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ABSTRACT

Comparative Performance Analysis of the Algorithms

for Detecting Periodically Expressed Genes. (August 2012)

Kwadwo Sefa Agyepong, B.S., Prairie View A&M University

Co–Chairs of Advisory Committee: Erchin Serpedin
Edward R. Dougherty

Thus far, a plethora of analysis on genome-wide gene expression microarray

experiments on the cell cycle have been reported. Time series data from these experi-

ments include gene expression profiles that might be periodically expressed. However,

the numbers and actual genes that are periodically expressed have not been reported

with consistency, analysis on similar experiments reports disparate numbers of genes

that are periodically expressed with scant overlap. This work ultimately compares

the performance of five spectral estimation schemes in their ability to recover period-

ically expressed genes profiles. Lomb-Scargle (LS), Capon, Missing-Data Amplitude

and Phase Estimation (MAPES), Real Value Iterative Adaptive Approach (RIAA)

and Lomb-Scargle Periodogram Regression (LSPR) are rigourously studied and pit-

ted against each other in various simulated testing conditions. Results obtained using

synthetic and microarray data reveals that RIAA is an efficient and robust method

for the detection of periodically expressed genes in short time series data that might

be characterized with noisy and irregularly sampled data points.
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CHAPTER I

INTRODUCTION1

Biological processes undergo rhythms that are dictated by various cell activities such

as the cell cycle process. This phenomenon recur at regular intervals and may be

annual, seasonal, circadian or even ultradian. These rhythms are controlled by en-

dogenous biological clocks and understanding their molecular basis is of fundamental

interest in biology. Knowledge of these rhythms leads to insights into diagnosis and

treatment of illness. The rhythmic signals help a living organism to organize its be-

havior and physiology. Understanding these rhythmic activities has been an impor-

tant problem in systems biology for many years. Advances in microarray technology

equipped us with a means to directly measure and quantify the expressional concen-

tration levels of mRNA, the basic unit structure that encodes chemical instructions

for a protein product. These measurements provide a tangible means to characterize

regulations in the cell.

Microarray experiments exploit high-throughput gene chips to measure gene expres-

sions at various sampling time points per the suitability of the experimenter and

experimental constraints. Experimental constraints [1] lead to scarce sample size, as

large sample sizes are not economically feasible due to the cost of gene chips and the

maintenance of a conducive ambience for cell cultures over time. The limited data set

generally present missing values at random time points. This is due to defective slides

The journal model is IEEE Transactions on Automatic Control.

1Part of this chapter is reprinted with permission from “Detecting periodic genes
from irregularly sampled gene expressions: a comparison study” by Zhao, W. and
Agyepong, K. and Serpedin, E. and Dougherty, E.R., vol.2008, EURASIP Journal on
Bioinformatics and Systems Biology, 2008, Copyright 2008 by Zhao and Agyepong
and Serpedin and Dougherty.
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and the inability of microarrays to cipher non-ideal spots. Experimental noise also

corrupts the limited samples, leading to uncertainty that must be addressed within a

stochastic framework [1].

The mechanisms of the underlying process is well understood, but the analyses of the

datasets led to inconclusive reports on the numbers of periodically expressed genes for

many organisms. Work on Saccharomyces cerevisiae [2] [3] has so far reported about

400 to 800 genes that are cell cycle regulated, meaning that they are periodically

expressed. For Schizosaccharomyces pombe, about 400 to 700 genes [4][5] have been

found to be periodically expressed. In Aradidiopsis thaliana, about 500 to 600 are re-

ported to be cell cycle regulated [6]. The need for an analysis tool that overcomes the

innate undesirable characteristics of the microarray data is evident. On experiments

that are available to the general public, it is interesting that one cannot get an overlap

of more than 400 genes between two different analyses based on similar experimental

synchronization designs. There have been many microarray experiments conducted

on the budding yeast [2] [4]. The budding yeast in [2] is the most used data source in

many analytical experiments for the detection of periodically expressed genes. This

is because of its grounding breaking results and the relatively large sample size it

provided to literature citeKwadwo08. Spellman [2] analyzed the data on the budding

yeast via a scoring criterion where a combination of a correlation score and a Fourier

based score were used to rank 800 genes believed to be periodically expressed.

There are basically two main approaches used in the literature to evaluate schemes

and models. The norm is to search for hits from a set of 104 genes that are known

to be cell cycle regulated [7]. These 104 genes were found from traditional meth-

ods where expression profile were visually inspected [2]. The other way of putting a

measure of performance on a scheme or statistical test is to combine the results of

similar works, by taking a heuristic threshold overlap of results publicly available and



3

counting the overlap of genes between the results of ones model and the overlap of

results from other methods.

Our earlier work looked at three spectral analysis tools which could overcome the un-

desirable characteristics of the microarray experimental data set. The performance

of Lomb-Scargle periodogram (LS) [8] , Capon ( Robust Capon) [9] and Missing

data Amplitude and Phase Estimation (MAPES) [10] were compared. Each scheme

possesses the ability to detect periodically expressed genes from the expression mea-

surements of mRNA provided that some conditions are met. Lomb-Scargle proved to

be the most efficient method when all three schemes were applied on cdc15 dataset

from Spellman’s experiments [1]. The previous three schemes are included in the

present comprehensive study for detailed analysis on a myriad simulated conditions

that are semblant to microarray dataset. Stoica’s [11] new method called Real Value

Iterative Adaptive Approach (RIAA) and a scheme employed by Yang [12] called

LSPR have been added to this study. LSPR is a new periodicity detection algorithm

that has its foundation built on Lomb-Scargle periodogram and harmonic regression.

There have been many methods proposed to detect periodicity in the cell cycle of or-

ganisms. Yang [13] used an algorithm which combined time domain and frequency do-

main analysis to obtain and identify rhythmic expression profiles. It utilizes spectral

estimation technique to obtain periodically expressed profile candidates and model

these candidates with a time-series model. Giurcaneanu [14] used generalized Gaus-

sian distributions to investigate stochastic complexity inherent in the detection mech-

anism of genes that are periodically expressed. Ahdesmaki [15] employed a robust

periodicity testing procedure that used a non-Gaussian noise assumption and consid-

ered a regression method to aide in simulating irregular sampling. Luan [16] used

a selection of ’guide’ genes and constructed cubic B-spline based periodic functions

as a model [1]. The statistical approach by Luan[16] allowed for the identification
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of thresholds for false discovery rate. Lu [17] proposed a Bayesian approach to esti-

mate a periodic-normal mixture model from five different experiments. Several ad-

ditional power spectral density estimation schemes have been used in the literature.

Wichert [18] applied the traditional periodogram where any missing data present for

all genes were imputed via interpolation. Bowles used synthetic data to compare

Capon method and Robust Capon approach[19]. Lichtenberg [20] compared [2], [16]

and [17] using a a score obtained via the combination of periodicity and regulation

magnitude. Most of the works cited above employed their methods on evenly sampled

data. Missing data points were interpolated and in cases where the missing data set

were more than 30%, the genes were discarded [1].

Microarray experiments are generally characterized by having datasets that are ir-

regularly sampled. To address the issue of unequally spaced measurements, Lomb

[21] and Scargle [22] discovered that a phase shift restores the orthogonality lost by

Fourier analysis, due to the unevenness of the data, in the sine and cosine terms.

Glynn [8] used the Lomb-Scargle scheme to analyze Plasmodium falciparum data set.

Stoica [23] modified the Capon method to adapt to irregular sampled data in the field

of signal processing. Wang et al. [10] proposed a new approach called missing-data

amplitude and phase estimation (MAPES). MAPES estimates any missing data and

computes the spectral density estimate iteratively via the Expectation Maximization

(EM) algorithm. Real Value Iterative Adaptive Approach (RIAA) [11] induced the

present interest to revisit our prior work given the fact that preliminary results show

that it presents much promise in being robust to deficiencies in microarray data set.

The rest of this work will illustrate the capability of each method while providing

a complete review of the work in [1]. The following nested questions are posed and

answered in this study: Which scheme performs best in the presence of (1) Noise, (2)

Small sample size, (3) Clusters of missing data or irregular sampling? Both synthetic
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and experimental data are used in this work. The aim of this work is to nominate

a scheme that will address the problem of scant overlap in in the existing results as-

sessing periodically expressed genes in the same organism. Results shows that RIAA

outperforms the schemes considered in this work on both synthetic and the Cdc 15

yeast data in Spellman’s dataset. RIAA is also applied to two different data set,

Spellman [2] and Pramila [24] alpha synchronized datasets, to obtain a consistent

overlap of results for periodically expressed genes. Full results are provided in the

Appendices including Matlab codes, the list of 104 plus 9 new genes provided by

Johansson [7] are also included.
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CHAPTER II

METHODS1

This section begins by examining RIAA and proceeds with a recapitulation of the

existing methods for a proper perspective of the subject. The material of this chapter

relies on our previous paper [1]. RIAA belongs to the class of power spectral density

estimators that employ least-squares to estimate the spectral density for a sequential

data with discrete spectra. Lomb [21] used phase-shift of the sine and cosine functions

to restore orthogonality that is lost, due to unevenly sampling, between the cosine and

sine harmonics. Scargle [22] extensively reanalyzed Lomb’s periodogram to provide

derivation of a null hypothesis distribution for the periodogram. The Lomb-Scarlge

periodogram has been cited numerous times in many fields and applications including

genomics see e.g.,[8], [12].. Capon approach represents a filter bank approach for

power spectrum density estimation, where a finite-length data spectrum estimator

is constructed by estimating the spectral power’s distribution over narrow spectral

bands. MAPES was developed for regular sampling times with missing data but

as mentioned in [10], it belongs to the family of non-parametric spectral estimation

techniques. It exploits the expectation maximization (EM) algorithm to estimate

missing samples. LSPR is based on Lomb-Scargle periodogram, where inferences

made from LS are used as inputs into a harmonic regression model whose output acts

as inputs in Akaike’s information criterion [25] to obtain a p−value.

1Part of this chapter is reprinted with permission from “Detecting periodic genes
from irregularly sampled gene expressions: a comparison study” by Zhao, W. and
Agyepong, K. and Serpedin, E. and Dougherty, E.R., vol.2008, EURASIP Journal on
Bioinformatics and Systems Biology, 2008, Copyright 2008 by Zhao and Agyepong
and Serpedin and Dougherty.
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A. Real Value Iterative Adaptive Approach - RIAA

Real Value Iterative Adaptive Approach (RIAA) is a spectral estimator (periodogram),

designed to alleviate undesirable characteristics that arise in the spectral density esti-

mation of non-uniformly sampled data. This method can be thought of as an iterative

weighted least-squares method which utilizes an adaptive weighting matrix obtained

from the most recent spectral density estimate [11]. Let (tl, yl), l = 0, . . . , N − 1,

denote N time-series observations where tl are the observational times or time lag

and yl is the expression measurement of a gene or time series. RIAA is formulated

within the framework of least-squares periodogram and so to explain RIAA, it is pru-

dent to expound on the ordinary least-squares periodogram. The Fourier transform

periodogram of the data set will normally be expressed as:

ΦFT (ω) =
1

N2

∣∣∣∣∣
N−1∑
l=0

yle
−jωtl

∣∣∣∣∣
2

, (2.1)

where ω is the angular frequency variable. An equivalent expression for ΦFT (ω) can

be obtained via least-squares theory [26] as,

ΦFT (ω) = |α̂(ω)|2,

α̂(ω) = arg min
α(ω)

N−1∑
l=0

|yl − α(ω)ejωtl |2. (2.2)

Employing real value signals, Equation(2.2) can be re-written as:

min
Θ≥0

φ∈[0,2π]

N−1∑
l=0

[yl −Θ cos (ωtl + φ)]2, (2.3)

where Θ and φ depend on ω. Set a = Θ cos(φ) and b = −Θ sin(φ) to obtain:

min
a,b

N−1∑
l=0

[yl − a cos(ωtl)− b sin(ωtl)]
2. (2.4)
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The solution to Equation (2.4) is given by:â
b̂

 = R−1r. (2.5)

Where,

R =
N−1∑
l=0

 cos(ωtl)
2 cos(ωtl) sin(ωtl)

sin(ωtl) cos(ωtl) sin(ωtl)
2

 . (2.6)

and

r =
N−1∑
l=0

cos(ωtl)

sin(ωtl)

 yl. (2.7)

The ordinary least squares periodogram can then be defined as:

ΦLSP (ω) =
1

N
rTR−1r. (2.8)

1. Frequency Window and Grid Size

A spectral window that can resolve spectral tendencies without aliasing from the

sampling times is presented in this section. Proceeding with the premise that other

sinusoidal components are present in the data, an error term is introduced into the

spectral density estimate and taking the spectral norm of this error term as in [11],

a solution is obtained that depends on the sampling pattern. From this solution, the

spectral window can be derived as a function of ω. Stoica [11] approximated this

window as W (ω) = |
∑

N−1
l=0 e

jωtl |2. This window is used to find the smallest frequency

ωo for which the spectral window function is at its next maximum, different from the

global maximum obtained at ω = 0. If there are no frequencies that have a maximum

nearest the peak of N2, set ωo =∞ or a value representative for the data under study.

Using ωo, the maximum frequency is defined as
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ωmax =
ωo
2

(2.9)

which provides the interval [0, ωmax]. In this window, care must be taken to ensure

that the smallest frequency separation can be adequately detected in choosing a

frequency search grid ∆ω. There are many grid size approximations used in the

literature [11][27]. However, Equation(2.10) can be used since it is a widely used

approximation for irregular sampling:

∆ω =
2π

tN−1 − t0
. (2.10)

The number of grid points is then given by:

J =
bωmaxc

∆ω
. (2.11)

And this leads to a uniform frequency grid as in [28] given by

ωj = ∆ωj, j = 1, . . . , J. (2.12)

Thus far, the ordinary least-squares spectral estimation method has been described.

To continue formulating RIAA, there is a need to introduce the following parameters,

y =


y0

...

yN−1

 , Aj =

[
cj sj

]
, Θj =

a(ωj)

b(ωj)

 ,

cj =


cos(ωjt0)

...

cos(ωjtN−1)

 , sj =


sin(ωjt0)

...

sin(ωjtN−1)

 . (2.13)

Re-parametrization of Equation (2.2) presents the following solution,
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min
Θj

‖y −AjΘj‖2

Θ̂j = (AT
j Aj)

−1AT
j y. (2.14)

The covariance matrix of other possible components in the data other than the com-

ponent with ωj is defined:

Qj =
J∑

m=1,m 6=j

(a2
m + b2

m)AmAT
m. (2.15)

At ωj, all other frequency components are considered to be noise and Equation(2.15)

carries their contribution. Using Eq.(2.15) if available, the following weighted least

squares approach is employed because it is known to be more accurate under general

conditions than the ordinary least squares [29].

min
αj

‖y −Ajαj‖2
Q−1

j
(2.16)

The solution to the problem above is given as:

Θ̂j =
AT
j Q−1

j y

AT
j Q−1

j Aj

. (2.17)

Then RIAA also known as the weighted least square periodogram (WLSP) is defined

as:

ΦWLSP (ωj) =
1

N
Θ̂T
j (AT

j Aj)Θ̂j.

ΦWLSP (ωj) = |αj|2. (2.18)

Initialization Use the ordinary least squares to obtain the initial value of α0
j .
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Iteration At the kth iteration, the estimate of α̂j i.e., at ωj is αkj =
AT

j (Qk
j )−1y

AT
j (Qk

j )−1Aj
for

k = 1, . . . , K where Qk
j =

∑
m=1,m 6=jJ

|αk−1
j |2AmAT

m.

End Iteration is terminated after 15 iterations or when |αk+1
j − αkj |2 < 10−4.

After the last iterative step, {Θ̂K
j } is used to compute the power spectral density for

RIAA:

ΦRIAA(ωj) =
1

N
(Θ̂K

j )T (AT
j Aj)(Θ̂

K
j ), j = 0, . . . , J. (2.19)

RIAA does not suffer from the global and local leakage that are characteristic

for the other methods . Therefore, peaks detected by RIAA have a high probability

of denoting cyclicity and simulation results show that RIAA does not suffer from the

spurious peaks problem of LS, which leads to false positives.

B. Lomb-Scargle Periodogram

In cases where evenly sampled data cannot be obtained, Lomb-Scargle periodogram

has been the method of choice when estimating spectral components in the data.

Lomb-Scargle periodogram ignores the unevenness of the data by imputing a phase-

shift to the sine and cosine harmonic functions. This restores the orthogonality which,

otherwise, is lost due to the nature of the data. Given N time-series observations

(tl, yl), l = 0, . . . , N − 1, where t stands for the time tag and y stands for the value

of a time series point or sampled expression of a specific gene, the normalized Lomb-
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Scargle periodogram at an angular frequency ω is defined as in [1]

ΦLS(ωj)=
1

2σ̂2


(∑N−1

l=0 [yl − ȳ]cos[ωj(tl − τ)]
)2

∑N−1
l=0 cos2[ωj(tl − τ)]

+

(∑N−1
l=0 [yl − ȳ]sin[ωj(tl − τ)]

)2

∑N−1
l=0 sin2[ωj(tl − τ)]

 ,

(2.20)

for j = 1, . . . , J as defined in Equation(2.12) where ȳ and σ̂2 stand for the mean and

variance of the sampled data, respectively, and τ is defined as:

τ =
1

2ωj
atan

(∑N−1
l=0 sin(2ωjtl)∑N−1
l=0 cos(2ωjtl)

)
. (2.21)

The frequency grid defined under RIAA is also applied to the Lomb-Scargle peri-

odogram. Lomb-Scargle periodogram is an efficient solution in estimating the spec-

tra of unevenly sampled data sets especially when the underlying noise assumption

is Gaussian.

C. Robust Capon Method

The general framework for the Capon method is reproduced from our earlier work [1]

Capon method is a filter-bank approach that is based on a data-dependent bandpass

filter [9]. It was originally designed for evenly sampled data. It estimates the spectral

density of a time series input signal by first passing it through a bank of bandpass fil-

ters with varying center frequencies, called the steering frequencies. It then measures

and uses the output power of the filter’s passband. By dividing the measured power

by the passband bandwidth, an estimate of the power spectrum density is obtained.

The filter is designed in such a way that it minimizes all the contribution of other

frequencies in the input signal except the frequency components at ω. In other words,
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the Capon method seeks to solve the following optimization problem:

h = arg min
h

hHRh subject to hHa(ωj) = 1, (2.22)

whose solution provides the spectrum estimate at frequency ωj as

ΦC(ωj) =
1

aH(ωj∆)R−1a(ωj∆)
, (2.23)

where matrix R stands for the data covariance matrix with a dimension N0, which

is inversely proportional to the bandwidth of the Capon filter. The steering vector is

defined as follows

a(ωj) =
(
1 ejωj · · · ejωj(N0−1)

)T
. (2.24)

To guarantee the existence of inverse R−1, the bandwidth parameter N0 need not

exceed b(N −1)/2c. However, a smaller N0, will adversely affect the resolution of the

spectral estimates while the accuracy of the estimate of the covariance matrix will

increase. Hence, N0 should be set as a tradeoff between resolution and accuracy of

the Capon method [23].

It has been proven that given an adequate number of samples, the Capon method

yields a better spectral resolution compared with traditional periodogram [9]. The

Capon method has been updated to cope with the presence of irregular samples [23].

The same frequency grid denoted in Equation (2.12) is employed. In order to take

advantage of the best resolution, N0 is set to be equal to b(J − 1)/2c, where J is

defined in Equation (2.12). In simulation, an estimate of the autocorrelation matrix

R̂ can is obtained from the Lomb-Scargle periodogram, which is represented by

R̂ =
1

Jδ

J∑
j=1

a(ωjδ)a
H(ωjδ)ΦLS(ωj). (2.25)

The Capon method is slightly more computationally complex than LS and RIAA.
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In simulated data, its resolution was better than LS and could rival RIAA if the

sample sizes is increased to be greater than 40 samples, but on limited sample size

and corrupted biological data, its performance was below a notch compared to LS

and RIAA.

D. MAPES Method

The general framework for MAPES is also reproduced from our earlier work [1].

Given P time-series observations (tl, yl), l = 0, . . . , P − 1, the data are assumed to be

sampled uniformly. However, only N data points are available and there are P −N

missing data points. The time-series signal with frequency ω is modeled as

yl = α(ω)ejωl + εl(ω), l = 0, . . . , P − 1, ω ∈ [0, 2π], (2.26)

where α(ω) represents the complex amplitude of the sinusoidal component and εl(w)

denotes a residual term. The same frequency grid as in Equation (2.12) is used. Using

the expectation-maximization algorithm, MAPES iteratively estimates the missing

data, and while updating the estimates of the spectra by minimizing the mean square

error between consecutive estimates.

The data vector y = (y0, · · · , yP−1)T is partitioned into L overlapping subvectors,

each with dimension M × 1, and L = P −M + 1. These subvectors constitute the

enhanced data vector ỹ (LM × 1), which assumes the following expression

ỹ =


ỹ0

...

ỹL−1

 = Uγ + Vµ, (2.27)

where γ (N × 1) and µ ((P − N) × 1) represent the available and missing data,

respectively. U (LM ×N) and V (LM × (P −N)) denote binary selection matrices
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for the available and missing data, respectively. The selection matrices are orthogonal

to each other: UT
NVP−N = 0Nx(P−N). In other words, given U,V and ỹ, the data

vectors γ, µ can be computed in the least-squares (LS) sense as

γ = (UTU)−1UT ỹ = Ũ†ỹ, where Ũ† = (UTU)−1UT , (2.28)

µ = (VTV)−1VT ỹ = Ṽ†ỹ, where Ṽ† = (VTV)−1VT . (2.29)

The residual vector and its covariance matrix are next defined

el(ω) = (εl(ω) εl+1(ω) · · · εl+M−1(ω))T , (2.30)

Q(ω) = E
(
el(ω)eHl (ω)

)
, (2.31)

where E(·) denotes the expectation operator, and in practice is replaced by a sample

mean estimator. The following two notations are also required by the definition of

MAPES power spectral estimator:

ρ(ω) =


ejω0a(ω)

...

ejω(L−1)a(ω)

 , (2.32)

D(ω) =


Q(ω) 0

. . .

0 Q(ω)

 . (2.33)

Where a(ω) represents the complex amplitude of the sinusoidal component and Q(ω)

is defined as in Equation(2.31). In the ith EM iteration, the probability density

function (PDF) of the missing data vector µ conditioned on the available data γ and

other context parameters is complex Gaussian with mean and variance denoted by
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(b,K) as follows

bi(ω) = ŨTρ(ω)αi(ω)+ŨTDi(ω)Ṽ
(
ṼTDi(ω)Ṽ

)−1(
γ−ṼTρ(w)αi(w)

)
, (2.34)

Ki(ω) = ŨTDi(ω)Ũ− ŨTDi(ω)Ṽ
(
ṼTDi(ω)Ṽ

)−1

ṼTDi(ω)Ũ. (2.35)

Where Ũ and Ṽ are estimates of the selection matrices at the ith EM iteration and

Di(ω) is the estimate of D(ω) ,Equation(2.23) at the ith EM iteration. Then the

estimates for spectral magnitude α(ω) and residual matrix Q are updated in terms

of equations

αi+1(ω) =
aH(ω)S−1(ω)Z(ω)

aH(ω)S−1(ω)a(ω)
, (2.36)

Qi+1(ω) = S(ω) + (αi+1(ω)a(ω)− Z(ω)) (αi+1(ω)a(ω)− Z(ω))H , (2.37)

where the auxiliary matrices are defined as follows
z0

...

zL−1

 = Uγ + Vb(ω), (2.38)

Z(ω) =
1

L

L−1∑
l=0

zle
−jωl, (2.39)

S(ω) =
1

L

L−1∑
l=0

Γl +
1

L

L−1∑
l=0

zlz
H
l − Z(ω)ZH(ω). (2.40)

In Equation(2.40), Γ0, · · · ,ΓL−1 are M ×M sub-block matrices located on the main

diagonal of matrix UKUT.

Finally, the MAPES power spectral density estimator is expressed as

ΦMAPES(ω) =
|α(ω)|2

J
. (2.41)
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E. LSPR Method

LSPR is not necessary an acronym, however, the LSP stands for Lomb-Scargle

periodogram and R stand for regression. As mentioned in Chapter 1, its foundation

is built on LS. It uses the output from LS as inputs to a harmonic regression. The

algorithm is provided below as shown in [12].

LSPR algorithm

1. Detrend data and denote it as ẏ.

2. Smooth detrended data ẏ with the fourth-order Savitzky-Golay algorithm and

denote the resulting data as ÿ.

3. Apply LS on both ẏ and ÿ and select periods {Ṫj} and {T̈j}.

4. Use {Ṫj} and {T̈j} as inputs into a harmonic regression for {ẏ}

5. Employ Akaike information criterion (AIC) to find the best harmonic regression

model and p−value of {ẏ} from Step 4.

6. Set FDR to be less than 0.05.

Harmonic regression is then used to fit the detrended data ẏ with sinusoidal functions

as:

ẏl = µ+
J∑
j=1

αj cos(
2π

T
tl + φj) + εl, t (2.42)

where µ is the mean of {Ṫj}, αj are the amplitudes of the predictor trigonometric

functions, φj are the phases of the peaks relative to the time zero, εl are uncorrelated

noise, and Tj are the periods inferred from LS. The smoothing version of the de-

trended data produced worse results than the original dataset and hence simulations
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are limited to the detrended data but the poor performance of the smoothed data

are also shown in some pertinent simulations. In Chapter 4, simulations of LSPR are

only for ẏ, the detrended data. If it is necessary to compare the performance of the

smoothed detrended data, it will be clearly stated. The advantage to this method

only serves to reduce the number of false positives that Lomb-Scargle periodogram

produces but does not improve on recovering misses that LS failed to observe. LSPR

assumes that the trend in the data is known, and by removing it, a limitation of

Lomb-Scargle is eliminated, but if the data contained outliers their effect will still be

felt and LS will provide spurious peaks which will then propagate through the LSPR

algorithm to come to a similar conclusion just like LS.
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CHAPTER III

SIGNIFICANCE TESTING1

A. Periodicity Test

A time series data of length N is used as an input to each of the schemes to obtain

power spectral density estimates. Based on peaks from the outputs of the schemes,

the data is classified as cyclic or non-cyclic. The null hypothesis is taken to be that

the measurements are originated from a Gaussian noise stochastic process [1]. There

are a host of tests that can be employed to access the significance of peaks detected

by the schemes. Akaike’s information criterion (AIC) has been used by [30] to test for

periodicity. Stoica employed the Bayesian information criterion (BIC) [9], Glynn used

the Fisher test [8] to search for periodicity in Plasmodium falciparum microarray gene

expression dataset. The likelihood ratio test has been used in [15], Fan [31] showed

that χ2 test can also be employed to determine the significance of the detected peaks.

However, Stoica [11] implied that there was no satisfactory algorithm or approach

for testing significance of detected peaks in the case of irregularly sampled, however

one can use Fisher’s test to determine the significance of peaks detected in a power

spectral density estimator Φ(ω) without any drop in performance when compared

with other methods [1]. The Fisher’s test statistic is defined as

T =
Φ(ωkmax)

N−1
0

∑
1≤k≤N0

Φ(ωk)
, (3.1)

1Part of this chapter is reprinted with permission from “Detecting periodic genes
from irregularly sampled gene expressions: a comparison study” by Zhao, W. and
Agyepong, K. and Serpedin, E. and Dougherty, E.R., vol.2008, EURASIP Journal on
Bioinformatics and Systems Biology, 2008, Copyright 2008 by Zhao and Agyepong
and Serpedin and Dougherty. Originally published by SpringerOpen



20

where N0 = b(J − 1)/2c for the defined symmetric frequency grid and the highest

peak is Φ(ωkmax).

Our synthetic data simulations also included testing for multiple peaks. This

necessitated the use of Whittle’s second peak detection formulation [32], since Fisher’s

test was only defined for the highest peak. Whittle’s second peak detection statistics

is defined as

T2 =
Φ(ωk2)∑N0

k=1 Φ(ωk)− Φ(ωkmax)
, (3.2)

where Φ(ωk2) stands for the second highest peak. The p-value for detecting the largest

peak is then given as [31]

P (T > t) = 1− e−N0e−t

. (3.3)

The distribution for Fisher’s test Equation(3.1) and Whittle’s test Equation(3.2) is

similar to that of Equation(3.3). The p-value measures the likelihood of obtaining

such a peak if the series were generated by noise alone. Whereby a small p-value

will give the indication that there is a small chance obtaining such a peak if the

measurement were of noise alone. A p-value threshold serves as a threshold to decide

if time series measurement contains any rhythms that are not due to chance. A

rejection of the null hypothesis will imply that the magnitude of a frequency in the

power spectral density is appreciably bigger than the mean and the time series data

are samples from a periodic signal. For more details on the p-values, please see Fisher

[33] or Brockwell [34].

Once the p-values are calculated for each time series or gene, they are ranked in

ascending order and the threshold is employed to obtain significant results.
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B. Multiple Testing Correction

For just one test, a fixed p-value is acceptable. For example, if the p-value is set to

0.05, the implication is that there is a 5% chance that the results obtained are not true

positive. A 5% chance of false positives is high especially when considering over 6000

tests. To overcome the above problem, multiple testing approach must be used to

control the results of the tests that were significant and not for all test. As proposed

in [35] and [36], multiple testing correction is needed to control the false discovery

rate (FDR). For each time series or measured gene, a p-value is calculated from the

spectral density estimator or periodogram and used to test for periodicity. The p-

values are ranked in an increasing order with the smallest ith p-value designated by

p(i) [1]. For real biological data, the estimate for the number of non-cyclic genes among

all n genes is taken to be n̂0; it is acceptable to take n̂0 = n. The testing procedure

make inference on the k genes with the lowest p-values, by using an adjusted p-value

obtained from the FDR approach defined as

F̂DRk =
p(k)n̂0

k
, (3.4)

where p(k)n̂0 is an estimate of the number of false positives. Estimate of FDR, F̂DR,

is not a monotonic function of k, the number inferred to be periodic. This makes it

hard to choose a p-value threshold [1]. Storey [35] solved this problem by proposing

an FDR adjusted p-value called q-value and is given by the following

qk = min
k≤j≤n

F̂DRj. (3.5)

The q-value defined by Equation(3.5) is a monotonically increasing function of k. By

specifying a q-value threshold as τ , the FDR can be controlled and through that the
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number of time series or genes to be inferred as periodic can then be derived as

k = max
1≤j≤n

qj ≤ τ. (3.6)
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CHAPTER IV

SIMULATION: ARTIFICIAL AND BIOLOGICAL DATA

A. Results

A natural query is the question of how to assess the performance of these schemes.

The schemes are implemented to investigate the smallest number of samples that each

requires to obtain significant results. A purely sinusoidal signal sampled irregularly

with a Poisson sampling process was utilized. The schemes were then applied on

artificial datasets, obtained from a periodic signal mixed with Gaussian noise and a

non-periodic signal, to evaluate their ability to infer periodic signals in the presences

of non-idealities. Performance was evaluated based on different p-value thresholds for

a fixed sample size. The ability of the schemes under different signal to noise ratio

(SNR) was also investigated for a fixed sample size and p-value. The computation time

required by each scheme for different sample sizes was also analyzed. An ancillary aim

classified the schemes under undesirable characteristics of the microarray dataset,i.e.,

missing values, sample size, and presence of noise. Finally, the best scheme is applied

on two data sets to attempt bridging the gap of disparities in the reported results of

periodically expressed genes for yeast, found in literature.

1. Simulation on Artificial Data

A purely sinusoidal signal was irregularly sampled to investigate the minimum number

of samples each scheme needed to obtained significant results. For each N in Figure

(1), the p-value was calculated as discussed Chapter 3 for each correctly inferred

period in our signal, this technique is similar to that performed by Gylnn [8] for Lomb-

Scargle periodogram. An approximation to the minimum number of samples that each
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scheme needs is illustrated in Figure (1) where Matlab’s version of robust regression

is used to obtain estimates of N . From Figures 1b and 1e, LS and LSPR needed

approximately 12 samples and RIAA needed only 9 samples Figure (1a) to produce

significant results for a p-value of 0.05. It can be seen from Figure (1c) that the

Capon method needed the largest number of samples to obtained significant results.

The reason is that the Capon method requires a tradeoff between resolution and

statistical accuracy when it comes to the choice of the filter length. Our simulation

revealed that choosing the filter length to be approximately equal to one half of

the data length, a balance was established for both resolution and accuracy in the

estimation of the covariance matrix for the Capon method. It is not surprising that

LS and LSPR both needed the same number of samples, as much as LSPR attempts

to obtain best fit models from its harmonic regression, as its core is based on LS.

Table I shows the number of samples that each scheme needed to show significant

results with p−value threshold set at 0.05 and 0.005, respectively. The choice of these

p-values is explained later in the chapter.

Table I: Minimum number of samples needed based on p-value thresholds of 0.05 and

0.005

Method N0.05 N0.005

RIAA 9 14

LS 12 19

MAPES 20 26

Capon 22 26

LSPR 12 19
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RIAA required the smallest number of samples when the p−value was selected

to be more stringent. However, Capon and MAPES approximately needed the same

number (26) of samples to obtain significant results. It must again be highlighted

that this only provides approximate values for the sample size needed.

2. Artificial Data Model

A modeled to generate artificial data set is given as follows:

yl = α cos(ωl + φ) + εl, (4.1)

where l = 0, . . . , N − 1, φ ∈ (−π, π] and εl are i.i.d. noise sequence.

Two cases of non-idealities were considered: (1) Addition of Gaussian noise and

(2) Addition of non-periodic data and Gaussian noise. Figure (2) shows a signal

composed of non periodic pulses and Gaussian noise with zero mean and unit variance

which was added to our data model. The pulses represents mRNA bursts that are

characteristic for microarray data sets. An experiment similar to [15] was conducted

where two thousand time series of length N = 18, 48, and 100 were generated. One

hundred of the time series are generated from our data model in Equation (4.1) to be

periodic and 1900 non-periodic. For each series, the p-value was evaluated and the

testing methodology discussed in Chapter 3 was employed for FDR with q−values

equal to 0.05, 0.01 and 0.005. The sampling was modeled as a Poisson process with

parameter λ; this ensured that sampling was done on an average of every 1
λ
s. The

Poisson process will inherently bring an irregular sampling format that will mimic

microarray datasets characterized by uniform sampling, but with ample number of

missing values.

Table II on page 27 shows the number of signals inferred to be periodic by each

scheme when the number of samples time points N equal to 18 for q-values 0.05, 0.01
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and 0.005. With limited number of samples and SNR 5dB, RIAA was able to detect

more periodic components in the data per q-value threshold than any other method.

This is important because most microarray datasets have limited number of sample

points and a scheme that can detect periodic components with limited resources is

of premium. The number in parentheses are true positives. LSPR was employed for

only the detrended data.

Table II: Inferred number of periodic time series: N=18

q−value

Method 0.05 0.01 0.005

RIAA 42(41) 29(29) 15(15)

LS 27(21) 11(9) 1(0)

MAPES 14(11) 10(6) 3(0)

Capon 9(9) 6(0) 1(0)

LSPR 23(21) 9(9) 0(0)

Table III: Inferred number of periodic time series: N=48

q−value

Method 0.05 0.01 0.005

RIAA 103(100) 76(72) 65(65)

LS 111(89) 68(59) 54(54)

MAPES 109(84) 72(64) 53(53)

Capon 105(86) 66(61) 54(53)

LSPR 111(89) 68(59) 54(54)

When the number of samples was increased to 48, Table III shows that RIAA still
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outperforms the other three schemes. When the number of samples was changed to

100 time points in Table IV, all the schemes were able to accurately preserve the

periodic components in the dataset when the q−value was set as 0.05 and 0.01,re-

spectively. However, the false positives in RIAA and Capon were less than all other

schemes the q−value was set as 0.005.

Table IV: Inferred number of periodic time series: N=100

q−value

Method 0.05 0.01 0.005

RIAA 105(100) 101(100) 100(100)

LS 111(100) 107(100) 104(100)

MAPES 117(100) 113(100) 101(100)

Capon 113(100) 111(100) 100(100)

LSPR 105(100) 102(100) 101(100)

The schemes were also compared on their ability to infer closely embedded multiple

frequencies in the data set. Gaussian noise was added to sinusoids with frequencies,

f1 = 0.29Hz, f2 = 0.32Hz and sampled irregularly using the same Poisson process

as in Figure (1), the signal to noise ratio was set to 3dB.

With only 16 samples, only RIAA is able to detect the embedded frequencies con-

sistently. LS and LSPR were able to detect the frequencies but based on Figures 3b

and 3e, our testing methodology would have resulted in a miss for these frequencies.

Capon and MAPES performed poorly for 16 sample points.

However, when the number of samples were increased to 24 points, but with

SNR of 2dB, Figure (4) shows the performance of the five scheme with the same

frequencies as Figure (3), f1 = 0.29Hz, f2 = 0.32Hz and amplitudes 0.45, and 0.35
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respectively. From the graph, it is obvious to see that RIAA does not suffer from

detrimental sidelobes nor mainlobe leakages that LS and LSPR appear to exhibit.

Still, both Capon and MAPES are lacking behind in detecting the frequencies. They

are able to detect the frequency at 0.29Hz but not the frequency at 0.32Hz.

When the sample size is increased to 100 points, SNR still at 2dB, Figure (5)

shows that Capon and MAPES improved dramatically. However, the smoothed ver-

sion of LSPR could still not detect the two frequencies consistently. The number of

samples had to be increased to over 200 samples points before it detected the two

frequencies. Such a method is not ideal for microarray data sets where sample size is

of premium. An auxiliary interest was to investigate the computational time required

by each scheme.

From simulations, Figure (6) shows the disparities in computation time between

MAPES and the other schemes. Due to the expectation maximization step in MAPES,

it was the only scheme that required noticeable time in computing the power spectral

estimates.

The ability of the schemes to detect a periodic signal, sampled with a Poisson

process was investigated. With sample times points just 18 and SNR increased from 0

to 3dB, 200 simulations were run for each SNR value and Figure (7) shows the number

of times the periodic signal was detected at the exact frequency. In Figure(7), RIAA

at SNR=2.7dB was able to detect the embedded frequency out of the 200 simulations

runs. It was not after 3dB that the other four schemes were able to detect the

frequency for all 200 simulations runs with 18 time points sampled irregularly.

3. Simulation on Spellman’s Yeast Data

The schemes were then evaluated on a real biological data set from Spellman’s ex-

periment [2]. Performance was judged based on their ability to recover genes from



32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1
RIAA

N
o

rm
a

li
z
e

d
 A

m
p

li
tu

d
e

 o
f 
P

S
D

(a)  Frequency (Hz)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1
LS

N
o

rm
a

li
z
e

d
 A

m
p

li
tu

d
e

 o
f 
P

S
D

(b)  Frequency (Hz)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1
Capon

N
o

rm
a

li
z
e

d
 A

m
p

li
tu

d
e

 o
f 
P

S
D

(c)  Frequency (Hz)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1
MAPES

N
o

rm
a

li
z
e

d
 A

m
p

li
tu

d
e

 o
f 
P

S
D

(d)  Frequency (Hz)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1
LSPR−Detrend

N
o

rm
a

li
z
e

d
 A

m
p

li
tu

d
e

 o
f 
P

S
D

(e)  Frequency (Hz)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1
LSPR−Smoothed

N
o

rm
a

li
z
e

d
 A

m
p

li
tu

d
e

 o
f 
P

S
D

(f)  Frequency (Hz)

Fig. 4: Performance comparison based on artificial data set (N=24) with sinusoids

with frequencies f1 = 0.29Hz, f2 = 0.32Hz . (a) RIAA (b) LS (c) Capon (d) MAPES

(e) LSPR Detrend (f) LSPR Smoothed
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Fig. 5: Performance comparison based on an artificial data set (N=100) with sinusoids

with frequencies f1 = 0.29Hz, f2 = 0.32Hz. (a) RIAA (b) LS (c) Capon (d) MAPES

(e) LSPR Detrend (f) LSPR Smoothed
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a set of known periodic genes that were obtained from a small scale experiment. At

the time of Spellman’s work, there were 104 known periodic genes for the yeast, later

in 2003, Johansson [7] added nine genes to provide researchers with 113 cell cycle

regulated reference genes. From here on, the 113 cell cycle regulated genes will be

referred to as Benchmark set A.

As mentioned in Chapter 1, the standard method in evaluating the performance

of schemes that seek to detect periodically expressed genes is to determine the per-

centage of the reference genes the scheme was able to infer as periodic. The best

schemes are expected to have a high number of the reference genes present in the

fewest number of inferred genes. For example, Spellman was unable to obtain 92% of

the 104 reference genes until 800 genes were inferred or judged to be periodic.

For comparison, the dataset for Cdc15 arrest and Alpha arrest synchronization

from the experiment of Spellman [2] were used. Cdc15 data set had 24 sample time

points and Alpha data set had 18 time points, there were too few samples for cdc28

and elutriation synchronization data and thus not ideal for Capon as has been demon-

strated via artificial data simulation.

The comparison procedure was done as follows, based on the given dataset, each

schemes infer a pre-specified number of genes. The inferred genes are designated

as periodically expressed genes and are crossed with Benchmark set A. A percent-

age is obtained from the number of the referenced gene set that are present in the

pre-specified number of genes inferred. This is illustrated in Figure (8) where the

superiority of RIAA is clearly demonstrated in identifying more known periodically

expressed genes than any other scheme for the Cdc15 experiment.

Capon method however performed much better on biological data set than the MAPES

based on the criteria used to measure performance. Since only one frequency was

believed to be present, resolution for the Capon method was sacrificed in favor of
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Fig. 8: Performance comparison based on cdc15 arrest data set.

accuracy and this gave the Capon more samples to use within the confines of its

methodology. As mentioned previously, the Capon method needs to decide on a

tradeoff between resolution and accuracy and the filter length plays a central role in

this tradeoff. A small filter length affects the resolution especially in the case when

there is a need to differentiate between two closely embedded frequencies. As ex-

pected with LS and LSPR, there was no appreciable performance separation between

the two.

Applying the schemes on the Alpha data set, RIAA continued to demonstrate its

efficacy in matching the referenced genes set per pre-specified inferred genes. With

only 18 time points available with some genes having missing data as well, MAPES

outperformed the Capon method on this dataset. Again the performance of LS and

LSPR were almost identical. As can be seen from Figure (9), there was a slight drop

off in the percentage of referenced genes that RIAA and all the other schemes were able
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to pick, this was expected and understandable with the limited time points available

for the Alpha data set. From these figures, it is easy to see that RIAA outperforms the

other schemes and should be the analysis tool of choice when the goal of an analysis

on a microarray experiment data set is to seek periodically expressed genes.
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Fig. 9: Performance comparison based on Alpha arrest data set.

B. Discussion and Conclusions

The datasets of Spellman [2] and Pramila [24] were analyzed using RIAA. Pramila’s

alpha arrest experiment data set has 25 samples and Spellman’s cdc15 experiment

has 24 time points. There were numerous missing data points rendering the data

set as irregularly sampled. With a q value set to be not more than 0.05, 609 genes

were adjudged to be periodic in Spellman’s dataset and 596 in Pramila’s dataset, the

results are shown in Table B1 and B2 respectively in Appendix B. An overlap of 543

genes was obtained between the two data sets. Using RIAA, the results obtained
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establishes a better level of clarity in the overlap of periodically expressed genes

between two different datasets. The overlap of 543 genes is appreciably more than

any two different results reported on the yeast which can be found on [37].

Compared with Spellman [2], there was only an overlap of 357 genes. RIAA

using only 550 genes detected 97% out of 104 genes that were known to be cell cycled

regulated at the time of Spellman’s work while Spellman’s method only got 92% out

of 800 genes. It must be added that expression profiles of the genes may be more

complex than simple sinusoidal curves, however, the visual inspection of the time

series profile reveals that the genes inferred to be periodic appeared as sinusoidal in

nature and made the assumption sinusoids sound. The earlier work in [1], concluded

that LS was effective and an accurate tool to use, but through artificial simulations,

it has been seen that LS can be sensitive to large outliers that could be present due

to perturbation in the measurement environment. RIAA does not suffer from such

sensitivity and is innately designed to limit false discoveries. The Capon filter is a

powerful tool, also robust to the presence of noise, but desires a bigger sample size

than a typical microarray data sets provides. MAPES is computational expensive and

also requires much more data points to be effective in inferring periodically expressed

gene from microarray experiments. LSPR turned out not to outperform LS in terms of

the actual number of true positives but reduced the number of false positives that LS

picks. It is recommended to future researchers seeking to find periodically expressed

genes in a microarray experiment to employ RIAA as it has been proven to be an

effective tool in identifying periodic gene expression profiles. It is robust to small

sample sizes, missing data or clusters of missing data and irregularly sampled data.
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A. Brazma, P. Nurse, and J. Bähler, “Periodic gene expression program of the

fission yeast cell cycle,” Nature Genetics, vol. 36, no. 8, pp. 809–817, 2004.

[6] M. Menges, L. Hennig, W. Gruissem, and J.A.H. Murray, “Cell cycle-regulated

gene expression inarabidopsis,” Journal of Biological Chemistry, vol. 277, no.

44, pp. 41987–42002, 2002.



40

[7] D. Johansson, P. Lindgren, and A. Berglund, “A multivariate approach applied

to microarray data for identification of genes with cell cycle-coupled transcrip-

tion,” Bioinformatics, vol. 19, no. 4, pp. 467–473, 2003.

[8] E.F. Glynn, J. Chen, and A.R. Mushegian, “Detecting periodic patterns in

unevenly spaced gene expression time series using lomb–scargle periodograms,”

Bioinformatics, vol. 22, no. 3, pp. 310–316, 2006.

[9] P. Stoica and R.L. Moses, Spectral analysis of signals, Upper Saddle

River:Prentice Hall, 2005.

[10] Y. Wang, P. Stoica, J. Li, and T.L. Marzetta, “Nonparametric spectral analysis

with missing data via the em algorithm,” Digital Signal Processing, vol. 15, no.

2, pp. 191–206, 2005.

[11] H. He, J. Li, and P. Stoica, “Spectral analysis of non-uniformly sampled data: A

new approach versus the periodogram,” in Digital Signal Processing Workshop

and 5th IEEE Signal Processing Education Workshop, 2009. DSP/SPE 2009.

IEEE 13th. IEEE, 2009, pp. 375–380.

[12] R. Yang, C. Zhang, and Z. Su, “Lspr: an integrated periodicity detection algo-

rithm for unevenly sampled temporal microarray data,” Bioinformatics, vol. 27,

no. 7, pp. 1023–1025, 2011.

[13] R. Yang and Z. Su, “Analyzing circadian expression data by harmonic regression

based on autoregressive spectral estimation,” Bioinformatics, vol. 26, no. 12, pp.

i168–i174, 2010.

[14] C.D. Giurcaneanu, “Stochastic complexity for the detection of periodically ex-

pressed genes,” in Genomic Signal Processing and Statistics, 2007. GENSIPS



41

2007. IEEE International Workshop on. IEEE, 2007, pp. 1–4.
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APPENDIX A

CODES

1. Matlab codes

Lomb-Scargle function

function psd = LombScargle(T,X,W)

% this function is to use loom-scargle

% inputs:

% T - time points

% X - sampled data

% W - frequencies

% outputs:

% psd - power spectral density corresponds to the frequencies

std_X = std(X);

mean_X = mean(X);

for k = 1:length(W)

tau = 1/2/W(k) * atan(sum(sin(2*W(k)*T))/sum(cos(2*W(k)*T)));

psd(k) = 1/2/std_X^2 * ( sum((X-mean_X).*cos(W(k)*(T-tau)))^2

/sum(cos(W(k)*(T-tau)).^2) ...

+ sum((X-mean_X).*sin(W(k)*(T-tau)))^2/sum(sin(W(k)*(T-tau)).^2) );

end

MAPES Function
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function PSD = pmapes(X,T,W)

% T has to be integers

%W = 0.05:0.05:pi;

n = T(end)-T(1);

if size(X,1) == 1 % row vector

X = X.’; % change it to column vector

end

if size(T,1) == 1 % row vector

T = T.’; % change it to column vector

end

% ---initilization--------------------------

% set 0 to missing data

XX = [];

avail = []; % availability

for k=1:length(T)

XX = [XX,X(k)];

avail = [avail,1];

if k~=length(T) && T(k+1)-T(k)>1 % not the tail,

therefore k+1 is valid

XX = [XX,zeros(1,T(k+1)-T(k)-1)]; % set zeros

to missing positions

avail = [avail,zeros(1,T(k+1)-T(k)-1)];

end

end
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N = length(XX);

miss = ones(1,N) - avail;

g = length(X); % # data available

M = ceil(N/2);

L = N-M+1;

% initilize Q, Sg, Sm

Sg = zeros(L*M,g);

Sm = zeros(L*M,N-g);

for l = 0:(L-1)

for k = 1:M

if avail(l+k) == 1 % there is a datum here

Sg(l*M+k,sum(avail(1:l+k))) = 1;

else % there is a miss here

Sm(l*M+k,sum(miss(1:l+k))) = 1;

end

end

end

Sg_tilde = (inv(Sg.’*Sg)*Sg.’).’;

Sm_tilde = (inv(Sm.’*Sm)*Sm.’).’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for n = 1:length(W)

w = W(n);

% ---initilize alpha--------------------------
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alpha = sqrt(LombScargle(X,T,w));

a = exp((0:M-1)*j*w).’;

% initilize Q

Q = zeros(M,M);

for l = 0:(L-1)

yl = XX((1+l):(l+M)).’;

Q = Q + (yl-alpha*a*exp(j*w*l))*(yl-alpha*a*exp(j*w*l))’;

end

Q = Q/L;

% ---start iterations of EM--------------------

e = 0; % arbitrarily set error to a large value

alpha_old = inf;

rho = [];

for l=0:L-1

rho = [rho;exp(j*w*l)*a];

end

loops = 0;

while abs(alpha-alpha_old)/abs(alpha) > 0.1 && loops<100

loops = loops+1;

alpha_old = alpha;

D = Q;

for l=1:L-1

D = [D,zeros(size(D,2),M);zeros(M,size(D,2)),Q];
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end

b = Sm_tilde.’*rho*alpha + Sm_tilde.’*D*Sg_tilde*

inv(Sg_tilde.’*D*Sg_tilde)*(X-Sg_tilde.’*rho*alpha);

K = Sm_tilde.’*D*Sm_tilde + Sm_tilde.’*D*Sg_tilde*

inv(Sg_tilde.’*D*Sg_tilde)*Sg_tilde.’*D*Sm_tilde;

S_tilde = zeros(M,M);

Z = zeros(M,1);

SmKSm = Sm*K*(Sm.’);

SgrSmb = Sg*X+Sm*b;

for l=0:L-1

Gammal = SmKSm((l*M+1):(l*M+1),(l*M+M):(l*M+M));

zl = SgrSmb((l*M+1):(l*M+M));

S_tilde = S_tilde + Gammal + zl*zl’;

Z = Z+ zl*exp(-j*w*l);

end

Z = Z/L;

S_tilde = S_tilde/L - Z*Z’;

S_tilde = S_tilde + 0.01*diag(diag(S_tilde)); %diagnol loading

invS_tilde = inv(S_tilde);

alpha = (a’*invS_tilde*Z)/(a’*invS_tilde*a);

Q = S_tilde + (alpha*a-Z)*((alpha*a-Z)’);

end

PSD(n)=alpha;

end
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PSD = abs(PSD).^2;

PSD=circshift(PSD,[0,1]);

RIAA function

function [P_RIAA ] = PSD_RIAA(X, W, T, N, K, s_no,)

P_RIAA = zeros(K, 1);

Theta = zeros(2, K);

set_A = zeros(N, 2, K);

for j = 1:K

omega = W(j);

set_A(:,:,j) = [cos(omega*t_n) sin(omega*t_n)];

end

% Initialization with Least Squares Periodogram

for k = 1:K

A = set_A(:,:,k);

Theta(:,k) = inv(A’*A) * A’*y;

end

% Power in signal estimation and initiation of iteration

num_o= 0;

flag = 1;

while flag

Theta_tmp = Theta;
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Alpha_tmp = sqrt(Theta_tmp(1,:).^2 + Theta_tmp(2,:).^2);

gam = zeros(N, N);

y_esti = zeros(N, 1);

for j = 1:K % calculate gam

A = set_A(:,:,j);

gam = Gam + (Theta(1,j)^2 + Theta(2,j)^2) / 2 * A * A’;

y_est = y_est+ A * Theta(:, j);

end

in_Gam = inv(Gam);

for j = 1:K

A = set_A(:,:,j);

Theta(:,j) = inv(A’ * in_Gam * A) * (A’ * in_Gam * y);

end

num_o= num_o+ 1;

if num_o>= stop_no

flag = 0;

end

Alpha = sqrt(Theta(1,:).^2 + Theta(2,:).^2);

sentinel = norm(Alpha - Alpha_tmp) / norm(Alpha_tmp);

if (sentinel < 5e-3)

flag = 0;

end

end
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for j = 1:K

A = set_A(:,:,j);

P_RIAA(j) = 1/N * Theta(:,j)’ * (A’ * A) * Theta(:,j);

end

Capon function

function P = pcapon(X,T,m,W)

% function [P,W] = pcap(X,T)

% power spectral density estimation by using capon method

% irregular sampling

% P - power spectral

% W - frequency list

% X - input data sequence

% T - data sampling time points

% m - the order of the filter

X = (X-mean(X))/std(X);

per = LombScargle(T,X,W);

%per = pergram(t,X,W);

R = zeros(m+1,m+1);

wdelta = W(2)-W(1);

for k = 1:length(W)
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a = exp(-i*wdelta*k*(0:m)).’;

R = R + a*a’*per(k);

end

R = (R/length(W));

%R = R + diag(0.01*diag(R)); % diagnal loading

% from stoica’s Forward-backward

J = zeros(m+1,m+1);

for k = 1:m+1

J(k,m+2-k) = 1;

end

R = 0.5*(R+J*transpose(R)*J);

invR = inv(R);

for k = 1:length(W)

w = W(k);

a = exp(-i*w*(0:m)).’;

P(k) = 1/(a’*invR*a);

end

Data generator

function [Perodata sampltimes N noise]= datagenerator(f,lamda,N,A)

m=N;
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times= exprnd(1/lamda,[m 1]);

times = cumsum(times);

num_sinu=length(A);

sampltimes=times;

phi = 2*pi * rand([num_sinu,1]);

variance=0.01;

noise = sqrt(variance) * randn(m, 1);

y=(A’*cos(2*pi*f*times’ + repmat(phi, [1,m])))’;

Perodata=y;
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APPENDIX B

RESULTS

2. Spellman’s dataset

Table V: RIAA Cyclic genes from Spellman’s dataset

YMR215W YIL132C YCR040W YBL009W YNL044W YIL052C

YBL002W YBR038W YLR170C YBR189W YCR084C YML119W

YPL163C YGR099W YOL105C YGR189C YIL146C YDR345C

YHR175W YGL028C YPR119W YPL267W YOR058C YGL253W

YMR305C YGL089C YJR022W YNL300W YJL167W YNL037C

YJL092W YPL256C YBR158W YDR055W YPL273W YDL133W

YHR086W YOR070C YJL200C YOR234C YJL052W YNL233W

YPL128C YGL161C YGL254W YOR127W YBR214W YJL122W

YDL055C YLR342W YKL127W YNL074C YLR333C YER088C

YLL028W YBR071W YPL090C YDR450W YJR009C YDR089W

YER001W YJL174W YER041W YDL082W YHR052W YFL037W

YBR243C YBR092C YGR086C YNL145W YOL143C YCL040W

YJL159W YKL175W YLR121C YPL168W YFL026W YEL026W

YNL283C YDL164C YLR390W-A YOR025W YER006W YJL118W

YNL015W YCL014W YDR452W YJL079C YNR014W YKL184W

YKR042W YOR084W YPL158C YGL013C YGR240C YCR048W

YBR093C YDL227C YDL170W YHL027W YHR174W YNL289W

YAR007C YPL127C YGR092W YIL066C YKR077W YGR214W
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YEL042W YLR194C YER026C YNL162W YLR183C YPL187W

YGR044C YMR011W YJL157C YDL191W YOR312C YJL181W

YDL224C YDR097C YLR325C YDR224C YKL148C YLR287C-A

YGR108W YML083C YOR264W YMR023C YKR037C YCR089W

YML052W YKL045W YNR001C YCR069W YML051W YOR315W

YOL012C YGR065C YNL160W YML085C YKL185W YML102W

YIL123W YGL200C YDR302W YDR146C YGR230W YGR192C

YKL096W YMR189W YBL032W YNL192W YJR046W YJR092W

YLR286C YOR383C YMR058W YER056C-A YDL018C YNR019W

YKL066W YHR005C YCR067C YLL041C YPR181C YOR378W

YAR071W YGL008C YNL327W YJL051W YDL010W YGR041W

YKL165C YMR163C YMR179W YBR083W YML064C YKL067W

YHR143W YEL002C YAR018C YGL116W YPL242C YJL187C

YOL007C YER070W YJR010W YAR050W YOL091W YKR024C

YDL003W YHR211W YGL154C YPR032W YDR042C YML099C

YNL176C YBL102W YPR120C YPL188W YOR023C YLR275W

YMR042W YOR247W YJL206C YMR032W YNL078W YOR322C

YPR149W YPL032C YOL060C YHR215W YGL255W YLR180W

YKL164C YHR061C YBR049C YJL185C YBR196C YBR102C

YER095W YKL001C YJL137C YOR009W YLR448W YHR165C

YML058W YLR190W YDR033W YMR078C YGL093W YNL112W

YBR221C YLR164W YOR382W YMR048W YLR437C YPL190C

YJL134W YJR127C YLR103C YHR188C YBR181C YGL090W

YMR307W YIL056W YDR488C YJL074C YER065C YNR009W
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YOR144C YLR373C YKR013W YNR068C YNL096C YPL081W

YPL208W YDL101C YDL155W YOL123W YBR200W YLR182W

YNL058C YIR018W YGL055W YPR019W YJL078C YLR176C

YNL197C YLR372W YOR176W YMR019W YBR142W YER124C

YER003C YAL022C YOR019W YOR044W YKL180W YMR271C

YHR016C YDL066W YBL103C YJR021C YDL105W YDR297W

YKL081W YJR098C YOR358W YPL202C YJR150C YDR216W

YHR178W YBR295W YGR143W YDR534C YKR046C YDR379W

YOR004W YEL009C YGR029W YBR203W YOR371C YJR051W

YOR355W YER146W YIR038C YBL063W YDR309C YNL312W

YNL072W YLR048W YBR009C YEL017W YNL298W YGL184C

YKL009W YIL018W YKL025C YCR061W YOR308C YLR210W

YDL064W YER093C-A YFR053C YBR067C YLL022C YPR030W

YGR152C YAR073W YDR115W YNL030W YLR005W YIL016W

YHR021C YKR071C YPR132W YHR149C YIL011W YDR463W

YOL019W YMR141C YCL067C YDR028C YGR166W YFR016C

YPL253C YDR436W YBR073W YNL248C YFR034C YKL104C

YOR256C YAL043C YIL131C YGL030W YGR272C YDR381W

YKR039W YML056C YBR219C YDR356W YOR205C YHR202W

YGR221C YHR123W YPR106W YPL221W YEL057C YCR065W

YGR161C YLR274W YDR481C YDR408C YDL179W YAR035W

YPL177C YGR079W YLR212C YGL237C YGL027C YGL259W

YDR447C YIR039C YDR085C YBR138C YAL024C YCR024C-A

YBR070C YBR240C YPL061W YOR221C YDR124W YKL008C
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YLR284C YCL024W YAR002W YMR021C YDR416W YKL048C

YGL037C YER178W YML041C YIL152W YGR109C YHR141C

YOR095C YGR034W YIL133C YOR120W YDR386W YCL027W

YMR317W YDL028C YLR455W YIL050W YBR021W YDR025W

YDR067C YOR182C YOR016C YGR279C YKL113C YGR068C

YLR367W YER129W YHR006W YLR378C YLR426W YMR164C

YDL220C YLR290C YKR010C YOR198C YDL239C YDR446W

YDL142C YOR288C YDR047W YNL002C YKR019C YOL036W

YMR016C YLR409C YER118C YLR457C YGR075C YIR022W

YDR528W YOR204W YDR425W YNR047W YPR001W YLR326W

YBR267W YPR156C YJL063C YLR353W YGR220C YDR421W

YGR027C YHR153C YOR272W YDR507C YLR131C YOL127W

YDL194W YKR099W YOL090W YGL062W YGL207W YHL047C

YBR130C YER111C YEL032W YKL011C YGR282C YMR261C

YLR288C YKR094C YER075C YOR153W YJR137C YBL003C

YAL032C YDL012C YLR213C YOR178C YPL089C YHR158C

YOL070C YPL014W YFL033C YMR199W YLR049C YDR255C

YHR094C YGR288W YKL020C YMR184W YEL050C YBL054W

YOR142W YDL087C YJL056C YPL153C YOR313C YER167W

YDR310C YIL129C YJR155W YHR203C YAR008W YLR304C

YOR338W YFL021W YMR031C YOR310C YLR394W YGR013W

YNL103W YIL122W YMR145C YOR122C YNL069C YMR070W

YLR313C YCL061C YER089C YPL146C
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3. Pramila’s dataset

Table VI: RIAA Cyclic genes from Pramila’s dataset

YDR225W YMR076C YDL018C YPR019W YBR202W YFL008W

YBL003C YPL127C YOL090W YPL061W YPL116W YPL255W

YNL300W YKL113C YMR215W YDR507C YBL009W YPL124W

YBR009C YNL312W YMR011W YMR179W YGR109C YDL093W

YER070W YDR055W YLR274W YOR273C YOR114W YAL040C

YNL030W YGR189C YJL115W YLR254C YCR065W YLR342W

YBL002W YAR007C YML058W YER003C YML060W YML033W

YPL163C YKL101W YJL074C YDL101C YDL156W YOR073W

YDR224C YBL035C YIL026C YMR003W YJL157C YGR014W

YNL289W YER001W YOR247W YDL197C YLL021W YDL096C

YBR089W YIL140W YDR097C YNL233W YER032W YOR229W

YDL003W YHR152W YNL058C YKL045W YOR373W YBR067C

YJL159W YBR070C YNL126W YGR152C YNL057W YKL008C

YBR010W YLR103C YLR194C YCR042C YNL088W YLR383W

YPL256C YGL021W YEL032W YMR307W YLL022C YGR221C

YFL026W YNL145W YMR078C YIL131C YCR024C-A YNL166C

YOL007C YHR154W YLR045C YBR088C YKR042W YNL192W

YNL031C YPL267W YGR092W YNL262W YOR083W YBL111C

YLR183C YDR222W YPL153C YLR121C YJL073W YJR030C

YNL102W YMR031C YIL106W YDR297W YJL019W YKL104C

YOR074C YGL116W YER095W YHR172W YDL055C YGR099W

YBR071W YKL209C YOR195W YCL061C YIL123W YNL082W
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YOR066W YCL024W YDL164C YER111C YBR139W YDR545W

YHR005C YDR113C YFL067W YPR135W YML061C YBR073W

YJL187C YKR013W YEL061C YMR199W YOR321W YDR400W

YFL008W YEL076C-A YLR463C YPL141C YGR286C YHR023W

YPL255W YCL040W YER037W YGL225W YOR127W YDL155W

YPL124W YML027W YJL173C YPR175W YOL069W YDR518W

YDL093W YGR098C YBL023C YJR006W YNL339C YHR151C

YAL040C YBR275C YEL076C YGR140W YCR005C YJL225C

YLR342W YEL017W YML085C YPL221W YGR296W YDR481C

YML033W YLR273C YHL026C YPL057C YMR001C YIL158W

YOR073W YEL076W-C YHR146W YKL067W YMR306W YAR018C

YGR014W YDL103C YNL072W YJR143C YLL002W YMR190C

YDL096C YJL051W YBR243C YFL065C YMR132C YBR296C

YOR229W YOR058C YFL006W YIL159W YOL158C YDR379W

YBR067C YDR077W YBL113C YLR313C YLR467W YLR341W

YKL008C YFL037W YOR144C YDR528W YFL027C YPR174C

YLR383W YGR279C YNR001C YHR218W YOR313C YKL089W

YGR221C YDR191W YER118C YOR246C YNL338W YMR006C

YNL166C YNL273W YKR010C YHL021C YNL150W YOR288C

YNL192W YPL032C YKR098C YLR032W YDR146C YKR037C

YBL111C YML052W YPR018W YMR292W YOR248W YMR253C

YJR030C YGL027C YKL042W YFL068W YHL050C YBR093C

YKL104C YDR488C YBL031W YLR455W YDL138W YDR503C

YGR099W YMR048W YGR143W YIR010W YLR326W YPL242C
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YNL082W YKL185W YDL102W YIL122W YBR138C YDR307W

YDR545W YDR279W YIL015W YEL075C YKL165C YJR053W

YBR073W YAL039C YBL109W YCL012W YLR234W YLR049C

YDR400W YFL066C YJR092W YLR386W YML125C YPR076W

YKR090W YNL111C YHR086W YDR501W YBR140C YOR111W

YGR188C YOL138C YIL066C YOL025W YOR363C YDR460W

YPL209C YER114C YHR158C YGL207W YHR159W YGR075C

YOR372C YJL155C YDL105W YDR516C YDL056W YOR315W

YDR464W YDR219C YBR015C YER190W YBR028C YPR139C

YGL061C YEL042W YOR016C YPR004C YDR457W YOR026W

YBR086C YBR072W YOL124C YOR307C YOR033C YNL165W

YPL283C YML069W YDL095W YER016W YNL309W YEL031W

YML133C YNL310C YPR031W YIR044C YCR090C YBR153W

YJL044C YPR203W YLR074C YPL004C YKL048C YGR022C

YHL049C YML119W YAR008W YGR142W YML021C YMR075W

YLR247C YBR087W YJR076C YER189W YDR436W YDR544C

YBR038W YDR261C YGL037C YDR245W YLR210W YKL129C

YNL334C YBR042C YJR054W YLL067C YMR117C YLR457C

YLR462W YBR092C YFL060C YBR242W YAL007C YJL185C

YPR149W YLR182W YLL032C YDR277C YIL155C YML034W

YLR464W YAL024C YHR217C YLR151C YLR465C YER053C

YOR176W YLR380W YDL248W YDR147W YNL335W YKL052C

YEL077C YOR233W YBR187W YPR035W YKL225W YIL177C

YPL208W YOL019W YBL034C YDL163W YKL210W YOL147C
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YGR292W YJR043C YPR202W YJR112W YHR136C YOR188W

YBR161W YDR052C YGR108W YGL253W YLR372W YFL064C

YLR382C YLR373C YLR466W YDR089W YDL211C YNL176C

YLL066C YMR160W YNL263C YGL065C YDL011C YPL253C

YJL092W YLL031C YEL040W YMR251W-A YBL112C YBR103W

YOR084W YGL200C YPR034W YMR030W YCR023C YNL095C

YIL127C YJR003C YOR017W YBR289W YAL034W-A YAL033W

YDR440W YNL062C YHR215W YNL180C YPL128C YNL291C

YKL004W YCL001W YOR162C YAL023C YJL151C YGR089W

YOR326W YOR095C YNL333W YHR169W YGL163C YPL144W

YGR153W YMR247C YLR250W YDR537C YNL160W YIL156W

YGL216W YGL013C YDR227W YJL034W YJL186W YDL028C

YML065W YMR032W YHR127W YBL071C YER105C YLR025W

YMR144W YPR052C YNL149C YBR276C YFL044C YGL050W

YJL137C YDR489W YPL007C YLR063W YMR197C YGR026W

YKL160W YOL030W YKL049C YIL144W YOR025W YMR127C

YGR012W YLR034C YDR302W YNL197C YKL161C YLR190W

YLL028W YHR219W YML012W YJL176C YGL241W YCR072C

YBR098W YLR335W YDL219W YDL166C YER170W YMR163C

YML124C YPL227C YNL238W YDR212W YBR133C YBR302C

YLR212C YER044C YML020W YDL115C YJL029C YBR012W-A

YOL017W YER014W YAL059W YBR198C YPR104C YAR003W

YJL080C YIL007C YIL047C YAR071W YGR113W YBR041W

YFR038W YKL066W YCL064C YDR343C YMR258C YJL075C
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YGL083W YBR203W YCR037C YKL010C YKL046C YLR088W

YDR179C YNL141W YOR228C YGR159C YNL181W YIL027C

YPL066W YGL012W YOL142W YKR060W YPL247C YJL116C

YGL101W YLR188W YDL030W YKL136W YPL212C YDR085C

YNL056W YOR320C YLR189C YJL084C YIL115C YLR438W

YNR009W YDR276C YOR256C YIL103W YNL134C YBL085W

YGR250C YKL151C YNL296W YFR028C YDR189W YLL004W

YGR245C YJR086W YDR177W YJR124C YDL119C YER122C

YMR274C YFL017C YHR170W YPL058C YPR075C YKR050W

YDR325W YGL006W YJL072C


