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ABSTRACT 
 

 

A Semi-Analytic Solution for Flow in Finite-Conductivity 

Vertical Fractures using Fractal Theory. (August 2012) 

Manuel Cossio Santizo, 

M.Eng., Imperial College London 

 Co-Chairs of Advisory Committee: Dr. Thomas A. Blasingame 

 Dr. George J. Moridis 

 

The exploitation of unconventional reservoirs goes hand in hand with the practice of hydraulic fracturing 

and, with an ever increasing demand in energy, this practice is set to experience significant growth in the 

coming years.  Sophisticated analytic models are needed to accurately describe fluid flow in a hydraulic 

fracture and the problem has been approached from different directions in the past 3 decades — starting 

with the use of line-source functions for the infinite conductivity case, followed by the application of 

Laplace Transforms and the Boundary-Element Method for the finite-conductivity case.  This topic 

remains an active area of research and, for the more complicated physical scenarios such as multiple 

transverse fractures in ultra-tight reservoirs, answers are presently being sought. 

 

Fractal theory has been successfully applied to pressure transient testing, albeit with an emphasis on the 

effects of natural fractures in pressure-rate behavior.  In this work, we begin by performing a rigorous 

analytical and numerical study of the Fractal Diffusivity Equation and we show that it is more 

fundamental than the classic linear and radial diffusivity equations.  Subsequently, we combine the Fractal 

Diffusivity Equation with the Trilinear Flow Model, culminating in a new semi-analytic solution for flow 

in a finite-conductivity vertical fracture which we name the "Fractal-Fracture Solution".  This new solution 

is instantaneous and has an overall accuracy of 99.7%, thus making it comparable to the Trilinear 

Pseudoradial Solution for practical purposes. It may be used for pressure transient testing and reservoir 

characterization of hydrocarbon reservoirs being produced by a vertically fractured well. Additionally, this 

is the first time that fractal theory is used in fluid flow in porous media to address a problem not related to 



 iv 

reservoir heterogeneity.  Ultimately, this work is a demonstration of the untapped potential of fractal 

theory; our approach is very flexible and we believe that the same methodology may be extended to 

develop new reservoir flow solutions for pressing problems that the industry currently faces.   
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1. INTRODUCTION 

 

1.1 Statement of the Problem 

 

Unconventional resources are a very promising source of energy, mainly because of their enormous 

estimated reserves.  As shown in Figure 1.1, shale gas, tight gas and coalbed methane are expected to be 

the main sources of natural gas production in the coming decades.  Due to the extremely low 

permeabilities, it is generally not possible to economically exploit unconventional reservoirs without the 

use of horizontal drilling and hydraulic fracturing.  Officially, a tight gas is defined as having a 

permeability below 0.1 md, but current shale gas/oil can be in the nano-darcy range.  

 

 

 
 

 

Figure 1.1 — U.S. natural gas production, 1990-2035, trillion cubic feet per year (US DOE EIA 2011) 

 

 

 

___________________________ 

This thesis follows the style of the SPE Journal. 
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Compounding this extremely low permeability is the fact that other factors such as sorption effects, natural 

fractures, heterogeneity or multiphase flow may play an important role in determining production 

performance and estimated ultimate recovery.  In order to economically exploit a field, engineers must be 

able to predict, with a high degree of accuracy, the production performance of the reservoir. This will 

guide the asset team in their expectations of cash flow, and therefore help them decide what investments to 

make next. 

 

Mathematical tools can be broadly divided into two categories: analytical and numerical.  Analytical tools 

have the advantage that they are very fast and easy to manipulate; but on the other hand, analytical 

methods may be fairly limited in the types of the physical scenarios that they can model. Numerical 

models are much more flexible and can accommodate a variety of scenarios, but can be expensive – in 

terms of computational time and problem set-up. 

 

We believe that new analytical (or perhaps a better term would be semi-analytical) solutions can be 

created by merging fractal theory with existing reservoir solutions.  This thesis utilizes fractal theory and 

provides the detailed proposal, development, calibration, and validation of the "Fractal-Fracture Solution" 

(FFS) for the case of a single vertical well containing a single (planar) hydraulic fracture of finite fracture 

conductivity producing in an infinite-acting homogeneous reservoir. 

 

1.2 Research Objectives 

 

The primary objectives of this work are 

● To perform a rigorous numerical and analytical study of the Fractal Diffusivity Equation, which is 

derived in detail.  We demonstrate that analytical solutions for various combinations of boundary 

conditions can be obtained by exploiting the capabilities of symbolic math software.  

● To develop an accurate semi-analytical solution for flow in a single finite-conductivity vertical 

fracture fully penetrating a homogeneous infinite-acting reservoir.  To our knowledge, this is the 

first application of fractal theory for a problem that is not related to heterogeneous systems. 
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2. LITERATURE REVIEW 

 

2.1 An Overview of Fractal Theory 

 

Benoit B. Mandelbrot (1982) generated a widespread interest in fractal geometry — a concept introduced 

by Mandelbrot himself.  His book (Mandelbrot 1982) is the standard reference and contains both the 

elementary concepts and a broad range of new ideas. Mandelbrot (1982) defined a fractal as a "rough or 

fragmented geometric shape that can be split into parts, each of which is (at least approximately) a 

reduced-size copy of the whole". 

 

The complex nature of a phenomenon is manifested in the underlying intricate geometry which in most 

cases can be described in terms of objects with a non-integer (fractal) dimension (Frame et al. 2012).  Put 

in simpler terms, a property of a given system is said to be fractal if its seemingly chaotic and 

unpredictable behavior with respect to space or time can be captured in a simple power-law equation.  In 

this equation, which we discuss below, the so-called "fractal dimension" is the only variable and it 

characterizes the chaotic property of the studied system.  Thus, seemingly incomprehensible problems are 

distilled and encapsulated in the simplicity of a power-law equation. 

 

The fractal dimension has been defined (Feder 1988) as a statistical quantity that gives an indication of 

how completely a fractal appears to fill a space as one zooms down to finer and finer scales.  Mandelbrot 

(1982) and Feder (1988) discuss at length how to determine the fractal dimension of a geometric object or 

a data set.  Given the highly visual nature of fractals, it is best to illustrate this rather abstract concept via 

the classic example of the triadic Koch curve (Figure 2.1).  
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Figure 2.1 — The triadic Koch curve (Feder 1988) 
 



5 

 

 

The construction of the Koch curve starts with a line segment of unit length 1.  This starting form is called 

the initiator and may be replaced by a polygon such as an equilateral triangle, a square or some other 

polygon.  The initiator is the 0-th generation of the Koch curve.  The construction of the Koch curve 

proceeds by replacing each segment of the initiator by the generator shown as the curve marked n=1 in 

Figure 2.1.  Thus we obtain the first generation, which is a curve of 4 line segments each of length 1/3; the 

length of the curve is now 4/3.  The next generation is obtained by replacing each line segment by a 

scaled-down version of the generator.  Thus in the second generation we have a curve consisting of 4 × 4 = 

16 segments each having 1/3 × 1/3 = 1/9 length; the length of the second generation is therefore (4/3)
2
 = 

16/9. At the n-th generation, the length of the Koch curve will be (4/3)
n
.  In general terms for any n-th 

generation, the number of segments is referred to as the property and the length of the segments is referred 

to as the yardstick.  

 

In order for an object to be fractal, the following formula must hold true for all generations:  

 

    (
 

  
)
 

 ................................................................................................................................ (2.1) 

 

Where   is the fractal dimension (dimensionless),    is the change in the property (dimensionless) and    

is the change in yardstick (dimensionless) as we go from generation n to generation (n+1).  In the Koch 

curve, we saw these values were      and     
 ⁄  , respectively.  The triadic Koch curve therefore 

has a fractal dimension of  

 

   (
 

 
 ⁄
)
 

      
  ( )

  ( )
         ........................................................................................ (2.2) 

 

Strictly speaking, what is 'fractal' is not the Koch curve itself, but rather a specific property of the curve.  

Furthermore, this property needs to be fractal with respect to a reference distance (the yardstick).  As 

already stated, in this example the property on which we focus is the number of segments for a given n-th 

generation. The yardstick we selected is the length of the segments in the same n-th generation.  For 

example, in the second generation, there are 16 segments (property) and each segment has a length of 1/9 
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(yardstick).  One can easily calculate the property and yardstick at the n-th generation without having to do 

the drawing and manually count each line.  

 

This is the concept at the heart of fractal theory, and there are at least three implications worth mentioning.  

First of all, one can now see why it is possible to 'zoom-in' indefinitely into a fractal object and always see 

the same image; the process of creating the (n+1)-th generation from the n-th generation is always the 

same.  Secondly, as n tends toward infinity, the length of the Koch curve tends toward infinity, even 

though the length of the segment or yardstick tends toward 0.  This is what's known as "The Coastline 

Paradox" (Mandelbrot 1967) — i.e., the realization that it is impossible to get a precise measurement of 

the length of a coastline because of its fractal properties.  Finally, when the fractal dimension is an integer, 

we call it Euclidean, and geometrically we will obtain smooth shapes such as a full triangle, smooth 

differentiable lines, full squares or circles.  

 

Fractals have proved to have considerable flexibility in the types of problems they can address, and they 

have been successfully used in a variety of unrelated fields, both in and outside the realm of natural 

sciences.  Examples include the classification of histopathology slides in medicine, enzymology, signal 

and image compression, seismology, soil mechanics, fracture mechanics, generation of patterns for 

camouflage, analysis of price series and, as we will show, fluid flow in porous media. 

 

Using fractal geometry and scaling as a language in related theoretical, numerical and experimental 

investigations, it has been possible to gain a deeper insight into previously intractable problems.  Among 

many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal 

aggregation, biological pattern formations, stock market behavior, and property distributions in hetero-

geneous materials has emerged through the application of such concepts as scale invariance, self-affinity 

and multifractality (Frame et al. 2012).  Fractals are abundantly present in nature, from the gigascale 

(Figure 2.2) to the microscale (Figure 2.3).  Ultimately, the power of fractals as an analytical tool lies in 

its ability to capture elegantly and succinctly the chaotic nature of complex systems, a task for which 

smooth curves and continuous shapes are ineffective.  
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Figure 2.2 — The coast of Lake Mead (Moran 2010). The "coastline paradox" is the counterintuitive 

observation that the coastline of a landmass does not have a well-defined length. This 

results from the fractal-like properties of coastlines. It was first observed by Lewis Fry 

Richardson (Mandelbrot 1967). 

 

2.2 Fractal Theory Applied to Fluid Flow in Porous Media 

 

Fractal geometry has been shown to have potential in the analysis of flow and transport properties in 

porous media. Katz and Thompson (1985) are probably the first investigators to present experimental 

evidence indicating that the pore spaces of a set of sandstone samples are fractals and self-similar over 

three to four orders of magnitude in length, extending from 10 Å to 100 µm.  Katz and Thompson argued 

that the pore volume (Figure 2.4) is a fractal with the same fractal dimension as the pore-rock interface.  

This conclusion was supported by correctly predicting the porosity from the fractal dimension, which was 

measured by a log-log plot of the number of pores versus the pore size (Yu 2008).  Note that the concept 

of property vs. yardstick that was discussed earlier is present here, where the number of pores is the 

property and the pore size is the yardstick. 

 

Krohn and Thompson (1986) carried out measurements on sandstone pores and confirmed their fractal 

properties by estimating similar fractal dimensions on five different sandstone samples. Smidt and Monro 
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(1998) performed experimental investigations on the images of laboratory-made synthetic sandstone. Their 

results also showed that the pore space of the synthetic sandstone was fractal, with a similar fractal 

dimension estimated for the different samples of their study. 

 

 

 

Figure 2.3 — Detail of a Romanesco broccoli (McNally 2010) 

 

 

So far we have discussed the fractal nature of the arrangement of the pore spaces in a porous medium.  In 

order to complete the discussion, we must also question the nature of the fluid flow through them, which is 

physically a different problem.  In other words, just because one has understood the structure of the pore 

spaces (porosity) does not mean one can claim the same about the conductance through the pore system 

(i.e., permeability). 

 

Indeed, the problem of viscous fingering in porous media is of central importance in hydrocarbon 

recovery.  As would be expected, it has been shown that viscous fingering in porous media is also fractal 

(Maloy et al. 1985).  A porous medium is usually defined as a structure that consists of pores with 

different sizes, and these pores are randomly distributed in solid space.  The pores may be connected to 
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form tortuous capillaries through which fluids flow.  The tortuous flow paths may be similar to the triadic 

Koch curve (Maloy et al. 1987), which was just discussed. Therefore, in addition to characterizing the 

geometry of the pore spaces, the tortuous flow paths may need their own fractal dimension, so that one 

may characterize the convolutedness of the capillary pathways (Yu 2008).  One example from 

experimental studies may be found in Figure 2.5, where a low viscosity fluid injected in a high viscosity 

medium shows a fractal viscous fingering type of displacement (Maloy et al. 1985). 

 

 

 

Figure 2.4 — Schematic of a pore fractal (Ruis 2008). Both the pore surface (in red) and pore space (in 

white) have been shown to exhibit fractal properties with respect to pore size (Yu 2008). 

 

 

2.3 Fractals in Reservoir Engineering 

 

Having discussed fractals in porous media in general terms, we now focus on the practice of reservoir 

engineering and discuss previous studies in this area.  While research in pressure transients of naturally-

fractured systems has made important advances, it has been realized that fractal models do not always give 

satisfactory results (Acuña et al. 1995).  Standard models have their underpinnings on the classical notion 
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that naturally-fractured systems are characterized by a few distinct scales that delineate the fracture 

network and the embedded matrix.  Variations on this approach, include randomly generated fracture 

networks, triple-porosity systems (Abdassah and Ershaghi 1986), etc. — and although these approaches 

add complexity, they still obey the general premise that the network of fractures is dense and space filling; 

namely, that it is of Euclidean geometry.  Instead, it is perhaps more reasonable to expect that what feeds 

the well in a naturally-fractured system is a network of fractures, which is not necessarily space-filling or 

perfectly connected.  Such networks are best characterized by fractal geometry.  The advantages of a 

fractal geometry description is that it generalizes the underlying geometry in a non-trivial manner and 

allows for a direct and novel interpretation of responses (Acuña et al. 1995). 

 

 

 

Figure 2.5 — Injection of a low viscosity fluid in a high viscosity fluid. (a) Air displacing glycerol. (b) 

Water displacing a non-Newtonian high viscosity mixture of sclerogutan in water (Feder 

1988). This phenomenon is known as viscous fingering and it has been shown 

experimentally to possess fractal properties (Maloy et al. 1987).  

 

 

On the other hand, an in-depth discussion of fractal theory may involve rather abstract mathematical 

concepts such as Hausdorff dimensions, algebraic topology, multivariate statistics (Feder 1988), etc.  

While intellectually stimulating, mastery of these concepts adds little practical value to the reservoir 
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engineer's arsenal.  The practicing engineer, who is in need of fast and practical solutions, is probably not 

inclined to spend the time and effort required to master these theoretical concepts simply out of intellectual 

curiosity.  Furthermore, it is difficult, if not impossible, to determine a priori the fractal dimensions of a 

reservoir, and no work has been published that proposes a workflow with fractals as an integral part of the 

reservoir characterization process.  It is our impression, based on an exhaustive literature review, that the 

application of fractals to reservoir engineering is considered a niche specialization that is mostly used as a 

last-ditch effort when the more traditional methods fail to characterize naturally-fractured reservoirs.  

 

The work of Chang and Yortsos (1990) contains the basic theoretical formalism as it pertains to petroleum 

engineering applications.  Their contribution consisted of a modification of the Warren-Root model so that 

instead of having a network of linearly arranged matrix "sugar cubes," the permeable fractures embedded 

within the matrix would be arranged in a fractal fashion (Figure 2.6).  This is a powerful approach 

because it made possible the development of a new, 'fractal' diffusivity equation, which in turn allowed for 

pressure-transient testing of naturally-fractured reservoirs that may exhibit a fractal fracture distribution.  

This work was further advanced and numerically tested in 2-D networks of fractures by Acuña and 

Yortsos (1991).  These authors proposed a flexible numerical method for the construction of fractal 

networks of a variety of geometrical and connectivity properties.  
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Figure 2.6 — Schematic of a fractal fracture network embedded in a Euclidean matrix (Chang and 

Yortsos 1990) 

 

 

Flamenco-López and Camacho-Velázquez (2003) investigated the transient flow regime and showed that 

it is possible, by combining the transient and pseudosteady-state responses, to obtain via history-matching 

values for all four parameters of their fractal model.  Beier (1994) extended the fractal model of Chang 

and Yortsos (1990) to consider a hydraulically fractured well. He also observed a power-law behavior 

during the linear and radial flow periods.  Camacho-Velázquez et al (2008) applied the fractal model to 

generate a series of decline curves, for which they successfully applied to well performance data obtained 

from a naturally-fractured reservoir field case.  

 

Lastly, Fuentes-Cruz et al. (2010) used the fractal concept to propose a unified approach for fall-off/build-

up tests with short injection/production times.  At the core of their study is a "'radial composite model with 

a fractal transition zone," which essentially argues that there is a fractal viscous fingering phenomenon 

occurring in the transition zone created by the injection fluid, as shown in Figure 2.7.  Finally, Hardy and 

Beier (1994) prepared a comprehensive review of fractals applied to geology and reservoir engineering, 

and we would comment that their focus is toward statistical aspects of the problem.  
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Figure 2.7 — Radial Composite Model with Fractal Transition Zone (Fuentes-Cruz et al. 2010) 
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2.4 Reservoir Engineering Problems Related to Tight Gas/Shale Gas Reservoirs 

 

The problem of understanding flow in a hydraulic fracture has been addressed extensively in the literature; 

a comprehensive review may be found in Blasingame and Poe (1993).  It has gained increased importance 

in recent years because of the surge in unconventional gas exploitation.  However, due to the multitude of 

possible unknowns that can influence the conditions of the problem, different solutions must be developed 

for each case (Ozkan and Raghavan 1991). 

 

A hydraulic fracture is usually vertical, and it may be derived from a single treatment (e.g., a vertical well) 

or part of a larger stimulation treatment (e.g., a multi-stage hydraulic fracture treatment in a horizontal 

well).  In the case of shale and coal-bed methane reservoirs, the effects of desorption may need to be taken 

into account, as well as non-Darcy flow.  Furthermore, a low gas price and/or high oil price may 

encourage operators to look for tight gas condensate and volatile oil reservoirs (Dar 2010), where this 

effort introduces a non-trivial multiphase flow consideration to the problem.  Geomechanical effects may 

also play an important role in the production life (Nagel et al. 2012).  Finally, the reservoir may also be 

naturally-fractured.  All of these parameters collude to make the problem especially challenging and 

almost certainly beyond the capability of classic analytical solutions.  

 

We have mentioned a host of parameters which can have a major impact on the production performance of 

a hydraulically fractured well — however; at present, we have only considered the parameters that depend 

on the geology and in-situ reservoir conditions.  Another full layer of complexity is added when one 

considers the unknowns which depend on the operational decisions controlling production.  The fracture 

may only partially penetrate the pay zone.  Conversely, if the fractures achieve a great vertical height, 

production from several commingled layers is possible. 

 

The exact dimensions and characteristics of created hydraulic fractures are elusive, as micro-seismic 

techniques can give an idea of where the micro-seismic events take place, but this does not necessarily 

mean that the fracture has been sufficiently opened (propped) to allow measurable production from these 

locations (Baihly et al. 2006). Some fractures may suffer from formation damage from excess water 
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presence near their faces.  Finally, there is a host of proppant choices, and incorrect proppant selection or 

ineffective transport of the proppant through the fracture may hinder the hydraulic conductivity of the 

fracture.  

 

We have mentioned several parameters and conditions that can complicate the physical model of tight and 

shale gas reservoirs.  These problems may be tackled satisfactorily using numerical simulation.  However, 

comprehensive reservoir simulation is expensive in terms of manpower, computational power, time and 

budget.  Therefore, researchers are encouraged to develop analytical or semi-analytical solutions that can 

capture at least some of these most important physical complexities of state-of-the-art problems so that 

design, analysis, and interpretation tasks can be performed. 

 

Beier (1994) applied instantaneous line-source functions, in the same spirit as Gringarten et al (1974), to a 

single vertical fracture fully penetrating a reservoir that is assumed to have a permeable fracture network 

that is fractally distributed.  He considered the cases of infinite-conductivity and uniform flux, and 

successfully applied it to a field case.  As this is the only publication that applies fractal theory specifically 

to hydraulic fractures which we are aware of, we believe that this is a research area that has largely been 

unexplored, and the remainder of this thesis is devoted to this particular problem.  
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3. A STUDY OF THE FRACTAL DIFFUSIVITY EQUATION 

 

3.1 Derivation of the Fractal Diffusivity Equation 

 

The Fractal Diffusivity Equation forms the backbone of this thesis.  It is important that its detailed 

derivation, from basic principles to its final dimensionless form, be fully documented.  In this sub-section 

we derive a 2D result for anisotropic media and state some possible 2D applications and solution methods. 

Subsequently we reduce the formulation to a 1D form and finish by deriving its dimensionless form where 

all variable are in the SI unit system.  

 

In this thesis we use the power-law based formalism introduced by Chang and Yortsos (1990) that 

describes the porosity and permeability of a reservoir as a function of distance from the wellbore.  The 

simplified relations that we choose to work with are 

 ( )    (
 

  
)
     

 ................................................................................................................. (3.1) 

 

 ( )    (
 

  
)
   

 .................................................................................................................... (3.2) 

 

Moving to the next sequence of relations, we make the following definitions:  

● kw is the permeability at the edge of the wellbore (m
2
) 

● ϕw is porosity at the edge of the wellbore (fraction) 

● xw is the distance from the center of wellbore to the edge of the wellbore (m) 

● d is the fractal dimension of the pore spaces (dimensionless) 

● θ is the fractal dimension of the fluid flow (dimensionless) 

● The subscripts x and y indicate the x and y directions, respectively 

 

These relations are valid for 1D systems.  Originally these relations were introduced to model the transient 

response of naturally-fractured reservoirs whose fracture network could be assumed to have a fractal 

distribution.  The first "fractal" diffusivity equation (in radial coordinates) was proposed by Chang and 



17 

 

 

Yortsos (1990).  To our knowledge, these types of fractal relations have only been used to study the 

heterogeneity of a reservoir.  

 

Yun et al. (2009) and Kong et al. (2009) extended Eqs. 3.1 and 3.2 to 2D and 3D Cartesian coordinate 

systems (respectively) and proceeded to derive their own fractal diffusivity equations.  In this thesis we 

restrict our analysis to 2D and use the following definitions: 

 

  ( )      (
 

  
)
       

  ......................................................................................................... (3.3) 

 

  ( )      (
 

  
)
       

 ......................................................................................................... (3.4)  

 

Where Eqs. 3.3 and 3.4 are used for the permeabilities in 2D — similarly, the porosity in 2D is defined 

(Kong et al. 2009) as  

 

 (   )   
  

 
[(

 

  
)
    

 (
 

  
)
    

] ................................................................................. (3.5) 

 

It is important to note that the "fractal" nomenclature changes from author to author and there is no 

"standard" approach; this is why we provide all definitions and derivations in this thesis.  We begin with 

the Continuity Equation (Lee and Wattenbarger 1996) for a slightly compressible, single-phase flow in a 

porous medium  

 

   (   ⃗)    
 

  
(   ) ............................................................................................................ (3.6) 

 

Where: 

 is the fluid density (kg-m
-3

), 

 is the porosity (fraction), 

v is the velocity (m-s
-1

), and 

t is time in (s). 
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To model permeability in a 2D anisotropic media, a permeability tensor is needed.  Pressure can be 

applied in two directions, and for each direction, permeability can be measured (via Darcy's law in 2D) in 

two directions — thus leading to a 2 by 2 tensor (Bear 1972).  In this case we use the permeability tensor 

of the form [
   
   

].  Darcy's Law for an anisotropic, orthotropic medium in a 2D Cartesian coordinate 

system (Ferrandon 1948) may be expressed as  

 

 ⃗   {            }   { 
 

 
  

  

  
    

 

 
  

  

  
} ................................................................... (3.7) 

 

Where: 

 is the viscosity in (Pa-s), 

p is the pressure (Pa), and 

k is the permeability (m
2
). 

 

As we only consider 2-D horizontal flow in the (x,y) plane, then we can ignore gravity effects in the z-

direction.  For the case of a scalar   and a vector  ⃗  then the following vector calculus identity exists: 

(Kreyszig 2005) 

 

  (  ⃗)     (   ⃗)   ⃗   (  )  ....................................................................................... (3.8) 

 

Noting that   is a scalar and  ⃗ a vector, the Left-Hand-Side (LHS) of Eq. 3.6 becomes: 
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  ] ..................... (3.9) 

 

Application of the chain rule yields: 
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Where we assume this term can be ignored because this term is typically very small.  The same is true for 

the  
  

  

  

  
 term.  The LHS can further be expanded to yield: 
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 ] ...................................................... (3.10) 

 

Introducing the anisotropic fractal relations of permeability, Eqs. 3.3 and 3.4, into the LHS of Eq. 3.10 

yields: 
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] ......... (3.11) 

 

For mathematical convenience, we define the wellbore distances xw and yw to be equal.  Similarly, we 

define the permeabilities at the wellbore kwx and kwy to be equal.  We force equivalency at the wellbores 

only, we are not making the system isotropic.  The system will still be anisotropic if dx   dy and/or x   y 

since the permeabilities and porosities can still be different over the length of the two axes x and y.  After 

setting                  and             , Eq. 3.11 becomes: 
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]  ........................................................................................... (3.12) 
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Expansion of the Right-Hand-Side (RHS) of the continuity equation (Eq. 3.6) yields: 
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 ...................... (3.13) 

 

By definition: 

    
 

 

  

  
   (fluid compressibility) 

    
 

 

  

  
  (rock compressibility) 

Where both cf and cr are in units of Pa
-1

.  Therefore, the total compressibility is expressed as         , 

and substitution into Eq. 3.13 results in the simple relatively simple form: 

 

           
  

  
 .................................................................................................................. (3.14a) 

 

Inserting the 2D anisotropic fractal definition of porosity (Eq. 3.5) into the RHS leads to 
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  ............................................................................... (3.14b) 

 

Similar to Eq. 3.12, we set          .  The final form of the RHS becomes 
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 .............................................................................................. (3.15) 

 

Equating the LHS and RHS using Eq. 3.12 and Eq. 3.15, we obtain: 
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Which, after some manipulation yields the following relation: 
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 ........................................................ (3.16) 

 

Equation 3.16 is the anisotropic form of the 2D fractal diffusivity equation.  Kong et al. (2009) present an 

analogous form to Eq. 3.16, but they begin from a different expression for porosity and permeability and 

do not provide the intermediate steps.  Possible applications of a 2D anisotropic diffusivity equation such 

as Eq. 3.16 include the study of directional permeability in coal seams (Wold and Jeffrey 1999), 

optimizing placement of horizontal wells (Muñoz et al. 1998), and the study of CO2 dissolution in deep 

saline aquifers (Taheri et al. 2012).  Such an expression may be solved using Fourier transforms (Carslaw 

and Jaeger 1959), coordinate system transformations (Sheng 2010) or via numerical methods (Friedrich 

and Gurevich 2010). 

 

We now reduce Eq. 3.16 to its 1D form by forcing y=0 at all times.  In addition, Eq. 3.2 is combined with 

Eq. 3.14a to yield: 
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 ........................................................................ (3.17)  

 

Equation 3.17 is analogous, but not identical, to the 1D Cartesian fractal diffusivity equation developed by 

Kong et al (2009) and Yun et al (2009).  Using a very similar approach it is possible to derive a radial 

fractal diffusivity equation, just as Chang and Yortsos (1990). While Eqs. 3.16 and 3.17 are not new, we 

have verified that these relations are correct by comparing with 3 different sources.  We also provide a 

detailed derivation of these relations.  
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By setting d=2 and  =0, the classic Euclidean 1D linear diffusivity equation is recovered.  This 

corresponds to a constant permeability and porosity throughout the reservoir. 

 

   

               
  

  
 
  

  
  ...................................................................................................... (3.18) 

 

We also develop the dimensionless version of Eq. 3.17 by following the traditional procedure for the 

Euclidean linear diffusivity equation (Blasingame 2010a).  The dimensionless spatial variable is defined as 

 

   
 

  
  ................................................................................................................................... (3.19) 

 

Substitution of Eq. 3.19 into Eq. 3.17 yields, 
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 ,  ................................................................. (3.20) 

 

which, after a rearrangement of terms, results in 

 

   

   
  

     

  

  

   
    

  

  
  

   
   

  
 ............................................................................... (3.21) 

 

The dimensionless pressure pD is defined as 

 

   
 

   
(    ),  ................................................................................................................. (3.22) 

 

Where: 

pi is the initial reservoir pressure (Pa), and 

pch is the characteristic pressure (Pa). 

 

The appropriate value of the characteristic pressure will be defined using the inner boundary condition; 

and from Darcy's law, the inner boundary condition for a constant rate case is given as: 
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  .................................................................................................................. (3.23) 

 



23 

 

 

Where Eq. 3.23 can be rewritten as: 

 

[
  

  
]
    

 
   

   
 ...................................................................................................................... (3.24) 

 

Substituting in Eqs. 3.19 and 3.22 into Eq. 3.24 yields: 

 

[
 (        )

 (    )
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  ...................................................................................................... (3.25) 

 

Recalling that   ,    and     are constants, Eq. 3.25 becomes: 
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]
    

  
 

   

     

   
 ...................................................................................................... (3.26) 

 

For mathematical convenience, the following dimensionless inner boundary condition is imposed: 

 

[
   

   
]
    

    ..................................................................................................................... (3.27) 

 

For Eq. 3.27 to be true, then according to Eq. 3.26 the following definition must be true 
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Where the final form of the dimensionless pressure is given as: 

 

    
   

       
 (    ) .......................................................................................................... (3.29) 

 

The dimensionless time variable is defined using "what is leftover" on the Right-Hand-Side (RHS). 

Solving Eq. 3.22 for p and substituting this result into Eq. 3.21 leads to 
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 .................................... (3.30) 

 

Recall that the initial and characteristic pressures are both constants, then their derivative terms are 

eliminated, which results in the following form: 
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From the RHS of Eq. 3.31, the dimensionless time variable is defined as: 

 

    
  

          
   ................................................................................................................... (3.32) 

 

The final form of the Fractal Diffusivity Equation is thus 

 

    

   
     

     

  
 
   

   
          

  
   

   
 , .................................................................................. (3.33) 

 

Where the dimensionless space variable     the dimensionless pressure pD, and the dimensionless time tD 

are defined by Eqs. 3.19, 3.29, and 3.32 respectively. 

3.2 Discussion of the Fractal Porosity Permeability Relations 

 

Now that we have derived the 1D dimensionless fractal diffusivity equation, we will work only with this 

expression for the rest of the thesis.  Having said this, there are a couple of important observations to be 

made about Eqs. 3.1 and 3.2, to which we will hereafter refer to as Fractal Porosity-Permeability Relations 

(FPPR): 

 

● A cursory numerical exercise using typical conventional reservoir values reveals that, if d ≠2 (and/or 

θ≠ 0), then the FPPR describes a situation that may be physically improbable — or even impossible. 

For example, if we set xw = 0.10 m, ϕw= 15 % (or 0.15 fraction), kw = 1.9738×10
-13

 m
2
 (200 md), d = 

2.5 and θ = 0, we find that at 20 meters from the wellbore, we should expect a permeability of 2.82 

Darcy and a porosity of 212.13%! 

 

● While the physical meaning of parameters d and θ is generally well understood by specialists, they 

remain conceptually elusive, as these parameters cannot be easily related to tangible physical 

quantities. This makes these concepts difficult to digest by non-specialized practitioners, hindering 

their widespread acceptance. 



25 

 

 

 

● When discussing the physical meaning of these relations, Acuña et al (1995) are careful to issue a 

caveat, stating that "it must be stressed again that they do not correspond to point values (local 

averages) but to the porosity and permeability of regions of size r.  It should be also stressed that 

[Eqs. 3.1 and 3.2] do not imply that the conventional porosity and permeability are radially 

dependent around a given well.  They only suggest that in a fractal medium, all properties of any 

region of size r are scale-dependent following a power law". 

 

For these reasons, the FPPR have not received much attention in the literature, and to our knowledge, no 

attempt has been made up until now to produce new solutions or methodologies based on the idea of a 

radially changing porosity and permeability in the literal sense of the definition.  

 

In spite of all of these apparent drawbacks, the FPPR do possess interesting features that make their 

additional study worth our efforts.  A classical analysis of fluid flow in porous media with a constant 

permeability and porosity throughout the reservoir results in the following 1D diffusivity equations  

 

    

   
    

   

   
 .............................................................................................................................. (3.34) 

 

    

   
    

 

  

   

   
   

   

   
 ............................................................................................................ (3.35) 

 

Where: 

pD is the dimensionless pressure, 

rD is the dimensionless wellbore radius in radial coordinates, 

and  xD is the dimensionless wellbore radius in Cartesian coordinates. 

 

Eqs. 3.34 and 3.35 are expressed in dimensionless variables and are derived, starting from the continuity 

equation, in Cartesian and radial coordinate systems, respectively.  A cursory inspection of the Fractal 

Diffusivity Equation (Eq. 3.33) yields the following interesting observations: 

● If we set {d=2,  =0}, we obtain exactly Eq. 3.34 from Eq. 3.33. This means we are dealing with a 

linear reservoir with constant hydraulic properties, i.e. the classic Euclidean linear flow case.  
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● Similarly, if we select {d=3,   =0}, we obtain exactly Eq. 3.35 from Eq. 3.33. Recalling that Eq. 3.33 

was derived in Cartesian coordinates and Eq. 3.35 in radial coordinates, this implies that a constant-

hydraulic-properties radial flow is equivalent to a linearly-increasing-hydraulic-properties linear flow. 

As this is an important concept, we provide an illustration in Figure 3.1. 

 

This seems to suggest that, at least mathematically, the FDE (Eq. 3.33) is more fundamental than Eqs. 3.34 

or 3.35, and can act as a sort of bridge between the two classic flow regimes, linear and radial.  It also begs 

the question as to what happens when we choose a value for d that is neither 2 nor 3.  Are we describing 

something that is 'in between' the two regimes (such as elliptical flow)?  Expanding this idea, we can 

contemplate a situation where we find solutions to non-trivial flow regimes — e.g., involving multiple 

fractures, by exploiting the flexibility of the FDE. 

 

3.3 Analytical Study  

We provide the steps to solve Eq. 3.33 in the Laplace domain for a no-flow outer boundary condition.  

This equation has the following initial and boundary conditions: 

 

Initial condition:      when        ............................................. (3.36a) 

 

Inner boundary condition: [
   

   
]|

    
   ..................................................... (3.36b) 

 

No-flow, outer boundary condition: [
   

   
]|

    
  ........................................................ (3.36c) 

 

where L is the dimensionless distance to the no-flow outer boundary.      
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Figure 3.1 — Schematic of the equivalency between fractal linear flow and classic radial flow. Even 

though the top and bottom cases describe different physical scenarios, the Fractal 

Diffusivity Equation predicts that both should yield the same pressure signal at the 

wellbore. This has been verified analytically and numerically in this thesis. 

 

 

Taking the Laplace transform of Eq. 3.33, and using Eq. 3.36a, results in  
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      ̅̅̅̅     ......................................................................................... (3.37) 

 

Upon initial inspection, it is not immediately obvious what the general solution to this equation may be as 

this form does not fit any of the classic Bessel ordinary differential equations (standard or modified).  As a 

reference, Bowman (1958) presents a very general form of the modified Bessel differential equation as 
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Where y = y(x) and             are real constants that must be determined (Bowman 1958); Eq. 3.38 has 

the general solution given by:  

 

 ( )     (    [    ]      [    ]) .............................................................................. (3.39) 

 

Where the functions In and Kn are modified Bessel functions.  In order to equate the previous relations with 

the form given by Eq. 3.39, we must reformulate these into the             parameters.  Each of these 

equalities are provided below: 
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Therefore, the general solution to Eq. 3.37 can be written as: 

  ̅̅ ̅(    )     
 {    [

√ 

 
  

 
]      [

√ 

 
  

 
]}  .................................................................... (3.40) 

 

Both boundary conditions (Eqs 3.36b and 3.36c) necessitate computation of the derivative 
   ̅̅ ̅̅

   
. This is not 

a trivial computation, but can be accomplished by using the mathematical manipulations discussed below. 

From the properties of the derivatives of modified Bessel functions (Bowman 1958):  

 

   [ ( )]   (    [ ( )]  
 

 ( )
  [ ( )])   ( )  .................................................................. (3.41a) 

   [ ( )]    (    [ ( )]  
 

 ( )
  [ ( )])   ( ) ............................................................ (3.41b) 

 

Using the product rule  

 

   ̅̅ ̅̅

   
        

   {    [
√ 

 
  

 ]
⏞      

  

     [
√ 

 
  

 ]
⏞      

  

}  

   
 { (    [

√ 

 
  

 ]
⏞        

  

 
 

  
 

 

√ 
  [

√ 

 
  

 ]
⏞      

  

)√    
     

    (    [
√ 

 
  

 ]
⏞        

  

 
 

  
 

 

√ 
  [

√ 

 
  

 ]
⏞      

  

)√    
   } ................................... (3.42) 

 

In Eq. 3.42 we define some temporary variables (A1, A2 and A3) to assist with bookkeeping — 

factorization of terms related to these bracket numbers leads to: 
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   ̅̅ ̅̅

   
    

     √  {      [
√ 

 
  

 ]
⏞        

  

       [
√ 

 
  

 ]
⏞        

  

 }  

  {    [
√ 

 
  

 ]
⏞      

  

     [
√ 

 
  

 ]
⏞      

  

}{    
      

  

  
 

 

√ 
√    

   ⏞                    
  

} ....... (3.43) 

 

Defining the term "A4" as shown in Eq. 3.43, we can then reduce this term as follows: 

 

    
      

  

  
 

 

√ 
√    

         
       

        ...................................... (3.44) 

 

Because      
     

   
 
   

 
  

     

 
   , substitution into Eq. 3.44 yields: 

 

    
       

             
       

        

 

The temporary variable A4 is then equal to zero; so Eq. 3.43 is simplified to the following form: 

 

   ̅̅ ̅̅

   
   

     
√ {      [

√ 

 
  

 
]        [

√ 

 
  

 
]}  ............................................... (3.45) 

 

We need to determine the constants A and B to find the particular solution. Taking the Laplace Transform 

of both boundary conditions 3.36b and 3.36c, we have the following system:  

 

{
       (

   

   
)   

 

 
 

       (
   

   
)    

  ....................................................................................................... (3.46) 

 

This is not a trivial calculation if conventional methods are attempted, but a solution can be readily 

obtained by using software with symbolic math capabilities, such as Mathematica 8 (Wolfram 2010). The 

following code shown in Figure 3.2 is used to solve the system: 
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        [  ]    (         [  
√ 

 
  ]           [  

√ 

 
  ])  

           [  ]        √ (         [    
√ 

 
  ]           [    

√ 

 
  ])  

          [           [ ]                     ]    
 

 
  

          [           [ ]                     ]      

         [                               ][[ ]]  

  [  ]          [ ]       

 

Figure 3.2 — Mathematica 8 code to solve Equ 3.46 
 

 

Executing these commands, Mathematica 8 returns the following particular solution: 

 

  ̅̅ ̅(          )    
  

  [
  
 

√ 

 
]    [

  √ 

 
]     [

  √ 

 
]  [

  
 

√ 

 
]

 
 
 (    [

  √ 

 
]    [

√ 

 
]     [

√ 

 
]    [

  √ 

 
])

  ................................ (3.47) 

 

At the wellbore (xD = 1), and Eq. 3.47 is reduced to the classic linear and radial flow cases: 

 

● If we set {  =1, d=3,  =0}, then we obtain: 

   
     

 
    

   
     

   
    

   
   

 
    

 

Additionally, the modified Bessel function of the second kind   ( ) is said to be even with respect to its 

parameter   (Bowman 1958), that is to say 

 

   ( )    ( ) ...................................................................................................................... (3.48a) 

 

Similarly, the modified Bessel function of the second kind   ( ) is even with respect to its parameter   

only if the parameter   is an integer 

 

   ( )    ( ) ........................................................................................................................ (3.48b) 
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Thus, Eq. 3.47 reduces to the classic result for radial flow (Blasingame 2010b) 

 

  
̅̅ ̅(                )   

  [√ ]   [ √ ]   [ √ ]   [√ ]

    (  [ √ ]   [√ ]   [√ ]   [ √ ])
 ................................... (3.49) 

 

● Similarly, we can also consider the case where we set {  =1, d=2, =0} 

   
     

 
 

 

 
   

   
     

   
 

 

 
  

   
   

 
    

 

In this case, Eq. 3.47 becomes 

 

  ̅̅ ̅(                )   
  

 ⁄
[√ ]  

 ⁄
[ √ ]    

 ⁄
[ √ ]  

 ⁄
[√ ]

 
 
 (   

 ⁄
[ √ ]  

 ⁄
[√ ]    

 ⁄
[√ ]  

 ⁄
[ √ ])

  .................. (3.50) 

 

This expression requires further manipulation if it is to match the classic result of Blasingame (2010a) for 

linear flow.  We use the following identities (Kreyszig 2005) 

 

  
 ⁄
[ ]  √

 

 

    [ ]

√ 
.............................................................................................................. (3.51a) 

   
 ⁄
[ ]  √

 

 

    [ ]

√ 
 ........................................................................................................... (3.51b) 

  
 ⁄
[ ]  √

 

 

   

√ 
 ................................................................................................................. (3.51c) 

 

Substituting Eqs. 3.51a-3.51c into Eq. 3.50 yields: 

  ̅̅ ̅(                )  

√
 

 
 
    [√ ]

 
 
 

 √
 

 
 
   √ 

√   
 
  

   √
 

 
 
    [ √ ]

√   
 
 

 √
 

 
 
  √ 

 
 
 

 
 
 (√

 

 
 
    [ √ ]

√   
 
 

 √
 

 
 
  √ 

 
 
 

   √
 

 
 
    [√ ]

  
 
 

 √
 

 
 
   √ 

√   
 
  

)

 

  
     [√ ]   √        [ √ ]   √ 

 
 
 (     [ √ ]    √         [√ ]     √ )

 ......................... (3.52) 
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We now use the hyperbolic identities (Kreyszig 2005) 

 

    [ ]  
      

 
 .................................................................................................................. (3.53a) 

 

    [ ]  
      

 
 ................................................................................................................. (3.53b) 

 

    [ ]  
    [ ]

    [ ]
.................................................................................................................. (3.53c) 

 

Substituting Eqs. 3.53a and 3.53b into Eq. 3.52 yields 

 

  ̅̅ ̅(                )   
( √    √ )    √    (  √     √ )   √ 

 
 
 (   (  √     √ )    √     ( √    √ )     √   )

 

  
 

 
 
 

 
 √ (   )   √ (   )

 √ (   )   √ (   ) 
 

  
 

 
 
 

 
 

    [√ (   )] 
 ............................................................ (3.54) 

 

Where Eq. 3.54 is identical to the Blasingame (2010a) expression for linear flow.  As a note, L=2 must be 

used to match the reference result exactly.  

 

3.4 Numerical Validation 

 

In order to advance our hypothesis, the FDE needs to be validated, and numerical simulation is an ideal 

mechanism for this validation.  We use a finite-volume black-oil reservoir simulator (Moridis and Cossio 

2010) to create a simple linear 1D reservoir whose porosity and permeability change with distance from 

the wellbore, as stipulated in the FPPR (Eqs 3.1 and 3.2).  For this validation we require a sufficiently fine 

space discretization (i.e., a sufficiently large number of cells = 1000) to achieve a smooth porosity and 

permeability profile.  Each cell represents a subdomain with its own (and different from all others) 

permeability and porosity.  Furthermore, because it is not possible to have infinite reservoirs or infinite 
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hydraulic properties in a simulator, an appropriately defined finite reservoir system is needed for 

comparison to the analytical solution of Eq. 3.47.  The two possible options are either a no-flow or a 

constant-pressure outer boundary; we chose to use the no-flow outer boundary option for this purpose.  

 

Numerical simulations were performed for 8 different cases, where the fractal parameters for these cases 

are detailed in Table 3.1.  Additionally, the reservoir parameters common to all simulations are detailed in 

Table 3.2.  A sketch of the reservoir is presented in Figure 3.3.  Finally the permeability and porosity 

distributions with respect to distance are plotted in Figure 3.4 and Figure 3.5, respectively.  There is 

excellent agreement between the analytical and numerical cases as shown in Figure 3.6. 

 

In this section, we validate the analytical solution (Eq. 3.47) using numerical simulation.  It is important to 

note that there is nothing "fractal" about our reservoir simulation — specifically, there are no chaotic 

processes, no randomly distributed network of fractures and no double-porosity assumptions.  This leads 

us to suggest that we were successful in this validation effort not because the flow is fractal per se, but 

rather because both the FDE and the reservoir simulator solve equations based on the principle of 

conservation of mass.  In short, we have solved exactly the same problem both analytically and 

numerically, providing a "proof-of-concept" for the FDE approach. 

 

 

 

Figure 3.3 — Schematic of the 1D linear reservoir common to all cases. This reservoir has 1000 

gridblocks in the x-direction, each with its own porosity and permeability, as stipulated in 

the FPPR. The permeability and porosity distributions with respect to x, for all 8 cases, is 

shown in Figure 3.4 and Figure 3.5, respectively 
 

  

Production 

No flow 
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Table 3.1 — Parameters of the 8 cases to be simulated 

 

Case  

Number

 

d 

( - )

 

  

( - )

 

k at xD = 1 

(md)

 

k at xD = L 

(md)

 

 at xD = 1 

(%)

 

 at xD = L 

(%)

 

Production 

rate (g/s)

 

1 2.0 0.0 1.0 1.00 0.1 0.10 0.5 

2 2.25 0.0 1.0 4.47 0.1 0.447 0.5 

3 2.50 0.0 1.0 20.00 0.1 2.00 0.8 

4 2.75 0.0 1.0 89.44 0.1 8.94 1.0 

5 3.0 0.0 1.0 4.00×10
2
 0.1 40.00 1.0 

6 3.0 -0.75 1.0 3.57×10
4
 0.1 40.00 1.0 

7 1.969 -0.7778 1.0 87.74 30.0 24.91 1.0 

8 1.661 -0.323 1.0 0.91 5.0 0.65 1.0 
 

 

 

 

Table 3.2 — Reservoir and flow parameters common to all simulation cases 

Parameter 

 

Value 

 

Units 

 

xw 0.1 m 

co 0.0 Pa
-1

 

cr 10
-9

 Pa
-1

 

cT 10
-9

 Pa
-1

 

pini 7.10
7
 Pa 

µo 4.82 × 10
-4

 Pa.s 

ρo 745 kg.m
-3

 

Δx linearly vary from 10
-3

 to 0.215 m 

Δy 1 m 

Δz 1 m 

No. cells : x direction 1000 - 

No. cells : y direction 1 - 

No. cells : z direction 1 - 
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Figure 3.4 — Permeability vs. distance. The linear 1D reservoir shown in Figure 3.3 has a permeability 

that varies with distance from the wellbore, as stipulated by the FPPR (Eq. 3.1). The 8 

cases that were simulated are listed in Table 3.1 are labeled accordingly. 

 

 

 

 

Figure 3.5 — Porosity vs. distance. The linear 1D reservoir shown in Figure 3.3 has a porosity that 

varies with distance from the wellbore, as stipulated by the FPPR (Eq. 3.2). The 8 cases 

that were simulated are listed in Table 3.1 are labeled accordingly.  
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Figure 3.6 — Comparison between analytical and numerical results of the Fractal Diffusivity Equation. 

Note that Case 1 is equivalent to a Euclidean linear case, and Case 5 is equivalent to a 

Euclidean radial case.  The excellent agreement in Case 5 validates numerically the 

equivalency proposed in Figure 3.1. 
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4. DEVELOPMENT OF THE FRACTAL-FRACTURE SOLUTION 

 

4.1 Trilinear Flow Model with Fractal Modification 

In this thesis, our goal is to combine the trilinear flow model given by Lee and Brockenbrough (1986) with 

fractal theory in order to develop a fast and accurate semi-analytical solution for the problem of a 

producing well with a single vertical fracture that fully penetrates an infinite-acting homogeneous 

reservoir.  We first note that fast and reliable solutions for this physical scenario already exist in the 

literature — Blasingame and Poe (1993) provide a "trilinear pseudo-radial solution" which is based on a 

coupling of the trilinear flow solution (which does not model radial flow) and the solution for a uniform 

flux/infinite conductivity vertical fracture (which does model pseudo-radial flow). 

 

In our development of this semi-analytical solution, we believe that this is the first application of fractal 

theory to address a flow problem that is not related to naturally-fractured reservoirs.  In demonstrating this 

development using the Fractal Diffusivity Equation, we hope to encourage its use in the development of 

solutions to currently intractable problems.  

 

The basic premise of Lee and Brockenbrough (1986) is to idealize the flow into the hydraulic fracture by 

connecting the fracture to a system of sequentially connected 1D (linear) reservoirs, where this 

combination of 3 reservoirs (including the fracture) will produce a different flow regime.  Each of these 

linear reservoirs is called a "region," and each has a governing diffusivity equation, and each reservoir 

communicates with each other through their common boundaries (which maintain common flux 

conditions).  This scenario is depicted in Figure 4.1. 
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Figure 4.1 — Schematic of the trilinear flow concept as proposed by Lee and Brockenbrough 

(1986).  Because of symmetry only a quadrant of the flow domain is considered. 

Region 3 flows in the x direction and meets Region 2 at the dashed lines at x = xf; 

both Regions 2 and 3 involve formation flow.  Region 2 flows in the y-direction 

and meets Region 1 at the dashed lines at y = bf; Region 1 represents an idealized 

vertical fracture.  Finally, the fracture flow of Region 1 feeds the wellbore, repre-

sented by the circle. 

 

 

Mathematically, the trilinear flow system (with fractal geometry) is described as follows:  

 

● Region 3 (formation flow): 

 

     

   
   

       

  

    

   
   

      

   
   .................................................................................... (4.1) 

 

Initial condition:                  ........................................................... (4.2a) 

 

Inner Boundary condition:                    ........................................................ (4.2b) 

 

Outer Boundary Condition:                    .....................................................  (4.2c) 

 

● Region 2 (formation flow): 

 

     

   
  

       

  
 
    

   
    

   
    

    
|
     

    
   

    

    
   .............................................. (4.3) 
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Initial condition:                 ............................................................. (4.4a) 

 

Inner Boundary condition:           
    

   
            ........................................ (4.4b) 

 

Outer Boundary Condition:                    ...................................................... (4.4c) 

 

● Region 1 (fracture flow): 

 

     

   
   

       

  
 
    

   
     

   
    

   
|
    

   
     

    

   
 .................................................. (4.5) 

 

Initial Condition:                 ............................................................. (4.6a) 

 

Inner Boundary condition:  
    

   
|
    

   (     
    

   
) .............................................. (4.6b) 

 

Outer Boundary Condition:  
    

   
|
    

   ........................................................................ (4.6c) 

 

The terms in these equations are defined as follows: 

 

     
  (     ) 

     
 for oil in Region 1 (similar expressions hold true for Regions 2 and 3) 

 

And the remaining terms are given as: 

 

   
 

      
      

      

     
 

   
 

  
    

 

  
   

 

   
 

    
    

    
    

 

   
 

     
 

        
  

 

Essentially the only difference between the original Lee and Brockenbrough (1986) model and the present 

work is that we have replaced the Euclidean linear diffusivity equations, as stipulated in the original paper, 
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by their fractal counterparts (i.e., Eqs. 4.1, 4.3 and 4.5).  With this formulation, if we set d3 = d2 = d1 = 2 

and  3 =  2 =  1 = 0, then we obtain the original Euclidean formulation.  In Lee and Brockenbrough's 

(1986) original paper, the solution gave very good performance at early times (i.e., tD ≤ 1) — however; 

because of the well-known inability of the Lee and Brockenbrough (1986) solution to model pseudo-radial 

flow, this solution begins to fail at approximately tD=1.  Our hypothesis is that we can correctly capture 

pseudo-radial flow using the Fractal-Fracture Solution formulation that we proposed above.  This will be 

an approximate/semi-analytical solution as we must calibrate the d and -parameters, but our expectation 

is that we will capture the appropriate flow regimes in the pressure and pressure derivative function. 

 

4.2 Analytic Derivation of the Open-Ended Fractal-Fracture Solution 

In this section we derive the "region" solutions for the fractal diffusivity relations given above.  We begin 

with Region 3 (the outermost region) and work our way back to Region 1 (the innermost region).  

 

● Region 3 (formation flow): 

 

Taking the Laplace Transform of Eq. 4.1 and using the initial condition 4.2a yields 

 

     ̅̅ ̅̅ ̅̅

   
   

       

  

    ̅̅ ̅̅ ̅̅

   
    

       ̅̅ ̅̅ ̅ ....................................................................................... (4.7) 

 

Following the procedure discussed in Section 3.3, the general solution to Eq. 4.7 is  

 

    (    )      
  {      

[
√ 

  
  

  ]        
[
√ 

  
  

  ]} ..................................................... (4.8) 

 

In all cases (here and throughout the thesis), the following variables are real constants: 

    
       

    
     

       

 
      

    

 
 

 

To determine the constants    and   , we utilize the Laplace transform of the two boundary 

conditions (Eqs. 4.2b and 4.2c) and solve the following system for    and   .  This Laplace transform 

of the boundary conditions is given as: 
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{

       (   )      

        (   )    
  .......................................................................................................... (4.9) 

 

The Mathematica 8 code to solve this problem is shown in Figure 4.2: 

 

                                

         [  ]     (          [   
√ 

  
   ]            [   

√ 

  
   ]) 

          [         [ ]    ]       

          [         [ ]                      ]     

          [                                 ][[ ]] 

   [  ]           [ ]       

 

Figure 4.2 — Mathematica 8 code for solving Eq. 4.9. 

 

 

The particular solution to Eq. 4.7 is given by the Mathematica 8 software as 

 

   (    )         
   

   [
√ 

  
   

  ]

   [
√ 

  
 ]

    .................................................................................. (4.10) 

 

To determine the derivative of the pressure equation (Eq. 4.10) we follow the step-by-step process 

discussed below. 

 

From the properties of Bessel functions (Bowman 1958), 

 

 (  [ ( )])

  
    ( ) {    [ ( )]  

 

 ( )
  [ ( )]} .................................................... (4.11) 

 

Application of Eq. 4.11 to Eq. 4.10 yields: 

 

    

    
|
     

     ̅̅ ̅̅ ̅ {√ (
     [

√ 

  
]

   [
√ 

  
]

 
    

√ 
)    }  ........................................................ (4.12) 
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However,      
  (     )

    

    

 
 

  (     )

 
   , 

 

Which, after appropriate substitutions, yields 

 

    

    
|
     

           ( ) ................................................................................................ (4.13) 

 

Where: 

 ( )    
     [

 √ 

    
 ]

   [
 √ 

    
 ]

  √  

 

● Region 2 (formation flow): 

 

Taking the Laplace transform of Eq. 4.3 and applying the initial condition (Eq. 4.4a), the substituting 

Eq. 4.13 into Eq. 4.3 gives us: 

 

     

   
  

       

  
 
    

   
      

   (   )        ....................................................................... (4.14) 

 

Eqs. 4.7 and 4.14 differ only in that the z-term of the RHS of Eq. 4.7 is now (z+). This term does 

not depend on yD, so it may be treated as a constant.  This yields the following form: 

 

   (    )      
  {      

[
√   

  
  

  ]        
[
√   

  
  

  ]}  ................................................. (4.15) 

 

Following the process described in Section 3.3, the derivative of the general solution is given as: 

 

    ̅̅ ̅̅ ̅̅

   
    

       √    {        [
√   

  
  

  ]          [
√   

  
  

  ] } .......... (4.16) 

 

To determine the constants    and    we again take the Laplace transform of the two boundary 

conditions (Eqs. 4.4b and 4.4c) and solve the resulting system for    and   .  The Laplace transform 

of the boundary conditions is given as: 
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{
       (     

    

   
)      

        (   )    

  ........................................................................................ (4.17) 

The Mathematica 8 code to solve this is shown in Figure 4.3: 

 

                             

         [  ]    (          [  
√   

 
  ]            [  

√   

 
  ]) 

            [  ]        √   (          [    
√   

 
  ] 

           [    
√   

 
  ]) 

          [         [ ]                      ]     

          [         [ ]                [ ]                      ]

      

          [                                 ][[ ]] 

   [  ]           [ ]       

 

 
Figure 4.3 — Mathematica 8 code for solving Eq. 4.17. 

 

 

Using the Mathematica 8 software, we obtain the particular solution to Eq. 4.14 as: 

 

   (    )    
       

      [
√   

  
   

  ]

  √         [
√   

  
 ]    [

√   

  
 ]
   .......................................................................... (4.18) 

 

Using the identity given by Eq. 4.11, we obtain the derivative at yD=1, which is required for the 

solution in Region 1.  

 

 
    

    
|
     

 
    (      [

√   

  
 ]   √    {     [

√   

  
 ]  

  
√   

    [
√   

  
 ]})

  √         [
√   

  
 ]    [

√   

  
 ]

    ....................... (4.19) 

 

● Region 1 (fracture flow): 
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Taking the Laplace Transform of Eq. 4.5, using the initial condition 4.6a, and substituting in Eq. 4.19 

in 4.5 yields 

 

     ̅̅ ̅̅ ̅̅

   
  

       

  

    ̅̅ ̅̅ ̅̅

   
      ̅̅ ̅̅ ̅   

  , .............................................................................. (4.20) 

 

Where: 

   [
   (      [

√   

  
 ]   √    {     [

√   

  
 ]  

  
√   

    [
√   

  
 ]})

  √         [
√   

  
 ]    [

√   

  
 ] 

    ]

   

 

 

And we note that  is defined as previously by Eq. 4.13.  Similar to our procedures for Eqs. 4.7 and 

4.14, we obtain the general solution to Eq. 4.20 as: 

 

   (    )      
  {      

[
 

  
  

  ]        
[
 

  
  

  ]} ..................................................... (4.21) 

 

The corresponding derivative is obtained by following the same procedure described earlier: 

 

    ̅̅ ̅̅ ̅̅

   
     

       
   {        [

 

  
  

  ]          [
 

  
  

  ]} ................................................. (4.22) 

 

To determine the constants    and    we again take the Laplace transform of the two boundary 

conditions (Eqs. 4.6b and 4.6c) and solve the resulting system for    and   .  The Laplace transform 

of the boundary conditions is given as: 

 

{
       (

    ̅̅ ̅̅ ̅̅

   
)  

 

 
  (         ̅̅ ̅̅ ̅   ) 

       (
    ̅̅ ̅̅ ̅̅

   
)    

  ................................................................. (4.23) 

 

where L in Eq. 4.23 is the dimensionless distance to the no-flow outer boundary. 

The Mathematica 8 code used to solve this system is shown in Figure 4.4: 
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         [     ]    (          [   
 

 
  ]            [   

 

 
  ]) 

         [     ]           (          [    
 

 
  ]            [    

 

 
  ]) 

          [         [   ]    ]   
 

 
 (            ) 

          [         [   ]    ]     

          [                                 ] 

   [     ]           [   ]       

   [   ] 

 

Figure 4.4 — Mathematica 8 code for solving Eq. 4.23 

 

 

Using the Mathematica 8 software, we obtain the particular solution to Eq. 4.20 as: 

 

   ̅̅ ̅̅̅(                     ) 

  
  (       ̅̅ ̅̅ ̅̅      )

   

(   [
 

  
]      [

     

  
]      [

    

  
]    [

  

  
] )

(     [
    

  
]      [

  

  
]      [

 

  
]      [

     

  
] )

  .................................... (4.24) 

 

For convenience, we define the following    term as a "lumped variable" so that Eq. 4.24 is more 

compact and easier to manipulate: 

 

   

     [
    

  
]      [

  

  
]      [

 

  
]      [

     

  
] 

   [
 

  
]      [

     

  
]      [

    

  
]    [

  

  
] 

  .................................................. (4.25) 

 

 

For the time being, we consider L to be an independent variable.  In Section 4.3 we discuss Eq. 4.25 

and L further.  Defining    ̅̅ ̅̅̅(    )     ̅̅ ̅̅ ̅, we obtain the following solution using Eq. 4.24 for the 

wellbore pressure in the trilinear model. 

 

   ̅̅ ̅̅ ̅   
  (       

̅̅ ̅̅ ̅̅ ̅̅      )

     
 

 

 

Or, 
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         ̅̅ ̅̅ ̅̅              ̅̅ ̅̅ ̅̅       

 

Isolating    ̅̅ ̅̅ ̅, we have: 

 

   ̅̅ ̅̅ ̅̅  (              
  )     

 

Solving for    ̅̅ ̅̅ ̅, we obtain: 

 

   ̅̅ ̅̅ ̅̅     
 

  (           )
 ........................................................................................................ (4.26) 

 

For the case where S = 0; C1 = 0; CDf = 0, Eq. 4.26 simplifies to  

 

   ̅̅ ̅̅ ̅(     )   
 

         
  .................................................................................................... (4.27) 

 

Eq. 4.27 can be inverted numerically from the Laplace space using the Gaver-Stehfest algorithm (1970).  

The  term, previously defined in Eq. 4.20, can also be simplified.  Eliminating the S and C1 terms, we 

have: 
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Expanding and reducing the -n term, we have: 
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Our final form of the expression for the  -function, for use in Eq. 4.27, is given as: 
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  ......................................................... (4.28) 

 

4.3 Selection and Derivation of Study Scenarios 

At this point, we have successfully redeveloped the trilinear flow solution and coupled this with the 

components of the Fractal Diffusivity Equations (in the Laplace domain).  This formulation led to the 

introduction of 6 (six) additional variables for the trilinear flow problem (specifically: d1, d2, d3,        

and   ).  There is no independent mechanism for estimating these parameters — so we must calibrate our 

proposed solution to a "standard" solution for the case of a well with a single finite-conductivity vertical 

fracture producing in an infinite-acting homogeneous reservoir. 

 

For this calibration we have selected the Cinco-Meng (1988) solution, and we will estimate the d1, d2, d3, 

       and    parameters by numerical optimization.  As a precautionary measure, we have chosen to 

simplify the problem because optimization of six parameters may invite issues of non-uniqueness and 

substantially increased computational cost.  As such, we consider 3 different "scenarios," where we leave a 

particular Region(s) in their linear (non-fractal) form — these scenarios are listed in Table 4.1.  
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Table 4.1 — Scenarios to be optimized 

 

Scenario 

 

 

 

Region 1 

 

 

 

Region 2 

 

 

 

Region 3 

 

 

 

Unknowns to be  

optimized 

 

 

tD range  

considered 

 

 

FcD range 

 considered 

 

1 Linear Fractal Removed d2 and    10
-6

 to 10
7
 10

-1
 to 10

4
 

2 Linear Fractal Fractal d2, d3,    and    10
-6

 to 10
7
 10

-1
 to 10

4
 

3 Fractal Fractal Fractal d1, d2, d3,   ,    and     10
-6

 to 10
7
 10

-1
 to 10

4
 

 

 

Eq. 4.27 describes the "master" scenario where all three Regions are "fractal" — this case is designated 

"Scenario 3."  As shown in Table 4.1, Scenarios 1 and 2 are simplified versions of Scenario 3.  We will 

develop the “master” scenario first, then work our way down to the simpler versions. 

 

Scenario 3: 

Scenario 3 is derived in Section 4.2, and its solution is given by Eq. 4.27.  We have yet to discuss the L-

value (the dimensionless distance to the boundary) which is present in the   term in Eq. 4.25. In our 

formulation of the trilinear model using the Fractal Diffusivity Equation, we state that implicitly the 

porosity and permeability vary with distance (x) according to power-law relations (Eqs. 3.1 and 3.2).  As a 

consequence, we cannot define the inner boundary condition at xD = 0 (as Lee and Brockenbrough (1986) 

did) because this imposes exactly zero porosity and zero permeability at that point, which is physically 

inconsistent. 

 

In our study we have defined Region 1 as being between xD = 1 and xD = L.  This is not an issue as the 

physical problem is exactly the same, but it has been defined mathematically in a different way.  

Specifically, we must establish the value of L such that       [ ] when Region 1 is Euclidean, that is 

to say when            . 

 

If we set              in Eq. 4.25, then    
 

 
 and      which yields: 
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Using the following identities (Wolfram 2010): 
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We substitute Eqs. 4.30a-4.30f into Eq. 4.29, and we obtain: 
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Therefore, we require that L ≡ 2 to be consistent with the trilinear flow model (where this is the same 

requirement we had for Eq. 3.54). 
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Scenario 2: 

In this Scenario, Regions 2 and 3 remain as they were derived in Section 4.2 — however; Region 1 is now 

treated as Euclidean (i.e., non-fractal), and as was just established, we set L = 2 in the   term (Eq. 4.31). 

Therefore, Region 2 is only different from Region 3 in that  

 

      [ ] ............................................................................................................................. (4.32) 

 

Furthermore, d1 and   are no longer relevant variables and are set to            . 

 

Scenario 1: 

In Scenario 1 we further simplify the problem by eliminating Region 3 altogether (i.e.,       at all 

times).  Tracking this term in Eq. 4.3, it implies that we remove   from Eq. 4.14.  Additionally, d3 and    

are set to 0. 

As a summary, the solution schemes for each scenario are given in Table 4.2.  In all cases the skin factor 

(S), the dimensionless wellbore storage coefficient (CDf), and the fracture storage factor (C1) were set to 0.  

 

4.4 Discussion of Optimization Strategy 

In the process of combining the Fractal Diffusivity Equations into the trilinear flow solutions, we have 

introduced 6 (six) unknowns into the problem (d1, d2, d3,  1,  2 and  3).  At this point it is not clear as to 

whether or not these unknowns are constant, nor what variables the unknowns should be correlated against 

(although an obvious variable of correlation is the fracture conductivity).  At this stage, our strategy is to 

numerically optimize these parameters (d1, d2, d3,  1,  2 and  3) for each individual FcD case, and then to 

graphically compare each parameter to FcD to establish whether a single-variable correlation is 

appropriate. 
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Table 4.2 — Analytical solutions for all scenarios 

Scenario Analytical Solution  
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As mentioned earlier in this thesis, we have selected the Cinco-Meng (1988) solution as the "standard" 

against which we will correlate the fractal-based, trilinear flow solution.  This Cinco-Meng (1988) solution 

is given as: 
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 ,  ......... (4.36a) 

 

And the "flux condition" is given by:  

 

  ∑  ̅   ( )   
 

 
 
    ........................................................................................................ (4.36b) 

 

Where Eqs. 4.36a and 4.36b imply the following system of equations:  

 

[   ] [
 ̅   ( )

 ̅  ( )
]   [  ], ................................................................................................ (4.36c) 

 

Where the dimensionless pressure solution in the real (time) domain is obtained via numerical inversion of 

the  ̅  ( ) solution given in the Laplace domain.  We note that, as a standard, the Cinco-Meng solution 

(1988) does provide a physically and mathematically rigorous treatment of the problem in the Laplace 

domain, but it is a discretized solution that is cumbersome, is complex to set up, and is computationally 

very expensive. Consequently, the Cinco-Meng solution is not well suited to history matching 

applications.  

 

In order to calibrate the d and -values using the Cinco-Meng (1988) solution as a standard, we 

constructed a FORTRAN code (Chapman 2008) to perform the numerical optimization.  This program 

incorporates the Levenberg-Marquardt optimization algorithm (Moré et al. 1984) coupled to the Fractal-

Fracture Solution (i.e., our Fracture Diffusivity Equations combined with the trilinear flow solution).  A 

flowchart of this optimization process is depicted in Figure 4.5. 
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Our optimization/calibration process begins with an initial guess for each of the values of the unknown 

fractal parameters; we then compute the Fractal-Fracture Solution using these values and compare the 

results to the Cinco-Meng Solution.  In order to define an "objective function" for optimization, we must 

first define which function(s) shall be our basis — in our case we consider both the pressure function and 

the pressure derivative function, coupled by a defined weighting of each function.  For this research, we 

have defined our objective function (OF) as: 

 

      
|                 |

       
   

|                   |

        
  ......................................................... (4.37) 

 

Where the individual components in Eq. 4.37 are defined as: 

 

● pwD·FFS
 
is the dimensionless wellbore pressure (Fractal-Fracture Solution).  

● pwD·CMS
 
is the dimensionless wellbore pressure (Cinco-Meng (1988) solution). 

● p'wD·FFS
 
is the dimensionless wellbore pressure derivative (Fractal-Fracture Solution).  

● p'wD·CMS
 
is the dimensionless wellbore pressure derivative (Cinco-Meng (1988) solution). 

●  A and B are the weighting coefficients for the pressure and pressure derivative errors 

 

The optimization process is terminated when the Levenberg-Marquardt algorithm determines via a 

specified tolerance that the objective function cannot be further minimized.   We note that the objective 

function takes into account both the pressure and pressure derivative functions, but it is not immediately 

obvious what values their respective weighting coefficients A and B should have — as such, we 

considered 5 different cases of weighting coefficients, as outlined in Table 4.3.  
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Table 4.3 — Evaluated weight coefficients for objective function 
 

Case 

 

pD weight - A 

 

pD' weight - B 

 

1 0% 100% 

2 25% 75% 

3 50% 50% 

4 75% 25% 

5 100% 0% 

 

 

 

 

Figure 4.5 — Optimization process of the fractal parameters in the FFS.  We begin with an initial guess of 

the values of the unknown fractal parameters, compute the Fractal-Fracture Solution with 

them, compare the results to the Cinco-Meng Solution, and attempt to optimize the 

parameter value by minimizing an objective function.  The optimization is terminated when 

the Levenberg-Marquardt algorithm determines that the objective function OF cannot be 

further minimized. 

 

 

All five weighting cases were tested for a low conductivity case (Figure 4.6), and high conductivity case 

(Figure 4.7) — and based on the performance of these cases we chose A=0.25 and B=0.75 as the most 

appropriate weighting factors.  
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Figure 4.6 — Evaluation of five different objective functions for a low conductivity (FcD = 0.5) case. 

 

 

 

 

Figure 4.7 — Evaluation of five different objective functions for a high conductivity (FcD = 10
4
) case. 
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4.5 Optimization Results 

Using the calibration/optimization approach we were able to match the Cinco-Meng Solution (1988) 

satisfactorily with all three Scenarios (Table 4.1) over 13 log cycles of dimensionless time by using the 

optimizer (Figure 4.5). Figure 4.8 shows the L
1
 relative error norm of pressure versus the fracture 

conductivity for each optimized scenario.  Inspection of Figure 4.8 and Table 4.2 leads to the following 

conclusions: 

 

● Scenario 1 is by far the least accurate (most simple form/analytical solution).  

● Scenario 3 is the most accurate (most complex form/analytical solution). 

● Scenario 2 lies between the other two scenarios in terms of both solution complexity and accuracy.  

● All scenarios fail for FcD < 0.5, and this should be the lower limit of applicability.  

●  Scenarios 2 and 3 are essentially equivalent for practical purposes (L
1
 below 0.3%). 

 

 

Figure 4.8 — The Fractal-Fracture Solution was derived analytically for the three Scenarios considered 

in Table 4.1.  The solutions of Table 4.2 were each numerically optimized to match the 

Cinco-Meng (1988) solution.  The L
1
 relative error norm (in percent) is plotted against 

fracture conductivity for each of these scenarios.  
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Figure 4.9 shows the numerically optimized fractal parameters for Scenario 2. It is obvious that the curves 

are smooth and lend themselves to an approximation by a closed-form equation (this task will be 

performed in Section 5.1).  Similarly, Figure 4.10 and Figure 4.11 show the optimized d and -

parameters for Scenario 3, respectively. We note that in this case the curves are relatively smooth from 

FcD=10
4
 to FcD=3 — for FcD < 3 the high number of fractal parameters (6 in this case) begin to cause non-

uniqueness problems.  This means that more than one combination of parameters may yield an acceptable 

answer, and this yields inconsistency in the parameters as FcD decreases. 

 

The very high accuracy of these low conductivity results is offset by the fact that it is very hard to 

establish unique correlations for low conductivity values (this will be discussed in detail in Section 5.3). 

We also note that for Scenarios 2 and 3, all parameters remain constant for FcD >10
3
, which suggests we 

can extrapolate to FcD = ∞ using values obtained for FcD=10
4
 (this would be a reasonable assumption). 

 

 

Figure 4.9 — Values of optimized fractal parameters versus the dimensionless fracture conductivity 

(FcD).  The Fractal-Fracture Solution (Scenario 2) was numerically optimized to obtain 

values for the 4 fractal parameters in order to match the Cinco-Meng (1988) solution.  

Note that all curves are well-behaved and should lend themselves to approximations by 

smooth, closed form functions. 
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Figure 4.10 — Numerically optimized fractal parameters for Scenario 3 (d-parameters). 

 

 

 

 

Figure 4.11 — Numerically optimized fractal parameters for Scenario 3 (-parameters).  
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5. FRACTAL-FRACTURE SOLUTION CORRELATIONS 

5.1 Scenario 2: Parameter Correlations 

 

We begin with our efforts to optimize Scenario 2 (Region 1 (the fracture) non-fractal, Regions 2 and 3 

fractal — Table 4.1) as this was our initial focus case, and has become our "most practical" scenario in 

terms of balancing solution accuracy and complexity.  It was our impression at the time that the fracture 

(Region 1) would not need to be fractal — as will be discussed, there is some advantage in accuracy to 

deploy Region 1 as fractal (i.e., Scenario 3), but this incremental improvement in accuracy for Scenario 3 

comes a cost in both complexity and solution uniqueness (i.e., the more complex the solution, the less 

unique it became). 

 

For Scenario 2, we note that the optimized fractal parameters (see Figure 4.9) are well behaved when 

correlated against the dimensionless fracture conductivity (FcD) — as such, we believe it is possible to 

establish univariate correlations (i.e., y versus x, where x = FcD) for each fractal parameter (         and 

  ).  In order to develop these correlations, we employed the use of the TableCurve 2D software (Systat 

2012) which provides a nearly infinite library of possible data models, fitted and ranked statistically for a 

given regression of y versus x. 

 

Our correlations for Scenario 2 were constructed as follows: 

●     (   )  2 is a unique function of FcD 

●     (   ): d2 is a unique function of FcD 

●     (  ): d3 is a defined function of d2 

●     (  ): 3 is a defined function of d3 

 

There may be seem to be a contradiction between correlating the parameters for Region 2 (d2 and 2) in 

terms of the dimensionless fracture conductivity (FcD), but then defining the parameters for Region 3 (d3 

and 3) in terms of the parameters for Region 2 (d3 directly, and 3 indirectly).  However; these definitions 

for d3 and 3 arose from our correlation efforts and we believe that there may be a physical basis for these 

correlations (but this is not explored in our present work).  For this work, our efforts have focused on 
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establishing robust and accurate correlations for the fractal parameters (in this case:          and   ); and 

we believe that we have created (at the very least) a practical solution for application of the Fractal-

Fracture Solution (FFS) for this scenario. 

 

The parameter correlations for Scenario 2 are provided below: 

 

●     (   )  2 is a unique function of FcD 

 

    
          

     
 

         
     

  (             (   )) .................................................... (5.1) 

 

The following coefficients were determined using the TableCurve 2D software (Systat 2012): 

 

 A1 = −0.34048432 E1 = −0.34553019  

 B1 = 1.918772436 F1 = 3.154995757  

 C1 = −0.26952048 G1 = −0.98791385  

 D1 = 0.433916281 

 

The data-model correlation for this case is shown in Figure 5.1. 

 

●     (   ): d2 is a unique function of FcD 

 

              
     

 

         
     

 (             
(   )) ................................................. (5.2) 

 

The following coefficients were determined using the TableCurve 2D software (Systat 2012): 

 

 A2 = 1.732300052 E2 = 4.547075660  

 B2 = 0.145343775 F2 = 1.016405890  

 C2 = −1.00458904 G2 = 1.566926538  

 D2 = 2.270990983 

 

The data-model correlation for this case is shown in Figure 5.2. 
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Figure 5.1 — Parameter  2 versus dimensionless fracture conductivity FcD.  Each black circle represents 

the optimized  2 for a given FcD value. The red line is the model approximation.  The 

parameter  2 is correlated solely in terms of FcD. 

 

 

 

Figure 5.2 — Parameter d2 versus dimensionless fracture conductivity FcD.  Each black circle represents 

the optimized d2 for a given FcD value. The red line is the model approximation. The 

parameter d2 is correlated solely in terms of FcD.  
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●     (  ): d3 is a defined function of d2 

 

This correlation is defined based on the observed behavior of the parameters d3 versus d2 (see Figure 

5.3).  From Figure 5.3 we considered that a quadratic form would best fit this relationship. 

 

     (  )
            ................................................................................................... (5.3) 

 

The following coefficients were determined using the TableCurve 2D software (Systat 2012): 

 

 A3 = 1.4814 B3 = -7.3109 C3 = 10.03  

 

●     (  ): 3 is a defined function of d3 

 

This correlation is defined based on the observed behavior of the parameters 3 versus d3 (see Figure 

5.4). From Figure 5.4 we considered that a linear form would best fit this relationship. 

 

           ....................................................................................................................... (5.4) 

 

The following coefficients were determined using the TableCurve 2D software (Systat 2012): 

 

 A4 = 1.2063 B4 = -3.1532 

 

We next utilize our correlation relations (i.e., Eqs. 5.1-5.4) as components of the Fractal-Fracture Solution 

(FFS) procedure (i.e., Eq. 4.34 for Scenario 2).  Using this FFS for Scenario 2, we then generate 

comparator cases (pD and pD' functions) to visually assess the relative accuracy of our approach for this 

scenario.  As all of the parametric correlations have very good to excellent statistical behavior, our 

expectation is that this FFS formulation should yield good correlations with the reference solution (Cinco-

Meng).  We expect that we may observe minor discrepancies in the FFS formulation for FcD < 3 due to the 

(relatively) irregular behavior of the correlations for the 2 and d2 parameters in the region of FcD < 3. 
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Figure 5.3 — Parameter d3 versus parameter d2.  Each black circle represents the optimized d3 value 

compared to a corresponding optimized d2 value. The red line is the model approxi-

mation. In this rendering, the parameter d3 is correlated solely in terms of the parameter d2 

using a quadratic trend — which seems appropriate given the trending of these data. 

 

 

Figure 5.4 — Parameter 3 versus parameter d3.  Each black circle represents the optimized 3 value 

compared to a corresponding optimized d3 value.  The red line is the model approxi-

mation. .  In this rendering, the parameter 3 is correlated solely in terms of the parameter 

d3 using a linear trend — which seems appropriate given the trending of these data.  
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5.2 Scenario 2: Error Analysis  

 

We now present results generated using the "Scenario 2" closed-form Fractal-Fracture Solution (i.e., Eqs. 

4.34, 5.1-5.4) compared to the "reference" solution of Cinco-Meng (1988).  In this comparison we vary the 

dimensionless fracture conductivity (FcD) over the range of 0.6 ≤ FcD ≤ 10
4
, where this range encompasses 

very low conductivity (0.6) to near-infinite conductivity (10
4
).  Our approach is to compare the 

dimensionless pressure function (pD) and dimensionless pressure derivative function (pD') separately in 

order to assess the relative accuracy of each function in isolation. 

 

Dimensionless Pressure: pD versus tD (log-log format) for 0.6 ≤ FcD ≤ 10
4 

In Figure 5.5 we present the pD versus tD functions for FFS (Scenario 2) and the Cinco-Meng reference 

solution in log-log format (13 log cycles are shown, this is 13 orders of magnitude in tD).  There appears to 

be only minor discrepancies at very small values of tD for the low conductivity cases (0.6 ≤ FcD ≤ 1).  In 

this "log-log" view, there are no other apparent discrepancies in the solutions. 

 

 

 

 

Figure 5.5 — (Scenario 2) Log-log plot of dimensionless pressure function versus dimensionless time 

for the FFS and Cinco-Meng Solutions (1988). 
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Dimensionless Pressure: pD versus tD (semi-log (x-axis) format) for 0.6 ≤ FcD ≤ 10
4 

In Figure 5.6 we present the pD versus tD functions for FFS (Scenario 2) and the Cinco-Meng reference 

solution in semi-log (x-axis) format (13 log cycles in tD are shown).  There are no obvious discrepancies in 

this "semi-log" view, the correlation of the FFS and Cinco-Meng solutions appears to be excellent.  As an 

effort to distinguish error at all scales, we next provide a relative error function presented against tD (in this 

work we use the "relative error" and "L
1
 error norm" functions expressed in percent). 

 

 

 

Figure 5.6 — (Scenario 2) Semi-log plot of dimensionless pressure versus dimensionless time for the 

FFS and Cinco-Meng (1988) Solutions. 
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Dimensionless Pressure: pD relative error versus tD (semi-log (x-axis))
 

In Figure 5.7 we present the relative error for the pD function (for 0.5 ≤ FcD ≤ 10
2
) — where the definition 

of the relative error is given by: 

 

Relative Error = 100 [(pD,FFS - pD,CMS)/pD,CMS]  (percent)............................................................ (5.5) 

 

Where pD,FFS is the FFS defined in this work, and the pD,CMS is the Cinco-Meng Solution (1988) (our 

reference for this case).  The oscillatory nature of the FFS is evident in Figure 5.7, with the most dramatic 

oscillations occurring for the cases of 0.5 ≤ FcD ≤ 1.  At very early times, the accuracy is very sensitive to 

FcD — for example, for cases where FcD < 2.5 the error becomes unacceptably high (above 4 percent at 

tD=10
-6

).  At later times, the error corresponding to all fracture conductivities is generally low, with the 

only exceptions being the FcD = 0.5 and 0.6 curves. 

 

 

Figure 5.7 — (Scenario 2) Relative error (percent) in the dimensionless pressure solutions versus 

dimensionless time.
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Dimensionless Pressure: pD L
1
 error norm versus tD (semi-log (x-axis)) for 0.6 ≤ FcD ≤ 10

4 

In Figure 5.8 we present the L
1
 error norm for the pD function (for 0.6 ≤ FcD ≤ 10

4
 ) versus the 

dimensionless fracture conductivity (FcD), for the Fractal-Fracture Solution (FFS) and the Trilinear 

Pseudoradial Solution (TPRS) (Blasingame and Poe 1993).  The definition of the L
1
 error norm is given 

by: 

 

L
1
 error norm = 100 [||pD,FFS - pD,CMS||/||pD,CMS||]  (percent) ......................................................... (5.6) 

 

Where pD is a vector containing values of pD for each specified tD value.   

 

 

Figure 5.8 — (Scenario 2) L
1
 relative error norms for the dimensionless pressure solutions for the closed 

form Fractal-Fracture Solution (FFS) and the Trilinear Pseudoradial Solution (TPRS) 

(Blasingame and Poe 1993) versus the dimensionless fracture conductivity (FcD).  

Reference solution obtained from Cinco-Meng (1988). 
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In Figure 5.8 we observe that the pD(tD) values generated using the FFS are generally more accurate and 

more stable than obtained those from the Trilinear Pseudoradial Solution (TPRS) proposed by Blasingame 

and Poe (1993).  We observe that the Blasingame and Poe (1993) solution (TPRS) exhibits its worst 

behavior in the pD function (i.e., 0.5 ≤ L
1
 error norm ≤ 2 percent) for the range of 10

2
 ≤ FcD ≤ 10

4
, which is 

actually somewhat unexpected since the TPRS uses the infinite-conductivity vertical fracture solution as 

its basis.  Regardless, both the FFS and the TPRS methods should be more than sufficiently accurate for 

practical applications. 

 

Dimensionless Pressure Derivative: pD' versus tD (log-log format) for 0.6 ≤ FcD ≤ 10
4 

In Figure 5.9 we present the pD' versus tD functions for FFS (Scenario 2) and the Cinco-Meng reference 

solution in log-log format (13 log cycles are shown, this is 13 orders of magnitude in tD).  There appears to 

be only a very minor discrepancy at extremely small values of tD for the FcD = 0.6 conductivity case.  In 

short, in this log-log view, we observe no significant issues/discrepancies in the solutions. 

 

Dimensionless Pressure Derivative: pD' versus tD (semi-log (x-axis) format) for 0.6 ≤ FcD ≤ 10
4 

In Figure 5.10 we present the pD' versus tD functions for FFS (Scenario 2) and the Cinco-Meng reference 

solution in semi-log (x-axis) format (13 log cycles in tD are shown).  As opposed to the log-log view of 

these data (i.e., Figure 5.9) we observe significant discrepancies in the pD' versus log(tD) presentation — 

specifically, all cases exhibit significant oscillations in the pD' function for tD ≥ 1.  Although somewhat 

speculative, we believe that the oscillations in the pD' function are due to the nature of the FFS — the fact 

that we used a fractal concept to represent a non-fractal process.  While these oscillations are not trivial, 

we do believe that the FFS process yields a reasonable approximation for the pD' function; and most likely, 

this approach is sufficient for practical applications.  
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Figure 5.9 — (Scenario 2) Log-log plot of dimensionless pressure derivative function versus 

dimensionless time for the FFS and Cinco-Meng Solutions (1988). 

 

 

 

 

Figure 5.10 — (Scenario 2) Semi-log plot of dimensionless pressure derivative versus dimensionless time 

for the FFS and Cinco-Meng Solutions (1988). 
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Dimensionless Pressure Derivative: pD' relative error versus tD (semi-log (x-axis))
 

The relative error for the pD' function is presented in Figure 5.11 (for 0.5 ≤ FcD ≤ 10
2
) — and our first 

observation (as might be expected since this is a derivative function) is that the relative error for the pD' 

function is more "oscillatory" than that of the pD function — both in amplitude and frequency.  The range 

of cases considered is the same as for the pD function case (i.e., 0.5 < FcD < 10
2
) and we note the greatest 

magnitudes of errors for the FcD = 0.5 and 0.6 curves (which was also the case for the pD function).  We 

observe that all cases have a maximum relative error of at least 3 percent — and the FcD = 0.5 case has two 

error peaks over 6 percent, as well as errors over 10 percent for very small values of tD.  As comment, this 

behavior is somewhat expected in a derivative function, as the visual oscillations in the FFS confirm in 

Figure 5.10.  

 

Dimensionless Pressure Derivative: pD' L
1
 error norm versus tD (semi-log (x-axis)) for 0.6 ≤ FcD ≤ 10

4 

In Figure 5.12 we present the L
1
 error norm for the pD' function (for 0.6 ≤ FcD ≤ 10

4
 ) versus the 

dimensionless fracture conductivity (FcD), for the Fractal-Fracture Solution (FFS) and the Trilinear 

Pseudoradial Solution (TPRS) (Blasingame and Poe 1993).  As would be expected from the comparison of 

relative errors in Figure 5.11, L
1
 error norms for the FFS are highest for 0.6 ≤ FcD ≤ 2 (ranging between 1 

and 2 percent).  In contrast, the Blasingame and Poe (1993) solution (TPRS) exhibits relatively stable 

behavior in the L
1
 error norm — in particular 0.7 ≤ L

1
 error norm ≤ 1.2 percent, and varies somewhat 

randomly with FcD, although the highest observed errors occur for the 10
2
 ≤ FcD ≤ 10

4
 cases. 

 

As mentioned in the error analysis for the pD functions, we believe that the FFS and TPRS methods are 

sufficiently accurate for practical applications, but the observed oscillatory behavior of the pD' functions as 

shown in Figure 5.10 confirms that the FFS method can (and should) be improved.  Any improvements 

should reduce the oscillatory nature of the pD' functions as well as reduce the relative errors and the L
1
 

error norm behavior. 
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Figure 5.11 — (Scenario 2) Relative error (percent) in the dimensionless pressure derivative solutions 

versus dimensionless time. 
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Figure 5.12 — (Scenario 2) L
1
 relative error norms for the dimensionless pressure derivative solutions 

for the closed form Fractal-Fracture Solution (FFS) and the Trilinear Pseudoradial 

Solution (TPRS) (Blasingame and Poe 1993) versus the dimensionless fracture 

conductivity (FcD).  Reference solution obtained from Cinco-Meng (1988). 

 

5.3 Scenario 3: Parameter Correlations 

 

Our prior work with Scenario 2 [i.e., Region 1 (the fracture) non-fractal, Regions 2 and 3 fractal — Table 

4.1] proved that we have room for improvement in terms of the performance of the Fractal-Fracture 

Solution (FFS) method — as such, we now pursue development of Scenario 3 [all Regions fractal — 

Table 4.1]. In our development of Scenario 3 we will limit ourselves to the following conditions: 

● Cases where FcD ≥ 3, as this appears to be the "tipping point" where the FFS method may fail. 

● Parametric correlation relations (models) will contain no more than 10 coefficients.. 

 

For reference, the numerically optimized fractal parameters for both Scenarios 2 and 3 are shown in 

tabular fashion in Appendix A (these results form the basis for our correlations) — and, as a recommenda-

tion of this work, we invite the reader to create his/her own more sophisticated correlations [see also 

Figure 4.10 (d1, d2, d3) and Figure 4.11 (1,  2,  3)] for a graphical presentation of the optimized 
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parameters.  We note that a "perfect" correlation for all fractal parameters would match each point in 

Figure 4.10 and Figure 4.11. 

 

As with the Scenario 2, we develop parameter-specific correlations — in particularly, for Scenario 3 we 

constructed the following correlations: 

●     (   )  1 is a unique function of FcD 

●     (   ): d3 is a unique function of FcD 

●     (  ): 3 is a defined function of d3 

●     (   ): d1 is a unique function of FcD 

●     (  )  2 is a defined function of d1 

●     (  ): d2 is a defined function of d1 

 

The parameter correlations for Scenario 3 are provided below: 

 

●     (   )  1 is a unique function of FcD 

 

        √    ( )    (   )        ⁄  (             
(   )).......................... (5.7) 

 

The following coefficients were determined using the TableCurve 2D software (Systat 2012): 

 

 A1 = −0.74232260  C1 = −1.40767202 

 B1 = 1.186334039 D1 = 0.425529601 

 

The data-model correlation for this case is shown in Figure 5.13. 

 

●     (   ): d3 is a unique function of FcD 

 

    (      
 ) (     

 )  (             (   )) ................................................ (5.8) 

 

The following coefficients were determined using the TableCurve 2D software (Systat 2012): 

 

 A2 = 1.306668018  C2 = 5.810553378 

 B2 = 3.121888858 

 

The data-model correlation for this case is shown in Figure 5.14. 
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Figure 5.13 — Parameter 1 versus dimensionless fracture conductivity FcD.  Each black circle represents 

the optimized 1 for a given FcD value. The red line is the model approximation.  The 

parameter 1 is correlated solely in terms of FcD. 
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Figure 5.14 — Parameter d3 versus dimensionless fracture conductivity FcD.  Each black circle represents 

the optimized d3 for a given FcD value. The blue line is the model approximation. The 

parameter d3 is correlated solely in terms of FcD. 

 

 

●     (  ): 3 is a defined function of d3 

 

             ..................................................................................................................... (5.9) 

 

The following coefficients were determined using the TableCurve 2D software (Systat 2012): 

 

 A3 =       B3 =        

 

The data-model correlation for this case is shown in Figure 5.15. 
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Figure 5.15 — Parameter 3 versus parameter d3.  Each black circle represents the optimized 3 for a 

given d3 value. The red line is the model approximation.  The parameter 3 is correlated 

solely in terms of d3. 

 

●     (   ): d1 is a unique function of FcD 

 

     [     ( 
      (  

√ 
 

)   

  
)]

 

  (             (   )) ........................... (5.10) 

 

The following coefficients were determined using the TableCurve 2D software (Systat 2012): 

 

 A4 = 1.977809038  C4 = 0.472579200 

 B4 = 0.045173200 

 

The data-model correlation for this case is shown in Figure 5.16. 

 

●     (  )  2 is a defined function of d1 
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     (  )
               .............................................................................................. (5.11) 

 

The following coefficients were determined using the TableCurve 2D software (Systat 2012): 

 

 A5 = −0.5789 C5 = 3.2214 

 B5 = 2.6028 

 

The data-model correlation for this case is shown in Figure 5.17. 

 

 

Figure 5.16 — Parameter d1 versus dimensionless fracture conductivity FcD.  Each black circle represents 

the optimized d1 for a given FcD value. The red line is the model approximation. The 

parameter d1 is correlated solely in terms of FcD. 
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Figure 5.17 — Parameter 2 versus parameter d1.  Each black circle represents the optimized 2 for a 

given d1 value. The red line is the model approximation.  The parameter 2 is correlated 

solely in terms of d1. 

 

●     (  ): d2 is a defined function of d1 

 

     (  )
               .......................................................................................... (5.12) 

 

The following coefficients were determined using the TableCurve 2D software (Systat 2012): 

 

 A6 = −0.4481 C6 = 1.3073 

 B6 = 1.0935 

 

The data-model correlation for this case is shown in Figure 5.18. 
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Figure 5.18 — Parameter d2 versus parameter d1.  Each black circle represents the optimized d2 for a 

given d1 value. The red line is the model approximation.  The parameter d2 is correlated 

solely in terms of d1. 

 

As with Scenario 2, now that we have established correlations for all parameters in Scenario 3 (i.e., d1, d2, 

d3, 1,  2,  3), we proceed to generate comparator cases — in particular, we use the pD and pD' functions 

and associated relative error and L
1
 error norm cases to assess the relative accuracy of the FFS approach 

for Scenario 3.  As with Scenario 2, all of our parametric correlations have very good to excellent 

statistical behavior, and our expectation is that this FFS formulation should yield very good results when 

compared with the reference solution (Cinco-Meng).  For Scenario 3, only cases of FcD ≥ 3 are considered. 
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5.4 Scenario 3: Error Analysis 

 

We now present results generated using the "Scenario 3" closed-form Fractal-Fracture Solution (i.e., Eqs. 

4.35, 5.7-5.12) compared to the "reference" solution of Cinco-Meng (1988).  In this comparison we vary 

the dimensionless fracture conductivity (FcD) over the range of 3 ≤ FcD ≤ 10
4
, where this range 

encompasses moderately low conductivity (3) to near-infinite conductivity (10
4
).   

 

Dimensionless Pressure: pD versus tD (log-log format) for 3 ≤ FcD ≤ 10
4 

In Figure 5.19 we present the pD versus tD functions for FFS (Scenario 3) and the Cinco-Meng reference 

solution in log-log format (13 log cycles are shown, this is 13 orders of magnitude in tD).  In this view the 

correlation is very strong between the FFS and Cinco-Meng (1998) reference cases — in short, there 

appear to be no discrepancies for any value pD(tD) values.  

 

 

Figure 5.19 — (Scenario 3) Log-log plot of dimensionless pressure function versus dimensionless time 

for the FFS and Cinco-Meng Solutions (1988).  

 

Dimensionless Pressure: pD versus tD (semi-log (x-axis) format) for 3 ≤ FcD ≤ 10
4 

In Figure 5.20 we present the pD versus tD functions for FFS (Scenario 3) and the Cinco-Meng reference 

solution in semi-log (x-axis) format (13 log cycles in tD are shown).  We note an apparently perfect 

correlation of the FFS and Cinco-Meng solutions in this view. 
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Figure 5.20 — (Scenario 3) Semi-log plot of dimensionless pressure versus dimensionless time for the 

FFS and Cinco-Meng Solutions (1988). 

 

Dimensionless Pressure: pD relative error versus tD (semi-log (x-axis))
 

In Figure 5.21 we present the relative error for the pD function (for 3 ≤ FcD ≤ 10
3
) — and as with Scenario 

2, the results for Scenario 3 do exhibit oscillatory behavior, but the limits on these errors are -0.5 to 0.5 

percent (except at very early times).  This suggests that Scenario 3 yields substantially more accuracy than 

Scenario 2 (recall that the relative error ranges for Scenario 2 were approximately -4 to 4 percent).  The 

oscillatory behavior may be an issue which affects the pD' function (this will be discussed in the next 

section). 
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Dimensionless Pressure: pD L
1
 error norm versus tD (semi-log (x-axis)) for 3 ≤ FcD ≤ 10

3 

In Figure 5.22 we present the L
1
 error norm for the pD function (for 3 ≤ FcD ≤ 10

3
 ) versus the 

dimensionless fracture conductivity (FcD), for the Fractal-Fracture Solution (FFS) and the Trilinear 

Pseudoradial Solution (TPRS) (Blasingame and Poe 1993).  The FFS and TPRS L
1
 error norms are 

essentially identical for 3 ≤ FcD ≤ 10
2
, and the TPRS L

1
 error norm does drift up to almost 2 percent for 

10
2
 ≤ FcD ≤ 10

4
 while the FFS for this case has a range of 0.2 to 0.5 percent, suggesting that the FFS is a 

somewhat better approximation over the 10
2
 ≤ FcD ≤ 10

4
 range.  It is relevant to note that we have limited 

the FFS solution to cases where FcD ≥ 3, due to weaker performance for FcD ≤ 3. 

 

 

Figure 5.21 — (Scenario 3) Relative error (percent) in the dimensionless pressure solutions versus 

dimensionless time. 
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Figure 5.22 — (Scenario 3) L
1
 relative error norms for the dimensionless pressure solutions for the 

closed form Fractal-Fracture Solution (FFS) and the Trilinear Pseudoradial Solution 

(TPRS) (Blasingame and Poe 1993) versus the dimensionless fracture conductivity 

 

Dimensionless Pressure Derivative: pD' versus tD (log-log format) for 3 ≤ FcD ≤ 10
4 

In Figure 5.23 we present the pD' versus tD functions for FFS (Scenario 3) and the Cinco-Meng reference 

solution in log-log format (13 log cycles are shown, this is 13 orders of magnitude in tD).  As with the pD 

function for this case, the comparison appears to be near-perfect, there are no visible discrepancies in the 

solutions. 

 

Dimensionless Pressure Derivative: pD' versus tD (semi-log (x-axis) format) for 3 ≤ FcD ≤ 10
4 

The pD' versus tD functions for FFS (Scenario 3) and the Cinco-Meng reference solution in semi-log (x-

axis) format (13 log cycles in tD) are shown in Figure 5.24.  We note that the behavior of the pD' function 

for the range 10
-6

 ≤ tD ≤ 1 is excellent, essentially no deviations/discrepancies in the FFS and Cinco-Meng 

solutions.  However, for tD ≥ 1 we note subtle (but consistent) oscillations in the pD' function — which 

suggests that these oscillations (observed for both Scenarios 2 and 3) are likely artifacts of using the fractal 

diffusivity equation for a "non-fractal" process.  That is, the oscillations are inherent features of the FFS 
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method.  However, the minimal nature of these oscillatory behaviors suggests that the FFS approach 

(particularly Scenario 3) is sufficient for practical applications.  

 

 

Figure 5.23 — (Scenario 3) Log-log plot of dimensionless pressure derivative function versus 

dimensionless time for the FFS and Cinco-Meng Solutions (1988).  

 

 

Figure 5.24 — (Scenario 3) Semi-log plot of dimensionless pressure derivative versus dimensionless 

time for the FFS and Cinco-Meng (1988) Solutions. 
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Dimensionless Pressure Derivative: pD' relative error versus tD (semi-log (x-axis)) for 3 < FcD < 10
3 

The relative error for the pD' function is presented in Figure 5.25 (for 3 < FcD < 10
3
).  In Figure 5.25 the 

oscillations are similar in frequency as those observed in Figure 5.11 (for Scenario 2), but in Figure 5.25 

the oscillations vary less (between -2 and 2 percent), suggesting that Scenario 3 is a much better "fit" by 

comparison to the Cinco-Meng reference solution. 

 

 

Figure 5.25 — (Scenario 3) Relative error (percent) in the dimensionless pressure derivative solutions 

versus dimensionless time.  
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Dimensionless Pressure Derivative: pD' L
1
 error norm versus tD (semi-log (x-axis)) for 3 ≤ FcD ≤ 10

4 

In Figure 5.26 we present the L
1
 error norm for the pD' function (for 3 ≤ FcD ≤ 10

4
) versus the dimension-

less fracture conductivity (FcD), for the Fractal-Fracture Solution (FFS) and the Trilinear Pseudoradial 

Solution (TPRS) (Blasingame and Poe 1993).  From our observations in Figure 5.26, we conclude that the 

performance of the pD' function is very similar for the FFS and TPRS methods, and that the L
1
 error norm 

suggests that these solutions should be considered essentially the same (certainly so for practical 

purposes).  As a reminder, we elected not to consider cases for the FFS approach (Scenario 3) where FcD ≤ 

3 due to weak performance for those cases. 

 

 

Figure 5.26 — (Scenario 3) L
1
 relative error norms for the dimensionless pressure derivative solutions 

for the closed form Fractal-Fracture Solution (FFS) and the Trilinear Pseudoradial 

Solution (TPRS) (Blasingame and Poe 1993) versus the dimensionless fracture 

conductivity (FcD).  Reference solution obtained from Cinco-Meng (1988) 
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6. SUMMARY AND CONCLUSIONS 

 

6.1 Summary 

 

1. A rigorous analytical study of the Fractal Diffusivity Equation (Eq. 3.33) was performed, beginning 

with the Fractal Porosity-Permeability Relations (Eqs. 3.1 and 3.2) — the physical meaning of these 

relations is discussed, showing why these relations have been largely ignored in the literature.  

 

2. A rigorous analytical and numerical study of the Fractal Diffusivity Equation was performed in 

Sections 3.3 and 3.4, respectively.  

 

3. In this work we combined the Fractal Diffusivity Equation with the Trilinear Flow Solution  originally 

proposed by Lee and Brockenbrough (1986) (see Figure 4.1).  We have called this new solution the 

"Fractal-Fracture Solution". We replaced the three original linear diffusivity equations of Regions 1, 2 

and 3 with the fractal counterparts for these regions.  In doing so, 6 unknowns were introduced to the 

problem — namely the fractal parameters d1, d2, d3, θ1, θ2 and θ3.  We validated this new solution by 

matching the Cinco-Meng (1988) semi-analytical solution for a single vertical hydraulic fracture.  

 

4. Since it is not obvious what values these parameters should have, we coupled the Fractal-Fracture 

Solution (FFS) with the Levenberg-Marquardt numerical optimization algorithm (Figure 4.5).  We 

considered three different scenarios; where all three scenarios were successfully matched to the target 

solution (Figure 4.8), albeit with varying degrees of accuracy. 

 

5. The correlation parameters were generally well behaved (see Figure 4.9, Figure 4.10 and Figure 4.11) 

and relationships were developed with respect to dimensionless fracture conductivity FcD  (Section 5.1 

and 5.3).  Lastly, these parameters led to two closed-form Fractal-Fracture Solution, one derived from 

Scenario 2 (Section 5.2) and one derived from Scenario 3 (Section 5.4). 
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6.2 Conclusions 

 

1. Depending on the value of the fractal parameters d and θ chosen, it is possible to obtain both the 

classic linear and radial flow solutions from the Fractal Diffusivity Equation. 

 

2. The pressure signal predicted by the analytical solution for the Fractal Diffusivity Equation was 

successfully matched via numerical simulation.  

 

3. FFS-Sc2 performance is globally superior to the Blasingame and Poe (1993) Trilinear Pseudoradial 

Solution in terms of pressure (Figure 5.8) accuracy, but falls a somewhat short in terms of pressure 

derivative (Figure 5.12) accuracy.  We do not recommend using the Fractal-Fracture Solution for 

values FcD < 0.5.  The FFS-Sc3 has a better pressure derivative behavior than FFS-Sc2 (Figure 5.26), 

but is only valid for FcD ≥ 3. 

 

4. For what we believe is the first time, fractal theory has been used in reservoir engineering to address a 

problem that is not related to naturally-fractured reservoirs or heterogeneous media.  We have showed 

that the Fractal Diffusivity Equation may have untapped potential due to its flexibility in describing a 

multitude of flow regimes.  We believe that this approach may lead to solutions for intractable 

problems such as multiple transverse fractures, sorption effects or formation damage. 

 

6.3 Recommendations for Future Research 

 

General remarks on the physical meaning of the FFS 

In Figure 3.1 we presented a case where two reservoirs in different coordinate systems with different 

hydraulic properties produce identical pressure signals.  Similarly, the Fractal-Fracture Solution (FFS) and 

the Cinco-Meng Solution (1988) produce nearly identical pressure signals, even though the way the 

fracture is modeled in each case is vastly different.  As such, we have presented two examples where it is 

possible to create "equivalent flow systems" with relative ease due to the flexibility of fractal theory.  
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If d=2 implies linear flow, and d=3 implies radial flow, what does it mean if d is equal to, say, 2.5?  Is this 

the equivalent of elliptical flow?  If so, what does it look like?  At present we do not have answers to these 

questions, but we intuitively suspect a relationship between the fractal parameters {d,θ} and the shape of 

the pressure waves and/or streamlines. 

 

Possible future research directions 

During the investigation it was realized that the fractal parameters 'bend' the pressure curve in different 

ways, hence this procedure should have great flexibility.  In this work we use the classic Cinco-Meng 

(1988) solution to calibrate/validate our approach, and we note that at present, a basis solution (analytical, 

semi-analytical, numerical) must be available to calibrate any proposed solution which is based on the 

generalized Fractal Diffusivity Equation. 

 

Possible problems of interest include reservoirs with sorption effects, wells with formation damage, 

naturally-fractured reservoirs, and wells with multiple transverse fractures. Table 4.2 contains the 

analytical solutions for other models should the user want to perform his/her own calibrations with a 

different Scenario.  Should a match be successful, one must be careful not to reduce the problem to a 

curve-fitting exercise as there is no substitute for understanding the physics of the problem at its root. 
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NOMENCLATURE 

 

 a = parameter defined after Eq. 4.6c 

 b = parameter defined after Eq. 4.6c 

 B = formation volume factor, RB/STB 

 bf  = fracture width, m 

 co = oil compressibility, Pa
-1

 

 cr = formation compressibility, Pa
-1 

 ct = total compressibility, Pa
-1

 

 C = wellbore storage coefficient, RB/Pa 

 C1 = fracture storage factor 

 d = fractal dimension of the pore spaces 

 FcD = dimensionless fracture conductivity 

 h = formation height, m 

 k = permeability, m
2
 [md] 

 kf bf = fracture conductivity, md·m 

 L = dimensionless distance to boundary, Eq. 3.36 

 n = parameter defined in Eq. 4.8 

 p = reservoir pressure, Pa  

 q = flow rate, m
3
/s 

 S = skin factor 

 t = time, s 

 x,y = space coordinates, m 

 xf = fracture half-length, m 

 z = Laplace space variable 
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Greek Symbols 

 α = parameter defined in Eq. 4.8 

   = parameter defined in Eq. 4.8 

   = fractal dimension of the fluid flow 

   = viscosity, Pa·s [cp] 

   = porosity, fraction 

   = parameter defined in Eq. 4.20 

   = parameter defined in Eq. 4.13 

Subscripts 

 D = dimensionless 

 f = related to the fracture 

 i = initial condition 

 o = oil 

 w = at the sandface 

 1,2,3 = index of flow region 

 



93 

 

 

REFERENCES 

 

Abdassah, D. and Ershaghi, I. 1986. Triple porosity models for representing naturally-fractured 

reservoirs. SPE Formation Evaluation 1 (2): 113-127. SPE 13409-PA. http://dx.doi.org/10.2118/13409-

PA 

Acuña, J.A., Ershaghi, I., and Yortsos, Y.S. 1995. Practical Application of Fractal Pressure-Transient 

Analysis in Naturally-fractured Reservoirs. SPE Formation Evaluation 10 (3): 173-179. SPE 24705-PA. 

http://dx.doi.org/10.2118/24705-PA 

Acuña, J.A. and Yortsos, Y.C. 1991. Numerical Construction and Flow Simulation in Networks of 

Fractures using Fractal Geometry. Paper SPE 22703-MS presented at the SPE Annual Technical 

Conference and Exhibition, Dallas, Texas, 6-9 October 1991.  http://dx.doi.org/10.2118/22703-MS. 

Baihly, J., Laursen, P., Ogrin, J. et al. 2006. Using Microseismic Monitoring and Advanced 

Stimulation Technology To Understand Fracture Geometry and Eliminate Screenout Problems in the 

Bossier Sand of East Texas. Paper SPE 102493 presented at the SPE Annual Technical Conference and 

Exhibition, San Antonio, Texas, USA, 24-27 September 2006.  http://dx.doi.org/10.2118/102493-MS. 

Bear, J. 1972. Dynamics of Fluids in Porous Media: Dover.Edition.  ISBN  0-486-65675-6. 

Beier, R.A. 1994. Pressure-Transient Model for a Vertically Fractured Well in a Fractal Reservoir. 

SPE Formation Evaluation 9 (2): 122-128. SPE 20582-PA. http://dx.doi.org/10.2118/20582-PA 

Blasingame, T.A. 2010a. Petroleum Engineering 620 - Fluid Flow in Petroleum Reservoirs - 

Reservoir Flow Solutions - Linear Flow Solutions: Infinite and Finite-Acting Reservoir Cases. Texas A&M 

University, Harold Vance Department of Petroleum Engineering.  

Blasingame, T.A. 2010b. Petroleum Engineering 620 - Fluid Flow in Petroleum Reservoirs - 

Reservoir Flow Solutions - Solution of the Radial Flow Diffusivity Equation. Texas A&M University, 

Harold Vance Department of Petroleum Engineering.  

Blasingame, T.A. and Poe, B.D. 1993. Semianalytic Solutions for a Well With a Single Finite-

Conductivity Vertical Fracture. Paper SPE 26424-MS presented at the SPE Annual Technical Conference 

and Exhibition, Houston, Texas, 3-6 October.  http://dx.doi.org/10.2118/26424-MS. 

Bowman, F. 1958. Introduction to Bessel Functions. New York,: Dover Publications.Edition.  ISBN  

0486604624. 

Camacho-Velazquez, R., Fuentes-Cruz, G., and Vasquez-Cruz, M.A. 2008. Decline-Curve Analysis 

of Fractured Reservoirs With Fractal Geometry. SPE Reservoir Evaluation & Engineering 11 (3): 606-

619. SPE 104009-PA. http://dx.doi.org/10.2118/104009-PA 

Carslaw, H.S. and Jaeger, J.C. 1959. Conduction of Heat in Solids: Oxford University Press.Edition.  

ISBN  978-0-19-853368-9. 

Chang, J. and Yortsos, Y. 1990. Pressure Transient Analysis of Fractal Reservoirs. SPE Formation 

Evaluation 5 (1). SPE 18170-PA. http://dx.doi.org/10.2118/18170-PA 

Chapman, S.J. 2008. Fortran 95/2003 for Scientists and Engineers. Boston: McGraw-Hill.Edition 

3rd.  ISBN  9780073191577 (pbk. alk. paper) 

http://dx.doi.org/10.2118/13409-PA
http://dx.doi.org/10.2118/13409-PA
http://dx.doi.org/10.2118/24705-PA
http://dx.doi.org/10.2118/22703-MS
http://dx.doi.org/10.2118/102493-MS
http://dx.doi.org/10.2118/20582-PA
http://dx.doi.org/10.2118/26424-MS
http://dx.doi.org/10.2118/104009-PA
http://dx.doi.org/10.2118/18170-PA


94 

 

 

Cinco-Ley, H. and Meng, H.-Z. 1988. Pressure Transient Analysis of Wells With Finite Conductivity 

Vertical Fractures in Double Porosity Reservoirs. Paper SPE 18172-MS presented at the SPE Annual 

Technical Conference and Exhibition, Houston, Texas, 2-5 October 1988.  

http://dx.doi.org/10.2118/18172-MS. 

Cinco-Ley, H., Samaniego, F., and Dominguez, N. 1978. Transient Pressure Behavior for a Well With 

a Finite-Conductivity Vertical Fracture SPE Journal 18 (4): 253-264. SPE 6014-PA. 

http://dx.doi.org/10.2118/6014-PA 

Dar, V. 2010. New Investment Models Have Operators Targeting Tight Oil And Hybrid 

Unconventional Reservoirs. The American Oil and Gas Reporter.  

Feder, J. 1988. Fractals. Physics of solids and liquids. New York: Plenum Press.Edition.  ISBN  

0306428512. 

Ferrandon, J. 1948. Les lois de l'écoulement de filtration. Le Génie Civile 2 (125): 24-28.  

Flamenco-Lopez, F. and Camacho-Velazquez, R. 2003. Determination of Fractal Parameters of 

Fracture Networks Using Pressure-Transient Data. SPE Reservoir Evaluation & Engineering 6 (1). SPE 

82607-PA. http://dx.doi.org/10.2118/82607-PA 

Frame, M., Manna, S., and Novak, M. 2012. World Scientific Publishing Company Journal. Fractals: 

Complex Geometry, Patterns, and Scaling in Nature and Society. 

http://www.worldscinet.com/fractals/mkt/aims_scope.shtml 

Friedrich, R. and Gurevich, S. 2010. Numerische Methoden für komplexe Systeme - 

Diffusionsgleichung. Institut für Theoretische Physik - Westfälische Wilhelms-Universität Münster, 

Germany. http://pauli.uni-muenster.de/tp/en/menu/teaching/archiv/numerische-methoden-0910.html 

Fuentes-Cruz, G., Camacho-Velázquez, R., and Vásquez-Cruz, M. 2010. A Unified Approach for 

Falloff and Buildup Tests Analysis Following a Short Injection/Production Time. Paper SPE 133539-MS 

presented at the SPE Western Regional Meeting, Anaheim, California, USA, 27-29 May 2010.  

http://dx.doi.org/10.2118/133539-MS. 

Gringarten, A.C., Henry J. Ramey, J., and Raghavan, R. 1974. Unsteady-State Pressure Distributions 

Created by a Well With a Single Infinite-Conductivity Vertical Fracture. SPE Journal 14 (4). SPE 4051-

PA. http://dx.doi.org/10.2118/4051-PA 

Hardy, H.H. and Beier, R.A. 1994. Fractals in reservoir engineering. Singapore ; River Edge, NJ: 

World Scientific.Edition.  ISBN  9810220693. 

Katz, A.J. and Thompson, A.H. 1985. Fractal Sandstone Pores - Implications for Conductivity and 

Pore Formation. Physical Review Letters 54 (12): 1325-1328.  

Kong, X.Y., Li, D.L., and Lu, D.T. 2009. Transient pressure analysis in porous and fractured fractal 

reservoirs. Sci China Ser E-Tech Sci 52 (9): 2700-2708.  

Kreyszig, E. 2005. Advanced Engineering Mathematics: Wiley.Edition 9.  ISBN  0471488852. 

Krohn, C.E. and Thompson, A.H. 1986. Fractal Sandstone Pores - Automated Measurements Using 

Scanning-Electron-Microscope Images. Physical Review B 33 (9): 6366-6374.  

Lee, J. and Wattenbarger, R.A. 1996. Gas reservoir engineering. SPE textbook series. Richardson, 

TX: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers.Edition 1.  ISBN  

1555630731. 

http://dx.doi.org/10.2118/18172-MS
http://dx.doi.org/10.2118/6014-PA
http://dx.doi.org/10.2118/82607-PA
http://www.worldscinet.com/fractals/mkt/aims_scope.shtml
http://pauli.uni-muenster.de/tp/en/menu/teaching/archiv/numerische-methoden-0910.html
http://dx.doi.org/10.2118/133539-MS
http://dx.doi.org/10.2118/4051-PA


95 

 

 

Lee, S.-T. and Brockenbrough, J.R. 1986. A New Approximate Analytic Solution for Finite-

Conductivity Vertical Fractures. SPE Formation Evaluation 1 (1). SPE 12013-PA. 

http://dx.doi.org/10.2118/12013-PA 

Maloy, K.J., Boger, F., Feder, J. et al. 1987. Dynamics of Viscous-Fingering Fractals in Porous-

Media. Physical Review A 36 (1): 318-324.  

Maloy, K.J., Feder, J., and Jossang, T. 1985. Viscous Fingering Fractals in Porous-Media. Physical 

Review Letters 55 (24): 2688-2691.  

Mandelbrot, B. 1967. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional 

Dimension. Science 156 (3775): 636-638. http://dx.doi.org/10.1126/science.156.3775.636  

Mandelbrot, B.B. 1982. The fractal geometry of nature. San Francisco: W.H. Freeman.Edition.  ISBN  

0716711869. 

McNally, J. 2010. Earth's Most Stunning Natural Fractal Patterns. Wired Magazine. 

http://www.wired.com/wiredscience/2010/09/fractal-patterns-in-nature/?pid=162. Accessed February 22nd 

2012. 

Moran, C. 2010. Fractal Coast. http://www.flickr.com/photos/buggs_moran/4516938146/. Accessed 

February 22nd 2012. 

Moré, J.J., Garbow, B.S., and Hillstrom, K.E. 1984. The MINPACK Project. In Sources and 

Development of Mathematical Software (Prentice-Hall Series in Computational Mathematics), ed. W. J. 

Cowell, E. 

Muñoz, A., Ehlig-Economides, C., and Economides, M.J. 1998. Principal Permeability Determination 

from Multiple Horizontal Well Tests. Paper SPE 50396-MS presented at the SPE International Conference 

on Horizontal Well Technology, Calgary, Alberta, Canada, 1-4 November 1998.  

http://dx.doi.org/10.2118/50396-MS. 

Nagel, N.B., Sanchez-Nagel, M., and Lee, B. 2012. Gas Shale Hydraulic Fracturing: A Numerical 

Evaluation of the Effect of Geomechanical Parameters. Paper 152192 presented at the SPE Hydraulic 

Fracturing Technology Conference, The Woodlands, Texas, 6-8 February 2012.  

http://dx.doi.org/10.2118/152192-MS. 

Ozkan, E. and Raghavan, R. 1991. New Solutions for Well-Test-Analysis Problems: Part 1 - 

Analytical Considerations SPE Formation Evaluation 6 (3). SPE 18615-PA. 

http://dx.doi.org/10.2118/18615-PA 

Ruis, J. 2008. Pore Fractal. Fractal.org. http://www.fractal.org/Life-Science-

Technology/Publications/Pore-fractal.htm. Accessed February 22nd 2012. 

Sheng, J.J. 2010. Discussion of Permeability Anisotropy Effect in Transformation. Journal of 

Canadian Petroleum Technology 49 (7): 42-46. SPE 139430-PA. http://dx.doi.org/10.2118/139430-PA 

Smidt, J.L. and Monro, D.M. 1998. Fractal modeling applied to reservoir characterization and flow 

simulation. Fractals-Complex Geometry Patterns and Scaling in Nature and Society 6 (4): 401-408.  

Stehfest, H. 1970. Numerical Inversion of Laplace Transforms. Communications of the ACM 13 (1): 

47-49.  

Systat. 2012. TableCurve 2D 5.01. Systat Software, Inc., San Jose, CA. 

http://dx.doi.org/10.2118/12013-PA
http://dx.doi.org/10.1126/science.156.3775.636
http://www.wired.com/wiredscience/2010/09/fractal-patterns-in-nature/?pid=162
http://www.flickr.com/photos/buggs_moran/4516938146/
http://dx.doi.org/10.2118/50396-MS
http://dx.doi.org/10.2118/152192-MS
http://dx.doi.org/10.2118/18615-PA
http://www.fractal.org/Life-Science-Technology/Publications/Pore-fractal.htm
http://www.fractal.org/Life-Science-Technology/Publications/Pore-fractal.htm
http://dx.doi.org/10.2118/139430-PA


96 

 

 

Taheri, A., Wessel-Berg, D., Torsæter, O. et al. 2012. The Effects of Anisotropy and Heterogeneity on 

CO2 Dissolution in Deep Saline Aquifers. Paper SPE 151345-MS presented at the Carbon Management 

Technology Conference, Orlando, Florida, USA, 7-9 February 2012.  http://dx.doi.org/10.7122/151345-

MS. 

US DOE EIA. 2011. Annual Energy Outlook 2011 with Projections to 2035. 

http://www.eia.gov/forecasts/aeo/pdf/0383%282011%29.pdf 

Wold, M.B. and Jeffrey, R.G. 1999. A Comparison of Coal Seam Directional Permeability as 

Measured in Laboratory Core Tests and in Well Interference Tests. Paper SPE 55598-MS presented at the 

SPE Rocky Mountain Regional Meeting, Gillette, Wyoming, 15-18 May 1999.  

http://dx.doi.org/10.2118/55598-MS. 

Wolfram. 2010. Mathematica: Version 8.0. Wolfram Research, Inc., Champaign, Illinois. 

Yu, B. 2008. Analysis of Flow in Fractal Porous Media. Applied Mechanics Reviews 61 (5): 0508011-

05080119.  

Yun, M.J., Yu, B.M., and Cai, J.C. 2009. Analysis of seepage characters in fractal porous media. 

International Journal of Heat and Mass Transfer 52 (14): 3272-3278. 

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.01.024 

 

http://dx.doi.org/10.7122/151345-MS
http://dx.doi.org/10.7122/151345-MS
http://www.eia.gov/forecasts/aeo/pdf/0383%282011%29.pdf
http://dx.doi.org/10.2118/55598-MS
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.01.024


97 

 

 

APPENDIX A 

 

Table A.1 — Tabular results from Scenario 2 
 

FcD 
d3 

optimized 
3 

optimized 

d2 

optimized  
2 

optimized 

FFS_Sc2_closed 

pD norm error 

FFS_Sc2_closed 

pD' norm error 

0.5 1.258 -1.611 2.001 -0.7022 2.148 4.12 

0.6 1.3 -1.587 2.014 -0.51 0.45 1.482 

0.7 1.413 -1.453 1.95 -0.433 0.543 1.433 

0.8 1.566 -1.264 1.864 -0.39 0.643 1.432 

0.9 1.709 -1.091 1.79 -0.361 0.615 1.347 

1 1.839 -0.9352 1.728 -0.34 0.557 1.323 

1.5 2.263 -0.428 1.548 -0.295 0.4 1.584 

2 2.45 -0.203 1.479 -0.282 0.422 1.805 

3 2.551 -0.0769 1.447 -0.279 0.405 1.912 

4 2.515 -0.1195 1.461 -0.281 0.35 1.866 

5 2.47 -0.171 1.477 -0.285 0.316 1.804 

6 2.412 -0.2415 1.497 -0.289 0.324 1.75 

7 2.369 -0.2922 1.512 -0.292 0.368 1.706 

8 2.344 -0.322 1.522 -0.294 0.401 1.668 

9 2.313 -0.3594 1.533 -0.296 0.423 1.636 

10 2.289 -0.3876 1.542 -0.298 0.437 1.607 

20 2.145 -0.5623 1.594 -0.309 0.442 1.425 

30 2.091 -0.628 1.614 -0.313 0.403 1.334 

40 2.061 -0.6649 1.625 -0.315 0.37 1.279 

50 2.045 -0.6846 1.632 -0.317 0.345 1.244 

60 2.031 -0.7012 1.637 -0.318 0.325 1.22 

70 2.023 -0.7117 1.64 -0.319 0.309 1.202 

80 2.017 -0.7192 1.642 -0.319 0.295 1.188 

90 2.011 -0.7257 1.644 -0.319 0.284 1.178 

100 2.008 -0.7295 1.646 -0.32 0.275 1.169 

200 1.987 -0.7558 1.654 -0.321 0.228 1.131 

300 1.984 -0.7599 1.655 -0.322 0.217 1.119 

400 1.978 -0.7667 1.657 -0.322 0.213 1.113 

500 1.977 -0.7675 1.658 -0.322 0.211 1.109 

600 1.975 -0.7704 1.659 -0.322 0.21 1.107 

700 1.974 -0.7715 1.659 -0.322 0.21 1.106 

800 1.973 -0.7725 1.659 -0.322 0.21 1.104 

900 1.974 -0.772 1.659 -0.323 0.209 1.104 

1000 1.974 -0.7721 1.659 -0.323 0.21 1.103 

2000 1.97 -0.7761 1.66 -0.323 0.213 1.101 

3000 1.97 -0.7762 1.66 -0.323 0.218 1.102 

4000 1.97 -0.7766 1.661 -0.323 0.225 1.103 

5000 1.971 -0.7752 1.66 -0.323 0.232 1.105 

6000 1.968 -0.7789 1.661 -0.323 0.239 1.106 

7000 1.969 -0.7779 1.661 -0.323 0.244 1.107 

8000 1.97 -0.777 1.661 -0.323 0.249 1.108 

9000 1.969 -0.7778 1.661 -0.323 0.254 1.11 

10000 1.969 -0.7778 1.661 -0.323 0.258 1.111 
 



98 

 

 

Table A.2 — Tabular results from Scenario 3 

 

Table A6.2 — Tabular results from Scenario 3 

FcD 
d3 

optimized 
3 

optimized 

d2 

optimized 
 

optimized 

d1 

optimized 
 

optimized 

FFS_Sc3_closed 

pD norm error 

FFS_Sc3_closed 

pD' norm error 

0.5 1.570 -1.174 1.840 -0.991 1.406 -1.983 n/a n/a 

0.6 1.573 -1.168 1.774 -1.099 1.443 -1.662 n/a n/a 

0.7 1.596 -1.136 1.764 -1.110 1.415 -1.526 n/a n/a 

0.8 1.589 -1.146 1.797 -1.057 1.383 -1.454 n/a n/a 

0.9 1.581 -1.157 1.820 -1.015 1.364 -1.398 n/a n/a 

1 1.570 -1.175 1.835 -0.988 1.357 -1.345 n/a n/a 

1.5 1.527 -1.238 1.839 -0.994 1.375 -1.179 n/a n/a 

2 1.504 -1.274 1.791 -1.085 1.425 -1.054 n/a n/a 

3 1.541 -1.261 1.928 -0.588 1.542 -0.830 0.095 0.625 

4 1.597 -1.201 1.899 -0.510 1.635 -0.659 0.397 0.859 

5 1.638 -1.158 1.873 -0.470 1.696 -0.551 0.360 0.816 

6 1.664 -1.130 1.854 -0.445 1.738 -0.477 0.245 0.784 

7 1.692 -1.099 1.836 -0.425 1.773 -0.413 0.135 0.789 

8 1.708 -1.080 1.824 -0.415 1.795 -0.376 0.140 0.814 

9 1.721 -1.067 1.814 -0.406 1.814 -0.342 0.186 0.847 

10 1.724 -1.065 1.809 -0.400 1.828 -0.319 0.251 0.880 

20 1.777 -1.006 1.768 -0.369 1.899 -0.196 0.553 1.051 

30 1.789 -0.993 1.756 -0.360 1.922 -0.158 0.591 1.072 

40 1.805 -0.975 1.746 -0.354 1.935 -0.135 0.578 1.062 

50 1.805 -0.976 1.744 -0.352 1.942 -0.123 0.553 1.046 

60 1.817 -0.961 1.737 -0.350 1.948 -0.114 0.525 1.031 

70 1.812 -0.968 1.738 -0.349 1.951 -0.111 0.498 1.018 

80 1.815 -0.965 1.736 -0.347 1.954 -0.107 0.473 1.006 

90 1.820 -0.958 1.733 -0.346 1.957 -0.103 0.449 0.996 

100 1.819 -0.961 1.733 -0.346 1.958 -0.103 0.428 0.987 

200 1.827 -0.951 1.727 -0.342 1.967 -0.105 0.279 0.943 

300 1.831 -0.947 1.725 -0.341 1.970 -0.104 0.208 0.928 

400 1.837 -0.939 1.722 -0.340 1.971 -0.104 0.179 0.921 

500 1.838 -0.938 1.721 -0.340 1.973 -0.104 0.164 0.919 

600 1.839 -0.937 1.720 -0.340 1.973 -0.104 0.156 0.918 

700 1.840 -0.936 1.720 -0.339 1.974 -0.104 0.154 0.918 

800 1.833 -0.945 1.722 -0.339 1.974 -0.104 0.157 0.918 

900 1.828 -0.952 1.724 -0.339 1.974 -0.104 0.162 0.919 

1000 1.842 -0.934 1.718 -0.338 1.976 -0.104 0.171 0.920 

2000 1.851 -0.923 1.714 -0.337 1.978 -0.104 0.256 0.932 

3000 1.851 -0.923 1.714 -0.337 1.978 -0.104 0.299 0.941 

4000 1.851 -0.923 1.714 -0.337 1.978 -0.104 0.328 0.948 

5000 1.851 -0.923 1.714 -0.337 1.978 -0.104 0.348 0.954 

6000 1.851 -0.923 1.714 -0.337 1.979 -0.104 0.364 0.959 

7000 1.846 -0.930 1.716 -0.337 1.978 -0.104 0.377 0.964 

8000 1.851 -0.923 1.714 -0.337 1.979 -0.104 0.388 0.967 

9000 1.851 -0.923 1.714 -0.337 1.979 -0.104 0.397 0.971 

10000 1.851 -0.923 1.714 -0.337 1.979 -0.104 0.405 0.974 
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APPENDIX B 

 

In this Appendix we show the FORTRAN2003 code for the closed-form Fractal-Fracture Solution 

(Scenario 2). The following is the code for the file containing the driver. 

 

 
!*********************************************************************************************** 
!   PROGRAM Closed_Fractal_Fracture_Solution_Sc2 
! This FORTRAN2003 program was written by Manuel Cossio as part of his MS Thesis, carried out in 
! Texas A&M University (College Station, TX) in the Department of Petroleum Engineering.  
! It calculates the dimensionless pressure (pD) and dimensionless pressure derivative (pD’) of a 
! finite-conductivity single vertical fracture using the Fractal Fracture Solution.  
!                              manuel.cossio02@gmail.com 
!*********************************************************************************************** 
 
 
PROGRAM Closed_Fractal_Fracture_Solution_Sc2 
 
USE Aux_Functions        ! This module contains the Auxiliary functions 
USE Precision            ! This module contains the precision integer DP, in this case set 
 to Quad Precision 
 
IMPLICIT NONE 
 
INTEGER                :: sizetime 
INTEGER                :: i, j 
INTEGER                :: ngavmax 
REAL (DP)              :: gstehfest_sum, gstehfest_sum_der, starttimer, stoptimer 
REAL (DP)              :: t, d3, zi, theta3, d2, theta2, FcD, tDmin, tDmax, tDinc, expi 
REAL (DP), ALLOCATABLE, DIMENSION(:) :: tD, pwD, pwDder 
 
! Use the Fortran intrinsic function CPU_TIME to measure how long calculation takes place 
CALL CPU_TIME(starttimer) 
 
! Read input file using Namelists 
NAMELIST/cFFS_input/ FcD, tDmin, tDmax, sizetime, ngavmax 
READ(*, NML = cFFS_input ) 
 
! Allocate arrays 
sizetime = sizetime + 1  ! size of time vector 
ALLOCATE (  tD( sizetime ), pwD(sizetime), pwDder(sizetime)  ) 
 
! Create vector tD(i) with time elements 
tDinc = (tDmax - tDmin)/( sizetime - 1.0q0 )  ! size of time vector timestep 
DO i = 1, sizetime 
 expi = (i-1)*tDinc + tDmin 
 tD(i) = 10**expi 
END DO 
 
! Call Subroutine “Estimate_Fractal_Params“ to obtain values of fractal parameters from 

correlations discussed in Section 5.1 
! INPUT:  FcD 
! OUTPUT: d3, theta3, d2, theta2 
CALL Estimate_Fractal_Params(FcD, d3, theta3, d2, theta2) 
 
! Write in the Output file the fracture conductivity and its corresponding fractal parameters 
WRITE(*,11) FcD, d3, theta3, d2, theta2 
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! Begin Gaver-Stehfest numerical inversion of all points of tD(i)---------------------------- 
 
Timeloop: DO i = 1,sizetime  ! Real time loop 
   
  t = tD(i) 
 
  gstehfest_sum     = 0.0q0  ! re-initialize to 0 before entering gaver loop 
  gstehfest_sum_der = 0.0q0  ! re-initialize to 0 before entering gaver loop 
 
         Gaverloop: DO j = 1,ngavmax  ! begin Gaver-Stehfest sum loop 
 
         zi = ( log(2.0q0)*j ) / t  ! transform real time t to Laplace variable z 
 

! sum needed for numerical Laplace inversion of dimensionless pressure as  
 computed in subroutine FracFracSol 

         gstehfest_sum     = gstehfest_sum      & 
 + FracFracSol(zi,d3,theta3,d2,theta2,FcD) * V_i(j,ngavmax)   
 

! sum needed for numerical Laplace inversion of dimensionless pressure derivative as  
 computed in subroutine FracFracSol_der 

         gstehfest_sum_der = gstehfest_sum_der  & 
 + FracFracSol_der(zi,d3,theta3,d2,theta2,FcD) * V_i(j,ngavmax)   
 
         END DO Gaverloop  ! end of Gaver-Stehfest sum loop 
 
! Save wellbore pressure in vector pwD 
pwD(i)    = gstehfest_sum     * log(2.0q0) / t  
! Save wellbore pressure derivative in vector pwDder 
pwDder(i) = gstehfest_sum_der * log(2.0q0)      
 
END DO Timeloop ! end of Real time loop 
 
! End Gaver-Stehfest numerical inversion -----------------------------------------------------  
 
 
! Stop taking time  
CALL CPU_TIME(stoptimer)   
 
! Record elapsed time in Output file  
WRITE(*,12)  stoptimer – starttimer    
 
! Write in Output file final values of tD(i), pwD(i) and pwDder(i) 
WRITE(*,15)                            
DO i = 1,sizetime 
     WRITE(*,16) i, tD(i), pwD(i), pwDder(i) 
END DO 
 
! De-allocate arrays 
DEALLOCATE(  tD, pwD, pwDder ) 
 
! Formats 
11 FORMAT(T1,'FcD = ', T10, ES13.6,/, & 
          T1,'d3  = ', T10, ES13.6,/, & 
          T1,'th3 = ', T10, ES13.6,/, & 
          T1,'d2  = ', T10, ES13.6,/, & 
          T1,'th2 = ', T10, ES13.6    ) 
12 FORMAT('Total Time Elapsed in seconds = ',T40,ES10.3) 
15 FORMAT(/,135('*'),/, & 
          T1,'No.', T25, 'tD',T43, 'PwD_FFS', T63, "PwD'_FFS",/, & 
          135('*') ) 
16 FORMAT(T1, I4, T20, ES12.5, T40, ES12.5, T60, ES12.5) 
 
END PROGRAM Closed_Fractal_Fracture_Solution_Sc2 
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The following code may be placed in a separate file. It shows the additional needed modules. 

 

 

!*********************************************************************************************** 
!  MODULE Precision:  in order to change machine precision with ease, the integer (dp) that 
 defines this is placed in its own separate module 
!*********************************************************************************************** 
 

MODULE Precision 
 
 INTEGER, PARAMETER :: dp = KIND(1.0Q0)  ! currently in quad precision Q 
 
END MODULE Precision 
 

!*********************************************************************************************** 
!  MODULE Aux_Functions:  contains subroutines to compute fractal parameters, computer pD with 
 the FFS and compute pD’ with the FFS in Laplace space 
!*********************************************************************************************** 
 
MODULE Aux_Functions 
 
IMPLICIT NONE 
 
  PRIVATE  
   
  PUBLIC :: Estimate_Fractal_Params, FracFracSol, FracFracSol_der, V_i 
 
CONTAINS  
 
!*********************************************************************************************** 
!  SUBROUTINE Estimate_Fractal_Params :  computes fractal parameters based on correlations as 
 described in Section 5.1 
!*********************************************************************************************** 
 
SUBROUTINE Estimate_Fractal_Params(FcD, d3param, theta3param, d2param, theta2param) 
 
USE Precision 
 
REAL (dp), INTENT(IN)  :: FcD 
REAL (dp), INTENT(OUT) :: d3param, theta3param, d2param, theta2param 
REAL (dp) :: A1, B1, C1, D1, E1, F1, G1, x  
REAL (dp) :: A2, B2, C2, D2, E2, F2, G2 
 
X = LOG10(FcD) 
 
! Coefficients for correlations 
A1 = 1.732300052d0  
B1 = 0.145343775d0 
C1 = -1.00458904d0 
D1 = 2.270990983d0   
E1 = 4.547075660d0 
F1 = 1.016405890d0   
G1 = 1.566926538d0 
 
A2 = -0.34048432d0 
B2 = 1.918772436d0 
C2 = -0.26952048d0 
D2 = 0.433916281d0 
E2 = -0.34553019d0 



102 

 

 

F2 = 3.154995757d0 
G2 = -0.98791385d0 
 
! Compute Fractal Parameters 
d2param     =  ( A1+C1*x+E1*(x**2)+G1*(x**3) )/( 1+B1*x+D1*(x**2)+F1*(x**3) )  ! d2 
theta2param =  ( A2+C2*x+E2*(x**2)+G2*(x**3) )/( 1+B2*x+D2*(x**2)+F2*(x**3) ) ! theta2 
d3param     = 1.4814*(d2param**2) - 7.3109*d2param + 10.03d0 ! d3 
theta3param = 1.2063*d3param - 3.1532 ! theta3 
 
END SUBROUTINE Estimate_Fractal_Params 
 
!*********************************************************************************************** 
!  FUNCTION Omega:  Computes Omega term as defined in Eq. 4.13 of the Thesis (Cossio 2012) 
! 
!*********************************************************************************************** 
 
REAL(dp) FUNCTION Omega(d3,theta3,z) 
 
USE Precision 
 
IMPLICIT NONE 
 
! Declare all variables 
REAL (dp)            :: argK3,npar3,ri,Knmin, Kn,rip,rkp 
REAL (dp), INTENT(IN):: z, d3, theta3 
 
! Compute arguments and parameters of Bessel functions 
argK3 = 2.0q0*sqrt(z) / ( theta3 + 2.0q0 ) 
npar3 = ( 3.0q0 - (d3-theta3) )/( theta3 + 2.0q0 ) 
 
! Compute Bessel functions 
CALL bessK(npar3-1.0, abs(argK3), Knmin )  
CALL bessK(npar3    , abs(argK3), Kn    ) 
 
Omega = (Knmin/Kn)*sqrt(z) 
 
END FUNCTION Omega 
 
!*********************************************************************************************** 
!  FUNCTION FracFracSol : Computes the dimensionless pressure, as shown in Eq. 4.34 of the 
 Thesis (Cossio 2012) 
!*********************************************************************************************** 
 
REAL(dp) FUNCTION FracFracSol(z, d3, theta3, d2, theta2, FcD) 
 
USE Precision 
 
IMPLICIT NONE 
 
! Declare all variables 
REAL (dp), PARAMETER :: Pi     = 3.141592653589793238462643 
REAL (dp)            :: argK2,npar2,ri,Knmin, Kn,rip,rkp,  Kntry 
REAL (dp)            :: Psi, testpsi 
REAL (dp), INTENT(IN):: z, d3, theta3, d2, theta2, FcD 
 
! Compute arguments and parameters of Bessel functions 
argK2 = 2.0q0*sqrt(z + Omega(d3,theta3,z) ) / ( theta2 + 2.0q0 ) 
npar2 = ( 3.0q0 - (d2-theta2) )/( theta2 + 2.0q0 ) 
 
! Compute Bessel functions 
CALL bessK( npar2-1.0q0, abs(argK2),  Knmin ) 
CALL bessK( npar2      , abs(argK2),  Kn    ) 
 
! Testing to see if there is a problem inside Psi, only for debugging purposes 
testpsi =  ( 2.0q0*SQRT(z + Omega(d3,theta3,z) )*( Knmin/Kn ) - theta2*npar2   )/Fcd 
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if (testpsi < 0) THEN 
WRITE(*,*) 'FYI, Psi < 0 ' 
end if 
 
! Compute Psi term 
Psi = SQRT( abs( ( 2.0q0*SQRT(z + Omega(d3,theta3,z) )*( Knmin/Kn ) - theta2*npar2   )/Fcd   )  ) 
 
! Compute wellbore pressure 
FracFracSol = Pi/(Fcd*z*Psi * tanh(Psi) )   
 
END FUNCTION FracFracSol 
 
!*********************************************************************************************** 
!  FUNCTION FracFracSol_der : Computes the dimensionless pressure derivative of Eq. 4.34 
! 
!*********************************************************************************************** 
 
REAL(dp) FUNCTION FracFracSol_der(z, d3, theta3, d2, theta2, FcD) 
 
USE BesselFunc 
USE Precision 
 
IMPLICIT NONE 
 
! Declare all variables 
REAL (dp), PARAMETER :: Pi     = 3.141592653589793238462643 
REAL (dp)            :: argK2,npar2,ri,Knmin, Kn,rip,rkp,  Kntry 
REAL (dp)            :: Psi, testpsi 
REAL (dp), INTENT(IN):: z, d3, theta3, d2, theta2, FcD 
 
! Compute arguments and parameters of Bessel functions 
argK2 = 2.0q0*sqrt(z + Omega(d3,theta3,z) ) / ( theta2 + 2.0q0 ) 
npar2 = ( 3.0q0 - (d2-theta2) )/( theta2 + 2.0q0 ) 
 
! Compute Bessel functions 
CALL bessK( npar2-1.0q0, abs(argK2),  Knmin ) 
CALL bessK( npar2      , abs(argK2),  Kn    ) 
 
! Compute Psi term 
Psi = SQRT( abs( ( 2.0q0*SQRT(z + Omega(d3,theta3,z) )*( Knmin/Kn ) - theta2*npar2   )/Fcd   )  ) 
 
FracFracSol_der = Pi/(Fcd*Psi * tanh(Psi) )   
 
END FUNCTION FracFracSol_der 
 
!*********************************************************************************************** 
!  FUNCTION V_i : Computes the Stehfest extrapolation coefficients 
!*********************************************************************************************** 
 
REAL(dp) FUNCTION V_i(i,n) 
 
USE Precision 
 
IMPLICIT NONE 
 
! Declare the variables 
REAL(dp)              :: Vi_sum 
INTEGER, INTENT(IN)   :: i, n 
INTEGER               :: k 
 
Vi_sum = 0.0q0 
 
     k_loop: do k = (i+1)/2 , min(i, n/2) 
             
        Vi_sum = Vi_sum + ( k**(n/2) * facto(2.0q0*k) ) & 
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 / ( facto(n/2 - k*1.0_dp) * facto(k*1.0_dp) & 
 * facto(k-1.0_dp) * facto(i-k*1.0_dp) * facto(2.0_dp*k-i) ) 
                
     end do k_loop 
          
V_i = (-1.0q0)**(n/2.0q0+i) * Vi_sum 
         
CONTAINS 
 
! Calculation of factorial   
RECURSIVE FUNCTION facto(N) RESULT(answer) 
 
USE Precision 
 
IMPLICIT NONE 
 
REAL(dp), INTENT(IN) :: N 
REAL(dp)             :: answer   
 
answer = 0.0q0 
 
IF (N>= 1) THEN 
 
     answer = N * facto(N-1.0q0) 
      
ELSE 
 
     answer = 1.0q0 
      
END IF 
 
END FUNCTION facto 
 
END FUNCTION V_i    
 
 
END MODULE Aux_Functions 

 

 
! Example input file that may be placed in a separate text file 
&cFFS_input   Fcd      = 1.0d2  ,  ! dimensionless fracture conductivity    
              tDmin    = -6.0    , ! minimum dimensionless time  10^tDmin 
              tDmax    = 7.0     , ! maximum dimensionless time  10^tDmax 
              sizetime = 520     , ! number of time divisions from tDmin to tDmax 
              ngavmax  = 8         ! number of Gaver-Stehfest iterations 
                   /  
 

 

 

In addition to the three files shown above, the user needs to have a subroutine or function for the 

computation of modified Bessel functions In and Kn, where n is a real number. In this code they are called 

by the subroutine bessK. 
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