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ABSTRACT 

 

The Potential of Using Natural Gas in HCCI Engines: Results from Zero- and 

Multi-Dimensional Simulations. (May 2012) 

Junnian Zheng, B.A., Shanghai Jiao Tong University; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Jerald A. Caton 

 

With the depletion of petroleum based fuels and the corresponding concerns of 

national energy security issues, natural gas as an alternative fuel in IC engine applications 

has become an attractive option. Natural gas requires minimum mixture preparation, and is 

chemically stable, both of which make it a suitable fuel for homogeneous charged 

compression ignition (HCCI) engines. Compared to petroleum based fuels, natural gas 

produces less green-house emissions. However, natural gas is hard to auto-ignite and 

therefore requires a higher compression ratio, some amount of intake heating, or some type 

of pre-ignition. In addition, natural gas usually has large differences in fuel composition 

from field to field, which adds more uncertainties for engine applications. 

The current study determines the auto-ignition characteristics, engine performance, 

and nitric oxides emissions as functions of major operating parameters for a natural gas 

fueled HCCI engine, and determines differences relative to gasoline fueled HCCI engines 

which have been studied for many years. These tasks have been done using both zero- and 
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multi-dimensional engine simulations.  

By zero-dimensional simulation, the effects of varying equivalence ratios, engine 

speeds, compression ratio, EGR level, intake pressure and fuel compositions are 

determined and analyzed in detail. To be able to account for the in-cylinder inhomogeneous 

effect on the HCCI combustion, multi-zone models coupled with cold-flow CFD 

simulations are employed in addition to the single-zone model. The effects of 

non-homogeneous temperature and equivalence ratio stratification on the ignition timing, 

combustion phasing, and emissions formation have been studied and discussed. Finally, the 

preliminary two-dimensional axial-symmetric CFD simulations have been conducted to 

study the in-cylinder temperature and the species distributions, which provide better 

visualization of the natural gas auto-ignition process.  
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1. INTRODUCTION 

 

Reciprocating internal combustion engines, since their invention and first wide use 

in the 19th century, have been utilized in ground transportation, marine, power generation, 

and other applications for over 200 years. Two major types of internal combustion engine 

are: spark-ignition (SI) engines where the combustion is initiated by a spark and 

compression-ignition (CI) engines or diesel engines where combustion is initiated by the 

auto-ignition of the high temperature and high pressure fuel and air mixture. Although both 

SI and CI engines with petroleum based fuel (typically gasoline and diesel) have been 

remarkably successful as prime movers in different applications, with the increasing needs 

for more efficient and lower emission engines, many novel engine concepts have been 

brought out and studied extensively. In addition, with the increasing cost for petroleum 

based fuel, tremendous effort to search for alternative fuels has been made in the past 

several decades. In this section, a brief introduction is provided for the HCCI engine 

concept and the use of natural gas as an alternative fuel. 

 

 

 

 

____________ 
This dissertation follows the style of Journal of Automobile Engineering. 
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1.1 Brief overview of HCCI engines 

HCCI (homogeneous charge compression ignition) is a very desirable combustion 

mode which combines the advantages of CI and SI engines: low emissions and high 

efficiency. In a typical HCCI combustion, fuel is premixed with air before getting into the 

cylinder by port fuel injection, and then the air fuel mixture is compressed during the 

compression stroke. Once the mixture reaches its auto-ignition limit, it ignites 

automatically without the help of spark plug or high pressure injection. The benefits of 

HCCI combustion include: (1) reduced NOx emission, since the air/fuel mixture could be 

very lean in HCCI operations which lowers the peak temperature and thus reduces NOx 

production, (2) reduced soot, since there are fewer fuel rich zones in the homogeneous 

mixture, (3) high thermal efficiency due to several reasons. First, a lean mixture has a 

relatively higher ratio of specific heats. Secondly, no flame propagation prevents end gas 

knock and enables the use of higher compression ratio. Third, throttless operation reduces 

the pumping loss at low load conditions. Forth, there is less in-cylinder heat transfer due to 

the lower temperature and fast combustion, and finally quick heat release of HCCI 

combustion ensures the majority of the heat release could occur just after TDC which is 

closer to the ideal Otto cycle. 

However, HCCI engines also face a few challenges. First of all, the biggest 

challenge of the HCCI engines is the control of the combustion phasing without direct 

control on the auto-ignition process. Secondly, the auto-ignition process is sensitive to 

many factors such as intake air temperature and pressure, EGR level, and fuel composition 
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which make control even more difficult. Third, the operating range of HCCI engines is 

limited because the high rate of heat release for HCCI combustion creates high intensity of 

noise and higher potential of knocking, which limits the highest attainable load. Too lean 

mixture leads to misfire which determines the lower limit of load. In addition, relatively 

higher unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions are observed 

resulting from the low combustion temperature and corresponding incomplete oxidations. 

Furthermore, there is potentially high cycle-by-cycle and cylinder-to-cylinder variations in 

HCCI engines due to the difficulties in controlling the combustion phasing. 

 

1.2 Natural gas and its application in HCCI engines 

Natural gas is a naturally occurring gas mixture which consists of primarily 

methane and some amount of higher hydrocarbons, nitrogen, and carbon dioxides. Typical 

composition of a commercial natural gas product is shown in Figure 1. According to the 

Energy Information Agency’s report [1], the world had about 60 years left based on the 

reserves and the consumption rate in 2010. Natural gas is generally considered as the 

interim energy solution to alleviate the more frequently occurring oil crisis.  
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Fig.1 Typical composition of a commercial natural gas product [2] 

 

Due to the cost and supply issues of petroleum based fuel, using natural gas as an 

alternative fuel has become an attractive option in implementing the HCCI concept for 

natural gas fueled engines. The advantages of using natural gas include easy mixture 

preparation, good chemical stability, high heating value, and less greenhouse emissions. 

However, natural gas also brings a few challenges for HCCI engine operations. Natural gas 

is known for its high octane number and therefore is hard to auto-ignite. To enable the use 

of natural gas in HCCI engines, higher compression ratios, significant amount of intake 

heating, and/or internal EGR (or residual gas trapping) is required to ensure the 

auto-ignition.  
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1.3 Use of the engine cycle simulation to study HCCI engines 

In modern engine research and study, using hardware experiments alone could be 

very expensive and time-consuming, and many cause and effect relationships implicit in 

the test results are often hard to interpret. On the other hand, modeling and simulation 

approaches, although less precise in predicting the outcome of a specific test, could 

effectively isolate one variable at a time and conduct parametric studies on it. Therefore a 

simulation could point out cause-effect relationships more clearly, and a validated model 

could be a very useful tool to study novel engine concept or engines running with 

alternative fuels which are still not well known. The idea of using natural gas in HCCI 

engines is still relatively new and modeling studies are shown to be important to 

understand many fundamental features of the HCCI engines and how different fuels will fit 

into this novel engine concept. 

Based on how the in-cylinder inhomogeneities and the fluid motions are treated, 

there are three major types of the model: zero-dimensional (single-zone) models, 

multi-zone models, and multi-dimensional CFD models. As mentioned earlier, HCCI 

combustion is not only controlled by the thermodynamics and fluid dynamics in the 

cylinder, but also largely dictated by the chemical kinetics. So in terms of the complexity of 

the chemical kinetics employed, there are also three major categories: ignition correlation 

plus global reaction, reduced kinetics, and detailed kinetics associated with the fuel. A brief 

discussion is given here to note some of the advantages and shortcomings of these models 

coupled with different kinetics. More details of the models used in this study are given in 
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the “Description of Models and Chemical Kinetics” section. 

Single-zone models are most computationally efficient and therefore able to 

employ of the most detailed kinetics which is crucial in modeling chemical kinetics 

controlled combustion such as HCCI. Single-zone models are particularly useful in 

parametric studies due to their computational efficiency. The assumption of the 

homogeneous mixture in single zone models, however, makes it not able to provide any 

spatial information which is considered important in predicting temperature and emissions 

formation. Another application of single-zone models is for control purpose where the 

simulation time becomes crucial especially in real time control situations.  

 

 
Fig.2 Estimated CPU times for different models with different kinetics 
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Multi-dimensional models are used to solve the fluid mechanics and chemical 

kinetics simultaneously and therefore provide the best accuracy in theory. Currently the 

major limitation of the CFD models is still the high computational intensity, which largely 

limits the coupling between detailed kinetics and fluid mechanics using fine meshes. A 

comparison of the computation times for different models has been shown in Fig.2. Even 

coupled with C1 kinetics, the two-dimensional CFD model still requires almost 100 times 

more CPU minutes than that of the single-zone model with detailed kinetics. 

While computational fluid dynamics (CFD) have been applied to the study of 

HCCI combustion for simple fuels, it is often too computationally intensive for routine 

analyses involving practical fuels. Single-zone HCCI combustion models, on the other 

hand, permit detailed modeling of the chemical kinetics for practical fuel , but could not 

account for the low temperature region within boundary layers and crevices which are 

important for accurate unburned hydrocarbon (UHC) and carbon monoxide (CO) 

predictions. A multi-zone model serves as a compromise. Typically, multi-zone models 

apply detailed kinetics to multiple zones with different initial conditions which are 

extracted from the CFD simulations. It could provide better accuracy than a single-zone 

model and requires significantly less computing time than CFD simulations. The 

multi-zone model would be useful to study the effect of inhomogeneities on the ignition 

and combustion characteristics. However, multi-zone models usually require inputs from 

CFD simulations and therefore need more initialization and calibration effort.  
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2. BACKGROUND 

 

The concept of HCCI engines has been studied for over a decade both 

experimentally and numerically. This section mainly notes a few previous studies which 

focused on the modeling of HCCI engines. For a complete picture of the HCCI engine 

studies, not only natural gas HCCI engines but also the HCCI engines with other fuels are 

also reviewed here. The following literature reviews are further divided into a couple of 

sub-sections: the effect of (1) intake air temperature, (2) equivalence ratio, (3) exhaust 

gas recirculation, (4) fuel composition, (5) intake air boosting, and (6) combustion 

chamber geometry. 

Many literature studies, such as [3-9], have shown that the intake temperature or 

initial temperature at IVC has a significant effect on HCCI combustion phasing. 

The simulation work by Noda and Foster [3] used a multi-zone model coupled with 

reduced chemical kinetics to study the H2 fueled HCCI combustion in a four stroke engine. 

They’ve shown that the effect of gas temperature on ignition timing is more dominant than 

equivalence ratio, and introducing the temperature stratification is a better way to control 

combustion duration than the air and fuel inhomogeneity. The single zone model from Guo 

et al. [8] was coupled with detailed chemical kinetics. The simulation results have shown 

that increasing intake air temperature facilitates both the low- and high-temperature 

reactions, while it has less effect on the NTC delay period than engine speed and air fuel 

ratio. Both Jun et al. [5] and Ricklin et al.’s [6] modeling works have proved that the start 
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of combustion in HCCI engine is a strong function of the intake charge temperature. 

 In terms of emissions, single zone simulations by Ricklin et al. [6] have shown 

that CO would decrease with the increase of cyclic maximum temperature which is partly 

determined by intake temperature. On the other hand, from Dec et al. [4], the intake 

temperature, intake pressure, compression ratio, and engine speed are computationally and 

experimentally shown to have little effect on the UHC and CO emission at low load 

conditions. However, single zone models are not very accurate with UHC and CO 

emissions prediction due to the lack of crevice or boundary layer model. More multi-zone 

or multi-dimensional modeling is needed to study on this case. 

The importance of equivalence ratio on HCCI combustion has been recognized by 

many researchers. Some of the major findings are summarized in the following paragraph. 

The parametric studies on equivalence ratio by Jun et al. [5], both numerically and 

experimentally, have shown that lower equivalence ratio leads to retarded ignition timing 

and longer combustion duration. The multi-zone model coupled with detailed kinetics by 

Grenda [10] has confirmed that the increase of 0.2 in equivalence ratio advances about 10 

crank angle degrees in the start of combustion. Machrafi et al. [11] performed single zone 

simulations and indicated that the equivalence ratio has a little greater influence on the 

low-temperature reactions than the main combustion. The CFD model coupled with 

reduced chemical mechanism by Neol et al. [12] compared in-cylinder pressure curves at 

different equivalence ratios. The results have shown the equivalence ratio’s influence on 

combustion timing and indicated that the HCCI combustion process is not efficient for the 
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equivalence ratios lower than 0.3 at fixed intake temperature equal to 350K. The 

multi-zone simulation done by Amano et al. [13] has also indicated that the zone with the 

richest air/fuel mixture and the zone with highest temperature have the greatest impact on 

combustion phasing. In addition, the distribution of the equivalence ratio and temperature 

in the cylinder will affect the pressure rise rate. 

Sequentially coupled multi-zone and CFD model with detailed kinetics of Curran 

was developed by Aceves et al. [14]. The model shows very good agreement with the 

experiments for a wide range of load from equivalence ratio ranging from 0.04 to 0.26. The 

CO emission increases as Φ decreases until Φ=0.1, after which the CO decreases but the 

UHC emissions increase. At Φ=0.26, lots of CO originates from crevices and boundary 

layers which are too cold for complete oxidation. As Φ reduces to 0.16, there exists a broad 

boundary layer with not hot enough temperature which leads to high concentration of CO. 

At Φ=0.10, the combustion temperature continues to decrease so that even the center of the 

cylinder is not hot enough to oxidize CO to CO2. Highest CO concentration is observed. 

Finally at Φ=0.04, the temperature is so low that only the core region could react to CO. In 

the meantime, the broad boundary layer burns partially into intermediate hydrocarbons 

which results in the increase of HC.  

Many researchers have reported the great influence of EGR on HCCI engines. 

Using a 0.6 liter engine in the experiments and a corresponding single zone model, 

Machrafi et al. [11] studied the effect of EGR on the HCCI auto-ignition in terms of the 

thermal, diluting, and chemical effects. The diluting effect was studied by adding N2 or 
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CO2 into the intake mixture. The thermal effect was represented by the difference of heat 

capacity of these two diluents. The chemistry effect was studied by the NO, CO, and CH2O 

addition. Both the diluting and thermal effect has been shown to delay both the cool flame 

and main ignition. The chemistry effect has been considered to be the dominant factor 

determining whether the auto-ignition was delayed or advanced, since the chemistry 

effects influence the amount of OH radicals present in the system. Neol et al. [12] has 

applied a CFD code coupled with reduced kinetics of n-heptane to study the HCCI 

combustion in a diesel engine. The authors have pointed out that cases with EGR have 

steep rate of heat release and higher EGR level extends the combustion duration and 

enables slow oxidation process. Multi-zone simulation results from Grenda [10] have 

shown that 20% change in EGR percentage leads to about a 10 crank angle degree change 

in the start of ignition. 

Tominaga et al. [15] applied a sequentially coupled, non-reacting CFD and 

multi-zone model to study three different EGR setups: premix, port 1 (densely near the 

wall), and port 2 (densely nearly the center of cylinder). For the port 1 case, more exhaust 

gas is distributed in the high temperature zones (center) and the EGR effect is exaggerated. 

For the port 2 case, more exhaust gas is distributed near wall and low temperature zones 

and thus the EGR effect becomes less significant. 

Another sequentially coupled multi-zone and CFD model was applied by 

Babajimopoulos et al. [16] to compare two method of introducing internal EGR: negative 

valve overlap (NVO) and rebreathing. The results have shown that the NVO method yields 
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less homogeneous mixture than the rebreathing method as the internal EGR percentage 

increases. The temperature is obviously stratified in all cases while the concentration 

distribution becomes noticeable in high internal EGR cases.  

Different fuels show very different characteristics under HCCI conditions. For 

example, some types of fuels, such as natural gas, have only one stage of heat release in the 

HCCI combustion, while other types of fuels, such as gasoline and diesel fuel have a low 

temperature reaction stage and a high temperature reaction stage during HCCI-like heat 

release. Similar results have been discussed previously. 

Fiveland et al. [17] studied the sensitivity of natural gas composition on the HCCI 

combustion using a single zone thermo-chemical model. 10% - 50% burned duration were 

well predicted while 50%-100% burned duration were significantly under-predicted by the 

single-zone model comparing to the experiment data. The results have shown that the 

addition of ethane, propane, and butane lower the auto-ignition threshold, and the increase 

of ethane, propane, or butane percentage in the mixture advances the ignition timings while 

maintaining other parameters unchanged. The possible uncertainties for both the 

experiment and the simulation were analyzed, and the authors state that 1-3 CA 

discrepancies between measurement and prediction is very acceptable due to those 

uncertainties. 

From a series of multi-zone simulations, Kongsereeparp and Checkel [18] have 

pointed out that the addition of reforming gases (i.e., CO and H2) advances SOC for the 

high-octane fuel (CNG) and retards SOC for the low-octane fuel (n-heptane). The SOC 
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change in the high-octane fuels mainly results from the altered mixture thermal properties 

by the addition of the reforming gases (RG). On the other hand, the RG addition strongly 

interferes with the cool flame chemistry of the low-octane fuels and thus affects the 

ignition timings of the main combustion. Using a single-zone model coupled with detailed 

chemical kinetics, Elkelawy et al. [19] have found that in the natural gas fueled HCCI 

combustion, the H2 addition helps decreasing the ignition temperature needed and 

extending the limit of equivalence ratio to below 0.2. In addition, the ignition timing for the 

natural gas HCCI combustion is proportionally advanced with the increase of the hydrogen 

fraction in the fuel mixture. They attributed the effect of H2 addition to the increased OH 

radicals during H2 combustion. 

The study of Ng and Thomson [20] applied a single zone model with detailed 

chemical kinetics to predict the effect of ethanol reforming (reform C2H5OH to CO and H2) 

and hot EGR on lean ethanol HCCI combustion. The results have shown that ethanol 

reforming expands the lower limit of the initial temperature (at IVC), required to achieve 

HCCI combustion. Also, the fuel reforming increases the combustion temperature and NOx 

emission as well, while increasing the portion of exhaust gas recirculation and reducing 

equivalence ratio have the opposite effect. 

Since the limited operating range is one of the biggest challenges for an HCCI 

engines to be widely used in automotive industry, intake air boosting, including 

turbocharging and supercharging, becomes an important method to extend the operating 

range of HCCI engine. 
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By coupling a one-dimensional cycle simulation in GT-Power with a single-zone 

correlation-based combustion model, Mamlis et al. [21] compared four different boost 

strategies for homogeneous charge compression ignition engines. Single turbocharger, 

supercharger, small-small series turbochargers, and small-medium series turbochargers 

have been compared. Among the four strategies, the single turbocharger setup had the 

highest efficiency while the supercharger setup was the most robust to control intake 

conditions. The twin-turbo setups don’t improve efficiencies due to the increased pumping, 

but do increase the highest attainable load. 

Kulzer et al. [22] conducted drive cycle (NEDC and FTP 75) simulations of 

boosted HCCI engine. The fuel efficiency was estimated to be up to 17% in NEDC and 

FTP 75 could be reached. Simulations by Guo et al. [8] have shown that the effect of 

turbocharging on the low temperature reactions is relatively weak, but it greatly affects the 

main heat release phase. 

Employing CFD simulations, effect of engine combustion chamber geometry on 

HCCI combustion has been studied by some researchers. 

Using a coupled multi-zone and KIVA model, Lee et al. [23] have found that the 

overall heat transfer greatly depends on the stroke/bore (S/B) ratio, and higher S/B ratios 

have higher overall thermal efficiency, especially at low loads. A higher S/B ratio 

decreases the ringing intensity due to the enhanced thermal stratification, longer burn 

duration, smoother heat release, and lower pressure rise rate. The lowest S/B ratio has the 

highest combustion efficiency as a result of reduced thermal stratification and faster 
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combustion. Kong et al. [24] studied the effect of geometry generated turbulence by a 

coupled CFD and multi-zone model. They found that square-bowl piston case generates 

higher turbulence levels and results in higher heat transfer compared to the disc shaped 

piston. Therefore longer combustion duration has been observed for the case with square 

shaped piston due to higher heat loss. 

Using experiments and a single zone model with detailed kinetics, Machrafi et al. 

[11] studied the influence of inlet temperature, equivalence ratio, and the compression ratio 

on combustion phasing, including the cool flame and main combustion, in a PRF fueled 

HCCI engine. The increase of compression ratio has the same effect on both the cool flame 

and main combustion in terms of advancing the phasing. Guo et al. [8] also indicated that 

increasing the compression ratio advances the phasing of both the low-temperature 

reaction and main combustion stage.  

Kerschgens et al. [25] applied an interactively coupled CFD and multi-zone 

method to study three different piston bowl geometry: reduced diameter bowl, original 

bowl, and stretched diameter bowl. The results show at the most advanced injection timing, 

the narrow bowl leads to incomplete combustion because some of the fuel is trapped in the 

deep bowl and not burned thoroughly. The stretched diameter bowl reduces the cylinder 

tumbling and thus leads to more stratified fuel concentration, and finally causes the 

increase of the CO emissions. The original bowl is considered the best in this specific 

study. 
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3. OBJECTIVES 

 

As summarized in the previous section, many studies have been completed on the 

use of natural gas in HCCI engines. Few of them, however, have systematically compared 

natural gas with other fuels such as gasoline in terms of the HCCI operations. The current 

work is aimed at comparing the use of natural gas, gasoline, and dimethyl ether (DME) in 

HCCI combustion, and providing better understandings of the auto-ignition, engine 

performance, and emissions characteristics for natural gas fueled HCCI engines. This 

objective is going to be accomplished by applying both zero- and multi-dimensional 

simulations coupled with chemical kinetics. A zero-dimensional (single-zone) model 

employing detailed chemical kinetics is used to determine the general trends of 

auto-ignition characteristic, engine performance, and nitric oxides emissions as functions 

of major operating parameters for a specific HCCI engine. Results for natural gas, gasoline, 

and DME surrogate are obtained, compared and analyzed. 

In addition to the single-zone simulation, a multi-zone model coupled with 

non-reacting (cold flow) CFD simulation is employed to be able to account for the effect of 

in-cylinder inhomogeneities on the HCCI combustion. By the cold flow engine CFD 

simulations, the temperature and equivalence ratio distributions will be obtained and then 

used to initialize the multi-zone model. From the multi-zone simulations, the effects of 

inhomogeneous temperature and equivalence ratio field on ignition timing, combustion 

phasing, and emissions formation are going to be studied and discussed. 
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Finally, a two-dimensional computational fluid dynamics (CFD) model is 

employed to study the in-cylinder temperature and species distribution. The temperature 

and equivalence ratio stratification play a very important role during the ignition and 

combustion process. So the prediction of the in-cylinder spatial distribution prediction 

could provide better understanding of the auto-ignition and combustion process.
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4. DESCRIPTION OF MODELS AND CHEMICAL KINETICS 

 

In this section, detailed descriptions are first provided for the single-zone, 

multi-zone, and two-dimensional CFD model. The specifications of the engine being 

studied are then given, followed by a brief summary of the fuel surrogates and chemical 

mechanisms employed in this study.  

 

4.1 Single-zone (zero-dimensional) model 

Natural gas HCCI combustion in IC engines is simulated using a single zone model 

with detailed chemical kinetics in CHEMKIN PRO [26]. The basic assumption of the 

model is homogeneous temperature and species composition distribution throughout the 

cylinder. Only the closed portion of the cycle (from IVC to EVO) is simulated and no valve 

event or gas exchange process is considered in this model. The thermodynamic system 

described by the model is shown in figure 3. In the cylinder, there are four independent 

properties including volume (V), pressure (P), temperature (T), and species concentration 

(Yk). Also there is heat transfer to the cylinder wall and work transfer by the piston. 

Formulations for solving the thermodynamic system are briefly described below. 
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Fig.3 Schematic diagram of the single-zone thermodynamic model 

 

The species conservation for the systems is [26], 

   k
k k

dY
V V W

dt
               (1) 

where ρ is the mass averaged density, Yk and Wk are the mass fraction and molecular weight 

of the kth species in the system, and k  is the molar rate of production of the kth species 

by gas-phase chemical reaction per unit volume. The energy equation for the system is 

[26], 
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After a few rearrangements using mass balance and the relation between internal 

energy and enthalpy, the transient energy equation for the gas temperature is obtained [26], 
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where h and 
pc are the mass averaged enthalpy and specific heat at constant 

pressure of the gas mixture, hk and cpk represent the enthalpy and specific heat at constant 

V, P, T, Yk
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CV

 



20 

 

pressure for kth species, and Kg is the total number of species in the system. Note that in 

equations (3) and (4), the enthalpy H includes the enthalpy of formation ( fH ) and the 

sensible enthalpy ( tH ). The last term in equation (4) is eliminated because that the total 

mass of the system doesn’t change. 

The production rate of each species, k , appears in the energy equation and is 

directly solved from the preselected kinetics. In Chemkin, each species is associated with 

thermodynamic data that are used to determine equilibrium constants and the reverse-rate 

for the corresponding reactions. Elementary reactions involving Kg species can be 

represented in the general form, 

 
1 1

' ''                1, ,
g gK K

ki k ki k

k k

v x v x i I
 

         (6) 

where 'kiv  and ''kiv  indicates forward and reverse stoichiometric coefficients for the ith 

reaction, and kx  is the chemical symbol of the kth species. Then the expression for the 

production rate k  can be obtained, 

       
' ''

1 1 1

'' '          1, ,
g g

ki ki

K KI
v v

k ki ki fi k ri k

i k k

v v k X k X k K
  

  
      

   
    (7) 

where kfi and kri are the forward and reverse rate constants of the ith reactions, and [Xk] is 

the molar concentration of the kth species. The forward rate constants for the reactions are 

generally the inputs of the model, and are assumed to have the following Arrhenius 

temperature dependence: 
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Instantaneous spatially-averaged heat transfer to the cylinder wall is calculated 

using a version of the Woschni correlation [27]. This version has been adjusted for HCCI 

combustion [26], as shown below, 

0.8Re Pr 0.035Reb c

hNu a               (9) 

where a = 0.035, b = 0.8, c = 0 is chosen for this study. 

Re
wB


                (10) 

where the local average gas velocity w is correlated as follows, 
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        (11) 

where Vd is the displaced volume; p is the instantaneous cylinder pressure; pr, Vr, Tr are the 

pressure, volume and temperature at the reference state; pm is the motored cylinder pressure 

at the same crank angle as p. In this study, C11=2.28, C12=0.308, C2=0.54, and vswirl=0 is 

used. More detailed description of this heat transfer correlation can be found in [27]. 

This model does not include the gas exchange process or friction. Since gas 

exchange and friction do not have a direct effect on the in-cylinder thermodynamics or 

chemical kinetics, these two limitations are not significant for the purposes of the 

single-zone simulation. 

 

4.2 Multi-zone model 

As mentioned in the introduction section, multi-zone models typically require 

non-reacting (cold flow) fluid mechanics simulation to provide the initial temperature and 
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concentration distributions in the cylinder. With these initial distributions, appropriate 

number of zones can be determined and those zones can be established and initialized with 

different temperatures and concentrations, as shown in figure 4. Figure 4 shows an 

example of the setup procedure where the continuous temperature distribution from the 

CFD simulation is converted to the zonal conditions in the multi-zone model. After the 

zonal initial conditions are set up, the detailed chemical kinetics can be applied and solved 

in all zones fully coupled. 

 

 
Fig.4 Illustration of the multi-zone model setup procedure, temperature 

distribution from CFD (left) and zonal conditions in multi-zone model (right) 

 

The assumptions [26] pertaining to this model formulation are as follows. First of 

all, all zones are assumed to have the same, uniform pressure. Second, the mass or heat 

transfer between zones is assumed to be negligible and the only interaction between the 

zones is the compression work. Third, the total volume of the zones must equal the cylinder 

Continuous distributions 
(temperature) from CFD 

Discrete zonal conditions in 
the multi-zone model 



23 

 

volume computed by the slider-crank relationship used in the single-zone 

internal-combustion engine model. This constraint is used to determine the zonal and 

cylinder pressure [26]. 

The governing equations for the multi-zone model are similar to those for the 

single-zone model, except for the additional superscript “i” which represent the zone 

number, as shown in equation 12 (conservation of species) and equation 13 (energy 

equation) [26]. 
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The details of solving these equations for all zones fully coupled are given in 

Appendix I and the Chemkin user manual [26]. 

 

4.3 Two-dimensional non-reacting CFD simulation 

The computational fluid dynamics simulations of non-reacting (cold flow) intake 

flow are performed in FLUENT. In figure 5, a two-dimensional mesh has been generated to 

include the intake valve. The calculations are carried out from the intake valve opening 

(IVO) to the intake valve closing (IVC), which is about 230 degree crank angles for the 

specific engine used in the current study. This is a moving mesh problem and there are 

~3000 cells at IVO and ~10000 cells at IVC. The assumptions of this cold flow simulation 

are summarized as follows. 
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1. The computational domain is two-dimensional (planar 2D) in order to reduce the CPU 

time and enable a certain amount of parametric studies. 

2. Heat transfer occurs between the gas and the boundaries, including the cylinder liner, 

piston, cylinder head, and intake valve. The boundary temperatures are assumed to be at 

some constant values. 

3. The turbulence considered in the simulation employs the k-ε model based on RANS 

(Reynolds averaged Navier-Stokes equation). 

4. Initially the temperature and concentration are assumed to be homogeneous in the 

computational domain. The inlet flow is also assumed to have constant temperature and 

species concentration over time. 

The detailed governing equations in the computational fluid dynamics are shown in 

Appendix II. 
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Fig.5 Two-dimensional mesh for the non-reacting intake flow simulation 

 
 

4.4 Two-dimensional combustion CFD simulation 

Similar to the non-reacting case, the CFD simulations of the HCCI combustion are 

carried out in FLUENT. Again, in order to reduce the computational intensity, the flow 

field in the cylinder is assumed to be axial-symmetric, and only a 2-D flow field is solved 

as shown in figure 6. Uniform quadratic mesh is generated throughout the 2-D flow field, 

and includes ~28000 cells at IVC. 

Calculations were carried out from intake valve closure (IVC) to exhaust valve 

opening (EVO). The k-ε model based on RANS (Reynolds averaged Navier-Stokes 

equation) is employed for turbulence computation. Due to the limitation of computer 

resource, a few assumptions, which simplify the model, were necessary. These 
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assumptions are summarized and discussed below. 

All the species are assumed to be homogeneously mixed at the molecular level at 

the start of the calculation, which is IVC in the present study. This is a reasonable 

approximation considering the use of an intake mixer, early port injection, and zero 

external EGR in the experiments. For conditions with a large amount of residual gases, this 

assumption could be problematic and need to be eliminated by modeling the valve events 

and the flow through valves. 

 

 

(a)                       (b) 

Fig.6 (a) 2-D Axial-symmetric modeling of the engine cylinder, and (b) the actual 
mesh in Fluent (~28000 cells at IVC) 
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The sub-grid scale turbulence-chemistry interaction is not modeled in the current 

study. The mean values of temperature and concentrations in each cell are used in the 

chemical kinetics calculation. For the HCCI case resolved with fine grid, the sub-grid 

fluctuation is not expected to be significant. In addition, in HCCI combustion the timescale 

for chemical kinetics is usually much larger than the timescale for sub-grid turbulent 

mixing (dissipation of the small turbulence eddies), reaction rate could be well predicted 

by chemical kinetics only. 

The temperature at the start of the simulation (IVC) is assumed to be 20-40K higher 

than the reported intake manifold temperature [27]. This increment is due to the heating 

effects of the residual gases and compression from BDC to IVC. To match the calculations 

to the experimental data (which will be shown in the model validation section), the 

temperature at IVC was adjusted. The same increment was used for all cases. 

 

4.5 Engine specifications 

The engine being modeled is a 1.1 liter single-cylinder four-stroke engine and the 

specifications are summarized in Table 1. 
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Table 1 Engine parameters used in the model [28] 

Engine Yanmar TS230R single cylinder 
Bore 112 mm 

Stroke 115 mm 
Displacement volume 1.132 Liter 

Compression ratio 18.8 
Connecting rod to Crank radius ratio 3.43 

Intake valve opening (IVO) 355° CA 
Intake valve closing (IVC) 588° CA 

Exhaust valve opening (EVO) 125° CA 

 

4.6 Fuel surrogates and chemical mechanisms 

The compositions of surrogates for natural gas, gasoline, and dimethyl ether are 

listed in Table 2. Although the actual fuels have many compositions, the surrogate 

compositions are representative. The chemical mechanisms used in the single-zone, 

multi-zone, and CFD model are also summarized in Table 2. 

 

Table 2 Fuel surrogates and their chemical mechanisms used in this study 

Fuel Surrogate 
(mole fraction) 

Mechanism used in the 
single- and multi-zone 

model 

Mechanism used in the 
CFD model 

Natural 
Gas 

88% CH4, 6% C2H6,  
4% C3H8, 2% C4H10 

[28] 

C3
 natural gas [29] 

256 species, 1507 reactions 
Gri-mech 3.0 [30] 

53 species, 325 reactions 

Gasoline 

20% C6H5CH3 
17% C7H16 
 63% C8H18 

[31] 

Gasoline [31] 
891 species, 3902 reactions N/A 

Dimethyl 
Ether 100% CH3OCH3 

Zhao et al. DME [32] 
55 Species, 315 reactions  N/A 
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Since the NOx emission characteristics for HCCI combustion are going to be 

discussed in this study, a brief description of the NOx sub-mechanism is necessary. The 

NOx
 kinetics contained in GRI-mech 3.0 includes 17 species and 71 reactions, and the one 

in C3 natural gas mechanisms is from Sivaramakrishnan et al. [33] which includes 29 

species and 218 reactions. These two mechanisms share some of the core reactions which 

are described next. 

The reactions included in the extended Zeldovich mechanism (also known as the 

thermal mechanism) are shown in Table 3. Due to the strong triple bond of the N2 molecule, 

these reactions are significant only when there is a high enough temperature and sufficient 

time. The extended Zeldovich mechanism has been successfully applied to predict the 

nitrogen oxides emissions for engine conditions [27]. Table 4 shows the main reaction 

responsible for the prompt mechanism. The prompt mechanism is important when there is 

fuel-bound nitrogen or when the combustion temperature is too low to activate the thermal 

mechanism [34]. The prompt mechanism might be significant for the nitrogen oxides 

emissions in HCCI engines, since the HCCI combustion usually features low temperature 

combustion. Table 5 lists the reactions related to the so called nitrous oxide mechanism. 

This mechanism depends on a few termolecular reactions involving N2O and the 

subsequent decomposition to nitric oxide. The nitrous oxide mechanism is significant at 

low temperatures and for lean premixed mixtures [34, 35], and therefore is also important 

to be included for the HCCI combustion.  

Some other NOx formation mechanisms such as the NNH route are also included in 
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the detailed kinetics. The details of these routes are not shown for they have little 

contribution to the NOx formation at the conditions examined in the current work. For the 

NNH route, studies by [36-38] indicated that the NNH route was found important for rich 

hydrogen flames, relative short residence times (<1ms), and relative low temperatures 

(<2100 K). At the conditions examined in the current study, the residence time typically 

ranges from 2 ms to 10 ms and peak temperatures are over 2200K. Results illustrating the 

contributions of the different mechanisms are shown in the Results and Discussion section. 

 

Table 3 The extended Zeldovich mechanism (thermal mechanism, rates from [33]) 

Reactions Ai i  Ei/Rc 

2N NO N O    132.70 10  .00 355.00 

2N O NO O    99.00 10  1.00 6500.00 

N OH NO H    133.36 10  .00 385.00 

 
 

Table 4 The prompt mechanism (rates obtained from [33]) 

2CH N HCN N    93.12 10  .88 20130.00 

HCN O NCO H  
 

41.38 10  2.64 4980.00 

NCO H NH CO  
 

135.40 10  .00 .00 

2NH H N H    133.20 10  .00 330.00 

2NH OH N H O    92.00 10  1.20 .00 

N OH NO H    133.36 10  .00 385.00 
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Table 5 The nitrous oxide (N2O) intermediate mechanism (rates obtained from [33]) 

2 2N O M N O M     107.91 10  0.00 56020.00 

2 2 2N O O N O    121.40 10  0.00 10810.00 

2 2N O O NO   132.90 10  0.00 23150.00 

2NO NH N O H    143.65 10  -0.45 0.00 

2NO NCO N O CO    171.90 10  -1.52 740.00 
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5. MODEL CALIBRATION AND VALIDATION 

 

In this section, predicted pressure curves from simulations are compared to the 

experimental data and followed by a brief discussion on the model calibration and 

validation for different models. 

 

5.1 Validation of the single-zone and multi-zone model 

The single-zone and multi-zone models have been validated by the experimental 

work done by Jun et al. [28]. The operating conditions at which the prediction and 

measurements are compared are summarized in Table 6. The temperatures at IVC are 

used to calibrate the start of combustion for both the single-zone and multi-zone 

simulations. Figures 7-9 show the measured and predicted pressure traces as a function of 

crank angle at different equivalence ratios.  

The single-zone simulation (figure 8) predicts the start of combustion reasonably 

well using detailed chemical kinetics. The peak pressures, however, are obviously 

over-predicted and the combustion durations are under-predicted. This is mainly due to the 

assumption of a homogeneous mixture throughout the cylinder. Because of that, all of the 

air/fuel would be ignited at the same time and the combustion rate is significantly elevated. 

In general, for the higher equivalence ratio cases, the single-zone simulation captures the 

main feature of the HCCI combustion. As the mixture become very lean, the single-zone 

model starts to fail to predict the slower and weaker combustion associated with lean 
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mixtures. The multi-zone results (figure 9) have generally better agreement with the 

measurement than single-zone simulations. The longer combustion durations and lower 

peak pressures in the experimental data are better captured in the multi-zone simulations. 

 

Table 6 Initial conditions for the 0D simulation and the experiments from [28]  

Parameters 
Single- and 

multi-zone Model 

Experiment by 

Jun et al. [28] 

Engine speed (RPM) 800 800 

IVC timing -132 aTDC -132 aTDC 

Intake manifold temperature (K) N/A 380 

Intake manifold pressure (bar) N/A 1.6 

Temperature at IVC (K) 417 N/A 

Pressure at IVC (bar) 1.6 N/A 

Wall Temperature (K) 450 N/A 

Equivalence Ratio 0.2 - 0.45 0.2 - 0.45 
Natural gas composition  

(mole fraction) 
88%CH4 6%C2H6 
4%C3H8 2%C4H10 

88%CH4 6%C2H6 
4%C3H8 2%C4H10 
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Fig.7 Measured pressure traces as a function of crank angle at different 

equivalence ratios. Experimental data from Jun et al. [24]. 

 

 
Fig.8 Predicted pressure as a function of crank angle at different equivalence 

ratios 
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Fig.9 Predicted pressure as a function of crank angle at different equivalence 

ratios from the multi-zone simulations 
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temperature at IVC is estimated to be 30K higher based on the heating effect of hot residual 
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data (figure 8), there are still some discrepancies in the start of combustion, pressure rise 

rate, and peak pressure values. These differences might result from three aspects: (1) 

treating the combustion chamber as a two-dimensional field rather than three-dimension, 

(2) assuming homogeneous temperature and concentration at the start of simulation, and 

(3) using C1 kinetics rather than C4 kinetics. These drawbacks are the necessary 

compromises for an affordable CPU time. Since the main purpose of the 2D CFD study is 

to better visualize the HCCI combustion process, the agreement between the prediction 

and measurement is acceptable. 

 

Table 7 Initial conditions for the 2-D CFD simulation and the experiments from [28]  

Parameters CFD Model 
Experiment by 

Jun et al. [28] 

Engine speed (RPM) 800 800 

IVC timing -132 aTDC -132 aTDC 

Intake manifold temperature (K) N/A 380 

Intake manifold pressure (bar) N/A 1.6 

Temperature at IVC (K) 410 N/A 

Pressure at IVC (bar) 1.6 N/A 

Wall Temperature (K) 400 for cylinder 
550 for piston N/A 

Equivalence Ratio 0.2 - 0.45 0.2 - 0.45 

Initial Turbulence Kinetic Energy (m2/s2) 0.01 N/A 

Initial Turbulence Dissipation Rate (m2/s2) 0.01 N/A 

Initial Swirl Velocity (m/s) 0.01 N/A 

Natural gas composition (mole fraction) 
90%CH4 

6%C2H6 
4%C3H8 

87.5%CH4 

6.5%C2H6 
4%C3H8, 2%C4H10 
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Fig.10 Predicted pressure as a function of crank angle at different equivalence 

ratios from the 2D-CFD simulations 
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6. RESULTS AND DISCUSSION 

 

The results from single-zone, multi-zone, two-dimensional non-reacting CFD, and 

combustion CFD simulations are presented and discussed in this section. In section 6.1, the 

single-zone simulation results including the effect of operating parameters on HCCI 

combustion and emission characteristics are provided and analyzed in two different 

settings. This part not only shows the results for natural gas but also compares them with 

the gasoline cases and the dual fuel cases with additional dimethyl ether (DME) addition. 

Next in section 6.2, the temperature and concentration distributions obtained from the 

cold-flow CFD simulations are shown and discussed, followed by the multi-zone 

simulation results illustrating the effect of these stratifications on the natural gas HCCI 

combustion. Finally in section 6.3, the results from the two-dimensional combustion CFD 

model are presented to better visualize the HCCI combustion process. 

 

6.1 Results from single-zone simulations 

In this sub-section, the single-zone results are presented and include the following: 

(1) the minimum initial temperature (TIVC,min) approach, (2) the effect of operating 

conditions on TIVC,min, (3) the best efficiency temperature (TIVC,beff) approach, (4) the effect 

of operating conditions on TIVC,beff, (5) the comparison of natural gas and gasoline at best 

efficiency conditions, and (6) the potential of NG/DME duel fuel operation 
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6.1.1 Minimum initial temperature approach 

As described earlier in this paper, the characteristics of HCCI combustion, e.g. start 

of combustion (SOC), is largely dictated by the chemical kinetics. Chemical kinetics are 

greatly influenced by the thermodynamic conditions in the combustion chamber, and the 

temperature is the most influencing thermodynamic property. So at the start of the 

simulation (IVC), a range of initial temperatures are examined to find the minimum initial 

temperature, TIVC,min, which is necessary for complete combustion. As an example, figure 

11 shows the fraction of burned fuel at EVO as a function of initial temperature at IVC. 

Figure 12 shows the in-cylinder pressure curves as a function of crank angle for different 

initial temperatures at IVC. Figures 11 and 12 illustrate the process to determine TIVC,min. In 

the present study, complete combustion is defined as 99% or more of the fuel is consumed. 

The resolution of this TIVC,min search process is set to 1 K. Theoretically, TIVC,min represents 

the lower limit of successful HCCI combustion. As shown, for initial temperatures below 

TIVC,min, ignition is not successful and the result is essentially a “motoring” cycle. 
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Fig.11 Determine TIVC,min by 

examining burned fraction at EVO 

Fig.12 Confirm TIVC,min by comparing 
pressure curves 

 

6.1.2 Effect of operating conditions on the minimum initial temperature 

So, to study the effect of operating conditions on the TIVC,min and auto-ignition 

threshold, parametric studies were conducted (Table 8). For each case, TIVC,min is 

determined. The differences in TIVC,min by using different fuels are compared in figures 

13-16. Figure 17 compares the temperatures and pressures at the start of combustion (1% 

heat release) for different fuels. 
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Table 8 Parametric studies for investigating TIVC,min in single-zone simulations 

Cases 
TIVC,min 

Varying (K) 
P@IVC 

(bar) 
Equivalence 

Ratio 
Engine speed 

(RPM) 
Compression 

Ratio 

Base case TIVC,min 1.0 0.3 800 18.8 

PIVC TIVC,min 0.6 – 2.0 0.3 800 18.8 

Φ TIVC,min 1.0 0.2 – 0.7 800 18.8 

N TIVC,min 1.0 0.3 800 – 4000 18.8 

CR TIVC,min 1.0 0.3 800 10 – 22 

 

Figure 13 shows the minimum required temperature at IVC as a function of 

compression ratio for natural gas, gasoline, and DME. The area above each curve indicates 

the operating conditions at which the combustion efficiency predicted by the single-zone 

model is higher than 99%. On the other hand, the area below each curve implies the cases 

with low combustion efficiency or misfire cases. All three fuels need more and more help 

of intake heating for successful HCCI combustion as compression ratio decreases. This is 

because the compression work is reduced as compression ratio decreases and the 

auto-ignition threshold needs to be reached by a higher initial temperature. Apparently, 

n-heptane needs the least intake heating due to its high cetane number. Natural gas requires 

the highest initial temperatures among three fuels because of its high octane number (lower 

cetane number), and iso-octane is in between. Similar trends with respect to the fuel are 

also observed in the following figures (14-16).  

Figure 14 shows the minimum required temperature at IVC (Tivc,min) as a function 

of equivalence ratio for using natural gas, gasoline, and DME as fuels. With the increase of 
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equivalence ratio, a higher initial temperature is required for auto-ignition to occur. Two 

factors are affecting the Tivc,min with equivalence ratio (Φ) variations: (1) the change in ratio 

of specific heats (ϒ), and (2) the change in the auto-ignition threshold (flammability). Fuel 

species have lower specific heat ratios than air, so a higher Φ leads to a lower the overall 

specific heat ratio. If assuming isentropic compression, a lower specific heat ratio results in 

a lower temperature due to compression which requires a higher initial temperature to 

reach the auto-ignition threshold. In addition, the change in equivalence ratio would also 

affect the flammability of the fuel/air mixture. As equivalence ratio reduces, the threshold 

of the HCCI combustion of the fuel/air mixture increases and therefore a higher initial 

temperature is required for successful auto-ignition, as seen in figure 14. Also in figure 14, 

natural gas requires the highest initial temperature among the three fuels. 

 

  
Fig.13 TIVC,min as a function of 
compression ratio for natural gas, 

gasoline and dimethyl ether 

Fig.14 TIVC,min as a function of 
equivalence ratio for natural gas, 

gasoline and dimethyl ether 
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Figure 15 shows the minimum required temperature at IVC (Tivc,min) as a function 

of engine speed which is varied from 800 to 4000 rpm at the increment of 800. When the 

engine speed is increased, the residence time for all reactions reduces, which means there is 

less time for the reactants to react with each other. This indicates the characteristic time of 

the reactions related to ignition must be shorter to make the chain branching happen. So the 

auto-ignition threshold is increased due to the shortened characteristic time. Then the 

minimum initial temperature is correspondingly increased to ensure successful 

auto-ignition. Although less relative heat transfer is expected at higher engine speed, the 

overall effect of increasing speed is still to increase the minimum initial temperature. 

Figure 16 shows the minimum required temperature at IVC (TIVC,min) as a function of 

pressure at IVC for three different fuels. As initial pressure increases, a lower initial 

temperature is required for successful HCCI combustion because the auto-ignition 

threshold is reduced. This effect can be seen for iso-octane and natural gas cases.  
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Fig.15 TIVC,min as a function of engine 

speed for natural gas, gasoline and 
dimethyl ether 

Fig.16 TIVC,min as a function of 
pressure at IVC for natural gas, gasoline 

and dimethyl ether 

 

Figure 17 shows the temperatures and pressures at the start of combustion (SOC, 

defined as 1% heat release) at different operating conditions for all three fuels. At the start 
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1000K to 1200K and pressure ranges from 20bar to 60bar. In comparison, temperature and 

pressure ranges for gasoline is around 900K-1100K and 20bar to 55bar. The cases with 

DME as fuel have the lowest temperatures and pressures at SOC among three fuels, 

ranging from 750K to 900K and 20bar to 45bar. The differences in pressure and 

temperature at SOC between the fuels are again mainly due to their difference in the 

flammability, represented by the octane rating. Another observation from figure 17 is that 
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pressure threshold for auto-ignition is not as important as the temperature threshold. 

 

 
Fig.17 Temperature and pressure at start of combustion for different conditions and 

fuels 
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Fig.18 Determine the TIVC,beff by comparing indicated efficiencies  

for a sweep of temperatures at IVC 

 

6.1.4 Effect of operating conditions on the best efficiency temperature 

In order to compare the effect of operating parameters for using natural gas and 

gasoline as fuel in HCCI engines, the parametric studies shown in Table 9 are completed 

and four parameters are examined: equivalence ratio, engine speed, EGR level, and 

pressure at IVC. Figures 19-22 have shown the effect of each parameter. 

 

Table 9 Parametric studies for investigating TIVC,beff in single-zone simulations 
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TIVC,beff 

Varying (K) 
P@IVC 

(bar) 
Equivalence 

Ratio 
Engine speed 

(RPM) 
EGR 

Fraction 

Base case TIVC,beff 1.0 0.4 800 0 

PIVC TIVC,beff 0.6 – 2.0 0.4 800 0 

Φ TIVC,beff 1.0 0.8 – 1.5 800 0 

N TIVC,beff 1.0 0.4 800 – 4000 0 

EGR TIVC,beff 1.0 0.4 800 0 – 0.4 
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Fig.19 TIVC,beff as a function of 

equivalence ratio for natural gas and 
gasoline surrogate 

Fig.20 TIVC,beff as a function of engine 
speed for natural gas and gasoline 

surrogate 

 

  
Fig.21 TIVC,beff as a function of EGR 
fraction for natural gas and gasoline 

surrogate 

Fig.22 TIVC,beff as a function of 
pressure at IVC for natural gas and 

gasoline surrogate 
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that higher equivalence ratio reduces the temperature needed at best efficiency. The drop in 

TIVC,beff as equivalence ratio increases is more significant than for gasoline. This is because 

that the absolute mass of n-heptane (17% volume) in the gasoline, which has a much lower 

auto-ignition temperature, increases as the equivalence ratio goes up. More chemical 

energy is released by the early auto-ignition of n-heptane and facilitates the auto-ignition of 

iso-octane and toluene in the gasoline. This effect is relatively smaller for natural gas since 

the mass fractions of propane (6% volume) and butane (2% volume) are much less and 

their auto-ignition temperatures are closer to methane and ethane. Comparing with TIVC,min, 

the TIVC,beff are around 20K higher for the natural gas cases and 5K higher for the gasoline 

cases. This further implies that natural gas HCCI engines have much higher requirement on 

the intake temperature which needs to be achieved either by intake heating or residual gas 

trapping. 

Figure 20 shows the TIVC,beff for natural gas and gasoline as a function of engine 

speed. Quite similar trend as in the study of TIVC,min, higher engine speed requires higher 

initial temperature to compensate for the reduction in the residence times of the reactions. 

The engine speed has almost the same effect on natural gas and gasoline as shortening of 

residence times equally applies to any reactions.  

Figure 21 shows the TIVC,beff for natural and gasoline as a function of exhaust gas 

recirculation fraction. Here EGR is cooled to the same temperature as the initial 

temperature at IVC and equivalence ratio is kept constant for different EGR levels. At 

higher EGR, more combustion energy is absorbed by higher amount of CO2 and H2O 
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presented in the cylinder and therefore a higher initial temperature is needed to reach the 

best efficiency point.  

Figure 22 shows the TIVC,beff for natural and gasoline as a function of pressure at 

IVC. Both for natural gas and gasoline, the increase in pressure at IVC reduces the 

temperature needed for best efficiency point. The main reason of this is that higher pressure 

increases the absolute mass of the species with lower auto-ignition temperatures 

(n-heptane in gasoline, propane and butane in natural gas) and these species release more 

chemical energy before the other species auto-ignite. Also high pressure could affect 

certain reactions which have strong pressure dependence. 

 

6.1.5 Engine efficiencies for using natural gas in comparison with gasoline 

This section continues to compare natural gas with gasoline in terms of the 

indicated efficiency and volumetric efficiency at the best efficiency point (TIVC = TIVC,beff) 

under various operating conditions. Some of the fuel properties are shown in Table 10.  

 

Table 10 Lower Heating values, stoichiometric A/F ratios, and adiabatic flame 
temperatures for natural gas and gasoline surrogate 

Fuel 
surrogate 

Lower 
heating value 

(kJ/kmol) 

Lower 
heating 

value [39] 
(kJ/kg) 

Stoichiometric 
A/F ratio, 

molar 

Stoichiometric 
A/F ratio, 

mass 

Adiabatic 
flame temp.† 

(K) 

Natural gas 9.35×105 49626 10.98 16.79 2596 

Gasoline 4.71×106 43927 54.95 14.78 2636 

† Constant volume and internal energy, stoichiometric, initially at 300K and 1bar 
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Fig.23 Indicated efficiency and 

volumetric efficiency as a function of 
equivalence ratio for natural gas and 

gasoline surrogate 

Fig.24 Indicated efficiency and 
volumetric efficiency as a function of 

engine speed for natural gas and 
gasoline surrogate 

 

Figure 23 shows the indicated and volumetric efficiencies as functions of 
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The efficiencies for the natural gas cases are lower largely due to the higher heat loss and 

lower specific heat ratio. Higher heat transfer is a direct result of higher TIVC,beff (recall 

figure 19) and the resulting higher combustion temperature. Lower specific heat ratio is 

caused by the higher mole fraction of the fuel species since natural gas has much lower 

molar stoichiometric air-fuel ratio than gasoline. A reduction of specific heat ratio reduces 

the amount of energy that can be extracted by the piston. Another observation from the plot 
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is that the indicated efficiency first goes up and then drop as equivalence ratio increases. At 

very low equivalence ratio, the chemical kinetics and combustion become slower and less 

complete which hurts the thermal efficiency. As the equivalence ratio increases, though 

combustion efficiency is improved, the heat loss as well as the fraction of heat loss out of 

total fuel energy is greater as result of a higher combustion temperature. In addition, higher 

equivalence ratio leads to lower specific heat ratio which reduces the thermal efficiency. So 

the indicated efficiency reaches a peak around Φ equal to 0.3. In terms of the volumetric 

efficiency, it is straightforward that the gasoline cases are higher and the differences are 

larger at higher equivalence ratios, since volumetric efficiency is strongly affected by the 

intake temperature. This observation poses another issue for using natural gas in HCCI 

engines which is the relatively lower torque output at the same equivalence ratio due to the 

low volumetric efficiency. 

Figure 24 shows the indicated and volumetric efficiencies as a function of engine 

speed. The indicated thermal efficiency for both natural gas and gasoline increases as the 

engine speed increases. This increase is again related to the amount of heat transfer. 

Although TIVC,beff are higher (figure 20) at higher speeds, less time is allowed for 

transferring heat from the gas to the walls as the real time of one cycle become shorter as 

engine speed increases. The overall effect is to reduce the fraction of heat loss out of total 

fuel energy and to improve the thermal efficiency. The volumetric efficiency, however, 

decreases with the increase of engine speeds. Again this is directly dictated by the higher 

TIVC,beff needed at higher speeds. So running HCCI engines, either with gasoline or natural 
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gas, at higher speeds could improve thermal efficiency but at the penalty of torque output. 

Figure 25 shows the indicated and volumetric efficiencies as a function of EGR 

fraction. The indicated thermal efficiency approximately remains nearly constant as the 

EGR level changes for both natural gas and gasoline cases. This might be attributed to the 

balance between lowered combustion temperature due to the EGR dilution effect and 

increased TIVC,beff (figure 21). Volumetric efficiency slightly drops as the EGR fraction 

increases and TIVC,beff increases.  

 

 

 

  
Fig.25 Indicated efficiency and 

volumetric efficiency as a function of 
EGR fraction for natural gas and 

gasoline surrogate 

Fig.26 Indicated efficiency and 
volumetric efficiency as a function of 
pressure at IVC for natural gas and 

gasoline surrogate 
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Figure 26 shows the indicated and volumetric efficiencies as a function of intake 

pressure at IVC. Having higher intake pressure slightly increases the indicated efficiency 

as a result of lower TIVC,beff and corresponding lower heat loss. Furthermore, increasing 

intake pressure greatly improves the volumetric efficiency due to the increase in the mass 

of air/fuel mixture. These results imply that intake boosting is an attractive option to have 

for HCCI engines fueled with natural gas or other high-octane fuels. 

 

6.1.6 Potential of using natural gas and dimethyl ether mixture 

As shown and discussed in the previous sub-sections, the biggest challenge for 

using natural gas in HCCI engines is the high intake temperature required for auto-ignition 

and complete combustion. Comparing with gasoline which has been used in current HCCI 

engines, natural gas needs 30-100K higher for intake temperature depending on the 

operating conditions. As analyzed, increased intake temperature causes the lower thermal 

efficiencies and volumetric efficiencies. So adding another fuel to reduce the auto-ignition 

requirements would make natural gas more practical to be used in HCCI engines.  

Table 11 below lists the auto-ignition temperatures for some hydrocarbon species 

[40]. Among them dimethyl ether is one of the promising candidates for dual fuel operation 

with natural gas, not only because it has low auto-ignition temperature but also it can easily 

mix with natural gas as both of them are in gas phase at ambient condition. The potential 

advantage of using the mixture of DME and natural gas are shown and discussed in the 

following. 
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Table 11 Auto-ignition temperatures for various fuel species [40] 

Species Molecular formula 
Auto-ignition 

temperature (K) 
Phase at ambient 

condition 
methane CH4 853 gas 
ethane C2H6 788 gas 

propane C3H8 743 gas 
iso-butane C4H10 735 gas 
n-butane C4H10 678 gas 

iso-octane C8H18 720 liquid 
n-heptane C7H16 488 liquid 
toluene C6H5CH3 808 liquid 

dimethyl ether CH3OCH3 623 gas 

 

Table 12 Fuel composition for natural gas and dimethyl ether mixture 

Mole fraction 
Dimethyl Ether 

(CH3OCH3) 
Methane 

(CH4) 
Ethane 
(C2H6) 

Propane 
(C3H8) 

Butane 
(C4H10) 

100% natural gas 0 0.88 0.06 0.04 0.02 

95% natural gas 
 5% dimethyl ether 

0.05 0.836 0.057 0.038 0.019 

90% natural gas 
 10% dimethyl ether 

0.1 0.792 0.054 0.036 0.018 

85% natural gas 
 15% dimethyl ether 

0.15 0.748 0.051 0.034 0.017 
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Table 13 Lower heating values, stoichiometric A/F ratios, and adiabatic flame 
temperatures for different blends of natural gas and dimethyl ether 

Mixture 
(surrogate) 

Lower 
heating  
value 

(kJ/kmol) 

Lower 
heating 
value 

(kJ/kg) [39] 

Stoichiometric 
A/F ratio, 

molar 

Stoichiometric 
A/F ratio, 

mass 

Adiabatic 
Flame 

Temp.† (K) 

100%  
natural gas 

9.35×105 49626 10.98 16.79 2596 

95% natural gas  
 5% DME 

9.83×105 48584 11.15 15.90 2600 

90% natural gas  
 10% DME 

1.03×106 47543 11.31 15.11 2605 

85% natural gas  
 15% DME 

1.07×106 46502 11.48 14.43 2609 

† Constant volume combustion 
  Stoichiometric mixture  
  Initial temperature and pressure at 300K and 1bar 

 

Three proposed blends of natural gas and DME are summarized in Table 12, and 

the corresponding change in lower heating value and stoichiometric A/F ratio are shown in 

Table 13. Figures 27-30 show the change in TIVC,beff for the different blends at various 

operating conditions and figures 31-34 show how indicated efficiency and volumetric 

efficiency are affected by the different blends. These results are discussed in detail in the 

following. 

Figure 27 shows the TIVC,beff as a function of equivalence ratio for pure natural gas 

and three proposed blends with DME. As the mole fraction of DME increases, lower 

TIVC,beff is required to reach the best efficiency point. The reduction in TIVC,beff decreases as 

equivalence ratio increases. This is mainly attributed to the increase in the mass of 

dimethyl ether with the increase of either the DME’s mole fraction or the equivalence ratio. 
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More energy is released by the oxidation of DME in the early stage of auto-ignition and 

this increases the gas temperature as well as increases the radicals needed for methane, 

ethane, and other species to initiate the chain reactions. Here DME serves as the role of 

n-heptane in the gasoline surrogate. Figure 28 shows the corresponding indicated and 

volumetric efficiency as a function of equivalence ratio. Adding DME to natural gas does 

not improve the indicated thermal efficiency probably due to the balance between lowered 

initial temperature and the longer combustion duration and more heat loss associated with 

that. The volumetric efficiencies, however, are greatly improved by adding DME 

especially with higher DME fraction or at higher equivalence ratios. This would be the 

major advantage of adding DME into natural gas. 

 

  

Fig.27 TIVC,beff as a function of 
equivalence ratio for natural gas and 

dimethyl ether mixtures 

Fig.28 Indicated and volumetric 
efficiency as a function of equivalence 
ratio for natural gas and DME mixtures 
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Figures 29 and 30 continue to show the effect of adding DME on engine 

performance as functions for all engine speeds. In figure 29, the effect of engine speed is 

quite linear to the different blends studied except for the 15% DME case at 800 RPM. 

There exists a threshold of DME fraction and going beyond this threshold the initial 

temperature requirement will be greatly reduced. Too high DME fraction, however, is also 

not desirable since the TIVC,beff is going to be below the atmospheric temperature. For the 

efficiencies comparison in figure 30, consistent results are observed as the engine speed 

increases. 

 

  

Fig.29 TIVC,beff as a function of engine 
speed for natural gas and dimethyl ether 

mixtures 

Fig.30 Indicated and volumetric 
efficiency as a function of engine speed 

for natural gas and dimethyl ether 
mixtures 
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Figure 31 shows the TIVC,beff for pure natural gas and different blends with DME as 

functions of EGR fraction varying from 0.1 to 0.4. As mentioned earlier in this section, not 

considering the intake heating effect, higher EGR fraction is going to increase TIVC,beff. 

This effect remains true for different natural gas and dimethyl ether blends. When DME 

fraction is higher, this increase in TIVC,beff is more significant. This is because more mass of 

DME is replaced with exhaust gases for a given pressure and temperature at IVC. Figure 32 

shows the indicated and volumetric efficiency for different blends of natural gas and DME 

as a function of EGR fraction. The volumetric efficiency increases with the increase of 

DME fraction and the decrease of EGR fraction. The indicated efficiency generally 

decreases as the DME fraction increases. When the DME fraction is greater than certain 

value (15% in volume here), however, the indicated efficiency is higher due to the dramatic 

drop of the initial temperature at IVC (TIVC,beff). Similar results can be observed in other 

parametric studies. 
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Fig.31 TIVC,beff as a function of EGR 
fraction for natural gas and dimethyl 

ether mixtures 

Fig.32 Indicated and volumetric 
efficiency as a function of EGR fraction 

for natural gas and dimethyl ether 
mixtures 

 

Figure 33 shows the TIVC,beff as a function of pressure at IVC for various blends of 

natural gas and DME. Figure 34 shows the corresponding indicated efficiency and 

volumetric efficiency as a function of pressure at IVC. Similar to increasing equivalence 

ratio, increasing intake pressure increases the mass of dimethyl ether which then in turn 

leads to a reduction in intake temperature requirement. This effect is even greater for the 

cases with higher DME fractions. The 15% DME case, as an example, requires intake 

temperature to be about 360K for best efficiency when PIVC = 0.8 bar, and requires almost 

no intake heating as the pressure at IVC increases to 1.0 bar, which is a reduction of 60K in 

TIVC,beff. Comparably in figure 34, the volumetric efficiency and indicated efficiency 

increase with pressure at IVC and this increase is greater for higher DME fraction cases. 
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Fig.33 TIVC,beff as a function of 
pressure at IVC for natural gas and 

dimethyl ether mixture 

Fig.34 Indicated and volumetric 
efficiency as a function of pressure at 

IVC for natural gas and dimethyl ether 
mixture 
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6.1.7 NOx emissions characteristics of natural gas HCCI engines 

At best efficiency point 

Figures 35-38 show the effects of operating parameters on NOx emission 

characteristics at the best efficiency point, i.e. TIVC is equal to TIVC,beff. Figure 35 shows the 

NOx emission corrected at 15% O2 as a function of equivalence ratio for natural gas, 

gasoline, and different blends of natural gas and DME. First, the NOx concentration of all 

the fuel and fuel blends studied increases as the increase of equivalence ratio. As the 

equivalence ratio increases, the combustion temperature increases consequently and 

therefore the NOx formation via thermal mechanism is greatly enhanced. This increase in 

the NOx concentration, from a few ppm to several thousand ppm as the equivalence ratio 

changes from 0.2 to 0.7, is dramatic for all the fuels presented in the plot. Secondly, 

different fuels produce different NOx emission at the same equivalence ratios. The 

calculation using pure natural gas shows the highest NOx prediction, while the calculation 

using gasoline shows the lowest NOx. As more and more DME is present in the natural 

gas/DME blend, less NOx prediction is observed. The difference in NOx emission due to 

the fuels could be largely attributed to the difference in TIVC,beff for different fuels. The 

natural gas cases require the highest TIVC,beff, the gasoline cases need lowest TIVC,beff, and 

adding DME to natural gas lowers TIVC,beff (as observed in figures 19 & 27 in this section). 

As the combustion temperature is in direct proportion to the initial temperature (TIVC), the 

case with higher initial temperature will have higher NOx production. Similar trends are 

found in figures 36-38 in the following. 
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Fig.35 NOx concentration corrected at 
15% O2 as a function of equivalence 
ratio for various fuels and fuel blends 

Fig.36 NOx concentration corrected at 
15% O2 as a function of engine speed 

for various fuels and fuel blends 

 

Figure 36 shows the NOx emission corrected at 15% O2 as a function of engine 

speed for natural gas, gasoline, and different blends of natural gas and DME. As the engine 

speed increases, the NOx prediction equally increases for all the fuels studied. There are 

two factors affecting the NOx formation while the engine speed is changing. On the one 

hand, higher engine speed causes higher TIVC,beff and less time for heat transfer (figures 20 

& 29) which will lead to the increase in combustion temperature and NOx formation. On 

the other hand, higher engine speed leads to less residence time for NOx formation 

reactions which tends to reduce NOx concentration. The overall effect with these two 

factors competing with each other is still to increase the NOx with the increase in engine 

speed. 
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Fig.37 NOx concentration corrected at 
15% O2 as a function of pressure at IVC 

for various fuels and fuel blends 

Fig.38 NOx concentration corrected at 
15% O2 as a function of EGR fraction 

for various fuels and fuel blends 

 

Figure 37 shows the NOx emission corrected at 15% O2 as a function of engine 

speed for natural gas, gasoline, and different blends of natural gas and DME. The effect of 

intake pressure on NOx is related to the TIVC,beff and the change in combustion phasing. 

These two factors almost balance out under the operating condition studied and make the 

effect of intake pressure on NOx relatively weak.  

Figure 38 shows the NOx emission corrected at 15% O2 as a function of engine 

speed for natural gas, gasoline, and different blends of natural gas and DME. The NOx 

emission reduces as the EGR fraction increases. Since the level of NOx for the baseline 

case is relatively low, the effect of EGR seems not significant. The EGR is very effective in 

reducing combustion temperature and NOx emission at other operating conditions. 
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Contributions of different NO mechanisms 

As described in section 4.6, there are three major mechanisms responsible for most 

of the NO formation. To illustrate the importance of these NO mechanisms, using the 

single zone simulations, figures 39-42 show the percent contributions of the different NO 

mechanisms to the total NO emissions at different operating conditions. The operating 

conditions varied in this parametric study are summarized in Table 14.  

Figure 39 shows the percent contribution of thermal, prompt, and nitrous oxides 

intermediate mechanism to the total NO emission as a function of engine speed. As engine 

speed increases, based on the kinetics, the ignition timing is retarded and the imep values at 

different engine speeds are different. Figure 40 shows similar results as a function of initial 

pressure at intake valve closing. As observed in these plots, the NO production from 

thermal mechanism accounts for over 70% for most of the conditions studied. The N2O 

intermediate mechanism accounts for up to 30% of the total NO and is the second most 

important NO source. This could be attributed to the use of relatively lean mixtures (Φ=0.4) 

in the examined conditions. Because of the lean condition and no local rich zones from the 

homogeneous charge, prompt NO mechanism becomes insignificant in these conditions 

and only accounts for around 5% of the total NO. As observed, these three mechanisms do 

not always add up to 100%. Since not all the NO related reactions are categorized into these 

three mechanisms, other reactions still contribute to the formation or destruction of NO. 

But their contributions are relative small and probably too trivial to be grouped as another 

mechanism. 
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Table 14 Parametric studies for investigating NO mechanisms in single-zone simulations 

Cases 
P@IVC 

(bar) 
Equivalence 

Ratio 
Engine speed 

(RPM) 
EGR 

Fraction 
Other Parameters 

Base case 1.0 0.4 1000 0 Same engine spec: 
Bore = 112mm 
Stroke = 115mm 
Comp. Ratio = 18.8 
Homogeneous mixture 
Simulation starts from 
IVC to EVO 

PIVC 0.6 – 1.5 0.4 1000 0 

Φ 1.0 0.3 – 1.0 1000 0 

N 1.0 0.4 500 – 3000 0 

EGR 1.0 0.4 1000 0 – 0.4 

 

 
Fig.39 Percent contributions of different NO mechanisms to the total NO emission 

as a function of engine speed at Φ=0.4, PIVC=1.0, and no EGR 
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Fig.40 Percent contributions of different NO mechanisms to total NO emission as a 

function of pressure at IVC at Φ=0.4, RPM=1000, and no EGR 

 

The change in the operating parameters can also affect, to some extent, the 

contributions of different NO mechanisms. In figure 40, as an example, increasing the 

initial pressure at intake valve closing increases both the absolute value and the percentage 

contribution of the NO from N2O intermediate mechanism. This is because the N2O 

intermediate mechanism involves a three-way collision reaction which is enhanced at 

higher pressure.  

In figures 41 and 42, the effects of equivalence ratio and EGR level on the different 

mechanisms have also been examined. The increase in equivalence ratio restrains the 

importance of N2O intermediate mechanism, while enhancing the thermal and prompt 

mechanisms as the mixture becomes richer, and the gas temperature becomes higher. 
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Higher EGR percentage greatly reduces the absolute value of NO from each mechanism 

due to the dilution effect and the lowered temperature. However, the increase in EGR level 

slightly increases the contribution of N2O mechanism which is less dependent on 

temperature than the other mechanisms. 

 

 
Fig.41 Percent contributions of different NO mechanisms to total NO emission as a 

function of equivalence ratio at RPM=1000, PIVC=1.0, and no EGR 
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Fig.42 Percent contributions of different NO mechanisms to total NO emission as a 

function of EGR fraction at Φ=0.4, PIVC=1.0, and RPM=800 
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shown, followed by a few parametric studies showing the effect of operating parameters on 

these two distributions. Then the multi-zone simulation results are shown and compared 

with the single-zone results to illustrate the effect of temperature and equivalence ratio 
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6.2.1 In-cylinder distributions of temperature and equivalence ratio 

Contrary to the homogeneous assumption of the single-zone model, the 

temperature and species concentrations in the cylinder are usually not uniform in real 

engines. As described in section 4, by employing the two-dimensional non-reacting CFD 

model, the in-cylinder distributions of temperature and equivalence ratio are obtained. 

 

 
Fig.43 Initialization of the 2-D non-reacting CFD simulation 
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Fig.44 In-cylinder distribution of temperature at IVC from the two-dimensional 
non-reacting CFD simulation, at RPM=800, Φin=0.45, Tin=380K, and TR=800K 

 

 
Fig.45 In-cylinder distribution of equivalence ratio at IVC from the 2-D 

non-reacting CFD simulation, at RPM=800, Φin=0.45, Tin=380K, and TR=800K 
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Figure 43 shows the initial setup of the two-dimensional non-reacting CFD 

simulation. The temperatures at different walls are estimated to be different but remain 

constant during the simulation. Inlet properties such as the inlet temperature, inlet pressure, 

and species concentrations are defined. Initial conditions such as the residual temperature 

and species inside the cylinder are also defined. 

Figures 44 and 45 show the in-cylinder distributions of temperature and 

equivalence ratio at IVC from the two-dimensional non-reacting CFD simulations. By 

dividing the temperature into several groups and calculating the area that the temperature 

groups occupy, the distributions of the temperature are then obtained and ready to be 

employed as inputs in the multi-zone model. Similar processes are done for obtaining the 

distribution of the equivalence ratio. Figures 46 and 47 show the distribution of 

temperature and equivalence ratio at 800 RPM, inlet equivalence ratio of 0.45, inlet 

temperature of 380K, and residual temperature of 800K. The temperature ranges from 

360K to 450K, averages at 427K, and is divided into 19 zones. In the near wall region, 

although there is small volume, the temperature ranges from 360 to 400K. Then those 

temperature groups ranging from 360K to 400K (in figure 46) represent the zones in the 

near wall boundary layer. Similarly, the equivalence ratio ranges from 0.36 to 0.42 which is 

grouped into 11 zones, and the average equivalence ratio is 0.394. 
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Fig.46 Percent volume of the cells as a 
function of temperature group at IVC 

Fig.47 Percent volume of the cells as a 
function of equivalence ratio group at 

IVC 
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speed changes and therefore is not shown here.  

Figure 49 shows the effect of residual gas temperature on the in-cylinder 

temperature distribution. Similar to the effect of engine speed, as the residual gas 

temperature increases the temperature stratification level is higher and the average 

temperature is higher as well. About 200K increase in the residual gas temperature causes 

7K increase in the average in-cylinder temperature. The impact, however, is much smaller 

than the one of engine speed. The residual gas temperature doesn’t have a strong effect on 

equivalence ratio. 

Figure 50 shows the effect of inlet equivalence ratio (Φin) on the in-cylinder 

equivalence ratio distribution. Higher Φin tends to produce wider equivalence ratio at IVC 

as the standard deviation of Φ increases from 0.010 to 0.014. In addition, the mass 

averaged equivalence ratio at IVC is always about 0.05 lower than Φin, which is due to the 

dilution of the residual gas already present in the cylinder at IVC. 
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Fig.48 Volume fraction of the cells as a function of temperature category at various 

engine speeds 
 

 
Fig.49 Volume fraction of the cells as a function of temperature category for 

various residual gas temperatures 
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Fig.50 Volume fraction of the cells as a function of equivalence ratio category for 

various inlet equivalence ratio 
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Fig.51 Predicted pressure profiles 

from single-zone and multi-zone with 
temperature stratification only 

Fig.52 Predicted heat release rates 
from single-zone and multi-zone with 

temperature stratification only 
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multi-zone simulation is about 100 ppm lower than that from the single-zone simulation. 

Although for the multi-zone results the combustion duration is longer which leaves more 

time for NOx formation, the reduction in average temperature and peak temperature still 

dominates and leads to less NOx prediction.  

Figure 55 shows different zonal temperatures as a function of crank angle. As 

mentioned, earlier ignitions and higher peak temperatures are observed for the zones with 

higher initial temperatures. Some zones, such as zone 16 and 19 in figure 55, misfire as the 

initial temperatures are too low for them to auto-ignite misfire. This is a closer 

approximation to the case in real HCCI engines in which the fuel usually is not burned 

simultaneously and completely. 

 

  
Fig.53 Predicted temperature profiles 
from single-zone and multi-zone with 

temperature stratification only 

Fig.54 Predicted NOx emissions from 
single-zone and multi-zone with 
temperature stratification only 
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Fig.55 Zonal temperature histories as a function of crank angle for the multi-zone 

model with temperature distribution only at RPM=800, Φ = 0.45, TIVC,avg=427 K, and 
PIVC=1.6 bar. 
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multi-zone model is about 35 ppm higher than that from the single-zone simulation. This is 

mainly attributed to non-linear effect of the temperature on NOx formation. The zones with 

higher initial temperatures will have higher peak temperature and longer high temperature 

periods than the zones with lower initial temperatures, as shown in figure 60. Thus the NOx 

concentration in these zones will be higher than that of the single-zone, and the reduction in 

NOx formation in lower temperature zones cannot fully compensate that increase. 

 

  
Fig.56 Predicted pressure as a 
function of crank angle from the 

single-zone and multi-zone with fuel 
concentration stratification only 

Fig.57 Predicted heat release rates as 
a function of crank angle from the 

single-zone and multi-zone with fuel 
concentration stratification only 
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Fig.58 Predicted temperature as a 

function of crank angle from the 
single-zone and multi-zone with 
temperature stratification only 

Fig.59 Predicted NOx emissions as a 
function of crank angle from the 
single-zone and multi-zone with 
temperature stratification only 

 

 
Fig.60 Zonal temperature as a function of crank angle for the multi-zone model 
with Φ distribution only RPM=800, Φavg = 0.45, TIVC,avg=427 K, and PIVC=1.6 bar 
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Figure 61 compares the CO, UHC, and NOx predictions from the different models 

with the experimental measurements from Jun et al. [28]. The CO and UHC predictions 

from single-zone model and multi-zone with phi distribution only are almost zero. The 

results from the multi-zone with temperature distribution only start to reflect some CO 

and UHC emissions, mainly from the misfired zones mentioned earlier. But the absolute 

value of the CO and UHC predictions are still much lower than the experimental data. 

This is because not all the crevices such as the piston ring gaps are included in the model 

and lots of CO and UHC are formed in these crevices in real engine. In addition, in the 

experiment the combustion rate is lower than the predictions, shown as lower pressure 

rise rate in figure 7, and a higher percent of the fuel species are partially oxidized to CO 

and UHC due to the low combustion temperature. In terms of the NOx emissions, the 

measurement shows very low NOx concentration. The discrepancies between the models 

and the measurements are still mainly due to the differences in the temperature and 

combustion rate. The models over-predicted the combustion rate which then leads to a 

higher gas temperature and higher NOx concentration. Again, the multi-zone model with 

temperature distribution only shows better capability approaching the experimental value 

than the other two models. More calibrations specific for NOx emissions could improve 

the agreement with the experimental data. 
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Fig.61 Comparison of the emission predictions and measurements 
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Fig.62 The boundary and initial conditions of the 2-D combustion CFD model 
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deg aTDC. The temperature quickly builds up from the center to the cylinder walls as a lot 

of heat is released due to the combustion reactions. The majority of the heat release occurs 

in a very short period, approximately from 0.5 to 2.5 deg aTDC. The pattern of the heat 

release is very close to the change in the mole fraction of methane and ethane described 

earlier. 

Figure 67 shows the mole fraction of NO contours from -1.0 to 12.0 deg aTDC. The 

NO formation is obviously lagged behind the temperature build-up by 2-4 degrees in crank 

angle. The highest NO concentration exists in the center of the cylinder where the 

temperature is higher. These observations indicate that the thermal mechanism, which 

requires relatively long residence times, still dictates the NO formation. 

Figure 68 shows the mole fraction of CO contours from -1.0 to 4.0 deg aTDC. A lot 

of CO builds up around 0.5 deg aTDC and a lot of heat is released when the CO is oxidized 

to CO2 shortly. As the main combustion and heat release process is ending, CO is still 

forming and staying in the corner of the chamber where the temperature are relatively low 

due to the heat loss to the walls. Finally the CO in these regions will contribute to the CO 

emissions if they are not oxidized later in the expansion stroke. 
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Fig.63 In-cylinder distribution of mass fraction of methane (CH4) during the natural gas 
HCCI combustion from CFD model with Gri-mech 3.0 kinetics 
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Fig.64 In-cylinder distribution of mass fraction of ethane (C2H6) during the natural gas 

HCCI combustion from CFD model with Gri-mech 3.0 kinetics 
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Fig.65 In-cylinder distribution of temperature during the natural gas HCCI 

combustion from CFD model with Gri-mech 3.0 kinetics 

 

 

 



88 

 

 

 

 
Fig.66 In-cylinder distribution of heat release during the natural gas HCCI 

combustion from CFD model with Gri-mech 3.0 kinetics 
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Fig.67 In-cylinder distribution of mole fraction of NO during the natural gas HCCI 

combustion from CFD model with Gri-mech 3.0 kinetics 
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Fig.68 In-cylinder distribution of mole fraction of CO during the natural gas HCCI 
combustion from CFD model with Gri-mech 3.0 kinetics 
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7. SUMMARY AND CONCLUSIONS 

 

A single-zone model, a multi-zone model, and a two-dimensional computational 

fluid dynamics model have been developed and employed to study the potential of using 

natural gas in HCCI engines. The three models first were calibrated and validated by 

comparing the predicted pressure profiles with the measurements. The observations and 

conclusions from the three models are summarized as follows.  

Using the single-zone model, the effect of operating conditions on the ignition 

characteristics, engine performance, thermal efficiency, and NOx emissions of the HCCI 

engine has been determined. The results for using natural gas, gasoline, DME, and natural 

gas/DME blends as the fuel have been compared and discussed. Some of the conclusions 

are: 

 

1. The operating conditions, including equivalence ratio, engine speed, and intake 

pressure, have great influences on the HCCI ignition characteristics. The TIVC,min 

(minimum required temperature at IVC) for auto-ignition and complete combustion, 

decreases as the equivalence ratio increases and the intake pressure increases, and 

increases as the engine speed increases. In addition to the operating conditions, 

compression ratio has an even greater effect on TIVC,min. For the natural gas case, the 

increase in compression ratio from 18 to 22 could reduce the requirement of TIVC,min by 

40K. The results implies that to reduce the intake temperature requirement for using 
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natural gas, higher compression ratio, intake boosting, and relative lower engine speed 

are desirable. 

 

2. The operating conditions also have great effect on the HCCI engine performance and 

efficiencies. The volumetric efficiency increases with the increase of equivalence ratio or 

intake pressure, or the decrease of engine speed or exhaust gas recirculation level. The 

indicated thermal efficiency peaks at a certain equivalence ratio, and a higher or lower 

equivalence ratio than this value will decrease the indicated efficiency. The increase in 

engine speed improves the indicated efficiency while the change in intake pressure and 

EGR level doesn’t have a strong influence on the efficiency. In terms of the volumetric 

efficiency, intake boosting is a very desirable option to increase the specific power output, 

and operating at high engine speed is not attractive as it deteriorates the volumetric 

efficiency. In terms of the indicated efficiency, operating with a relatively lean mixture is 

still a desirable option for natural gas HCCI engines. 

 

3. The NOx emissions of the HCCI engine are greatly increased as the equivalence ratio 

increases or the EGR level decreases. The increase in the engine speed or the intake 

pressure slightly increases the NOx emission. Through the study of different NO 

mechanisms, it is observed that most of the NO (over 70% at most of the conditions) still 

comes from thermal mechanism in HCCI engines. The increase in intake pressure will 

make the nitrous oxide intermediate mechanism more important and the increase in the 
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equivalence ratio toward one will enhance the prompt mechanism. 

 

4. The comparison of natural gas, gasoline, and DME shows that the use of natural gas in 

HCCI engines requires the highest intake temperatures at IVC to ensure auto-ignition and 

to reach the best efficiency point. The TIVC,min and TIVC,beff for natural gas are typically 

60-100K higher than those for gasoline. Dimethyl ether is very easy to auto-ignite and 

needs no intake heating at most of the operating conditions. The characteristics of 

gasoline lie between these two. So adding DME into natural gas greatly reduces the 

intake temperature requirements. Natural gas with 10% of DME addition in volume 

requires 20-60K less in TIVC,beff depending on the operating conditions. Furthermore, 

natural gas blending with DME reduces the NOx emission as a result of the decreased 

temperature. 

 

The results from the non-reacting CFD simulation and the multi-zone simulations 

show the effect of in-cylinder temperature and concentration distributions on HCCI 

combustion characteristics, such as ignition timing, combustion duration, and NOx 

formation. Major observations are summarized below, 

 

1. Both the temperature and equivalence ratio are not homogeneous in the combustion 

chamber. The results from the two-dimensional non-reacting CFD simulations indicates 

that the temperature ranges from 360K to 450K and the equivalence ratio ranges from 
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0.36 to 0.42 at the engine speed equal to 800 RPM, the inlet equivalence ratio equal to 

0.45, the inlet temperature equal to 380, and the residual temperature equal to 800K. The 

change in operating conditions also will affect the distributions in temperature and 

equivalence ratio. Increasing the engine speed and the residual gas temperature will 

increase the average temperature in the cylinder and result in a more stratified 

temperature distribution. Similarly, the increase in inlet equivalence ratio will cause a 

more stratified concentration distribution. 

 

2. In terms of the HCCI combustion, the stratification of the temperature will advance the 

ignition timing, extend the combustion duration, and reduce the peak temperature and 

pressure. The zones with higher temperature will auto-ignite earlier and have higher 

combustion temperature than the average, while some zones with low temperature will 

misfire and produce a lot of HC and CO emissions. This implies that introducing 

temperature stratifications helps to reduce the intake temperature requirement of using 

natural gas in HCCI engines, and reduces combustion noise. The NOx prediction is lower 

for the case with temperature stratifications than the homogeneous case due to the 

decrease in the average temperature. This decrease in the average temperature is caused 

by the misfire of those coldest zones. 

 

3. The stratification of the concentration, i.e. equivalence ratio in the current study, 

doesn’t have a strong effect on the HCCI combustion characteristics. The zones with the 
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same temperature and small difference in the equivalence ratio, the difference of 0.02 as 

observed, have almost the same combustion phasing. With the equivalence ratio 

stratification only, the predicted pressure and average temperature are very similar to the 

single-zone results. The NOx prediction, however, is higher due to the non-linear effect of 

temperature on the NOx formation. 

 

The use of the two-dimensional combustion CFD model enables the visualization 

of the HCCI ignition and combustion process in the contour plots, including the 

temperature, species concentration, and heat-release contours. By looking at the 

heat-release contour plot, it is observed that significant amount of the reaction heat is first 

released in the center of the combustion chamber where the highest temperature exists 

and the combustion is initiated. Then the combustion energy is released in the 

surroundings as the air/fuel mixture is heated up by the initial heat release and is oxidized 

in the following. Other contour plots, such as the oxidation of methane, temperature, CO 

and NOx formation, follow the similar pattern as the heat release contour. 
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8. RECOMMENDATIONS 

 

The recommendations for future research work concerning the modeling of 

natural gas HCCI engines are summarized as follows, 

 

1. For the multi-zone model, the number of zones has certain effect on the simulation 

results as well as the simulation time. Efforts could be made to optimize the number of 

zones to achieve fastest simulation while maintaining reasonable accuracy. 

 

2. For the computational fluid dynamics simulations, currently two-dimensional 

geometry is used due to the limitation of the computational time and resources. When 

supercomputing is available and the computation time is not a crucial factor, 

three-dimensional geometry could be used to achieve the better accuracy and better 

reflect the real physics. Furthermore, with more powerful computing capability detailed 

chemical kinetics could be coupled with the fluid dynamics instead of using reduced 

mechanism in the current study. In particular, the turbulence-chemistry interaction could 

be included to gain more insight into the HCCI combustion process. 

 

3. One of the major challenges of HCCI engines is to control the ignition and combustion 

process since there is no direct control device such as spark plug or high pressure injector. 

So the HCCI engine model could also be used for the control scheme development. In 
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this case, the simulation time should be carefully controlled. Very likely more 

assumptions and simplifications would be made to make models more efficient for 

control purpose. 

 

4. Engine system simulation could be further developed to study the characteristics of the 

complete natural gas HCCI engine system. It could include fuel delivery system, intake 

and exhaust system, external EGR system, intake heating devices, exhaust after-treatment 

system, and etc. 
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NOMENCLATURE 

 

aTDC    After Top Dead Center 

iA     Pre-exponential coefficient of the ith reaction 

A/F    Air to fuel 

B     Bore 

pc     Specific heat at constant pressure 

pkc     Specific heat at constant pressure of the kth species 

C1    Kinetics including only methane 

C1-C4   Kinetics including methane, ethane, propane, and butane 

CFD    Computational Fluid Dynamics 

4CH    Molecular formula of methane 

2 5C H OH   Molecular formula of ethanol 

2 6C H    Molecular formula of ethane 

3 3CH OCH   Molecular formula of dimethyl ether 

3 8C H    Molecular formula of propane 

4 10C H    Molecular formula of butane 

6 5 3C H CH   Molecular formula of toluene 

n- 7 16C H   Molecular formula of n-heptane 

i- 8 18C H    Molecular formula of iso-octane 

CA          Crank Angle 
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CD     Combustion Duration 

CI     Compression-Ignition 

CNG    Compressed Natural Gas 

CPU    Central Processing Unit 

CO     Molecular formula of carbon monoxide 

2CO    Molecular formula of carbon dioxide 

CV          Control Volume 

deg    Degree 

DME    Di-Methyl Ether 

iE     Activation energy of the ith reaction 

EGR    Exhaust Gas Recirculation 

EVO    Exhaust valve opening 

FTP    Federal Test Procedure 

h     Mass averaged specific enthalpy 

kh     Specific enthalpy of the kth species 

2H     Hydrogen 

2H O    Water 

fH     Enthalpy of formation at the standard condition 

tH     Sensible enthalpy 

HCCI    Homogeneous Charged Compression Ignition 

IC     Internal Combustion 
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IVC    Intake Valve Closing 

IVO    Intake Valve Opening 

k     Turbulence kinetic energy 

fik     Forward rate constant of the ith reactions 

rik     Reverse rate constant of the ith reactions 

gK     Total number of the species in the system 

N     Engine speed 

2N     Nitrogen 

NEDC    National Economic Development Council (British) 

NG    Natural Gas 

NO    Molecular formula of nitric oxide 

xNO    Mono-nitrogen oxides, i.e. nitric oxide and nitrogen dioxide 

2N O    Molecular formula of nitrous oxide 

NTC    Negative Temperature Coefficient 

NVO    Negative Valve Overlap 

Nu     Nusselt number 

2O     Oxygen 

OH          Hydroxyl radical 

p     Instantaneous in-cylinder pressure (bar) 

mp     Motored cylinder pressure (bar) 

P     Pressure (kPa or bar) 

http://en.wikipedia.org/wiki/National_Economic_Development_Council
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inP     Intake manifold pressure 

IVCP    Pressure at IVC (kPa or bar) 

Phi      , equivalence ratio 

ppm    Parts per Million 

PRF    Primary Reference Fuel 

lossQ    Heat loss from the hot gases to the cylinder wall 

sourceQ    Heat generation due to the chemical reactions in the control volume 

cR     Universal gas constant 

RANS    Reynolds Averaged Navier-Stokes equation 

Re     Reynolds number 

RG    Reforming gases 

RPM    Revolution per Minute 

S/B          Stroke to bore ratio 

SI     Spark-Ignition 

SOC    Start of Combustion 

t     Time (s or ms) 

T     Temperature (K or ˚C) 

inT     Intake manifold temperature 

IVCT    Temperature at IVC 

IVC,avgT    Averaged temperature at IVC in the multi-zone model 
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IVC,minT    Minimum temperature at IVC for complete combustion 

IVC,beffT    Temperature at IVC for best indicated efficiency 

RT     Residual gas temperature 

wT     Wall temperature 

TDC    Top Dead Center 

'kiv     Forward stoichiometric coefficient for the kth species in the ith reaction 

''kiv     Reverse stoichiometric coefficient for the kth species in the ith reaction 

pv     Mean piston speed 

swirlv    Swirl velocity 

V     Volume (m3 or liter) 

dV     Displacement volume 

U     Internal energy 

UHC    Unburned hydrocarbon 

w     Local average gas velocity 

kW     Molecular weight of the kth species in the system 

kx     Chemical symbol of the kth species in the system 

kX     Molar concentration of the kth species 

kY     Mass fraction of the kth species in the system 

 

 

 



107 

 

Greek Letters 

     Exponential index for the temperature term in Arrhenius expression 

     Ratio of specific heats 

     Equivalence ratio 

inΦ     Equivalence ratio in the intake manifold 

     Density 

k     Molar rate of production of the kth species 

     Dynamic viscosity 

     Dissipation rate of the turbulence kinetic energy 

 

Superscripts 

i     The ith zone in the multi-zone model 

'     Forward direction of the reaction 

''     Backward direction of the reaction 

 

Subscripts 

k     The kth species in the system 

w     Wall 

i     The ith reaction in the system 

r     Reference state 
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APPENDIX I  

DETAILED EQUATIONS IN THE MULTI-ZONE MODEL [26] 

 

Species equation: 

        1,2,..,  
i

i ik
k k

dY
W for i N zones

dt
    

Internal energy equation: 

 
 

1

         1,2,..,  
g

i i iKi i i
w w wi i i i i

p k k k i i
k

h T T AdT P dV
c W u for i N zones

dt V dt V
 




    

 

New Variable G and the Equation of state: 

i
i j j

j

G P V
 

1

gK i
i i i i k

k k

Y
P V M RT

W

 
   

 


 
1 1 1

1

1

                                    1

        2,3,...,
gK i

i i i i k

k k

G P V for i

Y
G G M RT for i N

W





  


 
     

 
  

Uniform pressure constraint: 

1         1,2,.., 1i iP P for i N  

 

1

N
N

N
i

i

G
P

V




  

These equations are solved simultaneously to obtain zone properties. 
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APPENDIX II  

GOVERNING EQUATIONS FOR THE COMPUTATIONAL 

FLUID DYNAMICS SIMULATION [41] 

 

Continuity equation for 2-D axisymmetric geometries: 

    r
x r m

v
v v S

t x r r


 

  
   

  
 

Axial momentum equation for 2-D axisymmetric geometries: 

       
1 1 1 2

2
3

1

x
x x x r x

x r
x

vp
v r v v r v v r v

t r x r r x r x x

v v
r F

r x r x

   



        
        

       

    
    

      

Radial momentum equation for 2-D axisymmetric geometries: 

       

 
2

2

1 1 1 2
2

3

1
2

r
r x r r r

x swirlr r
r

vp
v r v v r v v r v

t r x r r r r r r

v vv v
r v F

r x x r r r

   

  

        
        

       

    
       

      

Transport equation for the turbulence kinetic energy: 

    t
i k b M k

i j k j

k
k ku G G Y S

t x x x


   



     
         

        

Transport equation for the rate of dissipation of turbulence kinetic energy: 

     1 3 2
t

i k b

i j j

u C G C G C S
t x x x k k

   



   
   



     
        

      
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The energy equation with heat transfer and reaction heat: 

     effeff k k hE v E p k T h J v S
t
  

              
  

The species transport equation: 

   k k k k kY vY J R S
t
 


    


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