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ABSTRACT 

 

Disturbance Model Identification and Model Free Synthesis of Controllers for 

Multivariable Systems. (August 2012) 

Kiran Somashekar Sajjanshetty, B.E., Visveswaraiah Technological University 

Co-Chairs of Advisory Committee: Dr. Shankar P. Bhattacharyya 
    Dr. Suman Chakravorty 

 

In this work, two different problems are addressed. In the first part, the problem of 

synthesizing a set of stabilizing controllers for unknown multivariable systems using 

direct data is analyzed. This is a model free approach to control design and uses only the 

frequency domain data of the system. It is a perfect complement to modern and post 

modern methods that begin the control design with a system model. A three step method, 

involving sequential design, search for stability boundaries and stability check is 

proposed. It is shown through examples that a complete set of stabilizing controllers of 

the chosen form can be obtained for the class of linear stable multivariable systems. The 

complexity of the proposed method is invariant with respect to the order of the system 

and increases with the increase in the number of input channels of the given 

multivariable system. The second part of the work deals with the problem of 

identification of model uncertainties and the effect of unwanted exogenous inputs acting 

on a discrete time multivariable system using its output information. A disturbance 

model is introduced which accounts for the system model uncertainties and the effect of 

unwanted exogenous inputs acting on the system. The frequency content of the 



 

 

iv 

iv 

exogenous signals is assumed to be known. A linear dynamical model of the disturbance 

is assumed with an input that has the same frequency content as that of the exogenous 

input signal. The extended model of the system is then subjected to Kalman filtering and 

the disturbance states estimates are used to obtain a least squares estimate of the 

disturbance model parameters. The proposed approach is applied to a linear 

multivariable system perturbed by an exogenous signal of known frequency content and 

the results obtained depict the efficacy of the proposed approach.  
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CHAPTER I 

INTRODUCTION AND OVERVIEW 

 

1.1 Introduction 

 

The recent advent in the direct use of experimental data for the synthesis of system 

controllers has initiated a novel paradigm of control design. This line of research puts 

aside the dogma that analysis of control must start with a model. Stability, robustness 

and optimality for a system can be proved contingent upon the assumption that the 

model of the system is within the conjectured tolerances. Ergo, theories which use 

mathematical models to build control laws give insufficient attention to the implications 

of possible future observations, which may be at odds with assumptions with which the 

model of the system is built. The Achilles heel of modern control theory has been this 

habit of “proof by assumption”. Models may be useful in control design since they help 

formulate theories about suitable controller structures by extracting simple patterns from 

complex data. Nonetheless, there is a need to recognize that models may be misleading, 

since they can result in conclusions which cannot be drawn from the data alone. A 

classic example of this is seen in [1], wherein it is shown that an identified model of a 

high order system is non-stabilizable by a three-term controller and that the original data 

indicates that it is indeed stabilizable. Models are essentially a collection of our a priori  
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knowledge and prejudices. A careful examination of the control-relevant information in 

the data is required so as to be cognizant of situations in which our modeling 

assumptions might be inaccurate. This motivates the first problem that is being 

addressed in this work. 

 

This work focuses on the use of data to synthesize sets of stabilizing controllers for a 

Multi-Input Multi-Output (MIMO) or a multivariable system. Synthesis of sets of 

stabilizing controllers is important, since performance and specification problems can be 

solved on this set during the design stage. Additionally, it is important in applications 

that use switching control which should ideally be carried out on a set of stable 

controllers. A survey of the results on modern free control till date [2-7] is given in 

Chapter II and it is seen that most of these techniques result in a single optimal controller 

or are restricted to Single Input Single Output (SISO) systems. It is reiterated that this 

work focuses on the synthesis of sets of stabilizing controllers for MIMO systems, thus 

emphasizing its novelty. 

 

Given the input-output frequency domain data of an unknown linear multivariable 

system, a three step procedure to synthesize a stabilizing set of controllers is proposed. 

The structure of the controller is fixed, hence the form of the closed-loop characteristic 

equation of the system with the controller in place is known. However, the controller 

parameters do not appear linearly in this equation, the contrary of which is required 

during the second stage of the proposed approach. Hence, the controllers that appear at 
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each input of the system are designed sequentially. At every stage of the sequential 

design, a stabilizing set of controllers is obtained using Neimark’s D-Decomposition 

(search for stability regions) method. This is followed by the stage involving stability 

check, based on the Bode equivalent of Nyquist criterion. The three step procedure 

involving sequential design, search for stability regions and stability check gives a set of 

stabilizing controllers for the given multivariable system. Various sets of such 

controllers can be obtained by changing the structure of the controller assumed in the 

first place. 

 

The second problem that is being addressed in this work is the estimation of disturbance 

acting on a discrete-time multivariable system. The disturbance includes model 

uncertainties and undesired exogenous inputs acting on the system, certain 

characteristics of which are unknown but play a major role in the system’s dynamic 

behavior. Disturbance in the sense of system uncertainties, undesired exogenous input 

signals and noisy measurements can obscure the development of a viable control law for 

a system. Hence, it is important to identify a model for the disturbance from the actual 

system’s partial state measurements. Exogenous signals considered in this work are 

sinusoidal signals whose frequencies are known, but the amplitudes and phases are 

unknown. Sinusoidal exogenous signals are encountered in a number of systems such as 

shape control of flexible membranes [8], active noise control [9, 10] and hard disk drives 

[11]. The disturbance representing the model uncertainties and sinusoidal exogenous 

signals is modeled as a dynamic system with a set of sinusoidal signals (with frequencies 



 

 

 

4 

4 

at which the exogenous signal perturbs the given system) as inputs. This disturbance 

term is added to the assumed model of the multivariable system to get a dynamically 

equivalent extended system. This kind of approach to modeling the disturbance is seen 

in [12], however, the parameters that appear in the dynamic model of the disturbance are 

not estimated (identified) adaptively from the actual system measurements. It is a 

method devised in the context of direct controller design and the input to the disturbance 

dynamic system is assumed to be a white noise process. An assumed initial model of the 

disturbance term is used throughout to tune the controller to obtain the required design 

specifications and the process noise covariance matrix is updated adaptively online. In 

this work, a methodology to estimate the disturbance parameters when its model is 

assumed to be a linear dynamical system with a set of sinusoidal signals as input is 

provided. 

 

A linear time invariant or time varying dynamic model of the disturbance term is 

estimated by augmenting the disturbance term to the already known discrete time system 

model as, 

 

(k)Cx(k)y

(k)u(k)B(k)k)DA1)(kD

(k)D(k))(xF1)(kx
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where xm denotes the state of the model, Fm(.) and C are the known part of the system 

dynamics and Dm denotes the disturbance term which is modeled as a linear dynamical 

system whose parameters. ADm(k) and BDm(k) are unknown and are to be estimated from 

the actual system’s noisy output measurements, where k represents sample time. u(k) 

denotes a mixture of sinusoidal signals which acts as an input to the disturbance model 

and the frequencies present in this mixture are assumed to be known. ym denotes the 

output of the model. In the proposed approach, this extended system is subjected to 

Kalman filtering to obtain the disturbance state estimates in the presence of process and 

measurement noise of known statistics. A least squares estimate of ADm(k) and BDm(k) are 

obtained using these disturbance state estimates. The novelty of the solution lies in the 

way in which the disturbance model is estimated adaptively in order to obtain an 

identified model, which can further be used in the construction of a control law for the 

system. This can be regarded as the first step in the indirect method of control synthesis. 

 

1.2 Overview 

  

This thesis is divided into four chapters. After a brief introduction to the two problems in 

Chapter I, Chapter II gives a comprehensive treatment to the problem of model free 

control of multivariable systems, presenting a brief history of the various classical and 

modern control strategies till date. Some recent results on modern free control of SISO 

systems are reviewed and their applicability to MIMO systems is discussed. A novel 

three step method to synthesize sets of controllers for MIMO systems using direct data is 
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proposed. The efficacy of the method is validated using two examples of stable linear 

multivariable systems. Figures depicting the stabilizing set of controllers for these 

examples are shown. Analysis and interpretation of the results obtained and directions 

for future research is entailed at the end of Chapter II. Chapter III addresses the issue of 

estimation of disturbance through partial state measurements of a system in a stochastic 

environment. Previous results to some of the related problems are revisited. A simulation 

result wherein certain characteristics of the disturbance are known is presented. Chapter 

IV concludes this thesis with a summary of the proposed techniques reiterating their 

novel aspects, their sphere of applicability and directions for future research. 
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CHAPTER II 

MODEL FREE CONTROL OF MULTIVARIABLE SYSTEMS 

 

2.1 Introduction 

 

The problem of designing sets of stabilizing controllers for a system requires precise 

knowledge of the system. As described in the beginning of Chapter I, traditionally, if a 

system is unknown, it is subjected to the identification process that uses measurements 

of the system in order to obtain a system model. The identified model is then used for 

the synthesis of controllers. In many fields of science and engineering, one needs to deal 

with complex systems, where, approximations and simplifications made during the 

process of modeling may result in unreliable models, which lose the ability to capture 

the behavior of the actual system. A fatal consequence of such simplifications occurs 

when the designed controller stabilizes the model but not the actual system. 

 

Model free approach to the design of controllers involves the synthesis of these 

controllers using either input-output data or frequency domain data. It is a significant 

improvement over classical control loop shaping approaches since complete sets of 

stabilizing controllers can be obtained and these sets can further be inspected to obtain 

controllers with the required performance specifications.  
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The earliest notion of model free control was seen in the work by Nyquist in 1932 [13], 

who introduced a means of predicting the stability of a closed loop system based on 

frequency measurements made on the open loop system. The Nyquist criterion was later 

enhanced by Bode [14] and several others by introducing a graphical design approach  to 

reshape the open loop frequency response by a simple cascaded compensator to achieve 

the prescribed closed loop stability margins. The model based approach to control design 

was introduced by Kalman in 1960 [15, 16] which involved the use of state space 

models, state feedback control and quadratic optimization, guaranteeing stability and 

optimality. H∞ theory [17] is also a model based approach to control design where the 

controller order is invariably high and typically of the order of the generalized plant 

whose state space model is obtained by the process of identification using the input-

output data. In this work, the design of sets of fixed and lower order stabilizing 

controllers is carried out in contrast to the design approaches where in the controller 

order is unconstrained, since high order controllers are rarely implemented in practice. 

 

Early approaches to model free design were made by researchers in the fuzzy logic and 

neural network community, but the fact that the stability and performance guarantees 

cannot be given, is a disadvantage. Several independent ideas regarding data driven 

control were also proposed in the context of optimal control. Some of the work done in 

this direction is seen in [2-5], where a mathematical model (a state equation or a 

difference equation) of the optimal controller is derived directly from the observed data. 

These works focused on algorithms to find the controller, however data driven control 
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based on a dynamical system theory approach in data space is seen in [6]. Here, a 

method is proposed to design single optimal controller for a discrete time SISO system 

whose MacMillan degree and relative degree is assumed to be known. A recent result on 

model free design approach is also seen in [7] which uses input-output time series data. 

It provides stability conditions for a closed loop system in the framework of Lyapunov’s 

second method. This method is also restricted to SISO systems and the order of the 

system in some sense is presumed to be known. 

 

Recently, Keel and Bhattacharyya [1] proposed a method to obtain sets of stabilizing 

controllers for systems without analytical models. Design of sets of stabilizing 

controllers is important because performance and specification problems can be solved 

on this set during design. It is also important in switching control which should ideally 

be done on a stable set of controllers. In [1], an example is shown, which indicates that 

an identified model of a high order system is non-Proportional Integral Derivative (PID) 

stabilizable, whereas the original data used to synthesize the controllers directly is PID 

stabilizable. This marks the importance of designing controllers directly based on data 

and not on models. A Signature based method was used to obtain sets of stabilizing 

controllers for SISO systems without making any assumptions on the order or the 

relative degree of the system. The controllers were designed using the frequency domain 

data and were of fixed order unlike methods where their order can be unconstrained. 

This technique is explained in the segment that follows. 
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2.1.1 Signature based Method - Model Free Synthesis of Controllers for SISO Systems 

 

Some mathematical preliminaries are given in the beginning to aid in the better 

understanding of this method. Consider a real rational function, 

 

U(s)

Y(s)
P(s)               (2.1) 

 

where Y(s) and U(s) are polynomials of degrees m and n, respectively. Y(s) and U(s) 

have real coefficients and have no zeros on the jω axis. Let the number of open Right 

Half Plane (RHP) and open Left Half Plane (LHP) zeros and poles of P(s) be denoted as 


Pz , 

Pp  
Pz , 

Pp . As ω runs from 0 to +∞ the net change of phase of P(jω) is, 

 

σ(P)
2

π
)]p(pz[z

2

π
)P(jΔ PPPP0            (2.2) 

 

where σ(P) called the Hurwitz Signature of P(s) is defined as in Equation (2.3). 

 

)p2(zm)(n)p(pzz:σ(P) PPPP
         (2.3) 

 

P(jω) can be written as, 
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)(jP)(P)j(P ir              (2.4) 

 

where )(Pr  and )(Pi   are the real and imaginary parts of )j(P  . They have real 

coefficients and have no real poles for ω ϵ (-∞, +∞) since P(s) has no imaginary axis 

poles. The left hand side of Equation (2.2), can be calculated by developing formulas in 

terms of )(Pr  and )(Pi  . ω0 = 0 is a zero of )(Pi  since P(s) is real. Let, 

 

1l210 ω......ωωω0            (2.5) 

 

represent zeros of )(Pi  = 0 which are of odd multiplicities, real, finite and non-

negative. Signature of P(s) can be written as shown in Equation (2.6) and Equation (2.7). 

For n-m even, 

 

)](sgn[P1)()](ωsgn[P1)()](ωsgn[P1)(2)](ωsgn[Pσ(P) i
1l

lr
l

jr

1l

1j

j
0i )( 





   

   (2.6) 

and n-m odd, 

 

)(sgn[P1)()](ωsgn[P1)(2)](ωsgn[Pσ(P) i
1l

jr

1l

1j

j
0i )( 





        (2.7) 

 

where, 



 

 

 

12 

12 

















.0aif1

0aif0

0aif1

sgn(a)            (2.8) 

 

The signature formulas are derived based on phase unwrapping. These concepts are used 

to get the stabilizing set of controllers given the frequency response measurements of a 

SISO system. Conditions on the closed loop characteristic equation in terms of signature 

which places all the poles of the closed loop system in the LHP gives the stabilizing set 

of controllers. Let P(s) denote a rational transfer function of a system, written as follows, 

 

N(s)

M(s)
P(s)               (2.9) 

 

where M(s) and N(s) denote the numerator of degree m and denominator of degree n of 

P(s). The relative degree n-m of the system P can be found from the high frequency 

slope of the Bode magnitude plot of P(jω). If the system is stable, then p+= 0, hence z+ 

can be found from the frequency data since σ(P) in Equation (2.2) can be calculated 

from the phase plot of P(jω). 

 

If the system P is unstable, the parameters in the Equation (2.2) can be still be found, 

given that there exists a controller that can stabilize this system and is known, hence 

providing the knowledge of the closed loop frequency response. 
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Given the frequency measurements of P, a stabilizing set of PID controllers of the form, 

 

sT)s(1

sKsKK
C(s)

2
dpi




          (2.10) 

 

where T is a fixed small positive value and Kp, Ki, Kd represent the proportional, integral 

and derivative parameters of the controller that are designed using the closed loop 

characteristic equation as shown in Equation (2.11). 

 

s)R(s)P((s)R

)P(s)sKsK(KsT)s(1R(s) 2
dpi




       (2.11) 

 

For closed loop stability, the signature of )(sR and thus )s(R is required to satisfy 

Equation (2.12). 

 

22zmn(s))Rσ(

)p(p2nσ(R(s))









        (2.12) 

 

)j(R   can be written as a quantity shown in Equation (2.13). 
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)K,(Rj)Kd,Ki,(R)j(R

))(TP)j(P|)j(P|K(j

)(P)(TP|)j(P|)KK()j(R
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pir

i
2

r
2

p

ir
222

di

d
2

pi






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




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  (2.13) 

 

Setting the imaginary part )K,(R pi  to zero as shown in Equation (2.14), suitable 

values of Kp are selected. 
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   (2.14) 

 

The function )(g is plotted and pK = *
pK is selected such that the number of points at 

which it intersects )(g  is equal to the number of frequency points that yield the 

required signature. 

 

Let 1l321 .......    denote this set of frequencies which are distinct and of odd 

multiplicities. Determine strings of integers, 

 

]i,.....i,i,i[I l210          (2.15) 
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with 1}1,{it  such that, when n-m is odd, 

 

)Rσ(j1)](i1)(2i1)(......2i2i[i 1l
l

l
1l

1l
210  


 .    (2.16) 

 

When n-m is even, 

 

)Rσ(j1)](2i1)(......2i2i[i 1l
1l

1l
210  


      (2.17) 

 

where )]K,(Rsgn[j *
pi

 . 

 

For every fixed pK = *
pK , the ),( di KK  corresponding to closed loop stability are given 

by, 

 

0i)K,K,(R tditr           (2.18) 

 

where ti s are strings satisfying Equation (2.16) and Equation (2.17) and t s are the 

solutions of Equation (2.14). 

 

Thus, sets of stabilizing controllers for SISO systems without any analytical models can 

be obtained using Signature based method. A direct extension of this method to MIMO 

systems may not be possible, since the controller parameters do not appear linearly in the 
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closed loop characteristic equation. They appear in a multilinear or a nonlinear fashion 

and the same parameters appear in most of the coefficients of this equation. To get 

around this problem, a new solution is proposed and is explained in the next segment. 

 

2.2 Model Free Method for Multivariable Systems 

 

The model free methods that have been proposed till now have been restricted to SISO 

systems. In this work, a new design approach has been proposed which provides a 

method of model free controller synthesis for MIMO systems. The frequency domain 

data of the open loop system as in [1] is used for the controller synthesis. Some of the 

salient features of this method constitute the following, 

 Sequential design of controllers 

 Search for stability boundaries (Root invariant regions) 

 Stability test 

 

2.2.1 Sequential Design of Controllers 

 

Designing controllers for multivariable systems directly from frequency domain data 

poses some problems. The controller parameters do not occur linearly in the closed loop 

characteristic equation as in the case of SISO systems. Instead, they occur as multilinear 

or nonlinear terms. Analyzing them using Routh Hurwitz, Neimark’s D-Decomposition 

and Signature based methods is difficult, even when the model of the systems is known. 
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The proposed approach gets rid of this problem by inculcating a sequential design of 

controllers. The concept of sequential design becomes clear using an example as shown 

in Fig.1, which is a Two Input Two Output (TITO). 

 

 

 u1 y1  

 u2 y2 

  

  r1 

 r2 

 
Fig.1. Two Input Two Output (TITO) System. 

 

 

Internally, the system shown above looks as in Fig.2. There are two controllers, one at 

each input of the system. In sequential design, at first, only one of the controllers, say C2 

is switched on and the other controller, C1 is turned off. The closed loop characteristic 

equation is analyzed and is used to obtain a set of stabilizing C2. Now, the controller C1 

is turned on and with every stabilizing C2 in place, sets of stabilizing C1 are obtained. 

This corresponds to one C2 and a set of C1 that stabilizes the entire system. This is 

repeated for every C2 obtained in the first place to get a stabilizing set SC1. This process 

is repeated with C2 turned off and C1 turned on to get set of stabilizing C1. Then for 

every C1 obtained, sets of stabilizing C2 are obtained to get a set SC2. The union of SC1 
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and SC2 gives the stabilizing set. The exact method used to obtain these stabilizing sets 

SC1 and SC2 will be discussed in the segments that follow. This process can be extended 

to systems with any number of inputs and outputs and is not restricted to TITO systems 

or square systems, where the number of inputs and outputs are equal. 

 

 

 

          r1    y1 

 

 

 

 

           r2 

 y2 

 

Fig.2. Internal Architecture of a TITO System. 

 

 

A natural question that arises at this point is whether or not the Signature based method 

can be used in conjunction with the sequential design approach for MIMO systems, 

because sequential design approach results in a characteristic equation with linear 

controller parameters. In the case of Signature based method applied to SISO systems, 

the signature can be easily specified in terms of the relative degree of the system which 
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can be calculated from the Bode magnitude plot of the system. However, in the case of 

multivariable systems, it is difficult to specify this signature condition at every stage of 

the sequential design. Although, the coefficients of the characteristic polynomial are 

linear in only one of the controller parameters, the calculation of signature of each of the 

subsystems (the loops corresponding to the controllers which are turned on) from the 

Bode magnitude plot of the multivariable system is not only difficult, but infact, not 

possible. 

 

2.2.2 Search for Stability Boundaries 

 

Stability boundaries represent the collection of all the points in the controller parameter 

space for which the corresponding characteristic equation of the closed loop system has 

at least one root on the imaginary axis. These boundaries define a partition of the 

parameter space in several regions, each region having a constant number of unstable 

roots for all the parameters inside the region. 

 

The D-decomposition method suggested by Neimark [18, 19] in the 40s has been used to 

obtain these stability boundaries. This method has been used previously to obtain sets of 

stabilizing controllers for SISO systems when the model of the system is known. To the 

best knowledge of the author, it has not been used to obtain sets of stabilizing controllers 

for MIMO systems especially when their model is unknown. In this work, a technique is 

presented to obtain these stabilizing controllers for MIMO systems when their model is 
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unknown and it is possible to do so because of the sequential design approach that is 

being followed. 

 

Consider a characteristic polynomial )k,s( , depending on a vector parameter k [20], as 

shown in Equation (2.19). The boundary of a stability domain (in the space k) is given 

by, 

 

  ,0)k,j( .         (2.19) 

 

If Rk , then we obtain two equations (real and imaginary parts of Equation (2.19)), 

each containing the variable k, which define the stability boundary and on solving these 

equations for k, we get various k, which divide the real line into several intervals and 

each of these points (k), define the boundary of the stability domain. Similarly, if 2Rk , 

then we get two equations in two variables which define the parametric curve, k(ω), for 

−∞ < ω < ∞, specifying the boundary of the stability domain.  Moreover, the curve k(ω) 

divides the plane into root invariant regions (regions with a fixed number of stable and 

unstable roots of p(s,k)). This is the basic idea of D-decomposition approach. This idea 

can be traced back to Vishnegradsky [21] who reduced a cubic polynomial to the form, 

 

1sksks)k,s( 2
2

1
3           (2.20) 
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treating the coefficients k1, k2 as parameters. Then Equation (2.19) yields k1ω
2 

= 1, 

ω(k2− ω
2
) = 0. A hyperbola k1k2 = 1, which defines the stability boundary is obtained on 

eliminating ω. The stability domain is the set k1k2 > 1. When the model of the system is 

unknown, it is not possible to construct the characteristic polynomial of the system. In 

order to find the stability boundaries in this case, the characteristic equation whose 

zeroes denote the poles of the system is used (note the difference between characteristic 

polynomial and characteristic equation). It is convenient to use the characteristic 

equation as it contains the open loop system transfer function and since the frequency 

data is known, the characteristic equation can be written in terms of the data that is 

known. For example, consider a SISO system with the following transfer function, 

 

)s(B

)s(A
)s(P  .           (2.21) 

 

Let C(s) denote a controller which is to be designed so as to stabilize P(s). The controller 

can be of any finite order, that is, the controller parameter space is finite dimensional. 

The closed loop dynamics of this system is characterized by, 

 

0)s(C)s(P1  .          (2.22) 

 

The stability crossing boundaries T is the set of all points in the controller parameter 

space, for which Equation (2.22) has imaginary roots. In other words, these are the 
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controller parameters for which the zeroes of the closed loop characteristic equation 

cross the imaginary axis from LHP to RHP or from RHP to LHP. The set of all points 

denoting the controller parameters between these crossings give root invariant regions, 

thus dividing the space of the parameters into stabilizing and non-stabilizing regions. 

Hence we need to find those controller parameters which satisfy, 

 

0)j(C)j(P1   .         (2.23) 

 

Since P(jω) is known, it is possible to find the root invariant regions for the model free 

case. In case of SISO systems, the controller parameters occur linearly in the 

characteristic equation/polynomial as in Equation (2.20) given that the controller chosen 

is linear. Hence, the root invariant regions can be easily found. But, in case of MIMO 

systems, the controller parameters occur in a nonlinear fashion. However, since we are 

using a sequential design approach, this problem is taken care of. Consider a MIMO 

system P(s), which denotes a transfer function matrix whose row size is equal to the 

number of outputs to the system denoted as m and column size is equal to the number of 

inputs denoted as r. Let C(s) denote the controller matrix whose row size is equal to r 

and column size is equal to m. The characteristic equation of this system is given by, 

 

0))s(C)s(PI(det  .         (2.24) 

 

In general, the characteristic equation can be written as follows, 
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))s(C)s(PIdet(   = )s(M1 = 0        (2.25) 

 

where M(s) is in terms of the transfer function of the subsystems, constituting the MIMO 

system and the controller transfer function. At every stage of the sequential design, M(s) 

consists of coefficients which comprise of parameters of a single controller. Since each 

of the controllers is linear, these coefficients are also linear in those parameters. The 

search for stability boundaries can thus be done at every stage of the sequential design 

approach. Once these stability boundaries are obtained, the space of controller 

parameters is investigated for stable regions. The stability test is discussed in the next 

segment.  

 

2.2.3 Stability Test 

 

Having found the stability boundaries, it is required to check which of these regions 

contain a stabilizing set of controller parameters. Since each of these regions is root 

invariant, it is enough if the stability condition is checked at only one point in each of 

these regions. If one point is stabilizing, then the entire region forms a stabilizing set. 

Hence, there is a need to check if the term )s(M1 is stable for a point in each of the 

root invariant regions. The quantity )s(M1 can be written in terms of the frequency 

response measurements of the subsystems of a multivariable system and the controller 

whose parameter lie in the root invariant regions. A powerful test such as the Nyquist 

criterion can be used to determine the stability. It is a well known fact that the Nyquist 
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criterion [13] provides a powerful test for closed-loop stability in terms of open-loop 

measured data. Let )( jM  denote the frequency response measurement of a quantity 

which is in terms of the frequency response measurements of the subsystems of the 

given multivariable system and the controller whose stabilizability needs to be checked. 

Let ωi, i = 0, 1, 2,…, k + 1 with ω0 = 0 and ωk+1 = ∞ denote the frequencies where the 

Nyquist plot of M(s) cuts the negative real axis of the complex plane. In other words, 

these frequencies are the solutions to the following, 

 

,n)j(M   ,.......5,3,1n          (2.26) 

 

Define the set, 

 

},,.....,,,{ 1kk210           (2.27) 

 

where,   :.....:0 1kk210   and 0  and 1k  are included only if 

they satisfy the angle condition in the Equation (2.26). Introduce the corresponding 

sequence of integers, 

 

}iiii{i 1kk210 ,,.....,,,           (2.28)  

 

where 0it   if 1 )M(j   and otherwise, 
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Under the assumption that M(s) has no imaginary axis poles, the number of 

counterclockwise encirclements of -1+j0 by the Nyquist plot of M(s) is given by 

Equation (2.30). 

 

 




k

1t
t0 i2ii : i(M)          (2.30) 

 

For stability, 

 

 p  i(M) .           (2.31) 

 

Since only stable linear multivariable systems are being considered in this work, p+
= 0 

at every stage of the sequential design. Hence the controllers for which Equation (2.31) 

is satisfied are considered to be stabilizing. Expressions similar to Equation (2.29) can be 

derived when M(s) has poles on the imaginary axis as shown in [22]. This primarily 

constitutes the stability check part of the proposed approach. 
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2.3 Results 

 

In this segment, results for the model free method applied to a second and a third order 

system are shown. Both the examples correspond to stable linear systems, hence p+= 0. 

 

2.3.1 Example 1: Second Order System 

 

Consider the following Two Input Two Output (TITO) second order stable multivariable 

system, 
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A set of stabilizing controllers of the form, 

 











2

1

K0

0K
)s(C           (2.33) 

 

where K1 and K2 represent gains is found using the proposed technique. 
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2.3.1.1 Theoretical Construction 

 

The above system is first analyzed theoretically to get a stabilizing set of controllers of 

the chosen form as shown below, 

 

)s(N)s(D)s(P p
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The characteristic polynomial of the closed loop system is, 
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    (2.37) 

 

Using Routh-Hurwitz criterion, the set of stabilizing controllers satisfy the following 

inequalities, 
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The above inequalities are plotted using Maple and the stabilizing region obtained is 

shown in Fig.3. 

 

2.3.1.2 Using Model Free Method 

 

The closed loop characteristic equation of the system can be written in terms of the 

entries of the transfer function matrix of the given multivariable system, as shown in 

Equations (2.39-2.41). The zeroes of this characteristic equation correspond to the poles 

of the closed loop system. 

 

)KKGKPKP(jKKGKPKP1

CC)PPPP(CPCP1

)PCI(det)K,K,s(

21i2i221i1121r2r221r11

2122211211222111

21







 

 (2.39) 

where, 
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 Fig.3. Theoretical Stabilizing Region (shaded area) for Example 1. 

 

 

Now, given the open loop Bode frequency response of the multivariable second order 

system as shown in Fig.4, Equation (2.41) is analyzed through the proposed three stages 

of the control design. The number of inputs to the system is two; hence the sequential 

design stage undergoes two recursions. During each of the recursive stages, the 

characteristic equation passes through the other two steps, that is, the search for stability 

regions and stability check. 
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Fig.4. Open Loop Bode Frequency Response of Example 1. 

 

 

The stabilizing region obtained for Example 1 using the proposed approach is shown in 

Fig.5. 



 

 

 

31 

31 

 

Fig.5. Stabilizing Region Using Proposed Approach for Example 1. 

 

 

2.3.2 Example 2: Third Order System 

 

Consider a TITO third order stable multivariable system as shown in Equation (2.42). 

Even in this case, a set of stabilizing controllers of the form (2.43), where both the 

controllers are gains is found. 
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2.3.2.1 Theoretical Construction 

 

The system in Equation (2.42) is analyzed theoretically to get a stabilizing set of 

controllers of the chosen form as shown below, 
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The characteristic polynomial of the closed loop system is, 
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Using Routh-Hurwitz criterion, the following set of inequalities, if satisfied, give a set of 

stabilizing controllers, 
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     (2.48) 

 

The stabilizing region obtained using Equation (2.48) through Maple is shown in Fig.6. 

 

 

 
 

Fig.6. Theoretical Stabilizing Region (shaded area) for Example 2. 
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2.3.2.2 Using Model Free Method 

 

The Bode frequency response of the multivariable third order system given in Equation 

(2.42) is shown in Fig.7. 
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Fig.7. Open Loop Bode Frequency Response of Example 2. 
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The closed loop characteristic equation in terms of the frequency response of the open 

loop system, as shown in Equation (2.41), is analyzed through the three stages of the 

control design to get the stabilizing region shown in Fig.8. 

 

 

 

Fig.8. Stabilizing Region Using Proposed Approach for Example 2. 
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2.4 Concluding Remarks 

 

The complexity of the proposed approach increases with the increase in the number of 

inputs to the system, since the number of stages in the sequential design is directly 

proportional to the number of inputs. However, for a given number of inputs, increase in 

the order of the system does not increase the complexity. For example, the TITO 

systems given by Equations (2.32) and (2.42) are analyzed using the same form of the 

characteristic equation given by Equation (2.41), irrespective of their order. This can be 

regarded as one of the advantages of the proposed approach. The examples shown 

indicate that the stabilizing region obtained using the proposed approach recovers the 

entire set of stabilizing controllers of the chosen form. However, it is required to provide 

a formal proof indicating that the entire set is always recovered, or to provide a 

counterexample that falsifies the former statement. Different sets of stabilizing 

controllers can be obtained for a given system by changing the form of the controller 

chosen in the first place. The examples shown in the previous segment are restricted to 

stable linear multivariable systems of finite order. The proposed approach can also be 

extended to unstable linear multivariable systems if the number of unstable poles p+ of 

the system is known. Further research is required to handle a larger class of systems 

which includes systems that are described using linear Partial Differential Equations 

(PDEs), nonlinear systems and discrete time systems. 
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CHAPTER III 

DISTURBANCE MODELING 

 

3.1 Introduction 

 

Understanding the effect of disturbance on a system’s output is a ubiquitous issue. 

Disturbance of various kinds is seen in almost all kinds of systems ranging from 

complex systems, such as aircrafts, spacecrafts, ecological systems whether abiotic, such 

as fires in forests and wave action in rocky intertidal zone, or biotic, such as disease and 

predation, to simple systems like hard disk drives. Disturbance results from a 

combination of phenomena that cannot be measured individually. 

 

In applications wherein it is desired to devise control actions for systems, the synthesis 

of the control actions with unknown disturbance inputs poses serious problems. 

Consequently, it is necessary to determine or estimate certain characteristics of 

disturbance from system outputs which could ease the construction of a feasible control 

law for that system. This is an indirect method of synthesizing a controller. Direct 

methods involve tuning the controller parameters to meet the specified performance 

requirements, while simultaneously rejecting the unknown disturbance input.  

 

Methods to synthesize controllers for the purpose of regulation in SISO systems 

considering sinusoidal disturbance inputs with unknown amplitudes, frequencies and 
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phase has been reported in the literature using both direct [9, 23] and indirect methods 

[24-28]. Some of them have also been extended to MIMO systems, of which a direct 

method is seen in [29]. In [30], an indirect method of regulation with an adaptive internal 

model is presented to track sinusoidal reference signals with unknown amplitudes and 

frequencies for linear MIMO systems. An adaptive observer is presented to estimate the 

amplitudes and the frequencies of the sinusoidal signals where only the number of 

sinusoids in the disturbance is assumed to be known. A direct method of adaptive 

regulation in the presence of unknown sinusoidal disturbance is also discussed in [31], 

wherein a regulator design approach is proposed. The desired regulator is designed 

within a set of Q-parameterized stabilizing controllers. A properly constructed set of 

such controllers is considered to introduce triangular decoupling in part of the closed-

loop system dynamics. The decoupling allows for significant simplification in the design 

of the adaptive regulator and the analysis of the properties of the resulting adaptive 

closed-loop system. However, there exists a constraint wherein the set of controllers that 

can decouple the closed loop dynamics of the given system may be empty. An indirect 

method for regulation of nonlinear MIMO systems where only the number of 

frequencies in the disturbance is assumed to be known was proposed in [32]. 

 

The concept of Disturbance Accommodating Control (DAC) was proposed in the early 

1970s [33], which is a direct method of controller synthesis in the presence of 

disturbance which is quantified to include both the system model parameter uncertainties 

and external unknown disturbance/noise inputs. The main objective of DAC is to make 
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necessary corrections to the nominal control input to accommodate for external 

disturbances and system uncertainties [33-36]. The disturbance accommodating observer 

approach has shown to be extremely effective for disturbance attenuation [37-39]. 

However, the performance of the observer can significantly vary for different types of 

exogenous disturbances, which is due to observer gain sensitivity. An extension of the 

observer based DAC is seen in [12], which uses a robust control approach wherein both 

the system states and the disturbance term are estimated using a Kalman filter from the 

measurements of the system. The disturbance term is modeled as a linear dynamical 

system with white noise process as an input to this system. The states estimated using 

Kalman filtering are used to develop a nominal control law while the estimated 

disturbance term is used to make necessary corrections to the nominal control input to 

minimize the effect of system uncertainties and the external disturbance. The process 

noise covariance is updated adaptively online. 

 

In this work, a method to estimate disturbance, which includes system model 

uncertainties and exogenous input signals whose frequencies are known, is proposed. 

Disturbance is modeled as a linear dynamic system with a set of sinusoidal signal inputs 

at frequencies with which the exogenous signals (external disturbance) is assumed to 

perturb the given discrete time system. The idea of modeling the disturbance term as a 

dynamic system is already seen in [12], but in this work, this model is updated 

adaptively online using Recursive Least Squares (RLS) technique. The way the 

disturbance model is estimated/identified is explained at length in the next segment. 
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3.2 Disturbance Model Identification 

 

Consider an nth
 order, m output and r input system of the following form, 

 

ν(k)Cx(k)y(k)

 w(k) (k)BF(x(k))1)x(k



 
          (3.1) 

 

where x denotes the state of the system, F(x) is assumed to be linear in x, either time 

invariant, F(x(k)) = Ax(k) or time varying, F(x(k))= A(k)x(k). The true state matrix (A) is 

assumed to be unknown. ξ is the external disturbance representing the exogenous input 

to the given system and the frequencies at which it perturbs the system is assumed to be 

known. y represents the output of the system and C is the output matrix that is assumed 

to be known. w represents the process noise and ν is the measurement noise, the statistics 

of which are assumed to be known. The external disturbance dynamics is, 

 

u(k) (k))(x(k),L  1)(k 1   .          (3.2) 

 

The assumed (known) system model is, 
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The external disturbance and the model uncertainties can be lumped into a disturbance 

term D as follows, 

 

(k)BF(x(k))  D(k)             (3.4) 

 

where ∆F(x(k)) = F(x(k))-Fm(xm(k)). The true model of the system can be written in 

terms of the known model as, 

 

.ν(k)Cx(k)y(k)

 w(k)D(k) (x(k))F1)x(k m




          (3.5) 

 

Equation (3.5) can also be written in terms of the disturbance, which is modeled as a 

dynamical system to get an extended system as follows, 
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    (3.6) 

 

The extended system, assuming Fm(x(k))= Amx(k) can be written as, 
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The disturbance term is modeled as, 

 

)k(uB)k(DA  1)(kD DmDmm  .          (3.9) 

 

The known model of the system can now be written as, 
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where, 
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The disturbance term in Equation (3.9) is adaptively updated using Kalman filter and 

Recursive Least Squares (RLS) technique. 
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The discrete time update and measurement update equations for a Kalman filter starting 

with some initial values of J1m and J2m are given in Equation (3.12) and (3.13), 
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     (3.13) 

 

where P
- denotes the a priori state estimate error covariance and P denotes the a 

posteriori state estimate error covariance. 
mẑ  denotes the a priori extended state 

estimate and mẑ  denotes the a posteriori extended state estimate. K denotes the Kalman 

filter gain or the blending factor, Q is the process noise covariance and R is the 

measurement noise covariance matrix.  

 

The last n entries of mẑ correspond to the disturbance state estimates mD̂ . These 

estimates are used to adaptively update the model given in Equation (3.9) as shown 

below, 
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Let,  
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where, 
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where λ denotes the forgetting factor and 0 ≤ λ≤ 1. 
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If λ = 1, then all the previous disturbance state estimates and the input are used to get an 

estimate of the disturbance model parameters. If λ = 0, only the present values are used 

to get the disturbance model parameter estimates. For any other value of 0 < λ< 1, the 

present estimates and inputs are given more importance than all the previous values. An 

initial batch processing step followed by a recursive procedure given in the Equation 

(3.19) is used to obtain the disturbance model. The efficacy of this approach is shown 

using an example in the next segment. 

 

3.3 Results 

 

In this section, an example is presented, wherein the disturbance model is assumed to be 

linear time invariant. Results for various values of forgetting factor λ are presented. The 

parameters of a third order, TITO discrete time system whose output information is 

available are given as follows, 
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The process and measurement noise are assumed to be normally distributed, their 

statistics is assumed to be known and the two inputs u are assumed to be a mixture of 

sinusoidal signals. The initial state is assumed to be unknown and the estimation error 

covariance matrix is selected such that the error from the disturbance states is assumed 

to be more than that of the system states. 

 

The initial values for ADm and BDm are chosen as follows, 
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The outputs of the extended model with the disturbance term updated recursively in 

comparison with the actual system outputs with a forgetting factor λ =1 are shown in 

Fig.9 and.Fig.10. As can be seen in these two figures, the disturbance model outputs 

exactly track the system outputs. This is a cross-validation step and the figures indicate 

satisfactory performance in terms of output tracking. The convergence of the disturbance 

model parameters is shown in Fig.11 and.Fig.12. 
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Fig.9. Output 1 of Disturbance Identified Model v/s System Output 1. 
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Fig.10. Output 2 of Disturbance Identified Model v/s System Output 2. 
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Fig.11. Convergence of the Entries in ADm. 
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Fig.12. Convergence of the Entries in BDm. 
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The convergence of the disturbance model parameters for λ = 0.95 and λ = 0.9 is shown 

in Fig.13 and Fig.14. As seen in these figures, time taken for the parameters to converge 

increases with decrease in the forgetting factor. 
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Fig.13. Convergence of Disturbance Model Parameters for λ = 0.95. 
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Fig.14. Convergence of Disturbance Model Parameters for λ = 0.9. 

 

 

3.4 Concluding Remarks 

 

A method to identify disturbance which includes the system model uncertainties and the 

exogenous inputs is proposed. The exogenous inputs are assumed to be a set of 

sinusoidal signals whose frequencies are known, but the amplitudes and phases are 

unknown. From the simulation results, it can be seen that the proposed approach 

performs well in the sense of the convergence of the identified disturbance model 

parameters. Cross validation indicates that the output of the system matches with that of 
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the model with an identified disturbance term. Further research needs to be pursued for 

the case when no information about the exogenous inputs is known a priori. There is also 

a need to extend the proposed method to nonlinear systems and systems described using 

Partial Differential Equations (PDEs).  
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CHAPTER IV 

CONCLUSIONS AND SUMMARY 

 

This work is aimed at the investigation of two problems and the development of 

appropriate solutions for each of them. First, the problem of synthesis of stabilizing 

controllers for a multivariable system using the data alone, and the other, the problem of 

estimation of disturbance acting on a system using the knowledge of partial state 

measurements.  

 

Data based synthesis of controllers is an important area of research since there is no 

assumption made about the system to be controlled. In other words, it eliminates the 

need to identify an unknown system before formulating control laws for that particular 

system. Most of the data based techniques proposed in the literature, till date, either 

concentrate on the synthesis of a single controller or are confined to SISO systems. In 

this work, a class of linear stable multivariable systems is considered. A three step 

procedure involving sequential design, search for root invariant regions and stability 

check is proposed that generates a set of stabilizing controllers given the frequency 

response measurements of the system. The form of the controller is chosen beforehand. 

Different sets of controllers can be obtained by changing the form of the controller 

chosen in the first place. Examples of TITO second and third order system are used to 

depict the efficacy of the proposed technique.  
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Disturbance is an undesired phenomenon that can inhibit a system’s performance. 

Undesired exogenous signals that act as an input to a system can obscure the 

development of a control law for that system. In this work, the disturbance is assumed to 

include the model uncertainties of the system as well as the exogenous inputs acting on 

the system. It is assumed that there is access to only the outputs of the actual system and 

not to its states. Once the form of the disturbance is known, it becomes easier to 

construct actions that can cancel this disturbance while simultaneously achieving the 

required design specifications. As a result, a procedure is proposed to estimate the 

disturbance using system output measurements. Disturbance is modeled as a linear 

dynamical system with a set of sinusoidal signals acting as input to this system. The 

frequencies of this set of sinusoidal signals are assumed to be the same as the 

frequencies at which the exogenous signals perturb the given system. The disturbance is 

appended to the known model of the system to get a dynamically equivalent extended 

model. Kalman filter is used to obtain the disturbance state estimates which are then 

used to obtain a least squares estimate of the disturbance parameters. Simulation results 

for a third order, TITO discrete time system are shown which demonstrate good 

convergence properties and cross validation approves the veracity of the proposed 

disturbance modeling technique. 
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4.1 Future Research 

 

The proposed model free method of synthesizing controllers for MIMO systems is 

applicable to linear systems. Specifically, the examples considered in this work are only 

stable MIMO systems. For unstable systems, the number of open loop unstable poles 

should be known to apply the proposed technique, or a method to find the number of 

unstable poles from the data needs to be devised. Further research needs to be pursued to 

include a more general class of systems like nonlinear systems and discrete time 

systems. 

 

The proposed approach to disturbance modeling assumed that the frequencies at which 

the exogenous signals act on a given discrete time MIMO system are known a priori. 

This needs to be extended to the case where no such information is known beforehand. 

An elegant stability proof has to be given for the proposed estimation technique. There is 

also a need to extend the approach to a higher class of systems. 
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