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ABSTRACT 

 

Examining the Poisson-Weibull Generalized Model 

 for Analyzing Crash Data. (August 2012) 

Lingzi Cheng, B.S., Wuhan University of Technology 

Chair of Advisory Committee: Dr. Dominique Lord 

  

Over the last 20 to 30 years, there have been a significant number of statistical 

methods proposed for analyzing crash data. Traffic crashes are characterized as random 

and independent discrete non-negative events. Crash data have often been shown to 

exhibit over-dispersion. Therefore, the Negative Binomial (NB) is the preferred and 

widely used model to analyze this kind of data. Although NB model is very popular in 

traffic safety area, it still has limitations modeling crash data especially when crash data 

are characterized by low sample mean and small sample size. The main research 

objective of this thesis is to develop a new statistical method namely, Poisson-Weibull 

(PW) Generalized Linear Model (GLM) to analyze vehicle crash data and to evaluate its 

modeling performance at different dispersion levels. This study makes use of both 

simulated and observed data for accomplishing the research objectives. 

The PW model is the mixture of Poisson and Weibull distributions. In this 

research, the statistical characteristics of the PW model were well defined and the 

parameters were estimated using a Bayesian approach. The PW model was initially 

evaluated using a series of simulated data for different dispersion levels. It was found 
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that the PW model was able to reproduce and capture the true parameter values with 

high accuracy. After the initial analysis using the simulated data, the PW GLM was 

applied to two observed datasets and compared with the NB model. The goodness-of-fit 

(GOF) tests and model comparisons showed that the PW model performed as well as the 

NB model. Therefore, the PW model can be considered as an innovative and promising 

alternative for analyzing crash data. 
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1. INTRODUCTION 

 

Over the last 20 to 30 years, there have been a significant number of statistical 

methods proposed for analyzing crash data. Those models can be used for various 

purposes, such as establishing a relation between motor vehicle crashes and various 

covariates, predicting crash counts and screening variables. Traffic crashes are often 

characterized as random and are (assumed) independent discrete non-negative events, 

the most common probabilistic structures used for modeling crash data are the traditional 

Poisson and Negative Binomial (NB) distributions (Lord and Mannering 2010). 

One significant characteristic of the crash data is over-dispersion, which means 

that the variance is greater than the mean. To accommodate the over-dispersion, the NB 

is the mostly preferred distribution because it captures the extra dispersion. In addition, 

its final equation has a closed form and the mathematics to manipulate the relationship 

between mean and variance is relatively simple (Hauer 1997).  

Over the last few years, several studies have documented the limitations 

associated with the NB models. For example, the NB models have problems handling a 

large amount of zeros and a long or heavy tail (which creates highly dispersed data) 

(Shankar et al. 1997; Kumara and Chin 2003; Shankar et al. 2003); and when the sample 

mean becomes small, the traditional methods used to assess the goodness-of-fit (GOF) of 

general linear models (GLMs) can be highly unreliable and biased especially when 

maximum likelihood estimation (MLE) approach is used (Maycock and Hall 1984;  

____________ 
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Maher and Summersgill 1996; Wood 2002; Lord 2006). Given the limitations above, 

several alternative models have been examined. Lord and Mannering (2010) have 

documented these models in their recent study.  

This thesis intends to introduce a new Poisson-based model, namely Poisson- 

Weibull (PW) generalized linear model (GLM) into the traffic safety literature, and 

evaluate its performance for modeling vehicle crash data at different dispersion levels.  

 

1.1 Problem Statement 

As the traditional regression models used for analyzing traffic crash data have 

their limitations, a new statistical model is needed to overcome those problems. The PW 

distribution is a mixture of the Poisson and Weibull distributions. As the mixing 

component (i.e., the Weibull distribution) has a large variety of shapes and scales, the 

PW model has the potential to overcome the limitations of the traditionally used models. 

This thesis will introduce the PW model into the traffic safety literature and evaluate its 

modeling performance at different dispersion levels. The modeling performance of the 

PW GLMs will be compared with the most commonly used NB model. If the PW model 

offers a potential for modeling traffic crashes and performs as well as the NB model, it 

will become another promising alternative in analyzing crash count data. 
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1.2 Research Objectives 

The goal of this research is to develop the PW model to analyze vehicle crash 

data and evaluate its modeling performance at different dispersion levels. Several sub-

objectives have been outlined to achieve this goal: 

 document the statistical characteristics of the PW model, including the 

derivation of its probabilistic structure; 

 estimate the parameters of the PW model; and, 

 using the appropriate GOF measurements, assess the performance of PW 

GLM by comparing it with the NB model for the simulated and observed 

data at different dispersion levels 

 

1.3 Thesis Organization 

This thesis is divided into six sections. Section 1 provides an introduction to the 

thesis and problem statement, and the research objectives are included. Section 2 

describes the background related to the crash data and statistical methods. It documents 

previous studies related to crash characteristics, key existing models and parameter 

estimation methods. Section 3 discusses the development of the PW model. Statistical 

derivation, characteristics and parameterization of the PW model are discussed in this 

section. Section 4 documents the initial assessment of the PW GLMs at different 

dispersion levels using the simulation data. Simulation protocol of data generation, 

parameter estimation results and modeling performance are discussed in this section. 

Section 5 describes the evaluation procedures of the PW GLMs using the observed data 
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and documents its modeling performance by comparing the PW GLMs with the NB 

GLMs. Section 6 summarizes the tasks that are accomplished in this research and 

provides the concluding thoughts along with some avenues for the future study.  
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2. BACKGROUND 

 

This section provides the basic background and insights into the area related to 

the model development and evaluation. The key component is to review the existing 

models that are used for analyzing crash data. The section’s outline is as follows: first, 

the characteristics of crash data are discussed. Second, the statistical modeling methods 

for analyzing crash data are reviewed and the most commonly used models are discussed 

in detail. Lastly, different parameterization approaches are documented.  

 

2.1 Crash Data Characteristics 

To examine the relation between influential variables and vehicle crashes, safety 

analysts have used various statistical methods to model crash data. Important data and 

methodological issues have also been discussed over the years because those issues 

might be a potential source of error in terms of incorrect model specification.  

 

2.1.1 Dispersion  

Crash data mostly exhibit over-dispersion and rarely under-dispersion.  As 

documented by Lord and Mannering (2010), the most notable characteristic of crash 

counts is over-dispersion, which means the variance is larger than the mean of the crash 

counts. The fundamental explanation for over-dispersion, explained by Lord et al. (2005) 

is that a traffic crash can be viewed as the product of Bernoulli trials with unequal 

probabilities (also known as Poisson trials). Thus, if a Poisson regression model, where 
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the mean and variance are assumed to be equal, is applied when the data exhibits over-

dispersion, the parameter estimates might be biased and the inference could be erroneous 

(Maycock and Hall 1984).  

Though it is rare, crash data may also exhibit under-dispersion, the property 

where the variance is smaller than the mean of crash counts. It is found that many 

traditional count-data models produce incorrect parameter estimates (Lord and 

Mannering 2010; Oh et al. 2006).  

 

2.1.2 Small-sample-size and Low-sample-mean  

Crash data are often characterized by a limited sample size. Thus, the large-

sample properties of some parameterization methods (e.g., maximum likelihood 

estimation) are not applicable. The estimates from the small sample size might be biased 

and lead to erroneous inferences (Lord and Mannering 2010). Also, when crash data are 

characterized as low-sample-mean, the distribution of the crash counts will be highly 

skewed towards to zero. In this way, it would also negatively affect the accuracy of 

parameter estimates and inferences (Maycock and Hall 1984; Maher and Summersgill 

1996; Lord and Bonneson 2005). In general, the modeling complexity becomes 

significant when crash counts are characterized with small-sample-size or low-sample-

mean.  
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2.1.3 Temporal and Spatial Correlation 

Crash data are temporally and spatially correlated. In general, over a certain 

period of time, some explanatory variables might change. Ignoring the potential 

variation may result in the loss of important information in identifying the causal relation 

between independent variables and the crash counts (Lord and Mannering 2010; 

Washington et al. 2009).  To avoid losing such information, crash data are usually 

divided into small time intervals. However, it means the same roadway entity will 

generate multiple observations with other unobserved effects remaining the same. 

Therefore, all these observations are correlated over time. From a statistical perspective, 

this correlation would negatively affect the model estimation. In the similar way, the 

spatial correlation also exists because the roadway entities may also share some 

unobserved effects (Lord and Mannering 2010; Washington et al. 2003; Shankar et al. 

1998; Lord and Persaud 2000; Washington et al. 2009). 

 

2.1.4 Injury Severity and Collision Type  

Crash data are classified according to the injury severity or collision type. Injury 

severity can be classified as fatal, incapacitating injury, non-incapacitating injury, 

possible injury or no injury. Also, a collision type can be divided into rear-end, single-

vehicle run-off-the-road, right-angle, and sideswipe among others. Commonly, injury 

severities or collision types are determined after the overall crash counts are obtained. If 

injury severities or collision types are modeled separately, consideration should be given 
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to the correlation issue (Carson and Mannering 2001; Lee and Mannering 2002; Miaou 

and Song 2005; Park and Lord 2007; Geedipally and Lord 2010). 

 

2.1.5 Under-reporting 

Another important characteristic is that crash data are often under-reported. Elvik 

and Mysen (1999) stated that incomplete crash reports had been a major problem in 

highway safety analysis. Some studies have indicated that fatal crashes are most likely to 

be reported while no-injury crashes are most likely under-reported. The reporting 

threshold of a crash also depends on reporting agencies (Aptel et al. 1999; Hauer and 

Hakkert 1988). 

 

2.2 Functional Form for Modeling Crash Data 

To model the crash mean and establish a relation between crashes and 

explanatory variables, several functional forms can be used. The function form differs 

based on roadway entity types; typically a roadway entity can be categorized as an 

intersection or a segment. The flow-only functional forms are often used for analyzing 

intersection crashes. Although it is not considered as the most adequate functional form, 

it under-perform near the boundary condition (at least for intersection), it is still relevant 

for analyzing highway safety (Lord et al. 2008b). The most commonly used functional 

form for segments without covariates is given as follows:   

 

 
1

0i i iL F βµ β= × ×   (2.1) 



 

 

 9 

In a full model, site specific covariates need to be added in intersection models (Miaou 

and Lord 2003; Geedipally 2009). And when the covariates are included in the model, 

the functional form for roadway segments is: 

 

 
21

0

J

ij j
j

X

i i iL F e
β

βµ β =
∑

= × × ×  (2.2) 

 

where iµ  is the estimated number of crashes for site i ;  iL  is the length of a segment i ; 

iF  is the average annual daily traffic (AADT) for site i ;  ijX s  is a series of covariates 

(e.g., shoulder width, lane width, etc. ) for site i ; and  sβ  are the estimated coefficients.  

 

2.3 Review of Existing Models 

A variety of statistical modeling methods have been proposed and applied in 

traffic safety. Given the characteristics of crash data described above, each method has 

its strengths and limitations. The following section gives detailed description about 

commonly used modeling methods. 

 

2.3.1 Poisson Regression Model 

Since traffic crash is a discrete and non-negative event, the start point of 

modeling is to use a Poisson regression model. In the Poisson regression model, road 

entity i  having iY  crashes in a certain time interval is structured as: 
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 ~ ( )i iY Poisson µ   (2.3) 

 

And the probability of roadway entity i  having iY   crashes is given by: 

 

 
exp( )( )

!

iY
i i

i
i

P Y
Y
µ µ−

=  (2.4) 

 

where iµ  is the Poisson mean and equals to roadway entity i ’s expected number of 

crashes ( )iE Y . Usually iµ  is specified as a function of explanatory variables and it is 

structured as: 

 

 exp( )iµ = iβX  (2.5) 

 

where iX  is a vector of explanatory variables and β  is a vector of parameters to be 

estimated. 

As mentioned above, the Poisson regression model requires the mean and 

variance of crash counts to be equal. Therefore, when crash data exhibit the 

characteristic like over-dispersion or under-dispersion, the estimates and inferences 

might be problematic. At the same time, low-sample-mean and small-sample-size issues 

would also negatively affect the model precision.  
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2.3.2 Negative Binomial Regression Model 

To deal with the over-dispersion situation of crash data, the Negative Binomial 

(NB) model has been widely used. It is also known as the Poisson-gamma distribution 

since it is structured as a mixture of the Poisson and gamma distribution. The NB model 

can be derived by structuring the Poisson mean as: 

 

 exp( )i iµ ε= +iβX  (2.6) 

 

where exp( )iε  is assumed to be gamma distributed with mean equal to 1 and variance 

equal to α  (also known as dispersion parameter). The crash variance, based on the NB 

model, can be defined as: 

 

 
2( ) ( )[1 ( )] ( ) ( )i i i i iVar Y E Y E Y E Y E Yα α= + = +  (2.7) 

 

where ( )iE Y and  ( )iVar Y  are the mean and variance of the crash count at site i  

respectively; and α  is the dispersion parameter. Based on those assumptions, the 

probability mass function (p.m.f.) of the NB model is given as: 

 

 
( )( ; , ) ( ) ( )

( ) ( 1)
iYi

i
i

YP Y Y
Y

ϕϕ ϕ µµ ϕ
ϕ µ ϕ µ ϕ
Γ +

= =
Γ Γ + + +  (2.8) 
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where ( )iE Y µ=  is the mean of crash counts and 1/ϕ α=  is the inverse dispersion 

parameter; and the variance of the crash count is given by: 

 

 
21( )iVar Y µ µ

ϕ
= +  (2.9) 

 

When the dispersion parameter α  approaches zero, the Poisson model is a 

limiting model of the NB model. Therefore the selection between those two models 

depends on the dispersion level of crash counts (Lord and Mannering 2010). 

However, the NB model has a problem dealing with the data exhibiting under-

dispersion. Also, when the sample size is small or the sample mean is low, there might 

be problems associated with the parameter estimation (Lord 2006; Lord and Mahlawat 

2009). 

 

2.3.3 Zero-inflated Poisson and Negative Binomial Models 

Sometimes crash data have more zeros than expected under the assumption that 

they are Poisson or NB distributed. Therefore to accommodate the crash data that have 

preponderance of zeros, zero-inflated Poisson (ZIP) and zero-inflated NB (ZINB) 

models have been proposed. The Zero-inflated (ZI) models assume that the excess zeros 

come from two regimes or two distinct distributions. In other words, crash data are 

generated through a dual-state process (Cohen 1963; Rider 1961). The underlying 

assumption of ZI models when applied in traffic safety is that roadway entities exist in 
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two states: a true-zero state and a non-zero state. A true-zero or inherently safe state is 

also known as virtually safe state to avoid having to defend the notion that roadway sites 

can be perfectly safe. In this state, it is believed that no crash data have been recorded or 

the probability of crash occurrence is extremely low. In an imperfect state, the non-zero 

state, it is assumed that crash occurrence follows a Poisson or a NB distribution (this 

state also has zero count sites). The probability of a roadway entity being in a zero or 

non-zero state can be further determined by a binary logit or probit model (Washington 

et al. 2009; Lambert 1992). Based on the Vuong statistic, many transportation safety 

analysts believed that ZIP and ZINB could provide a better fit than the Poisson and NB 

models for the given data (Shankar et al. 1997; Kumara and Chin 2003; Shankar et al. 

2003; Lee and Mannering 2002). 

However, Lord et al. (2005) in their researches argued that ZI models do not 

provide a defensible approach for modeling vehicle crashes, even when crash data has a 

large number of zeros. First, from a logic perspective, one should never claim a roadway 

entity to be safe but claim it either being more or less safer than the other one. In other 

words, the safety performance of a roadway entity should be stated in a relative term. 

Second, the true-zero state of ZI models has a long-term mean equal to zero, which also 

cannot properly reflect the crash-data generating nature. Lastly, it is ambiguous to define 

the boundary between those two states.  
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2.3.4 Conway-Maxwell-Poisson Model  

The Conway-Maxwell-Poisson (COM-Poisson) distribution is a generalization of 

the Poisson distribution introduced by Conway and Maxwell (1962) for modeling queues 

and service rates. Based on Conway and Maxwell’s work, Shmueli et al. (2005) further 

explored the statistical properties of the COM-Poisson model. Additionally, the 

conjugate distribution for the parameters had been developed by Kadane et al. (2006). 

The p.m.f. of the COM-Poisson model is given as follows: 

 

 
1( )

( , ) ( !)

y

i vP Y Y
Z v y

λ
λ

= =  (2.10)

  

 
0

( , )
( !)

n

v
n

Z v
n
λλ

∞

=

=∑  (2.11) 

 

where iY   is a discrete count;  λ  is a centering parameter that is approximately the mean 

of the observations; and v  is the shape parameter of the COM-Poisson distribution.  

The most notable characteristic of the COM-Poisson distribution is that it can 

accommodate both over-dispersion ( 1v < ) and under-dispersion ( 1v > ) situations. It can 

be approved that several common probability density distributions like the geometric 

distribution, the Bernoulli distribution and the Poisson distribution are special cases of 

the COM-Poisson distribution. In this sense, the flexibility of the COM-Poisson model 

to model different types of crash data has been greatly expanded. 
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However, as the likelihood function of the COM-Poisson distribution does not 

have a close form, the parameterization is complex. The modeling performance of the 

COM-Poisson distribution is also adversely affected when small-sample-size and low-

sample-mean issues occur (Lord and Mannering 2010; Lord et al. 2008b). 

 

2.3.5 Other Models 

Over the last 20 to 30 years, there have been a significant number of statistical 

models proposed for analyzing crash data. Apart from the models that discussed above, 

there are many other models such as gamma model, generalized estimating equation 

model, generalized additive models, random-effects models, random-parameter models, 

bivariate/multivariate models, duration models, hierarchical/multilevel models, Bayesian 

neural network and support vector machine models that are not covered here. Interested 

readers can refer to Lord and Mannering’s review paper (Lord and Mannering 2010). 

 

2.4 Parameterization Methods 

No matter what statistical model is used to analyze crash data, the parameters 

involved need to be estimated. Generally, maximum likelihood estimation (MLE) and 

Bayesian method are the two most commonly used techniques for estimating the 

parameters.  

MLE selects the values for unknown parameters that would maximize the 

likelihood function (Casella and Berger 2001). For crash data analysis, the main 

advantage of MLE is that close-form functions often exist for most distributions. 
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However, for some complicated problems, MLE technique cannot be used, especially 

when the likelihood function is difficult to characterize (Lord and Mannering 2010).  

Another way of parameter estimation is to use Bayesian methods. Compared to 

the MLE, the Bayesian methods can deal with complex models, especially when the 

likelihood function cannot be easily derived. The parameter estimates and inferences can 

be obtained by using Markov Chain Monte Carlo (MCMC) sampling method.  The 

MCMC is the Monte Carlo integration using Markov chain. The Monte Carlo integration 

draws samples from the target distribution and then forms sample averages to estimate 

expectations (Gilks et al. 1996). However, due to the large computation involved, the 

simulation time of running Bayesian estimating process is significantly high. And the 

computational time increases as the data size and model complexity increase (Lord and 

Mannering 2010).  

 

2.5 Summary 

This section has provided the background of this thesis and summarized the 

previous studies related to traffic crash characteristics, functional forms, existing 

statistical models, as well as parameter estimation methods. Important data and 

methodological issues have been discussed in this section because those issues might be 

a potential source of error in terms of incorrect model specification. A brief review about 

existing statistical models is presented in this section. The last section has introduced 

two most commonly used parameter estimations methods, the MLE and Bayesian 

methods. The next section describes the characteristics and properties of the PW model. 
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3. STATISTICAL PROPERTIES OF 

 THE POISSON-WEIBULL MODEL 

 

This section describes the statistical properties of the PW GLM. It is organized in 

the following ways: firstly, the Poisson and Weibull distributions are discussed 

respectively. Then the PW GLM is derived. The characteristics of the PW GLM and its 

estimation approach are also discussed in this section.  

 

3.1 Poisson and Weibull Distributions 

In this section, statistical characteristics of Poisson and Weibull distributions are 

discussed for the deviation of the PW model. 

 

3.1.1 Poisson Distribution 

The statistic definition for Poisson process can be defined as follows 

(Montgomery and Runger 2003): “Given an interval of real numbers, assume counts 

occur at random throughout the interval. If the interval can be partitioned into 

subintervals of small enough length such that: 1. The probability of more than one count 

in a subinterval is zero, 2. The probability of one count in a subinterval is the same for 

all subintervals and proportional to the length of the subinterval, and 3. The count in 

each subinterval is independent of other subintervals, the random experiment is called 

Poisson process.” Therefore, the Poisson distribution is to express the probability of a 

given number of events occurring in fixed interval of time or space if these events occur 
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with a known average rate and independent from each other. In transportation realm, it is 

assumed that the roadway entity i  having  iY  crashes follows Poisson distribution. The 

probability mass function (p.m.f.) is given in (2.4). The mean and variance of Poisson 

distribution are given as follows: 

 

 ( )i iE Y µ=  (3.1) 

 ( )i iVar Y µ=  (3.2) 

 

3.1.2 Weibull Distribution 

The Weibull distribution is a continuous probability function and it is often used 

to model the time until a failure of many different physical systems. Its probability 

density function (p.d.f.) is given as (Montgomery and Runger 2003): 

 

 
1( ) ( ) exp[ ]

k
kk x xf x

λ λ λ
−  = − 

   (3.3) 

 

where 0k > is the shape parameter and 0λ > is the scale parameter of the Weibull 

distribution. Depending on different values for k , the shape of the Weibull distribution 

has a wide variety and can be similar to that of the gamma, gamma-like, exponential or 

approximate normal distributions. The mean and the variance of the Weibull distribution 

are given as: 
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1( ) (1 )E x
k

λ= Γ +  (3.4) 

 
2 22 1( ) (1 ) [ (1 )]Var x

k k
λ λ= Γ + − Γ +  (3.5) 

 

3.2 Poisson-Weibull Model Derivation 

PW model is a mixture of the Poisson and Weibull distributions and intends to 

model the crash data whose output is thought to be generated by two different 

underlying mechanisms or different populations. Similar to the derivation of the NB 

model, the PW model assumes the model error which is independent of all covariates is 

Weibull distributed. The assumption here intends to capture the extra variation that the 

traditional NB model cannot fully handle.  

The PW is derived as follows: the number of crashes iY  at roadway entity i  is 

assumed to be Poisson distributed with mean iµ  and independent over all entities: 

 

 | ~ ( )i i iY Poissonµ µ   1, 2,3...i I=  (3.6) 

 

The Poisson mean iµ  is structured as: 

 

 ( ; )i i i ifµ ρ ε ε= = ⋅Xβ   (3.7) 

 

And, 
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 0 1
( ) exp( )J

i j jj
f Xρ β β

=
= = +∑X;β  1, 2,3,...j J=  (3.8) 

 | , ~ ( , )i k Weibull kε λ λ   (3.9) 

 

Where Xs  are the independent variables; J  represents the total number of independent 

variable; sβ  are the regression coefficients; and iε is the model error independent of all 

covariates; k  and λ  are the scale and shape parameters of the Weibull distribution 

respectively.  

Given of the assumption above, the PW distribution is defined as a mixture of 

those two distributions such that: 

 

 ( ; , , ) ( ; ) ( ; , )P Y y k Poisson y Weibull k dµ λ ρε ε λ ε= = ∫  (3.10) 

 

To derive the function for the mean and variance of the PW model, law of 

iterated expectation is applied. The simple version of the law of iterated expectations is: 

 

 ( ) [ ( | )]XE Y E E Y X=  (3.11) 

 

Similarly, the variance is given as: 

 

 ( ) [ ( | )] [ ( | )]X XVar Y E Var Y X Var E Y X= +  (3.12) 
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By applying the law of iterated expectations, the mean and variance of the PW 

model in (3.10) can be derived as follows: 

 

 
1(1 )( ) ( )E Y E
k

ρ ε λρ= = × Γ +  (3.13) 

 
2 2 2 21 2 1( ) (1 ) (1 ) [ (1 )]Var Y

k k k
ρ λ ρ λ ρ λ= × Γ + + × Γ + − × Γ +  (3.14) 

 

3.3 Parameter Estimation of the PW Model 

 To estimate the parameters involved in the PW model, its likelihood function 

needs to be defined. However, the integration of equation (3.10) does not result in a 

closed function. In this sense, the MLE parameterization approach cannot be applied. 

This problem can be solved by using a hierarchical representation of equation (3.10). As 

discussed above, the PW model is conditional on the site-specific error term ε  which 

explains the additional heterogeneity. Therefore the PW model can also be written as: 

 

 
( ; | ) ( ; )
~ ( ; , )

P Y y Poisson y
Weibull k

µ ε ρε
ε ε λ

= =
 (3.15) 

 

The formula above has a nice Bayesian interpretation and hierarchical structure. 

Therefore, the parameter estimation and inference can be obtained by using MCMC.  

To conduct the MCMC sampling method, WinBUGS is used in this research 

(Spiegelhalter et al. 2002). WinBUGS is part of the BUGS (Bayesian inference Using 
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Gibbs Sampling) project, which is a flexible software for the Bayesian analysis of 

complex statistical models using MCMC methods. It is a free open resource on the 

internet. Researchers in the past had successfully used WinBUGS to obtain parameter 

estimates and inferences (see e.g. Geedipally et al. 2011). 

To obtain reliable parameter estimates from WinBUGS, several setups for 

running the MCMC need to be defined.  

 

3.3.1 Prior Distribution 

Bayesian formulation requires priors for unknown parameters. Informative or 

non-informative priors can be used. Prior distribution, which considers parameters as 

random variables, is the major difference between classical statistical theory and 

Bayesian approach. The prior distribution indicates the information available to the 

researcher before any “data” have been involved for analysis. When the prior 

distribution is combined with likelihood, the posterior distribution can be obtained. The 

posterior distribution is the base for any statistical inference. Therefore, the prior 

distribution for each unknown parameter in the PW model needs to be defined initially.  

Since there are no related references about the PW model application in crash 

analysis area and the author has no other available information about the model error 

term, non-informative priors are used for all the unknown parameters in the PW model.  
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3.3.2 Equilibrium 

MCMC sample method is based on the construction of a Markov chain that 

eventually converges to the equilibrium of the posterior distribution. It is found that a 

very efficient tactic in practice is to run multiple chains with different starting points. 

When the lines of different chains mix or cross-in trace is observed, the convergence is 

ensured. Therefore, the proper number of Markov chains should also needs to be 

determined. 

The convergence of Markov chains can be monitored not only by the trace plots 

but also by other convergence diagnostics, such as Gelman-Rubin statistics. In 

WinBUGS, running a MCMC simulation would automatically generate several 

diagnostics including trace plot, history plot and Gelman-Rubin (G-R) statistics. For 

model evaluation and comparison, it was suggested that convergence was achieved when 

the G-R statistic was less than 1.2 (Mitra and Washington 2007). 

In this study, 3 Markov chains are implemented and trace plot, history plot and 

G-R statistic are the three diagnostics considered simultaneously to check the 

convergence.  

 

3.4 Summary 

This section has documented the development of the PW model. As a mixture of 

the Poisson and Weibull distributions, the PW model assumes the model error which is 

independent of all covariates is Weibull distributed. The Poisson and Weibull 

distributions are briefly discussed for the derivation of the PW model and then the 



 

 

 24 

statistical characteristics of the PW model have been well defined in this section. As the 

PW model has a nice Bayesian interpretation and hierarchical structure, the Bayesian 

method is used to estimate the parameters. The next section presents the modeling 

performance of the PW model using simulated data. 
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4. PERFORMANCE OF THE POISSON-WEIBULL GLM 

 

This section describes the initial assessment of the PW model. The main focus is 

to examine the modeling performance at different dispersion levels. All the 

computations and interpretations in this section will be evaluated under the Bayesian 

settings.  

Section 4 is organized in the following way: first, study methodology is provided 

and simulation and testing protocols are discussed. Second, simulation results are 

presented and computational analyses are conducted. Lastly, a brief discussion based on 

the results is provided.  

 

4.1 Methodology 

To initially evaluate the performance of the PW GLM, a number of datasets are 

simulated from the PW model. Predefined values for the parameters, also called as “true 

parameters,” are assigned corresponding to different dispersion levels. Then the 

parameters are re-estimated by using the MCMC approach. The estimates given by the 

MCMC are compared to the true parameters to examine the overall performance of the 

PW model. 

 

4.1.1 Data Simulation Protocol 

To generate the simulated data from the PW model, the simulation protocol is 

described as follows: 
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1) Generate a mean value ( )iρ  for roadway entity i  from a fixed sample 

population mean ( )δ : 

 

iρ δ=  

 

2) Generate a value ( )iε  from a Weibull distribution with two parameters k  and 

λ . Here, the mean of the Weibull distribution is equal to 1. The values for k  

and λ  are determined based on the dispersion parameter ( )α :  

 

~ ( , )i Weibull kε λ  

 

3) Calculate the mean ( )iµ  for roadway entity i : 

 

i i iµ ρ ε= ×  

 

4) Generate a discrete value ( )iY   for entity i  from a Poisson distribution with 

mean equal to iµ : 

 

~ ( )i iY Poisson µ  
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5) Repeat steps 1 to 4 N  times for the number of observations which is also 

considered as the sample size. 

The simulation process was conducted by using R with the following values: 

1) Sample size " "N : 300 

2) Dispersion level " "α : 0.5, 1, 2, 3,5 

3) Sample population mean " "δ : 10 

To avoid small-sample-size and low-sample-mean influences on the initial 

evaluation, the values for N and δ  were set at the moderate levels. Therefore, there were 

5 scenarios in total used to assess the modeling performance of the PW model 

corresponding to the different dispersion levels. For each combination of sample size, 

dispersion level and sample population mean, the simulation was replicated 100 times. 

The assigned values for k  and λ   based on the dispersion levels are given in the 

following table: 

 

Table 4-1.  Predefined Values for Weibull Parameters 
Dispersion Parameter α   k  λ  

0.5 1.436 1.101 
1 1.000 1.000 
2 0.721 1.096 
3 0.607 1.118 
5 0.500 0.500 

 

 

Due to the different coding scheme in WinBUGS, 1
kω λ= was introduced where 

k  and λ  are the scale and shape parameters of the Weibull distribution in (3.3). Although 
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the Weibull distribution was re-parameterized, it did not influence the model 

performance. Therefore, the predefined values for k  and ω  were given in Table 4-2: 

 

Table 4-2. Predefined Values for Re-parameterized Weibull Distribution 
Dispersion Parameter α  k  ω  

0.5 1.436 0.871 
1 1.000 1.000 
2 0.721 0.936 
3 0.607 0.935 
5 0.500 1.414 

 

 

4.1.2 Testing Protocol 

In WinBUGS, non-informative priors for k  and ω  were used (i.e., gamma (0.1, 

0.1) priors). A total of 3 Markov chains were selected with 50,000 iterations per chain. 

The first 25,000 iterations were discarded as burn-in samples and the rest were used to 

conduct the estimation and inference. The G-R statistic was used to ensure the 

convergence. When the G-R statistic was below 1.1, the convergence was considered to 

be achieved (Mitra and Washtington 2007).  

 

4.2 Simulation Results 

This part documents the estimated values for the parameters and computational 

analyses based on the simulated data. Corresponding discussions are also provided here. 
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4.2.1 Parameter Estimates 

Since there were 100 simulation replications for each scenario, the average for 

each parameter was calculated. The following table summarizes the results for each 

dispersion level.  

 

Table 4-3. Simulation Results 

Dispersion Level 0.5α =  1.0α =  2.0α =  3.0α =  5.0α =  

Parameters k  ω  k  ω  k  ω  k  ω  k  ω  

Theoretical 
Values 1.436 0.871 1.000 1.000 0.721 0.936 0.607 0.935 0.500 1.414 

Estimated  
Values 1.446 0.873 1.000 0.993 0.731 0.931 0.607 0.936 0.506 1.414 

Standard 
Deviation 0.080 0.061 0.053 0.065 0.038 0.060 0.032 0.061 0.029 0.084 

Min. 1.247 0.747 0.840 0.084 0.659 0.767 0.534 0.796 0.414 1.227 

Max. 1.631 0.748 1.202 0.192 0.870 1.130 0.686 1.096 0.565 1.565 

 

 

It can be seen in Table 4-3 the estimated value for each parameter is very close to 

the theoretical value. Besides, with the increase of dispersion level, it is found the 

standard deviation for k  becomes smaller. 

Fig. 4-1 illustrates the histograms for k   and ω  estimates for each dispersion 

level. The bin with a label on top indicates that the theoretical value is within this value 

range. This indicates that the PW model was able to reproduce the “true” parameters 

with certain accuracy. Additionally, it can be seen when the value of α  decreases, the 

estimates for  k  are distributed more dispersedly while the estimates for ω  do not 



 

 

 30 

fluctuate much for different dispersion levels. This might be explained by the unknown 

variation for the parameter λ  since it was re-parameterized.  

 

 
 

(1) 0.5α =  
 

 
 

(2) 1.0α =  
 

 
 

(3) 2.0α =  
Fig. 4-1. Histograms for k  and  ω  at Different Dispersion Levels 
 

14 

0 

10 

20 

30 

1.2 1.24 1.28 1.32 1.36 1.4 1.44 1.48 1.52 1.56 1.6 1.64 

Fr
eq

ue
nc

y 

Value 

Histogram of  
28 

0 

10 

20 

30 

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 

Fr
eq

ue
nc

y 

Value 

Histogram of  

31 

0 

20 

40 

0.89 0.93 0.97 1.01 1.05 1.09 1.13 1.17 1.21 

Fr
eq

ue
nc

y 

Value 

Histogram of  
31 

0 

20 

40 

0.84 0.89 0.94 0.99 1.04 1.09 1.14 1.19 1.24 

Fr
eq

ue
nc

y 

Value 

Histogram of  

41 

0 

20 

40 

60 

0.65 0.69 0.73 0.77 0.81 0.85 0.89 

Fr
eq

ue
nc

y 

Value 

Histogram of  

34 

0 

20 

40 

0.76 0.81 0.86 0.91 0.96 1.01 1.06 1.11 1.16 

Fr
eq

ue
nc

y 

Value 

Histogram of 

k

k

k ω

ω

ω



 

 

 31 

 

 
(4) 4.0α =  

 

 
(5) 5.0α =  

Fig. 4-1. Continued 

 

WinBUGS displayed the median, 2.5th and 97.5th percentiles for the estimated 

parameter by default, it have been examined that all the estimated parameters lied in 95% 

credible intervals. 

 

4.2.2 Computational Analyses 

In order to examine the estimation accuracy of the PW model at different 

dispersion levels, three summary statistics were used. 
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4.2.2.1 Bias 

The bias of an estimator is the difference between the estimator’s expectation and 

the true value of the parameter that being estimated. Therefore, the bias can be defined 

as: 

 

 
( )r rBias E θ θ= −  (4.1)  

 

where r  is the number of replication. For each replication, the bias was calculated. The 

bias summaries based on different dispersion levels are illustrated in Table 4-4 and Fig. 

4-2, 4-3: 

 

Table 4- 4. Bias Summaries at Different Dispersion Levels 

Dispersion Level 0.5α =  1.0α =  2.0α =  3.0α =  5.0α =  

Estimated 
Parameters 

k  ω  k  ω  k  ω  k  ω  k  
ω  

Average 0.010 0.002 0.004 0.000 0.010 -0.005 -0.001 0.001 0.006 0.000 

Min. -0.189 -0.124 -0.109 -0.160 -0.062 -0.169 -0.073 -0.139 -0.086 -0.187 

Max. 0.195 0.379 0.202 0.192 0.149 0.194 0.079 0.161 0.065 0.151 
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Fig. 4-2. Bias of k  at Different Dispersion Levels 

 

 

 
Fig. 4-3. Bias of ω  at Different Dispersion Level 
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By examining the Fig. 4-2 and Fig. 4-3 along with the results in Table 4-4, the 

average biases for parameters k  and ω  are small in regardless of the dispersion levels. 

And for parameter k , the biases oscillated closer to the 0 for higher dispersion levels 

while for parameter ω  , there was no clear difference between each dispersion level. 

 

4.2.2.2 Absolute Percent Difference (APD) 

APD is calculated as: 

 

 

| | 100%APD θ θ
θ
−

= ×
 (4.2) 

 
For each simulate replication, the APDs for k and ω  were calculated. The 

summary statistics for 100 replications are provided in Table 4-5 and Fig. 4-4 and Fig. 4-

5 document the APDs for each simulation replication. 

 

Table 4-5. APD Summaries at Different Dispersion Levels 

Dispersion Level 0.5α =  1.0α =  2.0α =  3.0α =  5.0α =  

Estimated 
Parameters 

k  ω  k  ω  k  ω  k  ω  k  ω  

Average (%) 4.653 6.075 4.155 5.640 4.405 5.935 3.743 5.499 4.458 4.662 

Min. (%) 0.070 0.115 0.000 0.000 0.000 0.107 0.000 0.000 0.200 0.141 

Max. (%) 13.579 43.513 20.200 19.200 20.666 20.727 13.015 17.219 17.200 13.225 
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Fig. 4-4. APD of k  at Different Dispersion Levels 
 
 
 

 
Fig. 4-5. APD of  ω  at Different Dispersion Levels 
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Fig.4-4 and Fig.4-5 along with the results in Table 4-5 indicate that the average 

APD values for each dispersion level are small for both parameters. However, for 

parameter ω , it seems that for higher dispersion levels, the PW model has better 

performance based on APD values. 

 

4.2.2.3 Root Mean Square Error (RMSE) 

RMSE is also known as Root Mean Square Deviation (RMSD) and it is used to 

measure the difference between an estimator and the true parameter being estimated by 

taking account both bias and variance. RMSE is defined as: 

 

 
2RMSE Bias Var= +  (4.3) 

 

where variance can be obtained from Table 4-3. Table 4-6 and Fig. 4-6 and 4-7 

summarizes the RMSE for the parameters at each dispersion level: 

 

Table 4-6. RMSE Summaries at Different Dispersion Levels 

Dispersion Level 0.5α =  1.0α =  2.0α =  3.0α =  5.0α =  

Estimated 
Parameters 

k  ω  k  ω  k  ω  k  ω  k  
ω  

Average  0.109 0.085 0.071 0.092 0.053 0.088 0.041 0.085 0.038 0.111 

Min.  0.076 0.059 0.050 0.061 0.035 0.059 0.030 0.058 0.027 0.082 

Max.  0.218 0.388 0.212 0.206 0.156 0.206 0.086 0.175 0.090 0.202 
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Fig. 4-6. RMSE of k  at Different Dispersion Levels 
 
 
 

 
Fig. 4-7. RMSE of ω  at Different Dispersion Levels 

 

Fig. 4-6 gives a clear sign that the estimation accuracy for k  became more 
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4.3 Discussions 

Based on the simulation results above, it indicates that the PW GLM has a 

potential for modeling crash data. The following discussions are drawn from those 

analyses: 

1) The predefined “true” values for the parameters lie in the 95% credible 

interval for all those 5 scenarios. In other words, the PW model was able to 

reproduce the “true” parameters. And the credible interval for parameter k  

tends to become narrower with the increase of the dispersion level. For 

parameter ω , even though it was re-parameterized with two parameters k  

and λ , the credible intervals do not change too much irrespective of 

dispersion levels. Moreover, when the value of  α  decreases, the estimates 

for k  are distributed more dispersedly. 

2) Based on the summary statistics of bias and APD, it shows that the PW 

model has the ability to capture the true value with considerably high 

accuracy regardless of different dispersion levels. 

3) Taking bias and variance into account, the RSME results indicate that the 

estimation accuracy for parameter k  becomes more precise with the increase 

of dispersion level while the averages for ω  do not fluctuate too much. The 

RMSE plot for k  has a clear sign indicating that the PW model has a better 

modeling performance to capture the true value for the parameter. 
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In general, the results based on the simulated data have shown that the PW model 

has the ability to reproduce and capture the true parameters with high accuracy. There is 

no sign that the modeling performance has been negatively affected by the dispersion 

levels even though the PW model seems to have a better modeling performance in 

dealing with high level of dispersed data. Therefore, the PW model provides the 

potential for modeling crash counts. 

 

4.4 Summary 

This section has documented the modeling performance of the PW GLM using 

simulated data. Data simulation protocol was first introduced in this section. The values 

for the two parameters in the PW model were predefined corresponding to the different 

dispersion levels. The estimated values were compared to the predefined values and 

computational analyses were conducted in the second section. Based on the bias, APD 

and RMSE analyses, it showed that the PW GLM could reproduce and capture the true 

parameter with high accuracy. Additionally, it seemed that the PW GLM had better 

modeling performance for higher dispersion levels. The next section presents the 

application of the PW GLM on observed data. 
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5. APPLICATION OF THE POISSON-WEIBULL GLM  

TO OBSERVED DATA 

 

Based on the simulation results in Section 4, the PW GLM shows the potential to 

model crash count data irrespective of dispersion levels. Thus, there is a need to evaluate 

the PW modeling performance on observed traffic crash data. 

The main objective of this section is to compare the PW GLM with the most 

widely used NB model in modeling crash counts using observed crash data. This section 

is organized as follows: firstly, the functional forms that are used to model crash data 

and selected GOF measuring statistics are introduced in the methodology section. 

Secondly, descriptions about two observed crash datasets are provided. Then the 

modeling results and corresponding analyses are presented. Lastly, some concluding 

thoughts are discussed. 

 

5.1 Methodology 

This part describes the methodology that used to estimate and compare the 

modeling performance of two models. There were two observed datasets and for each 

dataset the PW GLM and NB GLM were used to estimate the parameters. The 

comparison was achieved based on the resultant estimates and 4 selected GOF statistics.  

 



 

 

 41 

Two major functional forms have been discussed in Section 2. The general 

expression of the functional form selected for the observed datasets in this section is as 

follows: 
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= × × ×  (5.1) 

 

As each dataset contains its own covariates ijX s  exact functional form for the dataset 

will be presented in the data description section. 

After the estimated coefficients sβ  were obtained from WinBUGS, the expected 

crash counts iµ   for each site i  were calculated by using spreadsheet. To compare the 

modeling performance of the PW and NB GLMs, the GOF tests were conducted. The 

selected GOF statistics are introduced as follows: 

 

5.1.1 Deviance Information Criterion (DIC) 

When Bayesian estimation method is applied, the DIC is often used as a GOF 

statistic. It is defined as: 

 

 DDIC D p= +  (5.2) 
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where 2lnD L= −  represents the posterior mean of the deviance of the un-standardized 

model and L is the mean of the model log likelihood; ( | )Dp D D y θ= − represents the 

penalty for the number of effective model parameters where ( | )D y θ  is the point 

estimate of deviance for the posterior mean θ  . A smaller DIC refers to a better fit to the 

data. In general, as a rule of thumb, differences in the values of DIC of more than 10 

definitely rule out the model with a higher DIC and a difference in DIC between 5-10 

can be considered substantial (Spiegelhalter et al. 2002). However, the DIC is dependent 

on the structure of the model. Even though NB model is equivalent to the Poisson-

Gamma model, the DIC values for those two models are much different. Thus, the PG 

model is used for all the following analysis. 

 

5.1.2 Mean Absolute Deviance (MAD) 

MAD is a statistic used to assess how well the model fit to the data and provides 

a measure of the average mis-prediction of the model. The MAD is defined as: 

 

 


1

1 | |n
ii i

MAD y y
n =

= −∑  (5.3) 

 

5.1.3 Mean Squared Predictive Error (MSPE) 

MSPE is typically used to assess the error associated with a validation or external 

dataset. It can be computed as follows: 
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5.1.4 Pearson Chi-Square 2( )χ   

Pearson 2χ  is often used to assess the overall fit of a model. This statistic 

follows the 2χ  distribution with n p−  degree of freedom where p  is the number of 

model variables. This statistic is asymptotic to the 2χ  distribution for larger sample 

sizes and is computed as: 

 

 


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( )
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i i

i i

y y
Var y

χ
=

−
=∑  (5.5) 

 

where ( )iVar y is the crash frequency at site i  and for PW and NB models, the variances 

can be obtained by using (3.6) and (3.7). 

 

5.2 Data Description 

This section describes the characteristics of two datasets that were used for 

comparing the PW and NB GLMs. 

The datasets used in this research have several potential crash related variables. 

Although a simplified model with few variables may be preferred, leaving out important 

explanatory variable would result in omitted variable bias in parameter estimation and 
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provide erroneous inference and crash count prediction. Possible endogenous relation 

issue between dependent and response variables should also be ruled out. After 

examining several candidate datasets based on those two principles, the following two 

datasets were selected. 

 

5.2.1 Indiana Data 

Crash and traffic data at 338 rural interstate road segments were collected for a 5-

year period (1995-1999) in the state of Indiana. This data have previously been used for 

developing a tobit regression model and a negative binomial-Lindley model 

(Washington et al. 2009; Geedipally et al. 2011; Anastasopoulos et al. 2008). This 

dataset contains no reported crashes for 120 out of 338 highway segments over the 5-

year observational period. Table 5-1 summarizes the basic statistics of crash, road 

geometric and traffic variable used in this study. For a complete and detailed list of 

variables, the interested reader is referred to Washington et al. (2009). 
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Table 5- 1. Indiana Data Summary 

Traffic Variable Min. Max. Average (Std. Dev) Total 

Number of Crashes (5 years) 0 329 16.97(36.30) 5737 

Average Daily Traffic(ADT) (veh/day) 9442 143422 30237.56(28776.43) _ 

Minimum Friction of Road Segment 
(FR) 

(0-100 scale) 
15.90 48.20 30.51(6.67) _ 

Pavement Surface(PS) 
(Asphalt=1,Concrete=0) 0 1 0.77(0.42) _ 

Median Width (MW) (ft) 16 194.7 66.98(34.71) _ 

Median Barrier(MB)  
(Present=1,Absent=0) 0 1 0.16(0.37) _ 

Interior Rumble Strips(IRS)   
(Present=1,Absent=0) 0 1 0.72(0.45) _ 

Segment Length(SL)(miles) 0.009 11.53 0.89(1.48) 300.09 

 

 

Based on the summary above, the functional formal used for modeling Indiana 

data is as follows: 

  

0 1 2 3 4 5 6exp[ln ln( ) ln( ) ( ) ( ) ( ) ( ) ( ) ]i i i i i i i iSL ADT FR PS MW MB IRSµ β β β β β β β= + + + + + + +  (5.6) 
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5.2.2 Texas Data 

The second dataset contained crash data collected at 4-lane rural undivided in 

Texas. The data were provided by the Texas Department of Public Safety (DPS) and the 

Texas Department of Transportation (TxDOT) and were used for the National 

Cooperative Highway Research Project (NCHRP) 17-29: Methodology for Estimating 

the Safety Performance of Multilane Rural Highways (Lord et al. 2008a). Table 5-2 

presents the summary statistics of the data. 

 

Table 5- 2. Texas Data Summary 

Traffic Variable Min. Max. Average (Std. Dev) Total 

Number of Crashes (5 years) 0 97 2.84(5.69) 4253 

Average Daily Traffic (ADT) 
(veh/day) 42 24800 6613.61(4010.01) _ 

Lane Width(LW) (ft) 9.75 16.5 12.57(1.59) _ 

Total Shoulder Width (SW) (ft)    0 40 9.96(8.02) _ 

Curve Density(CD) (curves/mile) 0 18.07 1.43 (2.35) _ 

Segment Length (L) (miles) 0.1 6.28 0.55(0.67) 830.49 
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Based on Texas data, the functional form used is illustrated as follows: 

 

0 1 2 3 4exp[ln ln( ) ln( ) ( ) ( ) ( ) ]i i i i i iSL ADT LW SW CDµ β β β β β= + + + + +  (5.7) 

 

5.3 Results 

This part presents the modeling results for the PW and NB GLMs. The parameter 

estimates and GOF statistics are illustrated in this section. Based on the resultant 

estimates, examinations about prediction accuracy, covariate sensitivity analysis, model-

checking and relation between predicted crash variance and mean were also conducted 

in this part. 

 

5.3.1 Indiana Data 

5.3.1.1 Parameter Estimate 

Table 5-3 summarizes the coefficient estimates of the PW and NB models for the 

Indiana data as follows: 
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Table 5- 3.  Coefficient Estimates for Indiana Data 

Variable 

NB PW 

Value S.E. Value S.E. 

Intercept 0(ln )β  -4.627 1.354 -4.022 1.377 

 ADT 1( )β  0.7029 0.1254 0.6428 0.1243 

FR 2( )β  -0.02589 0.01048 -0.02713 0.01128 

PS 3( )β   0.4226 0.1874 0.4267 0.1992 

MW 4( )β  -0.005169 0.001906 -0.005489 0.002007 

MB 5( )β  -3.035 0.3047 -2.99 0.3093 

IRS 6( )β  -0.3901 0.1866 -0.4113 0.1987 

φ  1.089 0.1392   

ω    0.9959 0.316 

k    0.9805 0.07021 

 

 

The segment length was treated as an offset and thus the crash frequency 

increases linearly with the increase in segment length. For both PW and NB models, the 

estimated coefficient for the traffic flow is less than 1. This indicates that with the 

increase in the traffic flow, the crash risk increases in a decreasing rate. It should be 

noted that the 95% marginal posterior credible intervals for each coefficient estimate did 

not include the origin. Furthermore, all the estimated coefficients between the two 
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models have the same sign, and most of their values are very close. The standard errors 

for estimated coefficients of PW model are slightly larger than those of NB model. 

Though NB and PW model have the same hierarchical structure, there is an extra 

parameter in the PW model. This is because the shape and scale parameters are assumed 

to be the same in the NB model but not in the PW model. 

 

5.3.1.2. Goodness-of-fit Statistics  

Based on the coefficient estimates in Table 5-3, the predicted crash counts were 

calculated by using the function form.  To compare the modeling performance of the PW 

and NB model, the GOF tests were conducted. Table 5-4 summaries the GOF statistics 

of the PW and NB model for Indiana data: 

 

Table 5- 4. GOF Statistics for Indiana Data 

GOF  NB PW 

DIC 1486.47 1450.67 

Pearson
2χ   1009.406 1003.086 

MAD 6.919 7.014 

MSPE 209.909 231.476 

 

 

Based on the GOF results in Table 5-4, it is found both the DIC and Pearson 2χ  

statistics indicate that the PW model fits the data better than the NB model. However, 
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the MSPE statistic is in favor of the NB model while the MAD values for both models 

are very close. 

 

5.3.1.3 Prediction Accuracy 

            Fig. 5-1 illustrates the histograms of the observed crash counts and predicted 

crash counts for both PW and NB models. The PW model provides similar predictions as 

the NB model. And compared to the observed crash counts, both the PW and NB model 

could predict the observed crash counts with certain accuracy. However, it should be 

noted that this histogram plot could only provide a thorough examination about the 

modeling performance of the two models since it is based on the frequency distributions.  

 

 
Fig. 5-1. Histograms of Observed and Predicted Crash Counts for Indiana Data 
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Fig. 5-2. Predicted Crash vs. Observed Crash for Indiana Data 

 

Fig. 5-2 illustrates a more detailed comparison between predicted and observed 

crash counts. It can be seen that the PW model provides smaller predicted values than 

for the NB model. The average residual for the PW model is 2.19 and the minimum and 

maximum residuals are -29.56 and 146.48 respectively. For the NB model, the average, 

minimum and maximum residuals are 1.42, -37.53 and 131.01 respectively. Additionally 

when the observed crash counts are below 10 crashes/mile, both PW and NB models are 

over-estimating the crash counts.  And when the observed crash counts are larger than 

200 crashes/mile, both PW and NB models are under-estimating the crashes. The 

detailed table is presented in Appendix A. 

 

0 

50 

100 

150 

200 

250 

300 

350 

0 50 100 150 200 250 300 350 

Pr
ed

ic
te

d 
Cr

as
h 

Co
un

ts
 

Observed Crash Counts 

NB 

PW 

Y=X 



 

 

 52 

 
Fig. 5-3. Predicted Crash Counts vs. ADT for Indiana Data 

 

Fig. 5-3 illustrates the comparison between the predicted crash counts per year 

per mile against the covariate ADT for Indiana data. It is found that the PW model 

provides lower estimates than the NB model except when the ADT flows are extremely 

low. Similar analysis can be conducted for other covariates and the figures are presented 

in the Appendix B. 

 

5.3.1.4 Covariate Sensitivity  

The functional form for modeling Indiana data is illustrated in equation (5.6). 

Therefore the sensitivity analysis for covariate ADT can be examined by using the 

following equation: 
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 1
log( ) 1

iADT ADT
µ β∂

=
∂  (5.8)

  

Fig. 5-4 shows the sensitivity of covariate ADT for both NB and PW models. It 

can be seen that those two models have quite similar trend. When the ADT is below 

20000 veh/day, one unit increase in ADT would result in huge decrease in logarithm 

form of the estimated crash. However, this decrease becomes smaller when the ADT is 

at higher levels. Similar analysis can be conducted for other covariates and the figures 

are presented in the Appendix C. 

 

 
Fig. 5- 4. Sensitivity Analysis of Covariate ADT for Indiana Data 
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whether a candidate explanatory variable should be included (Hauer and Bamfo 1997; 

Lin et al. 2002). A better fit occurs when the cumulative residuals oscillate around 0 

against a certain variable. CURE plot can be also used to identify potential biases within 

the range of the variable investigated.  

  Fig. 5-5 illustrated the CURE plots for both the NB and PW model for Indiana 

data. It can be seen that the patterns for the NB and PW model are pretty similar. Both 

the models share similar flaws in predicting crash counts when variable ADT is larger 

than 30000 veh/day. Approximately from point A in the plot, both NB and PW lines are 

drifting down, and it shows that both models overestimate the crash counts against this 

range. Similar analysis can be conducted to other covariates and the figures are 

presented in Appendix D. 

 

 
Fig.5-5.  CURE Plot for Indiana Data (Dotted Lines represents ± 2 Std. Dev.) 
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5.3.1.6 Crash Variance 

Based on the parameter estimates, the estimated crash variance and observed 

crash variance were calculated and plotted. The trend of crash variance against the mean 

is illustrated in Fig. 5-6. It shows that the model-based estimated variance for the PW 

model and NB model have a similar shape. And the estimated crash variance is very 

close to the observed variance especially when crash mean is below about 25 for both 

PW and NB models. When the data are characterized with higher mean, the PW model 

gives slightly higher predicted crash variance than the NB model. In general, the model-

based estimated variance indicates that for both models, the estimated variance has a 

perfect monotone increase and it is highly correlated with the crash mean (Geedipally 

and Lord 2011). However, the observed crash variance for both PW and NB models is 

smaller than the predicted value when the crash mean is high. 

 

 
Fig. 5-6 Crash Variance vs. Crash Mean for Indiana Data 
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5.3.2 Texas Data 

5.3.2.1 Parameter Estimate 

Table 5-5 summarizes the estimated coefficients for Texas data: 

 

Table 5- 5. Coefficient Estimates for the Texas Data 

Variable 

NB PW 

Value S.E. Value S.E. 

Intercept 0(ln )β  -6.3590 0.3907 -6.2280 0.4298 

 ADT 1( )β  0.9770 0.0424 0.9682 0.0430 

LW 2( )β  -0.0532 0.0169 -0.0509 0.0163 

 SW 3( )β  -0.0100 0.0033 -0.0101 0.0033 

CD 4( )β  0.0674 0.0121 0.0694 0.0122 

φ  2.5510 0.2338   

ω    1.0130 0.3068 

k    1.6290 0.0817 

 

 

As illustrated above, the functional form for the Texas data is similar to the one 

used for Indiana data. The segment length was considered as an offset in the model as 

well. All the coefficients are significant at 95% level. In general, all the estimated 

coefficients are logical and consistent with the existing literatures. The increase in the 
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traffic flow and the horizontal curve density increases the crash risk, where the increase 

in lane width and shoulder width decreases the crash risk. 

 

5.3.2.2 Goodness-of-fit Statistics 

Table 5-6 presents the GOF statistics for the PW and NB models: 

 

Table 5- 6. GOF Statistics for Texas Data 

GOF NB PW 

DIC 4784.45 4771.61 

Pearson
2χ  1798.14 1869.32 

MAD 1.70 1.69 

MSPE 11.24 11.43 

 

 

Based on the GOF statistics for Texas data, it can be seen that DIC value 

indicates that the PW model fits the data better than the NB model. However, the 

Pearson 2χ  value is in favor of the NB model. For the MAD and MSPE statistics, there 

are only slightly differences between those two models. 

 

5.3.2.3 Estimation Accuracy 

Fig. 5-7 and Fig.5-8 illustrate the comparison between observed and predicted 

data for two models. It is found the PW and NB model provide similar predictions with 
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certain level of accuracy in terms of frequency distribution. For Texas data, the PW 

provides higher predicted values than the NB model, which is different from the case of 

the Indiana data. And when the observed crash counts are below 8, both PW and NB 

model are under-estimating the crash counts for most of time but the estimates are very 

close to the observed crash counts. When the observed crash counts keep increasing, 

both the PW and NB model are under-estimating the crash counts for most of the time. 

 

 
Fig. 5-7 Histograms of Observed and Predicted Crash Counts for Texas Data 
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Fig. 5-8 Predicted Crash vs. Observed Crash for Texas Data 

 

The average residual for the PW model is 0.18 and the minimum and maximum 

residuals are -13.19 and 65.32 respectively. For the NB model, the average, minimum 

and maximum residuals are 0.08, -13.70 and 64.26 respectively. The detailed table is in 

Appendix A. 

Fig. 5-9 presents the predicted crash counts against the covariate ADT for two 

models. Unlike the Indiana data, in this case, the PW model provides the higher 

estimates than the NB model does. However, this difference is very small. 
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Fig. 5-9 Predicted Crash vs. ADT for Texas Data 

 

5.3.2.4 Covariate Sensitivity 

The sensitivity analysis for covariate ADT is illustrated in Fig. 5-10. For this 

dataset, the PW model and NB model have pretty similar performance. 

 

 
Fig. 5-10 Sensitivity Analysis of Covariate ADT for Texas Data 

 

0 

20 

40 

60 

80 

100 

120 

0 20000 40000 60000 80000 100000 120000 140000 160000 

Cr
as

he
s/

m
ile

/y
ea

r 

ADT (Veh/day) 

NB 

PW 

0 

0.00005 

0.0001 

0.00015 

0.0002 

0.00025 

0 50000 100000 150000 200000 

Se
ns

iti
vi

ty
 

ADT(Veh/day) 

NB 

PW 



 

 

 61 

5.4.2.5 Model Validation 

Fig. 5-11 illustrates the CURE plot for Texas data. It can be seen that for this 

dataset the PW model did not perform as well as the NB model. When ADT is between 

5000 veh/day to 10000 veh/day, the PW model was overestimating the crash counts. 

Corresponding to the conclusion from Fig. 5-8, since the PW model gave higher 

estimates than the NB model, it is expected that the PW model oscillates farther than the 

NB model.   

 

 
Fig. 5-11 CURE Plot for Texas Data (Dotted Lines represents ± 2 Std. Dev.) 
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variance, it can be seen the observed crash variances for two models are similar. And 

when the crash mean is small, the estimated crash variance is close to the observed 

variance. Along with the increase of the crash mean, the observed crash variance for 

both PW and NB models is smaller than the estimated value. 

 

 
Fig. 5-12 Crash Variance vs. Crash Mean for Texas Data 
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datasets. Both PW and NB model provide similar estimates and those values are 

consistent with existing literature. 

2) Second, it is found that for both datasets the GOF statistics have given different 

preferences towards these two models. The DIC values for both datasets 

indicate that the PW GLM provided better fit to the observed data. However, 

MSPE statistic prefers the NB GLM. The Pearson 2χ  and MAD statistics 

shows different preference in those two cases. As Miaou and Lord stated in 

their research, the model performance cannot be only judged by various GOF 

statistics, “goodness-of-logic” also needs to be considered (Miaou and Lord 

2003). So we cannot solely reply on one or two GOF statistics to conclude that 

which model is better. 

3) Based on the comparisons from prediction accuracy, covariate sensitivity 

analyzes and relation between crash variance and mean, the PW GLM has the 

similar performance as the NB model. However, based on the CURE plots 

against covariate ADT, it is found the PW model didn’t perform as well as the 

NB model, especially for the Texas dataset. It might share the model flaws with 

the NB model in overestimating the crash counts within certain flow range.  

4) Even though the computational time was not documented in the results above, 

the time for both GLMSs were quite similar in WinBUGS with only 10 to 20 

seconds difference. The computational time for estimating the parameters varies 

due to the different computer facilities. One thing that should be noted is the 
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PW GLM has one extra parameter and 10 to 20 seconds of extra computational 

time for the PW GLM is reasonable and acceptable.  

5) Due to the quality and availability of observed data, the datasets used in this 

study do not fully cover the equi-disperison and over-dispersion situations. As 

NB GLMs have difficulties in handling highly dispersed data, the modeling 

performance of PW GLMs needs to be further examined under those situations. 

 

5.5 Summary 

This section has documented the modeling performance of the PW GLM on two 

observed datasets. The modeling performance of the PW GLM was assessed through a 

series of comparison analyses with the NB model. The parameter estimates for the two 

GLMs were very close and both models had similar performances in sensitivity, model-

checking and mean-variance analyses. Therefore, the comparison results showed that the 

PW GLM performed as well as the NB GLM for the given datasets. The next section 

presents the conclusions and future work related to the PW model. 
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6. CONCLUSIONS AND FUTURE WORK 

 

This section summarizes the work accomplished in this research and conclusions 

that are obtained from the study. Recommendations for the future work are also provided. 

 

6.1 Conclusions 

The primary objective of this research is to develop and evaluate the modeling 

performance of the PW GLM. PW model is an innovative model that has never been 

used in model traffic crash counts. To examine the PW GLM modeling performance 

under different dispersion level, the following tasks were completed in this research: 

 Since PW model is an innovative statistical model, its statistical characteristics 

have been defined in this study. PW model is assumed to be a mixture of 

Poisson and Weibull distributions. Therefore, its p.d.f , mean and variance 

were developed based on this assumption. However, the p.d.f of the PW model 

has no closed form, and thus to estimate the parameters, Bayesian estimation 

approach was used. 

 To initially examine the modeling performance of the PW GLM, a series of 

simulated dataset was generated corresponding to different dispersion levels. 

The evaluation was conducted by comparing the true parameters with the 

estimated parameters. It was found that the PW GLM was able to reproduce 

the true parameter values with considerably high accuracy. 
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 After initial assessment on simulated data, PW GLMs was applied to the 

observed data. Two datasets were used and the functional form including 

several covariates was selected to model the crash counts. The modeling 

performance of the PW GLMs was compared with the NB GLMs. By the GOF 

statistics, it was found that the PW model performed as well as the NB model. 

 

6.2 Future Work 

Given the fact that the PW GLM was first introduced in modeling crash data in 

transportation area, there are many lines of research activities that could be investigated 

in the future work. 

First, in this study, for both simulated and observed datasets, the sample size and 

sample mean were given the moderate levels. It is known that crash data sometime can 

be subjected to small-sample-size and low-sample-mean issues which the NB model 

cannot handle very well. For such datasets, the inverse dispersion parameter can be 

significantly biased or mis-estimated (Lord 2006). This can negatively influence the 

standard errors associated with the model’s coefficients. For the empirical Bayes (EB) 

estimate method, the outcome might also be problematic. Further work about the PW 

model therefore is needed on stability when data are characterized by small-sample-size 

and low-sample-mean values. 

Furthermore, as EB method is now frequently used in highway safety analyzes, 

an EB modeling framework also should be developed. The PW GLM might also have 
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the potential to identify hazardous sites. Therefore, the framework of how to apply PW 

GLM is also needed to be further investigated.  

For this study, it is assumed that all the covariates are independent. Further study 

could be done to examine the effects of covariate-dependent parameters.  

Last, a well-defined likelihood function and the related moments for the PW 

model should be developed, if it is possible to developed one. This way, the maximum 

likelihood estimation (MLE) method could be used for estimating PW GLMs.  
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APPENDIX A 

COMPARISON BETWEEN PREDICTED AND OBSERVED CRASH COUNTS 

 

 Indiana Data 

Observed Crash 
Count 

NB PW 

Ave. 
Predicted 

Ave. 
Residual 

Min. 
Residual 

Max. 
Residual 

Ave. 
Predicted 

Ave. 
Residual 

Min. 
Residual 

Max. 
Residual 

0 2.004  -2.004  -13.069  -0.026  1.876  -1.876  -12.717  -0.025  

1 2.938  -1.938  -7.775  0.233  2.813  -1.813  -7.390  0.257  

2 4.025  -2.025  -7.605  1.526  3.787  -1.787  -6.631  1.565  

3 3.737  -0.737  -7.257  2.253  3.592  -0.592  -6.994  2.315  

4 5.317  -1.317  -5.852  2.377  5.165  -1.165  -5.472  2.414  

5 7.172  -2.172  -8.933  0.731  6.993  -1.993  -8.807  0.849  

6 8.282  -2.282  -13.961  3.517  7.852  -1.852  -12.407  3.735  

7 11.155  -4.155  -15.527  4.817  10.762  -3.762  -14.122  4.866  

8 9.672  -1.672  -19.744  5.648  9.236  -1.236  -18.583  5.848  

9 10.696  -1.696  -9.994  5.807  10.214  -1.214  -9.237  6.013  

10 23.339  -13.339  -25.344  0.848  21.843  -11.843  -22.314  1.187  

11 7.681  3.319  -6.552  10.321  7.282  3.718  -6.264  10.350  

12 9.993  2.007  1.922  2.092  9.437  2.563  2.271  2.854  

13 14.842  -1.842  -10.465  9.651  14.498  -1.498  -10.113  9.822  

14 16.792  -2.792  -13.832  13.751  16.126  -2.126  -12.607  13.751  

15 15.421  -0.421  -12.384  -12.384  14.794  0.206  -12.134  -12.134  

16 6.391  9.609  9.609  9.609  6.341  9.659  9.659  9.659  

17 12.074  4.926  1.493  10.743  11.679  5.321  1.353  10.828  

18 18.173  -0.173  -0.173  -0.173  17.216  0.784  0.784  0.784  

19 21.118  -2.118  -9.243  5.007  19.918  -0.918  -7.609  5.773  

20 5.165  14.835  14.835  14.835  4.665  15.335  15.335  15.335  

21 12.434  8.566  8.566  8.566  12.212  8.788  8.788  8.788  

22 16.507  5.493  0.495  11.793  15.316  6.684  1.646  12.614  

24 29.106  -5.106  -12.291  5.127  27.290  -3.290  -10.018  6.361  

27 6.533  20.467  16.562  6.533  5.939  21.061  17.529  5.939  

30 22.992  7.008  7.008  7.008  21.591  8.409  8.409  8.409  
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Observed Crash 
Count 

NB PW 

Ave. 
Predicted 

Ave. 
Residual 

Min. 
Residual 

Max. 
Residual 

Ave. 
Predicted 

Ave. 
Residual 

Min. 
Residual 

Max. 
Residual 

31 25.389  5.611  5.611  5.611  23.864  7.136  7.136  7.136  

32 23.391  8.609  -1.235  19.377  21.443  10.557  1.017  20.902  

33 12.592  20.408  20.408  20.408  11.988  21.012  21.012  21.012  

35 38.003  -3.003  -7.105  38.003  35.816  -0.816  -5.482  35.816  

36 23.155  12.845  12.845  12.845  22.550  13.450  13.450  13.450  

38 50.872  -12.872  -12.872  -12.872  49.763  -11.763  -11.763  -11.763  

39 22.365  16.635  6.306  31.854  21.847  17.153  6.165  32.229  

41 16.046  24.954  20.584  32.070  15.017  25.983  22.165  32.562  

42 36.672  5.328  -21.289  31.944  34.276  7.724  -17.503  32.950  

45 41.751  3.249  -21.146  21.743  39.362  5.638  -16.704  23.199  

47 35.681  11.319  -0.564  23.201  33.514  13.486  2.537  24.434  

48 34.615  13.385  9.342  17.427  32.527  15.473  11.600  19.346  

49 41.754  7.246  7.246  7.246  39.363  9.637  9.637  9.637  

51 46.234  4.766  4.766  4.766  44.539  6.461  4.766  4.766  

52 38.454  13.546  9.519  17.574  37.992  14.008  9.514  18.503  

57 48.431  8.569  6.384  12.938  45.190  11.810  10.218  14.993  

60 65.787  -5.787  -5.787  -5.787  60.256  -0.256  -0.256  -0.256  

61 68.319  -7.319  -7.319  -7.319  65.769  -4.769  -4.769  -4.769  

62 74.285  -12.285  -37.530  12.960  69.705  -7.705  -29.555  14.146  

66 53.430  12.570  12.570  12.570  49.700  16.300  16.300  16.300  

67 96.960  -29.960  -29.960  -29.960  90.629  -23.629  -23.629  -23.629  

75 86.585  -11.585  -11.585  -11.585  84.578  -9.578  -9.578  -9.578  

76 101.408  -25.408  -25.408  -25.408  93.296  -17.296  -17.296  -17.296  

79 49.375  29.625  18.521  40.729  46.021  32.979  22.576  43.382  

87 53.430  33.570  33.570  33.570  48.599  38.401  38.401  48.599  

90 76.986  13.014  13.014  13.014  72.622  17.378  17.378  72.622  

94 66.306  27.694  27.694  27.694  62.881  31.119  31.119  62.881  

95 77.858  17.142  17.142  17.142  71.017  23.983  23.983  71.017  

97 56.973  40.027  40.027  40.027  53.839  43.161  43.161  53.839  

99 75.237  23.763  23.763  23.763  71.595  27.405  27.405  71.595  

100 117.311  -17.311  -17.311  -17.311  114.152  -14.152  -14.152  114.152  

103 36.996  66.004  66.004  66.004  33.701  69.299  69.299  33.701  

108 61.757  46.243  46.243  46.243  57.027  50.973  50.973  57.027  

119 135.063  -16.063  -16.063  -16.063  132.534  -13.534  -13.534  132.534  

121 46.865  74.135  74.135  74.135  44.175  76.825  76.825  44.175  
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Observed Crash 
Count 

NB PW 

Ave. 
Predicted 

Ave. 
Residual 

Min. 
Residual 

Max. 
Residual 

Ave. 
Predicted 

Ave. 
Residual 

Min. 
Residual 

Max. 
Residual 

122 115.511  6.489  6.489  6.489  111.343  10.657  10.657  111.343  

145 154.048  -9.048  -9.048  -9.048  151.304  -6.304  -6.304  151.304  

204 180.954  23.046  23.046  23.046  171.493  32.507  32.507  171.493  

215 186.752  28.248  28.248  28.248  183.389  31.611  31.611  183.389  

265 153.785  111.215  111.215  111.215  151.146  113.854  113.854  151.146  

329 197.986  131.014  131.014  131.014  182.519  146.481  146.481  182.519  

 

 

 Texas Data 

Observed Crash 
Count 

NB PW 

Ave. 
Predicted 

Ave. 
Residual 

Min. 
Residual 

Max. 
Residual 

Ave. 
Predicted 

Ave. 
Residual 

Min. 
Residual 

Max. 
Residual 

0 0.952 -0.952 -13.708 -0.018 1.039 -1.039 -14.857 -0.020 

1 1.547 -0.547 -8.038 0.914 1.686 -0.686 -8.800 0.906 

2 2.127 -0.127 -8.729 1.756 2.315 -0.315 -9.673 1.727 

3 2.842 0.158 -6.048 2.809 3.092 -0.092 -6.816 2.790 

4 3.285 0.715 -8.983 3.709 3.574 0.426 -10.047 3.672 

5 4.488 0.512 -7.332 4.235 4.879 0.121 -8.383 4.165 

6 3.913 2.087 -5.609 5.524 4.260 1.740 -6.534 5.477 

7 6.306 0.694 -8.137 6.075 6.856 0.144 -9.354 5.988 

8 7.553 0.447 -8.995 6.475 8.205 -0.205 -10.375 6.350 

9 7.703 1.297 -11.044 7.089 8.362 0.638 -12.685 6.939 

10 8.237 1.763 -7.286 9.181 8.947 1.053 -8.595 9.115 

11 7.488 3.512 -1.561 8.836 8.136 2.864 -2.570 8.633 

12 8.875 3.125 -4.445 10.800 9.638 2.362 -5.871 10.684 

13 11.314 1.686 -7.547 8.878 12.265 0.735 -9.501 8.532 

14 10.327 3.673 -4.311 11.754 11.223 2.777 -5.976 11.532 

15 13.801 1.199 -4.420 4.766 14.954 0.046 -5.993 3.866 

16 10.638 5.362 -1.021 13.034 11.587 4.413 -2.561 12.785 

17 12.269 4.731 -7.977 12.095 13.267 3.733 -9.984 11.674 
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Observed Crash 
Count 

NB PW 

Ave. 
Predicted 

Ave. 
Residual 

Min. 
Residual 

Max. 
Residual 

Ave. 
Predicted 

Ave. 
Residual 

Min. 
Residual 

Max. 
Residual 

18 18.226 -0.226 -10.061 8.628 19.702 -1.702 -12.312 7.802 

19 10.733 8.267 6.554 9.979 11.602 7.398 5.524 9.273 

20 11.103 8.897 2.739 14.183 12.091 7.909 1.355 13.643 

21 14.711 6.289 3.997 8.580 15.911 5.089 2.556 7.623 

22 6.120 6.120 6.120 6.120 6.706 6.706 6.706 6.706 

23 19.593 3.407 2.345 4.468 21.206 1.794 0.705 2.884 

24 11.542 10.726 6.779 15.922 12.478 9.710 5.448 15.144 

25 11.886 13.114 12.264 14.492 12.895 12.105 11.096 13.619 

26 9.431 16.569 12.835 20.303 10.240 15.760 11.712 19.809 

28 17.776 10.224 8.762 11.686 19.307 8.693 7.091 10.294 

29 23.139 5.861 -2.013 13.281 25.154 3.846 -4.640 11.943 

30 25.299 4.701 4.701 25.299 27.489 2.511 2.511 27.489 

32 19.143 12.857 12.857 19.143 20.782 11.218 11.218 20.782 

34 12.841 21.159 21.159 12.841 13.959 20.041 20.041 13.959 

38 25.379 12.621 12.621 25.379 27.367 10.633 10.633 27.367 

41 41.103 -0.103 -1.837 1.630 44.497 -3.497 -5.151 -1.843 

48 18.539 29.461 29.461 29.461 20.308 27.692 27.692 27.692 

64 40.652 23.348 23.348 23.348 44.105 19.895 19.895 19.895 

97 32.737 64.263 64.263 64.263 35.668 61.332 61.332 61.332 
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APPENDIX B 

PREDICTED CRASH COUNTS AGAINST OTHER COVARIATES 

 

 Indiana Data 
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 Texas Data 
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APPENDIX C 

SENSITIVITY ANALYSIS OF OTHER COVARIATES 

 

 Indiana Data 
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 Texas  Data 
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APPENDIX D 

CURE PLOTS OF OTHER COVARIATES 

 

 Indiana Data 
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 Texas  Data 
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