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ABSTRACT 

 

Design with Uncertain Technology Evolution. (August 2012) 

Jonathan Lee Arendt, B.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Daniel A. McAdams  
Dr. Richard J. Malak 

 

Design is an uncertain human activity involving decisions with uncertain outcomes.  

Sources of uncertainty in product design include uncertainty in modeling methods, 

market preferences, and performance levels of subsystem technologies, among many 

others.  The performance of a technology evolves over time exhibiting improving 

performance as research and development efforts continue.  As the performance of a 

technology in the future is uncertain, quantifying the evolution of these technologies 

poses a challenge in making design decisions.  Designing systems involving evolving 

technologies is a poorly understood problem.  The objective of this research is to create a 

computational method allowing designers to make decisions encompassing the evolution 

of technology.  Techniques for modeling evolution of a technology that has multiple 

performance attributes are developed.  An S-curve technology evolution model is used.  

The performance of a technology develops slowly at first, quickly during heavy R&D 

effort, and slowly again as the performance approaches its limits. Pareto frontiers 

represent the set of optimal solutions that the decision maker can select from. As the 

performance of a technology develops, the Pareto frontier shifts to a new location. The 

assumed S-curve form of technology development allows the designer to apply the 
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uncertainty of technology development directly to the S-curve evolution model rather 

than applying the uncertainty to the performance, giving a more focused application of 

uncertainty in the problem.  Monte Carlo simulations are used to the propagate 

uncertainty through the decision.  The decision-making methods give designers greater 

insight when making long-term decisions regarding evolving technologies.  The scenario 

of an automotive manufacturing firm entering the electric vehicle market deciding which 

battery technology to include in their new line of electric cars is used to demonstrate the 

decision-making method.  Another scenario of a wind turbine energy company deciding 

which technology to invest in demonstrates a more sophisticated technology evolution 

modeling technique and the decision making under uncertainty method.    
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1. INTRODUCTION 

 

Engineering organizations often face decisions with outcomes that unfold over long 

periods of time and that affect the options available in subsequent decisions.  For 

example, a company might invest millions of dollars in a particular type of 

manufacturing technology, which effectively constrains future design decisions to use 

that technology.  Similar situations occur when organizations make decisions about 

investments in product platforms, research and development strategies, and long-term 

supplier or subcontracting relationships. 

 

Uncertainty is a crucially important consideration in long-term decisions.  Long-term 

decisions are impacted by uncertainties about the final form of an engineered system; the 

system’s operating environment, and system behavior.  However, unlike other 

engineering decisions, long-term decisions are also impacted by the evolution of the 

underlying technologies.  The nature of technology evolution is that it is highly 

uncertain.  For example, suppose a producer of passenger cars seeks to invest in an 

electric storage technology for its new line of hybrid vehicles.  Although lithium-ion 

batteries may be the best technology initially, fuel cells may have a high likelihood of 

overtaking the batteries as fuel cell designs improve over the anticipated lifetime of the 

new line of vehicles.  Despite the challenges of forecasting how a technology will 

evolve, the automaker should consider how this evolution will impact the value of each  

____________ 
This thesis follows the style of Journal of Mechanical Design. 
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course of action.  It is quite possible that the alternative that is less profitable in the short 

term will yield the greatest long-term expected profits. 

 

Although many uncertainties exist in how the performance characteristics of a 

technology will evolve, some common trends are evident.  The performance of a 

technology generally improves over time, as it is refined initially through research and 

development and later through refinements in design and manufacturing. Empirical 

evidence shows that most technologies follow an S-curve evolutionary path—

performance is poor at its inception, improves rapidly during heavy research and 

development activity, and finally matures as the performance saturates near the physical 

limits or boundaries [1].  

 

This thesis presents new methods for supporting engineering decisions where there is  

uncertainty about how technological alternatives will evolve over time.   The first set of 

methods deals with selecting between competing technologies to achieve the greatest 

benefit over an extended period of time.  The technology selection method answers the 

question:  Given our uncertain expectation of the evolution of competing technologies, 

which one should we choose?  A second method, building upon the first method, 

answers the question: What evolution profile is needed for a technology to be more 

preferable than another competing technology?  The method to support this decision 

uses a parametric study over the parameters that describe evolution.  This thesis presents 

an approach to technology evolution modeling which can vary from simplified to 
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sophisticated.  The technology evolution modeling will be applied in both the technology 

selection method and the parametric study method. 

 

The technology performance development model is based on an S-curve technology 

evolution model with uncertain parameters defining the shape of the S-curves.  The S-

curve parameters include maximum evolution rate, inflection time, and other parameters 

depending on the type of S-curve used.  Under this proposed model, one assumes that 

the evolution of a technology follows an S-curve, and the current technology 

performance available to the designer lies on a Pareto frontier.  The Pareto frontier 

representing technology available at a certain time shifts in time, showing the evolution 

of the technology.  The technology modeling presented here applies the S-curve 

evolution model to the Pareto frontiers through a discrete simulation of time passing.  

Over time periods in the S-curve where technology evolves slowly, the Pareto frontier 

shifts slowly as well.  When the S-curve shows great increase in performance, the Pareto 

frontier shifts rapidly.  Section 3 presents simplified and sophisticated techniques for 

modeling the evolution of technology through time. 

 

The first method supports selecting between competing technologies.  Under the 

proposed technology selection method, one assumes a technology’s performance metrics 

follow an S-curve evolution trend, but the parameters that define the shape of each S-

curve are uncertain and represented using probability distributions.  Decision makers 

determine these distributions based on data about the technology in question, the 
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histories of similar technologies, and their own beliefs.  At the outset of decision-

making, decision makers model the current state of technology as a Pareto frontier in the 

space of technology performance characteristics. 

 

Modeling with S-curves and Pareto frontiers captures the full scope of desirable 

implementations of the technology in terms of the performance characteristics that are 

important for a decision.   As simulated time progresses, the Pareto frontier moves 

following the underlying S-curves.  Using this technology evolution model together with 

a Monte Carlo simulation, decision makers can generate projections about an uncertain 

future and make rational decisions based on their beliefs about evolving technologies. 

 

The second method allows the user to see what evolution needs to occur so that one 

technology is preferred over another. The method uses a parametric study building upon 

the technology selection method.  A parametric search is performed over the parameters 

defining the evolution S-curves.  The parametric study will show the user what 

evolutionary paths will make one technology preferable to another.  It also shows which 

parameters have the greatest effect on the decision and how much. 

 

The technology selection method using simplified evolution modeling is demonstrated 

with the design an electric vehicle platform.  Electric vehicles are slowly emerging onto 

the maintain market at the current time.  Much of electric vehicle technology is in its 

infancy.  Of particular importance is the development of battery technology for use in 
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electric vehicle applications, with battery development previously coming primarily 

from the portable electronics market.  As the interest and incentive to switch from 

gasoline to electric vehicles increases, the research and development efforts will 

increase, causing the performance of battery technologies to evolve.  In this 

demonstration, a car design and manufacturing company is making a decision of which 

competing battery chemistry to select for use in a future line of consumer electric cars.  

The cars will be designed in the current year and updated every model year with the best 

battery cell available.  The cost of initial tooling and capital investments, and 

partnerships and contracts with battery cell manufacturers make it impractical to change 

from one battery cell technology to another in the lifespan of the project.   

 

The technology selection method using the sophisticated evolution modeling technique 

is demonstrated with the design of a wind power generation system.  This problem is of 

interest due to the current importance of renewable energy as a replacement or 

supplement to current coal and petroleum energy sources.  Additionally, wind turbines 

have been evolving in performance and will continue to evolve into the near future.  In 

this design decision demonstration, a hypothetical startup energy company is making the 

decision of whether to install wind turbines on land or offshore.  Once the firm commits 

to the core technology of either offshore or land-based wind turbines, the firm will 

acquire, design, and develop related elements of an array such as installation equipment, 

transformers, etc.  
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Over the next decade, the firm expects to expand and install new arrays of the selected 

technology.  Every year, and with every new installation, the firm selects the best wind 

turbines available at the time.  Because the offshore and land-based technologies are 

evolving at different rates, the rational choice is not necessarily the technology with the 

highest performance at the outset of the project.  The firm finds that land-based wind 

turbine technology to be superior initially, but suspects that, due to evolving 

performance, offshore wind turbines will be preferable over the long run.  To gain 

insight into the decision problem, the firm uses the method developed here to answer the 

question: Given our expectation of the evolution of land-based wind turbine 

performance, how does offshore wind turbine technology need to evolve such that it is 

preferable to land-based? The demonstration applies the proposed method enabling 

designers to make such a determination based on their uncertain knowledge of how each 

technology will evolve. 

 

The wind turbine design scenario from the technology selection method is continued for 

the demonstration of the parametric study method.  The parametric study method tells 

the firm what evolution needs to occur for offshore wind turbine technology to be 

preferable to land-based.  The analysis can give the firm greater insight into the 

existence of an opportunity to shift the evolution sooner to their favor or to increase the 

evolution rate through earlier and more research and development effort.  Additionally, 

the analysis shows the firm the risk in going for offshore technology.  
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This thesis consists of six sections.  The next section is the background describing the 

fundamentals of decision-making, technology evolution models, Monte Carlo 

simulations, and utility theory.  Section 3 presents technology evolution modeling with 

S-curves and Pareto frontiers.  A simplified method using one S-curve to describe the 

overall performance of a technology is presented, followed by a sophisticated model 

using an S-curve to describe the evolution of each dimension of the Pareto frontier 

independently.  Section 4 details the technology selection and parametric study methods.  

Section 5 provides demonstrations of technology selection using simplified and 

sophisticated evolution modeling as well as the parametric study method.  The thesis 

ends with the future work, summary, and conclusions of the research. 
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2. BACKGROUND 

 

This section presents the fundamentals and concepts that will be used throughout the 

thesis.  The background describes the basics of decision-making, technology evolution 

models, Monte Carlo simulations, and utility theory. 

 

2.1. Decision Making 

The engineering design literature contains several reports of methods for decision 

making under uncertainty.  However, these provide no specific and formal guidance on 

how designers can incorporate into their decisions uncertain knowledge about 

technology evolution.  Researchers have demonstrated real options-based methods for 

designing flexibility or upgradability into systems, but these methods focus on uncertain 

events external to the system and assume a technology that does not evolve [2-4].  

Others advocate using comprehensive business enterprise simulations to evaluate the 

broad implications of engineering decisions on downstream activities such as 

manufacturing or distribution, but this approach pertains to the interplay between 

engineering decisions and business processes rather than the impact one engineering 

decision has on future engineering problems [4, 5].  In principle, designers can use their 

understanding of technology evolution when rating decision alternatives in informal 

methods, such as Pugh selection charts, the Analytical Hierarchy Process (AHP), and 

Quality Function Deployment (QFD) [5-7].  However, using these methods is a general 
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reflection of designer estimations and judgment without any explicit or formal 

consideration for technology evolution. 

 

2.2. Technology Evolution Models 

As technologies evolve, their performance typically improves.  Betz proposed the idea 

that the performance evolution of a technology follows a Sigmoid curve, a form of an S-

curve, as shown in Figure 1 [1, 8].  Using empirical data, Betz demonstrated that this 

model accurately captures the evolution of illumination intensity of light bulbs.  When 

incandescent light bulbs emerged as a light technology, the performance was low, 

resulting in the flat bottom of the “S,” as shown in Figure 1.  As the innovation research 

and development increased, the performance improved rapidly, reflecting the increase in 

slope at the inflection in the curve.  As development approached the physical limitations 

of the technology, the rapid gains in performance approached full maturity, reflecting the 

flattening at the top of the S-curve.  The idea that an S-curve models the evolution of the 

performance of light bulbs can be extended to other technologies.  For the purposes of 

this research, it is assumed that technology evolves following the S-curve model 
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Figure 1. S-Curve Evolution Model 
 

 

There are limitations to the S-curve assumption, such as the introduction of disruptive 

technologies.  An example is the emergence of fluorescent light bulbs that had a much 

higher intensity than incandescent bulbs when they were first introduced.  Including 

disruptive technologies into this decision framework goes beyond the scope of the work 

presented here.  Of note, fluorescent bulbs exhibited a performance evolution along an 

S-curve similar to incandescent bulbs [8].  Also of note, not all technologies appear to 

follow the S-curve evolution model.  According to Moore’s law, processor speed 

evolves linearly instead of along an S-curve [9].  Although one can argue that Moore’s 

law only captures the development stage of the S-curve, and the maturation stage is yet 

to come. 

 

Since the inception of the S‐curve technology evolution model there have been 

numerous forms introduced, as shown in Table 1 [10].  The forms differ in the 

number of parameters, mathematical formula, and shapes of the curves.   The 
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modeler can use whichever form best suits his or her needs for the given 

application. 

 

 

Table 1. Forms of Technology Evolution S-Curves 

 

 

 

 

 

 

 

 

 

 

  

 

 

The formulas in Table 1 are in the form of performance as a function of time, t.  

Performance is used here as a term measuring some important attribute, such as power of 

an engine, speed of a processor, or even cost of a product.  The formulas are made of 

some or all of the parameters, Plim, P0, α, k, and s.  The Parameter Plim is the maximum 

Model  Formula  Parameters 

Logistic  𝑃 𝑡 =
𝑃!"#

1+ 𝑒∝!!" 
∝, 𝑘 

Gompertz  𝑃 𝑡 = 𝑃!"#𝑒!!
!!!"   ∝, 𝑘 

Log‐Logistic  𝑃 𝑡 =
𝑃!"#

1+ 𝑒!!! !" !
  ∝, 𝑘 

Erto‐Lanzotti  𝑃 𝑡 = 𝑃! + 1− 𝑒!!!! 𝑃!"# − 𝑃!   𝑘, 𝑠 

Richards  𝑃 𝑡 =
𝑃!"!

1+ 𝑒!!!"
!
!
  ∝, 𝑘, 𝑠 

Weibull  𝑃 𝑡 = 𝑃!"# − 𝛼𝑒!!!
!   ∝, 𝑘, 𝑠 

𝑃 𝑡 = 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒;𝑃!"# = max𝑃; 𝑃! = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑃;∝, 𝑘, 𝑠 = 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠  
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performance that the technology will ever reach in the future through evolution.  The 

limit is generally tied to a physical or theoretical performance limit, such as the he 

thermodynamic efficiency of the Brayton cycle for a turbine engine.  The parameter P0 is 

the initial performance of a technology.  The parameters, k, s, and α dictate the shape, 

slope, and inflection point of the S-curve, but behave differently in each different S-

curve form.  These three parameters are difficult to elicit from a designer based on his or 

her experience, judgment, and expert knowledge.   Thus, they will be derived indirectly 

from more intuitive parameters.  The parameters used to define the S-curves depend on 

what type of S-curve is used. 

 

The forms of technology evolution in Table 1 differ in their shape, symmetry, flexibility 

and inflection point location.  The logistic and Gompertz models are symmetric about 

the inflection point, which is the point where there is no curvature and the 2nd derivative 

equals zero.  The Richards, Weibull, and Erto-Lanzotti equations are the most flexible, 

meaning that they are not constrained by assuming symmetry or location of the 

inflection point [10].  In this thesis, the Logistic and Erto-Lanzotti equations will be used 

and they will be discussed further in the Technology Evolution Modeling Section. 

 

2.3. Pareto Frontiers 

A Pareto frontier is a concept often used to describe preferences in an economic setting.  

More recently Pareto frontiers have been applied to decision-making in engineering [11-

14].  The concept is applied in this research to represent the performance levels of 
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multiple attributes available to a designer.  The Pareto frontier is a line, in two 

dimensions, or hypersurface in more than two dimensions, connecting the points 

contained in the Pareto optimal set.  The Pareto optimal set is the set of non-dominated 

points or solutions existing in the same space.  A point in the space is dominated if there 

exists another point in the space that is preferable in every attribute [15].  The non-

dominated points belong in the Pareto optimal set, also called the Pareto efficient set.  

Figure 2 shows the Pareto frontier applied to a set of points.  In the engineering context, 

a point is a particular model, product, or realization of technology where the coordinates 

of the point are the attributes. 

 

 

 

Figure 2. Pareto Frontier 
 

 

Y

X
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In figure 2, a decision maker wants to maximize two attributes, X and Y, for example, 

mobile phone screen size and battery life.  The attribute space is populated with points 

representing cell phone models available on the market.  The coordinates of each point 

are the screen size and battery life of the mobile phone model.  The Pareto optimal set is 

the collection of points of non-dominated points, those that are more preferable in every 

attribute.  The Pareto frontier is the boundary line connecting those points.  The person 

selecting a cell phone based on the attributes of screen size and battery life should only 

choose a cell phone shown by the points on the Pareto frontier.  The dominated points 

are suboptimal and can be ignored.  He or she must consider the performance trade-offs 

that exist along the Pareto curve and make a final decision of which cell phone to select.  

The trade-offs reflect giving up some of one attribute, battery life, in exchange for more 

of another attribute, screen size.  The Pareto frontier concept will be used extensively to 

represent the performance of a technology with multiple attributes. 

 

The Pareto frontier in Figure 2 is deterministic and there is no uncertainty involved.  If 

there is uncertainty involved in the coordinates of a point in the attribute space, it is 

unclear if one point dominates another.  The location of one point relative to another is 

uncertain, so stochastic dominance is used [15].  In this thesis there is uncertainty 

involved in the Pareto frontier, but at any point in time it is deterministic, a so simple 

dominance criterion applies. 
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As described earlier, the performance of a technology increases over time.  As a Pareto 

frontier describes the performance of a technology in multiple attributes, it follows that a 

Pareto frontier shifts in time as the technology evolves.  De Weck proposed that a Pareto 

frontier moves due to the evolution of the underlying technology by quantifying a Pareto 

frontier shift based on satellite performance data as new solutions enter the Pareto 

optimal solution set [16].  As newer and better solutions enter the space, they dominate 

some of the older points, resulting in local movements of the Pareto frontier.  Figure 3 

shows the shift in a Pareto frontier from one time point to another time point in the 

future. 

 

 

 

Figure 3. Pareto Frontier Shifting 
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As time passes and new models or iterations of a technology enter the market, more 

points are added to the attribute space.  When new points that dominate older points are 

added, the Pareto frontier shifts outward, in the case of Figure 3.  The concept of Pareto 

frontier shifting will be used extensively in this thesis. 

 

2.4. Monte Carlo Simulations 

Monte Caro simulations are used in this research to analyze the effects of uncertainty in 

technology evolution.  Monte Carlo simulation is a computational technique to deal with 

randomness in a mathematical analysis [17, 18].  A Monte Carlo simulation tests a very 

large number of random events, such as the random draw of a card in a game of 

Blackjack.  In a similar ways a random S-curve is sampled and the events following the 

S-curve unfold over time.  The result is a distribution of the results due to the series of 

random events. 

 

The major disadvantage to using Monte Carlo simulations in uncertainty analysis is the 

significant computational burden.  A great number of samples, 10,000 or more, are 

needed for statistical significance.  The computational burden increases when evaluating 

complex simulations or sampling in multiple dimensions.  A Monte Carlo simulation can 

be used when more than one variable is uncertain.  The user creates a distribution for 

each uncertain random variable.  A number is sampled from each of the distributions and 

the simulation is run.  Figure 4 illustrates a Monte Carlo simulation with multiple 

uncertain variables.  The uncertain variables are X1, X2, to Xn, each represented by a 
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distribution in the figure.  To begin a Monte Carlo run, realizations, x1, x2, to xn, are 

sampled from the probability distributions of random variables.  The realizations are 

tested in a simulation or model that maps the realizations to an outcome.  The process of 

sampling the distributions and testing the realizations repeats a great number of times.  

The result is a distribution, or many distributions, of outcomes occurring as a result of 

the random inputs. 

 

 

 

Figure 4. Monte Carlo Simulation 
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One can sample numbers from the distributions at random or use a sophisticated 

sampling technique.  Latin hypercube sampling technique samples the distributions in a 

manner to minimize the total number of samples needed to give equivalent results.  Latin 

hypercube sampling is advantageous compared to random sampling when dealing with 

larger numbers of dimensions, or a larger number of uncertain variables [19].  When 

analyzing uncertainty in this research, random distributions of the parameters that make 

up the S-curves are sampled.  Realizations from each of the parameter distributions are 

combined to create an S-curve.   

 

2.5. Utility Theory 

Utility theory is a mathematically rigorous foundation for decision making under 

uncertainty [20, 21] that has received much study and application in the design 

community [22-29].  Utility theory provides a way to make rational decisions rationally, 

but it does not address making decision based on uncertain knowledge about how a 

technology will evolve.  To select between two or more competing technologies, there 

must be a common measure or metric between them.  Utility provides a common 

measure between alternatives in a deterministic case, expressing the preferences of the 

decision maker about multiple independent or unrelated attributes.  In an uncertain case, 

expected utility provides a scalar measure that incorporates the decision makers’ 

preferences for multiple attributes as well as his or her risk attitude, or preference for 

uncertainty.  Expected utility maps a distribution of utility values to a scalar value 

encompassing preference and risk attitude. 
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3. TECHNOLOGY EVOLUTION MODELING 

  

This section discusses the technology evolution modeling techniques employed in the 

decision methods.   An S-curve models the evolution of technology that has only one 

attribute, but typically technologies have multiple attributes significant to the designer 

[30].  Novel techniques for modeling the evolution of multiple attributes of a technology 

are presented in the following subsections.  Technology evolution modeling in multiple 

attributes follows a general framework where Pareto frontiers model the current 

performance and S-curves describe the evolutionary paths.  This thesis presents two 

different implementations of the generalized framework.  A simplified technique to 

model evolution in multiple attributes uses one S-curve to describe the movement of the 

Pareto frontier as a whole, while a more sophisticated technique uses multiple S-curves 

to describe the evolution of each attribute on the Pareto frontier. 

 

As the underlying technology evolves, the performance improves, thus changing the 

Pareto frontier.  Under the general framework, the movement in the Pareto frontier is 

modeled as the movement of the points belonging to the Pareto efficient set, as shown in 

figure 5.  The points move through the X and Y directions much like a particle moves 

through the spatial coordinates X and Y.   
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Figure 5. Shifting Of Pareto Efficient Set Points 
 

 

As the performance evolves, the points in the Pareto optimal set move to a new location 

in the attribute space and define a new Pareto frontier.  The specifics of how points on 

the Pareto frontier move through time and attribute space are not defined explicitly under 

the general framework.  As the evolution of technology is uncertain, the movement of 

any point on the Pareto frontier through time is also uncertain.  Every point can follow 

its own independent path through time.  The modeler can apply any one of a number of 

different implementations of this framework, depending on his or her assumptions and 

desired modeling sophistication. 

 

Two implementations of the framework sharing some common concepts are presented in 

the following subsections.  In both modeling techniques, a point on the Pareto frontier 

follows a set of equations describing its movement through attribute space.  The passing 

of time is simulated as discrete series of time steps, so the equations, 

Y

X
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  𝑋!!!! =  𝑋!! + 𝑣!!∆𝑡 +
!
!
𝑎!!∆𝑡

! and,  (1) 

  𝑌!!!! =  𝑌!! + 𝑣!!∆𝑡 +
!
!
𝑎!!∆𝑡

!  (2) 

describe the motion of a point existing in a space defined by attributes X and Y.  

Equations 1 and 2 are discretized equations that describe the motion as a linear 

approximation of the motion over the time step.  The approximations are the summation 

of a number of the terms of a Taylor Series expansion approximating the functions x(t) 

and y(t).  As the equations are approximations, error is inherent.  The approximation is 

applicable when the time step is sufficiently small.  Additionally, reducing the step size 

reduces the error.  For the purposes of modeling the evolution of time, three-term 

equations of motion demonstrate an implementation of Pareto frontier point movement.  

In the three term equations of motion, higher order terms, such as jerk, are assumed 

constant over time.  Adding additional terms will reduce the approximation error. 

Ultimately, the implementation of point movement through attribute space is up the 

modeler.  

 

In equations 1 and 2, the coefficients 𝑣!! and 𝑎!! are the X components of velocity and 

acceleration in the attribute space, respectively, at time point n.   The S-curve model 

describes the motion of the Pareto frontier via equations 1 and 2.  The velocity and 

acceleration components at time t are proportional to, or the same as, the 1st and 2nd 

derivatives of the S-curve at time t.  In technology evolution modeling, the S-curve can 

describe the evolution of the performance of a technology in different ways. The 

technology evolution modeling techniques in the following subsections connect the S-
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curve model to the Pareto frontier.  The techniques, one simple and one more 

sophisticated, differ in exactly how the S-curve describes the movement of the Pareto 

frontier. 

 

There are a number of assumptions that the modeler can make, including similarity, 

shape change, and convergence.  It is cumbersome and difficult to describe the motion of 

every point on the Pareto frontier independently, so the modeler may assume that the 

points move similarly along each axes of the Pareto frontier or that all points move 

identically in all axes.  In certain circumstances the curvature of the Pareto frontier is 

tied to a physical phenomena or constraint.  For example, the Pareto frontier of a 

spherical water tank with attributes of volume and diameter has curvature tied to 

geometric relationships between volume and diameter.  In similar circumstances, the 

modeler assumes that the curvature of the Pareto frontier does not change.  The modeler 

can also assume that the Pareto frontier points do not converge to a utopia point.   

 

3.1. Simple Technology Evolution Modeling 

The simple technology evolution modeling technique uses one S-curve to describe the 

evolution of a Pareto frontier as a whole.  The simple technique is less cumbersome and 

computationally intensive than the more sophisticated technique because it requires 

fewer S-curves, thus has fewer uncertain parameters.  A Pareto frontier has two or more 

independent attributes, which are described simultaneously by a single S-curve. 
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In general, the designer is free to use any S-curve from Table 1 or any other technology 

evolution model that he or she sees fit, but the logistic model is the simplest form of the 

S-curve because it has the fewest number of parameters and is symmetric.  Since the 

logistic form of the S-curve has the fewest parameters, less information needs to be 

elicited from the user.  The simple technology evolution modeling technique will use the 

logistic model from here.  The general equation of the logistic S curve is  

  𝑃 𝑡 = !!"#
!!!∝!!"

,  (3) 

with performance, P, dependent on the independent variable time, t, with parameters 

Plim, k, and α.  The equation will be rewritten to make it easier for the modeler to 

manipulate and to better fit the technique.  A single S-curve written as performance as a 

function of time describes the evolution of only one performance attribute.  In this 

implementation of the general framework, Equation 3 is rewritten with maturity as a 

function of time rather than performance so that the equation can describe the evolution 

of multiple attributes.   Maturity measures how much the performance has matured from 

its initial performance, at a maturity of zero, to its maximum possible performance when 

maturity equals 1.  The equation is rewritten as 

   𝑀 𝑡 = !
!!!∝!!"

   (4) 

replacing Plim with the limit 1 for maturity.  The remaining parameters, k and α, are 

difficult to elicit, as they are not tied directly to any significant phenomena.  Instead, the 

parameters slope constant, C, and initial technology maturity, Mo, are introduced.  The 

slope constant is the slope of the curve at the inflection point where the curvature is zero 

and the slope is maximum.  The initial maturity is the level of maturity that a technology 
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has already reached as viewed from the current time.  At some point in the past, the 

maturity was zero, and at some point in the future the technology will mature to one.  At 

the current time, the maturity is between zero and one.  The initial maturity is inserted 

into equation 4 through the substitution 

  𝑡!! = 𝑙𝑛 !
!!
− 1   (5) 

to get the final  equation 

  𝑀 = !

!!!! !∗!!!!!
.     (6)                       

Figure 6 shows a logistic S‐curve with the parameters labeled. 

 

 

 

Figure 6. Logistic S-Curve 
 

 

As discussed in section 3, the Pareto frontier moves discretely through time following 

the equation that approximate the motion of a point in attribute space, equations 1 and 2.  

M

Time

C
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The two equations pertain to the two independent axes of the Pareto frontier, each one 

describing a performance attribute.  In the simple technology evolution modeling 

technique, the velocity and acceleration terms, v and a, are the 1st and 2nd derivatives of 

the S-curve with respect to time. 

  !
!"
𝑀 𝑡 = !! !!!!!"

! !!!!!"
!  (7) 

  !!

!"!
𝑀 𝑡 = !!!! !!!!!!!"

! !!!!!" !!
! −

!!! !!!!!"

! !!!!!" !!
!  (8) 

The evolution of a technology as a shift in the Pareto frontier is simulated discretely over 

time using the equations 1 and 2 and an S-curve.  Figure 7 shows the discrete model of a 

Pareto frontier moving through time. 

 

 

 

Figure 7. Pareto Frontier Shifting under Simple Model 
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At time t0, the 1st and 2nd derivatives are calculated from equations 7 and 8.  The 

derivatives are substituted into equations 1 and 2.  This implies that a point on the Pareto 

frontier has the same velocity in the X direction as it does in the Y direction.  Applying 

equations 1 and 2 to every point on the Pareto frontier gives the locations of the points 

on the Pareto frontier at time t1.  The process repeats, iterating in time to define the 

Pareto frontiers at every time step. 

 

The advantages to the simple technology modeling technique are that there are only two 

uncertain parameters, and Pareto frontier motion is simplified by applying the same 

motion to all axes of the Pareto frontier.  This simplification is applicable in certain 

circumstances requiring speed or when extensive evolution information is lacking.  If the 

modeler does not wish to assume that the Pareto frontier moves identically in each 

attribute, he or she can apply the more sophisticated method presented in the next 

subsection. 

 

There are some implicit assumptions in the simple evolution modeling technique.  The 

technique explicitly assumes that a single S-curve describes evolution in multiple 

attributes.  Because of this, the Pareto frontier translates through the attribute space.  

Since the Pareto only translates, it does not change shape or curvature.  Since the 

curvature is maintained, the Pareto frontier points do not converge to a Utopia point.  

These assumptions do not perfectly reflect what one would expect to occur as a 

technology evolves.  While these assumptions limit the sophistication of the modeling, 
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they enable the user to provide less initial information.  The sophisticated evolution 

modeling technique presented in the next subsection has less implicit assumption at the 

expense of requiring more initial information from the user.   

 

3.2. Sophisticated Technology Evolution Modeling 

The sophisticated technology evolution modeling technique follows the simple technique 

with a few modifications.  In this technique, a number of S-curves describe the motion of 

the Pareto frontier rather than a single S-curve describing the evolution as a whole.  

Instead, each S-curve independently describes the motion of the Pareto Optimal set 

along one axis in the attribute space.  This is a more powerful and more complete 

method because it gives the modeler greater flexibility in manipulating the evolution of 

the performance of a technology across multiple attributes.   

 

There are more flexible S-curves available than the logistic curve used in the simple 

modeling technique.  The Erto-Lanzotti equation is used here for the sophisticated 

modeling technique because of its flexibility while having less parameters than other 

flexible S-curves.  Additionally, Nieto and D’Avino have concluded that the Erto-

Lanzotti S-curve model best represents the evolution of technology performance [10, 

30].  D’Avino specifically recommends the Erto-Lanzotti model based on goodness of fit 

to multiple sets of data for evolving technologies including turbine and piston aircraft 

engines, and digital signal processors [10].   
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While other S-curves were created for reasons like describing the growth of population 

or through statistics, the Erto-Lanzotti equation was formulated for the purpose of 

describing the evolution of technology.  The general form of the Erto-Lanzotti equation 

is 

  𝑃 𝑡 = 𝑃! + 1− 𝑒!!!! 𝑃!"# − 𝑃! .  (9) 

The performance of one attribute is a function of time.  The parameters are Plim, Po, k, 

and s.  The parameters Po and Plim  are the initial and final limit of performance of an 

attribute of a technology.  The initial performance is the current performance as viewed 

from the current point in time.  The performance limit is the maximum limit that the 

performance can ever achieve, which is generally tied to a physical or theoretical limit.  

The remaining parameters, k and s, are not connected to any significant phenomena.  

Thus, they are difficult to elicit from a user. 

 

To aid in eliciting the parameters of the Erto-Lanzotti equation, the parameter, t*, 

inflection point time is introduced.  The inflection point time is the time where the 

curvature of the S-curve is zero and the derivative is maximum.  In addition, the 

performance when the technology reaches its inflection, Pt*, is another parameter.  The 

Erto-Lanzotti S-curve is fully defined by four parameters; Plim, Po, t*, and Pt*.  The 

performance at the inflection point is 

   𝑃!∗ = 𝑃 𝑡∗ = 𝑃! + 1− 𝑒
!!!
! 𝑃!"# − 𝑃! .  (10) 

Which is solved for S, 
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  𝑆 = !

!"
!!∗!!!"#
!!!!!"#

!!
.  (11) 

The parameter S is substituted into 

  𝑘 = !!!
!!∗!

  (12) 

to find k.  The parameters k and s, now in terms of t* and Pt*, are substituted into 

equation 9.  Figure 8 illustrates the Erto-Lanzotti S-curve and its parameters.   

 

 

 

Figure 8. Erto-Lanzotti S-Curve 
 

 

In the decision making process, the evolution of technology is simulated discretely 

through time.  The sophisticated technology evolution modeling technique uses multiple 

S-curves to describe points on the Pareto frontier moving along each axis independently.  

If the Pareto has two attributes, thus two independent axes, there are two S-curves.  The 

Pareto frontier moves following equations 1 and 2.  The derivatives, in terms of k and s, 

of an Erto-Lanzotti S-curve are 
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  !"
!"
= 𝑃!"# − 𝑃!

!"#!!!

!!"!
  (13) 

  !!!
!!!

= !!"#!!!
!!"!

𝑠 − 1 𝑘𝑠𝑡!!! − 𝑘!𝑠!𝑡!!!! .  (14) 

To move the Pareto frontier, the modeler first takes the 1st and 2nd derivatives of each S-

curve at time t0.  The 1st and 2nd derivatives of the S-curve describing the motion of the 

Pareto frontier along the X direction are axn and vxn, the velocity and acceleration of a 

point in the X direction.  Similarly, taking the 1st and 2nd derivatives of the S-curve 

describing motion in the Y direction gives the velocity and acceleration in the Y 

direction.  The derivatives from equations 13 and 14 are applied in equations 1 and 2 to 

every point on the Pareto frontier to find the locations at time t1.  The simulation iterates 

over time giving the location of the Pareto frontier at every time step.   

 

Figure 9 shows the movement of a Pareto frontier with two attributes moving from time 

tn to time to.  The S-curve on the left of figure 9 controls movement of the Pareto frontier 

in the X direction while the S-curve on the right controls the movement of the Pareto 

frontier in the Y direction.  The derivatives of the two curves define the movement 

through the equations 1 and which approximate movement through attribute space. 
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Figure 9. Pareto Frontier Shifting under Sophisticated Model 
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the simple technique.  The increase in the number of parameters leads to much greater 

computational burden when applied to decision-making under uncertainty. 

 

The sophisticated evolution modeling technique makes a few implicit assumptions.  The 

explicit assumption is that one S-curve describes the motion of all points on the Pareto 

frontier in one direction.  There is one S-curve for each independent axis of the Pareto 

frontier, or one for each independent performance attribute.  It is assumed that all points 

move in the X direction with the same velocity and acceleration. Similarly the points on 

the Pareto frontier move in the Y direction with the same velocity and acceleration.  

However, the points do not necessarily have the same velocity and acceleration in X 

direction as they do in the Y direction.  Moving identically in all directions is an implicit 

assumption of the simple evolution modeling technique, but not of the sophisticated 

technique.  This means that the Pareto frontier translates in attribute space, but moves 

with different velocity and acceleration in each direction.  Since the Pareto frontier only 

translates, the curvature and shape is preserved.  Since shape is maintained, the points do 

not migrate to a utopia point.  While these assumptions limit evolution modeling, they 

reduce the amount of information that user provides to define the evolution.  The user is 

free to make modeling assumptions under the general depending on how much the user 

chooses to take on. 
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4. METHODOLOGY 

 

The methods presented here involve technology evolution modeling using S-curves and 

Pareto frontiers in combination with a Monte Carlo simulation and models or 

simulations of the item being designed.  A Monte Carlo simulation provides a method to 

analyze the effects of uncertainty in the technology evolution modeling process.  The 

decision-making process proceeds as a simulation of the events that unfold over time as 

the technology or technologies evolve.  The decision is made on the basis of expected 

utility. 

 

Two distinct decision making methods, operating similarly but supporting decision 

making in different ways, are presented in this section.  In the first method, the decision 

maker selects between two or more simultaneously evolving technologies.  It is difficult 

to select between two simultaneously evolving technologies because the future 

performance levels are highly uncertain.  The first method presented in this section 

support making a decision under uncertainty.  In the second method, the decision maker 

uses a parametric study to explore what evolutionary behavior is required for one 

technology to be preferable to another.  Demonstrations of the methods will follow in the 

next section.  This section begins by explain the propagation of uncertainty through the 

decision making process.  The following subsections explain the technology selection 

decision method and the parametric decision method. 
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4.1. Analyzing Uncertainty in Technology Evolution 

The effects of uncertainty of the evolution of technology in decision-making are 

analyzed through a Monte Carlo simulation.  The decision-making methods use 

simulations of events unfolding over time based on the uncertain technology evolution 

models.  The user first defines the random distributions of parameters reflecting the 

uncertain expectations of technology evolution.  The Monte Carlo simulation consists of 

a series of runs, each beginning with S curves defined by a set of parameters.  The 

parameters defining the S-curves are realizations of the probability distributions of the 

uncertain parameters.  Within each run, there is a simulation over time of the movement 

of the Pareto frontier, the design decisions that occur, and the payout received due to the 

design.  Uncertainty is propagated through the decision process differently for the simple 

and sophisticated technology evolution modeling techniques.  The following subsections 

will describe the propagation of uncertainty for each technique. 

 

4.1.1. Uncertainty Propagation with Simple Evolution 

This subsection describes the propagation of uncertainty built on the simple technology 

evolution modeling technique.  The user first defines the distributions of uncertain 

parameters.  If one uses the simple technology evolution modeling technique, the 

uncertain parameters are the slope coefficient, c, and the initial maturity, Mo.  The user 

defines a mean and standard deviation for each of the parameters.  Since there is one S-

curve with two uncertain parameters, there are two distributions.  The distributions 

appear at the top of Figure 10.  A point is randomly sampled from each of the 
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distributions and an S-curve is constructed according to equation 6.  The distributions 

are sampled a number of times, and a family of S-curves is produced.  The family of S-

curves is illustrated in the 2nd box from the top in Figure 10. 

 

 

 

Figure 10. Propagation of Uncertainty- Simple Evolution 
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The Monte Carlo simulation proceeds as a series of identical runs each seeded with one 

of the S-curves from the family.  Within each run the series of events, such as the 

technology evolving, designing the product, and receiving a payout, is simulated through 

time.  One run of the Monte Carlo simulation takes place for each unique S-curve in the 

S-curve family.   

 

At the beginning of a Monte Carlo run, one S-curve is taken from the family of S-curves.  

At every time step, the designer or firm selects among the points on the Pareto frontier. 

The designer selects the point on the Pareto frontier that maximizes the payout that will 

be given to the firm as a result of designing and producing a product using that instance 

of the technology.    Using this instance of the technology under consideration and its 

associated performance taken from the Pareto frontier, a simulation or model maps the 

design variables to the system-level attributes.  Based on the system-level attributes, the 

payout function gives the payout received by the firm based on the design.  These steps 

are consistent with a rational design decision-making process. 

 

The time simulation iterates to the next time step, a new Pareto frontier is determined, 

and the process is repeated.  The result is a series of chronological payouts that resulted 

from the events occurring due to the evolution of technology dictated by the S-curve.  

The Monte Carlo runs repeat, each seeded by a new S-curve taken from the family of S-

curves until all have been tested.  The end result of the Monte Carlo simulation is a 

chronological series of payout for each Monte Carlo run.  As the Monte Carlo simulation 
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produces a very large array of data, it is not in a form that allows the user to easily make 

a decision by comparison to another technology.  Section 4.2 outlines how a decision is 

made using the payout series that come out of the Monte Carlo simulation. 

 

4.1.2. Uncertainty Propagation with Sophisticated Evolution 

The propagation of uncertainty through the decision process using the sophisticated 

technology evolution modeling technique is similar to propagation of uncertainty with 

the simple technique.  The key difference is in how the S-curves seed the Monte Carlo 

simulations.  The differences between the simple and sophisticated technology evolution 

modeling techniques are in the number of S-curves used, how they control the 

movement of the Pareto frontier, modeling underlying the S-curve behavior.  The 

sophisticated technique has one S-curve per dimension of the Pareto frontier.  Figure 11 

shows the propagation of uncertainty in decision-making using the sophisticated 

technology evolution technique for a Pareto frontier that has two dimensions.  Thus is 

has two S-curves. 

 

The Erto-Lanzotti S-curve is in terms of performance of an attribute as a function of 

time.  It has four parameters, Plim, Po, t*, and Pt*, of which Plim, Po, and t* are uncertain.   

The user creates the three distributions of uncertain parameters for each S-curve, as 

shown at the top of Figure 11. The parameter initial performance, Po, is known directly 

from the Pareto frontier at the first year.  The initial performance is the maximum value 

of an attribute from any point.  For example, looking at the Pareto frontier in Figure 2, 
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more of both attributes X and Y are preferred.  The initial performance parameter, P0, 

for the S-curve in the X direction is the greatest value of X that any point holds, which is 

the same as the X coordinate of the farthest right point on the frontier.  Similarly the 

initial performance parameter, P0, for the S-curve in the Y direction is the greatest value 

in the Y that any point holds, which is the same as the Y coordinate of the highest point 

on the Pareto frontier. 

 

To begin the decision-making, the user creates the Pareto frontier at the current time, to.  

The user then assigns mean and standard deviation value for each of the three uncertain 

parameters for each of the S-curves.  The Pareto frontier appearing next to the timeline 

within each run in Figure 11 has 2 dimensions, X and Y, thus there are two S-curves, 

each with three uncertain parameters.  The user assigns the mean and standard deviation 

for each of the six total unknown parameters, as shown at the top of Figure 10.   
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Figure 11. Propagation of Uncertainty- Sophisticated Evolution 
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The distributions for one S-curve are sampled, taking a parameter value from each of the 

distributions.  An S-curve is created according to equation 10.  The distributions for the 

other dimension are sampled, and an S-curve is created.  The sampling is repeated, 

creating a large family of S-curves for each dimension of the Pareto frontier.  From 

there, the Monte Carlo simulation consisting of a series of identical runs seeded with the 

randomly generated S-curves begins.  Every Monte Carlo run begins with the S-curves 

taken from the families of S-curves and the Pareto frontier at the current time.  Within a 

Monte Carlo run, a time-based simulation occurring at fixed time intervals simulates the 

evolution of technology, the design process, and the payout received.  The time-based 

simulation and design process involving selecting a point on the Pareto frontier to 

maximize payout occurs the same as with the simple technology evolution modeling.  

The evolution of technology follows the sophisticated technique where each S-curve 

describes the motion of points along one axis of the Pareto frontier.  The result of the 

time simulation is a series of chronological payouts.  The result of the Monte Carlo 

simulation is collection of payout series. 

 

4.2. Selecting Alternatives from a Monte Carlo Simulation 

This subsection details the first method, selecting between two or more mutually 

exclusive technologies.  This method builds on the propagation of uncertainty as 

described in the previous subsection.  When dealing with technologies that evolve, it is 

very difficult to decide between technologies due to the greater uncertainty in the future 

performance.  The method presented here allows the decision-maker to directly compare 
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alternatives given the means and standard deviation that define the S-curve parameters.  

The decision maker selects the alternative with the greatest expected utility. 

 

Figure 12 shows the process of finding the expected utility of a technology from the set 

of payout series resulting from the Monte Carlo simulation.  The payout series appearing 

within each Monte Carlo run in Figure 12 are taken from the Monte Carlo runs shown in 

Figures 10 or 11, depending on the modeling technique used.  The value of payout to the 

decision maker is not necessarily equal at all times.  For example, if the payout is in 

monetary units, a decision maker typically will account for the time value of money 

through use of a discount factor [31, 32].  

 

Within one run of the Monte Carlo simulation having a series of payout, the discount 

function converts all payout values to a common time base at the first year.  Since the 

payouts are all now equivalent, they can be average to find a payout that that represents 

the mean effective payout of that Monte Carlo run.  The process of applying the discount 

function and finding the average payout repeats for every Monte Carlo run.  Moving up 

in Figure 12, the average payout from every Monte Carlo run is aggregated into a single 

payout distribution.  The Payout distribution has one point for every Monte Carlo run. 

 

A utility function, which expresses the users risk attitude and preference for payout, 

maps the payout to a utility distribution.  The expected utility, which is the average of 
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the distribution, is a scalar number expressing the worthiness of the alternative in the 

decision. 

 

 

 

Figure 12. Finding Expected Utility of Payout 
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Expected utility is a scalar that allows the decision maker to compare alternatives with 

uncertain consequences due to evolution on a common scale.  Figure 13 illustrates the 

final decision process for the case of two technological alternatives.  The decision maker 

selects the technology that delivers the greatest expected utility under the specified 

conditions.  The outcome of the decision is dependent on the S-curve parameters and 

standard deviations applied at the beginning of the analysis. 

 

 

 

Figure 13. Selecting Among Alternatives 
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given certain information or beliefs about how the technologies are likely to evolve, one 

could ask “What evolution of Technology A leads to it being more preferred than 

Technology B?” Using this reformulation of the problem, decision makers can explore 

how different probability distributions for the various S-curve parameters impact the 

decision problem.  The results of this study can be useful for guiding information-

gathering efforts.  Organizations can direct their limited resources toward understanding 

or affecting the S-curve parameters that matter most in their decision problem. A key 

motivation for conducting a parameter study is to help determine whether it would be 

worthwhile to gather more information about one or more of the S-curve parameters for 

a particular technology. 

 

The parametric study method holds the parameters of one technology’s S-curve fixed 

while the search is performed over the probability distribution parameters for the S-

curve of the alternative technology.  If the distributions for the S-curve properties have 

two parameters, mean and standard deviation, the resulting parametric study is defined 

over a six-dimensional search space.  One divides this space into a sample grid and 

evaluates the expected utility of the technology at each sample vector using a method 

described in 4.1.1 or 4.1.2. 
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5. DEMONSTRATION OF METHODS 

 

This section provides demonstrations of the methods presented in section 4, applying the 

evolution modeling techniques in section 3.  The demonstrations show how the methods 

are applied in real world scenarios involving technologies that are currently evolving.  

The first scenario is that of an automotive company wishing to enter the electric vehicle 

market.  The hypothetical firm is deciding which of three battery technologies to commit 

to for use in their future line of electric vehicles.  This scenario demonstrates the 

technology selection method with simple technology evolution modeling.  The second 

scenario is that of a startup utility company investigating wind turbine technology.  To 

demonstrate the technology selection method using sophisticated evolution modeling, 

the company investigates weather to invest in land based or offshore wind turbines.  To 

demonstrate the parametric study, the firm investigates what evolution needs to occur for 

offshore wind turbines to be preferable to land based. 

 

5.1. Selecting Automotive Batteries with Simple Evolution Modeling 

The selection of batteries for use in the design of a line of electric vehicles demonstrates 

the methods presented in section 4.1.1 and 4.2.  In this scenario, an automotive firm is 

investigating three candidate battery technologies with similar current performance, 

denoted battery technologies 1, 2, and 3, for use in their future line of electric cars.  The 

firm is a major automotive manufacturer entering into the electric vehicle market for the 

first time.  They are designing their first electric vehicle model, which will be updated 
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annually with new batteries as they are released.  Due to the battery supplier contracts, 

and tooling expenses, the firm must select one battery technology at the outset of the 

project and continue with it for the duration.  At the current time, one battery technology 

is most preferred, but over the lifetime of the vehicle line, one battery technology may 

surpass the others. 

 

5.1.1. Scenario Background 

The firm uses the simple technology evolution modeling approach to support the battery 

technology selection decision.  The simple technique is preferred due to the greater 

number of alternatives evaluated and the large computational burden associated with 

evaluated the electric vehicle model.  Since there are few uncertain parameters 

associated with using a simpler S-curve, the computational burden is also reduced.   

There are a few questions to answer regarding the technology selection.  What is the best 

battery technology to select over right now, over a 5-year horizon, over a 15-year 

horizon? How much advantage is there in choosing one battery technology over another?  

For how many more years will the currently leading technology remain the leader? 

 

The hypothetical Pareto frontiers of the candidate battery technologies available when 

this decision is being analyzed are presented in Figure 14. The firm is deciding between 

three similar batteries with slightly different chemistries, packaging design, and safety 

features that affect the performance of the battery.  The batteries are manufactured by 

competing companies, but have similar performance at the current time.  The 
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performance attributes of concern to the designers are power density and energy density.  

There are a great number of other important battery performance characteristics 

including safety, life cycle, and thermal properties, but those are secondary to energy 

and power requirements and not included in this demonstration.  Examining Figure 14, it 

is clear that battery type 2 is the current best technology.  However, the firm anticipates 

that battery type 2 will be surpassed by one of the other types at an unknown point in the 

future. 

 

 

 

Figure 14. Pareto Frontiers of Electric Vehicle Scenario 
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5.1.2. Demonstration of Method 

The parameters and uncertainty values in Table 2 describe the firm’s beliefs about the 

evolution of the candidate technologies.  A set of randomly distributed variables is 

created using Latin Hypercube sampling.  A pair of random slope coefficient and initial 

maturity variables is used in equations 5 and 6 to create a random S-curve.  The resulting 

nominal S-curves, those created from the mean values, are shown in Figure 15.  The 

figure shows only the portion of the S-curve that lies within the planning period, so the 

tails are clipped.  Looking at Figure 15, it is intuitive that either battery type 2 or battery 

type 3 will surpass the current leader.  However, it is difficult to intuitively know when 

or by how much the new leader will surpass the old without a simulation of the events.  

Consequently, a best decision is not clear either. 

 

 

Table 2. Electric Vehicle Scenario S-Curve Parameters 

Battery Type:  1  2  3 

Slope Coefficient 
𝜇  1.00  1.00  0.70 

𝜎  0.15  0.15  0.15 

Initial Maturity 
𝜇  0.90  0.20  0.20 
𝜎  0.05  0.05  0.05 
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Figure 15. Electric Vehicle Scenario S-Curves 
 

 

A behavioral model of the electric vehicle is used to determine the performance 

attributes from the design variables.  In this behavioral model, the design variables are 

the battery power, energy, mass, and cost.  Additional constants, such as motor 

efficiency, regenerative braking efficiency, base vehicle mass and cost, rolling 

resistance, drag coefficient, and more are used.  The design variables are generated by 

selecting a point on the Pareto frontier and a battery mass.  Figure 16 details how the 

behavioral model uses the design variables to create the vehicle attributes.  The 

behavioral model delivers the performance attributes: range, cost, acceleration time, and 

top speed.  In the behavioral model, the car drives the Environmental Agency (EPA) 

highway and City driving cycles once each [33, 34]. The range in each event is 
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extrapolated from the change in energy during the event assuming that the battery is 

depleted at 20% state of charge.  The reported range is the average of highway and city 

range.  The vehicle also does full power acceleration from a stand still for 1 minute.  The 

acceleration time is the time it takes to reach 100 km/hr and the top speed is the speed at 

the end of the test.  The cost of the vehicle is the cost of the base vehicle plus the 

additional cost of the battery pack, which depends on the optimum battery pack mass.  

The variables battery pack mass and cost, while generally desirable quantities, are not 

included in the Pareto frontier because decreasing them may lead to a low power or low 

range car which is less desirable than a high power, faster one. The design variables are 

optimized to find the design with the most valuable performance attributes.  The 

behavioral model in Figure 16 is function, fsys(x,y) in Figure 10, where X and Y are the 

design variables energy density and power density.  The simulation of the system is 

similar to a Pareto frontier based design decision study of personal electric vehicles [35].  
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Figure 16.   Electric Vehicle Simulation 
 

 

Building on the initial Pareto frontiers of current battery technology, the S-curve 
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and 4.2 to support the decision of which battery technology to choose.  A step-by step 

explanation of the process follows. 

 

Using the S-curve parameters listed in Table 2, a set of randomly sampled variables is 

created using Latin hypercube.  A Monte Carlo simulation is started.  Each Monte Carlo 

run tests one S-curve that is generated by a pair of parameters: slope coefficient and 

initial maturity.   

 

At the first time period, the company designs the car using the batteries that are available 

to them; a point on the Pareto frontier.  The payout is maximized by selecting the point 

on the trade off curve that, in combination with the constant vehicle parameters and the 

mass variable, gives the greatest payout.  The behavioral model evaluates the vehicle 

attributes due to the design variables.  A payout function transforms the vehicle 

attributes into a payout that the company receives at that time period.  This process 

follows Figure 16. The payout is the value, monetary or otherwise, that the company 

receives for the design at that year.  In general, the company receives the most payout 

for designing and delivering a vehicle that best meets the preferences of the customers 

and the company.  In Figure 10, this is the payout, Po, due to the design at time t1. 

 

The payout function used in this example is a simple expression giving an arbitrary 

measure of how much payout the company gets from the attributes.  Equation 15 is the 

payout function used in this case study.  The vehicle attributes are top speed, 0-100 
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km/hr acceleration time, driving range, and cost in units of m/s, seconds, kilometers, and 

dollars.  The expression gives a payout of 1 for a very high performance car and 0 for a 

car that provides no payout at all. Minimizing acceleration time and maximizing the 

other vehicle attributes increases payout. 

  𝑃 = !
!

!"#_!"##$
!!.!

+ !!!!""#$_!"#$
!"

+ !"#$%
!""

+ !""""!!"#$
!""""

        (15) 

The process repeats, moving ahead one year.  At time t2, the company does a minor 

redesign of the vehicle, selecting the optimal battery pack mass and optimal point on the 

Pareto frontier.  However, over the year that has passed, the performance of the batteries 

has evolved, shifting the Pareto frontier.  Using the S-curve and equations 1, 2, 7 and 8 

the Pareto frontier is shifted as shown in Figure 2.  The batteries available for use in the 

design are present on the new Pareto frontier.  Again, the design is optimized and the 

company receives a payout as shown in Figure 16.  This process of shifting the frontier, 

optimizing the design, and receiving a payout is repeated annually for the length of the 

program life.  

 

Once the end of the program lifecycle is reached, the payout received at each time period 

is transformed by the discount factor and then aggregated.  In this simplified example, 

the discount factor is 1, which means that the present value of a payout is equal to its 

future value.  If the payout were in monetary terms, it is analogous to assuming that the 

future value is not discounted.  Within each Monte Carlo run, the payout over the entire 

program lifecycle is averaged into a single value, which tells how much payout, in 

present value, the company anticipates receiving over the planning period from this 
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battery technology following the assumptions made.  The average payout values from 

each Monte Carlo run are aggregated into a payout distribution.  In the case where the 

discount function is 1, the aggregation is simply the sum of all the payouts received.  In 

this simplified example, 50 Monte Carlo runs of the previous process were completed, 

giving a distribution of the aggregated payout.  However, thousands of samples are 

needed to get a significant distribution. For the purposes of demonstration, 50 samples 

are sufficient. Continuing vertically in Figure 12, a utility function is applied to the 

aggregated payout distribution.  The utility function expresses the users’ attitude toward 

risk.  It is applied to payout from the Monte Carlo simulation expressing the firms’ 

preference for uncertainty in payout. 

 

All of the previous steps are repeated for each candidate technology using their 

corresponding initial Pareto frontiers and S-curves.  The result of performing all the 

previous steps is a distribution of utility for each candidate battery technology.  At this 

point in the decision making process, there are a number of utility distributions.  In order 

to make a decision, the company needs a better way to compare the technologies.  The 

mathematical expectation of the utility distributions is found.  This gives a scalar value 

that is easy to compare. In this case, the expectation is the average of all the samples in 

the utility distribution.  The decision is to choose the battery technology that has the 

greatest expected utility, as shown in Figure 13.  In this case study, the process of 

making the decision was repeated over a range of program lifecycles from zero to fifteen 

years with annual redesign periods.  The results of this study follow.  



 55 

5.1.3. Results and Discussion 

The decision is simulated using the presented method.  At the beginning of the first time 

period, when the company is making the first update of the car, the best selection is 

battery type 2, with an expected utility of 1.59.  Battery types 1 and 3 have expected 

utilities of 1.56 and 1.55.  If the company looks only at the present performance of 

battery technologies, neglecting the anticipated evolution inherent in the decision, 

battery type 2 is the obvious choice.  As shown in Figure 14, the Pareto frontier of 

battery type 2 dominates the others, leading to the same conclusion.  This situation is 

analogous to a program lifecycle of 1 year.  However, if the evolution models are 

included and the program lifecycle is extended, interesting results arise.  Figure 17 

shows the expected utility of each battery type as a function of the program lifecycle of 

the decision.  The figure does not show which battery technology is instantaneously 

better at that point in time. 
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Figure 17.   Electric Vehicle Scenario Decision over Time 
 

 

If the program lifecycle is 15 years, battery type 3 is the best decision.  Battery type 3 

started with low performance but surpassed the others because it evolved much more.  

Another noteworthy point is that given a program lifecycle of 1 year, the firm is 

indifferent between battery types 3 and 1.  Similarly, the company is indifferent between 

battery types 2 and 3 on a 5-year program lifecycle. If the program lifecycle is greater 

than 15 years, battery type 3 should be chosen.  The time when two candidate battery 

technologies become indifferent is valuable because that information can support the 

related decision of when to invest or make a technology switch.  For example, if the 

company was already established with battery type 2, this information supports the 

decision to maintain the current technology and delay switching.  The results in figure 17 
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show that the technology preferred in the short run is not the technology preferred in the 

long run. 

 

5.2. Selecting Wind Turbines with Sophisticated Evolution Modeling 

As a demonstration of the technology selection method technology evolution, we 

consider a design scenario involving electricity generation from wind power.  With the 

increasing demand for energy as well as increasing awareness about the environmental 

impact of traditional energy sources like coal or petroleum, wind power generation is 

becoming an increasingly important topic.  Wind turbines can be located either on land 

or offshore. Due to very different operating conditions and engineering challenges, it is 

common to consider these as two distinct technologies. Although the United States 

possesses a great amount of unused offshore wind potential, offshore turbines are used 

less frequently due in part to greater costs and various engineering challenges [36]. 

However, wind speed is typically higher offshore, leading to greater energy generation 

possibilities [37]. As offshore power generation technology evolves relative to onshore 

technology, it may emerge as the superior alternative.  The technology evolution 

modeling technique in section 3.2 will be applied in the decision method described by 

sections 4.1.2 and 4.2. 

 

5.2.1. Scenario Background 

Consider a hypothetical startup energy company based in Texas that will invest in wind 

power generation installations either onshore in north Texas or offshore in the Gulf of 
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Mexico. The firm faces the challenge to choose the type of wind power generation 

technology that will yield the greatest payoff over their 10 year planning horizon. After 

choosing whether to build onshore or offshore, they will start with one installation of the 

chosen type and expand annually. With each expansion, they will install the best 

equipment available on the market at that time. Thus, they stand to benefit from the 

evolution of the technology and the relative evolution of the two technologies is an 

important factor in their decision making process. Due to the limited resources, contract 

obligations, and great cost and effort to build transmission infrastructure, the firm does 

not consider choosing both an option. Furthermore, we presume the firm will not switch 

from one type of generation to the other after sinking cost and accumulating expertise in 

the type of system chosen at the outset.  

 

Determination of the payout due to a wind turbine array is determined from only a few 

criteria calculated from the limited data available.  The data used in this wind turbine 

example problem is from a database of 801 wind turbines available on the market 

including nominal power ratings, diameter, and in some cases, year introduced [38].  The 

dominant design variables of a power generating array are the nominal power and 

coefficient of power of the turbines.  The firm believes that the performance of land-

based and offshore wind turbines is evolving in terms of these two design variables.  

Figures 18 and 19 show the dominant performances of wind turbines as compiled from 

the database.  Only wind turbines with release year data appear in the figures.  The 
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power values are the nominal power ratings coming directly from the database while the 

coefficient of power values are calculated from  

  𝐶! =
!"#$%&'$(" !"#$% !"#

!"#$ !"#$% !"
.  (16) 

The wind power available for harvesting by a wind turbine is a function of the wind 

speed, 𝑉, and the swept area of the blades, 𝐴!"#$% .  Air density, 𝜌, is assumed 1.23 

kg/m3 in all cases.  The wind power available to be consumed by a wind turbine is 

  𝑃 = !
!
∗ 𝜌 ∗ 𝐴!"#$% ∗ 𝑉!.  (17) 

 

 

 

Figure 18. Wind Turbine Power Evolution 
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Figure 19. Wind Turbine Coefficient of Power Evolution 
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voltage are important to real world decision-making, but are omitted in this 

demonstration.  The points in Figure 20 are wind turbines currently on the market for 

which sufficient information could be found in the database to calculate coefficient of 

power and nominal power [38].  Since the designer always prefers more power and 

greater coefficient of power, the points in the upper right region of the plot are dominant.  

The Pareto frontier is the boundary line connecting the non-dominated points. The 

Pareto frontiers are sparse due to limited data.  The points tend to be organized into 

columns arranged at whole and half Megawatt increments, as these are common design 

size classifications for wind turbines. The Pareto frontiers in Figure 20 are used as the 

Pareto frontiers at year 0 in the decision analysis. 

 

 

 

Figure 20. Wind Turbine Pareto Frontiers 
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5.2.2. Demonstration of Method 

The firm chooses to use the sophisticated evolution modeling technique because of its 

flexibility greater power.  Since the evaluation of designs through a simulation or system 

model is not computationally intensive, the increased computational burden of using the 

sophisticated technique is acceptable.  Based on the current Pareto frontiers and previous 

evolution trends, the firm creates Table 3, which represents their beliefs about how the 

two technologies will evolve over time.  The table lists the mean and standard deviation 

values of the parameters that fully define the technology evolution curves for power and 

coefficient of power.  Figures 21 and 22 illustrate the nominal S-curves from Table 3. 

 

Looking at Figure 18, the firm estimates that land-based wind turbines typically lead 

offshore turbines in power by approximately 2 years.  They estimate the expected time at 

which inflection in the technology evolution curves, t*, will occur at 5 years for offshore 

power and 3 years for land-based.  By examining Figure 19, the coefficient of power 

evolves the same for both land-based and offshore wind turbine, so the inflection time 

will be 5 years for both onshore and land-based wind turbines.  The performance limit 

for land-based wind turbines is based on the expected blade diameter limit of 125m due 

to transportation, installation, and material constraints.  Since the current power level of 

land-based wind turbines is already near the expected limit, there is little expected 

advancement in power.  However, the firm expects the evolution for both land-based and 

offshore wind turbines to be the same.  The firm limits the coefficient of power 

evolution to 90% of the Betz limit.  The initial performance parameters are taken directly 
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from the Pareto frontiers.  For example, the land-based coefficient of power, 0.433, is the 

greatest coefficient of power available in the current year for land-based turbines.   The 

initial performance parameter is calculated directly from the initial Pareto frontiers.  The 

initial performance for offshore power is the greatest power that any wind turbine on the 

current Pareto frontier has.  The remaining initial performance parameters are found in 

the same manner. 

 

 

Table 3. Wind Turbine Evolution Parameters 

  Land-Based Offshore 

  Power [MW] Cp Power [MW] Cp 

Parameter 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

Plim 5.75 0.30 0.49 0.02 17.50 0.50 0.49 0.02 

Po 5.00 N/A 0.43 N/A 5.50 N/A 0.35 N/A 

Pt* 5.35 0.06 0.46 0.005 12.29 0.06 0.42 0.005 

t* 3 0.1 5 0.25 5 0.25 5 0.25 
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Figure 21.   Wind Turbine Coefficient of Power S-Curves 
 

 

 

Figure 22. Nominal Power Evolution Curves 
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For the wind turbine example presented here, the system model is evaluated to find the 

system-level attributes of a complete wind turbine array. The system being designed is a 

wind turbine array containing equally spaced turbines on a 10km x 10km area.  The 

system’s design variables are power and coefficient of power.  The significant system-

level attributes of concern to the firm are the number of turbines populating the array and 

the total power produced by the array.   Though there are many more attributes to 

consider in decision-making, the demonstration is limited to these few attributes.  The 

number of wind turbines allowable over a given area is chosen such that only a certain 

amount of power is removed from the wind.  The firm has set the limit that the array 

may remove 1 watt per square meter of land area.  The number of turbines allowable in 

the array is given by: 

  𝑁 = !!"#$%&'
!"#∗!!""!#

.  (18) 

The land area of the array is given by 𝐴!""!#.  𝑃!"#$%&' is the wind power consumed by a 

single turbine at the average wind speed at the array location, and WPD is the 1 w/m2 

wind power density.  Typically wind speeds are higher offshore than on land so the wind 

turbine power is greater for the same swept area. This term is also the denominator of the 

coefficient of power equation.  The power of one wind turbine is calculated from 

equations 16 and 17 given the power and coefficient of power of a wind turbine existing 

on the Pareto frontier.  The total power of the array is the nominal power of the turbine 

times the number of turbines in the array. 
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The firm desires to maximize the average power of the array in order to produce greater 

revenue. On the other hand, the firm desires to decrease the number of wind turbines in 

the array to limit the size of the required power transmission infrastructure and to 

decrease the number of components in the field requiring maintenance.  Additionally, 

the penalty for the number of turbines in an array is greater offshore due to the greater 

expenses in constructing the infrastructure and performing repairs.  In the analysis, the 

firm receives a payout each year from the installation of an array.  The firm creates 

payout functions that express their preference for power and number of turbines.  More 

sophisticated payout functions can be created, but for the purpose of providing an 

example, the following payout functions are used 

  𝑃!"#$ =
!"!!"#

!!
+ !

!
∗ 𝑝𝑜𝑤𝑒𝑟 ∗ 10!! and  (19) 

  𝑃!""#!!"# =
!"!!"#

!"
+ !

!
∗ 𝑝𝑜𝑤𝑒𝑟 ∗ 10!!.  (20) 

The analysis of the decision proceeds with the necessary input parameters and Pareto 

frontiers, and has created the required system model, payout function, and utility 

function. The procedure follows the method presented in sections 4.1.2 and 4.2.  There is 

a Pareto frontier for each mutually exclusive alternative, land-based wind turbine 

technology and offshore wind turbine technology.  The Pareto frontiers represent the 

design variables of the system, with power and coefficient of power as the axes.  Thus, 

there are two technology evolution curves per technology, one for each axes of the 

frontier.  From the mean and standard deviation values listed in Table 3, distributions of 

the technology evolution curve parameters are created. Illustrations of these distributions 

appear at the top of Figure 11.  The analysis proceeds to find the expected utility of one 
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technology.  The process will be repeated to find the expected utility of the alternative 

technologies and the decision will evaluated by comparing the expected utilities of the 

alternative technologies.  

 

The Monte Carlo simulation analyzes the effects of uncertainty in the parameters 

defining the technology evolution curves.  Latin hypercube sampling samples the S-

curve parameter distributions to create a set of random parameters that will be used to 

create the families of S-curves in the Monte Carlo simulation.  Latin hypercube sampling 

allows for fewer samples to be generated and still provide statistically significant results 

when sampling in multiple dimensions [19].  For this example, the Monte Carlo 

simulation consists of 1,000 runs to demonstrate the method, although 10,000 or more 

samples would be used for increased statistical significance.  Each Monte Carlo 

simulation run generates a random Plim, Pt*, and t* for each axes of the Pareto frontier.  

Plim, Pt*, and t* are uncertain while the remaining parameters, k and P0, are calculated 

directly.  To begin a Monte Carlo run a sample Plim, Pt*, and t* is taken from the Latin 

Hypercube set. The parameter k is calculated from Equation 12 and P0 is calculated from 

the existing Pareto frontier.  The S-curve is created from the parameters according to 

Equation 10.   

 

From randomly sampling the parameter distributions, the Monte Carlo simulation creates 

a family of S-curves.  Each S-curve within a family seeds a Monte Carlo run.  The 

events that unfold within the discrete time simulation depend on the S-curve.  Since 
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there are two S-curves in this demonstration problem, one for each attribute of the Pareto 

frontier, there are two families of S-curves.  Figures 23 and 24 show the S-curve families 

for power and coefficient of power respectively.  The figures are histograms depicting 

families of 10,000 S-curves.  They show that the S-curves are very similar in the first 

year, but show much greater spread as time passes. 

 

 

 

Figure 23.   Family of Randomly Sampled Power S-Curves 
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Figure 24. Family of Randomly Sampled Cp S-Curves 
 

 

Within a Monte Carlo run, the evolution of technology, annual redesign, and the payout 

received is simulated at annual internals.  At year 1, the firm designs the first array of 

wind turbines that they will install.  The firm first makes a decision of which turbine 

model to install in the array.  The range of models, and their performances, is described 

by the year 1 Pareto frontier.  The system model is applied to a point on the Pareto 

frontier to find the system-level attributes given that point.  Equations 16-18 give the 

number of turbines and total power of the 10km x 10km array given the power and 

coefficient of power of a turbine.  The payout functions, equations 19 and 20, give the 

payout to the firm from selecting a given wind turbine model.  The firm redesigns the 

array, selecting the point on the Pareto frontier that maximizes the payout in year 1. 
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Moving down within one Monte Carlo run in Figure 11, the Pareto frontier is shifted 

from its original location at the first time point to its location at the next time step, one 

year in the future, according to the technology evolution curve.  The first and second 

local derivatives are calculated at year zero for the power and coefficient of power 

evolution curves. The values are applied in equations 1 and 2 to move a point on the 

Pareto frontier to its location in the next year. The result is the Pareto frontier at the next 

time step.  In this demonstration, the firm analyzes the decision at yearly increments for 

10 years.  The process of finding the derivatives, moving the Pareto frontier, and 

maximizing payout is repeated, iterating the time step from year 0 to year 10 resulting in 

a series of annual payouts.  

 

Moving on to the process outlined in Figure 12, the payout is aggregated and analyzed to 

find the expected utility of the technology.  First, the discount function is applied to the 

payout series within every Monte Carlo run so that all the entries have values equivalent 

to time 0. In this demonstration, the firm values all payout in time equally.  The average 

value of the discounted payouts within each Monte Carlo run is taken.  The average 

payout values are aggregated into a payout distribution having one point for each Monte 

Carlo distribution.  The utility function is applied to the payout distribution.  The firm is 

risk neutral so the expected utility is the mean of the aggregated payout distribution.  

The entire process described is repeated finding the expected utility of the second 

technology.  As shown in Figure 13, the firm should choose the technology with the 

greatest expected utility. 
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5.2.3.  Results and Discussion 

The expected utility of each technology is presented in Figure 25.  At year 0, when the 

firm is investigating the technology selection decision, land-based wind turbines have a 

greater expected utility.  However, over a 10 year lifecycle, offshore wind turbine has a 

greater expected utility.  If the lifecycle is 7 years, the firm is indifferent between 

selecting land-based or offshore wind turbines given the parameters selected at the 

beginning of the analysis.  From this information the firm can make the decision to 

select offshore wind turbines over a 10 year project lifecycle. 

 

 

 

Figure 25. Wind Turbine Technology Comparison 
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5.3. Wind Turbine Parametric Study 

The parametric study method is applied to the wind turbine scenario described in section 

5.2.  The firm poses the question: Given our expectation of the evolution of land-based 

wind turbine performance, how does the power of offshore wind turbines need to evolve, 

and how sure do we need to be, for offshore to be preferable to land based technology?  

This is looking at the same technology decision from another viewpoint. 

 

5.3.1. Demonstration of Method 

The parametric study is performed over a search space of parameters and standard 

deviations.  Since the sophisticated technology modeling technique is used, there are a 

great number of uncertain parameters in the problem.  Each axis of the Pareto frontier 

has three uncertain parameters and three standard deviations that define the distributions 

parameter distributions for an S-curve.  For this demonstration, the firm focuses 

specifically on what evolution of power make offshore preferable to land based.  The 

parametric study takes place over the three parameters and standard deviation making up 

the S-curve for the offshore power.  The result is a six dimensional search space that 

describes where one technology is preferable to another based on expected utility.  At 

each point in search space the method in section 4.2 is repeated using the coordinates of 

the point at the parameters and standard deviations.  At a point within the search space, 

the preferable technology is the one with the greatest expected utility. 
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The firm defines a grid search space over the greatest range of the parameters that they 

anticipate.  The expected utility is evaluated using the coordinates of the point as the 

parameters and standard deviations that define the distributions for the offshore power S-

curve.  At each point in the search space the best technology is the one with the greatest 

expected utility. 

 

5.3.2. Results and Discussion 

Since a six dimensional space is difficult to visualize, the results are presented in two 

ways.  First, Figure 26 illustrates the trends resulting from searching over the 

parameters, while Figures 27-29 illustrate the effects of the standard deviation on each 

parameter.  The figures together do not completely describe the 6 dimensional search 

space.  In Figure 26, offshore technology is preferred wherever there is round maker, and 

land-based wind technology is preferred wherever there is a cross marker.  The decision 

is affected by the mean values of all three parameters.  The scenario in presented in 

section 5.2 uses the coordinates of the point in the center of the search space. One 

hundred Monte Carlo runs were evaluated at each point within the search space, as this 

is a demonstration only.  The scale of the search grid and the number of Monte Carlo 

runs is up to those performing the analysis.  The plot shows that no single parameter 

dominates; they are all coupled.  The rate has some effect, but is not significant in 

comparison to others.  Thus, it is not greatly advantageous for the firm to affect the slope 

through rapid development in this scenario.  The inflection time has some impact on 

altering the decision.  When the performance limit is very low or very high, the impact 
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of moving the inflection time earlier is minimal.  In between those limits, moving the 

inflection point forward through earlier action in research and development can alter the 

decision.  Since land based technology is evolving alongside offshore, there is less gains 

to be had by altering the rate or inflection time than evolving to a greater power level.  

 

 

 

Figure 26. Parametric Study of Wind Turbine Scenario 
 

 

Figures 26-28 show how each parameters standard deviation affects the decision, using 

the point in the center of the search space as the baseline.  Rather than showing just the 

results of the decision, as in Figure 26, these figure show the expected utility of both 

technologies.  At a point in the search grid, consisting of a mean and standard deviation, 
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the value along the Z axis is the expected utility of each technology.  The technology 

with the higher point is preferred.  The surfaces in this series of figures allow the user to 

quickly see how the standard deviation of one parameter affects the decision.  Since the 

firm is risk neutral, the standard deviations in Figures 27-29 have minimal effect on the 

expected utility.  In addition, these plots show by how much one technology is preferred 

to the other.  

 

 

 

Figure 27. Parametric Study for Plim 
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Figure 28. Parametric Study for S 
 

 

 

Figure 29. Parametric Study for t* 
 

 

The parametric study gives the decision maker valuable insight into the effects that 

selecting parameters and standard deviation have on the outcome of the decision.  To do 
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a truly meaningful parametric study, the user must search over all the uncertain variables 

for each S-curve.  Due to the great number of evaluations and dimensions needed in 

performing the parametric study, the method described in section 4.1.2, making decision 

with simple technology evolution, is much faster because it has fewer uncertain 

parameters to describe an S-curve and only one S-curve. 



 78 

6. FUTURE WORK, SUMMARY, AND CONCLUSIONS 

 

6.1. Future Work 

This research opens up a number of areas and applications for further work.  The general 

framework for modeling the evolution of technology can be applied to support making 

decision beyond those presented in this thesis.  One problem of interest is when is the 

best time to switch from one technology to another.  This problem does not make the 

earlier assumption that it is not feasible to switch from one technology to another.   

Another problem that decision makers face is understanding risk.  Selecting between 

competing technologies to use in a project with a long lifespan involves a great deal of 

risk because the future performance of a technology is unknown.  Quantifying the risk 

associated with choosing one technology in comparison is beneficial when making 

decisions involving technologies that evolve. 

 

The general framework for modeling evolution of technology allows for many different 

implementations of modeling techniques depending on the level of sophistication, 

amount of information about evolution required from the user, and the assumptions 

made.  The implementations of the general framework presented in this thesis make a 

number of assumptions that do not necessarily apply in all situations.  Of particular 

interest is the implicit assumption that the Pareto frontier does not expand, but only 

translates.  Additionally, the current implementations assume that Pareto frontier 

maintains its curvature as it evolves, and does not stretch or change shape.  This 
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assumption does not apply in all cases.  For example, if the performance attributes are 

truly independent, the Pareto frontier may move differently along each axis.  For 

example, a Pareto frontier of a water container with attributes of cost and volume and 

cost can change shape because the cost can drop for all water bottles while the volume 

does not evolve at all, resulting in a shape change.   

 

Some level of error is inherent in modeling.  At the current stage of this research, the 

error has not been quantified.  A Taylor series expansion approximates the movement of 

Pareto frontier points through attribute space.  The error of this approximation reduces as 

the time step decreases and as the number of terms increases.  The error due to the 

number of terms and the step size needs to be quantified.  The user needs to know how 

accurate to make the approximation in order to reduce error to an acceptable level. 

 

One disadvantage of the simulation based decision-making approach is the significant 

computational burden.  The decision–making methods use Monte Carlo simulations to 

propagate uncertainty.  Monte Carlo simulations repeat evaluations of random events a 

great number of times, which demands great computational resources.  Future work 

includes applying other uncertainty propagation techniques to reduce computation effort.  

The examples presented here have examined simple problems where there are only two 

significant attributes.  Generally there are numerous performance attributes of interest, 

but analyzing a problem with many more attributes greatly increases the computational 
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effort required to make the decision.   Applying response surface models in place of the 

model or simulation of the system being designed can reduce the total effort. 

 

6.2. Summary and Conclusions 

The performance of technologies evolves over time, posing a challenge in design due to 

the uncertainties in the future performance.  Without the means to account for 

technology performance evolution, the designer or decision maker can look only at the 

current technologies available and make educated guesses about how the future affects a 

current decision.  A method for quantifying the effects of evolution is needed to facilitate 

better understanding and decision-making.  This research provides a framework for 

formally modeling the evolution of technology and making a decision based on a series 

of uncertain events that will unfold over time.  The technology evolution model is a 

valuable tool to model the evolution of technology performance giving designers and 

decision makers a way to quantify future performance of multiple attributes of a 

technology.  This research has proposed that a Pareto frontier representing multiple 

performance attributes moves as the performance of a technology evolves according to 

S-curves.  Additionally, uncertainty can easily be applied to the evolution model and its 

shape can be easily modified to fit the users’ expectations of evolution.  

 

The selection of batteries for use in a line of electric vehicles demonstrates the simple 

technology modeling technique using a single logistic S-curve to describe the motion of 

a Pareto frontier.  The electric vehicle scenario shows how the decision-making method 
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allows the user to select between multiple competing technologies undergoing different 

expected evolutionary paths.  A scenario of a power generation company deciding 

between offshore and land-based wind turbines demonstrates the sophisticated evolution 

modeling technique with multiple independent Erto-Lanzotti S-curves.  The parametric 

study method is applied to this scenario, showing under what distributions of uncertain 

parameters offshore wind turbine technology is preferred to land-based. 
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