 

same as the mean equations of the VEC and MGARCH models.
,s t and 

,f t are the error 

terms following Student’s t distribution with degrees of freedom, sd and 
fd , 

respectively. 2

,s th  and 2

,f th are the conditional variances for the spot and futures returns of 

gasoline.  

Second, I selected some appropriate copula functions for the dependence 

structure of standardized spot and futures innovations. The standard for judging which 

copula function is a good fitted consists of the log likelihood values followed by the 

Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC). Copula 

parameters were estimated by optimizing the log-likelihood functions; however, there 

are difficult to optimize when the number of model parameters is large. As the 



 61 

dimensions of the estimated equation may be quite large, it is difficult in practice to 

achieve a simultaneous maximization of log-likelihood functions for all of the 

parameters. To effectively solve this problem, the two-stage estimation procedure of Joe 

and Xu (1996) that was adopted by Patton (2006) and Bartram, Taylor, and Wang (2007) 

is followed. This method, called inference for the margins (IFM), in which the marginal 

densities and copula density can be estimated separately partially resolves the problem. 

Joe and Xu (1996) also demonstrated the high efficiency of the easily-implemented IFM 

method, compared with the customary maximum likelihood method.  

In the first stage, the parameters of the marginal distribution were estimated from 

the univariate time series by:  
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In the second stage, the marginal CDFs are applied to the standardized residuals, 

using the estimates from (34), to provide estimates of the probabilities tu and tv , which 

are then used to estimate the copula parameters by: 
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After estimating the parameters in the different copula-based GARCH 

(CGARCH) models, the conditional variances, 2

,s th  and 2

,f th , were obtained from the 

equations (3.32) and (3.33), and the unconditional dependence or conditional linear 

dependence was generated by the evolving equations of the dynamic copula, (3.15) – 
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(3.18). The optimal dynamic hedge ratio in the case of futures hedging was calculated 

from equation (3.31). The proposed hedge ratios of dynamic CGARCH models consider 

time-varying dependence and asymmetric specifications in the joint and marginal 

distribution of assets.  

  

Data and Empirical Results 

 

This section examines the basic hedge model for gasoline spot prices and futures 

prices, and the alternative hedge model for gasoline spot prices and a gasoline ETF 

(UGA). The data set includes daily spot prices for unleaded gasoline, daily prices for 

gasoline in a New York Mercantile Exchange (NYMEX) futures contract, and daily 

close prices of the UGA ETF trading on the New York Stock Exchange (NYSE). 

Considering the timing of the launch of the United States Gasoline Fund (NYSE Arca: 

UGA) in the oil ETFs market, on February 26, 2008, and the gasoline price breakpoints 

from the 2008 financial crisis, the three data spans the period from March 2008 to 

December 2011. Spot prices for gasoline were obtained from Los Angeles Reformulated 

RBOB Regular Gasoline Spot Price in the U.S. Energy Information Administration. For 

the gasoline futures price, I utilized the daily settlement price of futures contracts on 

unleaded gasoline delivered to the New York harbor and traded on the NYMEX that 

were near month contracts set to expire. The daily close price of the United States 

Gasoline Fund (NYSE Arca: UGA) on the NYSE was used as a representation of ETF 
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prices. Each data set was obtained from the U.S. Energy Information Administration 

(EIA), NYMEX, and NYSE data sources, respectively.  

Basic statistics on level data and first difference data are presented in Table B-9. 

In three series the return data in the first difference of log prices exhibited skewness and 

kurtosis that was greater than in the normal distribution. After performing the Jarque-

Berra test for normality of distribution, all three series were significantly different from a 

normal return distribution. In order to examine the relationships among spot price returns, 

futures returns, and ETF returns, correlations and Kendall’s Tau were computed in Table 

B-9.  

In the current research, the unit root behavior of a series was investigated; the 

Augmented Dickey-Fuller (ADF) and Kiwatkowski-Phillips-Schmidt-Shin (KPSS) tests 

were conducted to measure the unit root and first difference of log data. These two tests 

were utilized to investigate the opposite null hypotheses: the ADF test used the unit test 

as the null hypothesis and the KPSS test used the stationarity test as the null hypothesis. 

Table B-10 shows the unit root test results. Based on the KPSS test, a basically level 

data series indicates that the stationarity hypothesis is rejected at the 1% significance 

level, but the stationarity hypothesis cannot be rejected by the first difference data. The 

results of the ADF test are consistent with the KPSS test results, which indicates that all 

log data are unit root.  

Based on the unit root test result, the cointegration relationships were examined. 

Cointegration refers to the fact that two or more series share a stochastic trend. Engle 

and Granger (1987) suggested that a two-step process be used to test for cointegration, 
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the EG-ADF test. In Table B-11, the EG-ADF test results cause us to reject the 

hypothesis of no cointegration at the 1% significance level in both cases. This 

cointegration test is confirmed by the criteria of the Johansen Maximum Likelihood 

(ML) Test. The null hypothesis that no less cointegration equations existed than at the 

maximum rank level was tested in two systems of equations, first spot and futures prices, 

and, second, spot and ETF prices. In the first set of equations, for spot and futures prices, 

the trace statistic of 2.0846 at the maximum rank level 1 does not exceed the critical 

value of 3.76 of the 5% significance level. Thus, I could reject the null hypothesis that 

there is one or fewer cointegration equations. Since Johansen’s method for estimating 

rank entails accepting the first rank at which the null hypothesis is not rejected, I 

accepted rank 1 as an estimate of the number of cointegrating equations for these two 

variables. In the case of the second set of equations, for spot and ETF prices, the null 

hypothesis of one or fewer cointegration equations was not rejected at the 5% 

significance level. Based on the cointegration test results, I added the error correction 

term in the mean equation in the MGARCH and CGARCH models. 

 

Estimation Results of VEC and MGARCH Models  

In this research, the data sample periods ranged from March 2008 to December 

2011. However, if a structural break occurred within a sample period, an empirical 

estimation using the entire sample might fail to provide reliable results (Clements and 

Hendry 2006). As the global financial crisis in 2008 occurred during the sample periods, 

taking into account any changes in the financial environment would be desirable for 
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parameter stability. To explain the major changes occurring during the financial crisis 

and identify other unknown changes within the sample periods, the model coefficient 

should be flexible for one, or several, dates. And, since the actual dates were unknown, I 

had to estimate them as well as the model parameters.  

In this study, I adopted Zivot and Andrews's model (1992) to determining these 

unknown dates for structural breaks. Based on the results of the unknown structural 

break test, two structural break points were found; one on September 20, 2008 and the 

other on April 29, 2009. Based on the unknown structural break test results and causal 

relationship changes given in Table B-12, the entire sample period was divided into two-

sub groups; the 1
st
 period from March 2008 to April 2009, and the 2

nd
 period from May 

2009 to December 2011. Based on these sub groups, the results of the VEC (Vector 

Error Correction) model estimation are presented in Table B-13. These two periods have 

strictly different data characteristics; the 1
st
 period includes the majority of the duration 

of the 2008 financial crisis, in which highly volatile price movements were experienced, 

and the 2
nd

 period covers the post-financial crisis period having relatively stable price 

volatility.  

For my first dynamic model, I applied the MGARCH model, which allowed for 

the conditional variance to be dynamic. Next, it was important to define the correlation 

in a multivariate model; however, the general MGARCH model was too flexible. 

Among the following diverse models, the diagonal vech model (DVECH), the constant 

conditional correlation model (CCC), the dynamic conditional correlation model (DCC), 

and the time-varying conditional correlation model (VCC), I utilized the DCC 
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MGARCH model, in which the conditional variances are modeled as univariate 

generalized autoregressive conditionally hetroskedastic models and conditional 

covariances are modeled as nonlinear functions of the conditional variances. I used the 

DCC MGARCH model to investigate the dynamic interaction between spot gasoline 

prices and futures prices, and between gasoline spot prices and ETF prices. Thus, the 

mean equation with an error correction term (ECT) was applied to investigate the 

causality relationship among variables and a DCC MGARCH model was used to take 

into account the hetroskedastic properties of the variances and covariances of variables. I 

first used the bivariate DCC MGARCH (1, 1) model with an error correction term (ECT) 

to probe the hedging effects by futures prices in their first and second moments. This 

model may be identified as a VEC DCC MGARCH model. Second, another bivariate 

VEC DCC MGARCH (1, 1) model was estimated for gasoline spot prices and ETF 

prices. The parameter estimation and test statistics for the VEC and VEC DCC 

MGARCH model are presented in Table B-13 and Table B-14. The results of the 

parameter estimation from the VEC are used again in the VEC DCC MGARCH model. 
 

In addition, in the top graphs of Figure A-10, the conditional correlations of spot 

returns and futures returns for the two sub periods are compared. In the bottom graphs of 

Figure A-10 the conditional correlations of spot returns and ETF returns are exhibited. 

The straight line represents the conditional correlation of the CCC MGARCH model and 

the time-varying correlation line represents the conditional correlation of the DCC 

MGARCH model. The conditional correlations of the CCC model in the 2
nd

 period are 

lower than those in the 1
st
 period in the cases of both the futures and ETF hedging. 
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Comparing the conditional correlations between futures and ETF hedging in the CCC 

MGARCH model, the estimated results for ETF hedging (1
st
: 0.8191 and 2

nd
: 0.7660) 

are higher than those in the case of futures hedging (1
st
: 0.7606 and 2

nd
: 0.7228).   

Concerning the estimated results of the DCC MGARCH model, the conditional 

correlation between spot returns and futures returns exhibits very similar movement to 

that between spot returns and ETF returns in both periods. As the dynamic correlations 

change strongly in both futures hedging and ETF hedging models, the DCC model is 

more appropriate than the CCC model, which assumes the correlation is constant. In 

Figure A-11, the conditional variances of the DCC MGARCH model are compared for 

the two sub periods. The conditional variances of the three series in the 1
st
 period are 

significantly high as a result of the financial crisis in 2008. Based on the estimated 

conditional variance and correlation, the time-varying hedge ratios are exhibited in 

Figures A-12 and A-13.  

 

Estimation Results of Copula GARCH Model  

Following the inference for the margins (IFM), I first estimated the marginal 

GARCH (1,1) Student’s t model. The independently and identically distributed (iid) 

standardized residuals obtained from the marginal assumption were transformed to a 

uniform (0, 1) by a probability integral transformation (PIT), prior to the estimation of 

the copula parameters. In order to find the dependence structure for spot and futures 

innovations, I estimated four static and four dynamic copula specifications. The results 

of these estimations are presented in Table B-15. The three time-varying copula models 
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(time-varying Normal, time-varying Gumbel and time-varying SJC copulas) commonly 

exhibit a better fit than static copula functions. Comparing the 1
st
 and 2

nd
 periods for the 

case of futures hedging, Table B-15 shows that all time-varying copula functions for 

futures hedging exhibit better goodness of fit than the static copula functions. In the 1
st
 

period, the time-varying Gumbel copula exhibited the best goodness of fit, followed by 

the time-varying SJC and time-varying Gaussian copulas, according to ranking. In the 

2
nd

 period, the time-varying SJC copula exhibited the best fit, followed by the time-

varying Gumbel and time-varying Gaussian copula functions. 

As the SJC copula function can explain both the lower and upper tail 

dependences for symmetric and asymmetric cases, its features differ from the Clayton 

and Gumbel copulas; it can analyze the dynamic patterns of lower and upper tail 

dependences at the same time as it provides the dependence relationship for the given 

time periods. The SJC copula was developed from the Joe-Clayton (JC) copula. While 

the JC copula explains asymmetric tail behavior for upper and lower tail dependences, 

the SJC copula nests symmetry as a special case. In the SJC copula, a static copula, the 

parameters of the upper and lower tail dependences in the 1
st
 period are estimated as 

0.6581 and 0.6736, respectively, and the upper and lower tail dependences in the 2
nd

 

period are estimated as 0.6061 and 0.6487, respectively. From a static point of view, the 

upper tail dependence is more correlated than the lower tail dependence in both of the 

two sub-periods. However, when these dependences are revisited in terms of a time-

varying copula, the results can be interpreted differently. In Figure A-14, while the time-

varying movements between the lower and upper tail dependences are very similar in the 
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2
nd

 period, the time-varying dependence of the upper tail fluctuates a lot, but the lower 

tail dependence shows similar dynamic movements to the static copula estimation results 

for the 1
st
 period.  

 I also compare the copula functions in the case of ETF hedging, in Table A-16. 

The time-varying copula functions all provide a better fit than their corresponding static 

functions. Based on the results of Tables B-15 and B-16, the three static and three 

dynamic copula functions were selected to derive the static and dynamic optimal hedge 

ratios. For the copula-based GARCH models, Panel A of Table B-17 presents the 

estimates of parameters for the conditional means, variance, and marginal distribution. 

Panels B through D of Table B-17 present the estimates of parameters for the three 

dynamic copula functions. Estimation result in case of ETF hedging is summarized in 

Table B-18. 

 

Comparisons of Hedging Performances  

The hedge ratio was derived based on the estimation results. First, regarding the 

hedge ratios of the 1
st
 sub-period for the case of futures hedging, the static hedge ratios 

of the VEC model is 0.8092, and those of three static copula are 0.8797 (Normal copula), 

0.8094 (Gumbel copula), and 0.7627 (SJC copula) respectively. In addition, the dynamic 

hedge ratios, which were derived from the DCC MGARCH and three dynamic copula 

models, have time-varying values using a conditional information-based approach. The 

averages of the time-varying hedge ratios for the DCC MGARCH, time-varying Normal, 

time-varying Gumbel, and time-varying SJC copulas were 0.7870, 0.7650, 0.7106, and 
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0.8093, respectively. In Figures A-12 and A-13, the dynamic changes of these four time-

varying optimal hedge ratios are presented together with the basic constant hedge ratio 

of the VEC model.  

 Based on the derived values for optimal hedge ratios, I evaluated the hedging 

performance of the different models. A hedge portfolio is composed of a spot asset and 

  units of futures; for purposes of comparison, the variances of the returns of these 

portfolios over the two sub-sample periods were calculated and presented in Table B-19. 

The hedging effectiveness of the DCC model, three static copulas, and three dynamic 

copulas are reported in the form of variance reduction over the VEC measure, which is 

used as a benchmark. Some of the other findings are summarized as follows.  

 First, regarding the percentage of variance reduction occurring during the 1
st
 sub-

sample period, a static hedging strategy (VEC and three static copula strategies) was 

better than a dynamic hedging strategy (DCC and three time-varying copula strategies) 

in both cases of hedging. This can be explained by the fact that the dynamic models used 

to capture time-varying trends did not effectively reflect the strong volatility and 

unexpected price movement actually observed in the 1
st
 sub-sample period data, which 

included highly volatile data from the financial crisis of 2008. Second, concerning the 

relatively stable 2
nd

 sub-sample period, most of the dynamic hedging strategies with 

specific time-varying copulas exhibited better hedging performance. In the case of 

futures hedging, the time-varying Gumbel copula outperformed the VEC and other static 

copula models, while the time-varying Normal copula performed much better than the 

VEC and other static copula models, in the case of ETF hedging. Third, regarding the 



 71 

comparison of hedging effectiveness for futures and ETFs, the average of all portfolio 

variance from ETFs is lower than the average variance in a futures portfolio. This 

supports the possibility that ETF’s hedging capability is as good as that for futures. 

Fourth, while asymmetric copula-based models, such as the Gumbel and SJC copulas, 

perform more effectively in futures hedging, the symmetric copula-based models 

perform better in ETF hedging.  

 Recent studies on dynamic hedging models with DCC or time-varying copulas 

have shown better fitness and more effective hedging performances (Hsu, Tseng, and 

Wang 2008; Liu, Jian, and Wang 2010). However, dividing the sample period into two 

sub-samples, the crisis and post-crisis periods, provides an additional explanation for the 

effectiveness of dynamic hedging models, signifying that dynamic hedging models 

might also show better hedging performances in normal data periods, even though they 

have a limited ability to explain highly volatile data periods. This can be explained by 

the fact that as all dynamic hedging models assume an evolutionary pattern of 

dependence based on autoregressive information, the conditional information used in the 

dependence evolution does not effectively explain the frequent unexpected price 

movements during a crisis period.  

In normal data periods, like the post-crisis period, the copula-based GARCH 

models provide the best performance in terms of both futures and ETF hedging. By 

specifying a joint distribution as spot and futures or spot and ETF returns with full 

flexibility, the copula-based GARCH models can be used to effectively reduce risk in 
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hedged portfolios. In addition, ETF-hedged portfolios can be an effective alternative to 

futures-hedged portfolios in regard to gasoline spot returns.  

Several limitations of this study are noteworthy. First, as the data used in this 

study reflects the launch of the UGA ETF in February 2008, the data spans a period of 

only 45 months, from March 2008 to December 2011. This relatively short period of 

data collection offers limited possibilities in generalizing the results of this research. 

Therefore, further research, covering a greater data collection period, would be helpful in 

analyzing the hedging performance for an optimal dynamic hedging ratio approach. 

Second, in this study, hedging performance was evaluated by the minimum variance 

hedging model (Ederington 1979). However, there are other ways to evaluate hedge 

performance, such as the certainty equivalent (CE), derived from an exponential utility 

for hedging. This approach considers not only risk but also risk averseness in measuring 

hedge effectiveness and may be included in additional further research using a dynamic 

hedging approach. Third, unlike futures hedging with specific delivery objectives, ETF 

hedging is a conceptual approach that models ETF price movements for the purpose of 

hedging gasoline spot prices. Therefore, as various put or call options for ETFs have 

been widely used, these option values should be added to calculate the variance or return 

of an ETF-hedged portfolio. Therefore, further research on hedging models using data 

collected over longer periods and the use of diverse dynamic hedging models would all 

be helpful in examining the hedging performance of various investment instruments in 

the diverse commodity futures and ETF market.  
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Summary and Concluding Remarks 

 

This study employs four categories of models to evaluate the optimal hedge ratio 

for gasoline returns on spot and futures, and on spot and ETFs. As a basic benchmark 

system, the Vector Error Correction (VEC) model estimates the static hedge ratio based 

on the multivariate normal distribution, which does not take into account dynamic 

changes in the hedge ratio. In order to explain dynamic changes in the hedge ratio, first, 

a dynamic conditional correlation multivariate GARCH (DCC MGARCH) model is used 

to estimate the conditional hedge ratio in the market. However, the DCC MGARCH 

model also assumes multivariate normality. Therefore, static and dynamic CGARCH 

models are also used to estimate constant and dynamic hedge ratios based on 

multivariate non-normal distributions. As the dynamic copula approach gives more 

flexibility to modeling time-varying dependence based on multivariate non-normal 

distributions, the symmetric and asymmetric joint time-varying relationships of spot and 

futures returns are analyzed. The analysis framework is also applied to both spot and 

ETF hedging cases.  

 Based on structural breaks and causal relationship changes, the data was divided 

into crisis and post-crisis sub-sample periods. In the post-crisis period, the CGARCH 

dynamic hedging model exhibited the best hedging performance in comparison to the 

other models. However, during the crisis period, the VEC or static copula models 

provided the best hedge ratio for risk reduction in comparison to the other alternative 

models.  
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 From this research, we can conclude that in analyzing any given data period it is 

very important to select the correct model to estimate the hedge ratio. Although the 

dynamic copula approach may have limited power to examine extreme data periods, like 

that experienced during the 2008 financial crisis, in more stable and normal data periods, 

the risk exposure of a portfolio may be effectively managed by a dynamic copula model 

with precise specifications for the joint distribution of assets. In addition, considering the 

increased interactions among the spot, futures and matching commodity ETF markets, 

the use of an appropriate hedge model to create a diverse hedged portfolio may have 

crucial implications for risk management.  
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CHAPTER IV 

CAUSALITY ANALYSIS ON STOCK PRICES AND STOCK MARKET 

PARTICIPANTS IN CASE OF THE KOREAN STOCK MARKET 

 

Introduction and Background 

 

Causal relationships can be used to investigate the information flows and 

directions of control in the market. In this study, I used daily Korean stock market data 

to investigate the contemporaneous causal relationships between the stock price 

movement and the activities of stock market participants based on Direct Acyclic Graphs 

(DAGs). After the financial turmoil experienced by East Asian countries circa 1997, the 

impact of foreign investors in the stock markets of emerging market economies, 

including the Korean stock market, has been disputed. Choe, Kho, and Stulz (1999) 

examined the relationship between foreign investor’s trading and stock returns for the 

Korean stock market around 1997. They found a causal relationship between stock 

return and the foreign investor trading during the period before the crisis, but did not 

find any evidence of a linkage between foreign investor trading and stock price 

movements after the crisis period. In fact, most of the literature concerning the Korean 

stock market has focused on the causal relationship between the trading volume of 

foreign investor and returns, or foreign investor trading volume and the volatility of the 

stock price with data of the 1997 Asian financial crisis (Silvapulle and Choi 1999; Pyun, 

Lee, and Nam 2000; J. Kim, Kartsaklas, and Karanasos 2005).  
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However, a limitation of this causal analysis occurred when a legal restriction 

was placed on foreign investor trading in the Korean stock market, through which the 

Korean stock exchange placed a ceiling
8
 on foreign ownership of individual companies. 

Through the crisis recovery program of the International Monetary Fund (IMF), this 

ceiling on foreign ownership in the Korean stock market was lifted completely in May 

1998
9
 to bring about the full effect of financial liberalizations. In this research, I 

conducted a causal analysis of the relationship between stock market between stock 

price movement and investors’ trading activities using the Korean stock market from 

2005 to 2010, which were expected to reflect the full effect of financial liberalization 

and also include an important historical event, the global financial crisis in 2008. In 

addition, I used the trading data of not only foreign investors, but also domestic 

institutional investors and domestic individual investors. For this study, daily trading 

data was utilized and sorted according to these three types of investors. Therefore, this 

study enables a more comprehensive analysis of the dynamics among different market 

players’ activities in the Korean stock market. Furthermore, the data from two Korean 

stock exchange markets were utilized in this analysis and compared with the causality 

results. The Korean Stock Exchange (KSE), a market that corresponds to the New York 

Stock Exchange (NYSE), and the Korea Securities Dealers Automated Quotation 

                                                 
8
 The ownership limit for each individual foreign investor was 5% of a affirm shares until May 2, 1997, 

when it was increased to 6%. It was then increased to 7% on November 3, 1997, to 50% on December 11, 

1997, and to 100% on May 25, 1998. In addition, the aggregate ownership, representing foreign investor 

as a group, limit on foreign investors increased to 23% on May 2, 1997, to 26% on November 3, 1997, to 

50% on December 11, 1997, to 55% on December 30, 1997, and finally to 100% on May 25, 1998. 
9
 After the abolishment of the ceiling restriction for foreign investment, the ratio of foreign investment to 

total market value increased from 18.43% in January 1999 to 40.10% in January 2004.  
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(KOSDAQ) Exchange, a counterpart of the NASDAQ exchange, were employed in this 

framework. 

The KSE, which was established in 1956, is a well-known stock exchange 

equipped with most of the hardware and software features common to advanced stock 

markets. Most of the conventional and large Korean firms are traded on the KSE. The 

KOSDAQ exchange, a Korean version of the NASDAQ stock market, was formally 

established in 1996 by gathering less structured and relatively dormant over-the-counter 

(OTC) stock together to form a more lively market. Although the KOSDAQ exchange 

only began drawing investor attention gradually after its formal establishment, it grew 

rapidly with the recovery from the economic crisis of 2000. KOSDAQ firms are 

generally much smaller and less well-known to the public than those traded on the KSE. 

In addition, many regulations are looser for KOSDAQ firms than for KSE firms. Thus, 

more lenient oversight or regulation of the KOSDAQ exchange may lead investors in the 

KOSDAQ market to pursue greater earning that carry higher risk in comparison to KSE 

market. Therefore, a causality comparison by investor types for the KSE and KOSDAQ 

markets may explain the trading pattern for each type of investor in these two markets 

and also provide implications concerning investment strategies in each market.  

In addition, most previous literatures on causal analysis mainly focused on 

investigating the lagging causality between foreign investor trading and stock price using 

Granger causality test. However, with the development of information carriers and 

transaction technology, stock price is more and more sensitive to the information release 

on market player, including the amount of trading volume, the relative ratio of purchase 



 78 

and sales, trading pattern change, and so on, which can cause stock price fluctuation 

correspondingly on the date of issue. Additionally, stock price of one country fluctuated 

severely with stock market of other countries in the same time for the promotion of 

global market integration. The contemporaneous relationship between stock price and 

investor trading pattern has become more important in case of the Korean stock market, 

but fewer researches have worked on it before. Therefore, after the 2008 global financial 

crisis, researches on change in causal relationship between investor trading and stock 

price would further an understanding of the Korean stock market and would help to 

predict stock price movement and one of its driving factors in the market.  

This study is organized as follows. After the introduction, the second section 

reviews previous studies on causal analysis of stock markets, and the third section details 

the Korean stock market data used in this study and contemporaneous causality analysis 

methods for the model utilized, the Direct Acyclic Graph (DAG) with Vector 

Autoregressive Model (VAR) innovations series. The fourth section describes the 

empirical results of the DAG and discusses the manner in which the contemporaneous 

causalities of the KSE and KOSDAQ markets change around the time of 2008 financial 

crisis. In the last section, I present my conclusion. 

 

Literature Review 

  

There are several explanations for the existence of a causal relationship between 

stock prices, volatility and trading activities. Karpoff (1987) suggested four reasons why 
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the relationship between stock price and trade volume data is important: it provides 

insight into the structure of a financial market, it is important for event studies that use a 

combination of price and volume data from which to draw inferences, it is critical to the 

debate over empirical distribution of speculative prices and it has significant 

implications for future research studies. There are several measures of stock price, 

volatility and trading activities. The trading activities of investors are mainly measured 

in two ways; the daily net purchase (Dornbusch and Park 1995) or the total transaction 

volume (Brooks 1998; Hiemstra and Jones 1994).  

Especially, first, concerning the relationship between stock prices and net 

purchases by foreign investors, Dornbusch and Park (1995) referred to positive feedback 

trading in which investor buy when prices increase and sell they fall. This model has 

also shown that investors who buy when stock prices increase and sell when they 

decrease can have a destabilizing influence on the stock market. In some models, 

positive feedback trading leads to both bubbles, where prices depart from fundamentals, 

and crashes when the bubbles burst. Dornbusch and Park (1995) and Choe, Kho, and 

Stulz (1999) investigated whether foreign investors engaged in positive feedback trading 

in emerging country stock markets. In this perspective, researchers have focused on the 

causal relationship between the lagged information of stock prices and investor trading 

activities. Second, a number of studies have also examined the relationship between 

stock returns and total transaction volume. Bohn and Tesar (1996) and Clark and Berko 

(1997) demonstrated a positive relationship between equity flow from trading and stock 

returns using monthly data. Froot, O’Connell, and Seasholes (2001) examined the 
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relationship between equity flows and stock index returns using trade data from the 

institutions and showed a positive feedback trading effect. In the case of the Korean 

stock market, Silvapulle and Choi (1999) examined the dynamic relationship between 

daily aggregate Korean stock returns and trading volume. After controlling for volatility 

persistence in both series and filtering for linear dependence, they found evidence of 

non-linear bidirectional causality between stock returns and volume series. Choe, Kho, 

and Stulz (1999) investigated the causal relationship between net purchase of foreign 

investors and stock returns using with 1996-1997 Korean stock market data and dividing 

the data into two periods: before the Korean financial crisis and during the crisis.  

In examining the relationship between volatility and trading volume, Karpoff 

(1987) proposed a model which links trading volume and volatility and predicted a 

positive but asymmetric relationship between trading volume and the absolute value of 

returns. Concerning volatility, four different measures have been used in previous 

studies, including the difference between the daily or weekly high and low prices 

(Alizadeh, Brandt, and Diebold 2002; Gallant, Hsu, and Tauchen 1999), the absolute 

value of the return series (Saatcioglu and Starks 1998), the squared return series (Brooks 

1998) and the conditional variance from a given type of ARCH model (Tse 1998). Some 

researchers have studied this relationship based on information economics approach, 

analyzing the impact of information arrival for trading on price changes and price 

volatility. Some models suggest that trading volume and variance of price changes move 

together (Karpoff 1987), while another one suggests that there is no relationship between 

stock price changes and trading volume (Brailsford 2009). Two recent studies have 
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examined the volatility-volume relationship in the Korean stock market. Pyun, Lee, and 

Nam (2000) examined the relationship between information flows and return volatility 

for individual companies actively traded in the Korean stock exchange, whereas Kim, 

Kartsaklas, and Karanasos (2005) investigated the causal relationship between volatility 

and trade volumes for two market players, such as domestic investors and foreign 

investors.  

Most of the literature on causality analysis of the stock market have centered on 

the causal relationship between stock returns and trading volume, or between stock 

volatility and trading volume based on Granger causality, which is the most widely used 

approach in economics for identifying dynamic causality (Engle and Granger 1987). In 

addition, most studies of the Korean stock market have focused on the trading data of 

foreign investors in the KSE market. Since Granger causality is based on the lag 

relationship inherent in time-series data, it has little to say about contemporaneous 

causation.  

In cases of high frequency financial data, contemporaneous causality explains the 

pattern of information flow between market participants more effectively. Given the 

recent developments in information technology (IT), market information now spreads 

rapidly to all market participants and information asymmetries between domestic and 

foreign investors has greatly been reduced compared to a decade ago. Also, the amount 

of intra-day trading has increased with IT development of financial market. Therefore, 

an analysis of the causal relationship in contemporaneous information transmission 

mechanism has meaningful implications for the analysis of recent stock market data. 
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However, to the best of my knowledge, the contemporaneous causality of stock price 

data and all stock market participants’ trading activities has not yet been investigated.  

Taking into account the recent market synchronization and the decline of 

information asymmetries between diverse market participants, this study investigates the 

contemporaneous causal relationship between stock returns, volatility and the trade 

activity data for three types of investors: institutional investors, individual investors, and 

foreign investors, simultaneously. First, the contemporaneous causal relationship 

between the KSE and KOSDAQ markets are examined and compared for the period 

covering 2005 to 2010. As there were no restriction on the trading activities of foreign 

investors during this period and the sample data includes all market participants’ activity 

data, this causality analysis fully reflects the impact of foreign investors on the Korean 

stock market and the multiple dynamics occurring among the three types of investors. 

Based on the structural break during the 2008 financial crisis, the changes in these causal 

relationships are also studied. Second, considering the interactions and effects of 

multiple players’ activities, this study identifies the types of investor whose activities can 

be considered a root cause or a sink in contemporaneous information flow in the two 

markets and examines the manner in which this finding changes from pre- to post-break 

periods. This analysis could give implication on diverse contemporaneous interaction 

among the market participants, which broaden the previous research on focusing on 

foreign investor’s causal impact to stock price movement in case of the Korean stock 

market.  
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Data and Methodology  

  

The data set used in this study comprises 1494 daily stock data items from the 

KSE and KOSDAQ markets, spanning the period from January 3, 2005 to December 29, 

2010. In the case of the KSE market, trading activities for three types of investors and 

the Korean Composite Stock Price Index (KOSPI
10

) were used. In the case of the 

KOSDAQ market, trading activities for three types of investors and the composite index 

of the KOSDAQ
11

 were analyzed. The three types of investors were domestic 

institutional investors (INS), domestic individual investors (IND), and foreign investors 

(FOR)
12

. Stock price returns (RET) data was calculated by taking the log difference of 

the closing price of indices. Stock price volatility (VOL) was derived by taking the 

difference between the daily high and low prices for each market. Trade activity data 

included daily net purchase (NP) and daily total trade volume (TV) for each type of 

investor. All data were supported from the Korean Exchange (KRX)
13

. Figure A-15 

shows the daily stock price movements of KOSPI and KOSDAQ indices from 2005 to 

                                                 
10

 The KOSPI is a comprehensive measure of the general market trend in Korean, and is measured as a 

price-weighted index based on the aggregate market value using the base date January 4, 1980 with the 

base index of 100. A total of 902 stocks of 704 companies were listed on the Korean Stock Exchange 

(KSE) with the market capitalization reaching 1888 trillion Korean won by year end of 2000 (Jeon and 

Jang 2004). 
11

 The KOSDAQ index is a capitalization-weighted index that measures the performance of the KOSDAQ 

market. The index was developed with a base value of 100 as of July 1, 1996. The base value changed to 

1000 as of January 26, 2004.  
12

 Foreign investors in Korea must register with the Financial Supervisory Board (FSB) and obtain an ID 

number before they can start trading stock. 
13

 Korea Exchange (KRX) is the sole securities exchange operator in South Korea. The Korea Exchange 

was created through the integration of Korea Stock Exchange (KSE), Korea Futures Exchange and 

KOSDAQ Stock Market in 2007. As of 31 December 2007, Korea Exchange had 1,757 listed companies 

with a combined market capitalization of $1.1 trillion. The exchange has normal trading sessions from 

09:00 am to 03:00 pm on all days of the week except Saturdays, Sundays and holidays declared by the 

Exchange in advance 
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2010. Both stock indices experienced a price drop around the time of the 2008 financial 

crisis.  

 The Korean market is classified as one of the emerging markets as it has 

experienced significant economic growth and development in recent decades. Emerging 

market countries often present various barriers that hinder international portfolio 

investment. And, even though the foreign ownership of domestic firms may not be a 

complete measure of stock market openness, the lifting of a foreign investment ceiling 

enables the liberalization of market conditions to enhance participation by foreign 

investors. Historically, the Korea stock market strictly limited foreign investment at the 

10% level, and this ceiling was increased very carefully in a step-by-step manner, as 

shown in Table B-20. Financial reforms implemented by the International Monetary 

Funds (IMF) played a large role in Korean financial liberalization after the Korean 

financial crisis in 1997, and the Korean stock market was completely opened up to 

foreign investment, without any ownership ceiling, in May 1998, eight months after the 

financial crisis. The program of reforms implemented by the Korean government, under 

IMF supervision, has succeeded in restoring market confidence. In addition, the IMF 

aided the Korean government in revising existing laws and regulations to further induce 

capital inflow. Table B-21 details the proportion of the daily trading volume attributable 

to each of the three types of players in the of the KSE market from 2001 to 2010. With 

respect to the trading activities of foreign investors, the average proportion increased 

gradually from 4.86% in 1995, to 7.47% in 1998, to 10.89% in 2001, to 15.68% in 2003, 

to 21.16% in 2005, to 25.52% in 2008, and to 19.47% in 2010 (J. Kim, Kartsaklas, and 
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Karanasos 2005). The sample data collection period for this study was from 2005 to 

2010, a time period that covered the full effect of stock market liberalization on foreign 

investors.  

In the current research, the stationarity of each series was investigated first. In 

Table B-22, the results of the Augmented Dickey-Fuller test are exhibited. There is no 

ground for suspicion of a unit root with respect to the eight data series of the two 

markets. In general, I reject the null hypothesis that each series contains a unit root. 

Following previous research using the time series data in the contemporaneous causal 

study (Bryant, Bessler, and Haigh 2006; Kim, Leatham, and Bessler 2007), I filtered the 

time series for the two markets through a vector autoregressive (VAR) model. Swanson 

and Granger (1997) introduce the use of graphical methods to contemporaneous causal 

ordering of VAR models. In addition, Pearl (2000) and Spirtes, Glymour, and Scheines 

(2000) developed Direct Acyclic Graphs (DAGs) utilizing conditional probabilities and 

graph theory to identify contemporaneous causality. Contemporaneous causality analysis 

is conducted over the innovation arising from VAR. In the KSE and KOSDAQ markets, 

a VAR was estimated that includes the eight time series data items; RET (stock price 

returns), VOL (stock price volatility), INS-NP (net purchase of institutional investors), 

INS-TV (total trade volume of institutional investors), IND-NP (net purchase of 

individual investor), IND-TV (total trade volume of individual investors), FOR-NP (net 

purchase of foreign investors), and FOR-TV (total trade volume of foreign investors). 

An optimal lag length for VAR was selected using the Schwarz (1978) information 

criterion.  
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 DAGs are diagrams that use arrows and variables to represent the 

contemporaneous causal flow among or between a set of variables based on observed 

and partial correlation (Pearl 2000). Two popular algorithms were utilized to search for 

patterns in the DAGs. The first candidate was the PC algorithm (Pearl 2000) which 

assesses particular independence and conditional interdependence using the null 

hypothesis test. The second candidate was the Greedy Equivalence Search (GES), which 

is a score-based search algorithm. Dash and Druzdzel (1999) provided a constraint-based 

search that is relatively rapid but has two well-known weaknesses, one of which arises 

from the treatment of latent variables. The constraint-based search tends to portray 

causal relationship using a bi-directional arrow when a latent variable exists. The other 

weakness is an instability problem concerning the sample size.  

The GES algorithm detects the causal pattern using the following systematic 

search algorithm. Starting with an undirected DAG, a two-step algorithm is used. In the 

first step, the Forward Search step calculates the goodness of fit among all equivalence 

classes with a single additional edge (acyclic) and selects the class having the highest 

score. This procedure is then repeated until no further improvements can be made to the 

score. In the second step, the Backward Equivalence Search utilizes with the results of 

the first step, and, then, it repeatedly searches among equivalent classes with a single 

edge less and selects the graph with the highest Schwarz Bayesian Score until no further 

improvements can be made. Thus, the best fit model is chosen from among the structural 

equation models using the innovations of VAR. Tetrad IV software was used to generate 

the GES algorithm in this study. However, in this GES algorithm, it could not 
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accommodate latent variables, which certainly exist given the limited observed variables 

employed in this study.  

 Since causalities may respond to exogenous shocks or change through time and 

the data collection for this study included the 2008 financial crisis, the possible structural 

change resulting from this economic crisis may change the contemporaneous causality. 

A traditional approach would be to pick an arbitrary sample breakpoint, often the 

midpoint of the sample, and use a Chow test for structural change. This could be further 

refined by associating breakpoints with major events relevant to the data series. However, 

either of these approaches suffers from the arbitrary nature of the selected breakpoints. 

In this research, the Quandt-Likelihood Ratio (QLR) test, which is based on Andrew’s 

approach to the unknown structural break test (1993), is used for detecting structural 

change of unknown timing. The QLR test consists of calculating Chow breakpoint tests 

at every observation, while ensuring that subsample points are not too close the end-

points of the sample. The QLR test was applied to the pooled data in this study with 20-

percent trimming. The probabilities for these statistics were calculated using Hansen's 

(1997) method. The critical value of the QLR statistic at the 90 percent significance level 

was 3.26  (Stock 2007), which indicates that the null hypothesis of no structural change 

is rejected. The maximum statistic of 3.32 was observed on November 11, 2007, which 

indicates the breakpoint location.  

This structural break was likely caused by a combination of domestic and 

international economic factors. As the Korean economy experienced a continuous price 

hike in domestic real estate market from 2000 to 2006, concerns regarding economic 
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bubble gradually increased and affected the financial market beginning in the fourth 

quarter of 2007. In addition, more bad news related to the sub-prime mortgage problem 

in the US, also affected the Korean stock market. In sequence, New Century Financial, a 

big mortgage lender, filed for the bankruptcy on April 2007, two hedge funds within 

Bear Stearns also filed for bankruptcy on July 2007, and several big financial companies 

including Morgan Stanley, Merrill Lynch, and Bear Stearns began layoffs after 

announcing third quarter declines in business performance. The KSE market reached a 

maximum on October 31, 2007, following a period that coincided with some of the 

biggest shocks form the US economic crisis.  

Based on these result, the data is divided into pre-break and post-break periods. I 

conducted the Box-M test to validate the structural change. If there is a structural change, 

the two covariance matrices based on the estimated VAR in the pre-break and post-break 

periods will differ significantly from each other. I employed the Box-M test (Box 1949) 

to measure equality of the two covariance matrices. I found that the statistic for the Box-

M test (690.25), in case of KSE market, exceeds the critical value (
2(36) 58.62  ), and 

does the statistic for the KOSDAQ market (489.74) at 1% significance level. Hence, the 

two covariance matrices of the KSE for the pre- and post-break periods differ from each 

other, as do the two covariance matrices of the KOSDAQ market indicating the 

structural change.  

 

 

 



 89 

Empirical Results and Discussion  

 

 Figure A-16 shows the four DAGs, generated using the TETRAD IV GES 

algorithm, representing the direction of contemporaneous causal flows among variables 

in the pre- and post-break periods in both the KSE and KOSDAQ markets. Comparison 

of the two DAGs in Figure A-16 (a) suggests that causalities change after a financial 

crisis. A striking finding is that more contemporaneous causal relationships appear to be 

present in the post-break periods, which implies that information flow is faster and/or 

more effective within the KSE market during post-break in comparison to the pre-break 

period. In the case of the KOSDAQ market, the most evident finding, shown in Figure 

A-16 (b), is that the simple and obvious unidirectional contemporaneous causal 

relationship appears to be present in the post-break, which is the opposite result with the 

KSE market case. This can be interpreted as the dominance of contemporaneous 

information flow is clearly constructed by one player in this period. This is highly 

related with another finding that contemporaneous causal relations between domestic 

investor’s activities and foreign investor’s activities are reversed from pre- to post-break 

periods. This implies an important change in information flow in the KOSDAQ market, 

whereas the KSE market maintained a relatively constant information flow among 

player’s activities. 

Focusing on the impact of foreign investors on stock price movement, the causal 

relationships in each of the four cases is summarized in Table B-23. Especially, the net 

purchase of foreign investor can be explained as the capital inflow from outside of 
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market. In the KSE market, it does not appear that the activities of foreign investors 

impacted stock returns or volatility movements, directly or indirectly, in pre-break 

period. However, in the post-break period, the activities of foreign investors directly 

affected stock returns and indirectly impacted volatility in the KSE market. In the 

KOSDAQ market, findings similar to those of the KSE market were observed in the 

causal relationship from foreign investor’s activities to stock price movement. This 

implies that the impact of foreign investors on stock price returns and volatility became 

more evident in the post- than in the pre-break periods both for the KSE and KOSDAQ 

markets. However, in order to explain whether the foreign investors play a more 

dominant role in contemporaneous information transmission especially in the post-break 

periods, the dynamic interrelation among the three types of investors has to be examined.  

For this, the contemporaneous causalities analysis was the identification of the 

type of investor whose activities represented the information sink or information root 

cause for each period. As the interaction and interdependency among the three types of 

players’ activities increased and information asymmetry among the player was reduced 

due to IT development in the stock market, the role of information flow also changed 

depending on the market type and sample period. Table B-24 exhibits the root cause and 

sink of information for each market and each sample period.  

First, in the KSE market, the trading volume for individual investors was a root 

cause in terms of information discovery and the net purchases of foreign investors was a 

sink in the pre-break period. In the post-break period, the information root cause was the 

trading volume of institutional investors and the information sink was the activities of 
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foreign investors. From these results of Tables B-23 and B-24, it appears that, even 

though the impact of foreign investor on the stock price movements became more 

evident in the post- than the pre-break period, the role of foreign investors is still 

relatively less important both before and after the crisis periods in the KSE market. 

Contrarily, it appears that the dominant role of the information flow mechanism in the 

KSE market changed the individual investors in the before the crisis period to the 

institutional investors in the after the crisis period. This can be explained by the typical 

behavioral pattern of individual investors, in which they became more careful in 

investment decision and were easy to follow other trustful market player, the 

institutional investors in the KSE market, as they investors experienced the sudden drops 

and high volatility of stock price after the crisis.  

In the KOSDAQ market, the most interesting results were observed. In the pre-

break period, the trading volume of institutional investors was a root cause and the 

trading volume of foreign investors was an information sink. However, in the post-break 

period, the activities of foreign investors were root causes in new influence mechanism 

and the net purchases of individual investors was an information sink. Compared to the 

KSE market, the impact of foreign investors in the post-break period was much stronger 

than other investors in the post-break period. As in the NASDAQ market in the US, 

KOSDAQ firms are generally similar to venture companies.  

In addition, government regulations are less strict in the KOSDAQ market than 

the KSE market, and this looser oversight or regulation of the KOSDAQ exchange may 

induce KOSDAQ investors to pursue highly returns with higher risk than KSE investor. 
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Therefore, the individual investors in the KOSAQ market centered on the short term 

investment, while the individual investors in the KSE market tried to invest in the long 

term perspective. In the post-crisis period, it was easy for the individual investor in the 

KOSDAQ market to invest careful and to follow the other more trustful investor’s 

activities. After crisis, individual investors were more dependent on the foreign investors 

in the KOSDAQ market, while they followed the institutional investors in the KSE 

market. The results of this DAG result provide a good explanation of the market 

characteristics of the KOSDAQ.  

 

Summary and Concluding Remarks  

 

 In this study, contemporaneous causal relationships among stock returns, 

volatility and three types of investors’ activities in the Korean stock markets are 

investigated using Directed Acyclical Graph (DAG). Because of the dispute regarding 

the impact of foreign investors on the Asian stock markets, this study focused the causal 

relationships among foreign investor’s activities, stock returns and volatility movement. 

In contrast to a previous analysis of the 1997 Asian financial crisis, I used 2005-2010 

stock market data of foreign investor’s activities, which reflect the financial market 

liberalization with the lifting of restrictions to foreign investment in Korean firms listed 

on the stock markets. In addition, this analysis was conducted over the pre- and post-

break periods of two Korean stock markets, KSE (a Korean version of the NYSE) and 
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KOSDAQ (a Korean version of the NASDAQ), and reflected the structural change 

resulting from the 2008 global financial crisis.  

This empirical approach to an analysis of the Korean stock markets investigates 

the causal relationships between market participants’ activities, and stock price 

movement. Results of the current research suggest the following: first, based on the 

unknown structural break test of Andrews (1993) and knowledge of historical events 

occurring in the Korean stock market, a significant structural change in the Korean stock 

markets was detected in November 2007 that corresponds to the beginning of the decline 

in prices on the Korean stock markets and the sequential news regarding the financial 

crisis resulting from subprime mortgage problems in the US. This structural change is 

supported by the results of the Box-M test on covariance matrices between the pre- and 

post-break periods.  

 Second, I found that, in both the KSE and KOSDAQ markets, the 

contemporaneous causal influence of foreign investor’s activities to stock return and 

volatility appears to more evident in the post-break period rather than the pre-break 

period. The strong contemporaneous causality of foreign investor’s activity after the 

structural break implies that new information or shock emanating from foreign investor 

is more quickly and effectively transmitted thereby affecting stock price movement.  

Third, while individual investor’s activities in the pre-break period and 

institutional investor’s activities in the post-break periods are a root cause of information 

flow in the KSE market, the information root cause in the KOSDAG market changes 

from institutional investor’s activities in the pre-breaks period to foreign investor’s 
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activities in the post-break period. After the financial crisis, these causal effects of 

foreign investors were exhibits more intensively in the KOSDAQ market than in the 

KSE market. One might speculate that, when economic shocks or crises occur, domestic 

investors maintain their usual investment pattern in more stable market like the KSE 

market, but can be easily induced to investigate and follow foreign investor’s patterns in 

risky market like the KOSDAQ. 

 Clearly, even though the financial shocks occurring around 2008 mainly 

originated from outside of the Korean market, they influenced these stock market 

participant’s activities. The patterns of influence also differed depending on the market’s 

characteristics. Through contemporaneous causal analyses, an improved understanding 

of the causal linkages among the different market players in the Korean stock market 

provides rich implication for market participants. While it remains a challenge to 

discover causal relationships among variables based on observational data, the methods 

available today, such as DAG, offer us greater opportunities to increase our knowledge 

on this issue.  
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CHAPTER V 

CONCLUSION 

 

The goal of this dissertation was to explore and increase our understanding of the 

recent oil market changes as a result of the utilization of diverse financial tools as 

elaborate predictors of oil prices and also as enhanced risk management tools. First, two 

essays examine an oil price forecasting model and several gasoline price hedging models 

from this perspective. The third essay studies the contemporaneous causal relationships 

among stock price movements and market participants’ activities in the Korean stock 

markets.  

In Chapter II, I provide the motivation and develop a model for using the crack 

spread and ETF spread for accurate forecasting purposes, especially in view of recent 

trends in the highly volatile prices of oil and its products. Based on the Error Correction 

Model (ECM) and Multivariate Generalized Autoregressive Conditional 

Heteroskedasticity Model (MGARCH), I examined the causal relationships between 

crude oil and both crack spread and oil ETFs and the forecasting abilities of these two 

tools.  The results of this study reveal that crack spread futures and oil ETF spread are 

good predictors of oil price movement and, in a comparison of crack spread and ETFs, 

that ETFs are better predictors than crack spread. The change in causal relationship can 

be explained by the fact of the increasing need of the oil-related financial market for oil 

price hedging tools and investments. 

In Chapter III, I incorporated diverse optimal hedging models for unleaded 
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gasoline spot prices using gasoline futures with static-symmetric, time varying-

symmetric, static-asymmetric, and time varying-asymmetric dependencies for the 

purpose of risk minimization in portfolio. In addition, the alternative hedging 

performance of ETFs was compared using futures’ performance in the framework of 

four dependency cases. I conclude that in analyzing any given data period it is very 

important to select the correct model to estimate the hedge ratio. Although the dynamic 

copula approach may have limited power to examine atypical data period, the risk 

exposure of a portfolio may be effectively managed by the use of a dynamic copula 

model with precise specifications for the joint distribution of assets in more stable and 

typical data periods. In addition, considering the increasing interactions among the spot, 

futures and matching commodity ETF markets, the use of an appropriate hedge model to 

create a diverse hedged portfolio may have crucial implications for risk management.  

In Chapter IV, the final essay, I examined contemporaneous causal relationships 

in the Korean stock markets, focusing on the contemporaneous causal changes occurring 

at the time around the financial crisis in 2008. The causal influence of foreign investor’s 

activities on stock returns and volatility appears to more evident in the post-break period 

than in the pre-break periods for both the KSE and KOSDAQ markets. After the crisis, 

these causal effects of foreign investor exhibits more intensively in the KOSDAQ 

market than in the KSE. The results of this causal analysis will provide implications 

regarding the three types of investors’ investment strategies depending on the stage of 

the economic business cycle.   
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These essays build on our understanding of the diverse financial tools utilized in 

the oil and oil products market, such as crack spread, futures, and ETFs, in terms of 

investment and risk management, and offer suggestions regarding the multiple players’ 

contemporaneous causal dynamics in the stock market.  
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APPENDIX A 

FIGURES 

 

 
Figure A-1. Trade Volumes of Three Oil ETFs from 2009 to 2011 

 
Note: The abbreviations are UGA (United States Gasoline Fund), UHN (United States Heating 

Oil Fund), and SCO (ProShares UltraShort DJ-UBS Crude Oil Exchange-Traded Funds). Left y-

axis represents the trade volumes of UGA and UHN, while right y-axis represents the trade 

volume of SCO. 
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Figure A-2. Price Movements on Crude Oil and Crack Spread 

 
Note: The abbreviations are OPEC (Organization of the Petroleum Exporting Countries’ 

Reference Basket Price), WTI (West Texas Intermediate Price), CS_211 (2-1-1 version of Crack 

Spread) and CS_321 (3-2-1 version of Crack Spread). 
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Figure A-3. Squared Returns of OPEC Crude Oil and a 2-1-1 Crack Spread 
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Figure A-4. Unconditional Correlations and Estimated Conditional Correlations  
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Figure A-5. Log Prices and First Differences of Log Prices  
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Figure A-6. Impulse Response to One Standard Error in ECM Models  
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Figure A-7. Residuals for ECM and Standardized Residual for ECM-MGARCH  

Residual of Oil in ECM3 (Oil & CS) 
-.

1
-.

05

0

.0
5

.1

R
es

id
ua

ls

800 1000 1200 1400 1600

 

Standardized Residual of Oil in ECM-MGARCH 1 

-5
-2

.5

0
2.

5
5

S
ta

nd
ar

di
ze

d 
R

es
id

ua
l

800 1000 1200 1400 1600

 

Residual of CS in ECM3 (Oil & CS) 

-.
3

-.
15

0

.1
5

.3

R
es

id
ua

ls

800 1000 1200 1400 1600

 

Standardized Residual of CS in ECM-MGARCH 1 

-5
-2

.5

0
2.

5
5

S
ta

nd
ar

di
ze

d 
R

es
id

ua
l

800 1000 1200 1400 1600

 

Residual of Oil in ECM4 (Oil & ETF) 

-.
1

-.
05

0

.0
5

.1

R
es

id
ua

ls

800 1000 1200 1400 1600

 

Standardized Residual of Oil in ECM-MGARCH 2 

-5
-2

.5

0
2.

5
5

S
ta

nd
ar

di
ze

d 
R

es
id

ua
l

800 1000 1200 1400 1600

 

Residual of ETF in ECM4 (Oil & ETF) 

-.
1

-.
05

0

.0
5

.1

R
es

id
u

al
s

800 1000 1200 1400 1600

 

Standardized Residual of ETF in ECM-MGARCH 2 

-5
-2

.5

0
2

.5
5

S
ta

n
da

rd
iz

ed
 R

es
id

u
al

800 1000 1200 1400 1600

 



 111 

Figure A-8. Conditional Variances of Oil, Crack Spread, and ETF Spread  

 Estimated conditional variance of oil  

(ECM MGARCH 1) 
0

.0
0

0
5

.0
0

1
.0

0
1
5

.0
0

2

800 1000 1200 1400 1600

Variance prediction (r_oil,r_oil) Variance in ECM

 

Estimated conditional variance of CS  

(ECM MGARCH 1) 

0

.0
0

5
.0

1
.0

1
5

.0
2

800 1000 1200 1400 1600

Variance in ECM-MGARCH Variance in ECM

 

Estimated conditional variance of oil  

(ECM MGARCH 2) 

0

.0
0

0
5

.0
0

1
.0

0
1
5

.0
0

2

800 1000 1200 1400 1600

Variance in ECM-MGARCH Variance in ECM

 

Estimated conditional variance of ETF  

(ECM MGARCH 2) 

0

.0
0

0
5

.0
0

1
.0

0
1
5

.0
0

2

800 1000 1200 1400 1600

Variance in ECM-MGARCH Variance in ECM

 



 112 

Figure A-9. Price Level Changes of Gasoline Spot, Futures and ETF Prices 

Note: Left y-axis represents the log value of Spot and Futures of unleaded gasoline prices, while 

right y-axis represents the log value of UGA (Gasoline ETF) price. 

. 
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Figure A-10. Estimated Conditional Correlations in DCC MGARCH 
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Figure A-11. Estimated Conditional Variance in DCC MGARCH 
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Figure A-12. Hedge Ratios in Case of Futures Hedging 
 

Note: Static hedge ratio is derived only from the Vector Error Correction (VEC) model. Other 

models except the VEC model, Dynamic Conditional Correlation (DCC) MGARCH, time-

varying Normal Copula (tv Normal), time-varying Gumbel Copula (tv Gumbel), and time-

varying SJC Copula (tv SJC), generate the time-varying hedge ratios. 
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Figure A-13. Hedge Ratios in Case of ETF Hedging 
 

Note: Static hedge ratio is derived only from the Vector Error Correction (VEC) model. Other 

models except the VEC model, Dynamic Conditional Correlation (DCC) MGARCH, time-

varying Normal Copula (tv Normal), time-varying Gumbel Copula (tv Gumbel), and time-

varying SJC Copula (tv SJC), generate the time-varying hedge ratios. 
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Figure A-14. Estimated Time-Varying Dependences of Lower and Upper Tails by 

Dynamic SJC Copula Function in Case of Futures Hedging 
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Figure A-15. KOSPI and KOSDAQ Indices from 2005 to 2010 

 
Note: The abbreviations are KOSPI (Korean Composite Stock Price Index) and KOSDAQ 

(Korea Securities Dealers Automated Quotation). Left y-axis represents the KOSPI, while right 

y-axis represents the composite index of the KOSDAQ market. 
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(a) KSE 

    market 
Pre-break period Post-break period 

  

   
(b)KOSDAQ 

    market 
Pre-break period Post-break period 

  

Figure A-16. Contemporaneous Causal Relationships in the Korean Stock Market 

 
Note: The abbreviations are RET (return rate), VOL (volatility), INS-NP (institutional investor’s 

net purchase), INS-TV (institutional investor’s trade volume), IND-NP (individual investor’s net 

purchase), IND-TV (individual investor’s trade volume), FOR-NP (foreign investor’s net 

purchase), and FOR-TV (foreign investor’s trade volume). The dotted line is not assigned a 

direction by the TETRAD IV.  
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APPENDIX B 

TABLES 

 

Table B-1. Descriptive Statistics 

Statistic 

log price first difference of log price (return) 

oil cs etf oil cs etf 

Mean 4.3077 2.5145 4.3974 .0004 .0001 .0003 

Median 4.2856 2.4348 4.3502 .0013 .0024 .0005 

St Dev .2892 .4820 .0976 .0178 .0862 .0119 

Skewness -.0163 .2501 .6531 -.3442 -.2550 -.7277 

Kurtosis 2.390 2.6487 1.9142 4.1110 9.8810 5.1606 

JB test 

(p value) 

10.3553 

(1.0e-003) 

10.3677 

(1.0e-003) 

80.0621 

(1.0e-003) 

47.40 

(1.0e-003) 

1321.128 

(1.0e-003) 

187.528 

(1.0e-003) 

 

Note: In the JB test, the p-value is the probability that the data conform to the Normal 

distribution. 
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Table B-2. Unit Root Test 

 
Variable (X) and 

their first difference (∆X) 
ADF KPSS 

log(crude oil) X          -1.757 2.64** 

 ∆X -25.233**  .103 

log(crack spread) X            -3.663* 4.80** 

 ∆X -28.374 ** .037 

log(ETF) X         -2.214 3.51** 

 ∆X -20.664 ** .049 

 

Note: The ADF test is based on lag (2) with trend on level data and lag (1) without trend on first 

difference data. The null hypothesis of the ADF tests is the non-stationarity of the series, while 

the null hypothesis of the KPSS test is the stationarity of the series. *, ** denotes the rejection of 

the null hypothesis at the 5% and 1% levels, respectively.  
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Table B-3. Johansen Cointegration Maximum Likelihood Test 

 

 maximum 

 rank 

Eigen  

value 

Trace  

statistic 

5% critical 

value 

crude oil and 

crack spread 

0  19.7725 15.41 

1 .0112 2.1320* 3.76 

2 .0014   

crude oil and 

ETF 

0  25.8011 15.41 

1 .0066 1.9651* 3.76 

2 .0041   

 

Note: The null hypothesis of the Johansen test is there is no less cointegration equation than 

maximum rank level.  The cointegrating vector of oil and crack spread is log(oil) – 1.073log(cs) 

-1.615 = 0, and the cointegrating vector of oil and ETF is log(oil)- 1.756(ETF) +3.225 = 0. 
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Table B-4. Wald Test-Granger Causality 

 

 Entire period  1
st
 period  2

nd
 period  3

rd
 period  

 (Whole sample)  (2005:10-2008:8)  (2008:8-2009:4)  (2009:5-2011:12)  

∆oil → ∆cs 4.4691*      6.8845**  5.5237*  2.5905  

∆cs → ∆oil .8674  1.7873  0.7612      8.6193**  

∆oil → ∆ETF       0.0303  

∆ETF → ∆oil           178.91**  

 

Note: Wald tests report the marginal probabilities associated with the Granger-causality test. *, 

** denotes the rejection of the null hypothesis at the 5% and 1% levels, respectively. The null 

hypothesis is that all coefficients on the lag of the endogenous variable are jointly zero.  
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Table B-5. Error Correction Models with Structural Break 

 

   ECM 

(oil & CS) 

 

  ECM 

(oil & ETF) 

 

 ECM1 model 

(Whole sample) 

 ECM2 

(2005:10-2009:4) 

 

ECM3 

(2009:5-2011:12) 

 ECM4 

(2009:5-2011:12) 

 

 ∆oilt ∆cst  ∆oilt ∆cst 
 

∆oilt ∆cst  ∆oilt ∆etft  

ECTt-1 -.0006 .0197**  -.0007 .0166** 
 

-.0141* .0759**  -.0233** .0044*  

∆oilt-1  .2455**  .2869*  .2401**  .3180* 
 

 .2569**  .2742   .0241 -.0038  

∆cst-1  .0043 -.0022  -.0031  .0138 
 

 .0219**  -.0220  - -  

∆etft-1 - -  - - 
 

- -   .7450** - .0113  

constant  .0003 9.9e-06   .0001 -3.4e-06 
 

 .0089  .0002   .0001  .0004  

 

Note: *, ** denotes the p-value of the 5% and 1% levels, respectively. The cointegrating vector 

of ECM 3 is log(oil)  -0.310log(cs) – 3.636 = 0, and ECM 4 is log(oil) – 1.745log(ETF) + 3.208 

= 0.  
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Table B-6. Estimation Results of Multivariate GARCH Models  
 

  
 

ECM-MGARCH 1 

(oil & CS) 

 ECM-MGARCH 2 

 (oil & ETF) 

 

  
 

 (2009:5-2011:12)   (2009:5-2011:12)  

  
 

∆oilt ∆cst  ∆oilt ∆etft  

DCC arch (1) 
 

.1800** .0815**  .0734** .0312**  

 garch(1) 
 

.5923** .8952**  .8743** .9624**  

 constant 
 

.0000* .0001*  9.1e-0.6* 8.6e-0.7  

 
1  

 

.0490   .0286*   

 
2  

 

.7083**   .9218**   

CCC arch (1) 
 

.1759** .0805**  .0624** .026**  

 garch(1) 
 

.5397** .8968**  .8915** .9618**  

 constant 
 

.0000* .0001*  7.1e-0.6* 9.1e-0.7  

 conditional 

correlation 

 

.1051**   .5990**   

 

Note: *, ** denotes the p-value of the 5% and 1% levels, respectively. 
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Table B-7. Forecast Error Statistics for Crude Oil Forecasting 

 

   by Crack spread by ETF by RWM 
 

ECM MAE  .008965 .007734 .009264 
 

 RMSE  .010914 .009943 .011206 
 

 DM  - .0000*  
 

       

ECM-

MGARCH 

MAE  .684738 .649659 .820236  

 RMSE  .836930 .846540 .992240 
 

 

Note: MAE and RMSE of the RWM model are derived by dividing the residual by the time 

invariant variance. DM reports the p-values of the Diebold and Mariano (1995) test, where the 

null hypothesis is that the related models provide equal forecast accuracy with oil:CS model. 

This H0 is rejected at 0.1% significance level. Forecasting error has to be evaluated only in the 

same row in the table.  
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Table B-8. Model Framework 

 Time invariant dependence Time-varying dependence 

Multivariate normal 

distribution  

VEC DCC MGARCH 

Multivariate  

non-normal distribution 

Static Copula GARCH Dynamic Copula GARCH 

 

Note: Static Copula GARCH include Gaussian, Clayton, Gumbel and SJC Copulas, and dynamic 

copula GARCH include their corresponding time-varying Copula models, such as time-varying 

Gaussian, time-varying Clayton, time-vary Gumbel, and time-varying SJC Copulas. However, as 

static Copula GARCH model also derive the time-varying hedge ratio, only VEC model is the 

static hedging model in this framework. 
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Table B-9. Summary Statistic and Correlation  

 

log price  first difference of log price 

(return) 

spot futures ETF  spot futures ETF 

Statistic        

Mean .8382 .7818 3.6507  .0096 .0133 .0000 

St Dev .2739 .3012 .2898  .5351 .5703 .0257 

Skewness -.7094 -.7642 -.4182    7.2094 9.3204 -.4300 

Kurtosis 3.5394 3.2996 2.6720  301.3519 272.6466 5.2243 

JB test 

(p value) 

92.1646 

(1.0e-003) 

97.0514 

(1.0e-003) 

32.2963 

(1.0e-003) 

 3.56e+006 

(1.0e-003) 

2.92e+006 

(1.0e-003) 

227.49 

(1.0e-003) 

Correlation    
 

   

spot  .8651 .8286   .5669 

(.5765) 

.5830 

(.5994) 

futures .9724  .8719  .1496 

(.6758) 

 .7314 

(.7789) 

ETF    .9645 .9791   .0587 

(.5950) 

.2089 

(.2754) 

 

 

Note: In the JB test, the p-value is the probability that the data conform to the Normal 

distribution. In correlation, lower triangle is the linear correlation and upper triangle is the 

Kendall’s Tau. The figures in parenthesis are the value in the periods from 2009 to 2011.  
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Table B-10. Unit Root Test 

 

 
Variable (X) and 

first difference (∆X) 
ADF KPSS 

log(spot price) X        -1.072 5.08** 

 ∆X -36.868**  .0105 

log(futures price) X         -1.271 4.9** 

 ∆X -21.977 ** .0184 

log(ETF price) X         -1.339 5.79** 

 ∆X -29.782 ** .0921 

 

Note: The ADF test is based on lag (1) with trend on level data and lag (0) without trend on first 

difference data. The null hypothesis of the ADF tests is the non-stationarity of the series, while 

the null hypothesis of the KPSS test is the stationarity of the series. *, ** denotes the rejection of 

the null hypothesis at the 5% and 1% levels, respectively. In order to perform the ADF and the 

KPSS procedures for the system of two equations, the lag selection was based on the Final 

Prediction Error, using Akaike, Schwarz and Hannan-Quinn information criteria. A lag structure 

is selected as a result of majority rule among four criteria. 
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Table B-11. EG ADF Test and Johansen ML Test for Cointegration  

 

 EG-ADF Test  Johansen Test 

 Test 

statistic 

1% critical 

value 

5% critical 

value 

 Trace Statistic 

 (if max rank=1) 

5% critical 

value 

spot and 

futures 

-4.913 -3.430 -2.860  2.0846* 3.76 

spot and 

ETF 

-4.913 -3.430 -2.860  2.3943* 3.76 

 

Note: The null hypothesis of the Engle and Granger (1987) Cointegration Test (EG-ADF test) is 

there is no cointegration equation. The null hypothesis of the Johansen test is there is no less 

cointegration equation than maximum rank level.  The cointegrating vector of spot and futures is 

log(spot) –0.8907log(futures) -0.1424 = 0, and the cointegrating vector of spot and ETF is 

log(spot)-0.9122(ETF) +2.4907 = 0.  
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Table B-12. Wald Test-Granger Causality 

 

 Entire period  1
st
 period  2

nd
 period 

 (Whole sample)  (2008:3-2009:4)  (2009:5-2011:12) 

∆spot→ ∆futures    4.192       1.296  1.253 

∆future → ∆spot 100.230**        30.338**  1.871 

∆spot → ∆ETF   12.415**      6.012*  1.531 

∆ETF → ∆spot 100.230**      4.083  1.340 

 

Note: Wald tests report the marginal probabilities associated with the Granger-causality test. * 

and ** denote the rejection of the null hypothesis at the 5% and 1% levels, respectively. The null 

hypothesis is that all coefficients on the lag of the endogenous variable are jointly zero, which 

means the no Granger casual relationship.  
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Table B-13. Estimation of VEC and DCC MGARCH Model in Futures Hedging 

 

  
 

1
st
 period 

(2008:3-2009:4) 

 2
nd

 period 

(2009:5-2011:12) 

 

 Parameters 
 

Spot 

(i=s) 

Futures 

(i=f) 

 Spot 

(i=s) 

Futures 

(i=f) 

 

VEM 
0i  

 

-.0011 

(.0027) 

-.0024 

(.0024) 

 .0009 

(.0009) 

.0008 

(.0008) 

 

 
1i  

 

-.0471 

(.0299) 

.0228 

(.0261) 

 -.0368 

(.0208) 

.0406* 

(.0177) 

 

DCC 
0i  

 

.0000 

(.0000) 

.0000 

(.0000) 

 .0001* 

(.0000) 

.0000** 

(.0000) 

 

 
1i

 

 

.1209** 

(.0248) 

.1025** 

(.0237) 

 .0700** 

(.0215) 

.0594** 

(.0125) 

 

 
2i

 

 

.8879** 

(.0196) 

.9092** 

(.0181) 

 .8109** 

(.0587) 

.9233** 

(.0167) 

 

 
1  

 

.2031** 

(.0457) 

  .0763** 

(.0292) 

  

 
2  

 

.5874** 

(.0832) 

  .8203** 

(.0310) 

  

 

Note: *, ** denotes the p-value of the 5% and 1% levels, respectively. Figures in parenthesis are 

the standard error. 
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Table B-14. Estimation of VEC and DCC MGARCH Model in ETF Hedging 

 

  
 

1
st
 period 

(2008:3-2009:4) 

 2
nd

 period 

(2009:5-2011:12) 

 

 Parameters 
 

Spot 

(i=s) 

ETF 

(i=etf) 

 Spot 

(i=s) 

ETF 

(i=etf) 

 

VEM 
0i  

 

-.0022 

(.0027) 

-.0021 

(.0021) 

 .0009 

(.0009) 

.0008 

(.0007) 

 

 
1i  

 

-.0233 

(.0027) 

.0248 

(.0022) 

 -.0227 

(.0174) 

.0235* 

(.0137) 

 

DCC 
0i  

 

.0000 

(.0000) 

.0000 

(.0000) 

 .0000** 

(.0000) 

.0000** 

(.0000) 

 

 
1i

 

 

.1201** 

(.0257) 

.0829** 

(.0194) 

 .0737** 

(.0202) 

.1100** 

(.0309) 

 

 
2i

 

 

.8868** 

(.0200) 

.9197** 

(.0176) 

 .8250** 

(.0483) 

.6906** 

(.0835) 

 

 
1  

 

.1403* 

(.0571) 

  .0699** 

(.0177) 

  

 
2  

 

.6490** 

(.2093) 

  .8168** 

(.0368) 

  

 

Note: *, ** denotes the p-value of the 5% and 1% levels, respectively. Figures in parenthesis are 

the standard error. 
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Table B-15. Comparison of Copula Functions in Case of the Futures Hedging 

 1
st
 period 

(2008:3-2009:4) 

 2
nd

 period 

(2009:5-2011:12) 

Copula 

 

LL AIC BIC  LL AIC BIC 

Gaussian 

 

129.674 -259.351 -259.358  259.807 -519.617 -519.624 

Clayton 

 

114.121 -228.245 -228.252  235.196 -470.395 -470.402 

Gumbel 

 

134.646 -269.295 -269.302  269.649 -539.301 -539.308 

SJC 

 

136.068 -272.137 -272.146  268.319 -536.639 -536.648 

Time-varying 

Gaussian 

 

136.069 -272.141 -272.148  272.186 -544.375 -544.382 

Time-varying 

Clayton 

 

118.009 -236.021 -236.028  254.183 -508.369 -508.376 

Time-varying 

Gumbel 

 

 

148.152 -296.307 -296.314  284.102 -568.207 -568.214 

Time-varying 

SJC 

 

144.672 -289.345 -289.354  285.107 -570.215 -570.224 

 

Note: LL means the log-likelihood values, AIC and BIC represent the Akaike information 

criterion and Bayes information criterion respectively. The underlined copula function shows the 

best fitness level in the each sub period.  
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Table B-16. Comparison of Copula Functions in Case of ETF Hedging 

 1
st
 period 

(2008:3-2009:4) 

 2
nd

 period 

(2009:5-2011:12) 

Copula 

 

LL AIC BIC  LL AIC BIC 

Gaussian 

 

154.679 -309.361 -309.368  303.815 -607.633 -607.640 

Clayton 

 

126.151 -252.305 -252.312  262.739 -525.481 -525.488 

Gumbel 

 

154.647 -309.297 -309.304  312.649 -625.301 -625.308 

SJC 

 

149.669 -299.339 -299.348  304.001 -608.003 -608.012 

Time-varying 

Gaussian 

 

160.266 -320.535 -320.542  314.753 -629.509 -629.516 

Time-varying 

Clayton 

 

132.074 -264.151 -264.158  271.792 -543.587 -543.594 

Time-varying 

Gumbel 

 

 

167.199 -334.401 -334.408  319.025 -638.053 -638.060 

Time-varying 

SJC 

 

163.052 -326.105 -326.114  311.653 -623.307 -623.316 

 

Note: LL means the log-likelihood values, AIC and BIC represent the Akaike information 

criterion and Bayes information criterion respectively. The underlined copula function shows the 

best fitness level in the each sub period.  
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Table B-17. Estimation of C-GARCH Model in the Futures Hedging 

 

  
 

1
st
 period 

(2008:3-2009:4) 
 2

nd
 period 

(2009:5-2011:12) 
 

 Parameters 
 

Spot 
(i=s) 

Futures 
(i=f) 

 Spot 
(i=s) 

Futures 
(i=f) 

 

Panel A:Estimates of marginal process 

 
0i  

 

.0026 
(.0008) 

.0032 
(.0009) 

 -.0004 
(.0008) 

.0006 
(.0009) 

 

 
1i  

 

-.0471 
(.0299) 

.0228 
(.0261) 

 -.0482** 
(.0162) 

.0196 
(.0141) 

 

 
0i  

 

.0000 
(.0000) 

.0000 
(.0000) 

 .0000* 
(.0000) 

.0000* 
(.0000) 

 

 
1i

 

 

.1240* 
(.0505) 

.1056* 
(.0475) 

 .0402** 
(.0205) 

.0144** 
(.0464) 

 

 
2i

 

 

.8746** 
(.0407) 

.8942** 
(.0407) 

 .8745** 
(.0235) 

.9760** 
(.1669) 

 

 df 
 

6.8119 
(3.030) 

5.5617 
(2.187) 

 6.0062 
(1.485) 

7.3435 
(1.485) 

 

Panel B: Estimates of time varying Gaussian dependence process 
 

1  
 

3.225** 
(.0180) 

  2.2224** 
(.5240) 

  

 
2  

 

-1.098 
(.0368) 

  -.4688 
(.8643) 

  

 
3  

 

.1512** 
(.0310) 

  .5963** 
(.1908) 

  

Panel C: Estimates of time varying Gumbel dependence process 

 
1  

 

2.048** 
(.4100) 

  2.7430** 
(.0276) 

  

 
2  

 

-5.002** 
(2.570) 

  -5.002** 
(1.2403) 

  

 
3  

 

-0.027 
(0.105) 

  -.3407 
(0.1146) 

  

Panel D: Estimates of time varying SJC dependence process 

 
1U  

 

3.676** 
(.4840) 

  .9146** 
(.0102) 

  

 
2U  

 

-1.157** 
(1.1130) 

  -.7132** 
(1.8234) 

  

 
3U  

 

-16.567* 
(1.8210) 

  -7.106* 
(1.0102) 

  

 
1L  

 

       1.5160* 
(2.144) 

         2.7062* 
(2.004) 

  

 
2L  

 

      -1.0751* 
(0.7602) 

        -1.138* 
(0.2562) 

  

 
3L  

 

-1.6141 
  (0.8935) 

  -9.2959 
  (0.3835) 

  

 

Note: *, ** denotes the p-value of the 5% and 1% levels, respectively. Figures in parenthesis are 

the standard error. 
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Table B-18. Estimation of Copula GARCH Model in the ETF Hedging 

 

  
 

1
st
 period 

(2008:3-2009:4) 

 2
nd

 period 

(2009:5-2011:12) 

 

 Parameters 
 

Spot 

(i=s) 

ETF 

(i=etf) 

 Spot 

(i=s) 

ETF 

(i=etf) 

 

Panel A: Estimates of marginal process 
 

0i  
 

.0033 
(.0018) 

.0029 
(.0018) 

 .0003 
(.0010) 

.0005 
(.0008) 

 

 
1i  

 

-.0233 
(.0027) 

.0248 
(.0022) 

 -.0227 
(.0174) 

.0235* 
(.0137) 

 

 
0i  

 

.0000 
(.0000) 

.0000 
(.0000) 

 .0001 
(.0000) 

.0001 
(.0310) 

 

 
1i

 

 

.1245* 
(.0512) 

.0882* 
(.0464) 

 .0407 
(.0244) 

.0714* 
(.0216) 

 

 
2i

 

 

.8741** 
(.0414) 

.9054** 
(.0378) 

 .8267** 
(.0916) 

.7586** 
(.1384) 

 

 df 
 

6.789 
(2.870) 

10.147 
(6.604) 

 6.0326 
(1.654) 

11.345 
(4.881) 

 

Panel B: Estimates of time varying Gaussian dependence process 

 c
  

.7039** 
(.0312) 

  4.661** 
(.0251) 

  

 
2  

 

1.8047 
(.0254) 

  -3.482 
(.0235) 

  

 
3  

 

.4589** 
(2.621) 

  .8243** 
(2.264) 

  

Panel C: Estimates of time varying Gumbel dependence process 

 
1  

 

1.8605** 
(.4100) 

  2.2146** 
(.5905) 

  

 
2  

 

-4.356** 
(2.570) 

  -3.4039** 
(3.1746) 

  

 
3  

 

.0156 
(0.105) 

  -.1992 
(0.2703) 

  

Panel D: Estimates of time varying SJC dependence process 
 

1U  
 

-.6353** 
(.5528) 

  .3.9200** 
(.2319) 

  

 
2U  

 

-4.241** 
(.0918) 

  -3.4212** 
(1.0162) 

  

 
3U  

 

2.9673* 
(2.924) 

  -9.5185* 
(1.0861) 

  

 
1L  

 

       3.2529* 
(1.285) 

         -1.2832* 
(1.687) 

  

 
2L  

 

      -1.9405* 
(0.027) 

        -3.2959* 
(0.0069) 

  

 
3L  

 

-11.949 
  (8.245) 

    1.2566 
  (6.8672) 

  

 

Note: *, ** denotes the p-value of the 5% and 1% levels, respectively. Figures in parenthesis are 

the standard error. 
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Table B-19. Comparison of Hedge Performance of Futures and ETF Hedging 

 

  
 

Portfolio Variance  Variance Reduction over 

the VEC model (%) 

 

 Model 
 

1
st
 period 2

nd
 period  1

st
 period 2

nd
 period  

Panel A: Futures Hedging 

 VEC 
 

0.939137 0.000470     

 DCC GARCH 
 

0.943552 0.000476  -0.004414 
(-0.4700) 

-0.000006 
(-1.2783) 

 

 Normal copula
  

0.939050 0.000474  0.000086 
(0.0092) 

-0.000004 
(0.7988) 

 

 Gumbel copula 
 

0.939137 0.000467  0.000000 
(0.0000) 

0.000003 
(0.5446) 

 

 SJC copula 
 

0.939202 0.000468  -0.000064 
(-0.0068) 

0.000002 
(0.3328) 

 

 Time-varying 
Normal copula 

 

0.943190 0.000505 
 

 -0.004053 
(-0.4316) 

-0.000035 
(-7.4613) 

 

 Time-varying 
Gumbel copula 

 

0.942906 0.000466  -0.003768 
(-0.4012) 

0.000003 
(0.7258) 

 

 Time-varying  
SJC copula 

 

0.942918 0.000468  -0.003780 
(-0.4025) 

0.000002 
(0.3669) 

 

 
average 

 
0.941137 0.000474 

    

 

Panel B: ETF Hedging 

 VEC 
 

0.938962 0.000451     

 DCC GARCH 
 

0.943804 0.000449  -0.004842 
(-0.5157) 

0.000002 
(0.4657) 

 

 Normal copula
  

0.938920 0.000436  0.000041 
(.0044) 

0.000015 
(3.3175) 

 

 Gumbel copula 
 

0.939027 
 

0.000455  0.000064 
(-0.0069) 

-0.000004 
(-0.7956) 

 

 SJC copula 
 

0.939084 0.000467  -0.000122 
(-0.0130) 

-0.000016 
(-3.6197) 

 

 Time-varying 
Normal copula 

 

0.943548 0.000432  -0.004586 
(-0.4884) 

0.000019 
(4.1538) 

 

 Time-varying 
Gumbel copula 

 

0.943052 0.000454  -0.004090 
(-0.4356) 

-0.000003 
(-0.6046) 

 

 Time-varying  
SJC copula 

 

0.942891 0.000467  -0.003929 
(-0.4185) 

-0.000017 
(-3.6695) 

 

 
average  

0.941161 0.000451 
    

 

Note: Figures in parenthesis are the percentage of variance reduction compared to VEC. The 

underlined models show better hedge performance than basic VEC model.  
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Table B-20. Ceiling of Foreign Ownership in the Korean Stock Exchange  

 

 Dec. 3. 

1994 

Jun.1. 

1995 

Apr.1. 

1996 

Oct.1. 

1996 

May 2. 

1997 

Nov.3. 

1997 

Nov.11. 

1997 

Dec.30. 

1997 

May 25. 

1998 

Collective 

ceiling 

12% 15% 18% 20% 23% 26% 50% 55% 100% 

Individual 

ceiling 

3% 3% 4% 5% 6% 7% 50% 50% 100% 
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Table B-21. Proportion of Trading Volume by Investor Type in the KSE Market  

 

 Institutional 

Investor (INS) 

 Individual 

Investor (IND) 

 Foreign  

Investor (FOR) 

Year Purchase Sales   Purchase Sales   Purchase     Sales 

2001 13.78% 14.01%  72.69% 73.23%  11.34% 10.36% 

2002 13.94% 14.00%  71.53% 71.23%  11.64% 12.09% 

2003 15.09% 16.64%  64.91% 65.60%  16.63% 14.74% 

2004 15.47% 16.05%  57.42% 58.75%  23.32% 21.68% 

2005 15.85% 14.82%  59.54% 60.81%  21.00% 21.34% 

2006 20.46% 19.02%  49.63% 49.87%  25.85% 27.51% 

2007 19.21% 18.91%  51.67% 51.28%  24.86% 26.32% 

2008 22.77% 21.00%  49.44% 49.03%  24.11% 26.94% 

2009 21.52% 23.08%  57.84% 57.93%  18.16% 16.29% 

2010 21.44% 22.04%  54.31% 54.75%  20.98% 19.47% 
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Table B-22. Results of Augmented Dickey-Fuller Test 

 

Market RET VOL INS-NP INS-TV IND-NP IND-TV FOR-NP FOR-TV 

KSE -5.64 (7) -27.20 (1) -11.04 (4) -4.11 (5) -22.75 (1) -4.24 (4) -10.06 (4) -4.43 (8) 

KOSDAQ -8.89 (5) -10.07 (9) -18.68 (1) -5.77 (4) -21.09 (1) -4.68 (4) -12.76 (4) -3.82 (8) 

 

Note: The null hypothesis is that the series has a unit root. This hypothesis is rejected if the ADF 

test statistics is less than the critical value -3.43 (1%) given in Fuller (1976). Both an intercept 

and a time trend were included in the tests. The optimal lag length given in parenthesis was 

chosen using the Schwartz (1978) information criterion.  
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Table B-23. DAG Result of Foreign Investor’s Activity to Stock Returns and 

Volatility 

 

 KSE  KOSDAQ  

 Pre-break  Post-break  Pre-break  Post-break  

Trade volume of foreign investor 

→ Stock return 

-  directly  -  -  

Trade volume of foreign investor 

→ Volatility 

-  indirectly  -  indirectly  

Net purchase of foreign investor 

→ Stock return 

-  directly  directly  directly  

Net purchase of foreign investor 

→ Volatility 

-  indirectly  indirectly  indirectly  
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Table B-24. Information Flow among Three Types of Investors  

 

 KSE  KOSDAQ  

 Pre-break  Post-break  Pre-break  Post-break  

Root Cause IND-TV  INS-TV  INS-TV  FOR-NP 

FOR-TV 

 

Sink FOR-NP  -  FOR-TV  IND-NP  
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