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ABSTRACT

Reduced Order Model and Uncertainty Quantification for

Stochastic Porous Media Flows. (August 2012)

Jia Wei, B.S., Yunnan University, China;

M.S., Nankai University, China

Co-Chairs of Advisory Committee: Dr. Yalchin Efendiev
Dr. Akhil Datta-Gupta

In this dissertation, we focus on the uncertainty quantification problems where

the goal is to sample the porous media properties given integrated responses. We

first introduce a reduced order model using the level set method to characterize the

channelized features of permeability fields. The sampling process is completed under

Bayesian framework. We hence study the regularity of posterior distributions with

respect to the prior measures.

The stochastic flow equations that contain both spatial and random components

must be resolved in order to sample the porous media properties. Some type of upscal-

ing or multiscale technique is needed when solving the flow and transport through

heterogeneous porous media. We propose ensemble-level multiscale finite element

method and ensemble-level preconditioner technique for solving the stochastic flow

equations, when the permeability fields have certain topology features. These meth-

ods can be used to accelerate the forward computations in the sampling processes.

Additionally, we develop analysis-of-variance-based mixed multiscale finite ele-

ment method as well as a novel adaptive version. These methods are used to study

the forward uncertainty propagation of input random fields. The computational cost

is saved since the high dimensional problem is decomposed into lower dimensional

problems.
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We also work on developing efficient advanced Markov Chain Monte Carlo meth-

ods. Algorithms are proposed based on the multi-stage Markov Chain Monte Carlo

and Stochastic Approximation Monte Carlo methods. The new methods have the

ability to search the whole sample space for optimizations. Analysis and detailed

numerical results are presented for applications of all the above methods.
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CHAPTER I

INTRODUCTION

Uncertainties exist inherently in reservoir modeling and flow problems in hetero-

geneous porous media. There are uncertainties coming from modeling error, which

reflects the differences between the mathematical models and physical world. This

kind of uncertainty exists after certain models are chosen. We focus more on the

uncertainties that are inherited from the description of subsurface characteristics, for

example, porosity and permeability. Large uncertainties in reservoirs can greatly af-

fect the prediction of production and the reservoir management. To better predict the

performance of reservoir, these uncertainties need to be understood and quantified.

Better decisions can be obtained based on a model with fewer uncertainties in the

parameters. Our goal here is to quantify and reduce these uncertainties.

The uncertainty quantification of models including utilizing two types of reser-

voir data: static and dynamic data. The static data are time independent, such

as the measurements of permeability and porosity. The dynamic data, for instance

saturations, oil and water productions, are functions of time coming from produc-

tion process. Different approaches are proposed to integrate these two kinds of data

[20, 21, 79, 80, 98]. Among them, Bayesian framework [29, 34, 61, 67, 87] provides a

good way to connect static and dynamic data to quantify the uncertainty in reservoir

parameters. The quantification results of the parameters are described by a probabil-

ity distribution function, called posterior. This distribution can be obtained through

Bayes’ rule from a combination of the prior and the likelihood distribution. The prior

distribution of parameters is knowledge before any production data are observed.

This dissertation follows the style of the Journal of Computational Physics.
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The likelihood function reveals the relations between the dynamic data and reservoir

parameters. Markov chain Monte Carlo (MCMC) method and its modifications have

been used to sample the posterior distribution of the permeability fields.

While Bayesian framework provides a natural way to combine static and dynamic

data for uncertainty quantification, there exist several difficulties. The reservoir pa-

rameters are typically defined on a large number of grid blocks. This leads to high

computational cost when we try to resolve the system. For MCMC method, forward

simulation is needed for each sample. Since a large number of samples are necessary

for the convergence of MCMC, the computational cost in forward model is the most

expensive part in the whole algorithm. To accelerate the forward models, different

methods are developed such as building surrogates based on general polynomial chaos

[70, 104], using radial basis functions [72, 73], etc. On the other hand, MCMC method

have low acceptance rate and local-trap problem [18, 54, 55, 56]. In both cases, more

forward simulations are needed to overcome the problems. To improve, modifications

of MCMC [34, 37, 61, 55, 56] are proposed.

In this dissertation, we try to make the uncertainty quantification of reservoir

models more efficient in both ways. We start with building reduced order model to

express the permeability fields of interest. The dimension of the problem gets re-

duced through proper parameterization. Then to accelerate the forward simulation,

we propose a special ensemble-level mixed multiscale finite element method (MsFEM)

and an ensemble-level preconditioner. We also propose algorithms to study the for-

ward uncertainty propagation. These algorithms can serve as surrogates with less

computational expense for forward simulations. For the sampling process itself, we

combine the multi-stage MCMC [29, 34] with the Stochastic Approximation Monte

Carlo (SAMC) [56] and Double Annealing SAMC (DASAMC) [18, 54, 55] to overcome

local-trap problem.
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In Chapter II, we cover the preliminary background material. We introduce

the porous media flow equations that will be studied throughout the dissertation.

We then introduce the Karhunen-Loève (K-L) expansion techniques for representing

the random field information required in the two-phase immiscible flow equations.

Then we discuss the multiscale methods involved in solving the porous media flow

equations. Lastly, we present the Bayesian framework for inverse problems.

In Chapter III, we study permeability fields with channelized structures. The

permeability facies are described by two-point correlation functions; while interfaces

are represented via smooth pseudo-velocity fields in a level set formulation. Then one

can reduce the dimension of the parameterization space by selecting dominant modes

in K-L expansion. We study errors introduced in such truncations by estimating

the difference in the expectation of a function with respect to full and truncated

posterior. The estimation shows that this error can be bounded by the tail of K-L

eigenvalues with a constant independent of the dimension of the space. To speed

up Bayesian computations, we use an efficient two-stage MCMC that utilizes mixed

MsFEM to screen the proposals. The numerical results show the validity of the

proposed parameterization to channel geometry and the error estimations.

In Chapter IV, we consider ensembles of permeability fields with high contrast

channels and inclusions. Our objective here is to construct special multiscale basis

functions for the whole ensemble. By constructing the common coarse basis functions

for the permeability fields with certain topological properties, the solution of elliptic

equation can be obtained by projecting to the space spanned by these pre-computed

basis functions. As the expensive part of the multiscle method is simplified, the

forward simulation can be completed with less computational cost. We also apply this

coarse multiscale approximation to the design of the two-level domain decomposition

preconditioner. Numerical experiments show that the ensemble-level multiscale finite
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element method converges to the fine scale solution, and the ensemble-level domain

decomposition preconditioner condition number is independent of the high contrast

in the coefficient. We also present numerical results of using the ensemble methods

to inverse problem.

In Chapter V, we do model reduction in both stochastic space and physical space

to treat the high dimensionality and heterogeneity efficiently in stochastic two-phase

flows. We use an analysis-of-variance (ANOVA)-based mixed multiscale finite ele-

ment method (MsFEM) to decompose the high dimensional problem into a set of

lower dimensional problems, which requires less computational cost, and the mixed

MsFEM can capture the heterogeneities on a coarse grid. To enhance the efficiency

of traditional ANOVA, we develop a new adaptive ANOVA method, where the most

active dimensions can be selected before conducting ANOVA decomposition. A num-

ber of numerical examples in two-phase stochastic flows are presented and showed

the performance of the ANOVA-based mixed MsFEM.

In Chapter VI, we combine the multi-stage MCMC with SAMC and DASAMC

methods to overcome the local-trap problem in uncertainty quantification. The multi-

stage MCMC screens out the bad proposals by simulations in coarse scale. The

computational expense can be saved since the acceptance rate is increased. SAMC

and DASAMC have the ability to automatically lift the low permeability part of the

posterior distribution and allow the samples to travel over more parts in the sample

space. Our proposed multi-stage SAMC and multi-stage DASAMC combine both

merits. Numerical results show the effective of our algorithms.

Lastly, in Chapter VII, we summarize our findings and present possibilities for

future research.
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CHAPTER II

BACKGROUND MATERIALS

In this chapter, the background materials and notations, which are necessary for

the later chapters, are introduced. We first introduce the porous media flow equations

as our geological model. Secondly, we introduce the parameterization of permeability

fields, i.e., the Karhunen-Loève (K-L) expansion is discussed, since it will be used

extensively throughout the later discussions. Then we discuss the multiscale methods

involved in solving the porous media flow equations. Lastly, we present the Bayesian

framework for inverse problems.

2.1. Geological model

A significant part of the computational expense in any dynamic data integra-

tion method is the modeling of flow and transport through high-resolution geologic

models. We consider two-phase flow in a subsurface formation (denoted by D) under

the assumption that the displacement is dominated by viscous effect. For clarity of

exposition, we neglect the effects of gravity, compressibility, and capillary pressure,

although our proposed approach is independent of the choice of physical mechanisms.

Also, the porosity will be considered to be constant. The two phases will be referred

to water and oil (or a non-aqueous phase liquid), designated by subscripts w and o,

respectively. We write Darcy’s law for each phase as

vj = −krj(S)

µj
k(x, ω)∇p, (2.1)

where vj is the phase velocity, k(x, ω) is the permeability tensor, krj is the relative

permeability to phase j (j = o, w), S is the water saturation (volume fraction) and
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p is the pressure. The ω denotes that k(x, ω) is a realization of a random space Ω.

Combining Darcy’s law with a statement of conservation of mass allows us to express

the governing equations in terms of pressure and saturation equations

∇ · (λ(S)k(x, ω)∇p) = Qs, (2.2)

∂S

∂t
+ v · ∇f(S) = 0, (2.3)

where λ is the total mobility, Qs is a source term, f is the fractional flux of water,

and v is the total velocity, which are respectively given by

λ(S) =
krw(S)

µw
+
kro(S)

µo
,

f(S) =
krw(S)/µw

krw(S)/µw + kro(S)/µo
,

v = vw + vo = −λ(S)k · ∇p.

The above descriptions are referred to as the geological model of the two-phase flow

problem.

We use various production characteristics solving from the governing system

(2.1)-(2.3) for different reasons in the later chapters. We compute the saturation S

at different pore volume injected (PVI). PVI represents dimensionless time and is

computed via

PVI =

∫
Q

Vp
dt,

where Vp is the total pore volume of the system, Q =
∫
∂Dout

v · nds is the total flow

rate and ∂Dout is the outflow boundary. The fraction of water produced in relation

to the total production rate, denoted by F (t) (or F in future discussion). F (t) for a

two-phase water-oil flow, is defined as the fraction of water in the produced fluid, i.e.,

F (t) =
qw(t)

qw(t) + qo(t)
,



7

where qw and qo are the flow rates of water and oil at the production edge of the

model at time t. Then,

F (t) =

∫
∂Dout

vnf(S)dlF∫
∂Dout

vndlF
, (2.4)

where vn is normal velocity field. We also monitor the breakthrough time Tw defined

as F−1(t) at the producer and the cumulative oil production Qo at t PVI, i.e.,

Qo = − 1∫
D
ϕdx

∫ t

0

(∫

D

min(qo(x, τ), 0)dx

)
dτ.

By analyzing these production characteristics, we can understand the behavior of

flows in the subsurface, and make predictions and decisions based on this information.

2.2. Karhunen-Loève expansion

In order to model the flow in heterogeneous porous media accurately through

the system (2.1)-(2.3), a good parameterization of the permeability fields k(x, ω) is

important. In this section, we introduce the K-L expansion we used to parameterize

permeability fields.

Traditional geostatistical techniques for subsurface characterization rely on two-

point correlation functions to describe the spatial variability. We assume that the

permeability field k(x, ω) follows a log-Gaussian distribution. We then consider the

function a(x, ω) = log(k(x, ω)), instead of k(x, ω) for convenience. Our parametriza-

tion of permeability field starts from the two-point correlation function of a(x, ω),

i.e.

R(x, y) = cov[a](x, y) = E[(a(x, ω)− E[a(x, ω)])(a(y, ω)− E[a(y, ω)])],

where E[·] refers to the expectation and x, y ∈ D are points in the spatial domain. In

this work, R(x, y) is assumed to be known. If R is unknown, with other information
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sufficient to define permeability fields, our proposed methods still work. For per-

meability field given by a two-point correlation function, the Karhunen-Loève (K-L)

expansion [42, 102] can be used to get an expression for k(x, ω) or a(x, ω). Further,

a description with possibly fewer degrees of freedom can be obtained based on the

expansion. More specifically, the expansion is done by representing the permeability

field in terms of an optimal L2 basis. By truncating the expansion, we can represent

the permeability matrix by a small number of random parameters.

We briefly recall some properties of the K-L expansion. For simplicity, we as-

sume that E[a(x, ω)] = 0. Suppose a(x, ω) is a second order stochastic process with

E[
∫
D
a2(x, ω)dx] < ∞, given an orthonormal basis {ψi} in L2(D), we can expand

a(x, ω) as a general Fourier series

a(x, ω) =
∑

i

ai(ω)ψi(x), ai(ω) =

∫

D

a(x, ω)ψi(x)dx.

The special L2 basis {ψi} that makes the random variables ai uncorrelated is of

interest here. Namely, E(aiaj) = 0 for all i 6= j. The basis functions {ψi} satisfy

E(aiaj) =

∫

D

ψi(x)dx

∫

D

R(x, y)ψj(y)dy = 0, i 6= j.

Since {ψi} is a complete basis in L2(D), it follows that ψi(x) are eigenfunctions of

R(x, y), ∫

D

R(x, y)ψi(y)dy = λiψi(x), i = 1, 2, · · · , (2.5)

where λi = E[a2
i ] > 0. Furthermore, we have

R(x, y) =
∑

i

λiψi(x)ψi(y).

This is saying that the function R(x, y) induces an integral operator Ta : L2(D) −→



9

L2(D) by

Tag(·) =

∫

D

R(x, ·)g(x)dx ∀g ∈ L2(D).

The operator Ta is compact and self-adjoint. The eigenpairs (λi, ψi(x))i≥1 of Ta satisfy

(ψi, ψj)L2(D) = δij, λ1 ≥ λ2 ≥ · · · ≥ λi · · · , lim
i−→∞

λi = 0,

where (·, ·)L2 is the usual L2 inner product. Define the mutually uncorrelated random

variables by

θi(ω) :=
1√
λi

∫

D

a(x, ω)ψi(x)dx, i = 1, 2, · · · ,

i.e., denote θi = ai/
√
λi, then θi satisfies E(θi) = 0 and E(θiθj) = δij . It follows that

a(x, ω) =
∞∑

i=1

√
λiθi(ω)ψi(x), (2.6)

where ψi and λi satisfy (2.5). The L2 basis functions ψi(x) are deterministic and re-

solve the spatial dependence of the permeability field. The randomness is represented

by the scalar random variables θi. The expansion (2.6) is called the K-L expansion.

If we discretize the domain D by a rectangular mesh, the continuous K-L expan-

sion (2.6) is reduced to finite terms and ψi(x) are discrete fields. The discretized K-L

expansion is given by

aN =
N∑

i=1

√
λiθiψi. (2.7)

2.3. Multiscale methods

With the parameterization of k(x, ω) introduced in Section 2.2, the geological

model discussed in Section 2.1 is completed. Solving this model for the quantities of

interest usually requires large computational cost, because of the high dimensionality

in spatial space. The system (2.1)-(2.3) is called fine-scale model. To reduce the
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computational expense of the fine model, the mixed multiscale Finite Element Method

(MsFEM) is utilized to solve the flow equation on a coarse grid and further use the

velocity field on a coarse grid to compute the fractional flow that is the quantity of

interest in our simulations.

As for the coarse-scale model, we will consider single-phase flow based multiscale

simulation methods. This technique is similar to upscaling methods [23], except that

instead of computing effective properties, multiscale basis functions are calculated.

These basis functions are coupled through a variational formulation of the problem.

For multi-phase flow and transport simulations, the conservative fine-scale velocity

is often needed. For this reason, the mixed MsFEM is used. We refer to [1, 17] for

mixed multiscale finite element and its use in two-phase flow and transport. In our

simulations, the multiscale basis functions are computed for the velocity once with

λ = 1. These basis functions are used later without any update for solving two-phase

flow equations. As a result, we obtain a coarse-scale velocity field that is used for

solving the transport equation on the coarse grid. We note that mixed MsFEM can

be implemented on unstructured grids [32].

We present MsFEM used for spatial discretization here. To this end, we consider

a second-order elliptic equation,





−div(k∇p) = f in D

−k∇p · n = g on ∂D.

(2.8)

Eq. (2.8) describes the single-phase flow equation in porous media. The p refers

to pressure, f refers to source (well or sink) and velocity v = −k∇p. For mixed
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formulation, we rewrite Eq. (2.8) as





k−1v +∇p = 0 in D

div(v) = f in D

v · n = g(x) on ∂D.

(2.9)

The weak formulation of (2.9) reads: seek (v, p) ∈ H(div, D) × L2(D)/R such that

v · n = g and





〈
k−1v, u

〉
−
〈
div(u), p

〉
= 0 ∀u ∈ H0(div, D)

〈
div(v), q

〉
=
〈
f, q
〉
∀q ∈ L2(D).

(2.10)

Let Vh ⊂ H(div, D) and Qh ⊂ L2(D)/R be the finite element spaces for velocity

and pressure, respectively. We use the mixed MsFEM [17, 32] for (2.10). It means

that mixed finite element approximation is performed on coarse grid, where the finite

element basis functions are defined. In the mixed MsFEM, we use piecewise constant

basis functions on a coarse grid for pressure. For the velocity, we define multiscale

velocity basis functions. The degree of freedom of the multiscale velocity basis func-

tion is defined on the interface of the coarse grid. Let eKi be a generic edge or face of

the coarse block K. The multiscale basis equation associated with eKi is defined by





−div(k∇wK
i ) =

1

|K| in K

−k∇wK
i · n =





bKi on eKi

0 else.

(2.11)

For local mixed MsFEM [17], bKi = 1
|eKi |

. If the media demonstrate strong non-local

features including channels, fracture and shale barriers, some global information is

needed to define the boundary condition bKi for better accuracy of approximation
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[1, 50]. Then,

ψKi = −k∇wK
i , (2.12)

defines the multiscale velocity basis function associated to eKi , and the multiscale

finite dimensional space for velocity is defined by

Vh =
⊕

K,i

ψKi .

For each edge ei, the basis functions can be combined in adjacent coarse-grid blocks.

We denote the basis function for the edge ei by ψi. Let K1 and K2 be two adjacent

coarse-grid blocks, then ψi solves (2.11) in K1 and solves div(ψi) = −1/|K2| in K2,

and bK2
i = −1/|eK2

i | on eK2
i and 0 otherwise. More precisely, ψi = ψK1

i in K1 and

ψi = −ψK2
i in K2, where ψKi is defined in (2.12) (see Figure 2.1 for illustration).

Define V 0
h = Vh ∩ H0(div, D). The numerical mixed formulation is to find

(vh, ph) ∈ Vh ×Qh such that vh · n = gh on ∂D and





〈
k−1vh, uh

〉
+
〈
div(uh), ph

〉
= 0 ∀uh ∈ V 0

h

〈
div(vh), qh

〉
=
〈
f, qh

〉
∀qh ∈ Qh.

2.4. Bayesian framework

Our objective here is to sample the permeability fields, i.e., reservoir parameters,

given flow and transport data and the known permeabilities at some spatial locations

corresponding to wells. For a given permeability field k(x, ω), we denote the observed

flow and transport data as Fobs. The Bayesian approach is based on Bayes’ rule, i.e.,

π(k|Fobs) =
L(Fobs|k)π0(k)

π(Fobs)
,
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Fig. 2.1. Schematic description of a velocity basis function for an edge combining ad-

jacent basis functions.

where k is the parameter, L is the likelihood function and π0 is the prior density.

π(k|Fobs) is the desired posterior distribution, denoted just as π(k) in some situations.

Bayesian method has the ability to incorporate prior knowledge. A combination

of knowledge from both prior and likelihood functions (Figure 2.2) gives the posterior

distribution (Figure 2.3) is an illustration for this property. The results of Bayesian

method approximate the maximum likelihood estimation results as the sample size

increases. Instead of getting estimation with a confidence interval, it provides more

quantities of interest. It is also easy to set up and estimate difficult models.
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Fig. 2.2. Left: Prior distribution. Right: Likelihood function.

In our case, the prior information π0(k) is given by geologist as known. To

find the posterior distribution, so that the uncertainty of the reservoir model can be

quantified, we need a proper likelihood function. We denote Fk to be the integrated

response corresponding to a given permeability field k(x, ω). There is a non-linear

mapping from permeability field k to Fk, which is not one-to-one. As a consequence,

many different permeability realizations may exist for a given set of production data,

so random noise should be added to the generated flow and transport data from the

simulator. In addition to that, Fk also contains measurement errors. We define the

combined model error and measurement error as a random error ε. The model can

be written as

Fobs = Fk + ε,

where ε is distributed as N(0, σ2
fI), i.e., L(Fobs|k) is assumed to be N(Fk, σ

2
fI). So

the likelihood function has the form

L(Fobs|k) ∝ exp

(
−‖Fobs − Fk‖

2

σ2
f

)
.
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Fig. 2.3. Posterior distribution.

Under these assumptions, the posterior distribution we are interested in is

π(k) := π(k|Fobs) ∝ exp

(
−‖Fobs − Fk‖

2

σ2
f

)
π0(k).

The rest of the dissertation will focus on solving problems in finding this posterior

distribution.
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CHAPTER III

REDUCED ORDER MODEL AND BAYESIAN POSTERIOR

REGULARIZATION

In this chapter, we study uncertainty quantification for flows in heterogeneous

porous media. Permeability fields within facies are assumed to be described by two-

point correlation functions, while interfaces that separate facies are represented via

smooth pseudo-velocity fields in a level set formulation to get reduced dimensional

parameterization. The permeability fields within facies and velocity fields represent-

ing interfaces can be described using Karhunen-Loève (K-L) expansion, where one

can reduce the dimension of the parameterization space by selecting dominant modes

in K-L expansion. We study errors introduced in such truncations by estimating the

difference in the expectation of a function with respect to full and truncated posterior.

The estimation shows that this error can be bounded by the tail of K-L eigenvalues

with a constant independent of the dimension of the space. The fact that the con-

stants are independent of the dimension is important to guarantee the feasibility of

truncations with respect to posterior distributions. To speed up Bayesian computa-

tions, we use an efficient two-stage Markov chain Monte Carlo (MCMC) that utilizes

mixed MsFEM to screen the proposals. The numerical results show the validity of

the proposed parameterization to channel geometry and the error estimations.

This chapter is organized with first preliminary and motivation, followed with

the parameterization of channelized permeability fields. Then the next section is

devoted to the estimation of the posterior error due to the truncation in the prior

parameterization. After that we briefly describe the sampling algorithms. Numerical

results are presented in the last section.
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3.1. Introduction

The distribution of subsurface properties is mainly controlled by the location of

distinct geologic facies with sharp contrasts in properties, such as permeability and

porosity, across facies boundaries [100]. E.g., in a fluvial setting, high permeabil-

ity channel sands are often embedded in a nearly impermeable background causing

the dominant fluid movement to be restricted within these channels. Under such

conditions, the channel geometry plays an important role in determining the flow

behavior in the subsurface. Consequently, in predicting the flow through highly het-

erogeneous porous formations, it is important to model facies boundaries accurately

and to properly account for the uncertainties in these models.

Traditional geostatistical techniques for subsurface characterization have relied

on two-point correlation functions to describe the spatial variability. Such spatial

fields do not reproduce discrete and irregular geologic features, such as fluvial channels

[22, 43, 51]. The success of object-based models, such as discrete Boolean or object-

based models [35], is heavily dependent on the parameters to specify the object size,

shapes, proportion and orientation. Typically, these parameters are highly uncertain,

particularly in the early stages of subsurface characterization [16, 22]. For example,

in a channel type environment, the channel sands may be observed at only a few

well locations. There are many plausible channel geometries that will satisfy the

channel sand and well intersections. Thus, the stochastic models for channels will

require specification of random variables that govern the channel boundaries. All the

parameters have considerable uncertainty associated with them and will impact fluid

flow in the subsurface.

A considerable amount of prior information is typically available for building

the facies models for fluid flow simulation [100]. These include well logs and cores,
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seismic data and geologic conceptualization based on outcrops and analogues. Al-

though the prior information plays a vital role in reducing uncertainty and preserving

geologic realism, it is imperative that the geologic models reproduce the dynamic

response based on flow and transport data. In the last decade, significant progress

has been made in conditioning pixel-based geologic models to flow and transport data

[14, 47, 51, 52, 80, 97, 101]. The approach typically involves the solution of an inverse

problem requiring the minimization of a suitably defined objective function. Both

gradient-based methods and combinatorial optimization methods have been used for

this purpose. The existing approaches are not readily applicable to facies-based mod-

els where the primary goal is to locate the facies boundaries and preserve the contrast

in facies properties.

In this chapter, we consider Bayesian hierarchical models that will preserve the

facies architecture and at the same time populate the petrophysical properties within

the facies in a geologically consistent manner by incorporating available static and

dynamic information. To maintain the contrast in facies properties, we represent

the facies boundaries using level sets that provide a systematic method for morphing

the facies shapes to reconstruct a wide variety of facies geometries [81, 82, 90, 94].

Although level sets have recently been used to represent facies boundaries [99], the

novelty of our proposed approach is in the efficient Bayesian hierarchical uncertainty

quantification technique that we employ to perturb the facies boundaries and prop-

erties to match the dynamic response such as multiphase production history. The

description of the facies boundaries in our level set approach will be based on param-

eterization of the pseudo-velocity fields that deform the interfaces. We will mostly

focus on smooth interfaces that will require smooth velocity fields in the level set

methods. The space of smooth velocity fields can be parameterized with fewer pa-

rameters, thus providing us with a small dimensional uncertainty space to explore.
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One section of this chapter is devoted to studying the regularity of the posterior

measure with respect to the prior measure. In particular, we estimate the difference

in the expectation of a function with respect to full and truncated posterior distri-

butions. Here, the full posterior distribution refers to the posterior computed using

all parameter space, while the truncated posterior distribution refers to the posterior

computed using truncated parameter space. The error in the fractional flow (the

quantity that is often measured) is obtained in terms of the truncation error in K-L

expansion. In particular, we show that the error is proportional to the truncation er-

ror in K-L expansion. Moreover, we show that the constants in these error estimates

are independent of the dimension of the parameter space. The latter is important

in our application, as the dimension of the parameter space which is decided by the

dimension of discretization of the domain can be large. We note that some general

principles for the regularity of the posterior measure with respect to the prior measure

are introduced in [92].

A significant part of the computational expense in any dynamic data integra-

tion method is the modeling of flow and transport through high-resolution geologic

models. To precondition these simulations, we adopt multi-stage MCMC approaches

to minimize the number of fine-scale flow simulations during the MCMC sampling.

In these approaches, simplified models using mixed MsFEM are used to screen the

proposals before running detailed fine-scale simulations. Note that our forward model

consists of coupled flow and transport equations and mixed MsFEM is used to solve

the flow equation on a coarse grid and further use the velocity field on a coarse grid

to compute the fractional flow that is the quantity of interest in our simulations. We

note that there are a number of other methods developed for sampling the posterior

based on emulators [64, 68, 69, 70].

In the last section, the numerical results are presented to investigate the theo-
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retical bounds of the posterior error due to the truncation. We show some sampling

results using the two-stage MCMC algorithm as well.

3.2. Parameterization of permeability fields

In this section, we introduce parameterization of the permeability fields. First, a

heterogeneous permeability field is decomposed into several high and low permeable

subregions, where each region represents a facies (see Figure 3.1 for illustration). The

permeability field within each facies is assumed to follow a log-Gaussian distribution

with a known spatial covariance. This type of hierarchical representation allows us

to write of the permeability field as

k(x, ω) =
∑

i

ki(x, ω)IDi(x), (3.1)

where IDi is an indicator function of region Di (i.e., I(x) = 1 if x ∈ Di and I(x) = 0

otherwise). It is to be noted that in our approach the permeability field description

is defined on a finite dimension whereas the partial differential equations (PDEs) to

solve the forward problem are defined on an infinite dimensional setting.

3.2.1. Parameterization of interfaces

Suppose that any interface is a zero level set function ϕ(x, τ) = 0. The evolution

equation for an interface is given by

∂ϕ

∂τ
+ w · ∇ϕ = 0, (3.2)

where w is a pseudo-velocity field and τ is a pseudo-time. We denote ϕi as the ith

interface if there are more than one, then ϕ can be written as ϕ = ϕi for different

interfaces. More about level set method can be found in [81, 90]. A key is to specify
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Fig. 3.1. Illustration of the permeability field with facies.

w for (3.2) to describe and update the boundaries of facies.

Now we consider a set of pseudo-velocity fields W , where W ={w| w admits

fixed streamlines, and |w| is constant along streamlines on D}. Another words, we

will assume that the streamlines are fixed and only magnitude of the velocity along

different streamline changes. Note that streamlines, the integrated curves that are

locally tangential to the velocity, are determined by the direction of a velocity field

at each location. In general, one can also take streamlines to be random. To keep

the dimension of the parameter space small, we will take streamlines to be fixed.

For example, in our numerical experiment, vertical streamlines are used. We assume

further that the magnitude of velocity field w ∈ W follows the expansion,

|w| =
∑

i

αiφi(z), αi ∼ N(0, 1), z ∈ D′. (3.3)

The functions φi(z)’s are spatial basis for the magnitude of the velocity field and

defined on the lower dimensional space of the interface, i.e., φi(z) lives in D′ ⊂ D,

where dim(D′) = dim(D) − 1. For example, assume that |w| is a second order

stochastic process on D′ with a given covariance structure, then φi =
√
λiψi in (3.3)



22

is L2(D′) basis. In this case, |w| is expressed as a K-L expansion.

Now, if the initial interface is ϕ(x0, τ0) = 0 at τ0, the interface at τ0 + τ can

be written as ϕ(x0 +
∫ τ
τ0
w(τ)dτ, τ0 + τ) = 0. Any interface is corresponding to a

pseudo-velocity field w ∈ W and a time τ . Therefore, all interfaces of interest can

be generated through the evolution equation (3.2), with a pair (w, τ). The following

lemma proves that the set of interfaces generated through this one step movement is

well defined. Otherwise, the map between the interface set and the pseudo-velocity

field W is not one to one.

Lemma 3.2.1. For any ϕ(x, τ) = 0, ∃ w̃ ∈ W with the expansion (3.3), such that

ϕ(x, τ) = 0 can be obtained from ϕ(x0, τ0) = 0 through the evolution equation (3.2).

Proof. For any w1, w2 ∈ W with |w1| =
∑

i α1iφi(z) and |w2| =
∑

i α2iφi(z), z ∈

D′, the new interface formed by moving the initial ϕ(x0, τ0) = 0 with w1 and w2

consecutively in time τ1 and τ2 is

ϕ(x0 +

∫ τ1

τ0

w1dτ +

∫ τ2

τ1

w2dτ, τ0 + τ1 + τ2) = 0.

Assuming τ0 = 0, we can choose τ =
√
τ 2

1 + τ 2
2 , and let α̃i = (α1iτ1 +α2iτ2)/τ , so

α̃i ∼ N(0, 1). For w̃ ∈ W with |w̃| = ∑i α̃iφi(z), we have the distance of any particle

in an interface moved by (3.2) in a time interval τ is the arc length

|w̃|τ =
∑

i

α̃iφi(z)τ =
∑

i

α1iτ1 + α2iτ2

τ
τφi(z)

=
∑

i

α1iτ1φi(z) +
∑

i

α2iτ2φi(z) = |w1|τ1 + |w2|τ2.

Since w1, w2 and w̃ have the same direction at any location, this implies that

∫ τ

0

w̃dτ =

∫ τ1

0

w1dτ +

∫ τ2

τ1

w2dτ.
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Therefore, the new interface

ϕ(x, τ) = ϕ(x0 +

∫ τ

0

w̃dτ, τ) = ϕ(x0 +

∫ τ1

0

w1dτ +

∫ τ2

τ1

w2dτ, τ0 + τ1 + τ2) = 0.

Namely, any interface can be obtained by moving the initial interface in a certain time

period once by a w̃ ∈ W , a Gaussian random field with deterministic direction.

In our numerical experiments, we consider vertical streamlines in D. The pseudo-

velocity is then w = (wx, wy) = (0, wy) and the magnitude along streamlines is

assumed to be wy = |w| =
∑

i αiφi(x), αi ∼ N(0, 1), x ∈ D′. The Lemma holds for

this case, and Figure 3.2 illustrates the process. To get simpler model, we also have

numerical examples determining the velocity field via its values at certain discrete

locations. The velocity values at these locations are updated as shown in Figure 3.3.

In this case, the basis functions φi’s in (3.3) are taken to be the indicator functions

for each location, and αi’s are assumed to be linear between nodes.

In Section 3.3, we will show that one can use a truncated series for velocity |w|

to perform parameter estimation. Similar procedure can be performed for permeabil-

ity field within facies. We will estimate associated errors in the resulting posterior

distribution.

3.2.2. Parameterization within facies

Now we describe the parameterization of the permeability field within the facies.

Each permeability field ki(x, ω) follows a log-Gaussian distribution as assumed. We

will then consider the function ai(x, ω) = log(ki(x, ω)). We assume that the two-point

correlation function of the log-permeability is known, i.e.,

Ri(x, y) = E[(ai(x, ω)− E[ai(x, ω)])(ai(y, ω)− E[ai(y, ω)])],
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Fig. 3.2. Interface evolution by moving initial interface with different vertical velocity

fields.

then the K-L expansion introduced in Section 2.2 is used. After discretizing the

domain D and truncating the K-L expansion (2.7) with certain criteria, we can have

the expansion

aNi =

Ni∑

j=1

√
λijθijψij.

3.3. Posterior error introduced by truncation

Our goal is to estimate the difference in the expected value of a function with

respect to two different posteriors, where one of them is a truncation of the other.

We discuss the regulation of posterior distribution first in permeability fields with

single facies, and then generalize the theoretical result to permeability fields with

channelized structures.
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Fig. 3.3. Interface updates using velocity representation at some fixed points.

3.3.1. Single facies

We consider the domain D = [0, 1] × [0, 1] and assume that ∇p ∈ L∞(D),

k ∈ L∞(D) and v ∈ L∞(D), where p is pressure, k is permeability field and v is

velocity. The lemmas and theorems in this section are obtained under assumptions

described in the following paragraph.

Assumptions: (i) p = 1 and S = 1 on x = 0; p = 0 on x = 1; and no flow

boundary conditions on the lateral boundaries y = 0 and y = 1. (ii) The saturation is

a smooth field. Note that if the velocity and initial conditions are smooth functions,

then the saturation will be a smooth spatial field. (iii) The permeability field k

is a stationary spatial process. (iv) The prior distribution is multivariate Gaussian

distribution with identity covariance matrix.

Assume these assumptions hold, and then we first bound the difference between

two saturation fields via the difference of the permeability fields in an appropriate

norm.

Lemma 3.3.1. ‖S1 − S2‖L2(D) ≤ C‖k1 − k2‖L2(D), where S1 and S2 are water satu-

rations.

Proof. In order to get the estimation of saturations, we need the concept of time of
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flight. For a particle that starts at a point ℘ at t = 0 and moves with velocity v, the

flow map P (℘, T ) is its position at time t = T , i.e.,

dP

dT
= v(P ), P (℘, 0) = ℘.

Time of flight T characterizes particle motion under the velocity field, since velocity

is a function of the spatial variable

dT

dP
=

1

v(P )
, T =

∫ P

℘

dr

v(r)
.

Then, by [91] we have

‖S1 − S2‖L2(D) ≤ C‖T1 − T2‖L2(D) ≤ C

∥∥∥∥
∫ P

℘

dr

v1(r)
−
∫ P

℘

dr

v2(r)

∥∥∥∥
L2(D)

≤ C

∥∥∥∥
∫ P

℘

v2(r)− v1(r)

v1(r)v2(r)
dr

∥∥∥∥
L2(D)

≤ C‖v2 − v1‖L2(D), (3.4)

since v1, v2 ∈ L∞(D).

On the other hand, v(x) = −k(x)∇p, therefore,

‖v1 − v2‖L2(D) = ‖k1∇p1 − k2∇p2‖L2(D)

≤ ‖k1∇(p1 − p2)‖L2(D) + ‖k1 − k2‖L2(D)‖∇p2‖L∞(D)

≤ ‖k1∇(p1 − p2)‖L2(D) + C‖k1 − k2‖L2(D).

Also, since div(k1∇p1) = 0, div(k2∇p2) = 0, then div(k1∇p1) − div(k2∇p2) = 0, and

further div(k1∇(p1 − p2)) = div((k2 − k1)∇p2), so

‖k1∇(p1 − p2)‖L2(D) = ‖(k2 − k1)∇p2‖L2(D)

≤ ‖k1 − k2‖L2(D)‖∇p2‖L∞(D) ≤ C‖k1 − k2‖L2(D).
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Therefore,

‖v1 − v2‖L2(D) ≤ C‖k1 − k2‖L2(D). (3.5)

Then, from (3.4) and (3.5), we have

‖S1 − S2‖L2(D) ≤ C‖k1 − k2‖L2(D).

In Bayesian framework, the reference fractional flow or water-cut F (k; t) =
∫ t

0

∫ 1

0
v(1, y)S(1, y, t)dydt is matched to get the target posterior distribution. Next,

we will estimate the difference between two water-cut responses via the corresponding

permeability fields.

Lemma 3.3.2. |F (k1; t)− F (k2; t)|2 ≤ C‖k1 − k2‖L2(D), where k1 and k2 are perme-

abilities, F (k1; t) and F (k2; t) are water-cut functions.

Proof. Note that

F (k; t) =

∫ t

0

∫ 1

0

v(1, y)S(1, y, t)dydt

=

∫ t

0

[ ∫ 1

0

v(1, y)S(1, y, t)dy −
∫ 1

0

v(0, y)S(0, y, t)dy
]
dt

+

∫ t

0

∫ 1

0

v(0, y)S(0, y, t)dydt.

Using S(0, y, t) = 1 and St + v · ∇S = 0, it follows that

∫ 1

0

v(0, y)S(0, y, t)dy =

∫ 1

0

v(0, y)dy =

∫ 1

0

v(s, y)dy,
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for any s ∈ [0, 1], since v is divergence free. Then,

F (k1; t) =

∫ t

0

[ ∫

∂D

v1(x, y)S1(x, y, t)dy
]
dt+

∫ t

0

∫ 1

0

v1(0, y)dydt

=

∫ t

0

[ ∫

D

div{v1(x, y)S1(x, y, t)}dxdy
]
dt+

∫ t

0

∫ 1

0

v1(s, y)dydt

=

∫ t

0

[ ∫

D

v1(x, y) · ∇S1(x, y, t)dxdy
]
dt+

∫ t

0

∫ 1

0

v1(s, y)dydt

=

∫ t

0

[
−
∫

D

(S1)tdxdy
]
dt+

∫ t

0

∫ 1

0

v1(s, y)dydt

= −
∫

D

S1(x, y, t)dxdy +

∫

D

S1(x, y, 0)dxdy +

∫ t

0

∫ 1

0

v1(s, y)dydt.

There is a similar result for F (k2; t). Then,

|F (k1; t)− F (k2; t)|2 =
∣∣∣
∫

D

(S2(x, y, t)− S1(x, y, t))dxdy

+

∫

D

(S1(x, y, 0)− S2(x, y, 0))dxdy

+

∫ t

0

∫ 1

0

(v1(s, y)− v2(s, y))dydt
∣∣∣
2

≤ C
(∫

D

|(S2(x, y, t)− S1(x, y, t))|2dxdy

+

∫

D

|S1(x, y, 0)− S2(x, y, 0)|2dxdy

+

∫ t

0

∫

D

|v1(x, y)− v2(x, y)|2dxdydt
)

≤ C‖k1 − k2‖2
L2(D),

by Lemma 3.3.1.

Next, we consider the case with single facies and the permeability that is de-

scribed via K-L expansion. In particular, we assume k(x, ω) = exp(
∑N

i=1 θiψi(x)) and

consider the truncated expansion k(x, ω) = exp(
∑M

i=1 θiψi(x)). Then, the posterior

distributions can be written as

π(θ) ∝ G(θ1, · · · , θN)π0(θ), π̃(θ) ∝ G̃(θ1, · · · , θM)π0(θ),
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where π(θ) is the posterior needed to be sampled, π̃(θ) is an approximation of π(θ)

and π0(θ) is the prior distribution. G(θ1, · · · , θN) and G̃(θ1, · · · , θN) are likelihoods,

where

G(θ1, · · · , θN) = exp
(
−
∫ T

0
|Fobs − F (k1(θ1, · · · , θN); t)|2dt

σ2
f

)
,

G̃(θ1, · · · , θM) = exp
(
−
∫ T

0
|Fobs − F (k2(θ1, · · · , θM); t)|2dt

σ2
f

)
.

Next, we estimate the difference between G and G̃.

Lemma 3.3.3. |G(θ1, · · · , θN)− G̃(θ1, · · · , θM)| ≤ C

σ2
f

‖k1 − k2‖L2(D).

Proof. The permeability fields k1 and k2 we considered are coming from the posterior

distributions, so |F (k1; t)−Fobs| and |F (k2; t)−Fobs| are bounded almost everywhere.

Then, by Lemma 3.3.2

|G(θ1, · · · , θN)− G̃(θ1, · · · , θM)|

≤ C

σ2
f

∣∣∣∣
∫ T

0

|Fobs − F (k1; t)|2dt−
∫ T

0

|Fobs − F (k2; t)|2dt
∣∣∣∣

≤ C

σ2
f

(∫ T

0

|2Fobs − F (k2; t)− F (k1; t)|2dt
) 1

2 ·
(∫ T

0

|F (k1; t)− F (k2; t)|2dt
) 1

2

≤ C

σ2
f

(∫ T

0

|F (k1; t)− F (k2; t)|2dt
) 1

2

≤ C

σ2
f

‖k1 − k2‖L2(D).

Theorem 3.3.1. Suppose that the permeability field k is a stationary spatial process

on a bounded region and f(θ) is square integrable with respect to a Gaussian measure,

i.e.,
∫
|f(θ)|2π0(θ)dθ <∞, then

∣∣Eπ(θ)[f(θ)]− Eπ̃(θ)[f(θ)]
∣∣ ≤ C

{
N∑

i=M+1

λi

} 1
2

, (3.6)
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where C is independent of dimension N .

Proof. If f(θ) is square integrable with respect to Gaussian measure (e.g., a polyno-

mial function), we can show that

∣∣Eπ(θ)[f(θ)]− Eπ̃(θ)[f(θ)]
∣∣

≤ C

∫
|f(θ)||G(θ1, · · · , θN)− G̃(θ1, · · · , θM)|π0(θ)dθ

≤ C

σ2
f

∫
|f(θ)|‖k1 − k2‖L2π0(θ)dθ

≤ C

σ2
f

(∫
|f(θ)|2π0(θ)dθ

) 1
2
(∫
‖k1 − k2‖2

L2
π0(θ)dθ

) 1
2

≤ C

σ2
f

(∫
‖k1 − k2‖2

L2
π0(θ)dθ

) 1
2
.

To estimate the error of truncation of K-L expansion, let k1 = exp(
∑N

i=1 θi
√
λiψi)

and k2 = exp(
∑M

i=1 θi
√
λiψi). We assume θi ∼ N(0, 1) for simplicity, then

∣∣∣∣
∫
f(θ)π(θ)dθ −

∫
f(θ)π̃(θ)dθ

∣∣∣∣
2

≤ C

σ4
f

∫ ∥∥∥∥∥exp
( N∑

i=1

θi
√
λiψi

)
− exp

( M∑

i=1

θi
√
λiψi

)∥∥∥∥∥

2

L2

π0(θ)dθ

≤ C

σ4
f

∫

D

∫
exp

(
2

M∑

i=1

θi
√
λiψi

)[
1− exp

( N∑

i=M+1

θi
√
λiψi

)]2

π0(θ)dθdxdy

≤ C

σ4
f

∫

D

I1I2dxdy,

where

I1 =

∫
· · ·
∫

exp
(

2
M∑

i=1

θi
√
λiψi

)
π0(θ1, · · · , θM)dθ1 · · · dθM

=
M∏

i=1

1√
2π

∫
exp

(
− 1

2
(θ2
i − 2

√
λiψi)

2 + 2λiψ
2
i

)
dθi = exp

(
2

M∑

i=1

λiψ
2
i

)
,
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because ψi’s are bounded, and

I2 =

∫
· · ·
∫ [

1− exp
( N∑

i=M+1

θi
√
λiψi

)]2

π0(θM+1, · · · , θN)dθM+1 · · · dθN

=

∫
· · ·
∫ {

1− 2 exp
( N∑

i=M+1

θi
√
λiψi

)

+ exp
(

2
N∑

i=M+1

θi
√
λiψi

)} N∏

i=M+1

1√
2π

exp
(
− θ2

i

2

)
dθi

≤ 1− 2
(

1 +
1

2

N∑

i=M+1

λiψ
2
i

)
+ 1 + 2

N∑

i=M+1

λiψ
2
i

(
exp

(
2

N∑

i=M+1

λiψ
2
i

)
+

1

2

)

≤ C exp
(

2
N∑

i=M+1

λiψ
2
i

) N∑

i=M+1

λψ2
i .

Since k is a stationary spatial process on a bounded region, i.e., for a spatial process

where the covariance function depends only on the distance not on the spatial location,

then by [89], {ψi} is uniform L∞(D) bounded. So,

∣∣∣∣
∫
f(θ)π(θ1, · · · , θN)dθ −

∫
f(θ)π̃(θ1, · · · , θN)dθ

∣∣∣∣ ≤
C

σ2
f

{∫

D

I1I2dxdy

} 1
2

≤ C

{∫

D

exp
(

2
N∑

i=1

λiψ
2
i

) N∑

i=M+1

λiψ
2
i dxdy

} 1
2

≤ C

{
N∑

i=M+1

λi

} 1
2

.

3.3.2. Channelized cases

Consider a permeability field k(x, ω) in D, see Figure 3.1, which has s facies

{Di}si=1 and s̃ interfaces {ϕi}s̃i=1. Each facies is described by a covariance matrix

Ri(x, y) as in Section 3.2.2. Then, the permeability field k(x, ω) is a function given
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by

k(x, ω) =
s∑

i=1

ki(x, ω)IDi(x),

where IDi is an indicator function on Di. The permeability of each facies Di is

ki(x, ω) = exp{ai(x, ω)} = exp{∑∞j=1

√
λijθijψij(x)} by assumption and each inter-

face is formed by moving the initial interface ϕi(x, t0) = 0 by a velocity field with

deterministic direction wi =
∑∞

j=1 αijφij(z) as in Section 3.2 (wi is used to denote

magnitude |wi| for simplicity). Then, the permeability field k(x, ω) can be written as

k(x, θ, α) =
s∑

i=1

exp(ai)IDi(α)(x).

Considering the finite discretized case allows us to write ai and wi in each Di

as aNi =
∑Ni

j=1

√
λ

(θ)
ij θijψij(x), i = 1, · · · , s, x ∈ D and wÑi =

∑Ñi
j=1

√
λ

(α)
ij αijφij(z),

i = 1, · · · , s̃, z ∈ D′ with dimD = dimD′ + 1. Note that λ
(θ)
ij and λ

(α)
ij usually

decrease to 0 fast, the truncated K-L expansions, i.e., aMi
=
∑Mi

i=1

√
λ

(θ)
ij θijψij and

wM̃i
=
∑M̃i

j=1

√
λ

(α)
ij αijφij can be used to reduce the dimension of the parameter space,

which in turn would save CPU time while sampling from the posterior distribution.

We denote

θ = (θ11, · · · , θ1N1 , · · · , θs1, · · · , θsNs),

α = (α11, · · · , α1Ñ1
, · · · , α(s−1)1, · · · , αs̃Ñs̃),

where (θi1, · · · , θiNi) describe the permeability field k(θ, α) within the ith facies and

(αj1, · · · , αjÑj) describe the jth interface. θM and αM̃ are truncations of θ and α

respectively. Then, the corresponding representations of the permeability field in full



33

and truncated case are given by

k(θ, α) =
s∑

i=1

exp

(
Ni∑

j=1

√
λ

(θ)
ij θijψij

)
I{Di(αi1,··· ,αiÑi )}

,

k(θM , αM̃) =
s∑

i=1

exp

(
Mi∑

j=1

√
λ

(θ)
ij θijψij

)
I{Di(αi1,··· ,αiM̃i )}

.

Correspondingly, the two posterior distributions of the permeability field in Bayesian

framework are given by

π(θ, α) ∝ G(θ, α)
s∏

i=1

π0(θi1, · · · , θiNi)
s̃∏

j=1

π0(αj1, · · · , αjÑj),

π̃(θ, α) ∝ G̃(θM , αM̃)
s∏

i=1

π0(θi1, · · · , θiNi)
s̃∏

j=1

π0(αj1, · · · , αjÑj),

where

G(θ, α) =
1

σ2
f

exp
(
−
∫ T

0

|Fobs − F (k(θ, α); t)|2dt
)
,

G̃(θM , αM̃) =
1

σ2
f

exp
(
−
∫ T

0

|Fobs − F (k(θM , αM̃); t)|2dt
)
,

and Fobs is the observed fractional flow data. The priors π0(θ, α) is assumed to be

product Gaussian measure.

It is clear that the truncation affects the matching process. Our goal here is to

find an estimation of error introduced by this truncation, which also provides a way

to choose Mi and M̃j for specified requirements.

Theorem 3.3.2. Suppose the discretized K-L expansion of the log permeability field

and the random velocity field are given by aNi =
∑Ni

j=1

√
λ

(θ)
ij θijψi(x) and wÑi =

∑Ñi
j=1

√
λ

(α)
ij αijφij(z), where all aNi and wÑi are stationary spatial processes on a

bounded region, and the truncated expansions are aMi
=
∑Mi

j=1

√
λ

(θ)
ij θijψij and wM̃i

=
∑M̃i

j=1

√
λ

(α)
ij αijφij respectively. Assume that f(θ, α) is a square integrable function



34

with respect to a Gaussian measure, i.e.,
∫
|f(θ, α)|2π0(θ, α)dθdα <∞, then

∣∣Eπ(θ,α)[f(θ, α)]− Eπ̃(θ,α)[f(θ, α)]
∣∣

≤ C1 max
1≤i≤s

{
Ni∑

j=Mi+1

λ
(θ)
ij

} 1
2

+ C2 max
1≤i≤s̃





Ñi∑

j=M̃i+1

λ
(α)
ij





1
2

, (3.7)

where C1 and C2 are independent of dimension Ni and Ñi.

Proof. Note that

∣∣Eπ(θ,α)[f(θ, α)]− Eπ̃(θ,α)[f(θ, α)]
∣∣ ≤ C(E1 + E2),

where

E1 =

∫
|f(θ, α)| · |G̃(θ, αM̃)− G̃(θM , αM̃)|π0(θ, α)d(θ, α),

E2 =

∫
|f(θ, α)| · |G(θ, α)− G̃(θ, αM̃)|π0(θ, α)d(θ, α).

It is clear that Lemma 3.3.3 can be generalized to the multi-facies case to get

|G̃(θ, αM̃)− G̃(θM , αM̃)| ≤ C

σ2
f

s∑

i=1

‖k(θi1, · · · , θiNi)− k(θi1, · · · , θiMi
)‖L2(Di(αM̃ )).
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Then,

E1 ≤
C

σ2
f

∫
|f(θ, α)|

s∑

i=1

‖k(θi1, · · · , θiNi)

−k(θi1, · · · , θiMi
)‖L2(Di(αM̃ ))π0(θ, α)d(θ, α)

≤ C

σ2
f

∫ s∑

i=1

∫
|f(θ, α)| · ||k(θi1, · · · , θiNi)

−k(θi1, · · · , θiMi
)‖L2(Di(αM̃ ))π0(θ)dθπ0(α)dα

≤ C

σ2
f

∫ s∑

i=1

{∫
|f(θ, α)|2π0(θ)dθ

} 1
2

·
{∫

‖k(θi1, · · · , θiNi)− k(θi1, · · · , θiMi
)‖2
L2(Di(αM̃ ))π0(θ)dθ

} 1
2
π0(α)dα

≤ C

∫ s∑

i=1

{ Ni∑

j=Mi+1

λ
(θ)
ij

} 1
2
π0(α)dα ≤ C max

1≤i≤s

{
Ni∑

j=Mi+1

λ
(θ)
ij

} 1
2

,

by Theorem 3.3.1. To estimate E2, the estimation for permeability fields is also

needed, i.e.,

‖k(θ, α)− k(θ, α
M̃

)‖2
L2(D) =

∫

D

∣∣∣∣∣
s∑

i=1

kiIDi(α) −
s∑

i=1

kiIDi(α
M̃

)

∣∣∣∣∣

2

dx

≤ C
s̃∑

i=1

∫

D′

k2
i |wÑi − wM̃i

|2dz

≤ C
s̃∑

i=1

∫

D′

k2
i

∣∣∣∣∣∣

Ñi∑

j=M̃i+1

√
λ

(α)
ij αijφij

∣∣∣∣∣∣

2

dz

≤ C
s̃∑

i=1

∫

D′

k2
i exp


2

Ñi∑

j=M̃i+1

√
λ

(α)
ij αijφij


 dz.
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Then we can get the estimation as

E2 ≤
C

σ2
f

{∫
|f(θ, α)|2π0(θ, α)d(θ, α)

} 1
2

·
{∫

||k(θ, α)− k(θ, α
M̃

)||2L2(D)π0(θ, α)d(θ, α)
} 1

2

≤ C

σ2
f

{∫ s̃∑

i=1

∫

D′

k2
i exp


2

Ñi∑

j=M̃i+1

√
λ

(α)
ij αijφij


 dzπ0(θ, α)d(θ, α)

} 1
2

≤ C

σ2
f

{∫

D′

[ s̃∑

i=1

∫
k2
i π0(θi)dθi

∫
exp


2

Ñi∑

j=M̃i+1

√
λ

(α)
ij αijφij


 π0(αi)dαi

]
dz
} 1

2

≤ C

σ2
f

{ s̃∑

i=1

∫

D′

exp

(
2

N∑

j=1

λ
(θ)
ij ψ

2
ij

)
exp


2

Ñi∑

j=M̃i+1

λ
(α)
ij φ

2
ij


 dz

} 1
2

≤ C max
1≤i≤s̃





Ñi∑

j=M̃i+1

λ
(α)
ij





1
2

.

Since all aNi and wÑi are stationary spatial processes on a bounded region, i.e., for a

spatial process where the covariance function depends only on the distance not on the

spatial location, then [89] tells that the eigenfunctions {ψij} and {φij} are uniform

L∞(D) bounded. Thus

∣∣Eπ(θ,α)[f(θ, α)]− Eπ̃(θ,α)[f(θ, α)]
∣∣

≤ C1 max
1≤i≤s

{
Ni∑

j=Mi+1

λ
(θ)
ij

} 1
2

+ C2 max
1≤i≤s̃





Ñi∑

j=M̃i+1

λ
(α)
ij





1
2

.

Notice that when Mi → Ni and M̃i → Ñi, we have

∣∣Eπ(θ,α)(f(θ, α))− Eπ̃(θ,α)(f(θ, α))
∣∣→ 0.

The dimension of K-L expansion of permeability field and velocity field can be
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large and make the computation of forward problem time-consuming. Theorem 3.3.2

shows the error bound of two posteriors when the truncations are introduced in K-L

expansions. Based on this bound, the computation can be simplified by choosing less

number of terms in truncation, while the error is in a reasonable range.

3.4. Sampling schemes

In this section we introduce the sampling scheme we use in the numerical ex-

amples in Section 3.5.2 for cases with channelized permeability field. The sampling

scheme can be simplified for cases without channels correspondingly. To see the ad-

vantages of this scheme, we first state the standard Metropolis-Hastings algorithm

and then point out the motivation of using our scheme.

For channelized permeability field, the standard Metropolis-Hastings algorithm

can be formed in the following way to sample from the truncated posterior distribution

P (k|Fobs).

Algorithm (Metropolis-Hastings MCMC [87]) Suppose at the nth step, we have

permeability field kn(αn, θn).

Step 1. Generate α from a distribution qα(α|αn) and θ from a distribution

qθ(θ|θn). Then the entire permeability field k(α, θ) is proposed using (3.1).

Step 2. Accept k as a sample with probability

γ(kn, k) = min

{
1,

π(k)q(kn|k)

π(kn)q(k|kn)

}

= min

{
1,
L(Fobs|k)

L(Fobs|kn)
· π0(α)π0(θ)

π0(αn)π0(θn)
· qα(αn|α)qθ(θn|θ)
qα(α|αn)qθ(θ|θn)

}
, (3.8)

i.e., take kn+1 = k with probability γ(kn, k), and kn+1 = kn with probability 1 −

γ(kn, k). 2

Starting with an initial permeability sample k0, the MCMC algorithm generates
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a Markov chain {kn} with the transition kernel as

Kr(kn, k) = γ(kn, k)q(k|kn) +
(

1−
∫
γ(kn, k)q(k|kn)dk

)
δkn(k)

= γ(kn, k)qα(α|αn)qθ(θ|θn)

+
(

1−
∫
γ(kn, k)qα(α|αn)qθ(θ|θn)dαdθ

)
δαn(α)δθn(θ).

The target distribution π(k) is the stationary distribution of the Markov chain kn, so

kn represents the sample generated from π(k) after the chain converges and reaches

a steady state.

The main disadvantage of MCMC algorithm is the high computational cost in

solving the coupled nonlinear PDE system (2.1)-(2.3) on the fine-grid in order to com-

pute Fk in the target distribution π(k). Typically, MCMC method in our simulations

converges to the steady state after thousands of iterations and the acceptance rate

is also very low. A large amount of CPU time is spent on simulating the rejected

samples.

The MCMC method can be improved by adapting the proposal distribution

q(k|kn) to the target distribution using a coarse-scale model. The process essentially

modifies the proposal distribution q(k|kn) by incorporating the coarse-scale infor-

mation. The algorithm for a general two-stage MCMC method with upscaling was

introduced in [34].

Let F ∗k be the fractional flow computed by solving the coarse-scale model of

(2.1)-(2.3) for the given k. This is done with mixed MsFEM [32]. Mixed MsFEM is

used to solve pressure, and saturation is solved on coarse grid. The fine-scale target

distribution π(k) is approximated on the coarse scale by π∗(k). Here, we have

π(k) ∝ exp
(
−‖Fobs − Fk‖

2

σ2
f

)
π0(k),
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π∗(k) ∝ exp
(
−(G(‖Fobs − F ∗k ‖))2

σ2
c

)
π0(k),

where the function G is estimated based on offline computations using independent

samples from the prior. Using the coarse-scale distribution π∗(k) as a filter, the

two-stage MCMC can be described as follows.

Algorithm (Two-stage MCMC [34]) Suppose at the nth step, we have αn, θn

and permeability field kn(αn, θn).

Coarse stage: This step is the same as the MCMC method described earlier.

Step 1. At kn, generate a trial proposal k̃ from distribution qα(α|αn) and qθ(θ|θn).

The only difference is the fractional flow F ∗k is computed by solving the coarse-scale

model.

Step 2. Take the proposal as

k =





k̃ with probability γp(kn, k̃),

kn with probability 1− γp(kn, k̃).

The acceptance probability is given by

γc(kn, k̃) = min
{

1,
L∗(Fobs|k̃)

L∗(Fobs|kn)
· π0(α)π0(θ)

π0(αn)π0(θn)
· qα(αn|α)qθ(θn|θ)
qα(α|αn)qθ(θ|θn)

}
. (3.9)

Therefore, the final proposal k is generated from the effective instrumental distribu-

tion

Q(k|kn) = γc(kn, k)q(k|kn) +
(

1−
∫
γc(kn, k)q(k|kn)dk

)
δkn(k).

If k = k̃, go to the Step 3. Otherwise, i.e., k = kn, return to Step 1.

Fine stage:

Step 3. Accept k as a sample with probability

γf (kn, k) = min

(
1,
Q(kn|k)π(k)

Q(k|kn)π(kn)

)
, (3.10)
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i.e., kn+1 = k with probability γf (kn, k), and kn+1 = kn with probability 1−γf (kn, k).

2

Using the argument as in [34], the acceptance probability (3.10) can be simplified

as

γf (kn, k) = min

(
1,
π(k)π∗(kn)

π(kn)π∗(k)

)
.

In our numerical example, we use a random walk to generate proposals for the

posterior distribution, i.e., at the nth step, we propose α = αn + hαuα, where uα is

generated from a N(0, I) distribution. Similarly, we propose θ = θn + hθuθ, where uθ

is also generated from a N(0, I) distribution. Here hα and hθ represent the step size

of the jump in each step of the Metropolis-Hastings algorithm. The values of hα and

hθ affect the convergence of the MCMC algorithm. The prior distribution of α can

be taken to be N(αo, σ
2
αI). Similarly, the prior distribution of θ can be taken to be

N(θo, σ
2
θI).

Also, we use a simple relation for modeling coarse- and fine-scale errors. In

particular, G is taken to be a linear function with the condition G(0) = 0. Then,

π∗(k) becomes

π∗(k) ∝ exp
(
−‖Fobs − F

∗
k ‖2

σ2
c

)
π0(k),

i.e., on the coarse-scale Fobs|k is assumed to follow N(F ∗k , σ
2
cI) distribution,

L∗(Fobs|k) ∝ exp
(
−‖Fobs − F

∗
k ‖2

σ2
c

)
,

where σc is the precision associated with the coarse-scale model. The parameter

σc plays an important role in improving the acceptance rate of the preconditioned

MCMC method. The optimal value of σc depends on the correlation between ‖F−Fk‖

and ‖F − F ∗k ‖, which can be estimated by offline computations. Assuming that on
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the fine scale Fobs|k follows a N(Fk, σ
2
fI) distribution, i.e.,

L(Fobs|k) ∝ exp
(
−‖Fobs − Fk‖

2

σ2
f

)
,

the acceptance probability (3.8) is given by

γ(kn, k) = min



1,

exp
(
−‖Fobs−Fk‖2

σ2
f

)

exp
(
−‖Fobs−Fkn‖2

σ2
f

)
exp

(
−‖θ−θo‖2

2σ2
θ

+ −‖α−αo‖2
2σ2
α

)

exp
(
−‖θn−θo‖2

2σ2
θ

+ −‖αn−αo‖2
2σ2
α

)



 .

The acceptance probability (3.9) in two-stage MCMC algorithm is similar, i.e.,

γ(kn, k̃) = min





1,
exp

(−‖Fobs−F ∗k̃ ‖2
σ2
f

)

exp
(−‖Fobs−F ∗kn‖2

σ2
f

)
exp

(
−‖θ−θo‖2

2σ2
θ

+ −‖α−αo‖2
2σ2
α

)

exp
(
−‖θn−θo‖2

2σ2
θ

+ −‖αn−αo‖2
2σ2
α

)




,

and the acceptance probability (3.11) becomes

γf (kn, k) = min


1,

exp
(
−‖Fobs−Fk‖2

σ2
f

)
exp
(
−‖Fobs−F

∗
kn
‖2

σ2
c

)

exp
(
−‖Fobs−Fkn‖2

σ2
f

)
exp
(
−‖Fobs−F

∗
k ‖2

σ2
c

)


 .

3.5. Numerical results

3.5.1. Convergence estimation

The numerical results are presented here to show the validity of error estimation

and the sampling method. We consider the expected value of the water-cut function

(2.4) because it is one of the important properties for reservoirs. First, the tests

are completed for single facies permeability field, and then channelized cases are

considered.
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3.5.1.1. Single facies

In the first simulation example a permeability field without any channelized

structure is considered. To describe the permeability field, a two-point correlation

function is defined as

R(x, y) = σ2 exp
(
−|x1 − y1|2

2l21
− |x2 − y2|2

2l22

)
. (3.11)

K-L expansion is then used to describe the permeability field. f(θ) (the quantity

of interest) is taken to be water-cut function F . One injector at (0, 0.5) and one

producer at (1, 0.5) are considered when we run the forward model in the reference

permeability field to get the fractional flow as discussed in Section 2.1 Eq. (2.4). The

numerical estimation results are shown in Table 3.1.

We consider two sets of correlation lengths in our numerical examples. In the

first example, we take l1 = 0.1, l2 = 0.4 and σ2 = 2 with grid number 50 × 50 and

θ’s are taken from a log-normal distribution. Eigenvalues decrease rapidly as show

in Figure 3.4, and we can truncate when it is below a threshold. The eigenfunctions

corresponding to the leading eigenvalues in this case is shown in Figure 3.5.

In our numerical examples, we collect samples for π(θ). The MCMC process with

random walk proposal step size 0.3 is used to get samples of F (θ) as a different number

of K-L terms are taken into account. In this case, the proposal θ = θn+ 0.3∗ ε, where

θn represents current value on MCMC chain and ε ∼ N(0, 1). The chain has 10000

iterations with the first 500 samples as burn-in period. The Monte Carlo integration

retaining all the terms in the discrete K-L expansion is considered to be true value of

Eπ(θ)F (θ). Samples with different number of truncated terms are taken to compute

Eπ̃(θ)F (θ) in different cases to compare with the true one.

In our second example, we take the case with l1 = l2 = 0.2 and σ2 = 2. Table
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Fig. 3.4. Descending eigenvalues for l1 = 0.1, l2 = 0.4 and σ2 = 2.

3.1 shows the results when the number of truncated terms M varies. In both cases,

the errors decrease with the same convergence rate related to the sum of eigenvalue

remainders of R(x). This can be observed more clearly from Figure 3.6, while the data

sets {(∑N
i=M+1 λ

(θ)
i )

1
2 , |EπF −Eπ̃F |} can be fitted as a line. Namely, the relationship

between |EπF −Eπ̃F | and (
∑N

i=M+1 λ
(θ)
i )

1
2 is linear as shown in Theorem 3.3.1, while

ignoring the errors in computing F (θ).

3.5.1.2. Channelized reservoirs

In our next example, we consider a permeability field with three facies. It is

assumed that there is a high permeability layer in the middle and a low permeability

layer in the two ends. The corresponding two interfaces are chosen randomly with the

condition that the upper facies boundary is always above the lower facies boundary.

The two different channels are populated using two log-Gaussian random fields from

the truncated K-L expansions with two-point correlation function (3.11). The high

permeable layer has correlation lengths l1 = 0.1, l2 = 0.4 and σ = 1, and the low
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Fig. 3.5. Top 21 eigenvectors.

permeable layer has correlation lengths l1 = l2 = 0.2 and σ = 0.4. For both interfaces,

a 1-d version of Eq. (3.11) is used with correlation length l = 0.05 and σ = 1.5.

We take a generated permeability field as reference, and run the forward model

with one injector at (0, 0.5) and a producer at (1, 0.5) in this reference permeability

field to get the fractional flow data Fobs. A MCMC chain for 10000 iterations is run

to get the posterior of permeability field, with the first 500 samples as burn-in period.

As the number of terms in the truncations of K-L expansions varies, the estima-
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Table 3.1. Posterior errors |EπF − Eπ̃F | when the K-L expansion is truncated to M

terms. Left: l1 = 0.1, l2 = 0.4, σ2 = 2 and σ2
f = 0.001; Right: l1 = 0.2,

l2 = 0.2, σ2 = 2 and σ2
f = 0.005.

M (
∑N

i=M+1 λ
(θ)
i )

1
2 |EπF − Eπ̃F |

5 1.111681 0.081809

10 0.750662 0.106264

15 0.517555 0.063635

20 0.337901 0.030207

25 0.189272 0.017931

30 0.071924 0.011225

M (
∑N

i=M+1 λ
(θ)
i )

1
2 |EπF − Eπ̃F |

5 1.176697 0.308118

10 0.820661 0.191601

15 0.566938 0.119590

20 0.378454 0.059173

25 0.248267 0.033023

30 0.123347 0.014965

tions of posterior errors, similar to Table 3.1, are reported in Table 3.2. The Monte

Carlo integration retaining all the terms in the discrete K-L expansions is considered

to be true value. In Table 3.2, we can see that the error between the true value and

the estimated value from the truncated posterior decreases consistently as we increase

the number of the terms retained in K-L expansion. If we further plot the errors, we

can find that the errors lie on a plane (see Figure 3.7) as indicated in Theorem 3.3.2

in Section 3.3.2.

3.5.2. Matching permeability with reduced parameters

In this example we will show that the reference permeability field can be recovered

from matching the observations and the quality of matches is certainly affected by

the truncation of expansions. There is a high permeable layer in the middle and

low permeable layers in the two ends with the same correlation lengths as in Section

3.5.1.2. The interfaces are taken as a linear interpolation of independent points.
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Fig. 3.6. Linear fit of {(∑N
i=M+1 λ

(θ)
i )

1
2 , |EπF −Eπ̃F |}. Left: l1 = 0.1, l2 = 0.4, σ2 = 2

and σ2
f = 0.001; Right: l1 = 0.2, l2 = 0.2, σ2 = 2 and σ2

f = 0.005.

In the first part, we truncate the K-L expansion and retain only the first 20

terms. We consider 25 points on the facies. So the dimension of θ is 40 and the

dimension of α is 25. The two-stage MCMC method is used to sample from the

posterior. The initial facies boundaries are taken to be straight lines joining the two

ends of the known facies boundaries. We use random walk to perturb θ and α with

the step size 0.25 and 0.05, respectively, and with independent Gaussian priors for

θ and α. We run the MCMC chain for 10000 iterations and leave out the first 500

samples as burn-in period.

In Figure 3.8, the reference permeability field, the initial permeability field and

the mean of the posterior permeability field are shown. We can see that the sample

mean is very close to the reference field. On the left plot of Figure 3.9 we can see

that the sample estimate of the fractional flow is very close to the observed data.

From the right plot of Figure 3.9 we can see that combined error decreases nearly to

zero and stays there, so the Markov Chain has converged. The two-stage MCMC has

higher acceptance rate [34] (four times in these calculations), because it rejects the

bad proposal fast in the first stage, which is inexpensive. Next, we repeat the same
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Table 3.2. Posterior errors |EπF − Eπ̃F | when the K-L expansion is truncated to M

terms for different facies.

M1 M2 M̃ (
∑N1

j=M1+1 λ
(θ)
1j )

1
2 (

∑N2

j=M2+1 λ
(θ)
2j )

1
2 (

∑Ñ
i=M̃+1 λ

(α)
i )

1
2 |EπF − Eπ̃F |

5 5 5 0.526235 0.786077 0.853727 0.109464

10 5 5 0.367011 0.786077 0.853727 0.116172

10 10 10 0.367011 0.530798 0.477141 0.051925

15 10 10 0.253542 0.530798 0.477141 0.093109

15 15 10 0.253542 0.365967 0.477141 0.053869

20 15 15 0.169250 0.365967 0.210844 0.047356

20 20 15 0.169250 0.238932 0.210844 0.019996

Fig. 3.7. Plots of (max{(∑N1

j=M1+1 λ
(θ)
1j )

1
2 , (

∑N2

j=M2+1 λ
(θ)
2j )

1
2}, (∑Ñ

i=M̃+1 λ
(α)
i )

1
2 , |EπF

−Eπ̃F |).
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reference log−permeability field initial log−permeability field

sampled log−permeability field posterior mean

Fig. 3.8. Top left: The true log-permeability field. Top right: Initial log-permeability

field. Bottom left: One of the sampled log-permeability fields. Bottom Right:

The mean of the sampled log-permeability fields from two-stage MCMC using

20 K-L terms.

procedure of sampling the posterior but we retain 25 terms in the K-L expansion in

this case. We use the same reference permeability field and the fractional flow data.

The numerical results are shown in Figures 3.10 and 3.11. We can see the sampled

mean of the permeability field is more accurate than the previous example with 20

K-L coefficients.
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Fig. 3.9. Left: Red line designates the fine-scale reference fractional flow, the blue line

designates the initial fractional flow and the green line designates fractional

flow corresponding to mean of the sampled permeability field from two-stage

MCMC. Right: Fractional flow errors vs. accepted iterations when sampled

from the posterior distribution retaining 20 terms in K-L expansion.

reference log−permeability field initial log−permeability field

sampled log−permeability field posterior mean

Fig. 3.10. Top left: The true log-permeability field. Top right: Initial log-permeabil-

ity field. Bottom left: One of the sampled log-permeability fields. Bot-

tom Right: The mean of the sampled log-permeability fields from two-stage

MCMC using 25 K-L terms.
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Fig. 3.11. Left: Red line designates the fine-scale reference fractional flow, the blue line

designates the initial fractional flow and the green line designates fractional

flow corresponding to mean of the sampled permeability field from two-stage

MCMC. Right: Fractional flow errors vs. accepted iterations when sampled

from the posterior distribution retaining 25 terms in K-L expansion.
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CHAPTER IV

ENSEMBLE-LEVEL MULTISCALE FINITE ELEMENT AND

PRECONDITIONER FOR CHANNELIZED SYSTEMS AND APPLICATIONS

When we consider multiscale flow in porous media, it is assumed that we can

characterize the ensemble of all possible flow scenarios, that is, we can describe all

possible permeability configurations needed for the simulations. We construct coarse

basis functions that can provide inexpensive coarse approximations that are: (1) ade-

quate for all possible flow scenarios in the given ensemble; (2) robust with respect to

the small scales and high variations in each flow scenario. The coarse approximations

developed here can be used as a multiscale finite element, or as the coarse solver in

a two-level domain decomposition iterative method. The methods presented here ex-

tend, to the ensemble case, some of the results in [27] and [40]. Specifically, ensembles

of permeability fields with high contrast channels and inclusions are considered. Our

objective here is to construct special multiscale basis functions for the whole ensemble

of flow scenarios. The coarse basis functions are pre-computed for permeability fields

with certain topological properties. This is a preprocessing step. This procedure

avoids constructing basis functions or computing upscaled parameters for each per-

meability realization. Then, for any permeability, the solution of elliptic equation can

be projected to the space spanned by these pre-computed basis functions. We apply

this coarse multiscale approximation to the design of two-level domain decomposition

preconditioner. Numerical experiments show that the ensemble-level multiscale finite

element method provides a good approximation to the fine-scale solution. Numerical

experiments also show that the ensemble-level domain decomposition preconditioner

condition number is independent of the high contrast in the coefficient.
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This chapter is organized in the following way: in the first two sections, we

present the preliminary and motivation of the ensemble-level methods. Then, we first

present the methods we use to complete coarse space and choose a preconditioner.

Based on these discussions, we provide more details of the ensemble-level cases for

these methods. In the following section, we present numerical results of the ensemble-

level methods by comparing the solutions with fine-scale solution. We also explore

the behavior of the proposed method in sampling processes.

4.1. Introduction

Many problems in applications occur in media that contains multiple scales and

has a high contrast in the properties. For example, the second order elliptic equation

with heterogeneous coefficients

−div(k(x)∇u) = f in D (4.1)

subject to some boundary conditions is used to model fractured reservoirs. Typically,

as we mentioned, the permeability field has large variations. We use k(x) to denote a

special set of permeability fields we are interested in. These large variations of k bring

additional small-scale parameters into the problem. Also the unknown k can bring

other difficulties in modeling and computing the flow. In these cases, the system (4.1)

and the numerical method applied need special treatments [23, 24, 86]. In our case,

we will only study the possible flow scenarios modeled by (4.1).

Roughly speaking, when only few flow scenarios are considered, we can divide the

approaches proposed to solve such systems in two groups, depending if they target

to compute a coarse-grid approximation, or a fine-grid (as fine as resolution of k(x))

approximation.
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For approaches that involve the solution on a coarse grid we refer to [1, 3, 4, 5, 6,

7, 10, 12, 17, 24, 25, 27, 31, 32, 33, 28, 44, 45, 48, 49, 62, 76, 77, 78, 83, 85, 93, 103].

Coarse-grid properties, such as upscaled conductivities or multiscale basis functions,

are constructed that represent the media or the solution on the coarse grid in these

approaches. We note that, a naive extension of these methods for the case of many

possible flow scenarios would require the computations of basis functions or upscaling

parameters for each possible scenario in the ensemble. In general, computations of

optimal basis functions is expensive in many practical cases. In this chapter, we will

use an ensemble-level approach, meaning that we will construct and save coarse basis

functions in a pre-processing step. This pre-processing involves the identifications of

one or few permeability field(s) that characterize the high-contrast structure of the

whole ensemble. Then, we use this especial field and apply ideas from [26, 27, 40] to

construct the basis functions. The resulting spaces can be used in computations of

any flow scenario in the ensemble.

From the approaches that compute fine grid solutions, we only mention iterative

methods of domain decomposition type. In general, numerical discretization of flow

problems in such heterogeneous media results to very large ill-conditioned systems of

linear equations. Therefore, robust iterative methods that converge independent of

the contrast and multiple scales are needed (e.g., [9, 19, 41, 71, 84, 96] and references

therein). A domain decomposition method uses local subdomain solvers and a coarse

global solver to iterate until some convergence criteria is reached. In order to obtain

robust domain decomposition, the coarse solver needs to be selected carefully. Using

an inadequate coarse solver may lead to contrast-dependent number of iterations

required for convergence. In this paper we construct a two-level domain decomposition

for a whole ensemble of flow scenarios. The idea is again, to use a coarse solver that

uses multiscale basis functions constructed (as in [26, 39, 40]) for special permeability
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fields that characterize the high-contrast structure of the ensemble of flow scenarios.

We note that, in many applications, we have some prior information, for example

the existence and approximate positions of channels. In these cases, it is possible to

characterize the interesting flow scenarios and permeability fields, denoted here by

{km}m∈I , where I is an index set. According to the prior information, the permeabil-

ity fields {km}m∈I can share some topological similarities. We propose ensemble-level

methods in this paper to take advantage of these topological similarities to save com-

putational time on constructing multiscale basis functions and domain decomposition

preconditioner.

The idea is to construct basis functions by selecting a few realizations of perme-

ability fields {km}m∈I . Let us assume that N permeability fields {km}m∈{i1,··· ,iN} are

selected. In practice, N is small and will correspond to the number of topologically

equivalence (as defined later) classes of permeability fields in the ensemble. After a

coarse grid of the domain is introduced, the multiscale basis functions can be con-

structed in each coarse grid block for all scenario in the subset {km}m∈{i1,··· ,iN}. Then,

these pre-computed basis functions span a finite dimensional space. Once this special

space is constructed and saved, for any permeability field coming from {km}m∈I , we

can project the solution onto this space. By pre-computing the basis functions on a

selected set rather than on the whole index set, the computational expense can be

reduced, especially when the size of I is large. The same idea is used in the construct-

ing of a two-level domain decomposition preconditioner to guarantee the robustness

of the system.

Our ensemble-level multiscale finite element methods (MsFEMs) for solving the

problem on a coarse grid, as well as, in two-level preconditioners, are based on the

methods designed in [27, 39, 40]. The construction of coarse spaces starts with an ini-

tial choice of multiscale basis functions that are supported in coarse regions sharing a
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common node. These basis functions are complemented using weighted local spectral

problems defined in coarse blocks sharing a common node. The initial choice of mul-

tiscale basis functions is important for the computation of the weight function in the

local spectral problem. Furthermore, we identify small eigenvalues and correspond-

ing eigenvectors that represent important features of the solution. Coarse spaces are

constructed by multiplying the selected eigenvectors with the initial multiscale basis

functions. The estimate convergence of MsFEM and condition number of two-level

preconditioners depends on the maximum of the inverse of the eigenvalues whose

eigenvectors are not included in the coarse space. The maximum is taken over all

coarse nodes. Details will be provided in Section 4.3.1. It is known that the number

of iterations required by iterative methods, such as domain decomposition methods,

is affected by the contrast in the media properties that are within each coarse-grid

block [41]. We choose the initial multiscale space such that the eigenvalues of the

local spectral problems increase rapidly.

4.2. Motivation of the ensemble-level idea

The distribution of subsurface properties is mainly controlled by the locations

of distinct geologic facies with sharp contrasts in properties, such as permeability

and porosity, across facies boundaries [100]. Channelized permeability fields are high

contrast media with certain topological similarity. We use multiscale methods to

compute fluid behavior. The computational time in this case is mostly spent on con-

structing multiscale basis functions for each permeability field. In order to use the

topological similarity of the permeabilities in the ensemble and reduce computational

expense, we come to the idea of ensemble-level methods, which only construct multi-

scale basis functions based on a subset of permeability fields. As the basis functions
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are pre-computed, for the other permeability field, the solution can be projected di-

rectly to the space spanned by these functions, instead of building their own basis

functions. Therefore, the computational time could be saved. In our discussion be-

low, we assume that some information about the channelized permeability ensemble

is known, for example, the number of channels and the existence of topological equiv-

alent among corresponding channels. Especially, we propose to use the permeability

field with all the members of the ensemble as its inclusion to construct multiscale

basis functions.

These special basis functions can be typically constructed by solving the local

flow equation on a coarse grid subject to some boundary conditions. To design robust

iterative methods for the solution of the fine-scale problem, one can use coarse-grid

multiscale solutions and additional local subdomain corrections (as in domain de-

composition methods) for faster convergence. Domain decomposition methods use

the solutions of local problems and a coarse problem in constructing preconditioners

for the fine-scale system. The number of iterations required by domain decompo-

sition preconditioners is adversely affected by the contrast in the media properties

[41]. Because of the complex geometry of fine-scale features (e.g., complex fracture

geometry), it is very often impossible to separate low and high conductivity regions

into different coarse grid blocks. Thus, it may require many iterations for iterative

methods to converge. It is important to build a preconditioner, which gives condition

number independent of high contrast. Our ensemble approach can give an effective

preconditioner based only on pre-selected permeability fields.

As our ensemble-level methods decrease computational expense in the modeling

of flow and transport, the dynamic data integration processes can then take advan-

tages from these methods. The problem of finding corresponding parameter fields

given observation data has been explored. Bayesian approach is usually used in find-
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ing the distribution of the parameter fields. This often requires large number of

forward model runs to get convergence. As the computation ability is limited, a

method requires less computational time in each run is preferred. In this case, more

samples can be collected and the conclusion based on large number of samples is more

reliable. Methods have been developed [34, 68, 69, 70, 64] to build approximation of

the fine-scale solution, while the approximation requires less computational expense.

Our ensemble-level methods can serve the same purpose in a different way for the

sampling processes.

4.3. Ensemble-level MsFEM and ensemble-level preconditioner

4.3.1. MsFEM and preconditioner

In this section we review the constructions of coarse scale approximation and

preconditioners for a given permeability field k(x). In Section 4.3.2 we will apply

these procedures to a special permeability field that characterizes a whole ensemble.

We consider the second order elliptic equation with heterogeneous coefficients

−div(k(x)∇u) = f in D (4.2)

subject to some boundary conditions, for example, linear or Neumann boundary

conditions (see [32]). k(x) is a heterogeneous spatial permeability field with multiple

scales and high contrast, and D is a union of disjoint polygonal subdomains {Di}Ni=1.

The notation introduced in this section will be used later on.

Let T H be a usual conforming partition of D into finite elements (triangles,

quadrilaterals and etc.). We call this partition the coarse grid and assume that the

coarse grid can be resolved via a finer grid T h, which is a refinement of T H . The fine

grid is fine enough to describe the coefficient k, but too fine to actually do practical
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computations. And the coarse grid is sufficiently coarse to do practical computations,

but too coarse to accurately describe the variations of k.

Our objective is to seek multiscale basis functions. Using the coarse triangulation

T H , we introduce basis functions {Φi}Nci=1, where Nc is the number of coarse basis

functions. Let {yi}Nvi=1 be the vertices of the coarse mesh T H , Nv be the number of

coarse nodes, and define the neighborhood of the node yi by

$i =
⋃
{Kj ∈ T H ; yi ∈ Kj}

(see Figure 4.1) and the neighborhood of the coarse element K by

$K =
⋃
{$j ∈ T H ; yj ∈ K}.

To capture the fine scale features of the solution, the basis functions can be

constructed in different ways. For example, the nodal basis of the standard finite

element space, denoted as χ0
i , can be used. The other choice is to find multiscale

finite element basis functions χmsi , that coincide with χ0
i on the boundaries of the

coarse partition and satisfy

div(k∇χmsi ) = 0 in K ∈ $i, χmsi = χ0
i in ∂K, ∀ K ∈ $i,

where K is a coarse grid block within $i (see [32] for more details). Also, we can take

energy minimizing basis functions χemfi (see [106]), where basis functions are obtained

by minimizing the energy of the basis functions subject to a global constraint. More

precisely, one can use the partition of unity functions {χemfi }Nvi=1, with Nv being the

number of coarse nodes, that provide the least energy. This can be accomplished by

solving

min
∑

i

∫

$i

k|∇χemfi |2,
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K

ω
i

i

Fig. 4.1. Schematic description of coarse regions.

subject to
∑

i χ
emf
i = 1 with Supp(χi) ⊂ $i, i = 1, · · · , Nv. Methods using limited

global information to construct coarse basis can be found in [31, 83, 106]. Over-

sampling techniques [32, 45, 49] are also proposed, since the initial choice of basis

function is crucial for determining the dimension of the coarse space needed to obtain

an accurate coarse-scale approximation and robust preconditioners.

These coarse spaces often need to be complemented if more accurate coarse-

scale solutions or more robust preconditioners are sought. For this reason, we seek

additional basis functions that improve the accuracy of the approximation. We will

consider complementing the coarse spaces described above by finding appropriate

local fields in $i and by multiplying them with our multiscale functions. We start

with the coarse space generated by one basis function per node χ0
i , χ

ms
i , χemfi or so

on. And further we complement this space by adding basis functions in each $i.

Consider the eigenvalue problem

−div(k∇ψ$il ) = λ$il k̃ψ
$i
l ,
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Fig. 4.2. Schematic description of basis function construction. Left: subdomain $i.

Right-Top: Selected eigenvector ψ`i with small eigenvalue. Right-Bottom:

product χiψ
`
i where χi is the initial basis function of node i.

where λ$il and ψ$il are eigenvalues and eigenvectors in $i and k̃ is defined by

k̃ =
1

H2
k

Nv∑

j=1

|∇χj|2. (4.3)

We recall that χi are initial multiscale basis functions, e.g., χi = χ0
i or χi = χmsi

or χi = χemfi , and Nv is the number of the coarse nodes. One can choose other

multiscale basis functions. Then, multiscale basis functions will be constructed as

χiψ
l
i (see Figure 4.2 for illustration), and the space will be span{χiψli}. Furthermore,

the coarse-scale solution is sought based on (4.5) with the coarse spaces defined by

(see [27]),

V k
0 = span{Φk

i,` = χiψ
l
i}. (4.4)

We seek u0 =
∑

i ciΦ
k
i , where ci are determined from

ak(u0, v) = f(v), for all v ∈ V k
0 , (4.5)
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where

ak(u, v) =

∫

D

k(x)∇u(x)∇v(x)dx for all u, v ∈ H1
0 (D) (4.6)

and

f(v) =

∫

D

f(x)v(x)dx for all v ∈ H1
0 (D).

The coarse problem (4.5) is equivalent to a coarse linear system. Let the coarse

matrix be given by Ak0 = Rk
0A

k(Rk
0)T , where Ak is the fine-scale finite element matrix

representation of the bi-linear form ak in (4.6) and

(Rk
0)T = [Φk

1, . . . ,Φ
k
Nc ].

Here Φi’s are discrete coarse-scale basis functions defined on a fine grid (i.e., vectors).

Multiscale solution u0 is given by

Ak0u0 = f0,

where f0 = (Rk
0)T b.

A lot of iterations are needed to solve this linear system, when the permeability

varies largely over spatial domain. A preconditioner can help in building a robust

system. The coarse basis function Rk
0 can be used in designing two-level domain

decomposition preconditioners as well. We denote by {D′i}Ni=1 the overlapping de-

composition obtained from the original non-overlapping decomposition {Di}Ni=1 by

enlarging each subdomain Di to

D′i = Di ∪ {x ∈ D, dist(x,Di) < δi}, i = 1, . . . , N,

where dist is some distance function and let V i
0 (D′i) be the set of finite element

functions with support in D′i. We also denote by RT
i : V i

0 (D′i)→ V h the extension by

zero operator.
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We can solve the fine-scale linear system iteratively with the preconditioned

conjugate gradient (PCG) method. Any other suitable iterative scheme can be used

as well. We use the two-level additive preconditioner of the form

(Bk)−1 = (Rk
0)T (Ak0)−1Rk

0 +
N∑

i=1

RT
i (Aki )

−1Ri,

where the local matrices are defined by

vAkiw = ak(v, w) for all v, w ∈ V i
0 (D′i), (4.7)

i = 1, · · · , N . See [71, 96] and references therein. The application of the precon-

ditioner involves solving a coarse-scale system and solving local problems in each

iteration. In domain decomposition methods, our main goal is to reduce the number

of iterations in the iterative procedure (see [26, 39, 40] for more details).

4.3.2. Ensemble-level MsFEM and preconditioner

Next we consider the ensemble-level construction of MsFEM basis for multiscale

approximation and preconditioning. Let {km}m∈I be given as a set of channelized

permeability fields, where I is an index set. We assume that every permeability field

km, consists of N ch high-conductivity channels and N in high-conductivity inclusions.

For simplicity we assume that the high conductivity channels and inclusions are sur-

rounded by a background of conductivity one. To explain our assumptions more

effectively, we denote by Cs(km) the s−th channel of km, s = 1, · · · , N ch. Analo-

gously, Is(km) denotes the s−th inclusion of km, s = 1, · · · , N in.

Here we assume that all permeability fields in the ensemble {km}m∈I are topo-

logically similar in the sense that:

1. Every km has the same number of channels N ch and inclusions N in, and
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2. Given any two permeabilities km and km′ , each channel Ci(km) of km is topo-

logically equivalent to the channel Ci(km′) presenting in km′ .

Furthermore, for simplicity of the presentation, we focus on the case of high contrast

binary media, i.e., we are assuming that the background has conductivity value 1

and the channels and inclusions have high permeability value η. See Figure 4.3 for

illustration.
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Fig. 4.3. Topologically similar high contrast binary permeability fields with η = 106.

The right bottom one serves as kW .

For the set {km}m∈I described here, let

kW = max
m

km. (4.8)

We assume that kW containsN ch high-conductivity channels andN in high-conductivity

inclusions and that kW ’s geometrical configuration is topologically equivalent to any

permeability km. We observe that the channels and inclusions of kW are wider/longer

than the corresponding channels and inclusions of any permeability km in the ensem-
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ble.

Here we propose to use the coarse space constructed for kW to obtain multiscale

basis functions for the whole ensemble of fields {km}m∈I . More precisely, we con-

sider the problem of constructing coarse approximations for the second order elliptic

equations

−div(km(x)∇u) = f in D, (4.9)

where m ∈ I. We construct one coarse space (depending only on the coarse partition

and kW ) that is suitable for the coarse scale approximation of these equations.

We use the notation introduced in the previous Section 4.3.1. Denote the mul-

tiscale basis constructed using the field kW by {ΦkW

i }Nci=1. Then, the coarse space we

are going to use for the whole ensemble is

V kW

0 = span{ΦkW

i }Nci=1. (4.10)

For any km, Eq. (4.9) can be posed in V kW

0 as: find u0 ∈ V kW

0 such that

akm(u0, v) = f(v), for all v ∈ V kW

0 (4.11)

where the bilinear form akm is defined as in (4.6) by

akm(u, v) =

∫

D

km(x)∇u(x)∇v(x)dx for all u, v ∈ H1
0 (D). (4.12)

We can also write (4.11) in discrete setting as

Ãkm0 u0 = f̃km0 , (4.13)

with

Ãkm0 =

∫

D

km(x)∇ΦkW

i ∇ΦkW

j dx i.e. Ãkm0 = RkW

0 Akm(RkW

0 )T , (4.14)
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where Akm is the fine-scale finite element matrix representation of the bi-linear form

akm in (4.12) and, as before,

(RkW

0 )T = [ΦkW

1 , · · · ,ΦkW

Nc ],

and f̃km0 = (RkW

0 )T b.

With respect to the equations in (4.9), we note that, if we use the naive ap-

proach of constructing basis functions for each permeability km, most of the compu-

tational time is spent on constructing the coarse basis functions. The ensemble-level

coarse space idea helps to reduce the computational complexity of obtaining multi-

scale coarse approximations of the equations in (4.9). Here, the basis constructions

are pre-computed using only the permeability kW . Our numerical examples show

that, under our assumptions on the ensemble {km}, the set of basis functions cap-

tures accurately the fine scale solution of each one of the equations in (4.9).

The multiscale space V kW

0 = span{ΦkW

i }Nci=1 can also be used for preconditioning.

In this case, we avoid constructing expensive (coarse solvers for the) preconditioner for

each proposal. Having the expensive part of the preconditioner to be pre-computed

only once (constructed using kW ) can save computational time when we need to solve

the equations in (4.9) for different k’s.

The fine scale matrix form of Eq. (4.9) is

Akm0 u0 = f0.

We propose to use the following preconditioner,

(B̃kW )−1 = (RkW

0 )T (Ãkm0 )−1RkW

0 +
N∑

i=1

RT
i (Akmi )−1Ri, (4.15)

where the local matrices are defined in (4.7).

The ensemble-level preconditioner here involves solving local problems using the
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current permeability km. It also involves solving a coarse-scale system with fixed

multiscale basis {ΦkW

i }Nci=1 coming from kW , i.e. the coarse matrix will be assembled

each time as shown in (4.14). Similar to the idea of the ensemble MsFEM, since the

multiscale basis is pre-computed, computational time is saved, i.e. the methods is

more efficient than in the case of constructing a new coarse problem every time for

different km.

4.4. Numerical results

In this section, we present representative numerical results for ensemble coarse-

scale approximation (4.13), and for the two level ensemble additive preconditioner

(4.15) with the local spectral multiscale coarse space as discussed above. We also

present a sampling example using both ensemble coarse-scale approximation and en-

semble preconditioner to accelerate the forward computation, and consequently make

the sampling process more efficient.

4.4.1. Ensemble-level multiscale and preconditioner

The equation −div(k∇u) = 1 is solved with boundary conditions u = x + y on

∂D, while the multiscale basis functions are constructed through solving−div(kW∇u) =

1. We take D = [0, 1] × [0, 1] that is divided into 8 × 8 equal square subdomains.

Inside each subdomain we use a fine-scale triangulation, where triangular elements

constructed from 10× 10 squares are used.

We consider the scalar coefficients k(x) and kW (x) as in (4.8), depicted in Figure

4.4 that corresponds to a background 1 and high conductivity channels η = 104.

First, the accuracy of MsFEMs is investigated (see also [27] for more details). In

Figure 4.5, we compare coarse-scale approximations of the solution for various spaces
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Fig. 4.4. Coefficients k (left) and kW (right).

on 8 × 8 coarse grid. In the top left figure, the fine-scale solution is depicted. In

the top middle figure, the solution computed with multiscale basis functions with

linear boundary conditions (χms) is plotted. This multiscale coarse space is denoted

as MS. In the top right, we depict the solution computed with energy minimizing

basis functions (χemf ) and denote the coarse space to be EMF. The figures in the

second row correspond to coarse-scale approximations computed using spectral basis

functions, where we use the eigenvectors that correspond to asymptotically small

eigenvalues as the contrast increases. Here, the bottom left figure corresponds to the

case where the initial space consists of piecewise linear functions, the bottom middle

figure corresponds to the case where the initial space consists of multiscale basis

functions with linear boundary conditions, and the bottom right figure corresponds

to the case where the initial space consists of energy minimizing multiscale basis

functions. The multiscale coarse spaces in these cases are denoted as LSM1, LSM-RE

and RLSM, respectively. From the results, we can conclude that the ensemble-level

MsFEM does provide good approximations to fine scale solution when proper local
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boundary conditions are applied.

Fig. 4.5. Coarse-scale approximations when η = 104. The errors are in the en-

ergy norm (| · |A) and H1 norm ( | · |1). The results are MS(36),

|e|A = 0.26374, |e|1 = 0.25351; EMF(36), |e|A=0.086747, |e|1 = 0.085539;

LSM1(44), |e|A = 0.35462, |e|1 = 0.34563; LSM-RE(44), |e|A = 0.088361,

|e|1 = 0.086933; RLSM(44), |e|A = 0.088361, |e|1 = 0.086933.

For preconditioning results, we build a precondtioner for −div(k∇u) = 1 based

on kW by (4.15). We will investigate the behavior of the condition number as we

increase the contrast for various choices of coarse spaces. We will show that, with the

ensemble preconditioner (4.15), one can achieve contrast-independent results with

a small dimensional coarse space. In our simulations, we run the preconditioned

conjugate gradient (PCG) until the `2 norm of the residual is reduced by a factor of

1010. In Table 4.1, we show the number of PCG iterations and estimated condition
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numbers. We also show the dimensions of the coarse spaces. We use L̃SM to denote

the local spectral multiscale coarse space dened in (4.4) where k̃ in (4.3) is used in

computing local eigenvalues with χi = χMS
i . When energy minimizing is used, the

space is denoted as L̃SM(EMF). The From the table we can observe that the number

of iterations and condition numbers do not change as the contrast increases for the

last three coarse spaces, when the ensemble-level preconditioners are used. On the

contrary, the ensemble precondtioner methods fail for the first three coarse spaces.

Table 4.1. Number of iterations until convergence and estimated condition number for

the PCG and different values of the contrast η with the coefficient depicted

in Figure 4.4. We set the tolerance to 1e-10.

η Linear MS EMF
103 51(5.05e+002) 52(2.76e+002) 46(1.23e+002)
106 80(5.12e+005) 77(2.61e+005) 70(1.05e+005)
109 152(5.12e+008) 170(2.61e+008) 147(1.05e+008)
Dim 49 49 49

η LSM1 L̃SM L̃SM(EMF)
103 35(1.22e+001) 33(1.06e+001) 35(1.13e+001)
106 40(1.52e+001) 38(1.24e+001) 39(1.22e+001)
109 46(1.52e+001) 41(1.24e+001) 42(1.22e+001)
Dim 61 61 61

4.4.2. Application in permeability sampling

The inverse problem of finding the permeability field given certain observations

(Section 2.4) is also widely studied [34, 92]. For the inverse problem, a sampling

process is often involved. This sampling process requires a large number of forward

solutions of the governing equation (4.2), which is usually expensive even for a single

solution. The inversion ability of sampling can be restricted by the number of forward

solutions. The accuracy and efficiency of the methods used to solve the governing

equations are then important. The speed up in forward solving will allow the sam-
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pling process to accommodate more realizations. This will lead to reliable results

by convergence theorem. As we discuss above, both ensemble MsFEM and ensemble

preconditioner are designed for saving computational time, so they can improve the

efficiency of a sampling process.

In our numerical example, we take a reference permeability, and use a two-stage

MCMC (see [34]), to recover this reference permeability. The ensemble MsFEM

results (4.13) will be used as an approximation on coarse stage, and the fine stage

solution is obtained by using the ensemble preconditioner (4.15) constructed in Section

4.3.2.

Now the forward equation −div(k∇u) = 1 is solved with boundary conditions

u = x + y on ∂D. The domain D = [0, 1] × [0, 1] is divided into 8 × 8 equal square

subdomains, with a fine-scale triangulation consisting 10 × 10 squares as in Section

4.4.1.

The coarse stage MCMC chain has 1000 iterations, with all the proposals com-

ing from a library of possible permeabilities. The acceptance rate is 0.3191 for the

two-stage MCMC, while a standard MCMC has acceptance rate at 0.1419. More dis-

cussions about two-stage MCMC can be found in [34]. By plotting the solution errors

versus iterations in Figure 4.6, we can observe that the MCMC chain converges. Fig-

ure 4.7 shows that the desired reference permeability field could be recovered through

our sampling process by taking advantages of the ensemble methods.

4.5. Remarks

The success of ensemble-level MsFEM and ensemble-level preconditioner requires

good pre-knowledge of the topological structure in the ensemble permeability fields.

The possible lack of good understanding of the geometric structure brings limitations
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to these methods.

Currently, we assume that the ensemble set {km}m∈I is topologically similar.

The coarse basis functions are built in set {km}m∈{i1,··· ,iN} (kW = maxm(km) in the

description of the methods for simplicity). We also assume that the set {i1, · · · , iN}

can be properly chosen. But in practice, it is possible that the understanding to the

ensemble’s topological structure is incomplete, and so the chosen of {km}m∈{i1,··· ,iN}
is not suitable. For example, we now assume that the number of high permeability

channels and inclusions in the ensemble members are the same and known. But in

practice it is hard to get full knowledge of this number. It is possible that channels

break into pieces, cross each other and so on. We also assume that the orientation of

the channels in the ensemble set are the same and known. This is also a simplified

assumption. It is worth considering the situations that the orientation of channels

varies in the ensemble members.

The above situations can make the choice of {km}m∈{i1,··· ,iN} difficult. An appro-

priate set needs to be select to represent structures of all members in the ensemble

well. We have some numerical examples showing that that the basis functions built

for kW can fail to work for km, if kW has high permeability channels smaller than km.

Including more permeability fields in the chosen set to build coarse basis functions

can give better results, when the geometrical configurations get complicated in the

ensemble. One possible way to extend the above approaches is using the reduced basis

method to construct a reduced dimensional local approximation that allows quickly

computing the local spectral problem [30].
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CHAPTER V

ANOVA-BASED MIXED MSFEM AND APPLICATIONS IN STOCHASTIC

TWO-PHASE FLOWS

The stochastic partial differential system has been widely used to model phys-

ical processes, where the inputs involve large uncertainties. Flows in random and

heterogeneous porous media are one of the cases where the random inputs (e.g.,

permeability) are often modeled as a stochastic field with a high-dimensional ran-

dom parameter. To treat the high dimensionality and heterogeneity efficiently, we

do model reduction in both stochastic space and physical space. We use an analy-

sis of variance (ANOVA)-based mixed multiscale finite element method (MsFEM) to

decompose the high-dimensional problem into a set of lower dimensional problems,

which require less computational complexity, and the mixed MsFEM can capture the

heterogeneities on a coarse grid. To enhance the efficiency of traditional ANOVA,

we develop a new adaptive ANOVA method, where the most active dimensions can

be selected before conducting ANOVA decomposition. A number of numerical exam-

ples in two-phase stochastic flows are presented and showed the performance of the

ANOVA-based mixed MsFEM.

The rest of the chapter is organized as follows. We first present the introduction

and background for two-phase flows in stochastic fields. The following section is de-

voted to the description of mixed MsFEM and probability collocation method (PCM).

We then introduce ANOVA-based and adaptive ANOVA-based mixed MsFEM meth-

ods. After that, we present the numerical results using the methods introduced for

flows in different random porous media.
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5.1. Introduction

An important challenge in modeling flows in porous media is the treatment of

complex heterogeneities and uncertainties in permeability fields. The high and low

permeability may be connected at different scales. The uncertainty may arise from

measurement corruption and incomplete knowledge of the physical properties. One

way to describe the uncertainty is to model the permeability as a random field, which

is often experimentally determined by a covariance function. Stochastic partial differ-

ential equations (SPDEs) are often used in modeling complex physical and engineering

systems with uncertainties, which are usually characterized by a random field with

high-dimensional parameters. To simultaneously tackle the high dimensionality and

the heterogeneities, we use the analysis of variance (ANOVA)-based mixed multiscale

finite element method (MsFEM) for simulation.

Sampling in high-dimensional random space is very difficult. If the sampling

of random space is conducted in full random space, then the number of samples

increases drastically with respect to the dimension of the random space. This is

the notorious curse of dimensionality, which poses great difficulties for the stochastic

approximation in a high-dimensional stochastic space. Instead of dealing with the full

high-dimensional random space, the ANOVA representation can decompose a high-

dimensional model into a set of low-dimensional models [36, 38, 65, 66, 107, 108]. It

was first introduced by Fisher in [36]. The decomposition is motivated by observing

that there are dominant dimensions and interactions among dimensions in many

practical physical systems. In this case, the system accuracy will not be harmed too

much if only relatively low dimensions and the interactions among the low dimensions

are taken into account. The ANOVA decomposition then splits a high-dimensional

stochastic model into many low-dimensional stochastic models, which need much less
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computational efforts. The curse of dimensionality can be considerably suppressed

using the ANOVA.

For each low-dimensional problem, a sparse grid polynomial collocation method

(PCM) can be used. The PCM was first introduced in [95] and has been studied

extensively over the years [53]. The efficiency of the Clenshaw-Curtis-based sparse

grid stochastic collocation was demonstrated by comparing it with other stochastic

methods on an elliptic problem in [105]. In [63], an adaptive hierarchical sparse

grid collocation algorithm was developed. In [58, 59, 60], a multi-element PCM was

employed to study the random roughness problem, stochastic compressible flow, and

plasma flow problems.

At each collocation point, we solve deterministic flow equations in porous me-

dia. To treat the heterogeneity of porous media and recover the mass conservative

velocity field, we use mixed MsFEM [2, 17, 32]. The main idea of mixed MsFEMs

is to incorporate the small-scale information into finite element basis functions and

couple them through a global mixed formulation of the problem. The mixed MsFEMs

share some similarities with a number of multiscale numerical methods such as the

multiscale finite volume method [49], residual-free bubbles [13, 88], two-scale conser-

vation subgrid method [8], variational multiscale method [48], and multiscale mortar

method [9].

In this chapter, we combine ANOVA decomposition and mixed MsFEM for

stochastic two-phase flow equations. The combination of these two model reduction

techniques serves as a remedy to handle the large-scale problems in both stochastic

and spatial spaces. Notice that because the ANOVA decomposition has a large num-

ber of terms if the dimension of random parameter is high, the total computational

cost can still be prohibitive. To improve the efficiency and reduce computational

efforts, we propose a novel adaptive ANOVA technique. The advantage of the pro-
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posed adaptive technique is to obtain sensitivity with regard to every dimension of

the stochastic space, through building a response surface of the function of interest

with small computational efforts. The proposed adaptive ANOVA technique is differ-

ent from the previous adaptive ANOVA methods (ref. [66, 107]). We note that some

adaptive ANOVA, techniques in both spatial and random spaces, were developed in

[66] in the framework of the heterogeneous multiscale method. In this work, we focus

on analyzing the errors introduced by ANOVA decomposition and mixed MsFEM,

respectively. It is important to understand the behavior of the two error contributions

and find a good trade-off between them.

In our numerical examples, we consider the permeability fields with different

statistical properties and heterogeneous structure. We compute the reference solution

on the fine grid and use the Monte Carlo method to sample the random space, and

compare the solutions using ANOVA-based mixed finite element method (FEM) and

ANOVA-based mixed MsFEM with the reference solution. From these computations,

we report errors from both ANOVA truncation and mixed MsFEM discretization,

separately. We observe that, in our numerical examples, the error introduced by

the mixed MsFEM method is the dominant one. By analyzing different functions, we

also better understand the effectiveness of ANOVA-based mixed MsFEM for different

quantities of interest in oil reservoir simulations. The novel adaptive ANOVA-based

MsFEM method is numerically comparable with existing adaptive ANOVA techniques

with less online computations.
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5.2. Background and notations

5.2.1. Two-phase flow problem

We briefly present the two-phase flow problem introduced in Section 2.1 again

in this section. D is a convex bounded domain in Rd (d = 2, 3) and (Ω,F , P ) is a

probability space, where Ω is the set of outcomes, F is the σ-algebra generated by

Ω, and P is a probability measure. The two-phase flow (referred as water and oil,

designated by subscripts w and o, respectively) in random porous media under the

assumption that the displacement is dominated by viscous effects, with the effects

of gravity, compressibility, and capillary pressure neglected. Porosity is considered

to be constant. We formulate the stochastic two-phase flow system (see Eqs. (2.1)-

(2.3)): find random fields p(x, ω) : D̄ × Ω −→ R, v(x, ω) : D̄ × Ω −→ R and

S(x, ω, t) : D̄×Ω×[0, T ] −→ R such that they almost surely (a.s) satisfy the following

equations





div
(
v(x, ω)

)
= Qs

v(x, ω) = −λ(S)k(x, ω)∇p(x, ω)

∂S(x, ω, t)

∂t
+ v(x, ω) · ∇f(S(x, ω, t)) = 0.

(5.1)

Let the coefficient k(x, ω) of Eq. (5.1) be a stochastic field with second moment.

To make k(x, ω) positive, we consider k(x, ω) to be a logarithmic stochastic field, i.e.,

k(x, ω) := exp(a(x, ω)). Here a(x, ω) is a stochastic field and its covariance function

cov[a] known. Then by the K-L expansion introduced in Section 2.2, it follows that

a(x, ω) admits the following truncated K-L expansion, i.e.,

a(x,Θ) = E[a] +
n∑

i=1

√
λiθi(ω)ψi(x),

where Θ := (θ1, θ2, · · · , θn) ∈ Rn. By the truncated K-L expansion, k(x, ω) ≈
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k(x,Θ) = exp
(
a(x,Θ)

)
. In the chapter, we assume that the stochastic field k(x.ω)

can be accurately parameterized by k(x,Θ).

5.2.2. Sparse grid collocation

For stochastic systems (5.1), we are interested in the statistics (e.g., mean and

variance) of solutions. These properties could be obtained by first sampling randomly

from the parameter space using, for example, Monte Carlo method, then solving the

deterministic problems on the samples and analyzing the corresponding results. The

number of samples required in the Monte Carlo method is large, which leads to high

computational cost. Instead, we use a sparse grid based probabilistic collocation

method. Sparse grid collocation is known to have the same asymptotic accuracy as

tensor product collocation, while requiring many fewer collocation points as the pa-

rameter dimension increases. Sparse grids have been successfully applied to stochastic

collocation in many recent works (e.g., [74, 75]).

Based on the Smolyak formula [11], a set of collocation points is chosen. With

these chosen collocation points and corresponding weights, the statistic properties

of the solutions can be obtained. For instance, assume that {θ(j)} is the set of

collocation points and {w(j)} is the corresponding weights, j = 1, · · · , Nc. At each of

the collocation points, the deterministic system is solved and the output S(x, θ(j)) is

obtained. Then the moments of S(x,Θ) can be estimated, e.g.,

E[S(x,Θ)] =

∫

Ω

S(x, ξ)dF (ξ) ≈
Nc∑

j=1

S(x, θ(j))w(j),

σ2
(
S(x,Θ)

)
=

∫

Ω

(
S(x, ξ)− E[S(x,Θ)]

)2
dF (ξ) ≈

Nc∑

j=1

S2(x, θ(j))w(j) − E2[S(x,Θ)].
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5.3. Adaptive ANOVA-based mixed MsFEMs

5.3.1. ANOVA-based mixed MsFEM

ANOVA is a general set of quantitative assessment and analysis tools for cap-

turing the high-dimensional relationships between model inputs and model outputs.

ANOVA has been used for improving the efficiency of deducing high-dimensional

input-output system behavior, and can be employed to relieve the computational ef-

forts. The ANOVA method has been used in high-dimensional stochastic systems

[38, 65, 107, 108]. ANOVA is based on the assumption that only relatively low order

correlations of the input variables are important, which is valid in many systems.

ANOVA splits a high-dimensional system into a set of low-dimensional systems to

reduce the computation in high dimension.

We consider a multivariate output function S(Θ) : Rn −→ R. S(Θ) is taken

to be water saturation or other functions of interest discussed in Section 2.1, in the

two-phase flow system (5.1). The statistic properties of S(Θ) can be obtained by

solving the system (5.1) using the mixed MsFEM (see Section 2.3 for more details)

and PCM (see Section 5.2.2). For simplicity, we use S(Θ) in this section, instead of

SMsFEM(Θ), to denote the solutions obtained in the multiscale framework.

Instead of solving the two-phase flow system (5.1) for S(Θ) directly, ANOVA

represents S(Θ) as finite hierarchical correlated functions of input variables in the

form

S(Θ) = S0 +
∑

1≤j1≤n
Sj1(θj1) +

∑

1≤j1<j2≤n
Sj1,j2(θj1 , θj2) + · · ·+ S1,2,··· ,n(θ1, θ2, · · · , θn),

(5.2)

where Sjk(θjk) is the first order term, Sjk,jl(θjk , θjl) is the second order term, etc. Each

of these terms is solved by the mixed MsFEM method.
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In the standard ANOVA (5.2), the constant term is taken to be the mean of

function S(Θ), i.e.,

S0 =

∫

Γn
S(Θ)dµ(Θ).

This gives that all higher order terms are mean zero, i.e.,

∫

Γn
Sj1,··· ,jsdµ(Θ) = 0,

which leads to orthogonality among all the terms, and the variance of S(Θ) is the

sum of variances of all terms, i.e.,

∫

Γn
Sj1,··· ,jsSk1,··· ,kldµ(Θ) = 0, for (j1, · · · , js) 6= (k1, · · · , kl),

σ2(S) =
n∑

j=1

∑

|J|=j
σ2(SJ).

To avoid the computation of high-dimension integration, the Dirac measure is

often used instead of the Lebesgue measure. The Dirac measure is defined as dµ(Θ) =

δ(Θ−c)dΘ, where c is called the anchor point. If c satisfies that S(c) = S0, then the

ANOVA representation is the same as (5.2), otherwise it becomes an approximation

of S(Θ), i.e.,

S(Θ) ≈ S(c) +
∑

1≤j1≤n
Sj1(θj1) +

∑

1≤j1<j2≤n
Sj1,j2(θj1 , θj2) + · · ·+ S1,2,··· ,n(θ1, θ2, · · · , θn),

(5.3)

where

Sj(θj) = S(Θ)|Θ=c\θj − S(c),

Sj,k(θj, θk) = S(Θ)|Θ=c\(θj ,θk) − Sj(θj)− Sk(θk)− S(c).

The accuracy of this anchored-ANOVA depends on the choice of anchor point c.

Discussions about this can be found in [108]. In this chapter, we choose the anchor
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point to be the mean of random variable Θ as discussed in [65]. Because low-order

terms in ANOVA expansion usually have the dominant contribution, we truncate the

ANOVA to the low-order (e.g., second- or third-order) terms and use the truncated

ANOVA for approximation. This can significantly reduce the dimensionality of the

random inputs.

5.3.2. Adaptive ANOVA-based mixed MsFEM

The ANOVA-based mixed MsFEM reduces the computational complexity in

stochastic space by dividing a high-dimensional stochastic problem into a set of lower

dimensional problems, while the mixed MsFEM reduces the computational cost in

spatial space. The computation in a low-dimensional system is easier, but a large

number of such systems can keep the computational cost still high. For example, if

the dimension of input parameter space n = 100, and we truncate the ANOVA up

to second-order, then we have a total of 1 +




100

1


 +




100

2


 = 5051 components

(terms) in the truncated ANOVA. This computation is still not cheap. To reduce the

total number of terms, the adaptive ANOVA method is often used. The dimensions

with dominant interactions are called active or important dimensions. The idea of

adaptive ANOVA is to retain the interactions from the important dimensions and

neglect the contributions from the unimportant dimensions. The following equation

describes the adaptive ANOVA representation,

S(Θ) ≈ S0 +
∑

j1∈D1

Sj1(θj1) +
∑

(j1<j2)∈D2

Sj1,j2(θj1 , θj2)

+ · · ·+
∑

(j1<j2<···<jν)∈Dν

Sj1,j2,··· ,jν (θj1 , · · · , θjν ).
(5.4)
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In [65, 107, 108], ν = 2 and D1 = {1, · · · , n}; then Di , 2 ≤ i ≤ ν are selected

according to the statistical properties of the computed expansion terms. There are

two criteria used to find the active dimensions based on the first-order terms in the

ANOVA decomposition.

Criterion 1: Use the mean of component function Sj as the indicator to decide

the active ANOVA terms (see [65]). Let

η
(1)
j =

E[Sj]∑
j∈D1

E[Sj]
, j ∈ D1;

then, the active dimensions D2 can be chosen by

∑

j∈D2

η
(1)
j ≥ p, (5.5)

where p is a proportionality constant with 0 < p < 1 and close to 1.

Criterion 2: Use the variance of component function Sj as the indicator to decide

the active ANOVA terms. Define

η
(2)
j =

σ2(Sj)∑
j∈D1

σ2(Sj)
, j ∈ D1.

The active dimensions D2 should satisfy

∑

j∈D2

η
(2)
j ≥ p, (5.6)

where p is a proportionality constant with 0 < p < 1 and close to 1. This criterion is

similar to the criterion used in [15] where σ2(S) instead of
∑

j∈D1
σ2(Sj) is used.

The active dimensions for second-order ANOVA terms can be found by the above

criteria. If the active dimensions are needed for higher-order terms, we can use similar

criterion,

η
(1)
j1,j2

=
E[Sj1,j2 ]∑
j∈D1

E[Sj]
, η

(2)
j1,j2

=
σ2(Sj1,j2)∑
j∈D1

σ2(Sj)
. (5.7)
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5.3.3. Novel adaptive ANOVA-based mixed MsFEM

In the above criteria, D1 is taken to be {1, · · · , n}, i.e., all the dimensions are

always considered to be important in the ANOVA first-order term computation. The

selection of active dimensions is then conducted for second-order terms based on the

ratio (e.g., η
(1)
j , η

(2)
j ) associated to each dimension. It is worth noticing that the dimen-

sions with small ratio can be neglected in not only the computation of second-order

terms, but also first-order terms. We propose here a variance decomposition-based

method to pre-select active dimensions and simplify the computation of ANOVA

decomposition starting from the first-order terms.

To pre-select the important dimensions, we solve the original high-dimensional

system on the sparse grid collocation points of Ω and build a polynomial chaos ap-

proximation for S(Θ). The variance of S(Θ) is carried by the coefficients in front of

basis functions in the approximation. Since the basis functions in Ω are multiplica-

tions of basis functions of dimension one, we can view basis functions to be related to

interactions of certain dimensions. In this case, the coefficients are the correspond-

ing variance coming from interactions of certain dimensions. By doing this, we can

decompose the variance of S(Θ) with respect to the set of dimensions. Especially,

we can obtain the variance of each dimension itself. So the importance can be esti-

mated before ANOVA decomposition. In this case, D1 can be selected to be a subset

of {1, · · · , n}. The sparse grid collocation method is applied in a low level, so the

computation is cheap. If a higher-level sparse grid collocation is affordable, more in-

formation about the interactions between dimensions can be obtained, and therefore

another criterion of selection of active dimensions for higher-order terms is provided.

To be specific about the variance decomposition-based adaptive ANOVA method,
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let us consider a scalar function

S(x,Θ) : D̄ × Rn −→ R. (5.8)

Let {φk(Θ)} be the generalized polynomial chaos (gPC) basis function satisfying

E[φi(Θ) φj(Θ)] = δijri in this section and let PnN(Θ) be the space of all polynomials

of Θ ∈ Rn of degree up to N . Then the orthogonal gPC projection of (5.8), for any

fixed x, is

SN(Θ) = PNS =
N∑

|k|=0

skφk(Θ),

where the expansion coefficients are obtained as

sk =
1

rk
E[S(Θ)φk(Θ)] =

1

rk

∫
S(θ)φk(θ)dFΘ(θ), ∀|k| ≤ N,

where rk = E[φ2
k] is the normalization constant of the basis φk, and FΘ(θ) = P (θ ≤ Θ)

is the probability distribution of Θ.

Integration rules can be used to approximate the integrals in the expansion co-

efficients of the continuous gPC. Let {θ(1), · · · , θ(m)} be the sparse grid collocation

points, then discrete projection of the solution is

SN(Θ) =
N∑

|k|=0

ŝkφk(Θ),

where the expansion coefficients are ŝk = 1
rk

∑
j=1 S(θ(j))φk(θ(j))w(j), and {w(j)} are

the collocation weights. The coefficients {ŝk} are approximations to the exact projec-

tion coefficients {sk}. The moments of S(x,Θ) can be approximated by the moments

of the approximation SN(Θ) =
∑N
|k|=0 ŝkφk(Θ). The mean

µ = E[S(Θ)] ≈ E[SN(Θ)] =
N∑

|k|=0

ŝkE[φk(Θ)] = ŝ0,
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by orthogonality of {φk(Θ)}. Then the variance

σ2(S) = E[S(Θ)− µ]2 ≈ E[SN − ŝ0]2 =
N∑

|k|=1

ŝ2
krk.

The variance can be further written as

σ2(S) =
∑

|k|=1

ŝ2
krk + · · ·+

∑

|k|=N
ŝ2
krk. (5.9)

Denote υ = σ2(S), υi = ŝ2
krk, where k = (0, · · · , 0, 1, 0, · · · , 0), i.e., ki = 1 and 0

anywhere else. Similarly, υij = ŝ2
krk, where ki = kj = 1 or ki = 2 and 0 anywhere

else. Then the expansion (5.9) can be rearranged with respect to dimensions, i.e.,

υ =
∑

1≤i≤n
υi +

∑

1≤i≤j≤n
υij + · · · . (5.10)

Remark: Since υi, 1 ≤ i ≤ n is the coefficient of basis function φk(Θ) =
∑n

j=1 φkj(θj) = φki(θi), it is considered as the variance associated with the ith di-

mension. Similarly, as vij corresponds to φk(Θ) = φki(θi)φkj(θj), it is viewed as the

variance associated with interaction of ith and jth dimensions. The other terms can

be explained in the same way.

Based on the variance decomposition (5.10), the important dimensions can be

selected by sensitivity analysis. Define

η
(3)
j =

υj
υ

and η
(3)
ij =

υij
υ
.

Then, the important dimensions can be selected similarly to (5.5) and (5.6).

Criterion 3: The active dimension D1 should satisfy

∑

j∈D1

η
(3)
j ≥ p, (5.11)

where p is a proportionality constant with 0 < p < 1 and close to 1.
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The advantage of the proposed method here is that, by building a response sur-

face of the function of interest S(x,Θ) with small cost, we can get the information

of sensitivities of each dimension. Then, the adaptivity can start from the first-order

term in ANOVA based on (5.11), instead of higher-order terms based on (5.5) and

(5.6). Further information about the interactions among dimensions can be obtained

if more computational cost is affordable, i.e., when the response surface is built in a

higher level of sparse grid points. In this case, the second-order terms can only be

computed in the preselected pairs, instead of every pair of important dimension as in

Section 5.3.2. Also, Criteria 1 and 2 (see equations (5.5) and (5.6)) assume that the

important dimension interactions only happen between active dimensions. But, it is

possible that the less important dimension has large interactions with other dimen-

sions. Criteria 1 and 2 will ignore these interactions. The variance decomposition-

based adaptive method can provide additional information on the interaction among

dimensions to avoid unnecessary over adaptivity.

5.4. Numerical results

In this section, we assume that the random permeability field k(x, ω) = exp
(
a(x, ω)

)

is a log-normal stochastic process as before. Here, the covariance function of a(x, ω)

has the form

cov[a](x, y) = σ2 exp
(
−|x1 − y1|2

2l21
− |x2 − y2|2

2l22

)
. (5.12)

l1 and l2 are the correlation lengths in the horizontal and vertical dimension. The

stochastic field a(x, ω) can be approximated by a truncated K-L approximation. In

practice, the K-L expansion of a(x, ω) can be written as

a(x, ω) = E[a] + α
N∑

i=1

√
λiθi(ω)ψi(x), (5.13)
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where α is a constant. In our numerical examples, we sample a(x, ω) in (5.13) by

generating random variables θi from a uniform distribution on [−1, 1].

We take krw(S) = S2, µw = 0.1, kro(S) = (1 − S)2, and µo = 1 in simulations.

The permeability field a(x,Θ) is given on a fine grid. The water is injected at the

lower-left corner, and the producer is at the upper-right corner. To validate ANOVA-

based mixed MsFEM, we compare the results of solving stochastic two-phase flows

(5.1) by the following methods:

• Monte Carlo method associated with mixed FEM on the fine grid (MC-FEM);

• ANOVA-based mixed FEM on fine grid (ANOVA-FEM);

• ANOVA-based mixed MsFEM on coarse grid (ANOVA-MsFEM).

When mixed MsFEM is used, the fine grid is coarsened to form a uniform coarse

grid. We solve the pressure equation on the coarse grid using the mixed MsFEM

and then reconstruct the fine-scale velocity field as a superposition of the multiscale

basis functions. The reconstructed field is used to solve the saturation equation by

the finite volume method on the fine grid. We solve the two-phase flow system by

the classical IMPES (Implicit Pressure Explicit Saturation).

Monte Carlo results are obtained from 104 simulations and ANOVA is based on

Smolyak sparse grid collocation points with level 2. Various production characteristics

introduced in Section 2.1 are compared. We compute the saturation S at 0.2PVI and

0.6PVI and the water-cut curve F (t) defining the fraction of water in the produced

fluid as a function of PVI. We monitor the breakthrough time Tw defined as F−1(10−5)

at the producer and the cumulative oil production at 0.6PVI, i.e.,

Qo = − 1∫
D
ϕdx

∫ 0.6PV I

0

(∫

D

min(qo(x, τ), 0)dx

)
dτ.
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We consider all the results computed by MC-FEM to be the reference solu-

tions, and we measure errors defined as e(S) = |‖E[S]‖L1−‖E[Sref ]‖L1|/‖E[Sref ]‖L1 ,

e(F ) = ‖E[F ] − E[Fref ]‖L2/‖E[wref ]‖L2 , e(Tw) = |E[Tw] − E[(Tw)ref ]| and e(Qo) =

|E[Qo]−E[(Qo)ref ]|, where E[·] stands for mean solutions from either ANOVA-FEM

or ANOVA-MsFEM. The standard deviation errors are defined in the same manner.

There are different kinds of errors when we use the listed three methods to solve

the governing equations. We define etotal to be the total error, which is the expecta-

tion of absolute error between MC-FEM and ANOVA-MsFEM. The estoch is defined as

the error from dimension reduction and collocation, i.e., the error between MC-FEM

and ANOVA-FEM, and the ems is defined to be error from mixed MsFEM discretiza-

tion. For water-cut function w, for instance, we have definitions of these errors as

follows: etotal = ‖E[FMC-FEM(t)] − E[FANOVA-MsFEM(t)]‖L2 , estoch = ‖E[FMC-FEM(t)] −

E[FANOVA-FEM(t)]‖L2 , and ems = ‖E[FANOVA-FEM(t)]− E[FANOVA-MsFEM(t)]‖L2 . Errors for

the other functions are defined in the same way.

5.4.1. Random permeability field

In this example, we take l1 = 0.2, l2 = 0.05 and σ2 = 1 in (5.12), E[a] = 1 and

α = 0.05 in (5.13). The permeability field a(x,Θ) is given on a 80 × 80 fine grid.

The fine grid is coarsened to form a uniform 8× 8 coarse grid, so that each block in

the coarse grid contains a 10× 10 cell partition from the fine grid. We truncate K-L

expansion to be N = 20 terms, so that the dimension of this stochastic system is 20.

Saturations at different times and water-cut results are shown in Figures 5.1, 5.2

and 5.3. The quantitative errors are reported in Tables 5.1 and 5.2. For saturation

function S at different times, ANOVA-FEM behaves better than ANOVA-MsFEM

comparing with the reference ones. The relative large variance of the saturation func-

tion is in the flow front as in Figures 5.1 and 5.2. The variance behaves differently
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Table 5.1. Relative errors of saturation S at 0.2, 0.6PVI and water-cut F .

ANOVA-FEM ANOVA-MsFEM

Mean error Std error Mean error Std error

e(S) at 0.2PVI 3.422170e-09 2.184847e-03 3.422172e-09 6.116023e-03

e(S) at 0.6PVI 3.135168e-07 2.745868e-03 3.616744e-03 5.136930e-03

e(F ) 8.544170e-05 2.620252e-02 1.571879e-02 1.050685e-01

on horizontal and vertical directions too, since the correlation lengths are different

in these two directions. It is also interesting to notice that when the time is in-

creasing from 0.2PVI to 0.6PVI, the accuracy of solutions is decreasing. For both

ANOVA-FEM and ANOVA-MsFEM, the relative errors increase. This comes from

the uncertainty accumulation in time. At 0.2PVI, ANOVA-MsFEM is as good as

ANOVA-FEM in mean value, with the same magnitude of standard deviation. When

the time increases, ANOVA-MsFEM results are not comparable to ANOVA-FEM.

The same situation can be discovered by looking at the standard deviations at 0.2PVI

and 0.6PVI separately in Figures 5.1 and 5.2. The standard deviations have the same

pattern at 0.2PVI, while at 0.6PVI, the standard deviation from ANOVA-MsFEM is

quite different from the above two cases. Water-cut results are the same as saturation

at 0.6PVI in the sense of the behavior of these two methods. The standard deviation

of water-cut has a large value around water breakthrough time for all three cases

in Figure 5.3. From Table 5.2, the absolute errors of water breakthrough time Tw

and cumulative oil production Qo, we can see that ANOVA-MsFEM provides good

approximations to these function values, while ANOVA-FEM behaves better than

ANOVA-MsFEM. However, the computation of the mixed FEM is more expensive

than the mixed MsFEM.
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Table 5.2. Absolute errors of water breakthrough time Tw and cumulative oil-produc-

tion Qo.

ANOVA-FEM ANOVA-MsFEM

Mean error Std error Mean error Std error

e(Tw) 7.408498e-07 2.345094e-11 2.290520e-06 2.629305e-11

e(Qo) 1.592182e-07 6.972235e-09 1.662888e-03 4.961346e-10

Table 5.3. Different errors of water-cut F , water breakthrough time Tw and cumulative

oil-production Qo.

etotal estoch ems

F 1.527618e-02 1.147299e-03 1.412888e-02

Tw 2.290520e-06 7.408498e-07 3.031370e-06

Qo 1.662888e-03 1.592182e-07 1.662729e-03

There are errors introduced by ANOVA-MsFEM as we see from the above anal-

ysis (Tables 5.1 and 5.2). It is then important to find out which error is dominant.

After fully understanding the structure of errors, improved methods can be devel-

oped to target at the dominant error. The error introduced by MsFEM, ems, has

the same magnitude as the total one etotal in Table 5.3 . We conclude here that the

error introduced by the multiscale method is the dominant one compared with the

error introduced by ANOVA representation and collocation methods. Seeking bet-

ter multiscale methods for better approximations is one of the future directions for

ANOVA-based methods.
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Fig. 5.1. Mean of saturation S and standard deviation of saturation S at 0.2PVI.

Left column: mean; Right column: standard deviation. Top row: MC-FEM;

Middle row: ANOVA-FEM; Bottom row: ANOVA-MsFEM.
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Fig. 5.2. Mean of saturation S and standard deviation of saturation S at 0.6PVI.

Left column: mean; Right column: standard deviation. Top row: MC-FEM;

Middle row: ANOVA-FEM; Bottom row: ANOVA-MsFEM.
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Fig. 5.3. Comparison of mean and standard deviation of water-cut F .

5.4.2. Random permeability field with channelized structure

For our second numerical example, we take l1 = 0.2, l2 = 0.05, and σ2 = 1 in

(5.12), the same as in the first example. In (5.13), we choose α = 1, and E[a] is chosen

to have a channelized feature and shows the dominant feature of the permeability

a(x, ω). We choose N = 20 terms in the truncated K-L expansion, i.e., a(x, ω) =

E[a] +
∑20

i=1

√
λiθiψi. Consequently,

k(x, ω) = exp(a(x, ω)) = exp(E[a]) exp

(
20∑

i=1

√
λiΘiψi

)
:= k1(x)k2(x, ω).

For each realization, the permeability k(x, ω) is defined on a 60×60 fine grid. Fig-

ure 5.4 depicts the logarithm of k1(x) (left) and an arbitrary realization of logarithm

of k2(x, ω) (right). From the permeability, we can see that k1(x) represents a main

feature of the random permeability k(x, ω). Here the mixed MsFEM is performed on

a 6× 6 uniform coarse grid.

Now the variance in this example is larger than the previous example. The results

in Tables 5.4 and 5.5 are larger in magnitude than in Tables 5.1 and 5.2. However, the

trends are the same as in the first example. The ANOVA-FEM is generally better than

ANOVA-MsFEM. The accuracy is decreasing with respect to the increasing time. But
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Fig. 5.4. The logarithm of k1(x) (left) and an arbitrary realization of logarithm of

k2(x, ω) (right).

the standard deviation of saturations computed by ANOVA-MsFEM is better than

the result computed by ANOVA-FEM. The natural inference is that ANOVA-FEM

is better than ANOVA-MsFEM, as the mixed MsFEM results are approximations for

FEM solutions with less computational cost. But since ANOVA is applied here only

up to second-order terms, the process of approximating a nonlinear operator by finite

linear operations introduces extra errors. If ANOVA is expanded to high-order terms,

the results will converge to the true value, and ANOVA-FEM should be better than

ANOVA-MsFEM.

We also notice that, ANOVA approximation has better results for the mean of

functions than the standard deviation. The uncertainty of saturations S are coming

from where the flow front is (Figures 5.5 and 5.6). The large standard deviation of

water-cut w is again around water breakthrough time (Figure 5.7), while the magni-

tude of standard deviation in this example is larger than the previous example (Figure

5.3), as the variance of the parameter is larger. For this example, we can also see

that MsFEM still is the dominant error in the computation from Table 5.6.
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Table 5.4. Relative errors of saturation S at 0.2, 0.6PVI and water-cut F .

ANOVA-FEM ANOVA-MsFEM

Mean error Std error Mean error Std error

e(S) at 0.2PVI 9.472140e-03 3.138906e-01 7.615875e-03 2.625666e-01

e(S) at 0.6PVI 4.296857e-03 3.612245e-01 9.758884e-03 2.605877e-01

e(F ) 1.515789e-02 5.825024e-01 2.001007e-02 3.293715e-01

Table 5.5. Absolute errors of water breakthrough time Tw and cumulative oil-produc-

tion Qo.

ANOVA-FEM ANOVA-MsFEM

Mean error Std error Mean error Std error

e(Tw) 6.797262e-02 4.350505e-03 6.884711e-02 4.416420e-03

e(Qo) 3.126008e-04 2.948469e-05 1.858780e-03 6.022319e-06

Table 5.6. Different errors of water-cut F , water breakthrough time Tw and cumulative

oil-production Qo.

etotal estoch ems

F 9.937488e-02 7.527776e-02 1.200735e-01

Tw 6.884711e-02 6.797262e-02 1.368197e-01

Qo 1.858780e-03 3.126008e-04 1.546179e-03
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Fig. 5.5. Mean of saturation S and standard deviation of saturation S at 0.2PVI.

Left column: mean; Right column: standard deviation. Top row: MC-FEM;

Middle row: ANOVA-FEM; Bottom row: ANOVA-MsFEM.



97

MC−FEM mean

 

 

0.25 0.5 0.75 1.0

1.0

0.75

0.5

0.25

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC−FEM std

 

 

0.25 0.5 0.75 1.0

1.0

0.75

0.5

0.25

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ANOVA−FEM mean

 

 

0.25 0.5 0.75 1.0

1.0

0.75

0.5

0.25

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ANOVA−FEM std

 

 

0.25 0.5 0.75 1.0

1.0

0.75

0.5

0.25

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ANOVA−MsFEM mean

 

 

0.25 0.5 0.75 1.0

1.0

0.75

0.5

0.25

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ANOVA−MsFEM std

 

 

0.25 0.5 0.75 1.0

1.0

0.75

0.5

0.25

0 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 5.6. Mean of saturation S and standard deviation of saturation S at 0.6PVI.

Left column: mean; Right column: standard deviation. Top row: MC-FEM;

Middle row: ANOVA-FEM; Bottom row: ANOVA-MsFEM.
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Fig. 5.7. Comparison of mean and variance of water-cut F .

5.4.3. Adaptive ANOVA example

In this simulation, we focus on analysis of the adaptive ANOVA based on the

variance decomposition we proposed in Section 5.3.3. Before we show the numerical

results, we would like to state several observations and supportive numerical results.

First, when the parameter space is represented through a K-L expansion type

expansion (5.13), the active dimensions are determined by the corresponding eigen-

values λi. If λi decreases to 0 fast, then the dimensions corresponding to small

eigenvalues are not important. Second, the adaptive Criteria 1 and 2 (see Eqs. (5.5)

and (5.6)) are to some extent comparable [46, 107]. We can find examples that the

active dimensions are the same for both criteria. But for special functions, for ex-

ample water-cut F , Criterion 2 based on variance usually gives less number of active

dimensions. Third, when there are no dominant eigenvalues, the important dimen-

sions are usually different for different functions. To obtain a better approximation

through any kind of adaptive ANOVA methods, the criterion has to be applied to the

functions of interest.

To see that the active dimensions are decided by the corresponding eigenvalues

λi, we take l1 = 0.25, l2 = 0.1 and σ2 = 1 in (5.12), E[a] = 0 and α = 1 in (5.13). We
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Table 5.7. Comparison of adaptive ANOVA for saturation S at 0.2PVI.

p # of active dim relative error of mean relative error of std

Criterion 1 0.90 21 9.314872e-02 5.618844e-02

Criterion 2 0.90 22 8.425106e-02 4.924464e-02

truncate the K-L approximation to be N = 50 terms. Since the correlation lengths in

horizontal and vertical directions are larger than previous examples, the covariance

function is more smooth and the eigenvalues decay fast. The fine grid is 80× 80 and

the coarse grid is 8 × 8. Table 5.7 shows that when p = 0.9, for saturation S at

0.2PVI, Criteria 1 and 2 give almost the same active dimensions. In fact, the active

dimensions are the same when p = 0.85, 0.9. And the important dimensions are the

dimensions corresponding to the largest 21 or 22 eigenvalues. While if we consider

water-cut function w, Criteria 1 and 2 give 17 and 10 active dimensions respectively.

Now we switch back to the example with l1 = 0.2, l2 = 0.05, and σ2 = 1 in (5.12),

E[a] = 0 and α = 1 in (5.13), with 20 as the random dimension of the problem. In this

case, the 20 eigenvalues have the same magnitude to some extent. Since Criteria 1

and 2 are comparable, and our adaptive criterion is based on variance decomposition,

we make comparison only to Criterion 2, which is also based on variance.

We take into account the saturation S at 0.2PVI. To apply variance decomposition-

based analysis, we use level 1 Smolyak sparse grid collocation points to build variance

decomposition (5.10). 41 points in level 1 are used here. We can get variance up to

first order, i.e., υ =
∑

1≤i≤20 υi. Then each dimension corresponds to one vi. The

same variance analysis through response surface can be done to the Monte Carlo

results based on 104 different samples. At the same time, the anchored-ANOVA dis-

cussed in previous sections gives a variance for each dimension We treat the variance
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Fig. 5.8. Net graph of importance of dimensions. The radius is proportional to the

magnitude of variance. Magenta: Monte Carlo results; Green: adaptive

ANOVA approximation (Criterion 2); Black: variance decomposition-based

adaptive ANOVA (Criterion 3).

computed by Monte Carlo as the true value as before, and compare these three sets

of variance. A net graph plot is adopted to show the results. As in Figure 5.8, the

20 dimensions are labeled, with the radius proportional to the magnitude of variance

respectively.

Both adaptive ANOVA and variance decomposition-based adaptive ANOVA re-

sults are different from the true ones with regard to matching radius. To further

explore the behavior of the two methods, we make two different comparisons. The

advantage of our proposed variance decomposition-based adaptive method is that the

active dimensions can be found before ANOVA approximation by only a small amount

of computations, while the adaptive ANOVA can only find the important dimensions

after finishing the computation of all first-order terms.



101

Table 5.8. A “fair” comparison of adaptive ANOVAs up to first-order terms for satu-

ration S at 0.2PVI.

p # of active dim relative error of mean relative error of std

Criterion 2 0.90 16 4.489370e-02 3.101351e-01

Criterion 3 0.90 15 4.519126e-02 3.079101e-01

To make a “fair” comparison, we assume that adaptive ANOVA is expanded

to first-order terms in these two methods. In the first case, the active dimensions

are chosen by Criterion 2, and the mean and variance of saturation S at 0.2PVI are

formed by zero-order terms and first-order terms of active dimensions. In the second

case, variance decomposition is conducted to choose important dimensions (Criterion

3 Eq. (5.11)), then the adaptive ANOVA includes zero-order and first-order term of

important dimensions are considered. The results are in Table 5.8. When p = 0.90,

Criterion 3 gives one active dimension less than Criterion 2. These dimensions are

not exactly the same. For Criterion 2, dimensions 11, 14, 16, 19 are not included, and

for Criterion 3, dimensions 14, 15, 16, 19, 20 are not included. Criterion 3 gives results

as good as Criterion 2 as we can see in Table 5.8. The advantages of our proposed

method will be more obvious, when the dimension of the problem is higher. In that

case, more computations for the first-order terms can be saved.

Further, we make an “unfair” comparison. For Criterion 2, we keep all the

first-order terms, because they have been obtained, and compute second-order terms

between active dimensions. For Criterion 3, we only use the first-order terms of

pre-fixed active dimensions and compute second-order terms based on these active

dimensions. This is “unfair” because Criterion 3 does not include all first-order

information. Since there are less first-order terms included in Criterion 3, the results
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Table 5.9. An “unfair” comparison of adaptive ANOVAs up to second-order terms for

saturation S at 0.2PVI.

p # of active dim relative error of mean relative error of std

Criterion 2 0.90 16 3.054183e-002 3.959672e-002

Criterion 3 0.90 15 2.065996e-002 7.027969e-002
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Fig. 5.9. Net graph of importance of dimensions and the interaction between pairs.

are not as good as Criterion 2. But from Table 5.9, we can see the difference between

these two methods are comparable.

In fact, if we use level 2 sparse grid collocation points, the variance function

can be approximated by higher-order terms in (5.10). For example, we take 841

collocation points in the random space and compute second-order in (5.10). Then

the information between dimensions can be obtained before ANOVA expansion. In

Figure 5.9, the radius of circles corresponding to each dimension depicts the variance
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values associating with certain dimension, and the width of the lines between any

pair of dimensions depicts the correlation between that pair. The thicker the line is,

the larger the correlation is. By similar criteria to (5.7), the important interactions

between pairs of dimensions can be found. Further, there is a chance to avoid the

mistake of deleting dimensions which have small variances associated with them, but

large correlation with other dimensions. This requires more computations. In our

numerical example here, it is as expensive as to compute an ANOVA, so we do not

use this method. When the dimension gets larger, this provides a direction for further

adaptive ANOVA methods.
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CHAPTER VI

ADVANCED SAMPLING METHODS USING STOCHASTIC APPROXIMATION

MONTE CARLO

Markov Chain Monte Carlo (MCMC) methods are used in sampling posterior

distributions. Based on the basic Metropolis-Hastings (MH) algorithm, many vari-

ations are developed to overcome the local-trap problem of the original algorithm.

For example, auxiliary variable, population-based and dynamic weighting methods

[56] have been developed for different kinds of situations. The other difficulty of

MCMC is that the complexity of forward models usually prevents a sufficient num-

ber of runs required by the algorithm. We propose an advanced MCMC method

combining Stochastic Approximation Monte Carlo (SAMC) [18, 55] and multi-stage

MCMC [29, 34]. The new method adopts the merits of both algorithms. The global

optimization can be found faster with reduced computational cost.

6.1. Introduction

As we mentioned in the previous chapters, MCMC is a powerful uncertainty

quantification algorithm under the Bayesian framework. However, there are two main

disadvantages of MCMC. First, the acceptance rate is usually low, so a large number

of iterations are needed for convergence. Second, the MCMC chain can get trapped in

local minimum, so that again a long chain is required for correctly sampling the desired

posterior distribution. For the uncertainty quantification in subsurface problems,

both disadvantages lead to the same difficulty. Since high computational cost is

required in solving the coupled nonlinear PDE system (2.1)-(2.3) on the fine-grid in

order to compute Fk (see (2.4)) in the target distribution π(k), a large amount of
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computational time is spent to get enough number of samples to overcome local-trap

and converge to the steady state. Because of the low acceptance rate, these expensive

computations are mostly spent on rejected samples.

As we discussed in Section 3.4, the standard MCMC method can be improved by

adapting the proposal distribution q(k|kn) to the target distribution using a coarse-

scale model [29, 34]. The process essentially modifies the proposal distribution q(k|kn)

by incorporating the coarse-scale information. The multi-stage MCMC utilizes mixed

MsFEM to screen the proposals. Better proposals lead to high acceptance rate in the

fine-stage MCMC, which requires less forward computations on the fine model. Since

most computational cost comes from forward runs in Bayesian computations, the

whole process can be largely speeded up. The choice of σf and σc is important in

determining the final acceptance rate of multistage MCMC as discussed in Section

3.4, i.e., the optimal value of σc can be estimated based on the correlation between

‖Fobs − Fk‖ and ‖Fobs − F ∗k ‖. More quantitative discussion about the computational

saving can be found in [29, 34].

On the other hand, Stochastic Approximate Monte Carlo (SAMC) [55] has the

ability to find the optimization fast by including an automatic mechanism to learn

from the previous accepted samples. This learning process is completed by changing

the target distribution dynamically. A dynamic weight vector is introduced in the

algorithm for this purpose. The target distribution function is redefined at each

iteration with the biased weights associated with different subregions, so that the

acceptance rate can be biased to the part of sample space with less samples. In

this case, samples throughout the whole space can be obtained at the end. The

Double Annealing Stochastic Approximate Monte Carlo (DASAMC) [18] is based on

SAMC and Annealing SAMC (ASAMC) [54, 55, 57]. The annealing processes in both

temperature and spatial serve as composition to the mechanism of SAMC, so that
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the global optimization can be found faster while SAMC prevents trapping into local

optimizations.

Our goal here is to combine these two methods to be the multi-stage SAMC

and multi-stage DASAMC algorithms. The chapter is arranged as follows. First, we

state SAMC and DASAMC algorithms. Then we propose the multi-stage SAMC and

the multi-stage DASAMC. At the end, we present numerical examples of SAMC and

its multi-stage version for integration problems, multimode case and the uncertainty

quantification problems.

6.2. SAMC and DASAMC

In this section, we introduce the algorithms of Stochastic Approximate Monte

Carlo (SAMC) and Double Annealing Stochastic Approximate Monte Carlo (DASAMC)

algorithm.

As we mentioned throughout the thesis, our goal is to find the permeability

fields given dynamic production information Fobs(t). Under Bayesian framework, we

achieve this by sampling from the conditional distribution π(k) := π(k|Fobs), i.e.,

π(k) ∝ L(Fobs|k)π0(k),

where L(Fobs|k) represents the likelihood function and requires the forward solution

of flow and transport. As in the previous chapters, we assume that the combined

errors from the measurement, modeling and numeric satisfy a Gaussian distribution.

That is, the likelihood function L(Fobs|k) takes the form

L(Fobs|k) ∝ exp
(
−||Fobs − Fk||

2

σ2
f

)
,

where Fk is the fractional flow computed by solving model equations on the fine-grid
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for a given k, and σf is the precision associated with the measurement Fobs and the

numerical solution Fk. Then the posterior distribution is

π(k) ∝ exp
(
−||Fobs − Fk||

2

σ2
f

)
π0(k). (6.1)

In practice, we often take the prior distribution π0(k) to be either non-informative

or Gaussian distribution with given parameters, or we can take log to the prior dis-

tribution, then our target distribution π(k) in (6.1) can be written as

π(k) ∝ exp{−U(k)}, k ∈ K, (6.2)

where U(k) = ‖Fobs−Fk‖2/σ2
f when π0(k) is non-informative, or corresponding forms

in other cases. U(k) is called the energy function. K is the sample space. Now the

problem is to sample from the distribution (6.2),

SAMC and DASAMC have similar structures; with DASAMC can be obtained

from changing certain parts of SAMC framework. We start with introducing SAMC

method.

To achieve the goal of avoiding local-trap problem, SAMC algorithm first parti-

tions the energy space into subspaces. We denote the subregions by E1, E2, · · · , Em,

where E1 = {k : U(k) ≤ u1}, · · · , Ei = {k : ui−1 < U(k) ≤ ui}, · · · , Em = {k :

U(k) > um−1}; u1 < u2 < · · · < um−1 are numbers specified by the user. Let

%i = log(

∫

Ei

exp{−U(k)}),

then (6.2) becomes

π(k) ∝
m∑

i=1

exp{−U(k)}
e%i

I(k ∈ Ei). (6.3)

SAMC seeks to draw samples from each of the subregions with a pre-specified

frequency by defining the stationary distribution dynamically at different iterations.
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Let kn be the sample at nth iteration, then the target distribution at this iteration is

πn(k) ∝
m∑

i=1

exp{−U(k)}
e%
n
i

I(k ∈ Ei).

We denote κ(u) to be the index of the subregion that a sample x with energy

u belongs to. For instance, if x ∈ Ej, then κ(U(x)) = j. Let ℘ = (℘1, · · · , ℘m) be

an m-vector with 0 < ℘i < 1 and
∑m

i=1 ℘i = 1, which defines a desired sampling

frequency for the subregions. ℘ is called the desired sampling distribution. Define

H(%n, xn+1) = en+1−℘, where en+1 = (en+1
1 , · · · , en+1

m ) and en+1
i = 1 of kn+1 ∈ Ei and

0 otherwise. Let {ιn} be a positive non-decreasing sequence satisfying the conditions,

(i)
∞∑

n=0

ιn =∞, (ii)
∞∑

n=0

ιδn <∞,

for some δ ∈ (1, 2). We set

ιn =

(
n0

max(n0, n)

)η
,

following [55], for some specified values of n0 > 0 and η ∈ (0.5, 1]. The constants or

constant vectors, such as m,n0, η, ℘, are important to the success of this algorithm.

Details about how to choose these parameters are discussed in [55]. In order to force

the samples traveling around the sample space, ℘ is usually taken to be with equal

subelements, i.e., ℘i = 1/m for i = 1, · · · ,m. A large number of m is often needed

for complicated problems. A large value of n0 will allow the sampler to reach all

subregions fast. With all the notations we introduced, the SAMC algorithm can be

describe as follow.

Algorithm (SAMC) Suppose at the nth step, we have kn.

Step 1. At kn, generate kn+1.

(1). Generate k according to the proposal distribution q(k|kn).
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(2). Calculate the ratio

γ(kn, k) = exp(%nκ(U(kn)) − %nκ(U(k))) exp{−(U(kn)− U(k))}q(kn|k)

q(k|kn)
.

(3). Accept the proposal with probability min(1, γ). If it is accepted, set kn+1 =

k; otherwise, set kn+1 = kn.

Step 2. Set %∗ = %n + ιnH(%n, kn+1), where ιn is called the gain factor.

Step 3. If %∗ ∈ Ξ, set %n+1 = %∗; otherwise, set %n+1 = %∗+ c∗, where c∗ is chosen

that %∗ + c∗ ∈ Ξ. Here Ξ is a vector space. 2

The key point of SAMC algorithm is the dynamically changed weights % asso-

ciated with subregions. With these weights, the target distribution πn in the nth

iteration can be biased to the regions with fewer samples in the chain. In this sit-

uation, the possibility for the sampler to travel the whole sample space is high in

relatively short chains. And then it has better behavior in elimination local-trap

situations.

The differences between DASAMC and SAMC are the annealing procedures in

both spatial and temperature. There is a temperature changing over iterations in

DASAMC, so that the global optimization can be found faster; while the spatial

annealing process restricts the searching of optimization to be around current position,

instead of the whole spatial space as in SAMC. This also helps the SAMC algorithm

find global minimum with less number of iterations. The double annealing part severs

as a composite for SAMC, so that the optimization can be found without wondering

around unimportant subregions. The trade-off between these two processes is problem

dependent.

Next, we state the DASAMC algorithm. Let Kn denote the sample space at

iteration n. DASAMC first searches in the entire sample space K0 = ∪mi=1Ei, and
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iteratively searches in the set

Kn =

κ(Unmin+N )⋃

i=1

Ei, t = 1, 2, · · · ,

where Un
min is the best energy value obtained until iteration n, and N > 0 is a

user specified parameter which determines the broadness of the sample space at each

iteration.

Algorithm (DASAMC) Suppose at the nth step, we have kn.

Step 1. At kn, generate kn+1.

(1). Generate k according to the proposal distribution q(k|kn).

(2). Calculate the ratio

γ(kn, k) = exp(%nκ̄(U(kn)) − %nκ̄(U(k))) exp{−(U(kn)− U(k))/Tn}
q(kn|k)

q(k|kn)
,

where Tn = T0ρ
n−1 is the cooling temperature. T0 is a user defined constant. ρ is a

preselected decay rate and

κ̄(U(k)) =





κ(U(k)), if U(k) ∈ Kn,

0, otherwise .

(3). Accept the proposal with probability min(1, γ). If it is accepted, set kn+1 =

k; otherwise, set kn+1 = kn.

Step 2. Set %∗ = %n + ιn(I(kn+1 ∈ Ei)− ℘i), where i = 1, · · · , κ(Un
min +N ).

Step 3. If %∗ ∈ Ξ, set %n+1 = %∗; otherwise, set %n+1 = %∗+ c∗, where c∗ is chosen

that %∗ + c∗ ∈ Ξ. 2

Figure 6.1 illustrate the ideas of SAMC and DASAMC methods. The key points

of DASAMC algorithm are the dynamic weights exp{θnκ(U(k))}, spatial annealing pa-

rameter κ(Un
min + N ) and temperature annealing parameter Tn. Similar to SAMC,

the dynamic weights automatically lift the low energy parts of the energy function
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π(k) ∝ exp{−U(k)} ∝
∑

i=1

m
exp{−U(k)}∫
Ei
exp{−U(k)}I(k ∈ Ei)

πt(k) ∝ exp{−U(k)/Tt}
πt(k) ∝

κ(U t
min+N )∑

i=1

exp(−U(k))

exp(̺
(t)
i )

I(k ∈ Ei)

π(k) ∝ exp{−U(k)} ∝
m∑

i=1

exp{−U(k)}∫
Ei
exp{−U(k)}I(k ∈ Ei)

Fig. 6.1. Illustration of SAMC and DASAMC algorithms.

U(k), so that the accepted samples can travel over the whole sample space. At the

same time, the spatial annealing parameter restricts the search of the lowest energy

to be in the neighborhood around current Un
min, so that the convergence to the opti-

mal can be faster. Our choice of the temperature annealing parameter Tn also helps

in finding optimal more efficiently. T0ρ
n−1 specifies a desired decreasing rate of the

energy function. At the same time, by taking maximum of T0ρ
n−1 and Un

min, the

temperature annealing rate is controlled by current best energy as a bound, so that

samples will be accepted with a reasonable rate. When ρ = 1, then the algorithm

becomes ASAMC with a constant temperature annealing. If ρ = 1 and T0 = 1, then

it becomes just SAMC algorithm.

As [18] points out that samples collected from DASAMC algorithm are highly
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biased towards the mode. So the samples cannot be directly used to calculate function

values, for example, moments. When the mean and variance, or other functions of

the posterior distribution are needed, we follow the estimation way proposed in [18].

The important sampling idea is used here. Suppose that E[h(k)] =
∫
h(k)π(k)dk is

of interest here, and samples are draw from the proposal distribution q(k), then

E[h(k)] =

∫
h(k)

π(k)

q(k)
q(k)dk ≈

∑
h(kn)π(kn)/q(kn)∑
π(kn)/q(kn)

,

where kn are proposed sample at nth iteration. This also provides a way to get the

unbiased posterior distribution.

6.3. Multi-stage SAMC and multi-stage DASAMC

As we mentioned in Chapter II and the introduction of this chapter, the multi-

stage MCMC method can reduce the computational cost of forward simulations by

screening the bad proposals out through an approximation of the desired posterior

distribution. Next, we combine the multi-stage method with SAMC and DASAMC to

develop new sampling schemes for the uncertainty quantification problems in porous

media flow problems.

The target distribution of interest is

π(k) ∝ exp(−||Fobs − Fk||
2

σ2
f

)π0(k), (6.4)

where Fk is the fractional flow computed by solving the system equations (2.1)-(2.3)

on fine-scale grid. σf is the precision associated with the fine model. We approximate

the target posterior distribution π(k) on the coarse-scale by

π∗(k) ∝ exp(−||Fobs − F
∗
k ||2

σ2
c

)π0(k),
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where F ∗k is the fractional flow computed by solving the coarse-scale model for give

k, and σ2
c which is precision associated with the coarse-scale model.

Suppose E1, · · · , Em are m disjoint regions that form a partition of sample space,

where Ei = {k : ui−1 ≤ ||Fobs−F ∗k ||2
σ2
c

≤ ci+1}. The weights %n will be updated only when

the proposed sample has been accepted by both stages. Without loss of generality,

we state here the two-stage SAMC algorithm, while the multi-stage version can be

easily generalized.

Algorithm (Two-stage SAMC)

Coarse - stage

Step 1. At kn generate k̃ by a proposal distribution q(k̃|kn).

Step 2. Accept k̃ with probability

γc(kn, k̃) = min

(
1,
π∗n(k̃)q(kn|k̃)

π∗n(kn)q(k̃|kn)

)
= min

(
1,
π∗n(k̃)

π∗n(kn)

)
,

i.e., k = k̃ with probability γc(kn, k̃), and k = kn with probability 1− γc(kn, k̃). The

last equality holds when the proposal distribution q is symmetric. If rejected go to

step 1.

Therefore, the proposal k for fine-stage is generated from the effective instru-

mental distribution

Q(k|kn) = γc(kn, k)q(k|kn) +
(

1−
∫
γc(kn, k)q(k|kn)dk

)
δkn(k).

Here,

π∗n(k̃) =
m∑

i=1

π∗(k̃)

e%
n
i
I(k̃ ∈ Ei), π∗n(kn) =

m∑

i=1

π∗(kn)

e%
n
i

I(kn ∈ Ei).
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So

γc(kn, k̃) = min

(
1,
π∗n(k̃)

π∗n(kn)

)
= min


1,

∑m
i=1

π∗(k̃)

e%
n
i
I(k̃ ∈ Ei)

∑m
i=1

π∗(kn)

e%
n
i
I(kn ∈ Ei)


 .

Fine - stage

Step 3. Accept k with probability

γf (kn, k) = min

(
1,
πn(k)Q(kn|k)

πn(kn)Q(k|kn)

)
,

i.e., kn+1 = k with probability γf (kn, k), and kn+1 = kn with probability 1−γf (kn, k).

If rejected go to step 1.

Using the argument as in [34], the acceptance probability can be simplified as

γf (kn, k) = min

(
1,
πn(k)π∗n(kn)

πn(kn)π∗n(k)

)

= min


1,

∑m
i=1

π(k)

e%
n
i
I(k ∈ Ei)

∑m
i=1

π(kn)

e%
n
i
I(kn ∈ Ei)

∑m
i=1

π∗(kn)

e%
n
i
I(kn ∈ Ei)

∑m
i=1

π∗(k)

e%
n
i
I(k ∈ Ei)


 ,

where

πn(k) =
m∑

i=1

π(k)

e%
n
i
I(k ∈ Ei) πn(kn) =

m∑

i=1

π(kn)

e%
n
i
I(kfn ∈ Ei).

Step 4. Set %∗ = %n + %nH(%n, kn+1). If %∗ ∈ Ξ, set %n+1 = %∗; otherwise, set

%n+1 = %∗ + c∗, where c∗ is chosen that %∗ + c∗ ∈ Ξ. Here Ξ is a vector space. 2

The multi-stage DASAMC algorithm has similar form as multistage SAMC al-

gorithm except that there are both spatial and temperature annealing processes. We

briefly describe the two-stage DASAMC as follows. The weights and temperature are

also only updated when the sample gets accepted in both stages.

Algorithm (Two-stage DASAMC)

Coarse - stage
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Step 1. At kn generate k̃ by a proposal distribution q(k̃|kn).

Step 2. Accept k̃ with probability

γc(kn, k̃) = min

(
1,
π∗n(k̃)q(kn|k̃)

π∗n(kn)q(k̃|kn)

)
,

with

π∗n(k) =

κ̄(Unmin+N )∑

i=1

[π∗(k)]1/Tn

e%
n
i

I(k ∈ Ei).

If rejected go to step 1. Therefore, the proposal k for fine-stage is generated from the

effective instrumental distribution

Q(k|kn) = γc(kn, k)q(k|kn) +
(

1−
∫
γc(kn, k)q(k|kn)dk

)
δkn(k).

Fine - stage

Step 3. Accept k with probability

γf (kn, k) = min

(
1,
πn(k)Q(kn|k)

πn(kn)Q(k|kn)

)
= min

(
1,
πn(k)π∗n(kn)

πn(kn)π∗n(k)

)
,

with

πn(k) =

κ̄(Unmin+N )∑

i=1

[π(k)]1/Tn

e%
n
i

I(k ∈ Ei),

where Tn = T0ρ
n−1. If rejected go to step 1.

Step 4. Set %∗ = %n + %nH(%n, kn+1). If %∗ ∈ Ξ, set %n+1 = %∗; otherwise, set

%n+1 = %∗ + c∗, where c∗ is chosen that %∗ + c∗ ∈ Ξ. 2

6.4. Numerical results

In this section, we design several numerical examples to show the mechanism

of SAMC and the uncertainty quantification for reservoir model calibration using

multistage SAMC and DASAMC.
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6.4.1. Comparison of SAMC and MCMC

To see the differences between SAMC and MCMC through some numerical re-

sults, we consider a horizontal layered reservoir in [0, 1] × [0, 1]. We assume the

permeability field has the correlation function as

R(y1, y2) = σ2 exp
(
−|y1 − y2|

l2

)
. (6.5)

This is a 1-d exponential correlation function. Similarly, the 1-d Gaussian correlation

function can be obtained as a simplification of the 2-d Gaussian correlation function

(3.11). In our numerical experiment, we take l2 = 0.2 and σ2 = 2. To get the K-L

expansion for this random field, the correlation function (6.5) is discretized in a grid

with 80 subgrids in vertical direction. The K-L expansion is truncated to be with

20 terms. The random part of K-L expansion is assume to be independent Gaussian

N(0, 1). The posterior distribution of interest is (6.4) with σ2
f = 0.5, Fobs and Fk are

water-cut functions. The proposal distribution we use here is a random walk with

step size 0.3.

For SAMC method, the energy space needs to be partitioned. We take the

energy function to be U(k) = ‖Fobs − Fk‖2/σ2
f and divide the energy space to be 6

equal subregions. Each subregion has equal sample frequency ℘i = 1/6. The behavior

of SAMC is also affected by the choice of other parameters. In this experiment we

take n0 = 30 and η = 1. 104 samples are desired for MCMC while only 103 samples

are taken in SAMC.

To compare the sampling results from both SAMC and MCMC methods, we

compute exp(−||F ref − Fk||2/σ2
f ) for all samples and plot the values after sorting

them. The range of this function is [0, 1]. Since U(k) is divided to be 6 subregions,

so is the region [0, 1]. Therefore, by looking at the number of samples in each sub-
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region of [0, 1], we can see the ability of each method to travel in the sample space.

With more subregions reached, the method has sampled the posterior distribution

better and is less possible to be trapped in local minimum. Note when the function

exp(− ||F ref−Fk||2
σ2
f

) is close to 1, the sampled field is close to reference one.
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Fig. 6.2. Plot of sorted exp
(
− ||Fobs−Fk||2

σ2
f

)
of SAMC with 103 samples.

From Figures 6.2 and 6.3, we can conclude that SAMC has better ability to

travel in the sample space than MCMC for the subsurface problems we are inter-

ested in. After 104 iterations, MCMC could not reach 2 out of 6 subregions, while

SAMC reaches all of the subregions with 103 samples. In the algorithm of SAMC,

the acceptance probability is

γ(kn, k) = min

(
1, exp(−||Fobs − Fk||

2

σ2
f

+
||Fobs − Fkn||2

σ2
f

)

∑m
i=1

1

e%
n
i
I(k ∈ Ei)∑m

i=1
1

e%
n
i
I(kn ∈ Ei)

)
.

Without the term
∑m

i=1
1

e%
n
i
I(k ∈ Ei)/

∑m
i=1

1

e%
n
i
I(kn ∈ Ei), it is just MCMC. This

γ makes SAMC accepting samples coming from different subregions with respect to

the previous accepted ones with high probability. Also, as the designed sampling
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Fig. 6.3. Plot of sorted exp
(
− ||Fobs−Fk||2

σ2
f

)
of MCMC with 104 samples.

frequency is 1/6, we can see from the Table 6.1 that the absolute errors of sampling

frequency and the number of samples in the corresponding subregions at different

iterations are decreasing to 0 as the iterations increase. Let ni be the number of

samples in the ith subregions.

6.4.2. Monte Carlo integration

In many cases, the samples collected from Bayesian methods are used to compute

some kind of integration. For example the moments of some functions of random

variables are often interested in. In this section, we use the samples getting from

both two-stage SAMC and MCMC to compute the integration of certain functions.

We take the same example as in the previous section, i.e., the correlation function

is (6.5), l2 = 0.2, σ2 = 2, σ2
f = 0.5 and σ2

c = 2σ2
f . The field is discretized to be 80 in

the vertical direction. There are 20 terms in the K-L expansion. Random walk with

step size 0.3 is used as the proposal distribution. n0 = 300, η = 1 and 6 subregions
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Table 6.1. Absolute errors of sampling frequency and ni at different iterations.

Number of iterations

200 400 600 800 1000

|n1 − 1/6| 0.166667 0.166667 0.025000 0.007083 0.027667

|n2 − 1/6| 0.041667 0.015833 0.026667 0.025417 0.015333

|n3 − 1/6| 0.013333 0.020833 0.013333 0.002917 0.002333

|n4 − 1/6| 0.048333 0.038333 0.013333 0.002083 0.000667

|n5 − 1/6| 0.043333 0.035833 0.010000 0.003333 0.007333

|n6 − 1/6| 0.103333 0.055833 0.015000 0.015833 0.003333

with equal sampling frequency 1/6 are taken for the two-stage SAMC. A chain with

length 105 has been taken to compute the true values of integrations, while short

chains of length 2000 for both MCMC and two-stage SAMC are gotten for integral

computation also.

We can take the integral function of interest to be

~(k) =





c1, if 0 ≤ exp(− ||Fobs−Fk||2
σ2
f

) < 1
2

c2, if 1
2
≤ exp(− ||Fobs−Fk||2

σ2
f

) < 1.

(6.6)

As in the previous section, we plot the sorted exponential of the energy function

to see how the samples distribute in the whole sample space. From Figures 6.4,

6.5 and 6.6, we see that SAMC reaches subregions more quickly than MCMC. The

MCMC travels to more subregions when the length of the chain increases to 105,

which is usually be considered as a convergent case. If we compute the integration

of ~(k) based on these samples, the accuracy of integration can be greatly improved

by using SAMC, when the integral function has large weight on those regions where
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MCMC cannot achieve. The function (6.6) is this kind. Table 6.2 shows that the

integration results. The results obtained in MCMC long chain case are considered as

the true values. SAMC provides better results in this case.
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Fig. 6.4. Plot of sorted exp
(
− ||Fobs−Fk||2

σ2
f

)
of MCMC with 105 samples.

Table 6.2. Monte Carlo integration
∫
~(k)dπ(k) values in different cases.

c1 c2 MCMC long chain MCMC SAMC

1 5 12.1404 1.2060 3.3440

1 10 14.8159 1.4635 6.2740

1 100 62.9749 6.0985 59.0140

The examples are specially chosen here. We try to show the mechanism of the

two-stage SAMC to avoid being trapped in local minimums. The samples are spread

out as designed. If the integral functions do not have special properties, these samples

getting from SAMC will not give any better results of integration comparing with
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Fig. 6.5. Plot of sorted exp
(
− ||Fobs−Fk||2

σ2
f

)
of MCMC with 2000 samples.

MCMC samples. It is obvious that the weight of each subregion need to be obtained

before SAMC samples are used into computation of integrations, or the biased sample

getting from SAMC needs to be modified first.

6.4.3. Multimode case

To further show the importance of the two-stage MCMC, we design an example

where the posterior distribution is multimode. Assume that the permeability field is

log(k) = k1ψ + k2ψ, k1, k2 ∼ N(0, 1), (6.7)

where ψ is the eigenfunction getting from K-L decomposition. We also assume that

the water-cut response can be separated to be two parts, with each is the response

coming from one term of the right hard side of (6.7). So the posterior is

π(k1, k2) ∝ exp(−||Fobs1 − Fk1||
2

σ2
f1

− ||Fobs2 − Fk2 ||
2

σ2
f2

)π0(k)

with the water-cut Fk1 and Fk2 to be the water-cut measured.
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Fig. 6.6. Plot of sorted exp
(
− ||Fobs−Fk||2
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)
of SAMC with 2000 samples.

The corresponding parameters in our example are l2 = 0.2, σ2 = 2 in (6.5).

σ2
f2

= 0.1 and σ2
f1

= σ2
f1
/2. The field is discretized to be 80 in the vertical direction,

with 20 terms in the K-L expansion. Random walk with step size 0.3 is used as

the proposal distribution. n0 = 300, η = 1 and 6 subregions with equal sampling

frequency 1/6 are taken for the two-stage SAMC. Water-cut has been measured at

the position (1, 0.5) and (1, 1). A chain of length 2000 for both MCMC and two-stage

SAMC are sampled.

From Figures 6.7 and 6.8, we can see that the two-stage SAMC is able to find

the two modes of samples, while MCMC cannot in the same length of chains.

6.4.4. Multi-stage DASAMC

In this section, we present representative simulation results for two-phase flow

using two-stage DASAMC method. We consider a two-dimensional system in a square

domain [0, 1] × [0, 1] as the previous examples, where the injection well is placed at

the left bottom vertex of the square domain (0, 0) and the production well is placed
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Fig. 6.7. Histogram of SAMC samples.

at the right top vertex (1, 1). As for prior distribution, we assume the permeability is

log-normal, namely, log(k) has Gaussian distribution with correlation function (3.11),

i.e.,

R(x, y) = σ2 exp
(
−|x1 − y1|2

2l21
− |x2 − y2|2

2l22

)
,

with correlation lengths l1 = l2 = 3 and variance σ2 = 2. The correlation lengths are

taken to be large here in order to get fewer terms in K-L expansion. The fine-scale

models are of dimension 60 × 60. Since the first 2 eigenvalues are sufficient to give

less than 5 percent errors for the solution, we truncate K-L expansion to be

log k(x, θ1, θ2) =
√
λ1θ1ψ1(x) +

√
λ2θ2ψ2(x). (6.8)

This is a significant dimension reduction, since originally the permeability field has

60× 60 = 3600 dimension.

We take the true permeability field to be with reference value (θ1, θ2)ref = (0.5, 1),
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Fig. 6.8. Histogram of MCMC samples.

and initial permeability field with (θ1, θ2)initial = (1.438380, 0.325191) as shown in

Figure 6.9. Fobs is computed by solving the governing equations in fine grid at ref-

erence permeability field. In order to recover (θ1, θ2)ref from Fobs, we apply MCMC,

two-stage MCMC and two-stage DASAMC methods.

First, we run MCMC for 104 iterations on the fine grid. The likelihood function

L(Fobs|k) has σ2
f = 0.0001. The proposals are generated by random walk with step

size 0.3. For the two-stage MCMC, we collect a chain with 500 iterations on fine-

stage. σ2
c = 0.1 and σ2

f = 0.0001 on coarse step and fine step, respectively. The

proposals are generated by random walk with step size 0.3 too. Then, the two-stage

DASAMC is used on the coarse grid for 500 iterations, and the best approximation

on this step is passed to be the initial for second DASAMC process. The settings of

σ2
c , σ

2
f the proposal distribution are the same as two-stage MCMC. Coarse grid for

both two-stage DASAMC and two-stage MCMC is 6× 6.
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Fig. 6.9. Reference and initial permeability fields. Left: reference field; Right: initial

field.

We compare the marginal posteriors of θ1 and θ2 for these three cases. The

results are shown in Figure 6.10. The posterior distribution of two-stage DASAMC

is reconstructed by importance sampling. Maximum a posteriori estimations (MAP)

of all the cases are reported in Table 6.3. We can conclude from the figure and the

table that these methods are able to recover the reference permeability field, with the

same posterior distributions. But only 500 fine-scale calls in two-stage MCMC and

two-stage DASAMC to get a good approximation of posterior distribution.
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Fig. 6.10. Marginal posteriors of θ1 and θ2.
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Table 6.3. MAP estimations of different methods.

Reference MCMC 2sMCMC 2sDASAMC

0.500000 0.502322 0.515817 0.517992

1.000000 1.000062 0.986909 1.005900
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CHAPTER VII

SUMMARY

In this dissertation, the subsurface characterization for flows in highly heteroge-

neous porous media has been studied. We have used channelized spatial fields via

a level set approach to describe the permeability field where channel boundaries are

assumed to have random locations. We use smooth velocity fields to change the

channel boundaries within the level set framework and, thus, the parameterization of

channel boundaries can be mapped to that of smooth velocity fields. One of our main

contributions is the study of the regularity of posterior distribution. In particular, we

study errors introduced in the posterior measure by truncating the prior distribution.

The estimation is carried out using finite dimensional uncertainty space and working

with infinite dimensional PDEs. This makes the analysis easy and avoids involving

“infinite” dimensional probabilistic spaces. We have shown that the truncation error

is independent of the dimension of the stochastic space. This is important because

the parameter space can have a large dimension, in general. The subsurface charac-

terization is carried out within Bayesian framework where the posterior distribution

is sampled. The numerical results show the validity of the proposed parameterization

to interfaces and the error estimations.

We have proposed the ensemble-level MsFEM and preconditioner methods to

solve the two-phase flow equation with heterogeneous coefficients. The ensemble idea

is inspired by trying to reduce the expense in constructing multiscale basis functions.

As the expensive construction is required for multiscale basis of new permeability

fields, the best situation is to be able to reuse some basis functions with certain

restrictions. We apply this idea numerically to channelized permeability fields in our
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numerical experiments. The results show that the ensemble-level MsFEM gives good

approximation to fine-scale solution, and the ensemble-level preconditioner successes

in giving a contrast independent condition number for the preconditioning system.

When the sampling process adopts these methods, the sampling efficiency can be

achieved.

We have also proposed an ANOVA-based and a novel adaptive ANOVA-based

mixed MsFEM for the stochastic two-phase flow problem. The framework has been

described. The properties of the methods have been further studied with numerical

examples on different random permeability fields. We have investigated the structure

of errors without applying other adaptivity techniques. Note that the full ANOVA

decomposition will contain more and more subproblems in the stochastic space, when

the dimension increases. This fact can make the total computations as expensive

as solving a high-dimensional problem directly when the number of the dimension

exceeds certain point. The adaptive version is a remedy. A new adaptive ANOVA-

based on variance decomposition mixed MsFEM has been proposed and compared

with existing adaptive criterion. Our proposed adaptive ANOVA method can decide

the active dimensions and interactions among dimensions before computing the de-

composition itself. The numerical results show that this novel adaptive method can

achieve similar accuracy as other adaptive strategies but with lower computational

cost. The advantage in saving computational time will be more obvious when the

dimension of the problem becomes higher.

We have combined the multi-stage MCMC algorithm with SAMC and DASAMC

to develop multi-stage SAMC and multi-stage DASAMC methods for the subsur-

face inverse problem. The inversion problems are difficult usually due to the non-

uniqueness of the solutions. Our problem has another difficulty that it is nonlinear

in forward computation. The multi-stage versions of SAMC and DASAMC inherit
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properties from both methods. At one hand, they screen out bad proposals by using

the computations on coarse grid as a filter. At the other hand, the dynamic weights

associated to each iteration helps the samples travel though the whole sample space,

with acceleration to the global optimization by annealing. The numerical results have

validated the proposed methods.

In the future, the definition of topological similarity needs to be further ex-

plored. For the ANOVA-based MsFEM, the numerical experiments show that the

dominant errors are introduced by the mixed multiscale methods compared with the

ANOVA decomposition errors. This gives motivation to develop multiscale methods

with better accuracy to improve this method. In particular, we plan to consider a

systematic enrichment technique developed in [27]. At the same time, this kind of

approaches gives better approximation for mean than variance estimations. It would

be interesting to develop more suitable algorithm for variance computation. Besides

the advanced sampling methods we used in this dissertation, other powerful tech-

niques can be further adopted, for example Langevin, Riemann manifold Langevin

and Hamiltonian methods.
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