
RAPIDLY-EXPLORING RANDOM TREE INSPIRED

MULTI-ROBOT SPACE COVERAGE

A Thesis

by

ASISH GHOSHAL

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2012

Major Subject: Computer Science

RAPIDLY-EXPLORING RANDOM TREE INSPIRED

MULTI-ROBOT SPACE COVERAGE

A Thesis

by

ASISH GHOSHAL

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Dylan A. Shell
Committee Members, Nancy M. Amato

Richard J. Malak Jr.
Head of Department, Duncan M. Walker

May 2012

Major Subject: Computer Science

iii

ABSTRACT

Rapidly-exploring Random Tree Inspired

Multi-robot Space Coverage. (May 2012)

Asish Ghoshal, B.Tech., National Institute of Science and Technology

Chair of Advisory Committee: Dr. Dylan A. Shell

Inspired by the Rapidly-exploring Random Tree (RRT) data-structure and algo-

rithm for path planning, we introduce an approach for spanning physical space with a

group of simple mobile robots. Emphasizing minimalism and using only InfraRed and

contact sensors for communication, our position unaware robots physically embody

elements of the tree. Although robots are fundamentally constrained in the spatial

operations they may perform, we show that the approach —implemented on physical

robots— remains consistent with the original data-structure idea. In particular, we

show that a generalized form of Voronoi bias is present in the construction of the

tree, and that such trees have an approximate space-filling property. We present an

analysis of the physical system via sets of coupled stochastic equations: the first being

the rate-equation for the transitions made by the robot controllers, and the second

to capture the spatial process describing tree formation. We also introduce a class of

fixed edge length RRTs called `RRT and show that `RRT s have similar space-filling

properties to that of RRTs. We are able to provide an understanding of the control

parameters in terms of a process mixing-time and show the dependence of the Voronoi

bias on an interference parameter which grows as O(
√
N).

iv

To Maa, Baba and Dida.

v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Prof. Dylan Shell who

has been a constant source of support and knowledge, for all his efforts in helping me

write papers and this thesis and above all for being a great mentor and inspiring me

to do good research.

I would also like to thank my fellow lab mates for helping me in preparing for

me defense.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II RELATED WORK . 3

III APPROACH . 5

A. The RRT data-structure and algorithm 5

1. Initialization . 6

2. Choosing a random configuration 6

3. Finding the nearest neighbor 7

4. The AddEdge operation 8

5. ExtendEdge operation 8

B. Relationship of the physical tree to the RRT: Introduc-

ing `RRT . 9

IV ANALYSIS OF RRT AND `RRT 12

A. Analysis of general RRTs 12

1. Space-filling property 16

2. Voronoi bias . 17

B. Analysis of `RRT . 18

V IMPLEMENTATION . 20

A. Implementation requirements 20

B. Actual implementation . 21

VI ANALYSIS . 23

A. Definitions, simplifications, and roadmap 23

B. Uniform sampling: Understanding fws 25

C. Modelling interaction dynamics 27

D. Voronoi bias of physical tree 34

E. Accuracy of AddEdge operation 35

VII RESULTS . 37

VIII DISCUSSION . 40

vii

CHAPTER Page

IX CONCLUSION AND FUTURE WORK 42

REFERENCES . 43

VITA . 46

viii

LIST OF FIGURES

FIGURE Page

1 Illustration of a spiralling robot joining the tree by initiating a

new edge. The blue robots depict vertex robots while the grey

robots denote edge robots. The edge length (∆q) is 2. 7

2 An illustration of a wandering robot (W) extending an edge, initi-

ated by a previously spiralling robot (S), by progressively aligning

itself. 8

3 Controller logic of a robot. 9

4 Controller states of a robot. 10

5 Converting a tree with incomplete edges to a complete tree by

flipping edge robots at the end of each edge to vertex robots after

a period of inactivity. 11

6 Relative proportion of long edges in red vs. short edges in blue

(left) for r = 2 in a square of length 100. Mean and Standard

Deviation for number of long edges and short edges in a RRT as

a function of number of nodes in the tree and (right) the corre-

sponding probabilities of getting a long edge and short edge. 15

7 Probability of getting long edge for RRT of edge length r gener-

ated in a square of length 100. 16

8 δ for RRT(left) and `RRT (right) of edge length r = 2 generated

in a square of length 100. It is clear that at 60000 nodes the tree

has completely filled the space in the sense that every point is at

most r distance away from a point of the tree in both the cases. . . 17

9 Embedding of RRT(left) and `RRT (right) of edge length r = 2

in a square of length 100. The number of nodes in the lrrt is 1687

(2000 sampled points) while the number of nodes in the RRT is

2000. 19

ix

FIGURE Page

10 The circle around the point qnear represents positions from which

the robot executing a random walk maneuver can join qnear in one

step. The probability of the robot joining from point P is higher

than all other points in the circle because the expected hitting

time for the point P is minimum. 21

11 A typical trial using 7 iRobot Create robots with ∆q = 2. A

branch has been formed in the tree, but edges with robot #2 and

robot #7 are not yet complete. Additional robots would need to

perform ExtendEdge operations for that to occur. This illus-

trates the asynchronous growth process involved in forming the

RRT. 22

12 Simplified controller states of a robot along with transition rates. . . 25

13 Maximum approach angle, η, of a spiralling robot tracing a spiral

with separation b between successive spirals and spiralling out

from a distance x+ 2ρ from the tree. 36

14 Plot showing the underestimate (black) and overestimate (red) of

the average number of tree robots at a given time for each of the

case of k = 1 (top), k = 2 (middle), k = 3 (bottom). The average

number of robots in the tree calculated experimentally are shown

in blue. 38

15 Two snapshots from simulation experiments (top) showing trees

of edge length 0 and 3 respectively and snapshots from a physical

robot experiment (bottom) of edge length 2 with the logical tree inset. 39

16 Plot showing experimental data (blue), the theoretical underesti-

mate and overestimate for k = 2 after considering boundary effects. . 41

1

CHAPTER I

INTRODUCTION

This paper considers the problem of having a group of simple mobile robots span a

physical space. We describe an approach that is useful for simple robots, equipped

only with limited sensing and short-range communication, in circumstances requiring

systematic search or coverage of a space. Several researchers, starting with Werger

and Matarić [1], but also Nouyan et al. [2] and Ducatelle et al. [3] more recently,

developed and demonstrated algorithms for forming chains of mobile robots. In these

cases, a subset of the available robots move to locations that serve to guide peer

robots, or to maintain shared information, allowing the group to collectively overcome

individual sensing limitations and improve performance, e.g., in foraging, transport

or delivery tasks. The basic idea is that some agents are most effective when forming

and maintaining dynamic infrastructure for use by the group. Motivated by this same

idea, we describe a algorithm for forming tree structures in physical space rather than

the usual linear chains.

Within this paper, we show how mobile robots can form an incremental tree by

following a process analogous to a well known data-structure, the Rapidly-exploring

random tree (RRT) [4]. In fact, “analogous” is probably too weak a word. The robots

actually implement the tree creation algorithm, but they do in an unconventional way:

information usually stored in programmatic variables is encoded in the poses of the

robots themselves. Some early influential multi-robot researchers investigated tech-

niques for reducing, externalizing, redistributing information required for performing

tasks, cf. [5, 1, 6]. That work showed how information deposited in the world can

 The journal model is IEEE Transactions on Automatic Control.

2

be effectively indexed and exploited via local spatial queries (i.e., situatedness). In

this paper, the robots store information in space by “being there”; the type of in-

formation is easily identifiable because it is more usually associated with an explicit

data-structure.

Apart from the fact that trees generalize chains, this work was motivated by

the particular strengths of the RRT: its ability to rapidly explore a configuration

space through its bias towards unexplored regions, and its space filling property in

the limit of many samples. These properties are desirable for groups of simple robots

attempting to span a physical space, and we show that versions of these properties

carry over to our implementation. For example, Voronoi bias, which causes the tree

to grow rapidly towards larger unexplored regions, is preserved under conditions on

the density of robots. After presenting a description of the approach (see chapter

III), we analyze general RRTs and introduce a special type of RRT called `RRT (see

chapter IV) which is followed by implementation (see chapter V) and an analysis

of the multi-robot system (see chapter VI) to determine system performance and

characterize various properties of the generated tree which is followed by experimental

validation of the model (see chapter VII) and a brief discussion (see chapter VIII)

before finally concluding (see chapter IX).

3

CHAPTER II

RELATED WORK

The RRT was adopted because of the attractive properties of the process that pro-

duces the tree (e.g., the ease with which the underlying operations can be translated

into physical actions) and properties of the tree itself. As we have interpretations and

treatments of some of those properties, we highlight important theoretical models

and analysis of sampling based path planning algorithms here:

• Lamiraux and Laumond [7] were the first to study the probabilistic convergence

of random sampling based planners using the theory of Markov chains and dif-

fusion processes to analyze the RPP algorithm, concluding that the probability

of failing to find a valid path when one exists decreases exponentially with the

number of samples. Similar analysis was performed for RRTs [8], and, hence, its

probabilistic completeness. However, the authors also recognize that the conver-

gence rate is expressed with parameters that are difficult to compute for a given

example; computing the rate in terms of more amenable parameters remains a

problem. Also, recently, non-optimality of RRT’s paths was characterized [9].

• Kuffner and LaValle [10] studied RRTs as space-filling trees. We define a notion

of an (δ, ε)–space-filling tree and also formally analyze the Voronoi bias of the

RRT. We also present a model for the expected contact distance for the points

of the tree. Such contact distance distributions are a useful way to study simple

point processes and thus provide important insights into embeddings of RRTs.

Additionally, we employ the macroscopic rate-equation model widely used to analyse

the performance of the multi-robot swarms [11, 12, 13, 14]. Important recent work

has attempted to extend these models to capture time-delays [15], and treat spatial

4

properties [16]. In our approach, we couple a description of the distribution of con-

troller states with a stochastic model of the tree and its growth, enabling some spatial

dependency to be captured without resorting to partial differential equations.

5

CHAPTER III

APPROACH

A. The RRT data-structure and algorithm

Algorithm 1 is is original algorithm for constructing an RRT [17] for a general con-

figuration space; here qinit is the initial configuration and G represents the tree.

Algorithm 1 BuildRRT

Require: qinit, K, ∆q

1: G.init(qinit);

2: for k = 1 to K do

3: qrand ← RandConf();

4: qnear ← NearestVertex(qrand, G);

5: qnew ← NewConf(qnear, ∆q);

6: G.add vertex(qnew);

7: G.add edge(qnear, qnew);

8: end for

9: return G

A random configuration, qrand, is chosen in each iteration which determines the

new vertex that will be added to the graph G. The vertex in the tree, qnear, which is

nearest to qrand is computed. In step 5 of the algorithm a new configuration, qnew, is

computed by selecting an action that moves qnear a distance, ∆q, in the direction of

qrand. In the final step of each iteration, the vertex qnew and the corresponding edge

(qnew, qnear) is added to the tree.

In our implementation, robots represent both vertices and edges of G, where

vertex and edge robots are identified based on the operations that they can per-

6

form. Fig. 1 shows vertex robots (colored in blue) and edge robots (colored in grey).

The key difference between the above algorithm and ours is that we grow the tree

asynchronously, via two operations:

• AddEdge: a new edge is added to the tree that grows progressively towards

qnew.

• ExtendEdge: robots are added as edge nodes in order to extend the edge

each time until the length of the edge becomes ∆q. (We abuse the notation

slightly, using ∆q ∈ Z+ to denote number of robots on an edge, unlike line 5

above.)

By asynchronous we mean that the steps of the algorithm are not atomic but

span multiple iterations and may happen in parallel e.g., while a new edge is being

added on to the tree at one point (AddEdge operation), another robot might be

extending an incomplete edge (ExtendEdge) so long as they do not interfere with

each other. (Analysis below will model interference directly as a function of robot

density.)

1. Initialization

The root of the tree, qinit, is selected by placing a static robot in the environment.

Other robots, which we call “wandering robots”, perform a random walk to reach

different points within the workspace space.

2. Choosing a random configuration

The random configuration, qrand, is obtained the following way: wandering robots

independently transition (with some probability) to a “spiraller” state wherein they

7

qnear
qrand

(a) Nearest neighbor search

Fig. 1. Illustration of a spiralling robot joining the tree by initiating a new edge. The

blue robots depict vertex robots while the grey robots denote edge robots. The

edge length (∆q) is 2.

execute the maneuver described in the next paragraph. Assuming robots perform

random walks for sufficient time (i.e., the probability of spontaneously transitioning

is small enough that they randomly walk for a time comparable to the mixing-time)

then the robot approximates a configuration chosen uniformly at random.

3. Finding the nearest neighbor

The vertex in the tree nearest to qrand is found by having the robot spiral out until it

bumps into a vertex robot which is already part of the tree. A spiraling robot may

bump into another wandering robot in which case it resumes a random walk (i.e.,

qrand is discarded). If either spiraling or wandering robots bump into an edge robot

then the robot begins to trace the tree in an attempt to complete an incomplete edge,

i.e., performing the ExtendEdge operation.

8

qnewS

W

W
W

Fig. 2. An illustration of a wandering robot (W) extending an edge, initiated by a

previously spiralling robot (S), by progressively aligning itself.

4. The AddEdge operation

This operation is initiated only when a spiraling robot bumps into a fully formed edge

(vertex robot) in which case it is added in place to the tree, increasing the edge in

the direction of the randomly chosen point from where the robot started spiraling. If

a spiraling robot bumps into an edge robot, it begins tracing the tree and if it finds

a half formed edge then the ExtendEdge operation is initiated. This is shown in

Fig. 1.

5. ExtendEdge operation

This operation occurs when wandering or spiraling robots bumps into an incomplete

edge (some edge robot). The robot then traces the tree to find an incomplete edge.

The robot is added to the tree as an edge robot (or a vertex robot if the robot

completes the edge) by aligning itself with the existing edge in a straight line. Fig.

2 illustrates this. While multiple ExtendEdge operations need be performed to

fill out the edge, they make up only a single “add edge” operation in the original

algorithm

Fig. 3 shows the controller logic of a single robot. Each colored block represents

a state of the robot comprising of some collection of behaviors and actions that a

9

Fig. 3. Controller logic of a robot.

robot is executing. The simplified state diagram of a robot controller is shown in Fig.

4. A robot can join the tree in two ways, it can either join the tree by extending an

edge in which case it progressively aligns itself along the existing edge or by initiating

a new edge.

B. Relationship of the physical tree to the RRT: Introducing `RRT

In the previous section we presented the original RRT algorithm and the controller

logic of the robots that form the physical tree. What differentiates our approach to

building the tree from the traditional algorithm is that it is asynchronous and the

RRT step size is discrete and is specified by the number of edge robots k. Thus

the tree is grown asynchronously in steps of 2ρ, where ρ is the radius of a robot.

A side-effect of the asynchronous approach is that there can be incomplete edges,

i.e. edges that have length 2(k′ + 1)ρ with k′ < k, at any given time. Further, the

10

WANDERING SPIRALLING

TREEALIGN

TRACE

Fig. 4. Controller states of a robot.

edges might never complete because the robots have no global information about the

structure of the tree and the presence of other incomplete edges. So we might end up

with multiple incomplete edges at various points of the tree which could have been

combined to form complete edges. Although steps can be taken to ensure complete

edges: for instance, robots which are part of an incomplete edge can break off after

some period of inactivity; however, there is no particular benefit of having complete

edges considering the time it might take to complete edges. Rather, having robots at

the end of each edge flip their type to vertex robots after some period of inactivity

would ensure a tree that is logically complete with all internal nodes connected to

their parents by edges of length exactly 2(k + 1)ρ and the leaf nodes connected by

edges of length at most 2(k + 1)ρ.

Another difference between the physical tree and the RRT is that points that

are sampled at a distance less than the RRT step size from the tree are not added

to the tree i.e. if a spiralling robot spirals out from a distance less than 2(k + 1)ρ,

then it is not added to the tree. This is done so as to prevent edges from crossing

each other since wandering robots always try to extend an edge until the edge length

11

Fig. 5. Converting a tree with incomplete edges to a complete tree by flipping edge

robots at the end of each edge to vertex robots after a period of inactivity.

is 2(k + 1)ρ. So the tree generated using such a process can be likened to a RRT

in which the sampling distribution is such that points sampled closed to the tree are

discarded and the resulting tree has only long edges i.e. edges of length exactly r,

where r is the RRT step size. We call such RRTs `RRT . We show in section IV that

RRTs formed using such a distribution are as good as general RRTs in filling a space.

In spite of these differences we believe that the process of generating the physical

tree and the resulting tree is consistent with the conventional RRT algorithm and

data-structure.

12

CHAPTER IV

ANALYSIS OF RRT AND `RRT

A. Analysis of general RRTs

The RRT vertices are a realization of a simple point process in R2; let Tn be the

random set denoting the tree of n nodes, n ∈ N∗, and let pmn ∈ Tn denote the mth

point in the random set Tn where m ∈ N and 0 ≤ m < n. D(pmn , r) is the closed

disc of radius r centered at pmn and C(pmn , r) is the circle of radius r centered at pmn ,

similarly d(pmn , r) denotes the open disc. T1 = {qinit} where qinit ∈ A is the root of

the tree and is given.

Consider T2; Let T2 = T1

⋃
{x| for some x ∈ A}. The next node, x, will lie

in the closed disc D(p0
1, r) given the RRT step size r. Yet, the probability of the

next point lying in the closed disc D(p0
1, r) is not uniform over the area of the

disc i.e. Pr [x ∈ B|x ∈ D(p0
1, r)] 6= λ2 (B) /λ2 (D(p0

1, r)) for all B ⊆ D(p0
1, r),

where B is a bounded closed set, since specifically, Pr [x ∈ d(p0
1, r)|x ∈ D(p0

1, r)] =

λ2 (d(p0
1, r)) /λ2 (A), Pr [x ∈ C(p0

1, r)|x ∈ D(p0
1, r)] = 1− λ2 (d(p0

1, r)) /λ2 (A). There-

fore, any tree can be thought of as comprised of long edges (with length r) and short

edges (length < r). The probability of being added depends on the type of edge. It

is more complicated when Tn, for n > 1, since the probabilities depend on the area

of Voronoi regions induced by points in the tree. Despite the distribution of points

in the tree converging in probability to the sampling distribution [18], this does not

provide information about the distribution of the points in the tree (Tn) for small

values of n. Being unable, therefore, to reason about the distribution of realizations

of RRTs, we consider the stochastic process Cn defined as follows:

13

Cn = λ2

(
n−1⋃
i=0

D(pin, r)

)
, (4.1)

i.e. Cn is the area of the union of all r-discs of the points in tree Tn. If the (n+ 1)th

point lies outside area Cn then a long edge will be added to the tree, while if the point

lies inside Cn then it will be added in place, producing a short edge. Characterizing

the distribution of Cn does not determine the distribution of Tn yet knowing E [Cn]

can give us useful information about a tree, like how space-filling a tree is, as we will

show shortly. Intuitively, Cn can be thought of as the area “covered” by the tree.

To analyze tree coverage processes, we first consider the simplest case when A is

the real line [0, R] and the step size is r. Suppose that only long edges are added to

the tree. When qrand is less than r distance from its nearest neighbor, then it is not

added to the tree, so Cn+1 = Cn. The subscript n here denotes the number of points

that have been sampled, which may exceed vertices in the tree |Tm|, because short

edges are not added. For the one dimensional case we define Cn as:

Cn = λ1

(
m−1⋃
i=0

D(pim, r)

)
, (4.2)

where λ1 (.) represents the length of the line segment contained within the union

of all r − discs. Thus, for the one dimensional case, Cn is a linear tree with a length

that is a multiple of r. We introduce the function pl(n) defined as follows:

pl(n) =
n−1∑
k=1

Pr [Cn = (k + 1)r|Cn−1 = kr] Pr [Cn−1 = kr] . (4.3)

14

Here, pl(n) denotes the probability that the nth sampled point will lie on a long edge.

Starting from (4.3) we get the following equation:

pl(n) =
n−1∑
k=1

(
1− kr

R

)
Pr [Cn−1 = kr]

= 1− 1

R

n−1∑
k=1

(kr)Pr [Cn−1 = kr]

= 1− E [Cn−1]

R
. (4.4)

Thus, E [Cn] is given as E [Cn] = (1− pl(n+ 1))R, which yields bounds on pl(n):

pl(n) ≥ Pr [Cn = nr]

=
n−1∏
i=1

(
1− ir

R

)

≥
(

1− (n− 1)r

R

)(n−1)

≈ e−(n−1)2r/R (4.5)

The general two dimensional case follows:

E [Cn] = (1− pl(n+ 1))λ2 (A) (4.6)

In the general case Cn is a discrete time non-homogenous Markov chain on a

continuous state space. pl(n) can be obtained experimentally by computing the frac-

15

Fig. 6. Relative proportion of long edges in red vs. short edges in blue (left) for r = 2

in a square of length 100. Mean and Standard Deviation for number of long

edges and short edges in a RRT as a function of number of nodes in the tree

and (right) the corresponding probabilities of getting a long edge and short

edge.

tion of long edges that are present in a tree with n nodes. In general pl(n) decreases

exponentially and for rrt of step size, r = 2, embedded in a sqaure of length 100 pl(n)

takes the form:

pl(n) = αe−βn, (4.7)

for some positive constants α and β. We obtained values for these parameters

for a given scenario by performing simulations in CGAL [19]. Fig. 6 shows the

number of short edges and long edges for a RRT and the corresponding probabilities of

obtaining a type of edge; note the exponential curve. The experimentally determined

parameters were α = 0.99 and β = −0.00009. Fig. 7 shows pl(n) for various RRTs

embedded in a square of length 100.

16

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

P
b

Nodes

r = 1
r = 2
r = 3
r = 4
r = 5
r = 6
r = 7

Fig. 7. Probability of getting long edge for RRT of edge length r generated in a square

of length 100.

1. Space-filling property

In this section we characterize the space-filling property of RRTs by defining what

we call as a (δ, ε)-space-filling tree.

Definition 1. A tree Tn for any n ∈ N∗ is called (δ, ε)-space-filling in [0, 1]2 if there

exists a node pin in the tree such that any point x ∈ [0, 1]2 is within ε distance of pin

for 1 ≤ i ≤ n with probability at most δ for any ε, δ ∈ [0, 1].

Thus, for the tree Tn if Pr [Cn ≥ c] ≤ p for some c ∈ R and c ≤ λ2 (A), then the

tree is (δ, r)-space-filling in A with δ = pc/λ2 (A) here, again, r is the RRT step size.

The stochastic process Cn determines how quickly the distribution of points in the

tree converge to the uniform distribution given a uniform sampling distribution. We

can obtain δ by using the Markov’s inequality as follows:

Pr [Cn ≥ c] ≤ E [Cn]

c
, δ =

E [Cn]

A
(4.8)

17

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

δ

n

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

δ

n

Fig. 8. δ for RRT(left) and `RRT (right) of edge length r = 2 generated in a square

of length 100. It is clear that at 60000 nodes the tree has completely filled the

space in the sense that every point is at most r distance away from a point of

the tree in both the cases.

Fig. 8 shows δ for a RRT of step size 2 in a square of length 100.

2. Voronoi bias

The attractiveness of RRTs arises from the fact that the tree rapidly grows towards

unexplored regions i.e. the growth of the tree is biased towards larger voronoi re-

gions. To formalize that notion consider the voronoi tessellation of a region, A ∈ R2,

introduced by the points in the tree so that Vk represents the voronoi cell of the node

k ∈ Tn, i.e.,

Vk = {x | ||x, k|| ≤ ||x, j|| ,∀x ∈ A and j ∈ A and j 6= k}. (4.9)

. The bias of the tree is defined as follows:

Definition 2 (Strict Bias). Let P (x) be the parent of x = Tn+1/Tn, the (n+1)th node

added to the tree, and let G(k) : k → [0, 1] for all k ∈ Tn such that
∑

k∈Tn G(k) = p,

Pr [P (x) = k] = G(k) and Pr [x = φ] = 1− p for p ∈ [0, 1]. Then the tree Tn is said

to have a Voronoi bias if λ2 (V (k)) /λ2 (V (k′)) = G(k)/G(k′) for all k, k′ ∈ Tn.

18

Distribution G(x) sums to p over all the nodes in the tree which may be ≤ 1

(accounting for the fact that with positive probability none of the nodes may be

picked as the nearest neighbor, giving Tn+1 = Tn).

If the sampling probability density is ψ(x) then G(k) is given as follows:

G(k) =

∫
Vk

ψ(x)dx. (4.10)

Thus, for a tree to have Voronoi bias the function ψ(x) should be uniform over

the region A, i.e. ψ(x) = p/λ2 (A), to satisfy the definition of strict voroni bias; yet

there might still be some bias for non-uniform sampling density functions. Next we

present a weaker definition of Voronoi bias.

Definition 3 (Weak Bias). Let P (x) be the parent of x = Tn+1/Tn, the (n+1)th node

added to the tree, and let G(k) : k → [0, 1] for all k ∈ Tn such that
∑

k∈Tn G(k) = p,

Pr [P (x) = k] = G(k) and Pr [x = φ] = 1−p for p ∈ [0, 1]. Then the tree Tn is said to

have weak Voronoi bias if λ2 (V (k)) ≥ λ2 (V (k′))⇒ G(k) ≥ G(k′) for all k, k′ ∈ Tn.

The above definition of voronoi bias allows sampling distributions that are more

general i.e. distributions that satisfy ψ(A) ≥ ψ(B) for λ2 (A) ≥ λ2 (B) for any

bounded closed region A,B ∈ R2. It is difficult in general to obtain a closed form

solution for G(x).

B. Analysis of `RRT

Since the `RRT has edges of length exactly r, the tree can only be (δ, ε)-space filling

with ε = r, whereas in a RRT ε can be less than r as we add more nodes to the tree.

For the `RRT of step size r = 2 embedded in a square of length 100, the constants α

and β were leanred to be 0.9981 and 0.00009 respectively, which are almost equal to

19

Fig. 9. Embedding of RRT(left) and `RRT (right) of edge length r = 2 in a square

of length 100. The number of nodes in the lrrt is 1687 (2000 sampled points)

while the number of nodes in the RRT is 2000.

the parameters leanred for the corresponding RRT. Fig. 8 plots δ for the two trees

and it is clear that both trees take almost the same number of nodes to completely

fill a space although the number of points sampled in case of the `RRT is more. Fig.

9 compares an embedding of a RRT and an `RRT .

For the `RRT the parameter p in the definition of voronoi bias is given by

p = 1 − λ2 (Cn) /λ2 (A). Although we observed that `RRT s have voronoi bias, it

remains to be proved if the bias is strong or weak. In subsequent sections we model

the multi-robot system as a `RRT .

20

CHAPTER V

IMPLEMENTATION

A. Implementation requirements

Building a structure that grows towards unexplored regions inherently calls for a

mechanism to sample the environment for unexplored regions. Sampling can be ex-

plicit or implicit. For explicit sampling a global knowledge of the environment is

needed which can be accomplished by using more advanced sensing equipment like

overhead cameras. But such solutions are unattractive and impractical due to lack

of scalability and in most cases require offline computation. On the other hand im-

plicit sampling is more robust and scalable but comes at the cost of reduced accuracy.

In our approach we implicitly sample the environment by having robots wander in

the environment: large open free spaces have greater likelihood of having wandering

robots spiralling out and joining the tree. Other approaches can be employed for

implicit sampling in which agents have the ability to encode information into the

environment e.g. by using a pheromone like mechanism to bias exploration towards

regions of low pheromone density (large unexplored spaces will have less pheromone

density than regions already explored).

Another requirement for implementing the approach presented in this paper is the

ability of robots or agents to find the nearest neighbor and extend the tree towards the

randomly sampled point. The spiralling maneuver fulfils the above two requirement

at the same time. Thus there is no one-to-one mapping between the steps of the actual

RRT algorithm and the operations performed by robots. An alternative, albeit far

less accurate, approach to the spiralling maneuver would be a simple random walk

maneuver. Although a random walk will not necessarily find the correct nearest

21

P

q rand
q near

Fig. 10. The circle around the point qnear represents positions from which the robot

executing a random walk maneuver can join qnear in one step. The probability

of the robot joining from point P is higher than all other points in the circle

because the expected hitting time for the point P is minimum.

neighbor with probability one, it will find the correct nearest neighbor in expectation

because of the fact that the expected hitting time of the nearest neighbor is minimum

over all other nodes. The random walk maneuver can also be used to extend the tree

towards the randomly sampled point, again in expectation as illustrated in Fig. 10.

B. Actual implementation

In order to prove the feasibility of the algorithm, we implemented the algorithm

in our laboratory using eight iRobot Create robots R©, each equipped with an Asus

Eee1005ha netbook and augmented with an IR LED transmitter capable of transmit-

ting one byte of information. A paper reflector was used to disperse the IR radiation

with the aim of creating an IR field around the robot. The experimental arena was

22

Fig. 11. A typical trial using 7 iRobot Create robots with ∆q = 2. A branch has

been formed in the tree, but edges with robot #2 and robot #7 are not yet

complete. Additional robots would need to perform ExtendEdge operations

for that to occur. This illustrates the asynchronous growth process involved

in forming the RRT.

an 3.66m× 5.05m rectangular area with the starting point located near the center of

the top edge of the arena.

The first set of experiments aimed at forming a tree with all robots starting in

wandering state, while the next set of experiments demonstrated four robots joining a

partially formed tree of three robots (one vertex robot and two edge robots). Experi-

ments were repeated by varying the parameter ∆q from 1 to 3. We were successfully

able to form trees of seven robots with ∆q set to 3. (Fig. 11 is an example from such

a trial.) And this combination proved to be the most efficient in terms of the time

taken for all robots to join the tree.

A set of experiments were run where bumper taps did away with IR communi-

cation messages. A protocol was devised where different taps viz. short tap, long

tap, double tap, etc. conveyed information. Success was had with with ∆q as 1, but

alignment for the ExtendEdge operation proved challenging when ∆q > 1, n > 2

as communicative bumps slowly pushed robots eout of the tree.

23

CHAPTER VI

ANALYSIS

Motivated by the performance of the physical robot system, we developed a mathe-

matical model of our algorithm in order to understand the parameters that have the

most influence on the properties of the tree. In particular, we were concerned with

the tree growth rate, bias of the tree growth processes, and the expected ultimate

quality of the RRT (i.e., space-filling behavior).

A. Definitions, simplifications, and roadmap

The stochastic process that generates the tree is influenced by the region in which

the tree is embedded. We denote the subset of the two dimensional euclidean plane

in which the tree is embedded by A. A critical factor is the sampling distribution,

ψ(x) : x → [0, 1] for all x ⊆ A, that determines the probability, Pr [qrand ∈ x], with

which the random samples are chosen from the bounded closed region x. The sam-

pling distribution determines the Voronoi bias of the tree; it is desirable for it to be

uniform over A so as to weight the exploration towards larger unexplored regions. So

Pr [qrand ∈ x] = λ2 (x) /λ2 (A), where λ2 (.) is the area of a region.

A complication arising from of the distributed construction of the data-structure

is that multiple operations can proceed in parallel, and they do not map to a single

atomic step in the original algorithm. The steps involving finding the nearest neigh-

bor, computing the location of the new node, and finally adding the node to the tree

are intermingled. There are several points of potential failure (e.g., due to interference

among robots, communication failure, etc.) from the time a point is logically sampled

until the new node is added to the tree. To address this we introduce, and formalize

in detail in §C, a joining distribution, which gives the probability of actually adding

24

a node for each point sampled. As will be shown, this affects the performance of the

system, the Voronoi bias, and the resulting tree.

Consider the following generalized model: the system consists of N homogeneous

robots, executing identical controllers, in a convex polygonal obstacle free region A.

The robots can be abstracted as points with radius of influence ρ > 0. Since in our case

robots only employ contact sensors, the radius of influence is the radius of the robots.

Our implementation only considered the case of A being a square, but the analysis

holds for any convex region in the two dimensional euclidean plane. Convexity is

imposed so that for qrand = x, an edge can be constructed incrementally that joins

qnear to qnew = y ∈ A, which need not always be possible for a non-convex region.

A non-convex polygonal region has complex influences on the joining distribution

which are difficult to characterize analytically. We first consider the case in which

the edge length, k ≡ ∆q, is 0 i.e. all robots are vertex robots. We then extend the

model for the more general case of edge length greater than 0. The RRT step size is

r = 2(k + 1)ρ.

We simplify the analysis by assuming that the align and trace operations are

instantaneous and thus the align and trace states in Fig. 4 can be merged with the

wandering state. The simplified controller with high level behaviors is in Fig. 12.

Each circle corresponds to a robot’s state at any point in time. A wandering robot

begins the nearest neighbor search procedure once it transitions to the spiralling

state. The rate at which those transitions occur is given by system design parameter

fws. We assumed that a spiralling robot making contact with the tree immediately

becomes a node in the tree, i.e., transitions to the tree state. This rate of transition

is given by fst and is dependent on the size and structure of the tree, and interference

between spiralling and wandering robots. Since only spiralling robots join the tree it

may be tempting to set fws as high as possible to maximize rate at which the tree

25

WANDERING SPIRALLING

TREE

f ws

f st

1-f st

f wt

Fig. 12. Simplified controller states of a robot along with transition rates.

grows. Doing so cause the uniform density and independence of the samples to be

violated, since the robot does not have an opportunity to “lose” the history of the last

spiralled transition. While setting fws to a very low value gives a desirable sampling

distribution, the tree growth can be tedious. The effects of the design parameters

are the topics of subsequent sections: First we describe the method to compute the

minimum value fws that ensures that the sampling distribution is close to uniform.

Next, we explore the dynamics of the tree to compute fst, and then finally develop

the model characterizing the rate at which the tree grows given fst and fws.

Although we use the standard rate equation approach developed in [13], what

distinguishes this work is coupling between two different stochastic processes, one

characterizing the random tree itself and the other characterizing the interactions

between multiple agents to form the tree.

B. Uniform sampling: Understanding fws

For the sampling of qrand to be uniform, the positions from which robots start spi-

ralling should be uniform over A. Let τ denote the time for which a wandering robot

26

should wander before transitioning to the spiralling state. So τ must be sufficient to

ensure independence. If the stochastic process Xt denotes the location of a wandering

robot at time t then: Pr [Xt+τ = y|Xt = x] = 1/λ2 (A) for all x, y ∈ A. Thus, if the

wandering robot is uniformly distributed at time t i.e., Pr [Xt = x] = 1/λ2 (A), then

Xt+τ and Xt would reflect independence. Since robots are initially (at time t = 0)

distributed uniformly over the area A, a wandering robot should wander for t ≥ τ

before spiralling out so that the sampling distribution remains uniform. If the average

speed of the wandering robot is ϑ then the distance covered by the wandering robot in

time ∆t is ϑ∆t. The wandering motion of the robot can be approximated by dividing

the region A into (ϑ∆t)× (ϑ∆t) sized grids and assuming that if at time t the robot

is present at a particular cell, the position of the robot at time t + ∆t is uniformly

distributed over the 8 neighboring cells and the current cell. Thus, a wandering robot

can be thought of as executing a random walk on a three dimensional torus with the

number of vertices, n =
⌈√

λ2 (A) /(ϑ∆t)2
⌉
. Since the transition matrix of the ran-

dom walk is symmetric, the stationary distribution is uniformly distributed over all

the states. Thus, if τmix is the mixing time of the Markov chain then the parameter τ

is given by τ = τmix∆t. The analysis is simplified if we consider the walk to be lazy,

that is, at every time step the robot stays at its current position with probability 1/2

and moves to one of its neighbors otherwise. Also the mixing time obtained for the

lazy random walk can be used as an upper bound on the actual mixing time. The

following theorem is due to [20].

Theorem 1. For the lazy random walk on the d-dimensional torus Zdn,

τmix(ε) ≤ d2n2 log2(ε−1), (6.1)

27

where ε is the variation distance from the stationary distribution.

Thus, the parameter τ is given by:

τ = τmix∆t ≤
9λ2 (A)

4ρ2
log2(ε−1).

Where the last line follows from the fact that ∆t is chosen such that ϑ∆t = 2ρ, the

diameter of the robot. Since there at most N wandering robots at a given time out

of which one should be selected to join the tree, the transition rate for each robot of

transitioning from wandering state to spiralling state is given by, fws:

fws =
1

Nτ
, (6.2)

which is a function of ε, selected based on how close to uniform we desire the

sampling to be. Next, we model the stochastic process that generates the RRT.

C. Modelling interaction dynamics

Let Qt be the stochastic process representing the state of a robot at time t with

the state space given as {wandering, spiralling, tree}. The variable Qt is macroscopic

variable of the system— the fraction of robots in a particular state. Next, we examine

the process Qt describing the growth of the tree, and whose transition probabilities

are determined by the stochastic process Cn.

The state of the system is given by three variables: Ns(t), Nw(t) and Nr(t) where

representing the number of spiralling, wandering, and tree robots, at time t. With N

robots, the number of nodes in the tree Nr(t) = N−(Ns(t) +Nw(t)). Since the robots

are reactive and memoryless, the actions of each robot can be described by a Markov

process with the tree state being an absorbing state. The transition rate of a robot

28

transitioning from wandering to the spiralling is given by fws as mentioned earlier

and is obtained from (6.2). A spiralling robot transitions to the tree state only when

it collides with a tree robot. If a spiralling robot starts spiralling out at a distance d

from its nearest neighbor in the tree, then the probability of it transitioning to the

tree state is given by the probability that the spiralling robot covers a radial distance

d without colliding with a wanderer. A spiralling robot traces out an archimedean

spiral given by r = a + bθ, with the separation between successive rings, 2πb, being

constant. The radial distance covered by the robot is determined from the arc length

of the spiral, given by S(θ) = (1/2)(b)
[
θ
√

1 + θ2 + ln(θ +
√

1 + θ2)
]
. We assume that

the tangential acceleration of the spiralling robot, a, is constant. After differentiating

S(θ) and some algebra, the radial distance covered up to time t is

r(t) =

√
aρ

π
t. (6.3)

Note that (6.3) depends on how the robots trace out their spirals. Our controller

maintains constant angular velocity, by increases the tangential velocity linearly.

Now let Bn be the bounded closed region formed by union of all the r− discs of

the points in the tree Tn, that is,

Bn =
n−1⋃
i=0

D(pin, r).

By definition, Cn = λ2 (Bn). At any time the wandering robots are distributed

uniformly over the region A/Bn. The following lemma gives the expected distance

of a randomly sampled point from its nearest neighbor among a set of points drawn

29

from a distribution f(x) over the unit square in R2.

Lemma 1. Let f(x) > 0 be a probability density function defined on the unit square

Q = [0, 1]2 in R2. Let U = {X1, X2, · · · , Xn} be a set of n independent samples drawn

drawn from f(x). The expected contact distance E [Dn(x)] is given by

E [Dn(x)] =
1

2
√
n

∫
Q

f(x)−1/2dx (6.4)

Proof. Let Pr [Dn(x) > k] be the probability that the contact distance is at least k.

This means Xi /∈ D(x, k) for 1 ≤ i ≤ n, i.e., no point in the tree is present inside the

disc of radius k centered at x. The probability is given by:

Pr [Dn(x) > k] =

∫
Q

(1− U(x, k))ndx where U(x, k) =

∫
D(x,k)

f(x)dx

Now U(x, k) ≈ πf(x)k2, and (1− U)n ≈ e−nU . So,

E [Dn(x)] =

∫
Q

∫ ∞
0

(1− U(x, k))ndkdx

≈
∫
Q

∫ ∞
0

e−πnf(x)k2dkdx

=
1

2
√
n

∫
Q

f(x)−1/2dx.

Since, there are N−Nr(t) robots distributed uniformly over the region A/BNr(t),

the mean free path of a robot follows from (6.4) and is then given by

30

dfree(Nr) =
1

2
√
N −Nr(t)

∫
A/BNr(t)

1√
λ1 (A)− λ1

(
BNr(t)

)dx
=

(
1

2
√
N −Nr(t)

) λ1

(
A/BNr(t)

)√
λ1 (A)− λ1

(
BNr(t)

)

=
1

2

√
λ1 (A)− λ1

(
BNr(t)

)
N −Nr(t)

. (6.5)

So, if the average relative speed of a robot is vrel, then the mean free time is

τfree(Nr) =
1

2vrel

√
λ2 (A)− λ2

(
BNr(t)

)
N −Nr(t)

. (6.6)

The average collision rate given by 1/τfree is constant for a given free space

and number of tree robots at time t, since collisions between robots are independent

events. The collision times can be then be approximated by a Poission distribution:

the time between collisions is exponentially distributed with rate λt = 1/(τfree(Nr)).

The random variable S represents the time for which a spiralling robot spirals out

before coming in contact with a wandering robot, thus, has the following distribution:

Pr [S ≤ t] =

 1− e−λtt, t ≥ 0

0, t < 0.
(6.7)

Now, consider the Voronoi tessellation of the region A so that Vk represents the

Voronoi cell of the node k ∈ Tn, i.e., as defined in Eq. 4.9. If V =
⋃
k∈Tn Vk, then

V (t) is the Voronoi region of the entire tree at time t. Then any robot spiralling

out from within A/V (t) would strike the boundary before any tree nodes, and would

31

never join the tree. Note that V (t) varies with time as the size of the tree grows.

Thus, the nearest neighbor search is successful only if a robot starts from within

region V (t) and if it hits a tree robot without colliding with any wanderers. Let

the probability that a robot starts spiralling out from within V (t) be represented by

pv(t) = λ2 (V (t)) /λ2 (A). We can evaluate the joining distribution, J(x), introduced

earlier, as a function of distance from tree; i.e. J(x) represents the probability of a

spiralling robot, at a distance of at least x from the tree, will join the tree follows

from memorylessness of the exponential distribution:

J(x) = pv(t)Pr
[
Qt+r−1(x) = tree|Qt = spiralling

]
= pv(t)Pr

[
S > r−1(x)

]
= pv(t)e

−λt
√

π
aρ
x
.

(6.8)

We simplify the analysis by ignoring boundaries, but effects of walls on perfor-

mance is examined in the discussion section. Doing so, the simplified cumulative

distribution function of J(x) and associated probability density function j(x) are:

Ĵ(x) = 1− e−λt
√

π
aρ
x
, j(x) =

d

dx
(Ĵ(x)) = λt

√
π

aρ
e
−λt
√

π
aρ . (6.9)

Thus, the instantaneous transition rate of transitioning from the spiralling state

to the tree state,fst, is given by (using γ =
√

(aρ)/π):

32

fst = lim
∆t→0

1

∆t
Pr [Qt+∆t = tree|Qt = spiralling]

= lim
∆t→0

1

∆t

[∫ γ∆t

0

∫ 2π

0

j(x)dxdθ

]
= lim

∆t→0

1

∆t

[∫ γ∆t

0

∫ 2π

0

λt
γ
e−

λt
γ
xdxdθ

]
= 2π lim

∆t→0

[
1− e−λt∆t

∆t

]
= 2πλt

= 4πvrel

√
N −Nr(t)

λ2 (A/BNr)
(6.10)

The simplification on the first line reflects the fact that only spiralling robots in

the (γ∆t)-disc around the nearest neighbor can reach the tree by time t + ∆t. Note

how the last line shows that the transition rate depends on collision parameter λt.

Let pw (ps, pr) be the probability that a robot is in wandering (spiralling, tree)

state at time t. Then, the following stochastic master equation gives the change in

probabilities with time:

d (pw)

dt
= ps(t)(1− fst)− pwfws, (6.11)

d (ps)

dt
= pwfws − ps(t)fst − ps(t)(1− fst), (6.12)

d (pr)

dt
= ps(t)fst. (6.13)

If N is the total number of robots, then N · pw gives the fraction of robots that

are in the wandering state. Averaging (6.11)–(6.13) over the number of robots, N ,

yields the following rate equations describing the evolution of the average number of

33

wandering robots, spiralling robots and tree robots respectively with time.

d
(
Ñw(t)

)
dt

= Ñs(t)(1− fst)− Ñw(t)fws, (6.14)

d
(
Ñs(t)

)
dt

= Ñw(t)fws − Ñs(t)fst − Ñs(t)(1− fst), (6.15)

d
(
Ñr(t)

)
dt

= Ñs(t)fst. (6.16)

The preceding analysis does not consider the time (and robots) involved in Ex-

tendEdge operations. When k > 0, wanderers can join the tree to extend an

incomplete edge. The state transitions must be augmented slightly. The probability

of a wandering robot joining the tree is maximal when the length of the edge is k+ 1,

i.e., only one robot is required to complete the edge, since the wandering robot can

hit any one of the k + 1 robots, after which it will skirt the edge and join at the

end. On the other hand, the probability of a wandering robot of joining the tree is

0 when the nearest neighbor is a vertex robot and no edge has been initiated. There

are at most dNr/(k + 1)e vertex robots which can have edges k + 1 robots long and

the probability of completing one of those edges is (k + 1)/Nr. Thus, the transition

rate of transitioning from the wandering state to the tree state is given as follows:

fwt ≤
(k + 1)

τfree(Nr)
=

(
k + 1

Nr

)
2vrel
√
N −Nr

λ2 (A/BNr)
. (6.17)

Since a spiralling robot can initiate and edge and join the tree only when it hits

a vertex robot and the probability of hitting a vertex robot is 1/k + 1, the modified

34

transition probability of transitioning from the spiralling state to the tree state is

given by:

fst
′ =

fst
k + 1

(6.18)

and the rate equations for the general case of k ≥ 0 is given by:

d
(
Ñw(t)

)
dt

= Ñs(t)(1− f ′st)− Ñw(t).fws − Ñw(t)fwt, (6.19)

d
(
Ñs(t)

)
dt

= Ñw(t)fws − Ñs(t)fst
′ − Ñs(t)(1− fst′), (6.20)

d
(
Ñr(t)

)
dt

= Ñs(t)f
′
st + Ñw(t)fwt. (6.21)

When k > 0, expression (6.16) gives a lower estimate of the average number of

tree robots at time t, while (6.21) is an overestimate of the average number of tree

robots. Next, we explore the Voronoi bias of the physical tree formed by robots based

on the definitions introduced in chapter IV.

D. Voronoi bias of physical tree

In §A we described the Voronoi bias as a desirable property for the tree growth

process, which we interpreted as implying an aspiration for uniformity in the sample

distribution. Here we examine the effect of the joining density function, j(x), on the

bias, broadening the notion of a Voronoi bias.

Let J(Vk) =
∫
Vk
j(x)dx, where Vk represents the voronoi cell of the node k ∈ Tn.

Then the effective sampling distribution, ψ′, is given as ψ′(Vk) = ψ(Vk)J(Vk). As

shown in § 2, for there to be a strong bias ψ′(x) has to be uniform. while, in our

implementation, this is true as λt → 0, it will be violated otherwise since j(x) drops

35

off exponentially with distance from the tree. In general, the joining distribution

J(Vk) depends not not only on the area of V (k) but also on its shape. While one can

contrive cells in which this weak bias is violated (long, skinny cells having large area

but limited j(x) density) assessing their likelihood of occurrence would depend on

an understanding how “well-behaved” the distribution of Voronoi cells is. It is clear

that the weaker definition of Voronoi bias depends on λt less strongly. Under either

definition, it is clear is that the quality of the tree’s expansion decreases with large

λt, itself scaling as O(
√
N).

E. Accuracy of AddEdge operation

In chapter III we introduced the AddEdge operation and claimed that an edge is

added in the direction of the randomly sampled point qrand. Since edges are initiated

by spiralling robots, which are added in place; the accuracy with which the tree is

grown towards the randomly sampled point is determined by the angle of approach

of the spiralling robot with respect to its nearest neighbor. The maximum angle of

approach, η, of a spiralling robot is illustrated in Fig. 13 and is given as follows:

η = cos−1

(
(8ρ2 + 4ρx)− (b2 + 2xb)

8ρ2 + 4ρx

)
(6.22)

In our implementation the separation between successive rings is the diameter of the

robot, 2ρ. Thus the maximum angle of approach is given by:

η = cos−1

(
ρ

2ρ+ x

)
. (6.23)

From Eq. 6.23, the maximum angle of approach is 90◦. Thus an edge is extended

between 0◦ and 90◦ of the randomly sampled point. But, if the spiralling robots

randomly trace out clockwise and anti-clockwise spirals with equal probability then

36

q rand

x 2ᵨ

2ᵨ
b

x

η
q near

Fig. 13. Maximum approach angle, η, of a spiralling robot tracing a spiral with sepa-

ration b between successive spirals and spiralling out from a distance x + 2ρ

from the tree.

on an average the edge is extended in the direction of the randomly sampled point.

37

CHAPTER VII

RESULTS

In order to carry out larger scale experiments to validate our model, we implemented

a version of the algorithm in the Stage simulator. Experiments were performed with

N = {15, 30} robots in a square arena of size 15m×15m. The detection region

was the radius of the robots, ρ = 0.1778m. Parameters were determined as: α =

0.99, β = 0.003393, and γ = 0.015, the average relative velocity used was 0.07 and

parameter fws was set to 0.01 sec−1. Experiments were carried out with edge lengths

k = {1, 2, 3}. Fig. 14 shows results averaged over 10 trials for each value of k , along

with snap-shots from the simulation in Fig. 15. For k = 1 the initial size of the tree

was 11, for k = 2 the initial size of the tree was 16 and for k = 3 the size was 21. The

initial size were choosen such that all trees had 6 nodes (vertex robots) including the

initial node.

38

Time

A
ve

ra
ge

 n
um

be
r o

f r
ob

ot
s

in
 tr

ee

0 2000 4000 6000 8000 10000 12000
11

12

13

14

15

16

17

18

19

20

21

22

Experimental
Mean Underestimate
Mean Overestimate

Time

A
ve

ra
ge

 n
um

be
r o

f r
ob

ot
s

in
 tr

ee

0 2000 4000 6000 8000 10000 12000
16

17

18

19

20

21

22

23

24

25

26

27

Experimental
Mean Underestimate
Mean Overestimate

Time

A
ve

ra
ge

 n
um

be
r o

f r
ob

ot
s

in
 tr

ee

0 2000 4000 6000 8000 10000 12000
21

22

23

24

25

26

27

28

29

30

31

32

Experimental
Mean Underestimate
Mean Overestimate

Fig. 14. Plot showing the underestimate (black) and overestimate (red) of the average

number of tree robots at a given time for each of the case of k = 1 (top),

k = 2 (middle), k = 3 (bottom). The average number of robots in the tree

calculated experimentally are shown in blue.

39

Fig. 15. Two snapshots from simulation experiments (top) showing trees of edge length

0 and 3 respectively and snapshots from a physical robot experiment (bottom)

of edge length 2 with the logical tree inset.

40

CHAPTER VIII

DISCUSSION

In the previous section we presented results from simulation experiments and com-

pared it with the theoretical overestimate and underestimate of the mean, finding

good agreement between the theoretical model and experimental data. In our analy-

sis we made a few simplifying assumptions regarding the environment, namely: the

region is convex and obstacle free and that spiralling robots do not collide with the

boundary. While the latter assumption can be easily addressed, the former is more

difficult owing to the fact that non-convex regions and obstacles introduce shadows

and holes in the region which have complex influences on the joining distribution j(x).

Boundary effects can be taken into account by considering the following simplifying

assumption: since at any time the free space available is given by A/BNr , half of the

region can be assumed to be closer to the boundary and the other half closer to the

tree. Thus, the transition probability fst can be multiplied by a factor of 0.5 and the

results from using the modified transition probability is shown in Fig. 16.

Although in §B we presented a method that guarantees uniform sampling, the

value of pws is chosen out of more practical considerations to improve performance.

The presented model is general enough to be applied to more capable robots.

41

Time

A
ve

ra
ge

 n
um

be
r o

f r
ob

ot
s

in
 tr

ee

0 2000 4000 6000 8000 10000 12000
21

22

23

24

25

26

27

28

29

30

31

32

Experimental
Mean Underestimate
Mean Overestimate

Fig. 16. Plot showing experimental data (blue), the theoretical underestimate and

overestimate for k = 2 after considering boundary effects.

42

CHAPTER IX

CONCLUSION AND FUTURE WORK

Although we demonstrated that `RRT s and RRTs are equally good when it comes

to filling a space the voronoi bias of `RRT s remain to be quantified. It also remains

to be seen if our approach can be generalized to 3 dimensions satisfying the require-

ments charted out in the implementation section; although preliminary investigation

suggests that it is difficult to come up with a maneuver for finding the nearest neigh-

bor in 3-D. Another direction for extending the current work is to explore the use of

heterogeneous robots: having specialized robots for completing incomplete edges.

The work demonstrates what we believe to be a broader idea of physical data-

structures: namely that several existing spatial algorithms with well-understood prop-

erties can be directly implemented on robot hardware so that the resulting properties

describe the robots’ configurations. The primitives employed by the algorithm point

to behaviors that robots need to be able to execute. If an asynchronous implemen-

tation of a synchronous data-structure can be made consistent, then the algorithmic

analysis can to be carried over to the state of the robots themselves. In this particular

case, we have extended, broadened, or some existing definitions (e.g., distance depen-

dant sampling success, Voronoi bias, and the space-filling property) in analyzing the

behavior of our multi-robot system.

43

REFERENCES

[1] B. B. Werger and M. J. Matarić, “Robotic “food” chains: Externalization of

state and program for minimal-agent foraging,” in Proc. on Simulation of Adap-

tive Behavior, 1996, pp. 625–634.

[2] S. Nouyan, A. Campo, and M. Dorigo, “Path formation in a robot swarm,”

Swarm Intelligence J., vol. 2, no. 1, pp. 1–23, 2008.

[3] F. Ducatelle, G. A. Di Caro, C. Pinciroli, and L. M. Gambardella, “Self-

organized cooperation between robotic swarms,” Swarm Intelligence J., vol.

5, pp. 73–96, 2011.

[4] S. M. Lavalle and J. J. Kuffner Jr., “Rapidly-exploring random trees: Progress

and prospects,” in Algorithmic and Computational Robotics: New Directions,

2000, pp. 293–308.

[5] B. R. Donald, J. Jennings, and D. Rus, “Minimalism + distribution = super-

modularity,” J. of Experimental and Theoretical Artificial Intelligence, vol. 9,

no. 2–3, pp. 293–321, Apr. 1997.

[6] D. Payton, M. Daily, R. Estowski, M. Howard, and C. Lee, “Pheromone

robotics,” Autonomous Robots, vol. 11, no. 3, pp. 319–324, Nov. 2001.

[7] F. Lamiraux and J. P. Laumond, “On the expected complexity of random path

planning,” in Proc. IEEE Int. Conf. Robot. & Autom., 1996, pp. 3306–3311.

[8] S. M. LaValle and J. J. Kuffner Jr., “Randomized kinodynamic planning,” Int.

J. of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

44

[9] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning,” Int. J. of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.

[10] J. J. Kuffner Jr. and S. M. LaValle, “Space-filling trees,” Tech. Rep. CMU-RI-

TR-09-47, Robotics Institute, Pittsburgh, PA, 2009.

[11] K. Sekiyama and T. Fukuda, “Modeling and controlling of group behavior based

on self-organizing principle,” in Proc. IEEE Int. Conf. Robot. & Autom., Apr.

1996, pp. 1407–1412.

[12] K. Sugawara and M. Sano, “Cooperative acceleration of task performance: For-

aging behavior of interacting multi-robots system,” Physica D: Nonlinear Phe-

nomena, vol. 100, no. 3/4, pp. 343–354, Feb. 1997.

[13] K. Lerman and A. Galstyan, “A general methodology for mathematical analy-

sis of multi-agent systems,” Tech. Rep. ISI-TR-529, USC Information Sciences

Institute, Marina del Rey, CA, 2001.

[14] A. Martinoli, K. I. Easton, and W. Agassounon, “Modeling of swarm robotic

systems: A case study in collaborative distributed manipulation,” Int. J. of

Robotics Research, vol. 23, no. 4, pp. 415–436, 2004.

[15] T. W. Mather and M. A. Hsieh, “Analysis of stochastic deployment policies with

time delays for robot ensembles,” Int. J. of Robotics Research, vol. 30, no. 5,

pp. 590–600, Apr. 2011.

[16] S. Berman, V. Kumar, and R. Nagpal, “Design of control policies for spatially

inhomogeneous robot swarms with application to commercial pollination,” in

Proc. IEEE Int. Conf. Robot. & Autom., May 2011, pp. 378–385.

45

[17] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,”

Tech. Rep. TR 98-11, Computer Science Dept., Iowa State University, Ames, IA,

1998.

[18] J. J. Kuffner Jr. and S. M. Lavalle, “RRT-connect: An efficient approach to

single-query path planning,” in Proc. IEEE Int. Conf. Robot. & Autom., 2000,

pp. 995–1001.

[19] “Cgal, Computational Geometry Algorithms Library,” 2012,

http://www.cgal.org.

[20] D. A. Levin, Y. Peres, and W. L. Elizabeth, Markov chains and mixing times,

American Mathematical Society, Providence, RI, 2006.

46

VITA

Name Asish Ghoshal

Address Department of Computer Science,

301 Harvey R. Bright Building,

College Station, TX 77843-3112

Email Address aghoshal@cs.tamu.edu

Education

- Master of Science, Computer Science, May 2012,

Texas A&M University, College Station, TX

- Bachelor of Technology, Computer Science and

Engineering, May 2008, National Institute of Sci-

ence and Technology, Brahmapur, Orissa, India

