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ABSTRACT 

 

Production, Characterization, and Mechanical Behavior of Cementitious Materials 

Incorporating Carbon Nanofibers. (August 2012) 

Ardavan Yazdanbakhsh 

B.S., Azad University, Tehran; 

M.S., University of Sharjah  

Chair of Advisory Committee: Dr. Zachary Grasley 

 

Carbon nanotubes (CNTs) and carbon nanofirbers (CNFs) have excellent properties 

(mechanical, electrical, magnetic, etc.), which can make them effective 

nanoreinforcements for improving the properties of materials. The incorporation of 

CNT/Fs in a wide variety of materials has been researched extensively in the past 

decade. However, the past study on the reinforcement of cementitious materials with 

these nanofilaments has been limited. The findings from those studies indicate that 

CNT/Fs did not significantly improve the mechanical properties of cementitious 

materials. Two major parameters influence the effectiveness of any discrete inclusion in 

composite material: The dispersion quality of the inclusions and the interfacial bond 

between the inclusions and matrix. The main focus of this dissertation is on the 

dispersion factor, and consists of three main tasks: First a novel thermodynamic-based 

method for dispersion quantification was developed. Second, a new method, 

incorporating the utilization of silica fume, was devised to improve and stabilize the 

dispersion of CNFs in cement paste. And third, the dispersion quantification method and 

mechanical testing were employed to measure, compare, and correlate the dispersion and 

mechanical properties of CNF-incorporated cement paste produced with the 

conventional and new methods. Finally, the main benefits, including the increase in 

strength and resistance to shrinkage cracking, obtained from the utilization of CNFs in 

cement paste will be presented.  
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The investigations and the corresponding results show that the novel dispersion 

quantification method can be implemented easily to perform a wide variety of tasks 

ranging from measuring dispersion of nanofilaments in composites using their 

optical/SEM micrographs as input, to measuring the effect of cement particle/clump size 

on the dispersion of nano inclusions in cement paste. It was found that cement particles 

do not affect the dispersion of nano inclusions in cement paste significantly while the 

dispersion of nano inclusions can notably degenerates if the cement particles are 

agglomerated. The novel dispersion quantification method shows that, the dispersion of 

CNFs in cement paste significantly improves by utilizing silica fume. However, it was 

found that the dispersion of silica fume particles is an important parameter and poorly 

dispersed silica fume cannot enhance the overall dispersion of nano inclusions in 

cementitious materials. Finally, the mechanical testing and experimentations showed that 

CNFs, in absence of moist curing, even if poorly dispersed, can provide important 

benefits in terms of strength and crack resistance. 
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i   Angle of rotation 
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final position k  
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Dispersive work    The minimum amount of work required to move the particles in a 

domain so that they form a fully uniform dispersion. When 

assuming that the force required to move each particle is unity, 

dispersive work is the minimum total distance required to move 

the particles so that they form a uniform distribution. 

F    Applied force 

F   Deformation gradient 

FEA  Finite element analysis 

kjf   Force necessary to move a particle from initial position k  to final 

position  

I   Identity tensor 
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j   The mass flux vector 

nanoinclusion/c  Nanoinclusions to cement mass ratio 

R    The rigid rotation tensor 

Resilience  Amount of energy absorbed by a material while being deformed 

in the elastic zone. (Also referred to as modulus of resilience.) 

RVE   Representative volume element 

RPS  Relative particle size 

SEM   Scanning electron microscopy  

Strain capacity  Maximum strain that a material undergoes before failure 

TEM   Transmission electron microscopy 

UV-vis  UV-visible spectroscopy 

u   The displacement vector of the point in the body 

U    The right stretch tensor 

0u   Reference displacement 

v   Velocity 

V    The left stretch tensor 

/w c   Water to cement mass ratio 

/w cm    Water to cementitious material mass ratio 

aw    Dispersive works related to the actual state of dispersion 

nuw   Dispersive works related to the fully non-uniform state of 

dispersion 

tW    Dispersive work for the domain of interest 

max
tW    Work required to fully disperse the inclusions when they form the 

worst possible dispersion in the domain 

r
iW    The work required to rotate each particle i  

X    The position of some point in the body in the initial state  

x     The position of the same point in the body in the final state 
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1. INTRODUCTION 

 

1.1. Problem statement 

Portland cement concrete is the most widely used material in the world after water. 

Amongst the important reasons are the economic and widespread availability of its 

constituents. However, concrete has important shortcomings: It is weak in tension and 

prone to cracking. The weakness in tension is typically overcome by using steel bars, yet 

full prevention of cracking is very hard to achieve. Not only have cracks a negative 

impact on strength, they can significantly reduce the durability of concrete. The cracks 

increase the permeability of concrete and allow the penetration of gases and liquids that 

exist in the concrete’s surrounding environment, which causes a gradual deterioration of 

both concrete and reinforcements. 

 

Combating crack formation in concrete is a major topic in concrete science [1]. Cracking 

can be mitigated by different means from structural and mixture design to addition of 

continuous and discrete fibers such as reinforcement bars and synthetic fibers. In the 

past, it has been shown that the utilization of macro- and micro-fibers in concrete 

increases the number of cracks but at the same time decreases the crack opening width 

and the spacing between the cracks [2-4]. Concrete is inherently brittle and undergoes 

fracture, rather than plastic deformation, under an increasing load. Concrete can be 

designed in such a way that it “behaves similar to” a ductile material when the choices of 

mixture properties, fiber mechanical properties and fiber-matrix interfacial bond are 

optimized for this purpose (Figure 1a). In fact, this kind of concrete, usually referred to 

as “engineered cementitious concrete” (ECC), develops numerous brittle fractures while  
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loading (Figure 1b). However, the fibers bridge the formed macro cracks and control 

their propagation. In fiber reinforced cementitious materials such as ECC, formation of 

new cracks or increasing the crack length requires less energy than increasing the width 

of existing cracks because of the optimized interfacial bond between fibers and matrix 

that absorb high amounts of energy during the pull-out process. As a result, the large 

strain capacity of ECC is contributed by sequential development of multiple cracks, 

instead of continuous increase of crack opening [5]. The more numerous the cracks, the 

less their average width will be. At least theoretically, this width can reach down to nano 

or atomic scale. In that case, the cracks are so small that they can neither be regarded as 

damage nor affect permeability. 

 

 

 

 
Figure 1. (a) Engineered cementitious concrete displaying a ductile behavior under 
bending load. (b) The ductile behavior is a result of the formation of multiple 
cracks bridged by fibers. (Photos are from the Inhabitat and 
ConstructionLawToday websites) 
 

 

Studies by Wu and Li show that several parameters affect the formation of multiple 

cracks in ECC, amongst which are fiber length, diameter, volume fraction, elastic 

modulus, etc. [6]. The study shows that reducing the fiber diameter increases the number 

of cracks. Therefore, CNT/Fs, due to their very small diameters (ranging from 1 nm to 

200 nm) have the potential for creating a concrete with high resistance to fracture and 

low permeability. Moreover, CNT/Fs have excellent mechanical properties such as very 
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high strength and Young’s modulus. Therefore, they can improve such properties of 

concrete through a proper mixture design and engineered filament-matrix interfacial 

bond.  

 

When the incorporation of CNT/Fs in cementitious materials is concerned, the first and 

foremost issue is the dispersion of these filaments. They tend to highly attract each other 

due to van der Waals forces and form clumps. Several methods have been developed to 

disagglomerate nano filaments and keep them separated from each other in different 

types of nanocomposites. However, most of those methods cannot be used effectively in 

cementitious materials reinforced with CNT/Fs. For example, one common method is to 

first disperse CNT/Fs in an aqueous solution by means of surfactants and ultrasonic 

processing and then mix the resulted dispersion with the rest of components. However, 

most of the surfactants that can be used to effectively to disagglomerate CNT/Fs in water 

have a negative impact on the chemical reaction (known as hydration) that occurs 

between water and cement resulting in a strong and high-quality concrete. The 

preliminary research for this thesis shows that such surfactants results in the entrapment 

of a significant amount of air in cement paste, significant delay in setting of the fresh 

cement paste and immature hydration that results in a weak material [7]. 

 

When a method is developed to improve the dispersion of inclusions (such as CNT/Fs) 

in a composite, it is important to quantify this improvement. Although qualitative 

methods of comparison between different states of dispersion (such as visual observation 

of the materials cross-sectional images and the individual judgment on dispersion 

qualities) is always helpful, a quantification method can measure “how much” the state 

of dispersion has improved. In the past century, many dispersion quantification methods 

have been developed [8]. However, most of these methods are fundamentally different in 

the interpretation of the concept of dispersion and what they actually measure as 

“dispersion”. Furthermore, most of these methods have been often developed 

independently and within different disciplines of science such as materials engineering, 
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biology, ecology, and even astronomy. The lack of a consistent definition of dispersion 

and a universally accepted robust and practical dispersion quantification method is 

perceived and required to be addressed. 

 

In the field of cement and concrete research, there have been few studies about the 

relationship between the physical properties of a cementitious nanocomposite (such as 

dispersion and nano inclusion concentration) and the mechanical behavior/properties of 

the cementitious materials. In light of the fact that most of the practical design models 

and codes, particularly in civil engineering and concrete structures, are fully or semi 

empirical (not to mention that the fully analytical models require to be validated with 

experimental data), it is important to augment the existing small database of the CNT/F-

incorporated cementitious materials and determine the relationships between the major 

parameters (such as dispersion, interfacial bond, CNT/F dosage, etc.) and the mechanical 

behavior and properties of the nanocomposite. 

 

1.2. Scope of thesis 

The research on CNT/F-incorporated cementitious nanocomposites is new and its 

initiation dates back to slightly more than a decade ago. With the production methods 

that exist today, addition of CNT/Fs to cementitious materials does not cause significant 

improvement in material properties (particularly mechanical properties). As can be 

concluded from the previous section, there are numerous issues to be tackled to develop 

a useful and serviceable material. Amongst these issues are the dispersion quality of the 

nanofilaments, the limited maximum dosage of the nanofilaments in the cementitious 

materials (high dosage results in a poor dispersion of nanofilaments in the matrix), 

optimizing the filament-matrix interfacial bond properties, and the development of a 

practical production method. Furthermore, in the future, when the science and practice of 

CNT/F-incorporated cementitious nanocomposite is sufficiently advanced so that 

parameters such as dispersion, bond, maximum dosage, etc can be 
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improved/manipulated, mechanics of composites, micro- and nano-mechanics can and 

must be used to optimize the properties required for the nanocomposite assigned task. 

 

The focus of this research is on production methods, enhancing dispersion, quantifying 

dispersion, and investigating the improvement in mechanical properties resulted from 

enhancing the production method, mix design, and dispersion. The study does not 

explore neither the methods of manipulating filament-matrix interfacial bond nor the 

micro/nano-mechanics of CNT/F-reinforced nanocomposites. The cementitious material 

investigated in this project was cement past. Cement paste is the basic component and 

the adhesive agent of all cementitious materials (e.g. in cement mortar and concrete, 

sand particles and aggregates are glued to each other by cement paste). The first step in 

improving any cementitious material is improving its adhesive. Therefore, cement paste 

was the target material of the research. The investigations were mainly performed on 

incorporating CNFs rather than CNTs. The reason is that CNFs are usually more 

dispersible. Furthermore, CNFs can be observed by means of optical microscopy. As 

will be seen throughout this study, optical microscopy was invaluable for observing, 

quantifying, and understanding the dispersion of CNFs in cement paste. However, as the 

investigations of this thesis indicate, the presented dispersion- enhancement method can 

also enhance the dispersion of CNTs in cement paste. 

 

The primary objectives of this research project are summarized below: 

 

 design a production method that results in a significant improvement of CNF 

dispersion in cement paste, as compared to the dispersion achieved by available 

production methods. 

 develop a practical, reliable, and bias-free dispersion quantification method that 

produces easily interpretable results. 
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 implement the novel dispersion quantification method to compare the dispersion 

of CNFs in cement pastes made with common traditional methods and the paste 

made with the new method. 

 produce beam specimens of hardened cement paste and perform flexural bending 

test to observe the effect of CNFs and their state of dispersion in mechanical 

behavior and properties (such as flexural strength and modulus of elasticity) of 

hardened cement paste 

 

1.3. Performed tasks and thesis outline  

The tasks performed for this dissertation are as follows: 

 

Task 1. Literature review 

A through literature review was carried out at the beginning of the project about 

the past investigations on incorporating nano inclusions to cementitious materials, 

surface treatment of different inclusions for optimizing the interfacial matrix-

inclusion bond, and also the mechanics that dictates the constitutive properties of 

such nanocomposites. These studies lead us to the selection of carbon 

nanofilaments as the inclusions for enhancing the properties of cementitious 

materials.  In this dissertation, the literature review will not be presented in a 

separate chapter; it will be distributed throughout all the chapters of the 

dissertation. Each chapter will present a stage of the project that incorporates one 

or more tasks. 

 

Task 2. Preliminary research on the incorporation of carbon nanofilaments in 

cementitious materials 

Several, but not many, studies about the incorporation of CNF/Ts in cementitious 

materials were found. Some of them consisted of mechanical testing of CNF/T-

incorporated cementitious materials, often reporting a minor improvement in 

mechanical properties due to the use of CNF/Ts. All of the studies emphasized that 
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dispersing carbon nano inclusions in cementitious matrices was a major obstacle 

and presented different approaches for alleviating this issue. Some of the most 

practical and effective methods amongst those were selected, implemented, and 

improved. However, it was found that none of the methods could result is a 

sufficient dispersion of CNF/Ts in cementitious matrices. During this stage of 

research, dispersion qualification methods including optical microscopy and 

scanning electron microscopy (SEM) were utilized to evaluate the quality of 

CNF/Ts dispersion in cement paste. 

 

Task 3. Development of a method for improving and stabilizing the dispersion 

of CNF/Ts 

As mentioned earlier and will be shown in section 2, the available methods for 

dispersing CNF/Ts in cement paste are not sufficiently effective. In this project 

many efforts were made and several new ideas were generated and explored to 

develop a practical and effective method for dispersing. One of those ideas led to 

an effective method that will be presented in section 6 and its effectiveness will be 

examined qualitatively, quantitatively, and also by means of mechanical testing 

investigations.  

 

Task 4. Development of a dispersion quantification method  

When a method for improving the dispersion of CNF/Ts in cementitious 

composites is developed, it is possible to discern the improvement by microscopic 

observation of CNF/Ts in the cementitious matrix. However, it is important to 

determine “how much” two states of dispersion are different. For this purpose, a 

quantification method is required that can be input by the micrographs of 

nanocomposite or the location of individual nanofilaments in a domain, and returns 

values as output, which can characterize the dispersion of nanofilaments. This 

dissertation reviews the major dispersion quantification methods developed in the 

past and discuss their shortcomings. A novel bias-free method that was developed 
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in this project will be presented and used throughout the dissertation to compare 

different states of CNF/T dispersion and investigate the relationship between 

dispersion and mechanical properties. 

 

Task 5. Mechanical testing of CNF-reinforced hardened cement paste 

There are few investigations in which specimens of CNF/T-reinforced 

cementitious materials have been mechanically tested to measure their mechanical 

properties. Sometimes, the reported results vary significantly from one 

investigation to the other. For example, some investigators have found that the use 

of CNF/Ts in cement paste reduces the compressive strength while another 

investigation reports the opposite. Such differences in results can have different 

reasons such as the variations in types of utilized fibers or the utilized procedures 

for dispersing CNF/Ts. In addition, the results are related to the size of tested 

specimens. Due to different reasons, particularly the high price of carbon 

nanofilaments in the past decade, typically very small specimens have been 

produced and tested. Testing small specimens, especially in a bending setup, can 

be problematic since the ratio of the size of inhomogeneous features, particularly 

air voids, to the dimensions of the cross-section of specimens are relatively high. 

 

In this research project many beam specimens were produced and tested to 

investigate the effect of CNFs and the state of their dispersion on the mechanical 

properties (strength, stiffness, etc.) and behavior (crack formation) of hardened 

cement paste. The beam cross-sections were notably larger than those made in 

previous investigations. 

 

Task 6. Development of design methodology for SRCC 

In section 7, it will be shown that CNFs can significantly enhance the mechanical 

properties and crack resistance of cementitious materials. A practical design and 

production methodology is required in order to utilize CNF in cementitious 
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materials in industry. In section 2 and section 6, step-by-step methods are 

presented that details the methodology for the production of CNF incorporated 

cementitious materials. 

 

The carbon nanofilaments experimented in this project were usually CNFs. The main 

reason is that CNFs are larger (diameter between 50 nm to 150 nm) than CNTs (diameter 

between 1 nm to 50 nm) and can be observed by optical microscopy and therefore, their 

dispersion in water and fresh cement paste can be studied with less effort. Although 

CNFs are easier to disperse compared to CNTs, as will be explained later, as long as 

CNTs can be uniformly dispersed in an aqueous solution (and this is possible through 

different methods of surface treatment), the method introduced in this dissertation 

(section 6) can be utilized to maintain and stabilize the dispersion of CNTs in 

cementitious materials as well.  
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2. CARBON NANOFILAMENTS IN CEMENTITIOUS MATERIALS AND THE 

ISSUES OF DISPERSION 

 

Due to their excellent mechanical characteristics, carbon CNF/Ts are expected to 

enhance properties such as strength, ductility, and toughness in cementitious composites. 

However, such enhancements cannot be achieved unless the fibers are uniformly 

distributed in the composite and properly bonded to the matrix. CNF/Ts tend to 

agglomerate due to their high level of van der Waals interactions, and typically form a 

weak bond with hardened cement paste matrix. This chapter first presents a summary of 

the efforts made in the past to overcome these two problems. Some typical methods of 

qualitative measurement of the dispersion of CNF/Ts either in the hardened cement paste 

or the mix water are discussed. It should be noted that although both dispersion and bond 

are discussed in this chapter, the main focus of the research project is the issue of 

dispersion. The experiments presented here investigate the effect of surfactants on 

dispersion and their benefits and shortcomings when cementitious composites are 

concerned. It was shown that mixing cement and a well-dispersed water-surfactant-CNF 

solution may not result in a uniform distribution of CNFs in the paste or an optimal 

CNT-matrix interfacial bond. However, it was also found that the interfacial bond can 

reach to a level high enough to prevent fiber pullout. 

 

In order to develop approaches of harnessing the outstanding properties of CNF/Ts and 

use them as reinforcement in cementitious materials, it is important to know the methods 

developed to solve the two major issues of dispersion and interfacial bond. The first 

objective of this chapter is to present a concise review of the research on dispersion and 

interfacial bond as reported in the literature. The second objective is to demonstrate, 

through experimental results, the difficulties associated with incorporating CNFs in 

cementitious materials. Research on reinforcing cementitious materials with CNF/Ts is 

relatively new and the number of investigations and experiments focused on this subject, 

especially with CNFs, is still very limited. CNFs, although weaker than CNTs, still have 
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very high tensile strength and modulus of elasticity. This chapter reports on experimental 

investigations that study the dispersibility of CNFs and some issues related to their 

interfacial bond with cementitious matrices.  

2.1. Carbon nanofilaments 

In the past decade there has been growing interest in CNTs for various composite 

applications owing to their remarkable physical properties. Mechanically, they exhibit 

elastic moduli of more than 1 TPa (1.5×108 psi)[9]. Their theoretical strength is 100 

times that of steel, at only 1/6th the specific gravity[10]. Values as high as 60 GPa 

(8.7×106 psi) for ultimate strength and 6% for ultimate strain have been reported [11, 

12]. Salvetat et al. reported an elastic strain capacity of 12%, which is 60 times higher 

than that of steel[9]. CNTs are also highly flexible, being capable of bending in circles or 

forming knots. Like macroscopic tubes, they can buckle or flatten under appropriate 

loadings[13]. Yakobson and Avouris summarize the mechanical behavior of CNTs[14]. 

The mentioned values have been obtained mostly through theoretical calculations and 

estimations. Due to their extremely small size (their diameter is usually less than 20 nm) 

it is very difficult to measure the mechanical properties of CNTs directly. CNFs on the 

other hand are relatively large; their diameter can be as large as 200 nm. Recently, 

Ozkan et al. succeeded in performing direct measurements on CNFs[15]. The CNFs that 

they investigated had a tensile strength between 2-5 GPa (2.9×105-7.3×105 psi) with an 

average modulus of elasticity of 300 GPa (4.4×107 psi). 

 

Few studies have been carried out focusing on the effect of CNF/Ts on the mechanical 

properties of cementitious composites[16-21]. These studies have shown that CNF/Ts 

can improve properties such as tensile and compressive strength. Although CNF/Ts are 

still too expensive to be used in large concrete structures such as buildings, bridges and 

pavements, the accelerating advances in the methods of producing these nano 

reinforcements are leading us to promising futures for economical CNF/T-reinforced 

cementitious composites[22].  
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 Two problems arise when using CNF/Ts to reinforce any kind of material. First, there is 

the question of dispersing them in the material; CNF/Ts attract each other with high 

magnitude due to van der Waal's forces. This results in the formation of agglomerations 

in the forms of entangled ropes and clumps which are very difficult to disentangle. 

Girifalco et al. showed that the cohesive energy between single-walled carbon nanotubes 

(SWCNTs) with a length of 100 nm to be about 2.9 keV[23]. The dispersion problem 

has been combated using methods like surface modification of the fibers, surfactants in 

combination with ultrasonic processing, and implanting or growing the fibers directly on 

non-hydrated cement grains.  

 

The second problem limiting the effective use of CNF/Ts in cementitious materials is the 

difficulty in obtaining an optimal bond between the fibers and matrix due to the 

atomically smooth and nonreactive surface of these filaments[24]. Bonding is 

particularly an issue in cementitious composites as the interfacial bond between matrix 

and any type of straight fiber is relatively weak. If nanotubes are not completely 

dispersed and are assembled in bundles (ropes), there will be additional sliding inside the 

bundles[25]. Surface modification is the most common way of enhancing interfacial 

bond. The surface of CNF/Ts can be functionalized to chemically react with cement 

hydration products, thereby creating stronger interfacial bond[16]. This chapter is 

finalized by presenting an experimental program which incorporates CNFs and the use 

of surfactants and ultrasonic processing to enhance their dispersion in water and cement 

paste. 

2.2. Dispersion, bond, and mechanical properties 

Studies have shown that the wetability of CNTs in water is increased by the presence of 

polar impurities such as hydroxyl (-COH) or carboxyl (-COOH) end groups[26-28]. 

Additionally, the studies of Ebbesen et al. showed that the oxidation of CNTs cover their 

surface with carboxyl, carbonyl (-C=O), and hydroxyl groups, thereby improving their 
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ability to disperse in aqueous solutions[29]. Li et al. showed that these groups, as well as 

enhancing dispersion, react with calcium silicate hydrate (C-S-H) and calcium hydroxide 

(CH) and lead to a strong covalent force on the interface between the fibers and 

matrix[16]. One of the common methods of adding functionalized groups to the surface 

of CNTs is treating them with acid, typically a solution of H2SO4 and HNO3 [30, 31]. In 

this method, CNTs are added to the acid solution and the oxidization is accelerated by 

using either reflux or sonication. In the sonication method, ultrasonic waves are 

transmitted from a probe into the liquid and produce alternate expansions and 

compressions. The pressure fluctuations give birth to microscopic bubbles (cavities), 

which expand during the negative pressure excursions and implode violently during the 

positive excursions. As the bubbles collapse, millions of shock waves, acoustic 

streaming, eddies and a combination of both pressure and temperature extremes are 

generated at the implosion sites. The cumulative amount of produced energy is 

extremely high and significantly accelerates chemical reactions and imposes 

dispersion[32].  

 

The early experiments with acid treatment, perhaps due to procedure-related factors, did 

not show much improvement in mechanical properties of cementitious materials. 

Kowald used both acid treatment and sonication of CNTs in water and made cement 

paste specimen with CNT/cement mass ratios in the range of 0.5 to 5.0% [33]. The 

CNTs had diameters between 10 and 30 nm and lengths between 1 and 10 μm. Kowald 

tested the hardened specimens for compressive strength after 7, 14, and 28 days. 

Marginal improvements were observed in compressive strength and even a decrease in 

strength when the fiber dose was as high as 2.5% or more. Later, Li et al. performed a 

set of experiments with CNTs which had diameters and lengths at the ranges of 10-30 

nm and 0.5-500 μm respectively[16]. The CNT/cement mass ratio was 0.5% and the 

ratio of water/cement/sand was 0.45:1:1.5. They did not apply sonication, but added 

methylcellulose (0.4% by mass of cement) to enhance dispersion. The bending and 

compression tests showed that the addition of acid treated CNTs increased the 

compressive and flexural strength by 19% and 25% respectively. The investigators later 
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used a similar method, combined with the sonication of CNTs in water prior to the 

mixing procedure, and produced cement paste with CNT/cement mass ratio of 0.5% 

[34]. The SEM images of fractured surfaces of hardened specimens showed that acid 

treatment enhanced both dispersion and bond. Untreated CNTs formed meshwork in the 

matrix while the treated CNTs were randomly distributed and covered by C–S–H. 

 

The dispersion of CNF/Ts can also be enhanced by using surfactants. Dispersion of 

CNTs in liquid media is a well researched topic and many surfactants, combined with 

sonication, have shown to be effective[35]. The surfactants add charges or hydrophilic 

ends to the surface of CNTs while their bundles are exfoliated by sonication. Cwirzen et 

al. used CNTs (diameter 10 nm, length 2-4 μm) functionalized with carboxyl groups. 

They dispersed the CNTs in water by sonication while using polyacrylic acid polymers 

as surfactant. Using a mix containing only 0.045% of the CNTs, they observed a 

significant increase (as high as 50%) in compressive strength. Trettin and Kowald[17] 

briefly reported an experiment in which they used different types of polycarboxylate-

based superplasticizers as surfactants to produce cementitious CNT-reinforced 

composites. The results of compressive and bending tests showed that the 

superplasticizers with longer lateral chains resulted in higher strength, which indicated 

better dispersion of CNTs and better interfacial bond between the fibers and matrix. 

 

Another method to enhance dispersion of CNTs in cementitious composites is to 

distribute and attach the nanotubes to the surface of cement particles before hydration. 

Makar and Beaudoin dispersed CNTs (Single walled, diameter 1.4 nm) in ethanol by 

sonication, and then added cement to the liquid to form a slurry which was further 

sonicated for hours[36]. The slurry was then allowed to dry and ground to form a 

powder. The SEM images of the powder show that grains of cement powder have been 

well coated with CNT bundles. Maker et al. later made cement paste using CNT-coated 

cement produced with a similar method[37]. Through SEM imaging of the fractured 

surface of dry paste, they found that the distribution of the CNTs in the hydrated samples 
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is not the same as seen on the non-hydrated cement grains. CNT bundles were smaller in 

apparent diameter and more widely distributed in the hydrated matrix. The smallest 

bundles imaged had diameters less than 5 nm, suggesting that they were composed of 

only a few 1.4 nm diameter single walled CNTs. Nasibulin et al. have recently 

developed a method to grow CNF/Ts directly on the surface of cement particles[38]. 

They showed that the fibers were homogeneously dispersed in the paste made with the 

produced cement and intermingled with the products during the hydration process. Using 

this cement resulted in more than 100% increase in the compressive strength of hardened 

paste. 

2.3. Qualitative and quantitative methods of measuring dispersion 

Quantifying methods of dispersion were used frequently throughout this project. Some 

of the available commonly used methods are briefly explained in this section. Optical 

and scanning electron microscopy were predominantly utilized in this study to observe 

the dispersion of CNFs in cementitious matrices. 

 

The most common way of evaluating the distribution of CNF/Ts in a composite is 

scanning electron microscopy (SEM). SEM is the only method that shows the actual 

distribution of both CNTs and CNFs in the hardened matrix, while the other common 

methods measure dispersion in the water used for producing cement paste. SEM is 

therefore utilized for the final validation of dispersion in the cementitious matrix. Images 

are normally taken from the fractured surface of a material in order to observe the 

CNF/Ts projecting out of the matrix. When the CNF/Ts are introduced to the paste by 

initially adding them to the mixing water, a uniform distribution of fibers in the matrix 

cannot be expected if they were not dispersed well in the water. Several methods are 

used to qualify or quantify dispersion in water. Three common methods, namely optical 

microscopy, Transmission Electron Microscopy (TEM) and UV-visible spectroscopy are 

briefly discussed below.  
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Although CNTs are too small to be seen by means of optical microscopy, if they are 

poorly dispersed, the agglomerations can be identified by this method. Since CNFs are 

larger than CNTs, the quality of their dispersion in water or in freshly mixed paste is 

easier to study by optical microscopy. Transmission electron microscopy (TEM) is used 

in order to observe the dispersion of CNF/Ts with much higher magnifications. In TEM, 

the image is formed from the interactions of electrons transmitted in the form of a beam 

through a very thin specimen (few hundreds of nanometers). Since the specimen should 

be solid, the dispersion is usually frozen rapidly and maintained at cryogenic 

temperatures, generally liquid nitrogen temperatures (−196 °C; −321 °F), in the form of 

amorphous ice. 

 
Another common method of measuring dispersion in a transparent medium is ultraviolet-

visible spectroscopy (UV-Vis). This method is based on the simple fact that the better 

CNF/Ts are dispersed in a liquid, the darker the dispersion is and therefore absorbs more 

light. Figure 2 shows three specimens of CNFs mixed in water. In the first specimen 

(Figure 2-a), CNFs were simply added to water and mixed by a hand-stirrer. In less than 

a minute after mixing, most of the CNFs settled down while a small portion floated at 

the top. In other words, there was no dispersion and the bulk liquid was completely 

transparent. In the second specimen (Figure 2-b), the CNFs were added and hand-mixed 

with a solution of water and surfactant. The CNFs were slightly dispersed and the 

specimen absorbed some light. Finally, in the third picture (Figure 2-c), the mixture of 

water, surfactant, and CNFs was sonicated for 10 minutes. This resulted in a good 

dispersion and the specimen absorbed a lot of light and was thus very dark.  

 
 
The schematic layout of a UV-vis spectroscopy device is presented in Figure 3. In each 

step of measurement, the source sends radiation of a certain wavelength (in UV-visible 

range) through two specimens. One of the specimens is the dispersion of particles 

(CNF/Ts) in a liquid medium such as water or a water-surfactant solution, and the other 

specimen is only the liquid medium without any particle. Based on the strength of the 
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Figure 2. Effect of CNF dispersion quality on the transparency of solutions. All 
three specimens have the same CNF/water ratio. In specimen (a), CNFs were added 
to only water and mixed by a hand stirrer, which resulted in poor dispersion and as 
a result high transparency. In the specimen (b), CNFs were added to a solution of 
water and surfactant and mixed by a hand stirrer; this resulted in a slightly better 
and darker dispersion. In specimen (c), CNFs were sonicated in a water-surfactant 
solution. This produced a good and very dark dispersion. 
 
 
 
radiation transmitted through the specimens and collected by the detectors, the portion of 

radiation absorbed by the particles is determined. CNF/Ts, if dispersed well, absorb the 

radiation of a specific range of wavelength depending on several parameters such as 

their size, length and shape. It has been shown that the wavelength range absorbed by 

some CNTs is between 200-350 nm, with an absorption peak at approximately 250 

nm[39, 40]. UV-vis spectroscopy is quantitative, accurate and simple, and is a useful 

means for drawing comparisons between dispersions made from one type of CNF/T. 

However, UV-vis does not provide information about the bundle size and the 

distribution pattern of CNF/Ts, while optical microscopy, TEM, and SEM, despite being 

qualitative, are direct and visual measures of dispersion. In this research project optical 

microscopy, SEM, and occasionally TEM has been used to investigate the quality of 

dispersion. The next sections of this chapter present an experimentation program using 

these three methods. 

( (((a) (c)(b)
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Figure 3. Schematic layout of a UV-vis spectroscopy device, used for quantifying 
the dispersion of particles in a transparent medium. From the portion of radiation 
received by the detectors, the absorption capacity of the particles and thus the 
uniformity of their distribution can be determined. 
 

2.4. Experimental 

The experimental investigations reported here aimed at studying the dispersibility of 

CNFs in aqueous solutions and cement paste, as well as characterizing the interfacial 

bond between CNFs and cement paste matrix. Solutions of CNFs in water was produced 

by different approaches and imaged by optical microscopy, and in one case with TEM. 

Subsequently, cement paste was made by either adding a CNF-water dispersion to 

cement or simply adding water to a dry mix of cement and CNFs. The fractured surface 

of hardened paste was imaged by SEM and some correlations and dissociation was 

found between the distribution of fibers in CNF-water dispersions, and in the paste 

specimens made from mixing the dispersions with cement. The SEM images of pulled-

out and fractured CNFs were used to draw conclusions about the quality of interfacial 

bond between CNFs and cementitious matrix.   

2.5. Materials and preparation of specimens 

Two types of CNFs were investigated. Table 1 presents some information about 

dimension and surface area of the fibers as well as the methods used to study their 

 
 
 

      
 
 

Specimen: 
particles + liquid 

Detectors 
Source of UV and 

visible light 

Only liquid 
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dispersion. The first type has an average diameter of 150 nm and length in the 10-20 μm 

range. The CNFs were provided by Showa Denko Group under the commercial name 

VGCF-H. The dispersion of the VGCF-H fibers in water was studied by optical 

microscopy, and their distribution in hardened cement paste was observed by SEM. The 

second type of CNF has a diameter between 60-150 nm and a length between 30-100 

μm. The fibers were provided by Applied Science Company under the commercial name 

Pyrograph PR-24 (PS), referred to hereafter as Pyrograph. The Pyrograph fibers were 

studied using optical microscopy, SEM, and also TEM. 

  
 
 
Table 1. The CNFs used in the experiment and the imaging methods used to study 
their dispersion. 
 

Fiber 
Name 

Producer 
Avg. Diameter, 

nm 
Avg.  Length, 

μm 
Spc. Surface 
Area, m2/g 

Optical 
Microscopy 

TEM SEM 

VGCF-H 
Showa Denko, 

Japan. 
150 10-20 13 Yes No Yes 

Pyrograph 
PR-24 (PS) 

Applied 
Science, Ohio. 

60-150 30-100 50-60 Yes Yes Yes 

 
 
 
Most of the dispersions were made by ultrasonically processing the CNFs in a water-

surfactant solution for 15 minutes.  A Sonics & Materials (Vibra-Cell) model VC-

505, 20 kHz liquid processor with a ½ inch (12.5 mm) diameter titanium alloy probe was 

used at an amplitude setting of 50%. Two types of surfactants were used in this study. 

The first was a nonionic surfactant provided by BASF with the commercial name 

Pluronic F98. Moore et al. compared this surfactant with several other surfactants and 

found it effective for dispersing CNTs in water[35]. The second surfactant  was a 

superplasticizer; a high range polycarboxylate-based water reducing admixture provided 

by W.R. Grace with the commercial name ADVA Cast 575. The surfactant/water and 

CNF/water mass ratios for all dispersion specimens were 1.71% and 1.14%, 

respectively. These proportions are the same as those used to make CNF-reinforced 
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cement paste specimens for SEM imaging. Each sample for optical microscopy was 

prepared by placing a small drop of dispersion on a glass slide and covering it with a thin 

slip. A Zeiss Axiophot microscope was used in the transmitted mode with a 40x dry 

objectives lens. For cryo-TEM, 5 μL of diluted dispersion was added onto perforated 

carbon grids (2μm holes). Specimens were then plunge-frozen in liquid ethane at 100% 

relative humidity and transferred to a cryo-specimen holder that was maintained at -175 

degrees Celsius throughout the length of the experiment. Observation was performed by 

an FEI Tecnai F20 transmission electron microscope. 

 

Three CNF-reinforced hardened cement paste specimens were prepared for SEM 

observation. One of them contained VGCF-H CNFs and the other two contained 

Pyrograph CNFs. The mixture proportions of the specimens are shown in Table 2. In all 

specimens, the w/c ratio was 0.35 and CNF/c and surfactant/c mass ratios were 0.4% and 

0.6% respectively. Ordinary Type I portland cement was used. Due to compatibility 

issues that will be discussed later, only the superplasticizer was used as surfactant. For 

specimens 1 and 2, the CNFs were sonicated and dispersed in the solution of water and 

superplasticizer for 15 minutes and then the dispersion was added to and mixed with 

cement. For specimen 3, water-superplasticizer solution was added to a dry mix of 

cement and CNFs. A small multi-speed planetary mixer was used for mixing paste with 

a method similar to that of ASTM C 305–06, but with a longer mixing time (total of 7 

minutes) to enhance paste uniformity. For each batch after the mixing was completed, 

the paste was cast into small beam molds. All of the beams were demolded after 24 

hours and then cured in lime saturated water. Three weeks after casting, the beams were 

broken, coated with 4 nm-thick Platinium/Palladium (80/20) layer to enhance surface 

conductivity while their fractured surfaces were observed by SEM. For SEM 

observation, the specimen made with VGCF-H was imaged by an FEI Quanta Q600FEG 

and the other specimens were imaged by a JEOL JSM-7500F. 
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Table 2. Mixture proportions of the cement paste specimens. 
 

Batch No. w/c VGCF-H/c Pyrograph/c, % S.Plastiszer/c, % Sonication 

1 0.35 0.4 0 0.6 Yes 

2 0.35 0 0.4 0.6 No 

3 0.35 0 0.4 0.6 Yes 

 

2.6. Observations and discussion 

The effect of surfactants on the dispersion of CNFs in water is illustrated in  

Figure 4. Figure 4a shows VGCF-H fibers in water-Pluronic F98 solution after 15 

minutes of sonication. They are well-dispersed and hardly any agglomeration can be 

seen. Figure 4b, on the other hand, shows a specimen made in the same condition but 

without any surfactant. The solution contains large clumps with only a small portion of 

CNFs floating individually in water. Figure 5 shows two types of poor dispersion of the 

CNFs in water. The first specimen (Figure 5a) has the same composition as the one 

shown in Figure 4a, but it was only sonicated for 15 seconds. Clumps of entangled fibers 

can be seen; the sonication period has not been long enough to disentangle them. A 

similar pattern of agglomerations could be observed when insufficient amount of 

surfactant was used, even when the dispersion was sonicated for 15 minutes. Figure 5b 

shows a different type of agglomeration; the CNFs are bundled longitudinally. This type

of texture forms when the dispersion is drying due to evaporation or absorption of water 

by a dry media such as a piece of cloth. Figure 6a shows VGCF-Hs in water-superplasticizer 

solution after 15 minutes of sonication; the image shows that the superplasticizer is not as 

effective as Pluronic F98 in dispersing this type of CNF. The distribution of CNFs in a 

location on the fractured surface of hardened cement paste made with this dispersion is 

shown in Figure 6b. The fibers are mostly separated, however this image does not represent 

the whole area of the fractured surface; in many locations no or little fibers could be seen.
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This suggests that a relatively uniform dispersion of CNFs in water does not guarantee 

a good dispersion in cement paste. 

 

  
 
                                  (a)                                            (b) 
 
Figure 4. Effect of surfactants on the dispersion of CNFs: Optical microscopy 
image of the distribution of VGCF-Hs (a) in water-Pluronic F98 solution and (b) 
only in water. Both specimens were sonicated for 15 minutes. 
 
 

 
 
                                 (a)                                 (b) 
 
Figure 5. Two types of poor dispersion of CNFs (VGCF-Hs) in water. (a) non-
disentangled clumps of CNF due to insufficient sonication, and (b) rebundling of 
CNFs as a result of drying. Both specimens have the same composition with 
Pluronic F98 was used as surfactant. 
 

20 um 20 um

20 um 20 um
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                                  (a)                              (b) 
 
Figure 6. A comparison between the distribution of CNFs in water and cement 
paste. Image (a) is an optical micrograph of the dispersion of VGCF-Hs in water-
superplasticizer solution. The distribution is relatively uniform, but some of the 
smaller fibers are agglomerated. Figure (b) is an SEM Image of the hardened 
cement paste in a location with a relatively high concentration of CNFs. The paste 
was made with the dispersion in (a). The majority of larger fibers are separated. 
However this image does not represent the distribution of CNFs in the matrix; in 
several areas of the fractured surface, no or few fibers could be observed by SEM. 
 
 
 
The effect of ultrasonic processing on the dispersion of CNFs is illustrated in Figure 7; 

these are the optical microscopy images of the dispersion of Pyrograph in water-

superplasticizer solution. Figure 7a shows the poor dispersion of CNFs in a 

superplasticizer-water solution that has been only hand-shaken for 7 minutes (the period 

of time used for mixing the cement paste specimens). In the sonicated mixture (Figure 

7b), fibers seem to be well-dispersed. It should be mentioned that these fibers were more 

dispersible than VGCF-H and their distribution quality in water was almost the same 

with both Pluronic F98 and superplasticizer. However, some small and mostly round 

dark areas can be seen (Figure 7b). The dispersion was imaged by cryo-TEM in order to 

investigate the dark areas. Figure 8a shows a thread-like object which is curled and 

20 um 
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packed. Such curled threads formed more than half of the dark areas in the dispersion. 

The nature of these objects is still unknown, but they may be impurities. Figure 8b 

shows a bundle of smaller CNFs that has not been disentangled despite sonication. These 

bundles formed the rest of dark areas in the dispersion. Figure 9 shows the SEM image 

of one of such bundles in the cement paste made with the CNT dispersion (specimen 3). 

TEM observations, however, showed that the CNFs were well dispersed in the solution 

and the portion of bundled fibers and impurities was small. The other fact revealed by 

the TEM images is that many of the CNFs in the dispersion were shorter than the 

minimum length specified by the manufacturer (Figure 10). The reason is probably, as 

also pointed out by Ozkan et al. who investigated the mechanical properties of a similar 

type of CNF[15], that some of the fibers break during sonication. 

 
 
 

    
 
                                  (a)                                 (b) 
 
Figure 7. Effect of sonication on the dispersion of Pyrograph CNFs in aqueous 
media. In both specimens the proportions are the same and the fibers have been 
added to a water-superplasticizer solution. Specimen (a) was only had-shaken while 
specimen (b) was sonicated for 15 minutes. 
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                                 (a)                                   (b) 
 
Figure 8. Cryo-TEM images of some undesired features in the sonicated dispersion 
of Pyrograph shown in Figure 10-a. Image (a) shows an impurity in the shape of a 
curled thread, and image (b) is a longitudinal bundle of CNFs caused by parallel 
agglomeration of the fibers. 
 
 
The SEM study of the fractured surface of hardened cement paste made from the CNFs, 

either from their dispersion in water-superplasticizer solution or dry mix with cement, 

showed that these fibers did not have an overall uniform distribution in cement paste. 

During the paste surface scanning via SEM, many areas were observed that were not 

covered with CNFs. The SEM images related to Pyrograph (specimen 3) also revealed 

the presence of several agglomerations, although the CNFs were dispersed well in the 

solution prior to making the cement paste. One such agglomeration is shown in Figure 

11. The underlying causes of reagglomeration of CNFs after adding the dispersion to 

cement can be explained through the effect of drying on dispersion. As mentioned 

earlier, initiation of drying of a CNF/T dispersion, and in general reduction in water/fiber 

ratio, results in bundling. When the dispersion is added to cement, the relatively large 

amount of cement adsorb the water rapidly. At this point the paste is still workable and 

fibers can move towards each other and form bundles.  
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Figure 9. SEM image of a longitudinal bundle of Pyrograph CNFs in hardened 
cement paste. The bundle is very similar to those observed in the dispersion used to 
make the paste (Figure 7-b). The image also shows that the fibers are not covered 
by hydration products. 
 
 
 

    
 

                                 (a)                                 (b) 
Figure 10. Cryo-TEM images of Pyrograph showing different diameters and 
lengths of the CNFs. These fibers have been sonicated in an aqueous solution for 15 
minutes and their aspect ratios are noticeably smaller than those of non-sonicated 
fibers. This means that long period of ultrasonic processing can break and shorten 
many of the CNFs. 
 

1 um
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As mentioned earlier, Figure 11 shows a clump of CNFs within a pore in the hardened 

cement paste. These fibers are not covered by C-S-H or any hydration product, and they 

are not exposed by pull-out of the fibers during fracture. This is an indication of poor 

interfacial bond between the CNFs and matrix in several areas of the material with such 

cavities. In a CNF/T-reinforced composite the fibers are expected to be fully covered by 

and bonded to the matrix; otherwise, their presence is hardly beneficial. Bundling can 

limit the presence of hydration products in between the entangled fibers. This problem 

particularly exists in cementitious materials where the matrix components are large 

relative to the CNF/T size and the space between them. Kim et al. have shown that even 

polymeric composites resins do not infiltrate into agglomerates of CNTs[41]. However 

they, and later Li et al.[42], solved this problem by different methods of CNT surface 

modification including acid treatment. Figure 12 reveals another issue regarding CNF-

cement matrix interfacial bond; this figure shows two different scenarios of what can 

happen to CNFs that bridge a crack. The image in Figure 12a is taken from the fractured 

surface of specimen 2 (in which CNFs were not sonicated in water). Several occurrences 

of fiber pullout are shown. The image in Figure 12b is taken from specimen 3 (in which 

CNFs were first sonicated in water-superplasticizer solution). In this image, two CNFs 

can be seen that are fractured at the same level as crack surface. This shows that the 

fibers did not get pulled out and the bond between the fibers and matrix was so strong 

that the CNTs broke when the crack propagated through them. The observations in 

Figure 12 indicate that it is possible to control the interfacial bond strength between 

CNFs and cementitious matrix, and this strength can be high enough to prevent pull-out. 

Additionally, although the occurrence of fiber pull-out and fracture was seen both in 

specimens 2 and 3, it is possible that sonication, due to the roughening of fiber surface, 

can improve the bond. More investigation is required to prove this hypothesis. 
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                                  (a)                                (b) 
 
Figure 11. SEM images of a clump of Pyrograph CNFs in a cavity of hardened 
cement paste. Both images are taken from the same location, but image (b) has a 
higher magnification. Agglomerations of this size were barely seen in Optical 
microscopy and TEM imaging of the CNF dispersion used to produce this paste. 
This suggests that the CNFs tend to reagglomerate during and after paste mixing. 
 
 
As the experimental results showed, Pluronic F98 is more effective (compared to 

polycarboxylate-based superplasticizers) in disagglomeration of the CNFs in water. 

Stronger surfactants may prevent rebundling of the fibers during and after paste mixing. 

However, many of the effective surfactants are incompatible with cement hydration. For 

example, the experiments of the authors have shown that the addition of Pluronic F98 to 

cement paste increases the amount of entrapped air remarkably. Using Sodium 

Dodecylbenzene Sulfonate, which is an effective anionic surfactant, the cement paste 

entrapped air about 5 times more than is typical in plain cement paste. The paste also did 

not reach initial set until after 24 hours. Gum Arabic is a natural polymer that has shown 

to be an effective surfactant for dispersing CNTs in aqueous media[43]. However, it was 

observed by the authors that when some polycarboxylate-based superplasticizer was 

added to a dispersion produced by sonicating 1.0% mass of CNTs in a Gum Arabic-

water solution (2.0% mass), the fibers reagglomerated and the dispersion turned into a 

gel-like material. 

 

3 um 1 um
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                                 (a)                                (b) 

  
 
Figure 12. SEM images of Pyrograph CNFs on the fractured surface of hardened 
cement paste. Image (a) shows the CNFs pulled out of the matrix. This paste was 
made by simply adding CNFs and water to cement prior to mixing without any 
ultrasonic processing. Image (b) is from the specimen made by adding well-
dispersed CNT solution to cement. Two fibers have broken at the same level as the 
surface of the crack, which indicates that the fibers have not been pulled out. A 
reason for such fractures is probably that sonication roughen the surface and as a 
result enhances the fiber-matrix interfacial bond. This also means that the bond 
strength is controllable and can even reach a high enough value to prevent fiber 
slippage. 
 
 
There are stable CNT aqueous dispersions available in the market, like AquaCyl 

produced by Nanocyl Company, but they have some negatives effects on cement 

hydration. Cwirzen et al. found that Gum Arabic slowed down the hydration reactions 

and decreased the compressive strength of hardened cement paste[18]. All these findings 

show that a hydration-compatible surfactant may not always be the solution to the 

problem of producing cementitious composites with uniformly distributed and well-

bonded CNF/Ts, and approaches such as surface functionalization and implantation on 

cement grains should be further investigated.  

 

400 nm 100 nm
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2.7. Geometric clustering: another potential cause for the poor dispersion of 

CNF/Ts in cement paste  

The investigations of this chapter shown that the main reason for the poor dispersion of 

CNFs in cement paste was the reagglomeration of CNFs when the aqueous dispersion of 

CNF and superplasticizers was added to cement. In this section, geometric clustering, 

another possible cause for the poor dispersion of carbon nanofilaments in cement paste, 

which probably cannot be eliminated, is briefly discussed. This issue will be investigated 

thoroughly in section 5.  

 

One of the least investigated causes of the poor dispersion of CNF/Ts in cement paste is 

the size of cement grains and is referred to as geometric clustering [7]. The average size 

of Type I portland cement is between 10-20 μm. Therefore, cement particles are very 

large compared to CNTs or even CNFs. The SEM observations show the geometry of 

typical cement particles (Figure 13). Many of the cement particles are as large as 10 μm 

and particles larger than 100 μm can be seen. These observations are in agreement with 

the measured cement particle size distribution by laser diffraction techniques [44]. Two 

parameters affect the role of cement particle size on the distribution of fibers in cement 

paste. The first parameter is the size of the fibers relative to cement particles. CNF/Ts 

are much smaller than macro-fiberes and even micro-fibers, so uniform dispersion at a 

certain volume fraction requires much smaller spacing between fibers.  Since CNF/Ts 

are much smaller than cement grains, the minimum consistent spacing between fibers is 

limited by the size of the cement grains.  That is, the CNF/Ts cannot penetrate the 

cement grains and are thus separated by a larger than optimal spacing in the presence of 

large grains.  By having larger than optimal spacing in certain regions of the material, 

smaller than optimal spacing between CNF/Ts occurs in other regions; the result is a 

greater potential for poor dispersion.  

 

The second parameter dictating the role of cement particle size on CNF/T distribution is 

the distance between adjacent fibers given a uniform distribution of fibers in the matrix. 
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If this distance is larger than the average particle size, then cement grains do not disrupt 

uniform dispersion even if the grains are much larger than fibers. In order to make an 

approximate but reliable measurement of the distance between well-dispersed fibers, it 

was assumed that all fibers are aligned in one direction, that is, all the fibers are parallel. 

Based on TEM and SEM images of the CNFs, it was also assumed that the internal 

diameter of a CNF is 1.5 times of its wall thickness, and that the hollow part of CNF 

remains empty during and after paste mixing. With these assumptions, using CNFs with 

an average diameter of 100 nm in a paste with w/c = 0.35 and CNF/c = 0.004 (same as in 

the paste made in phase I), the distance between two adjacent CNFs would 

approximately be 5 μm. This means that if the average cement grain size was 4 μm, it 

would not have a negative effect on dispersion. However when the average size of 

cement particles is 10 μm or more, a uniform dispersion of CNFs with the mentioned 

mix design and fiber size is not possible. Moreover, when a higher dosage or fibers with 

smaller diameters are used, given a uniform distribution, the space between the fibers is 

reduced. For example, for the CNF/paste mass ratio of 1.0, the space between adjacent 

fibers would be 2.7 μm. As another example, if CNTs with an average diameter of 10 

nm and CNT/c ratio of 0.5 is used, the space would be as small as 440 nm. 

 

An experiment was carried out to find out whether it is possible to use fine-grain cement 

to produce CNF-cementitious composites.  Figure 14a shows the SEM image of the 

cement produced by ball-milling the type I portland cement shown in Figure 13. 

The milled particles are very fine and their average diameter is less than 1 μm. When 

this cement was used to make a paste with w/c = 0.35, after adding water-superplasticizer 

solution to cement, mixing resulted in only a wet powder. The mix did not turn into a 

paste until the w/c and superplasticizer/cement ratios were increased to 0.52 and 0.03 

respectively. The problem was more severe with the ball-milled cement-CNF mix; w/c 

and superplasticizer/cement ratios of 0.80 and 0.02 were used to achieve a paste mix. 

In both cases the paste was very viscous and had rapid exothermic heat output. However, 

despite the very high w/c ratio of the fibrous paste, 
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and as a result, the high magnitude of shrinkage stresses, the cracks were very fine and 

uniformly distributed throughout the fractured surface. This indicates the viability of 

CNFs in effective distribution of stress in cementitious composites ( Figure 14b).   

 
 
 

		  
	
Figure 13. Type I portland cement particles. (a) Several particles are as large as 10 
micrometer. (b) a particle can be seen at left which is over 100 micrometer. The 
cement was kept in an airtight container after purchasing fresh. The dimensions of 
the particles are much larger than the expected average size of cement grains. 
These large dimensions can be a cause of the poor dispersion of CNFs in paste. 
 
 
 
A main reason for high demand of water by fine cement is that breaking cement grains 

into smaller particles increases the surface area of cement. Higher surface area results in 

more reactivity and also higher amount of water required to be adsorbed on the surface 

of cement particles to produce a workable paste. In general, the surface area of particles 

is inversely proportional to their dimension. In other words, if the particles of a given 

mass of cement are milled so that the nominal average diameter of the new particles is 

half of the original average particle diameter, the surface area becomes twice. Therefore, 

in the case of this experimental program, when the average size of the milled cement 

grains is less than one tenth of the size of original particles, the new surface area is over 

10 um 10 um
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Figure 14. (a) Type I portland cement ball-milled for 15 hours. The average size of 
the particles is smaller than one micrometer and therefore the surface area of the 
milled cement is significantly larger than the original cement. (b) Fractured surface 
of hardened cement paste made by ball-milled cement-CNF mix. The CNF/cement 
ratio is 1.0%. Although the w/c ratio in this paste is very high (0.80), and therefore 
the paste has been subject to significant shrinkage stresses, large cracks were not 
observed during scanning the surface by SEM. Multiple closely-spaced nanocracks 
indicates the role of a high content of CNFs in stress distribution. 
 
 

ten times greater, and therefore the required amount of adsorbed water and 

superplasticizer becomes significantly more. Using fine-grained cement has other 

disadvantages. Mehta has pointed out that using fine cement can have negative effects 

on durability [45]. The high amount of heat released during the hydration of fine cement 

can lead to thermal cracking. Also, finer cements generally produce more chemical and 

autogenous shrinkage [44]. As a result, milling cement or using very fine cement may 

not be a practical approach to enhance the dispersion of CNF/Ts in cementitious matrix. 

It should therefore be understood that CNF/Ts may not be able to be distributed 

uniformly in a cement paste above a certain volume fraction, depending on the particle 

size distribution of the cement. This fact should be taken into consideration when 

theoretically modeling and analyzing the behavior of CNF/T-reinforced cementitious 

composites. 
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Finally, the SEM observations of the fractured surface of hardened fibrous paste made 

with non-milled cement show that there are areas without any CNF with dimensions as 

large as hundreds of micrometers between the areas that contain CNFs ( 

Figure 15). This is much larger than the size of the largest cement particle. Therefore the 

size of cement particles may not be the major reason for poor dispersion. The extent of 

the effect of geometric clustering on CNF/T dispersion in cement paste will be 

investigated in detail in section section 5. 

 

 

 

 
Figure 15. SEM images of the fractured surface of hardened cement paste 
incorporating CNF. CNFs are agglomerated and most of the fractured area does 
not contain CNFs. 
 
 

2.8. Concluding remarks 

A summary of the past investigations on the reinforcement of cementitious composites 

with CNTs was presented. Issues on dispersion, fiber-matrix interfacial bond, and 

surface functionalization were discussed. Studies focused on incorporating CNFs in 

cementitious composites are scarce. CNFs have much lower surface area compared to 

CNTs and are easier to disperse. An experimental program on two types of CNFs was 

presented. It was found that a polycarboxylate-based superplasticizer could properly 
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disperse a relatively high concentration (more than 1.0%) of one type of the fibers in 

water. However, the SEM images of hardened cement paste revealed the presence of 

bundles, clumps, and distribution non-uniformities. This suggests that some of the fibers 

reagglomerate during and after paste mixing. This issue affect the quality of dispersion 

more severely than geometric clustering. 

 

The SEM observations proved the possibility of the occurrence of both CNF pull-out and 

fracture, and therefore the controllability of CNF-cement matrix interfacial bond. The 

SEM images also showed that many of the agglomerated CNFs were not covered with or 

bonded to the matrix, since the paste had not infiltrated through them; this indicates the 

importance of examining additional approaches (such as fiber surface functionalization) 

to optimize both bond and dispersion. Seeking additional approaches to ensure 

dispersion and bond than surfactants is also important since more effective surfactants 

can negatively affect cement hydration. Moreover, more dispersible CNFs require less 

sonication, which would be another advantage since long period of sonication can break 

and shorten the fibers.  
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3. A NOVEL METHOD FOR DISPERSION QUANTIFICATION OF 

INCLUSIONS IN COMPOSITES 

 

Dispersion quantification of inclusions in composites is useful and important. As an 

example, in this study the effect of geometric clustering on the dispersion of 

nanoinclusions in cement paste will be investigated (section 5). For this purpose, only a 

dispersion quantification method can determine “how much” geometric clustering 

affects dispersion. In addition, in this project a new method for enhancing the dispersion 

of CNF/Ts in cementitious materials will be presented. Again, a dispersion 

quantification method is required to measure “how much” the method is effective. This 

chapter will present a novel bias-free method of dispersion quantification after reviewing 

several major methods developed in the past and investigating their possible 

shortcomings. An approach, based on the continuum theory, for implementing the new 

method will be presented in section 4. 

 

Distribution of constituents within a composite material dictates important constitutive 

properties and is therefore of interest for all multiphase materials including composites 

that incorporate nano-, micro-, and macro-inclusions. In the first part of this chapter, 

previously proposed methods for quantifying dispersion are reviewed and their 

applications and possible shortcomings are discussed. In the second part, a novel 

definition for dispersion is presented based on the thermodynamic concept of work; 

dispersion is measured based on the amount of work required to translate inclusions so 

they form the state of maximum uniformity. The method quantifies dispersion with a 

single parameter. Although multiple parameter methods can provide more information 

about the spatial distribution of inclusions, the new method is particularly useful when 

comparing overall dispersion quality of different domains. As an example, the dispersion 

of carbon nanotubes in an Al coating is quantified to demonstrate the robustness and 

practicality of the novel dispersion quantification method. 



37 

 

3.1. Introduction 

Manufactured composite materials are ubiquitous in industries ranging from electronics 

to civil infrastructure, and include particulate (inclusions roughly spheroids) and 

filament (inclusions with high aspect ratio) reinforced materials.  The constitutive 

properties of a composite are highly affected by the uniformity of distribution of 

inclusions (also referred to as features) in the material. For example, from the 

mechanical perspective, the distribution of inclusions has a strong influence on the local 

stress fields and therefore affects the durability and fracture characteristics of the 

composite material. Past research has studied the effect of inclusion distribution on 

mechanical properties and durability of a wide range of composites including polymeric 

[46-55], metallic [56-59], and cementitious [60-62]. A review of investigations focusing 

on nanocomposites can be found in the work of Sun et al. [63]. Many of these studies 

have used qualitative or semi-quantitative methods to quantify dispersion, such as the 

visual observation of micrographs obtained from scanning electron microscope (SEM) 

or transmission electron microscope (TEM) imaging, or the curves obtained from 

different spectroscopy devices. 

 

Today, several kinds of nano inclusions such as carbon, metal, and silica nano particles 

or filaments are being used in a wide variety of materials to enhance their mechanical, 

electrical, optical, or catalytic properties. The use of carbon nanotubes (CNTs) or nano 

fibers (CNFs) in ceramics [64-67], cementitious materials [16-19, 34, 38], polymers 

[68], rubbers [69] and metals [70] are a few examples of such applications. Controlling 

the distribution of nano inclusions is a major challenge since very fine particles tend to 

highly attract each other, mostly due to van der Waal’s forces and static charges, and 

form agglomerations. Numerous methods such as surface functionalization, ultrasonic 

and centrifuge processing are used to mitigate this problem [29, 35, 42, 71-75]. 

However, quantitative characterization of distribution uniformity remains one of the 

least investigated aspects of nano composite research. 
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Quantitative measurement of distribution uniformity is useful for three main reasons. 

First, qualitative methods such as visual observation of images of composites not only 

tend to suffer from subjective judgments, but also do not produce numerical values that 

can be used for systematic comparison of materials with the same components but 

different distribution of inclusions. Second, relatively little work has been done on 

establishing a constitutive link between the overall material response and the quality of 

dispersion [76-80]; a quantitative measure of dispersion uniformity is necessary for 

establishing such constitutive relationships. Third, a good quantitative method can be 

used to predict the best achievable distribution uniformity of inclusions given the size 

and volume fractions of the composite constituents. In general, when the host material 

(e.g. cement or ceramic) is in the form of finite sized impenetrable particles, increasing 

the concentration of inclusions can lower the uniformity of their distribution. In addition, 

the particles of the host material, especially when they are larger than the individual 

inclusions, can prevent the uniform distribution of the inclusions and cause geometry-

dependent clustering/inhomogeneity [56].   

 

Figure 16 presents schematic examples of CNTs in ceramics when CNTs are randomly 

distributed between ceramic particles. Figure 16a. shows ceramic particles during 

sintering while nano-inclusions can only penetrate into and reinforce the areas between 

ceramic particles. If the concentration of CNTs is low, the overall distribution of CNTs 

is close to random (Figure 16b.) However, when the concentration of CNTs is high, their 

overall distribution will be non-random and in the shape of the honeycomb network of 

boundaries between the ceramic particles (Figure 16c.) This non-uniformity would not 

occur if the ceramic particles were much smaller. 
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Figure 16. Schematic presentation of carbon nanotubes (CNTs) in ceramic 
nanocomposites. (a) The areas between ceramic particles in which CNTs can be 
distributed are shown with lighter color. (b) When a low dosage of CNT is used to 
reinforce the ceramic, the distribution of CNTs is relatively uniform and similar to 
the case in which CNTs could be placed anywhere in the matrix with no limitation 
imposed by ceramic particles. (c) When the CNT dosage is high, the distribution 
uniformity becomes poor. The effect of the ceramic particles scales with the size of 
the particles. The poor distribution resulting from the relatively large size of a 
composite’s constituents is referred to as geometry-dependent clustering or 
inhomogeneity. 
 

Geometry-dependent clustering is present in many composite materials. For example, in 

the production of some nano-composites, the host material is in the form of solid 

particles that are often larger than the nano inclusions. Examples of such materials are 

aluminum-CNT [81], ceramic-CNT [82], cementitious-CNT [7, 83] nanocomposites, 

and silica-latex films [84]. For materials of this type, it is important to quantify the 

maximum host particle size or nano-inclusion concentration that does not negatively 

affect the matrix uniformity.  

 

Distribution uniformity can be divided into two aspects. The first aspect (referred to here 

as dispersion) is related to the spatial uniformity of the inclusions. The other aspect 

arises when the inclusions are filaments. In this case, the orientation of the filaments 

affects the constitutive properties of a composite as well. The past research on 

distribution uniformity has mostly focused on dispersion rather than orientation for two 

main reasons. First, filaments are only one of the several types of inclusions. Second, in 

many fibrous composites the filaments are intended to be randomly oriented; this is 
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usually achieved without any special effort and therefore the need to measure the 

orientation uniformity is unnecessary. Thus, the objective of this paper is to review past 

efforts to quantify dispersion and to subsequently introduce a novel definition and model 

for quantifying dispersion. 

3.2. Past efforts to define dispersion 

The quantitative characterization of dispersion has been treated to high degrees of 

mathematical sophistication for several decades (for references see [85-91]). Those 

efforts have set up the foundation for some of the methods that are well established in 

practical use today. Such methods have been developed in many fields of science 

including powder and mixing technology [92-98], microscopy and image analysis [99-

101], ecology and biology [102-111], astronomy [89, 112, 113], computer science [114], 

chemical engineering and physics [115], and material and composite science [57, 59, 

116-118]. More references for classic methods can be found in the work of Schwarz and 

Exner [99]. Dispersion quantification methods can be divided into four major categories 

as summarized below. 

3.2.1. Methods based on feature size 

These methods are usually used for materials such as ceramic and metallic composites 

which are made by dry mixing, and later, sintering/hot-pressing of impenetrable 

constituents [70]. Dispersion is quantified by relative particle size (RPS) ratio, which is 

defined as the ratio of the host particle size to reinforcement (inclusion) particle size [57, 

59, 116]. RPS is a measure of geometry-dependent clustering. Higher RPS is expected to 

be an indication of higher clustering. 

3.2.2. Methods based on contact area between features 

These methods have been developed for composites with densely packed constituents of 

irregular shapes, for example concretes with high proportion of aggregates. Gurland 

[119], presented an aggregate dispersion quantification method based on the area of 

contact between the aggregates. In this method, which was also used later by Jang and 
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Chang [46] for toughened plastic reinforced with rubbery phases, the main measure of 

dispersion is the interface of separation, defined as: 

( ) ( )

( ) ( ) ( )

Sv ab Sv ab
dp

Sv aa Sv ab Sv total
 

  (1) 

where Sv(ab) is the area of interface between the features and the matrix, and Sv(aa) is 

the area of contact between contiguous features in a volume. The lower value of the 

separation interface is an indication of higher agglomeration and lower quality of 

dispersion. 

3.2.3. Methods based on feature local concentrations (quadrat methods) 

This category of dispersion quantification methods, here referred to as quadrat methods, 

define dispersion with the standard deviation/variance of the concentration of features 

among small quadrats (elements) with a characteristic size. The method can be 

implemented in different ways. For example, the domain can be discretized into 

elements and the feature concentration in each element be calculated, or a frame 

(quadrat) moves over the domain with a certain step size and the feature concentration 

within the slide be calculated in each step.  Lower standard deviation of quadrat 

concentration is expected to indicate better dispersion. Quadrat methods have been used 

extensively in ecology to study the spatial distribution of species starting nearly a 

century ago [104, 105]. Variants of quadrat method are used in several applications due 

their simplicity and overall good judgment on dispersion when used carefully [92-98, 

115]. 

3.2.4. Methods based on microstructural parameters  

These methods are arguably the most researched and developed amongst other 

dispersion quantification methods. Major microstructural parameters are based on the 

distance between the features. When features are randomly scattered on a surface, the 

distances between them and their nearest neighbors have a Poisson distribution [100]. In 

fact, Poisson point processes are some of the most common mechanisms to produce 
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randomly dispersed features in spatial statistics [99, 100, 102, 109, 110, 120-123]. Clark 

and Evans presented an explicit expression for a dispersion measure R  [103] according 

to 

A

E

r
R

r


, (2) 

where Ar  is the observed mean distance to nearest neighbor in the RVE under 

investigation and Er  is the mean distance to nearest neighbor that would be expected if 

the individuals of that population were randomly distributed. Therefore, in a random 

distribution, 1R . Under conditions of maximum possible aggregation, R  is the 

nominal radius of the features since the features are closely packed. Considering the 

importance of the standard deviation of the distances between nearest neighbors, 

Schwarz and Exner defined the additional measure R  as 

A

E

s
R

s
 

, (3) 

where As  is the variance of the distances to nearest neighbors in the RVE under 

investigation and Es  is the variance of the distances to nearest neighbors in a random 

pattern. Therefore, in random sets ~1R  and ~1R , in fully dispersed sets 1R   and 

1R  , and in sets of clusters 1R   and 1R  .  

 

Some other microstructural parameters have been defined using Voronoi polygons 

evolved from Dirichlet tessellation of domains [76, 77, 79, 80, 124, 125]. Dirichlet 

tessellation is defined as a subdivision of a domain, such that each feature in the domain 

has associated with it a polygonal region (Voronoi cell/polygon) that is closer to it than 

to any other feature. Dirichlet tessellation has been used to obtain the nearest neighbor 

distances and other microsctructural parameters, including local area fraction (ratio of a 

feature’s area to the associated Voronoi polygon) and the number of near neighbors 



43 

 

(number of the sides of the Voronoi polygon associated with a feature). The mean and 

standard deviation of these parameters, in addition to those of nearest neighbor values, 

have been used to characterize dispersion. These parameters have also been used within 

probability functions such as cumulative distribution and density functions. The 

cumulative distribution function ( )F x  represents the probability that a parameter, e.g. 

the local area fraction or nearest neighbor distance, assumes a value smaller than or 

equal to x . The probability density function ( )f x  refers to the probability of a 

parameter assuming a value x . The other function used for the characterization of 

spatial distribution is second order intensity function )(rK , defined as the number of 

points expected to lie within a distance r  of an arbitrary point and divided by the 

number of points per unit area. Probabilistic analyses of dispersion have been 

implemented to analyze the micrographs of different composite materials. For example 

Akkaya et al. used some of the mentioned functions and microstructural parameters to 

quantify the dispersion of fibers in cementitious composites [61]. The judgment about 

the quality of dispersion is based on the visual comparison of the function curves of the 

domain under investigation and a reference domain of features, typically generated by 

Poisson’s random point processes.  

 

Some other methods of dispersion quantification based on microstructural parameters 

use stereology techniques known as intertrack measurements. In these methods, parallel 

lines are drawn on the image of a composite cross-section. The span between two 

adjacent particles on a line forms a track (free-path). Brian and Garry showed that for a 

random dispersion, track length distribution fits in a log-normal distribution function 

[101]. However, they did not quantify the deviation from the log-normal curve (which 

may be regarded as an indication for the poorness of dispersion). Another method of this 

type introduced by Luo and Koo is based on the assumption that if all of the inclusion 

particles are distributed at an equal free-path distance, the dispersion is perfect [117]. In 

this method, the actual frequency distribution of track lengths is represented with a 

probability distribution function of the same mean   and standard deviation  . The 
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probability function is usually lognormal, normal, or a combination of both. The 

dispersion is then quantified as the definite integral of this function on the interval 

[(1 )  , (1 ) ]r r     , where Luo and Koo used r values between 0.1 or 0.2. Recently, 

Tyson modified the method of Luo and Koo by considering both the free-path spacing 

and the agglomeration size in order to get a better quantitative measure of dispersion 

[126]. 

 

Bakshi et al. [118] introduced a quantification method specifically for the dispersion of 

CNTs in nanocomposites, for which they measured the nearest neighbor distances 

between CNT centroids. Their clustering parameter, CP  is defined as 

5D

TOTAL

NN
CP

NN


,  (4) 

where DNN5  is the sum of nearest neighbor distances that are less than five times of the 

CNTs’ average diameter. TOTALNN  is the sum of all the nearest neighbor distances. A 

lower value of CP  indicates a more uniform dispersion. 

3.3. A novel measure of dispersion 

3.3.1. Fully uniform and fully non-uniform states of dispersion 

An appealing measure of dispersion is intuitive, simple, and capable of quantifying 

dispersion for any kind of multiphase material. In addition, such a measure should not 

incorporate subjective parameters. The variety of available definitions for distribution 

uniformity (or dispersion) is in part due to the ambiguities arisen in perceiving the 

concept of a good dispersion. For example, in the RPS method, a good dispersion is 

regarded as one in which host particles are as small as possible, or in the stereology-

based model of Brian and Garry [101], a good dispersion is considered as one in which 

inclusions are distributed randomly.  
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For the novel measure of dispersion to be defined in the following subsection, we define 

two limit cases: the fully non-uniform and the fully uniform dispersions.  Dispersion can 

be defined based on where a distribution of interest stands between these extrema.  There 

are a wide variety of definitions for a fully uniform dispersion. The reader is referred to 

the article by Poux et al. [95] for a summary of classic definitions. Almost all the 

definitions agree that in a full dispersion the inclusions are arranged in a regular 

repeating pattern, such as a lattice structure [127]. Based on this intuitive and visual 

understanding of a full dispersion, Figure 17a. shows the fully uniform state of 

dispersion for 137 particles with diameter of 4 length-units in a square domain with side 

length of 100 length-units.  

 

 

 

Figure 17. (a) Fully uniform and (b) fully non-uniform states of dispersion for 137 
circular particles with the diameter of 4 length-units in a domain with the side 
length of 100 length-units. In a fully uniform dispersion, the statistical distribution 
of the values of particles’ nearest neighbors has the maximum mean and the 
minimum standard deviation. In a fully non-uniform dispersion, the distribution 
has the minimum mean and the minimum standard deviation. This forms a single 
close-pack agglomeration, which should be located as far as possible from the 
domain’s centroid. 
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A precise mathematical definition of full dispersion in agreement with Figure 17a. can 

be made based on nearest neighbor distances.  In a full state of dispersion the statistical 

distribution of the distances between all inclusions and their corresponding nearest 

neighbors have the maximum mean and minimum standard deviation [100]. In a fully 

non-uniform state of dispersion, the statistical distribution of nearest neighbors have the 

minimum mean and minimum standard deviation, and the inclusions form a close-pack 

agglomeration  located as far as possible from the domain centroid (Figure 17b). The 

latter condition is intuitively perceivable; if a domain consists of only one inclusion, it 

will be at the center of the domain in the best state of dispersion, and at the furthest 

corner in the worst state. 

 

When inclusions have a distribution of sizes, the fully uniform state requires, the 

additional condition that the inclusions of each size (or size range) should be distributed 

in the domain as regularly as possible.  

3.3.2. Definition and formulation of a dispersion parameter 

Suppose there are a number of particles in a medium, like water. The more agglomerated 

these particles are, the more work is required to disagglomerate them and arrange them 

in the fully uniform state of dispersion (Figure 17a). Based on this idea, we define the 

concept of dispersive work as the minimum amount of work per volume (or area) of 

domain required to move inclusions so that they form a fully uniform dispersion.  

 

Dispersion as a quantity should have a maximum value (e.g. 1) for the case in which 

particles already form a fully uniform pattern and no dispersive work is required to 

rearrange them (Figure 17a). It should also have a minimum value (e.g. 0) when the 

domain is in a state of fully non-uniform dispersion (Figure 17b). Dispersion, tD , is 

then formulated as 

1
a

t
nu

w
D

w
 

,  (5) 
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where 
aw  and 

nuw  are the dispersive works related to the actual and fully non-uniform 

states of dispersion, respectively. Additionally, 

1

n
j j

i
i

w w


 
,            (6) 

where n  is the number of inclusions in the domain and j  is either a  or nu .  The work 

to move a particle in the domain is a function of the distance the particle must be moved 

and the magnitude of the force necessary to move it.  As distance (i.e. the magnitude of 

displacement) and force can be defined in 1, 2, or 3 dimensions, the novel method for 

quantifying dispersion proposed in this paper is applicable in 1, 2, or 3 dimensions.  

3.3.3. Calculation of dispersive work 

There is a challenge to the direct calculation of dispersive work: if there are n  

inclusions in a domain of interest, there are !n  possible ways to move them to another 

predetermined state of dispersion. These alternatives should be compared to find the one 

in which the sum of distances moved by the inclusions is minimum. Unfortunately, !n  is 

normally a very large number even when n  is as small as 10, which makes the 

computational load for the brute force measurement of dispersive work prohibitive. The 

problem of finding the dispersive work is a linear problem in the field of combinatorial 

optimization and is referred to as the bipartite weighted matching problem or the 

assignment problem [128, 129]. If the distances between each particle at the initial 

position i  and possible final position k  ( , , [1 ]i j k n  ) are placed in matrix ikd , the 

forces necessary to move each particle from initial position k  to final position j  are 

placed in a matrix kjf , then an additional matrix ijx  may be constructed subject to the 

constraints  
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The minimum total work expended by all particles is found by minimizing the linear 

system ij ik kjx d f  (where the indices sum according to Einstein notation) by modifying 

ijx  within the constraints listed in Eq. (7). It should be noted that 1ijx   if the 

inclusion in location i  is chosen to be moved to the location j , and 0ijx   

otherwise.  The inner product of ik kjd f  results in a matrix ijW , which is the work 

performed in moving a particle from initial position i  to final position j .  

 

There are several algorithms available to solve the linear problem described above, 

including the Hungarian method developed in 1955 by Kuhn [130] and later optimized 

by Munkress [131].  The Hungarian method solves the assignment problem in  3
O n  

arithmetic operations, which makes it substantially faster than the brute force approach. 

3.4. Discussion: The novel method of dispersion quantification vs. the previously 

developed methods 

In this section, the methods reviewed earlier and their possible issues, which can be 

avoided when using the proposed work method, will be investigated. Artificially 

generated images of inclusion distributions will be used to support the discussion. Image 

generation was used instead of actual specimen images to produce patterns with 

distribution uniformities that are distinctly and intuitively different. 



49 

 

 

The RPS method is easy to use but its applicability is limited due to two major 

shortcomings. First, the RPS method does not take the effect of volume fraction of 

material constituents into consideration. For example, the method yields the same value 

for the case of CNT reinforced ceramics in Figure 16b. and Figure 16c. RPS may only 

provide an estimation of geometry-dependent clustering for certain feature 

concentrations. There have been few limited studies on the role of both RPS and 

constituent volume fractions on homogeneity and target properties of composites [132, 

133], but to the knowledge of the authors these two measurement concepts have not been 

integrated to develop a quantification method for dispersion. The second issue is that the 

RPS method essentially defines dispersion based on the size of the inclusions and host 

particles and not their locations. In other words, the agglomeration of inclusions or host 

particles does not change the RPS ratio. As a result the method may only be useful when 

the host particles are uniformly distributed and the inclusions are uniformly distributed 

between the host particles. 

 

The methods based on the contact area between features have limited application as well 

since the interface of separation cannot always be a measure of dispersion.  For example, 

in both Figure 17a. and Figure 17b. the interface of separation is zero, but the states of 

dispersion are fully uniform and fully non-uniform respectively.  Therefore, the method 

may only be useful when the concentration of features is high and their geometry is such 

that contact is possible1. 

 

 

                                                 
1 Two rigid spherical (or circular in 2-D) particles will always have a contact area of zero. 
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Figure 18. Different distributions of 137 small particles in a square two-
dimensional domain. The diameter of the particles and the side length of the 
domain are 4 and 100 units respectively. In (a) the particles are randomly 
distributed in the domain. In (b) the particles are distributed randomly between 
some larger particles of different phase. The presence of the larger particles have 
degenerated the dispersion quality of the smaller particles. (c) is an example of poor 
dispersion resulting from excessive geometry-dependent inhomogeneity. 
 

 

In quadrat methods, different choices of quadrat size can result in different judgments 

about dispersion quality. For example, the images in Figure 18 present three different 

states of dispersion for the small disks and domains of Figure 17. In Figure 18a. the 

disks are randomly distributed, while in Figure 18b. the distribution is degenerated by 

the presence of 16 larger circular regions representing the host material (geometry-

dependent clustering). Figure 18c. shows an extreme situation in which the host material 

is in the form of a large circular region (with the same area as the sum of the areas of the 

16 circular regions in the second case) and that the small disks are randomly distributed 

in the remaining area. The quadrat method was used for each of these images to quantify 

dispersion: a square slide (quadrat) scanned the domain surface with small steps (the step 

size used here was 1 length-unit in both x and y directions). In each step the 

concentration of small disks within the element (i.e. the area fraction of the disks within 

the slide area) was calculated, and the standard deviation of the concentrations calculated 

in all the steps was obtained as a measure of dispersion. Figure 19 presents the values of 
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this measure for element side length ranging from 1 to 100 length-units, and clearly 

shows the sensitivity of the method to element size. For example, although the particle 

distribution visuallyappears more uniform in case (b) compared to case (c), when the 

element is very small (side length between 1 and 9), the standard deviation of the better 

dispersion can be the same or even higher than the worst dispersion. In addition, while 

the method may be able to qualitatively rank the dispersion of the three sample systems 

when the element size is larger (between 10 and 50), it cannot quantitatively rank the 

systems. For example, according to this method, when the element size is 10, cases (b) 

and (c) are judged to have similar dispersion, but if the element size is 20, cases (a) and 

(b) are expected to have closer dispersion. Therefore, the method described does not 

converge on a unique, quantitative measure of dispersion as mesh size is either increased 

or decreased.  

 

 

 

 
Figure 19. Results from the concentration standard deviation method [95] (a 
quadrat method) used for quantifying the dispersion of the three domains in Figure 
18. The graph shows the standard deviation values when different element sizes 
ranging from 1 to 100 were used. It can be clearly seen that the results are sensitive 
to element size and choosing different element sizes can lead to different judgments 
about dispersion quality. 
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Figure 20. (a) The values of dispersive work calculated for the three cases of Figure 
18 and for their corresponding ideally non-uniform dispersion (worst dispersion) 
shown in Figure 17b. (b) The values of dispersion for the three cases. It should be 
noted that the values of dispersion for the fully uniform and fully non-uniform 
states of dispersion are 1 and 0 respectively. 
 

 

 

The majority of the methods based on microstructural parameters usually consist of 

more than one parameter (e.g. R , R , etc.) for dispersion quantification. Multi-

parameter models provide more information about the spatial distribution of features and 

are particularly useful when comparing different shapes and patterns of agglomerations. 

On the other hand, a single-parameter quantification model is attractive in the sense that 

the parameter value presents a bias-free judgment on the quality of dispersion. When 

comparing different domains to make a decision about which has an overall better 

quality of dispersion, the decision is prone to subjectivity when multi-parameter models 

are used.  
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The stereology method of Luo and Koo [117] is based on the assumption that if all the 

inclusion particles are distributed at an equal free-path distance, the dispersion is perfect. 

This assumption does not always hold; for example, if the domain consists of only one 

agglomeration in which particles are distributed at an equal free-path distance (like in 

Figure 17b.), the dispersion is judged as perfect. The other downside to the method is 

that there is not a clear criterion for selecting a value for r , and the selection of the log-

normal distribution function may not be appropriate for every state of dispersion.  For 

example, the distribution of free-path distances in Figure 17b. may be more 

appropriately fit by a bimodal distribution function.   

 

The method of Bakshi et al. [118] is formulated for the case of CNT dispersion. The 

clustering parameter CP  is based on the distances between CNT centroids which are 

less than or equal to five times the CNT diameter. It is not known yet if this parameter is 

appropriate for composites with inclusions of different size, geometry, or concentration. 

The constant five was chosen by Bakshi et al. based on experience and the geometry of 

CNTs under investigation.  

 

The work method proposed in this paper has been devised in light of the discussed issues 

to be used as a robust tool in dispersion quantification and produce a dispersion score 

between the extremes of uniformity and agglomeration. A computer program 

implementing the Hungarian method was developed and used to measure the dispersive 

work for each of the examples in Figure 18; the force matrix was assumed to be 

1, ,ijf i j  . The results, presented in Figure 20a, are as expected: intuitively better 

dispersions (such as Figure 18a.) require less work to achieve full dispersion. Using the 

values of dispersive work and Eq. (5), the dispersion value, d, was calculated and is 

presented in Figure 20b. It can be seen that the case of random distribution has the best 

dispersion (0.88) amongst the three cases. As mentioned earlier, the values of dispersion 

for the fully uniform and fully non-uniform states of dispersion are 1 and 0 respectively. 
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3.5. Implementation example for composites 

In this section it is shown how the proposed method can be used to quantify the 

dispersion of inclusions in composites. The material used here is Al coating reinforced 

with CNTs. Figs. Figure 21a and Figure 21b show two SEM micrographs of the material 

from the work of Bakshi et. al [118]. It was found reasonable to assume that the CNTs 

are single-size since the size variation of the filaments is not very large; this assumption 

results in a remarkable reduction in computational effort. Each filament was regarded as 

a disk located at the filament’s centroid (Figs. Figure 21c and Figure 21d), and the fully 

uniform and fully non-uniform dispersions were generated for each case (Figs. Figure 

21e and Figure 21f). For each case, the area of the disks required to generate the worst 

dispersion was obtained using the filament area fractions in each SEM image reported by 

Bakshi et al. The dispersive work and dispersion were then calculated in the same way 

as for the model examples of Figure 18. The dispersion of Figs. Figure 21a and Figure 

21b are 0.91 and 0.84 respectively, which indicates that the first RVE has a better 

dispersion than the second one. Although the difference in the quality of dispersion 

could be discerned by visual observation, the work method demonstrated this difference 

quantitatively. 
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Figure 21. (a,b) Two images of CNT reinforced Al coating (From. [118]). The 
images were converted to simplified representations (c) and (d) by replacing each 
filament with a disk located at the filament’s centroid. (e) and (f) are the fully 
uniform and fully non-uniform dispersions corresponding to (c). 
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3.6. Concluding remarks 

In this chapter, several methods of quantifying the dispersion of inclusions in a 

composite were reviewed and their applications, advantages, and possible shortcomings 

were discussed. Some of the downsides to existing methods are rooted in the ambiguities 

related to the concept of dispersion; for example, in some cases dispersion quality is 

regarded as closeness to randomness and in other cases as the variation of concentrations 

in sample volume/areas. The ambiguities are mainly due to the fact that different 

methods have been developed to serve different and specific applications. In this paper, 

distribution uniformity was examined from a general, thermodynamic basis.  An 

intuitive, simple, and robust measure of dispersion was presented based on the minimum 

amount of work necessary to create a fully uniform state of dispersion from an initial, 

partial state of dispersion. It was shown that this dispersion measure is readily 

implementable and may be used to characterize dispersion in a quantitative, bias-free 

manner.  
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4. IMPLEMENTATION OF THE NOVEL DISPERSION QUANTIFICATION 

METHOD USING CONTINUUM THEORY 

 

A novel and robust method for quantifying the dispersion of discrete inclusions in a 

composite was introduced in the previous chapter.  The method quantifies dispersion 

based on the minimum amount of work required to move the inclusions such that they 

are in a fully uniform state.  As the new dispersion quantification method is founded on a 

physical thermodynamic framework, it is distinct from previously developed methods 

that have strictly a mathematical and statistical basis.  However, implementation of the 

new method is computationally expensive for domains consisting of many inclusions.  In 

this chapter, the novel dispersion quantification method is recast in terms of continuum 

mechanics and thermodynamics in order to make use of diffusion models, which makes 

possible the quantification of dispersion considering domains with many inclusions.  To 

demonstrate the practicality of the new approach, the dispersion of carbon nanofibers in 

an aqueous solution is analyzed. It should be mentioned that the idea of using continuum 

mechanics and thermodynamics for implementing the work methods was produced by 

Zachary Grasley, who developed the derivations and formulations presented in this 

chapter. 

4.1. Introduction 

The question of how to effectively quantify the level of dispersion of rigid bodies (also 

in this work referred to as inclusions or features) in a continuous medium has been 

studied immensely over the last several decades.  The interest in nanoparticle composites 

has driven an even greater interest in dispersion quantification since the composite 

constitutive properties (e.g. mechanical [74] and electrical properties [134]) are strongly 

influenced by the level of particle dispersion. 

 

The novel dispersion quantification method presented in the previous chapter  introduced 

a novel method of dispersion quantification that was shown to avoid many of the 
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limitations intrinsic to alternative methods [135]. The method is based on calculating the 

minimum total distance inclusions should move to reach a state of fully uniform 

dispersion.  It was shown that the distance can be calculated using combinatorial 

optimization and linear programming.  However, these methods become computationally 

prohibitive when the number of inclusions is high (over a few thousand considering 

current computational power).  With the increasing application of nanoparticles and 

nanofibers, it is increasingly likely that domains with many thousand inclusions will 

need to be analyzed.  In addition, in some micrographs it is impossible to distinguish 

individual particles, rendering the new method difficult to implement. 

 

The objective of this paper is to illustrate how the novel dispersion method may be 

utilized in conjunction with continuum diffusion models in order to quantify the 

dispersion of a system of many particles (i.e. when n) or a system where individual 

particles are difficult to distinguish.  In order to make clear the appropriate use of 

diffusion models, the novel method will first be recast in terms of continuum mechanics 

and thermodynamics.   

4.2. Definitions 

The terms critical to the quantification effort will be defined in this section.  As indicated 

in the introduction, there are several definitions of dispersion in the literature, which has 

led to the development of entirely different characterization models. As per 

Yazdanbakhsh et al. [135], the term “Distribution uniformity” is defined as a holistic 

term to encompass both “Dispersion” and “Orientation” of composites. Dispersion is 

meant to quantify translational uniformity and deals with the location of inclusion 

centroids while orientation is concerned with rotational uniformity and is mainly used 

for filament inclusions when their orientation is of interest. 

In order to quantify dispersion, it is advantageous to fix a comparative measure; as such, 

we will define the state of fully uniform dispersion.  In this paper, we define fully 

uniform dispersion via a thermodynamic, “maximum entropy” approach.  For example, 
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in a system of gas molecules within a closed container, entropy is maximized when the 

time-mean spatial position of each molecule (inclusion) is such that the mean spacing 

between the neighbor inclusions is maximized and the standard deviation of the spacing 

between the neighbor inclusions is minimized.  Similarly, for a system of identical 

inclusions in a state of fully uniform dispersion, the spacing between the adjacent 

inclusions will be uniform and maximum.  Therefore, according to the novel method, the 

level of dispersion of a system of discrete rigid inclusions of uniform size and shape 

distributed within a domain can be quantified based on the minimum amount of work 

necessary to move each individual inclusion to a position such that the spacing between 

the mass centroids of the inclusions is uniform and maximum. This work is referred to as 

“dispersive work”. 

 

The normalized level of dispersion may be calculated according to 

max

1 ,                [0,1],
t

t t
t

W
D D

W
  

  (8) 

 

where 
tW  is the dispersive work for the domain of interest and max

tW  is the work 

required to fully disperse the inclusions when they form the worst possible dispersion in 

the domain (i.e. a system with minimum possible entropy).  For example, if the 

representative volume element (RVE) is a cube, the state with minimum possible 

entropy is such that all inclusions within the RVE are tightly packed into one corner of 

the cube2.  Based on the definition for dispersion given in (8), we find that for any 

system 0 1tD   with 0 being the worst possible dispersion and 1 being fully 

dispersed.  The normalization performed in (8) allows the calculation of a dispersion 

measure that is not biased by domain size or concentration of inclusions. 

 
                                                 
2 The particles must be packed into the corner rather than the center of the RVE because greater total work 
is required to displace the particles from the corner 
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In an analogous fashion as for dispersion, the level of orientation of a system of discrete 

rigid bodies distributed within a domain can be quantified by the minimum amount of 

work necessary to rotate each individual inclusion such that the longest axis of all 

inclusions are aligned in the same direction.3  For inclusions with nominal aspect ratio of 

unity, orientation has no meaning. 

4.3. Motion of inclusions 

The problem of quantifying the work necessary to translate and rotate rigid bodies 

requires quantification of particle displacements and rotation angles, and is thus a 

kinematical problem.  As shown in Figure 22, we can treat the body motion as a 

deformation from some initial state to some final state.   

 

 

 
Figure 22. Rigid body translation and rotation of an inclusion. 
 

The deformation ( )x X  is a mapping of a point in the body from an initial state to a 

final deformed state.  If we let X  be the position of some point in the body in the initial 

state and x  be the position of the same point in the body in the final state, then  

                                                 
3 In domains with inclusions of high aspect ratios at high concentrations, full alignment may not be 
possible due to impingement.  In such cases, complete uniform orientation may not be possible. 
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 u x X
  (9) 

is the displacement vector of the point in the body.  The deformation gradient is defined 

as 


  


x
F x

X ,  (10) 

and can be decomposed as 

 F VR RU
,  (11) 

where V  is the left stretch tensor, U  is the right stretch tensor, and R  is the rigid 

rotation tensor.  For the case of rigid body motion, the stretch tensors are equal to the 

identity tensor, I , such that F R . Therefore, d dx R X , which combined with (9) 

yields 


 


u

R I
X .  (12) 

Integration of (12) from a reference displacement ( 0u ) and corresponding reference 

position ( 0X ) results in 

   0 0 0( )     u X u R X X X X
,  (13) 

which is the displacement of any point in the body as a function of the relation to the 

reference point.  If the reference point is made to be the center of mass, then the 

displacement at the center of mass is simply 0u u .  The work performed in rigidly 

translating a body from the initial to final positions is  

t
i i iW  f u

,  (14) 
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where if  is the force vector applied to particle i  in order to displace it, and iu  is the 

displacement of particle i .  The total translational work is the sum of the work 

performed in translating each particle such that 

t
i i

i

W   f u
.  (15) 

When orientation is of interest, the angle of rotation i  of each particle i  may be 

determined according to  

 1
cos( ) tr( ) 1

2i i  R
,  (16) 

which is obtained by first orienting the reference bases such that the 3-direction is 

aligned with the axial vector of the rotation, then taking the trace of the rotation tensor.  

Since the trace operation is invariant, the expression in (16) holds for all bases.  The 

work required to rotate each particle i  is 

r
iW 

,  (17) 

where   is the magnitude of the torque required to rotate the particle.  Therefore, the 

total work of rotation, which is useful in quantifying degree of orientation of a system of 

discrete inclusions, is 

r
i i

i

W  
.  (18) 

It should be mentioned that the novel approach can be used to perform tasks other than 

dispersion quantification, such as calculating the amount of energy required to put in a 

viscous media containing agglomerated inclusions in order to disagglomerate them and 

form a uniform dispersion. For example, if the domain in which the inclusions are 

located is a continuous fluid, then the force vector is quantifiable if one knows the 
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viscosity of the matrix; utilization of a realistic force vector means that the calculated 

dispersive work is directly proportional to the minimum amount of energy that must be 

input into the system (e.g. through sonication [136, 137]) to disperse the inclusions. In 

materials such as nanoparticulate composites where clumping is a problem due to strong 

van der Waal’s forces (see e.g. [138]), the additional energy necessary to break the 

clumps could be accounted for by expressing the inter-feature attraction force f  as a 

nonlinear function of distance to neighboring inclusions.  Finally, the additional energy 

necessary to be input into the system if the inclusions are compliant could easily be 

accounted for by modifying the above derivation to account for deformations where the 

stretch tensors V I  and U I .   

4.4. Use of continuum theory to determine dispersion parameter 

For the sake of brevity, in the remainder of the paper we will focus on the quantification 

of dispersion.  In a domain with sparse, uniform inclusions, it is a simple matter to 

directly quantify the dispersive work.  One may simply evaluate the initial positions of 

the inclusions, locate the nearest final position for each inclusion, and then calculate the 

distance each particle must move to quantify the work performed.  However, in a system 

of many inclusions, such a process becomes tedious.  It is not immediately obvious to 

which final position each inclusion should be moved in order to minimize the total work 

performed in moving the inclusions.   If computational time were not an issue, one could 

simply calculate tW  for every possible scenario ( !n  total scenarios for n  inclusions) and 

then take the minimum.  Since the problem is in the class bipartite matching problems, 

one could also use a linear solving algorithm such as the Hungarian method [139] to 

reduce the computations to 3( )O n .  However, as the number of inclusions in the system 

becomes large, even efficient algorithms such as the Hungarian method are too 

computationally expensive.  One can reduce the size of the RVE, but only until the point 

where the RVE is still able to be considered “representative” of the domain as a whole.  

For situations that include geometry dependent clustering where the domain consists of 
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host particles surrounded by significantly smaller inclusions whose dispersion one 

wishes to quantify, the minimum size of the RVE is limited by the size of the host 

particles.  As a result, even if the concentration of the inclusions is relatively low, there 

will still be a significant number of inclusions within the domain.  An example of such a 

situation is the inclusion of carbon nanotubes in cement paste that consists of 

micrometer-sized host cement particles [137].  For such situations, an alternative means 

to calculate 
tW  is needed to quantify dispersion. 

 

The computational challenges associated with quantifying dispersion of a domain of 

many inclusions can be handled by utilizing principles of continuum thermodynamics.  

When using the novel translational work minimization definition, the dispersion 

quantification problem can be viewed as analogous to the continuum diffusion problem.  

For example, consider a closed, vacuumed container.  If a valve is opened such that a 

certain quantity of gas is released into one corner of the container, the gas will 

progressively diffuse throughout the container until the concentration field is uniform.  

Additionally, the gas will diffuse in such a way as to achieve the uniform, equilibrium 

condition with the least energy (work) expended as possible.  In this way, the diffusing 

atoms or molecules are analogous to the inclusions in the domain of interest, and the 

initial condition in the diffusion problem is analogous to the initial, partially dispersed 

state. 

 

When the diffusivity tensor D does not vary with x , the governing equation for the 

linear diffusion problem is the parabolic partial differential equation 

2( , )
( , )

C t
C t

t


 


x

D x
,  (19) 

where x  is the spatial position in the domain, and t  is the elapsed time.  Eq. (19) 

expresses that the change in concentration with time of a certain point in a continuum is 

based on the difference between the concentration at the point and that of the average 
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value of the local surroundings (the Laplacian).  Basing mass transport on the difference 

between the value at a point and the average value of the local surroundings results in 

the most efficient “flattening” of the concentration field [140], and thus is equivalent to 

minimizing the total distance traveled by inclusions in a discrete system.   

 

For the dispersion problem, we consider a domain   that has Neumann boundary 

conditions such that the boundary flux is zero.  Therefore, we can write 

 ( , ) 0           ,  0,

( , ) ( )            ,  0i

C t t

C t C t

     

   

D x n x

x x x   (20) 

for boundary and initial conditions, where ( )iC x  is the initial concentration profile 

defined by the initial distribution of inclusions for which one wishes to quantify the 

dispersion and n  is the outward unit normal from the surface  .  From (19) and (20), 

one can solve for the concentration field ( , )C tx .  The mass flux vector may be defined 

according to the relationship 

( , ) ( , ) ( , ) ( , )t C t t t  j x D x x v x
,  (21) 

where   is the partial density of the inclusions and v  is the velocity of the dispersed 

phase.  The velocity is defined as 

( , )
( , )

d t
t

dt


u x
v x

,  (22) 

where u is displacement of a particle at point x .  The displacement of a particle located 

at position x  over a time t  may therefore be determined according to 

0 0 0

1 ( , )
( , ) ( , ) ( , )

( , ) ( , )

t t t C
t d d d

    
   


    

D x
u x v x j x

x x . (23) 
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Using (23), the work necessary to move each particle may be determined according to 

(14).  The total translational work performed by all particles may be determined 

according to  

( ) ( , ) ( , )t

V

W t t t dv  f x u x
.  (24) 

When t   , tW  is the total translational work necessary to move all inclusions from 

an initially undispersed state to a fully dispersed state, and is thus a measure of the level 

of dispersion of the inclusions in the initial configuration.   The higher ( )tW t   , 

the poorer the initial dispersion, which may be quantified using (8). 

4.5. Discrete system 

Continuum theory is commonly used to describe physical systems that are actually 

discrete in nature.  For example, diffusion of atoms or molecules is often modeled using 

continuum theory even though both atoms and molecules have a finite volume.  The fact 

that a continuum is comprised of infinitesimally small particles (i.e. “points”) is not 

generally seen as problematic for representing discrete systems as long as the discrete 

particles are substantially smaller than the RVE and n  .  Unfortunately, one cannot 

be assured these requirements will be met in dispersion studies.  As 0n   or particle 

sizes approach that of the RVE, the continuum approximation leads to significant error 

since full dispersion is never completely achieved ( ( , )C tx  asymptotically approaches 

( , )C tx  as t  ).  The reason ( , )C tx  asymptotically approaches the spatially 

average concentration ( , )C tx  and will never actually reach the average is due to the 

fact that the inclusions in a continuum have no dimension and may therefore be further 

dispersed ad infinitum.  In the real, discrete system, the inclusions have finite size such 

that at later times, continued dispersion only occurs by destruction of the discrete 

inclusions themselves and motion of progressively smaller and smaller chunks of the 

destroyed particles. 
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In order to account for the difference outlined above regarding continuum and discrete 

systems, it is necessary to quantify the work spent destroying inclusions.  For example, 

consider the 1-D case.  If * ( , )C tx  is the normalized concentration of a discrete particle, 

an example fully dispersed domain is shown in Figure 23; any further dispersion of 

inclusions shown in Figure 23 would entail destruction of the inclusions.  If we allow the 

dispersion (destruction) of inclusions shown in Figure 23 to proceed until a discrete time 

larget , the work spent in destroying the inclusions (i.e. displacement of the destroyed 

particle chunks) would be *
large( )tW t .  As illustrated in Figure 24, the work performed 

in dispersing discrete inclusions from a state of partial dispersion to the fully dispersed 

state (dispersive work) may be quantified according to 

*
large large( ) ( )t t tW W t W t 

,  (25) 

which converges to the exact solution as larget  .  The work performed in destroying 

inclusions must also be considered when quantifying the dispersive work for the worst 

possible scenario for a given system.  Therefore, the degree of dispersion in a discrete 

system can be determined using continuum theory according to 

*
large large

*
max large large

( ) ( )
1 ,                [0,1]

( ) ( )

t t
t t

t t

W t W t
D D

W t W t


  

 . (26) 

 



68 

 

 

Figure 23. Fully dispersed 1-D system of inclusions with discrete width of 0.1. 
 

 

 

 

Figure 24. Methodology for quantifying tW  by subtracting the work performed in 
destroying inclusions in the discrete system. 
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4.6. Example applications 

4.6.1. Method validation 

In order to demonstrate the utility of the definition of dispersion and analogy to 

continuum diffusion modeling presented in this paper, a multi-dimensional finite 

difference code was written to determine dispersive work by solving (19) subject to the 

boundary and initial condition in (20).  The code was written according the ADI method 

of Douglas and Gunn [141-143] for 1, 2, and 3 spatial dimensions; the Douglas and 

Gunn method is well described by [144], and is unconditionally stable. 

 

Consider the 2-D initial discrete dispersions shown in Figure 25. Figure 25a is a random 

dispersion created with a random number generator, Figure 25b is a random dispersion 

encompassing 16 circular regions that have degenerated the dispersion (dashed lines), 

and Figure 25c is a random dispersion encompassing one large circular region that has 

degenerated the dispersion (dashed line).  Each domain contains the same number of 

circular inclusions (137) with diameter of 4 units, while the dimensions of the domains 

in each case are 100 x 100 units.  In order to evaluate the continuum modeling approach 

to calculating dispersion, the domains in Figure 25 were discretized in 2-D with varying 

levels of mesh fineness, as indicated in Figure 26.  For each mesh, the finite difference 

approach was implemented by placing the nodes at the centroid of the appropriate 

elements.  The total distance traveled by all inclusions in the system was calculated for 

the initial dispersion, the worst case dispersion, and for the destruction of a single 

particle (as shown in Figure 27) such that (26) could be used to calculate 
tD .  The 

calculated tD  for each mesh fineness for each domain in Figure 25 is plotted in Figure 

28, which illustrates the convergence of the calculated tD . 
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Figure 25. (Same as Figure 18) Three different example dispersions consisting of an 
equal number of small circular inclusions in equally sized domains. 
 

 

 

 

Figure 26. Meshes of varying fineness of the initial dispersion shown in Figure 25b, 
where concentration is shown in grayscale with darker indicating higher 
concentration. 
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Figure 27. Meshes (100 x 100 elements) of the initial, worst case, and single particle 
cases for the domain shown in Figure 25a.  The spatial dimensions of the domain 
for the single particle case are determined by the ratio of the number of disks to the 
domain area (i.e. the concentration of inclusions). 
 

 

 

Figure 28. Convergence of tD  with increasing mesh fineness for the three initial 
dispersions illustrated in Figure 25. 
 

 

To evaluate the validity of using the continuum approach, the dispersion of each image 

in Figure 25 was also calculated by treating each particle as discrete.  The problem of 

finding the dispersive work of discrete inclusions is a linear problem in the field of 
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combinatorial optimization and is referred to as the bipartite weighted matching problem 

or simply the assignment problem [128, 129].  If the distances between each particle at 

the initial position i  and possible final position k  ( , , [1 ]i j k n  ) are placed in matrix 

ikd , the forces necessary to move each particle from initial position i  to final position j  

are placed in ijf , then an additional matrix ijy  may be constructed subject to the 

constraints  

1   ,

1  ,

{0,1}  , .

ij
i

ij
j

ij

y i

y j

y i j

 

 

 




 (27) 

The minimum total distance traveled by all inclusions is found by minimizing the linear 

system ij ik kjy d f  by modifying ijy  within the constraints listed in (7). It should be noted 

that 1ijy   if the inclusion in location i  is chosen to be moved to the location j , and 

0ijy   otherwise.  The inner product ik kjd f  yields the work ijW  to move each particle 

from position i  to final position .j   Minimizing the linear system using the Hungarian 

algorithm [131, 139] one finds that for the three cases shown in Figure 25: a: 0.88tD 

; b: 0.81tD  ; and c: 0.71tD  , where the relative ranking agrees with intuition.  

Close inspection of Figure 28 shows that the calculated 
tD  using continuum modeling 

and finite difference for cases a and b converge closely to the values calculated for the 

discrete system as the mesh fineness increases.  However, convergence of case c is 

slower (requiring finer mesh), which is attributed to the sharpness of the initial 

concentration gradient caused by the presence of the large circular region in the center of 

the domain [80]. 

   

As the mesh becomes coarser, the calculated 
tD  increases; this trend occurs because 

coarsening the mesh “flattens” the peaks in the initial concentration profile, which 
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reduces total flux from one element to another and thus the total distance traveled by all 

inclusions.  Since the effect is more pronounced with respect to the initial dispersed 

condition than the worst case, 
tD  will always increase with mesh coarseness.  The 

finite difference model for calculating 
tD  converges to the exact solution as the number 

of elements approaches infinity, the time step approaches zero, and the maximum time 

approaches infinity. 

4.6.2. Carbon nanofibers dispersed in aqueous solution 

In order to demonstrate the practicality of the novel dispersion quantification method 

presented in this paper, three micrographs of aqueous dispersions of carbon nanofibers 

with a broad range of visually apparent dispersion quality were selected for analysis 

(Figure 29).  Each micrograph contains a large number of nanofibers, and each 

individual nanofiber is difficult to distinguish.  To further illustrate the ability of 

available numerical techniques to be utilized to solve the dispersion analysis problem, 

commercially available finite element software was implemented in the analysis.  The 

images were discretized (100 x 120 quadrilateral elements), and the average 

concentration of nanofibers in each element was determined using image analysis.  

Average nodal concentrations were determined through averaging of the concentrations 

of the nearest neighbor elements, and were assigned as an initial condition.  The mass 

diffusion problem was solved utilizing 500 time steps for the actual image, the worst 

case for each image, and for the single particle destruction.  The total distance (and thus 

total work) for each case was determined from the fluxes of each element, and the 

dispersion subsequently determined using (26).  The calculated dispersion for the image 

with the worst visually apparent dispersion was 0.44, the calculated dispersion for the 

image with the average visually apparent dispersion was 0.62, and the calculated 

dispersion for the image with the good visually apparent dispersion was 0.85.  Thus, the 

calculated dispersions agree well with intuition based on visual observation. 
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Figure 29. Micrographs ( 215 270 m ) showing visually apparent a.) poor, b.) 
average, and c.) good aqueous dispersions of carbon nanofibers.  Using the 
methodology described in this paper in conjunction with commercially available 
finite element software, the calculated dispersion qualities for the images are: a.) 
0.44, b.) 0.62, and c.) 0.85. 

4.7. Conclusions 

The novel method for quantifying distribution uniformity of discrete inclusions in a 

domain is based on thermodynamic principles and avoids some of the inherent 

limitations of previously described methods for quantifying distribution uniformity 

described in the literature.  In the new method, distribution uniformity is decomposed 

into translational work (dispersive work) and rotational work (orientational work).  The 

use of continuum kinematics to describe the motion of the individual inclusions conveys 

the extensibility of the novel approach, which could easily be modified to account for 

any additional work required for dispersing compliant inclusions.  

 

The calculation of dispersion was shown to be implementable using continuum theory 

for systems of many inclusions.  The calculated dispersion for example systems showed 

that the results from the continuum approach implemented using a finite difference 

discretization converged to the solution obtained by tracking the translation of each 

discrete particle. The calculated dispersions of three example micrographs of carbon 

nanofibers dispersed in an aqueous solution demonstrated that the calculated dispersions 

using the novel technique discussed in this paper agree well with visual observation and 

intuition.  Therefore, the method of quantifying dispersion presented in this work can be 

30 um 
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implemented directly on systems of many inclusions, and is applicable to many fields of 

study ranging from ecology to materials science. 
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5. THE THEORETICAL MAXIMUM ACHIEVABLE DISPERSION OF 

NANOINCLUSIONS IN CEMENT PASTE 

 

A major challenge of successfully incorporating nanometric inclusions (nanoinclusions), 

such as CNF/Ts, within cement paste is achieving a uniform distribution of the 

nanoinclusions, even if they are fully disagglomerated. Cement particles typically have a 

larger diameter than the average spacing between nanoinclusions when the 

nanoinclusions are fully dispersed, which means that the presence of cement particles 

degrades the theoretical maximum achievable dispersion of the nanoinclusions. To 

determine the significance of this effect, the novel thermodynamic-based dispersion 

quantification method presented in section 3 and section 4 was implemented to calculate 

the theoretical maximum achievable dispersion of nanoinclusions in cement paste. 

Three-dimensional simulations were performed for cement pastes with common values 

of water to cement ratio, nanoinclusion to cement ratio, and cement fineness. The results 

show that for cementitious nanocomposites simulated in this study, degradation of the 

maximum theoretical achievable dispersion of nanoinclusions due to the presence of 

cement particles is negligible as long as the cement particles are not agglomerated. 

5.1. Introduction 

Modification of cementitious materials at the nm length scale by addition of 

nanoinclusions (i.e. discrete particles with a characteristic size in the nm range) is a 

growing trend in cement and concrete research [145]. The incorporation of silica fume in 

concrete is probably the best example of the widespread use of nanoinclusions in the 

concrete construction industry [146]. In the past decade, the use of carbon nanotubes 

(CNTs) in cementitious materials has been studied by many investigators [7, 16-20, 83, 

147, 148]. These filaments have extraordinary mechanical properties [7, 83] and their 

prices are decreasing rapidly [149]. CNTs are usually very difficult to disperse in an 

aqueous solution due to their low mass and strong van der Waal’s attraction to each 

other, which often induces clumping.  Despite the challenge of initiating and stabilizing 
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a well dispersed system of CNTs in the mix water of cementitious materials, it is 

expected that eventually a method will be developed to achieve this aim. Approaches 

may include surface modification of the filaments or using strong surfactants that do not 

negatively affect cement hydration. Unfortunately, even if nanoinclusions such as CNTs 

are able to be prevented from clumping and are well dispersed in the mix water, another 

problem known as geometry dependent clustering [56] would still prevent their uniform 

dispersion in cement paste.  As schematically illustrated in Figure 30a, geometry-

dependent clustering occurs when the host particles (e.g. cement grains) in a composite 

are much larger than the spacing between inclusions (e.g. CNTs). The presence of the 

large host particles degrades the maximum achievable dispersion of the inclusions by 

creating large contiguous volumes that are inaccessible to the inclusions.  As an 

example, consider a cement paste with the mass ratios of w/c = 0.35 and CNT/c = 0.005. 

If the CNTs have a diameter of 10 nm and length of 1 μm the spacing between adjacent 

CNTs will be approximately 440 nm if they are uniformly dispersed [7]. This is much 

smaller than the average size of common portland cement grains (approximately 20 μm). 

Moreover, our laser diffraction analyses show that 95.5% of a typical cement volume is 

occupied by particles larger than 20 μm (Figure 30b). This means that when fine 

nanoinclusions such as CNTs are used, almost all of the volume of typical cement 

induces geometry dependent clustering of such nanoinclusions. Furthermore, in practice 

cement particles agglomerate before and during the production of paste. The size of 

cement clumps can be hundreds of micrometers, which causes increased geometry-

dependent clustering. 
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Figure 30. (a) A schematic illustration for geometry dependent clustering of CNTs 
in cement paste. When the paste is fresh, CNTs cannot penetrate into the cement 
grains. After the paste is hydrated the locations previously occupied by cement 
grains remain unreinforced. (b) The ratios corresponding to particle size 
distribution of typical Type I portland cement and the ratios corresponding to 
volume occupied by the particles of each size. Approximately 95% of this typical 
cement volume is occupied by grains that are larger than 20 μm. 
 

As mentioned in section 3, the size of host particles is not the only parameter that affects 

dispersion due to geometry dependent clustering; the concentration of inclusions is as 

important. This importance is illustrated in Figure 31, which schematically presents a 

ceramic nanocomposite containing CNTs. Although the ceramic particles are larger than 

CNTs they do not notably affect the dispersion uniformity when the CNT concentration 

is low (Figure 31b). On the other hand, the geometry dependent clustering is significant 

when CNT concentration is high (Figure 31c). Constitutive properties of composites 

depend on the degree of dispersion uniformity. It is therefore important to know 

quantitatively to what extent the dispersion of nanoinclusions in cement paste is 

degraded by geometry dependent clustering. In other words, we wish to answer the 

question “What is the maximum theoretical achievable dispersion of nanoinclusions in 

typical cement paste?”  
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Figure 31. (Same as Figure 16) Effect of inclusion concentration on geometry 
dependent clustering. The images are the schematic presentation of carbon 
nanotubes (CNTs) in a ceramic nanocomposite. (a) The areas between ceramic 
particles in which CNTs can be distributed are shown with lighter color. (b) When 
a low dosage of CNT is used to reinforce the ceramic, the distribution of CNTs is 
relatively uniform and similar to the case in which CNTs could be placed anywhere 
in the matrix with no limitation imposed by ceramic particles. (c) When the CNT 
dosage is high, the distribution uniformity is significantly degraded. 
 

 

The novel thermodynamics-based method of dispersion quantification (section 3 and 

section 4 ) is capable of handling an infinitely large number of particles with a moderate 

computational expense. This capability is very important and sometimes essential when 

measuring the dispersion of nano inclusions in cementitious materials; when dealing 

with cementitious nanocomposites the number of nanoinclusions in a representative 

volume element (RVE) can be significantly larger. For example, consider a CNT-

reinforced cement paste with the typical proportions of w/c 0.4  and CNT/c 0.005  

and CNTs with a diameter of 10 nm, length of 1 μm, and specific gravity of 1.4. 

Considering the fact that in typical cement there are grains as large as 100 μm, a cubic 

RVE with the side length of 500 μm ensures a reasonable representation of the 

composite material. Such an RVE contains approximately eight billion CNTs. For such a 

system, most traditional methods of dispersion quantification have a prohibitive 

computational expense. 
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The objective of this chapter is to utilize the novel dispersion quantification technique to 

predict the maximum theoretical achievable dispersion of nanoinclusions (such as 

CNTs) in cementitious nanocomposites considering geometry dependent clustering 

induced by the cement grains. For this purpose, RVEs of cement paste reinforced with 

nanoinclusions are simulated using commonly applied and researched w/c, CNT/c, and 

cement particle size distributions. 

5.2. Simulation and analysis of the maximum theoretical dispersion of 

nanoinclusions in cement paste 

For a nanoinclusion reinforced fresh cement paste made from a particular cement with 

the cement grains randomly dispersed, the maximum dispersion is achieved when the 

nanoinclusions are uniformly dispersed in the water that surround the cement grains. 

Evidently, the maximum achievable dispersion is not the fully uniform dispersion 

because of the geometry dependent clustering imposed by the presence of the (relatively) 

large cement particles. It should be noted that when the continuum diffusion method is 

used, the input for the analysis is the concentration of inclusions in each element in the 

discretized RVE rather than the location of individual inclusions. These concentrations 

can be readily calculated when the nanoinclusion to water ratio and the location and the 

size of each cement particle is known. 

5.2.1. Parameter selection 

Here, the main objective of the simulation and analysis is to observe the effect of 

geometry-dependent clustering on the dispersion of nanoinclusions in cement paste. 

Cement paste RVEs were generated with varying values of parameters such as w/c and 

nanoinclusion/c that are expected to have a strong influence on constitutive properties of 

the nanocomposite.  Ranges for the parameters of interest were selected to match those 

commonly found in recent research on cementitious nanocomposites.  For w/c, values of 

0.35, 0.40, and 0.45 were considered. Three different cement particle size distributions 

were selected for analysis. These distributions were measured by Bentz for three types of 
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cement commonly used in the construction industry [150].   In this paper, the three types 

of cement are referred to as “fine”, “regular”, and “coarse” based on their particles size 

distribution as shown in Figure 32. As mentioned earlier, in practice cement particles 

typically agglomerate before or during concrete or cement paste production. In order to 

observe the effect of agglomerated cement on geometry dependent clustering, a cement 

paste made of clumped cement with an average agglomeration size of 200 was 

simulated. 

 

 

 

Figure 32. Measured (via laser diffraction) particle size distributions for the three 
cements of varying fineness commonly used in the construction industry (from 
Bentz [150]). 
 

 

In current research on CNT - cement paste composites, CNT/c mass ratios below 1.0% 

are chosen since higher dosages of CNTs are very difficult to disperse even in the 

absence of geometry-induced clustering [7, 83, 147, 151-153]. Therefore, 

nanoinclusion/c of 0.3%, 0.5% and 0.7% were selected for this investigation. The 

combined parameter values for the domains generated and analyzed in this work are 

presented in Table 3. The specific gravity of the nanoinclusions was assumed to be 1.4 

[154]. As it is possible in the future that new techniques will allow higher dosages of 
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nanoinclusions to be successfully dispersed, or new highly dispersible nanoinclusions as 

admixtures for cementitious materials will be developed, in addition to the mentioned 

dosages the very high nanoinclusion/c of 10.0% was also investigated. Cubic RVEs with 

side length of 500 μm were chosen. Our preliminary investigations show that this size is 

sufficiently large to be representative of any larger domain. 

 

 

Table 3. Different values used for three different parameters investigated in this 
study; namely, w/c, nanoinclusion to cement mass ratio and cement fineness. The 
parameter combinations in each row were used to generate simulated cement paste 
RVEs for dispersion quantification.  
 

w/c 
Nanoinclusion/c, 

% 

Cement 

fineness 

0.40 0.5 Fine 

0.40 0.5 regular 

0.40 0.5 coarse 

0.35 0.5 regular 

0.40 0.5 regular 

0.45 0.5 regular 

0.35 10.0 regular 

0.40 10.0 regular 

0.45 10.0 regular 

0.40 0.3 regular 

0.40 0.5 regular 

0.40 0.7 regular 

0.40 0.3 agglomerated 

0.40 0.5 agglomerated 

0.40 0.7 agglomerated 
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5.2.2. Methodology 

In order to quantify the effect of geometry-dependent clustering on the maximum 

theoretically achievable dispersion of nanoinclusions in cement paste, the first step is to 

generate a distribution of cement particles within a cubic domain. Since in practice 

cement paste is produced by blending water and cement in a mixer, the best expected 

dispersion of cement particles in water is achieved when cement grains are randomly 

distributed. A program was written (in Mathematica) to generate a spatially-random 

distribution of cement particles of a given particle size distribution in a cubic, three-

dimensional domain. A simple algorithm typically used for random generation of 

impenetrable objects was applied [155]. In this algorithm, first the largest particle is 

placed in a random location in the domain. Then, the next largest particle is assigned 

with a random location in the domain. If a particle placement overlaps any previously 

placed particle, it is assigned a new random location. This process continues until the 

current particle does not overlap any previously placed particles. The same procedure is 

repeated for the rest of the particles until they are all placed in the domain. 

 

For each cement and w/c, an RVE with a random distribution of cement particles was 

generated. Figure 33 shows such an RVE for the coarse cement and w/c 0.35 . A 

program was written to discretize the RVEs in order to determine the initial 

concentrations to assign as initial conditions for each element in the mass diffusion FEA. 

A mesh fineness of 50 x 50 x 50 was chosen since our analysis showed that further 

convergence with finer meshes is negligible. The initial concentration value for each 

element was determined based on the nanoinclusion to water ratio (which can be 

obtained from the nanoinclusion/c and w/c) and the volume of cement grains located 

within each element. Figure 34a shows a discretized domain for the coarse cement and 

w/c 0.40 . Mass diffusion analysis was performed on the RVE using commercial FEA 

software (Abaqus 6.8). One thousand time steps were used for each analysis to achieve 

sufficient calculation accuracy. As can be seen in the discretized RVE (Figure 34a), the 

initial mass concentration of the elements located within cement particles is zero since 
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they contain no nanoinclusions. Similarly, the initial concentration of each element 

located fully within the aqueous part of the RVE is the same as the concentration of 

nanoinclusions in water. Figure 34b shows the same RVE after a few steps of the finite 

element analysis. In order to calculate the dispersive work for each RVE, the 

concentrations of all the elements in all the time steps were recorded for each analysis 

[156]. 

 

 
 
Figure 33. Simulated 3-D RVE of cement paste made from a coarse cement with 
w/c of 0.35, where cement particles are randomly dispersed within the paste. 
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Figure 34. (a) Discretized RVE of cement paste incorporating nanoinclusions with 
w/c of 0.4. (b) The same RVE a few time steps after the start of mass diffusion finite 
element analysis. 
 

5.3. Results and Discussion 

As expected, dispersion is less uniform in cements with larger particles. This is shown in 

Figure 35. In this figure, the maximum dispersion values for nanoinclusions in a cement 

paste with w/c of 0.40 and nanoinclusion/c of 0.5% for the three cements with varying 

fineness are presented. The nanoinclusion dispersion corresponding to the fine cement is 

0.988 while the dispersion corresponding to coarse cement is 0.945. However, these 

results show that geometry dependent clustering does not affect dispersion significantly 

in cementitious nanocomposites when the cement particles are randomly dispersed and 

the concentration of nanoinclusions is relatively low, as is the case in CNT-reinforced 

cement paste. This effect could be further reduced by using cements with much finer 

particles. However, using very fine cement causes practical complications in mixing and 

fabrication. In an earlier investigation cement was milled to reduce the average cement 

particle size to less than 1 μm [7]. Due to the extremely high surface area of the milled 

cement, the minimum w/c to produce a reasonably workable paste was very high (0.80), 
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even with a high concentration of superplasticizer. The high surface area also made the 

cement highly reactive causing a significant, rapid release of heat during mixing. 

 

 

 
 
Figure 35. Maximum values of nanoinclusion dispersion for cements of varying 
fineness with w/c of 0.40 and nanoinclusion/c of 0.5% (typical ratios for producing 
CNT reinforced cement paste). As expected, the dispersion corresponding to coarse 
cement is the lowest due to the higher effect of geometry dependent clustering. 
These results show that the negative effect of geometry dependent clustering on 
dispersion of CNTs in cement paste is minimal. 
 

 

Increasing the w/c is expected to improve the maximum theoretically achievable 

dispersion for a given nanoinclusion/c for two reasons. First, higher w/c yields a lower 

volume of cement within the RVE, which leads to less geometry-dependent clustering. 

Second, a higher w/c corresponds to a lower nanoinclusion to water ratio, which as 

explained by means of Figure 31 causes less geometry dependent clustering. The effect 

of w/c on the maximum theoretically achievable dispersion is shown in Figure 36a. As 

the range of practical w/c is narrow (0.35-0.45), the effect of w/c on the dispersion of 

nanoinclusions in cement paste is negligible. As demonstrated in Figure 31, increasing 

the nanoinclusion concentration boosts the effect of geometry dependent clustering. 

However, as shown in Figure 36b, this effect is insignificant for CNT-reinforced cement 
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pastes due to the existing limitation in the maximum amount of nanoinclusions that can 

be incorporated in cement paste while avoiding clumping (typically below 1.0% of the 

mass of cement). 

 

 

 

Figure 36. Calculated dispersion values for cement paste made from regular 
cement and with different parameters typically used for producing CNT reinforced 
cement paste. (a) Demonstrates the effect of w/c on dispersion for two different 
concentrations of nanoinclusions. (b) Shows the effect of nanoinclusion 
concentration on dispersion for regular and agglomerated cement with an average 
agglomeration size of 200 μm. 
 

 

It is possible that future advances in cementitious nanotechnology will make it possible 

to produce materials with high concentrations of nanoinclusions, and as a result, a less 

uniform state of nanoinclusion dispersion. However, as shown in Figure 36a, increasing 

the nanoinclusion/c to 10% results in less than a 2% degradation in dispersion. Finally, it 

should be noted that cement particles agglomerate before and during cement paste and 

concrete mixing. The previously described simulations were all performed for the 

situation where the cement particles are fully disagglomerated and randomly dispersed 

within the paste. Assuming a paste made from agglomerated cement with an average 

clump size of 200μm, dispersion would be approximately 13% less uniform compared to 
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its counterpart made from fully disagglomerated and randomly dispersed cement paste 

(Figure 36b). 

 

Finally, one should be cautioned that the dispersion quality alone (as measured using the 

work method) does not control the constitutive properties of the composite material.  

While there is a unique dispersion value associated with each RVE, multiple RVEs may 

yield the same dispersion value.  A single large cement particle may degrade the 

dispersion by the same amount as several smaller cement particles.  However, it is well-

known that a single, large flaw in a brittle matrix is more likely to propagate cracks than 

several, much smaller flaws.  Thus, it may be necessary to consider additional measures 

with dispersion quality when predicting or modeling important composite constitutive 

properties. 

5.4. Concluding Remarks 

Using the novel method for quantifying the dispersion of discrete particles in a domain, 

the theoretical maximum dispersion of nanoinclusions in cement paste was quantified. 

Since the average size of cement particles are significantly larger than the spacing 

between nanoinclusions such as CNTs, the dispersion of nanoinclusions in cement paste 

is degraded due to geometry dependent clustering. Simulations showed that in the case 

of one of the most researched cementitious nanocomposites, namely CNT-reinforced 

cement paste, dispersion degradation due to geometry dependent clustering is negligible 

as long as the cement particles are fully disagglomerated and randomly dispersed within 

the paste. However, the results of the simulations indicate that the effect of geometry 

dependent clustering on dispersion can be significant if the cement particles are 

agglomerated. Therefore, ensuring a high level of dispersion of nanoparticles in cement 

paste requires simultaneously achieving a high level of dispersion of cement particles, 

but does not require the use of an ultra-fine cement. 
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6. UTILIZATION OF SILICA FUME TO STABILIZE THE DISPERSION OF 

CARBON NANOFILAMENTS IN CEMENT PASTE 

 

In most such composite materials, the quality of the dispersion of the filaments strongly 

controls the composite constitutive properties.  As shown in section 2, achieving a 

uniform distribution of CNT/Fs in a cement paste matrix is a major challenge due to the 

high van der Waal’s attracting forces between the nanofilaments. Secondary 

nanoparticles such as clays have been used in the past to stabilize a uniform dispersion 

of CNT/Fs in polymeric nanocomposites. In the study presented in this chapter, the 

effect of using submicrometer silica (silica fume) powder on the dispersion and stability 

of CNFs in cement paste was investigated. The nominal diameter of silica fume particles 

was in the range of 0.1 to 0.3 micrometers. Specimens of CNF-incorporated cement 

paste with different concentrations of silica fume were produced and imaged by optical 

microscopy. Using a novel thermodynamic-based dispersion quantification method, the 

dispersion values of CNFs in the specimens were measured and compared. The results 

show that silica fume, if used in sufficient proportions, can largely prevent the 

agglomeration of, and thereby stabilize the distribution of, CNFs in fresh cement paste.  

6.1. Introduction 

Several studies, mostly in the past decade, have been carried out to develop methods for 

incorporating CNT/Fs in cementitious materials and investigating their constitutive 

properties [16-21, 147, 148, 157-159].  A summary of such efforts is presented in section 

2. The studies have shown that CNT/Fs can improve properties such as tensile and 

compressive strength, although marginally in most cases. A likely reason for the 

marginal improvements is	the	typically	poor	dispersion	of	CNF/Ts	in	cement	paste.	

The	dispersion	problem	has	been	combated	by	methods	like	surface	modification	of	

the	fibers	and	by	using	surfactants,	usually	in	combination	with	ultrasonic	

processing	of	the	nanofilaments	in	liquid	solutions	[40,	160‐165].	Although	

different	methods	such	as	implanting	or	growing	the	fibers	directly	on	non‐
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hydrated	cement	grains	are	being	studied	by	some	investigators,	as	explained	in 

section 2, the	most	common	method	of	producing	CNT/F‐incorporated	cement	

paste	is	to	first	disperse	the	nanofilaments	in	water,	typically	by	using	surfactants	

and	sonication,	and	then	mix	the	aqueous	dispersion	with	cement.	Unfortunately,	

most	of	the	effective	surfactants	are	not	compatible	with	cement	hydration	and	

their	presence	in	cement	paste	results	in	a	weak	material,	usually	entrapping	a	

notable	amount	of	air	[7].	Therefore,	to	avoid	negative	hydration	and	air	

entrapment	issues,	weaker	surfactants	known	as	water	reducing	admixtures	or	

superplasticizers	are	used.	These	surfactants	are	typically	polycarboxylate-based	

and	are	specifically	made	for	cementitious	materials.	They	are	typically	added	to	a	

fresh	mix	of	cementitious	material	to	disagglomerate	the	cement	grains	and	

disperse	them,	thereby	reducing	the	amount	of	water	required	to	produce	a	paste	

with	a	certain	rheological	property.	

	

It	has	been	shown	that	the	established	methods	of	incorporating	CNT/Fs	in	cement	

paste	(using	superplasticizers	and	ultrasonic	processing)	do	not	maintain	a	

sufficiently	good	dispersion	of	nanofilaments	in	cementitious	materials	and	large	

volumes	of	the	paste	can	remain	absent	of	nanofilaments	[7].	The	reason,	as	will	be	

shown,	is	that	nanofilaments	can	move	freely	in	fresh	cement	paste	and	van	der	

Waals	attracting	forces	will	eventually	cause	the	nanofilaments	to	migrate	and	

reagglomerate.	It	is	not	known	yet	why	the	carbon	nanofilaments	that	can	remain	

well‐dispersed	for	days	or	even	months	in	a	water‐superplasticizer	solution	

reagglomerate	relatively	rapidly	when	the	solution	is	added	to	cement.	However,	it	

is	definitely	known	that	the	reagglomeration	issue	of	carbon	nanofilaments	in	the	

matrix	of	host	material	(sometimes	even	in	polymeric	nanocomposites	[166])	does	

exist.	

	

In	this	chapter,	a	novel,	simple,	and	effective	method	for	stabilizing	the	dispersion	

of	CNT/Fs	in	cement	paste	is	presented.	In	this	method,	silica	fume	is	used	to	
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immobilize	and	stabilize	the	nanofilaments	already	dispersed	in	cement	paste	and	

to	prevent	them	from	migrating	towards	each	other	and	reagglomerating.	The	

novel	dispersion	quantification	method	is	used	to	compare	the	dispersion	quality	of	

CNFs	in	cement	paste	when	it	is	made	with	different	concentrations	of	silica	fume	

and	without	silica	fume.	Although	incorporating	silica	fume	into	cementitious	

composites	might	not	be	always	desired,	the	novel	method	has	considerable	

potential	for	implementation	in	the	construction	industry.	The	investigation	

presented	here	has	been	performed	on	CNFs	due	to	their	larger	size	and	therefore	

the	visibility	of	individual	filaments	through	optical	microscopy.	The	method	is	

expected	to	be	implementable	for	smaller	nanoinclusions	as	well.	In the next section, 

the novel method of dispersing carbon nanofilaments in cement paste will be presented 

followed by the quantitative comparison of CNF dispersion in specimens made with and 

without silica fume. 

6.2. Dispersing carbon nanofilaments in cement paste using silica fume 

The reason for the free movement and reagglomeration of CNFs in fresh cement paste is 

that most cement grains are much larger than CNFs. As a result, there are large volumes 

between cement grains that do not impose any restraint on the movement of 

nanofilaments. If the space between the cement grains can be filled by well-dispersed 

and stable nano particles, the movement of carbon nanofilaments will be confined. This 

concept has been implemented in the past to produce a stable dispersion of CNTs in 

polymeric materials. Secondary particles, such as clay, that have been used to improve 

electrical conductivity in polymer composites containing vapor grown carbon fibers 

[167] or carbon black [168] as the conductive filler, were also found to improve the 

dispersion of filaments. Liu and Grunlan used clay to improve the dispersion of carbon 

nanotubes in epoxy composites [169]. 
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Silica fume is an amorphous sub-micrometer powder (with particles 100 to 150 times 

smaller than a grain of cement) used to enhance several properties of concrete such as 

compressive strength, bond strength, abrasion resistance [157, 170], and also to reduce 

permeability [159]. Mixture proportions for high-strength concrete typically contain 5 to 

15 percent silica fume by mass of cement [160]. In this study, the use of silica fume as a 

secondary nanoparticulate additive for enhancing and stabilizing the dispersion of CNFs 

in cement paste is investigated. The method of producing CNF-incorporated cement 

paste using silica fume is presented in section 6.3. A novel dispersion quantification 

method (presented in the next section) will be used to compare the dispersion of CNFs in 

cement paste when the paste is made with and without silica fume. 

 

It should be mentioned that silica fume has been used in the past in an effort to enhance 

the dispersion of CNFs in cement paste. Sanchez and Ince produced CNF-incorporated 

cement paste by dry-mixing as-received CNFs and then silica fume with cement 

followed by the addition of water [171]. They used CNFs with concentrations from 

0.005% to 2% per mass of cement and also the silica fume to cement mass ratio of 10%. 

The results demonstrated the dispersing potential of silica fume for CNFs in cement 

pastes. Sanchez and Ince argued that the reason for the disagglomerating effect of silica 

fume is that their small size allowed them to work their way in between the individual 

CNFs during the dry mixing process, causing the CNFs to separate from one another as 

mixing occurred, resulting in the separation of some of the fibers. However, their 

findings showed that While CNFs were found to be dispersed throughout the pastes 

incorporating silica fume, a significant number of CNF clumps still remained 

disagglomerated. 

6.3. Experiment 

6.3.1. Materials and instruments 

For the experiments presented in this chapter, undensified silica fume supplied by 

Norchem, Inc. was used. The silica fume powder consists of spherical particles that 
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average 0.1 to 0.3 micrometers in diameter with a surface area of 17 to 30 2m /g . The 

CNFs used in this experiment were vapor grown [172, 173] and have a diameter between 

60 to 150 nm, a length between 30 and 100 micrometer, and a specific surface area 

between 50-60 2m /g . The fibers were provided by Applied Science Company under the 

commercial name Pyrograph PR-24 (PS). Type I portland cement was used. The 

surfactant utilized was a high range polycarboxylate-based superplasticizer provided by 

W.R. Grace with the commercial name ADVA Cast 575. Dispersions were made 

by ultrasonically processing the CNFs in a water-superplasticizer solution. A 20 

kHz sonicator with a ½ inch diameter titanium alloy probe was used at an amplitude 

setting of 40%. To produce high speed and high shear mixing, a 600W Oster BVCB07-Z 

blender was used for paste mixing at approximately 7500 RPM. Optical and electron 

microscopes were used to image CNFs in fresh and hardened cement pastes, 

respectively. For optical microscopy, a Zeiss Axiophot microscope was used in 

transmitted mode with 20x and 40x dry objective lenses and a 100x oil immersion 

objective lens. For electron microscopy, observations were performed by a JEOL JSM-

7500F scanning electron microscope (SEM).  

 

6.3.2. Mix design, production and observation of CNF-incorporated cement paste 

Specimens with four different mixture designs were produced. Three of the mixtures 

contained silica fume (hereafter referred to as silica fume mixes) and the control mixture 

did not contain silica fume. It is known that the difficulty in achieving a good dispersion 

of nanoinclusions in any material is relative to the concentration of nanoinclusions. As a 

result, since the objective of the study is investigating the effectiveness of silica fume in 

maintaining a good dispersion, the relatively high CNF/cm  mass ratio of 0.80 was used 

in all of the mixes ( cm is the sum of cement and silica fume masses). This concentration 

of CNFs is by far larger than the typical concentrations of carbon nanofilaments used in 

the past to modify the constitutive properties of cementitious materials. The commonly 

used water to cementitious materials mass ratio ( w/cm ) of 0.40 was selected for all the 
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specimens. Based on preliminary investigations, the superplasticizer to cm mass ratio of 

0.014 was used for all the mixtures to maintain the required workability. For the silica 

fume mixes, silica fume to cement ratios of 0.07, 0.13 and 0.20 were used to cover the 

typical concentrations used in the concrete construction industry and research. The 

complete mixture designs are presented in Table 4. 

 

Table 4. Mixture proportions for the control and silica fume mixes. The proportions 
are presented as mass ratios. 
 

Mix w/c 
Silica fume to 

cement ratio 
CNF/cm*

Superplasticizer 

to cm* ratio 

Control 0.40 0.00 0.80 0.014 

SF_1 0.40 0.07 0.80 0.014 

SF_2 0.40 0.13 0.80 0.014 

SF_3 0.40 0.20 0.80 0.014 

   * cm = sum of cement and silica fume masses 

 

To produce each specimen, first a water-superplasticizer solution was made. Then, CNFs 

were added to the solution and mixed with a manual stirrer. The solution then was 

transferred to a jacketed beaker (to maintain a constant room temperature) and was 

sonicated for 5 minutes. The dispersion was added to the blender that already contained 

the dry cement. For the silica fume mixes, the silica fume powder was slowly added 

while mixing was in progress. The total mixing time for all of the batches was 4 minutes.  

 

For optical microscopy, a small droplet of the fully mixed paste was placed on a glass 

slide and subsequently covered with a transparent glass slip. Since the transmitted mode 

was used, it was important that the paste layer on the glass slide be as thin as possible so 

that a sufficient amount of light could be transmitted through the specimen. For this 

purpose, the glass slide was pressed firmly on the slide. The edges of the slip were 

sealed on the slide using nail polish to prevent the evaporation of water and drying of the 
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specimen during observation. Optical microscopy was performed within one hour after 

mixing. For SEM observation of the dispersion in the fully hardened cement paste 

specimens, beam specimens with a cross-section of 6 mm x 6 mm and length of 200 mm 

were cast. The beams were cured in a humidity room with 100% RH for 7 days. The 

beams were then broken and oven-dried for one day. The fractured surface was coated 

with 6 nm-thick Platinium/Palladium (80/20) layer to enhance surface conductivity for 

use in the SEM.  

6.4. Results and discussion 

The optical microscopy observation of the fresh control paste right after mixing showed 

that the CNFs were relatively well-dispersed and were freely moving in the water that 

surrounded cement particles. This is shown in Video 1. Approximately two hours after 

mixing, the movement of the fibers slowed down and more agglomerations formed 

(Video 2). After three hours, as shown in Figure 37, most of the CNFs were entangled 

and the movement of the remaining CNFs was confined, possibly due to the formation of 

hydration products and the beginning of setting.  

 

As for the silica fume mixes, the effect of the presence of silica fume on dispersion was 

remarkable. It could be observed that the mobility of CNFs in fresh paste was related to 

the concentration of silica fume in the mix; the movement of CNFs reduced by 

increasing the concentration of silica fume. In fact in the SF-3 mix the CNFs barely 

moved and the dispersion of CNFs in the paste remained uniform. As expected, the silica 

fume particles prevented CNFs from moving such that the CNFs could hardly 

agglomerate. The optical microscopy images of silica fume paste SF-3 are shown in 

Figure 38. Due to the good dispersion of CNFs, a lens with higher magnification (100x) 

than used in Figure 37 was used to obtain images that were representative of the state of 

dispersion in the cement paste. 
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Figure 37. Optical microscopy images of fresh control paste three hours after 
mixing, acquired by a 20x objective lens. The images show that the CNFs are 
poorly dispersed and highly agglomerated. The scale bar applies to all three 
images. 
 

 

 

 

 
Figure 38. CNFs in the SF-3 mix three hours after mixing acquired by a 100x 
objective lens. The images show that the CNFs are well-dispersed. The scale bar 
applies to all three images. 
 

 

SEM images of the fractured surfaces of hardened control and SF-3 pastes are presented 

in Figure 39 and Figure 40, respectively. Figure 39 shows the agglomeration of CNFs in 

the cement paste. During the SEM observation finding areas like the one shown in 

Figure 39a was difficult since a large portion of the fractured surface contained no or 

few fibers. However, in the case of specimen SF-3, the distribution of CNFs on the 

fractured surface of the hardened paste was relatively uniform Figure 40. The SEM 

observations indicate that the CNFs do not tend to reagglomerate during the hydration 

process several days after initial mixing and fabrication. 
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Figure 39. SEM images of the fractured surface of hardened control paste, 
indicating the poor dispersion of CNFs. (a) shows that a large portion of the paste 
does not contain CNFs. In this image CNFs are agglomerated in two different 
locations of the fractured surface. (b) is a closer look at the CNF agglomeration at 
the right side of image (a). 
 

 

 

 
Figure 40. SEM images of fractured surface of hardened silica fume paste SF-3, 
indicating the uniform dispersion of CNFs. The scale bar applies to both images. 
 

The results of the dispersion quantification by the work method is shown in Figure 41 

for all the different mixtures. The average dispersion value for the control specimen (the 

three RVEs in Figure 37) is 0.69 while the dispersion for the silica fume paste SF-3 (the 

three RVEs in Figure 38) is 0.88, indicating an improvement of over 27 percent. The 
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dispersion values for SF-1 and SF-2 specimens are 0.78 and 0.83 respectively. This 

indicates a relatively linear correlation between the concentration of silica fume and 

improvement in dispersion. 

 

Note that, as indicated in Figure 41, the standard deviations of the dispersion values for 

mixtures containing silica fume are lower than that of control specimens. This shows 

that, although the area of the images utilized for dispersion quantification of the silica 

fume mixes is smaller than that of the control mixture images, they better represent the 

state of dispersion, which indicates the more uniform dispersion of CNFs in silica fume 

specimens. 

 

 

 
Figure 41. Dispersion of CNFs in cement pastes with different concentrations of 
silica fume.  The error bars indicate one standard deviation either side of the mean. 
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6.5. Concluding remarks 

It was shown that the sufficient use of silica fume can remarkably enhance the dispersion 

of CNFs in cement paste by acting as a stabilizing agent that prevents reagglomeration 

of CNFs.  For silica fume to cement mass ratios up to 0.2, the quality of the stabilized 

CNF dispersion varies roughly linearly with silica fume content. The novel dispersion 

stabilization method is simple and practical, and can be readily implemented in the 

concrete construction industry due to the existing familiarity with silica fume as a 

concrete additive. The findings from this study should lead to further research 

correlating important CNF-cement composite constitutive properties to dispersion 

quality and silica fume dosage, and ultimately the determination of optimum silica fume 

concentration for different applications. 
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7. THE EFFECT OF CARBON NANOFIBERS ON THE MECHANICAL 

PROPERTIES OF HARDENED CEMENT PASTE 

 
This chapter reports on an investigation in which CNFs have been utilized to make 

hardened cement past beams, which were tested in bending. The objective of this work is 

to show that despite the early findings of other investigators that usually indicate a 

marginal or even no improvement in mechanical properties due to the utilization of 

carbon nanofilaments, in certain conditions they can dramatically change the mechanical 

properties of cement paste. When cement paste with w/c of 0.4 was not cured for the 

first 24 hours after casting, a condition that commonly exists in structural and pavement 

construction, incorporation of CNFs with a concentration of 1.0 wt% of cement caused 

over 250% increase in the flexural strength. At the same curing condition, the 

incorporation of CNFs significantly reduced the formation of drying shrinkage cracks for 

high strength hardened cement paste produced either by the utilization of silica fume or 

low w/c. 

7.1. Introduction 

As mentioned in section 2 and section 3 CNF/Ts are of interest to the researchers of 

materials science due to their excellent characteristics and in particular their mechanical 

properties. CNTs have been the subject of many investigations in the past decade as 

reinforcement for several composite applications. Mechanically, CNTs exhibit elastic 

moduli of more than 1 TPa (1.5×108 psi) [9]. Their theoretical strength is 100 times that 

of steel, at only 1/6th the specific gravity [10]. Values as high as 60 GPa (8.7×106 psi) 

for ultimate strength and 6% for ultimate strain have been reported [11, 12]. Salvetat et 

al. reported an elastic strain capacity of 12%, which is 60 times higher than that of steel 

[9]. Recently,	Ozkan	et	al.	performed	direct	mechanical	measurements	on	CNFs	

[15].	The	CNFs	that	they	investigated	had	a	tensile	strength	between	2‐5	GPa	

(2.9×105‐7.3×105	psi)	with	an	average	modulus	of	elasticity of 300 GPa (4.4×107 

psi). One of the concerns about the application of these nanofilaments is their current 
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relatively high price. However, due to ongoing advancement in the industrialization and 

mass production of these nanofilaments, their prices are decreasing rapidly [149]. 

 

The research on the effect of carbon nano fibers (CNFs) and nano tubes (CNTs) on the 

mechanical properties of cementitious materials is new and has a history spanning 

slightly more than a decade. These filaments are available in different sizes, shapes, 

dispersibilities, surface properties, mechanical properties, and structures. Moreover there 

are various methods for incorporating them in other materials. As a result, it is 

impossible to reach a general conclusion about their effect on the mechanical properties 

and behavior of any material in which they are incorporated. However, the outstanding 

properties of CNF/Ts support the idea that if these nanofilaments are selected and 

utilized optimally, they must be able to significantly change the mechanical properties of 

the material in which they are incorporated. 

 

The early experiments on incorporating CNF/Ts in cementitious materials have not 

shown much enhancement in mechanical properties. When flexural or compressive 

strength is concerned, the majority of those experiments have resulted in improvements 

of not more than 50%; usually less than 25%. The amount of improvement in 

mechanical properties is not necessarily proportional to the concentration of CNF/Ts in 

cementitious matrix. In fact, beyond a certain concentration the dispersion of CNF/Ts in 

the matrix degenerates, and that often has a negative effect on the mechanical properties 

of the composite. The rest of this section briefly summarizes some of the important 

studies carried out in the past on the mechanical properties of CNF/T incorporated 

cement paste. More detailed information and references can be found in [7, 83, 147] . In 

the next sections, an experimental investigation will be presented, which indicates that 

through achieving a better dispersion of CNFs in cement paste, significant improvements 

in mechanical properties can be achieved.  
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Several methods have been developed for incorporating CNF/Ts in cementitious 

materials (see e.g. [7, 83, 147]). The most common and practical method consists of 

simply mixing cement, water, CNF/Ts and surfactants. Usually, the CNF/Ts are first 

dispersed in a solution of water and surfactant using ultrasonic processing, and then the 

resulted dispersion is added to and mixed with cement. The investigations summarized 

below have used this method. 

 

Kowald used CNTs in cement paste with CNT/cement mass ratios in the range of 0.5 to 

5.0% [33]. He tested the hardened specimens for compressive strength after 7, 14, and 

28 days. Marginal improvements were observed in compressive strength and even a 

decrease in strength when the fiber dose was as high as 2.5% or more. Li et al. 

performed a set of experiments with CNTs in mortars with CNT/cement mass ratio of 

0.5% and the water:cement:sand proportion of 0.45:1:1.5 [16]. The bending and 

compression tests showed that the addition of CNTs increased the compressive and 

flexural strength by 19% and 25% respectively. More references about the investigations 

performed on CNF/T-incorporated cementitious materials can be found in [7, 83]. Gay 

and Sanchez tested hardened cement paste specimens with different compositions and 

found that the addition of 0.2% CNFs per mass of cement resulted in increased splitting 

tensile strength of 22% in portland cement composites and 26% in cementitious 

composites that also contained silica fume [174]. Metaxa et al. [175], Shah [176] and 

Konsta et al. [177] showed that CNTs in cement matrix (w/c	= 0.5) increased the flexural 

strength and the Young’s modulus of plain cement paste by 25% and 50%, respectively. 

In another investigation, Konsta et al. reported that the flexural strength of the specimens 

reinforced with CNTs shows an increase of 30–40% over plain cement specimens [178]. 

Cwirzen et al. reported an increase of 50% in the compressive strength of hardened 

cement paste due to the use of CNTs with a concentration of 0.045% to the mass of 

cement [18]. 
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Recently, an investigation was performed by Tyson et al. regarding the effect of  

CNF/Ts on the mechanical properties of hardened cement paste [147]. The results 

showed that utilizing CNFs with only a CNF/c mass ratio of 0.1% increased the flexural 

strength of hardened cement paste by over 80%, although the dispersion of CNFs in 

cement paste was not uniform. In light of the results from other investigations, this 

finding was remarkable, and motivated the experiments reported in this chapter. 

 

Tyson et al., Kowald [33], and Konsta et al. [178] each found that after the CNF 

concentration exceeded a certain limit, CNFs became less effective in improving 

mechanical properties such as flexural strength. In fact, they observed a significant 

decline in flexural strength when the CNF to cement mass ratio (CNF/c) was increased 

from 0.1% to 0.2%; most probably due to the poor dispersion of CNFs. In this study, in 

order to enhance dispersion in comparison to that achieved in past studies, a larger 

dosage of superplasticizer and more prolonged ultrasonic processing and paste mixing 

were utilized. To reduce variability, beams with cross-sectional areas larger than those 

made by Tyson et al were tested. Bending tests were performed on the beams to measure 

flexural strength, Young’s modulus, and toughness. In addition, the effect of CNFs on 

the shrinkage cracking of beams was observed. 

 

This work also presents the results from an investigation for determining the effect of the 

dispersion quality of CNFs within a cementitious matrix on the mechanical properties of 

hardened cement paste. Although the results are not conclusive, they are important 

findings that provide useful information for future research. As mentioned earlier, in 

order to produce a CNF-incorporated cement paste an aqueous solution of CNF is mixed 

with cement. The CNFs are well-dispersed in the solution but after the solution is mixed 

with cement, the CNFs usually reagglomerate and this results in a poor dispersion of 

CNFs in hardened cement paste [7]. Recently, Yazdanbakhsh and Grasley showed that 

incorporating silica fume in cement paste can physically restrain the CNFs and prevent 

the reagglomeration of CNFs in fresh cement to a great extent [179].  That is, the silica 
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fume helps to stabilize the dispersion.  In this work, silica fume will be used to improve 

the dispersion of CNFs in hardened cement paste.  Additionally, the effect of CNFs on 

the mechanical properties of cement paste with improved CNF dispersion will be 

investigated. 

7.2. Experimental  

7.2.1. Materials and Instruments 

The CNF used in this experiment has a diameter between 60-150 nm, a length between 

30-100 μm, and specific surface area of 50-60 m2/g. The CNFs were provided by 

Applied Sciences Incorporated under the commercial name Pyrograph PR-24-XT-PS. 

The CNFs were used in two forms, non-milled and milled. Milling was performed by the 

manufacturer, through a ball-milling process. Ball-milling breaks the large clumps of 

CNFs and improves their dispersibility. The surfactant used for dispersing CNFs in 

water was a high range polycarboxylate-based water reducing admixture 

(superplasticizer) provided by W.R. Grace with the commercial name ADVA Cast 575. 

Type I portland cement was used for producing cement paste. 

 
Dispersions were made by ultrasonically processing the CNFs in a water-superplasticizer 

solution. A 20 kHz sonicator with a ½ inch diameter titanium alloy probe was used at an 

amplitude setting of 50%. To produce high speed and high shear mixing, a 600W Oster 

BVCB07-Z blender was used for mixing cement paste at approximately 7500 RPM. An 

optical microscope was used to image CNFs in aqueous dispersions and fresh cement 

paste using transmission mode. A scanning electron microscope (SEM) was used to 

observe the fractured surface of hardened cement paste. For optical microscopy, a Zeiss 

Axiophot microscope was used with 40x and 100x objectives lenses. For electron 

microscopy, observation was performed by a JEOL JSM-7500F scanning electron 

microscope. A Bose ElectroForce 3230-AT System was used for four-point bending 

tests. The tests were performed in the load-controlled mode and the load-deflection 

values were registered until fracture occurred. The loading rate of 5 N/sec was applied. 
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This rate was sufficiently slow so that it took at least few minutes for each beam to reach 

its ultimate strength, and the loading could be regarded as essentially static. 

 

7.2.2. Mix proportions, preparation of specimens, and testing 

The mix proportions are presented in Table 5. To observe the possible impact of w/c 

ratio on the effectiveness of CNFs in changing the mechanical properties, for the batches 

without silica fume, w/c ratios of 0.25 and 0.40 were investigated (batches 1, 2, 6, and 

7). Silica fume to cement mass ratio of 0.20 was used in batches 8 and 9. In those 

batches the w/c ratio was 0.40. To maintain a consistent viscosity, the superplastisizer 

was used with the concentrations ranging from 0.7% to 1.7% to the mass of cement. The 

workability of the pastes was quantitatively controlled based on the amount of the power 

consumed by the blender during mixing, which was monitored using an electricity power 

(i.e. wattage) monitor. This method was implemented by first recording the power 

consumed for plain cement paste with w/c of 0.40, which had a desirable viscosity, and 

then using an amount of superplacticizer in other batches that resulted in the same or 

similar value of power consumption. Since superplasticizer should not be added to the 

paste during paste mixing and is required to be added to the aqueous solution to yield the 

best possible dispersion of CNTs in water during ultrasonic processing, a pilot 

experimental study was performed in which several batches of cement past were made 

with the compositions presented in Table 5 to determine the required amount of 

superplasticizer for each mix composition. It should be noted that all the batches had the 

same volume. 
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Table 5. Mix proportion of the cement paste batches. *The difference between batch 
5 and other batches containing CNFs is that in batch 5 CNFs were directly added, 
in form of dry powder, to cement paste in the mixer, while in the other batches 
CNFs were first dispersed in a water-superplasticizer solution using ultrasonic 
processing. 
 

Batch 
No. CNF/c w/c SilicaFume/c CNF type

Cast in 
100% RH 

1 0.00 0.40 0.00 - No 
2 1.00 0.40 0.00 milled No 
3 0.00 0.40 0.00 - Yes 
4 1.00 0.40 0.00 not milled Yes 
5* 1.00 0.40 0.00 not milled Yes 
6 0.00 0.25 0.00 - No 
7 1.00 0.25 0.00 milled No 
8 0.00 0.40 0.20 - Yes 
9 1.00 0.40 0.20 milled No 

10 1.00 0.40 0.20 not milled Yes 
 

 

As mentioned previously, in past studies found in the literature at some high level of 

CNF concentration the measured strength generally began to decline due to poor 

dispersion.  In order to test the ability of the modified manufacturing process utilized in 

this project, CNF concentrations that would be expected to cause strength reductions 

utilizing past preparation techniques were considered.  For this purpose, the CNF/cm 

mass ratio (cm indicates the sum of the weights of cement and silica fume, if any) of 

1.0% was selected to be used in all the CNF-incorporated cement paste batches. 

Preliminary investigations showed that if higher concentrations were selected, CNFs 

were very difficult to disperse in the aqueous solution even by using large amounts of 

superplasticizer which intrinsically causes issues such as entrapping excessive air in the 

paste and slowing cement hydration. 

 

To produce cement paste, first superplasticizer was mixed with water. Then CNFs were 

added to the solution and mixed with a manual stirrer for one minute. The mixture was 
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then sonicated for 10 minutes. The resulting aqueous dispersion was then added to the 

blender that contained cement and mixed for 10 minutes. For the batches with silica 

fume, the aqueous dispersion was added gradually to the paste in the blender during 

mixing; that made the mixing process easier and prevented the formation of dry clumps 

of cement/silica fume in the paste at the beginning of mixing. A similar procedure was 

used for making the batches with w/c ratio of 0.25; half of the cement was placed in the 

mixer before starting mixing, and the other half was added to the paste during mixing. 

 

After mixing was completed, the paste was cast in PVC molds (Figure 42). Each mold 

had a square cross-section with the side length of 15.9 mm (0.625 inch) and length of 

240 mm (9.5 in). To study the effect of CNFs on the early age shrinkage cracking, as 

indicated in Table 5, for some batches (1, 2, 6, 7, and 9), after casting the beams the 

mold was kept in the lab in the room temperature and relative humidity (RH) for 24 

hours.  After this 24 hour period, the beams were demolded and transferred to a humidity 

chamber with an RH of 100% and kept there until testing. The rest of the beams were 

cast in the humidity chamber and were kept in the RH of 100% until testing. 

 

    
 
                             (a)                                                               (b)  
 
Figure 42. (a) PVC molds used for making hardened cement paste specimens. (b) 
Fresh cement paste cast in the molds. 
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For each batch, 8 beams were cast and 5 of them were tested so that the results could be 

averaged. More beams were tested when there were outliers (typically, beams with 

flexural strength of less than half of the average flexural strength value). The outliers 

were disregarded. 

 

The beams were tested at the age of 45 days. This period was chosen for curing instead 

of 28 days to offset the retarding effect of superplasticizers on hydration since different 

concentrations of superplasticizer were utilized for producing different batches. The 

beams were removed from the humidity chamber, towel dried and tested after 30 

minutes in four-point bending setup. The test setup is shown in Figure 43. The span 

between supports was 180 mm (7 in). The location of the supports and load points 

divided the beam span into three equal segments. The beams were tested in load-

controlled mode and the values of applied load and beam mid-span deflection was 

recorded until the beam fractured. As mentioned earlier, load was applied with the rate 

of 5 N/sec. 

	

	

 

 
Figure 43. Four-point bending setup for testing hardened cement paste beam 
specimens.	
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7.2.3. Calculations 

Three properties of each beam were measured: Flexural strength, Young’s modulus, and 

resilience. Simple beam theory was utilized to calculate these properties. Flexural 

strength (or maximum tensile stress in the lower fiber of the beam under loading) is 

calculated by 

 
max 2

F L

b h
 


    (28) 

where F  is the applied force. ( 2/F  is applied by each of the two load points.), L  is the 

beam span, and b  and h  are beam’s width and height respectively. Young’s modulus is 

calculated by 

F
E k




,  (29) 

where   is the displacement of beam’s mid-span due to the application of F . 

F

 is the 

slope of the elastic portion of load vs. deflection curve, and k  is a constant value for 

beams of the same dimension and span. k  is calculated by 

323

1296

L
k

I


,  (30) 

where L  is the beam span, I  is the beam’s area moment of inertia ( 3

12

1
bhI  ). The 

tensile strain in the lower fiber of the beam under loading is calculated as follows: 

2

108

23

h

L

 


,  (31) 

Finally, resilience is measured by calculating the area under stress vs. strain curve. 
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7.3. Results and discussion 

Stress vs. strain curves from testing four beams from one of the batches (batch 2) is 

shown in Figure 44. The curves from all the batches have some common features. They 

are not linear at the beginning of the loading, a phase known as “seating”. The reason is 

that the beam surfaces were not totally flat and some of the initial applied load was 

consumed to increase the contact area between the load points and the beam. The other 

common feature is the presence of outliers. As can be seen in Figure 44, the first beam 

failed at a much smaller load compared to the other beams. The main reason is the 

presence of relatively large air voids in a few of the tested beams. These air voids initiate 

and accelerate the propagation of cracks. The first beam from batch 2 is shown in Figure 

45. 

 
 

 
 
Figure 44. Stress vs. Strain curves for some of the beam specimens made from 
batch 2. 
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Figure 45. An image of the fracture surface of the first tested beam from batch 2. 
The beam broke at a large air void on the surface. 
 
 

The average values of the mechanical properties (flexural strength, Young’s modulus, 

and resilience) of the tested beams for each batch are presented in Table 6. The results 

show that CNFs are particularly effective in increasing these properties when the cement 

paste was proportioned to have normal strength ( 40.0/ cw ), and when the specimen 

was not moist cured in the first 24 hours (a situation that can occur frequently in 

concrete construction industry). In this condition, as the comparison of the results from 

batch 1 and batch 2 shows, the increase in strength due to the utilization of CNFs with 

the concentration of 1.0 wt% of cement was more than 250%. In addition, the increase in 

Young’s modulus and resilience were 68% and 430% respectively. 

 

When the batches with the same proportions as those of batch 1 and batch 2 were cast 

and cured in the RH of nearly 100%, the increases in mechanical properties due to the 

incorporation of CNF are significantly smaller. The comparison between batches 3 and 4 

shows that the increase in strength due to the utilization of CNFs with the concentration 

of 1.0 wt% of cement was approximately 45%. There was no increase in Young’s 

modulus, and the increase in resilience was approximately 120%. 
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The results from the high strength hardened cement pastes ( 25.0/ cw ) and the silica 

fume incorporated cement pastes show similar values of increase in mechanical 

properties due to the addition of CNFs with the concentration of 1.0 wt% of cement. In 

other words, CNFs are most effective when cement paste is normal strength and have not 

been moist cured in the first 24 hours. For example, for high strength concrete that was 

not cured in the first 24 hours the increase in strength due to the addition of CNFs with 

the concentration of 1.0 wt% of cement was 38%. As for the silica fume incorporated 

cement paste cast and cured in RH of 100%, this increase was 45%. 

 

 

Table 6. Mechanical properties of the tested beams. 
 

Batch 
No. CNF/c w/c SF/c CNF type

Cast in 
100% 

RH

Flexural 
Strength, 
MPa

Young's 
Modulus, 
GPa 

Resilience, 
MPa 

1 0.00 0.40 0.00 - No 1.91 7.76 0.00033 

2 1.00 0.40 0.00 milled No 6.83 13.06 0.00177 

3 0.00 0.40 0.00 - Yes 5.01 13.56 0.00097 

4 1.00 0.40 0.00 not milled Yes 7.30 13.08 0.00212 

5 1.00 0.40 0.00 not milled Yes 7.88 12.51 0.00247 

6 0.00 0.25 0.00 - No 9.87 18.06 0.00274 

7 1.00 0.25 0.00 milled No 13.62 20.60 0.00457 

8 0.00 0.40 0.20 - Yes 6.48 11.13 0.00198 

9 1.00 0.40 0.20 milled No 7.95 10.93 0.00236 

10 1.00 0.40 0.20 not milled Yes 9.45 12.00 0.00305 
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Observations of shrinkage cracking of the specimens 24 hours after casting provided a 

deeper insight into the contribution of CNFs to the mechanical properties and behavior 

of hardened cement paste. These observations show that when high strength cement 

paste ( 25.0/ cw ) and the silica fume incorporated cement paste are not moist cured in 

the first 24 hours, several large cracks form in the beam specimens, particularly in silica 

fume incorporated specimens. These cracks are usually so deep that they separate the 

beams into pieces while they are still in the mold. Figure 46 shows the image of high-

strength cement paste ( 25.0/ cw , without CNF) beam specimens 24 hours after 

casting (Batch 6). These beams were not cured during those 24 hours. Large cracks on 

most of the beams can be seen. Since most of the beams were fractured after 24 hours 

and could not be tested, an identical batch was made and more beams were produced. 

The cracking problem did not occur when batch 7 (having same proportions batch 6, 

except for incorporating CNFs) was produced in the same conditions. Few extremely 

shallow cracks were seen on the surface, and when the beams were tested the fracture 

did not even initiated from any of those cracks. As mentioned earlier, the testing showed 

that CNFs resulted in an increase of 38% in the flexural strength of high-strength cement 

paste. However in light of the mentioned observation the increase value is significantly 

more, because most of the beams were broken before demolding, which means that their 

flexural strength was zero. 
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Figure 46. Cement paste from batch 6 ( 25.0/ cw , without silica fume and CNF) 
in the molds 24 hours after casting. The beams were not cured during this period 
and formed shrinkage cracks, some of them as deep as the beams, dividing the 
beams into pieces before demolding. 
 
 
 

Figure 47 shows the image of uncured silica fume incorporated beams (without CNF) 24 

hours after casting (same mix proportions as batch 8, but not cast and cured in RH of 

100%). Multiple major cracks can be observed. The reason for the formation of large 

cracks in low water content and silica fume incorporated cement pastes is the presence 

of high shrinkage gradient. Both high cement content and silica fume reduce the pore 

size distribution of cement paste. As a result, the diffusivity of concrete decreases. After 

casting, the water on the top beams surface begins to evaporate. However, due to the 

very low diffusivity, the water from the lower depth of beam cannot migrate to the top 

surface and evaporate. Therefore, the top surface of the beam undergoes a remarkable 

degree of drying shrinkage while such shrinkage does not occur under that surface. That 

results in a significant shrinkage stress gradient that eventually results in formation of 

cracks that continue to deepen while the beam keeps shrinking. 
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Figure 47. Cement paste ( 40.0/ cw , with silica fume to cement ration of 20 wt%, 
and without CNF) in the molds 24 hours after casting. The beams were not moist 
cured during this period and formed multiple deep shrinkage cracks.  All of the 
beams were divided into pieces before demolding and therefore none of them could 
be tested in bending. Batch 8 was made with the same proportions but was casted 
and cured in a humidity chamber with %100RH . 
 
 

 
 
Figure 48. A beam made from Batch 9, 24 hours after casting and immediately 
after demolding. These beams have been produced in the same condition (no 
curing) and with the same mix proportions as those of the beams shown in  
Figure 47 ( 40.0/ cw , with silica fume to cement ratio of 20 wt%). The only 
difference is that batch 9 contains CNF with the concentration of 1.0% of cement 
mass). There are very shallow shrinkage cracks at the surface. The beams did not 
break through any of those cracks during bending test. 
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7.4. Concluding remarks 

An experimental testing program was performed to investigate the effect of CNFs on 

mechanical behavior and properties of hardened cement paste. The results showed that, 

in absence of curing in the first 24 hours after mixing the paste, the CNFs largely 

increase the flexural strength of hardened cement paste by over 250%. The effect of 

CNFs on mechanical properties of high strength concrete with either low w/c ratio or 

silica fume was not as large (less than 50% increase in strength). Although silica fume 

improves the dispersion quality of CNFs, it did not make the CNFs more effective in 

terms of increasing the strength. 

 

It was shown that CNFs are very effective in preventing shrinkage cracks that occur in 

the absence of moist curing. Both the cement paste with a low w/c ratio and the cement 

paste containing silica fume have lower porosity and therefore lower diffusivity. That, in 

absence of moist curing, causes a large shrinkage gradient, and therefore stress gradient 

within the paste placed in molds, which eventually results in the formation of deep 

cracks. The observations showed that a concentration of 1.0 % by the mass of cement 

can successfully prevent the formation of such cracks. As a conclusion, it can be stated 

that, in absence of moist curing, CNFs are very beneficial additives in cement paste even 

when they are poorly dispersed. They greatly increase the strength of normal-strength 

hardened cement paste and they mitigate the issue of shrinkage cracking in high strength 

hardened cement paste. 

 

The results of the testing program showed that improving dispersion by using silica fume 

does not increase the improvement of flexural strength due to the utilization of CNFs. As 

mentioned earlier, in this program the overall dispersion of CNFs in cement paste (even 

without the utilization of silica fume), was enhanced compared to the pastes produced 

and reported in the past. This improvement in dispersion was achieved by using higher 

concentrations of superplasticizer and longer period of ultrasonic processing. What can 

be concluded from these findings is that after the dispersion of CNFs reaches a certain 
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level, improving dispersion further will not affect flexural strength significantly. After 

that critical level of dispersion, other parameters, most likely the CNF-cementitious 

matrix interfacial bond, affect the flexural strength most strongly. This fact is 

schematically illustrated in Figure 49. 

 

 

 

Figure 49. Schematic illustration of the sensitivity of flexural strength to dispersion. 
  

 

Dominated by 

dispersion 

Fl
ex
u
ra
l s
tr
en

gt
h
 

Dispersion 

Dominated by 

bond 



118 

 

8. SUMMARY AND CONCLUSIONS 

 

In this project: 

 

 The methods developed in the past for producing cementitious materials 

incorporating carbon nano filaments and enhancing the dispersion of those 

filaments were studied 

 A novel method, incorporating the utilization of silica fume, for improving the 

dispersion of CNFs in cement paste was developed 

 A novel and practical method for quantifying dispersion was devised 

 The novel dispersion quantification method was implemented successfully to 

o measure the dispersion of carbon nano filaments in composites  

o investigate the effect of utilizing silica fume in cement paste 

o investigate the effect of geometric clustering in cementitious materials  

 It was found that silica fume can enhance the dispersion of CNFs in cement paste 

significantly. 

 It was found that the geometry dependent clustering caused by the size of cement 

particles is insignificant. However, clumped cement can degenerate the 

dispersion of nano inclusions significantly. 

 It was found that CNFs, in drying conditions, and despite being poorly dispersed, 

can significantly improve the strength and crack resistance of hardened cement 

paste 

 

The research presented in this work incorporated a comprehensive study of the past 

efforts on incorporating CNF/Ts in cementitious materials in order to improve the 

mechanical properties and behavior of these materials. The common method of 

incorporating these nanofilaments in cementitious materials was investigated in detail 

for the first time. This method consists of first dispersing the nanofilaments in a water-

superplasticizer solution using ultrasonic processing and then adding the resulting 
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dispersion to cement in a mixer. The microscopic investigations showed that even when 

CNFs are well dispersed in the aqueous solution, they reagglomerate after the solution is 

mixed with cement. 

 

The quality of the dispersion of CNFs in a cementitious matrix dictates important 

properties of the hardened material. As a result it is important to have a reliable and bias-

free means of dispersion quantification. During the initial period of this project, a novel 

thermodynamic-based dispersion quantification method was developed and used in the 

later stages of the project. For example, it was used to measure the effect of geometry 

dependent clustering (resulting from the relatively large size of cement particles in 

comparison to nanofilaments) on the dispersion of carbon nanofilaments in cement 

paste. The investigations showed that this effect is not significant for the typical 

concentrations of CNF, cement particle size, and w/c ratio. 

 

A new method for improving and stabilizing the dispersion of CNFs in cement paste was 

developed. In this method, silica fume is incorporated into the paste. Silica fume 

restrains the movement of CNFs in fresh paste and prevents them from reagglomerating. 

The new dispersion quantification method showed that silica fume, when utilized in 

sufficient amount, can significantly improve the dispersion of CNFs in a hardened 

cementitious matrix. 

 

Finally, an experimental investigation was performed to observe the effect of CNFs on 

the mechanical behavior and properties of hardened cement paste. The results showed 

that CNFs can have significant effects even when they are poorly dispersed within a 

cementitious matrix. For example, they greatly increase the flexural strength of normal-

strength cement paste if it was not moist cured at the first 24 hours. In addition, CNFs 

can significantly reduce shrinkage cracking in high strength cement paste, or any type of 

cementitious material with low permeability. It was shown that although silica fume 

significantly improves dispersion, the resulted increased dispersion does not increase the 



120 

 

flexural strength improvement caused by the utilization of CNFs. Since results reported 

in the literature indicate that a severely degraded dispersion of CNFs does reduce the 

strength of cementitious materials in comparison to unreinforced material, it is apparent 

that there is some minimum level of dispersion necessary to notably improve strength 

using CNFs.   Therefore, one can conclude that the level of dispersion obtained in the 

materials tested in this study – even when silica fume was not utilized to stabilize the 

dispersion – was above this minimum level.  Above the minimum level of necessary 

dispersion, it seems as though other factors are more dominant in influencing strength 

than is dispersion.  For example, the CNF-paste interfacial bond is another important 

parameter that affects the mechanical properties of cementitious materials and requires 

thorough investigation in the future. 

 

The goal of the project was achieving a durable material with enhanced viscoelastic 

properties and high resistance to cracking through the utilization of nano inclusions; a 

material that can be used to build more durable concrete transportation infrastructure. 

The performed tasks were important steps towards achieving this goal; an advanced 

hardened cement paste was developed that is strong and resists shrinkage cracking quite 

well under certain levels of restraint. However, more research should be performed in 

the future to build on the findings of this project and produce cementitious materials 

ready for implementation in concrete transportation infrastructure. One of those areas of 

research is the interfacial bond between carbon nanofilaments and the cementitious 

matrix, the factors that affect it, and the methods that can be used to enhance/modify this 

bond in order to improve the properties and behavior of cementitious materials. Similar 

research should be performed on CNTs or the combination of both CNFs and CNTs, and 

investigate the possibility of achieving synergistic effects. And finally, carbon 

nanofilaments should be incorporated into concrete, rather than in only cement paste, 

and investigate the properties of the produced concrete by different mechanical tests, for 

strength, durability, and crack resistance.  In fact, it is possible that strictly using the 
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methodologies described in this dissertation on concrete rather than cement paste might 

very well create a highly crack-resistant material.   
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