
PHYSICAL SIMULATION OF AN EMBEDDED SURFACE MESH INVOLVING

DEFORMATION AND FRACTURE

A Thesis

by

BILLY RUSSELL CLACK

Submitted to the O�ce of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2012

Major Subject: Computer Science



PHYSICAL SIMULATION OF AN EMBEDDED SURFACE MESH INVOLVING

DEFORMATION AND FRACTURE

A Thesis

by

BILLY RUSSELL CLACK

Submitted to the O�ce of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, John Keyser
Committee Members, Ergun Akleman

Jinxiang Chai

Head of Department, Duncan M. (Hank) Walker

May 2012

Major Subject: Computer Science



iii

ABSTRACT

Physical Simulation of an Embedded Surface Mesh Involving Deformation and

Fracture. (March 2012)

Billy Russell Clack, B.M., Stephen F. Austin State University

Chair of Advisory Committee: Dr. John Keyser

Simulating virtual objects which can deform or break apart within their environ-

ments is now common in state-of-the-art virtual simulations such as video games or

surgery simulations. Real-time performance requires a physical model which provides

an approximation to the true solution for fast computations but at the same time

provides enough believability of the simulation to the user. Recent research in object

deformation and fracture has revolved around embedding portions of the simulation

for graphical display inside a much simpler physical domain which is invisible to the

user. Embedding complex geometry in a simpler domain allows for very complex

e↵ects to occur in a much more robust and computationally e�cient manner. This

thesis explores a novel method to e�ciently embed a high-resolution surface mesh

inside a coarse tetrahedral physical mesh for the purposes of interactive simulation

and display. A technique to display interior regions as solid geometry without explic-

itly re-meshing the graphical mesh during fracture has been explored and developed.

Keeping the graphical mesh static in memory during simulation allows the geometry

to be o↵-loaded to the GPU while shaders can be utilized to only display portions of

the geometry which are locally contained within the physical mesh. Recent advances

in GPU technology have also been exploited in order to provide an increase in visual

fidelity and help achieve the illusion that the virtual object itself is breaking apart in

a physically plausible manner.



iv

To My Parents



v

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

B. Overview of Research . . . . . . . . . . . . . . . . . . . . . 5

II BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A. Early Work . . . . . . . . . . . . . . . . . . . . . . . . . . 10

B. Time Integration Methods . . . . . . . . . . . . . . . . . . 11

C. Free-Form Deformation . . . . . . . . . . . . . . . . . . . . 11

D. Mesh-Based Fracture . . . . . . . . . . . . . . . . . . . . . 12

E. Mesh-less Methods . . . . . . . . . . . . . . . . . . . . . . 14

F. Organic Visualization and Surgery Simulation . . . . . . . 15

III PREPROCESSING . . . . . . . . . . . . . . . . . . . . . . . . . 16

A. Barycentric Coordinates . . . . . . . . . . . . . . . . . . . 18

B. Triangle Assignment . . . . . . . . . . . . . . . . . . . . . 21

C. Texturing . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D. Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1. Image Based Collisions . . . . . . . . . . . . . . . . . 29

2. Collision Spheres . . . . . . . . . . . . . . . . . . . . . 30

IV PHYSICAL FORMULATION . . . . . . . . . . . . . . . . . . . 32

A. Overview of Finite Element Method as Applied . . . . . . 32

B. Elastic Deformation . . . . . . . . . . . . . . . . . . . . . . 33

C. Deformation Gradient . . . . . . . . . . . . . . . . . . . . 34

D. Strain Tensor . . . . . . . . . . . . . . . . . . . . . . . . . 36

E. Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . 37

F. Time Integration . . . . . . . . . . . . . . . . . . . . . . . 37

G. Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1. Computing Tensile and Compressive Forces . . . . . . 41

2. Separation Tensor . . . . . . . . . . . . . . . . . . . . 41

H. Collision Handeling . . . . . . . . . . . . . . . . . . . . . . 42

V GRAPHICAL SIMULATION . . . . . . . . . . . . . . . . . . . 45



vi

CHAPTER Page

A. Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . 46

B. Texturing . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1. Normal Mapping . . . . . . . . . . . . . . . . . . . . . 49

C. GPU Tessellation . . . . . . . . . . . . . . . . . . . . . . . 50

1. Tessellation Control Shader . . . . . . . . . . . . . . . 51

2. Tessellation Evaluation Shader . . . . . . . . . . . . . 51

3. Using Tessellation Control and Evaluation Shaders . . 52

VI RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . 55

A. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1. Computer Used . . . . . . . . . . . . . . . . . . . . . 55

2. Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1. Collision Geometry . . . . . . . . . . . . . . . . . . . 56

2. Timings . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3. Texturing . . . . . . . . . . . . . . . . . . . . . . . . . 59

4. Display Triangle Count . . . . . . . . . . . . . . . . . 60

5. Early Results . . . . . . . . . . . . . . . . . . . . . . . 61

C. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1. Collision Geometry . . . . . . . . . . . . . . . . . . . 64

2. Choosing Proper Material Parameters . . . . . . . . . 65

3. Graphical Display . . . . . . . . . . . . . . . . . . . . 66

VII CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A. Future Research . . . . . . . . . . . . . . . . . . . . . . . . 68

1. Utilizing Parallelism . . . . . . . . . . . . . . . . . . . 68

2. Multiple Materials in the Same Tetrahedral Element . 69

3. Image-based Collision Techniques . . . . . . . . . . . . 69

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



vii

LIST OF TABLES

TABLE Page

I Terminology associated with the preprocessing discussion. . . . . . . 17

II Counts for replicated triangles . . . . . . . . . . . . . . . . . . . . . . 61



viii

LIST OF FIGURES

FIGURE Page

1 The bunny enclosed in a finite element tetrahedral mesh. The

mesh is first generated as a control triangle mesh and then tetra-

hedralized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 An example triangle embedded inside two tetrahedral elements.

2(a) An initial undeformed mesh. A single triangle is embed-

ded inside two tetrahedra. 2(b) One tetrahedron moves, although

both tetrahedra are still connected. 2(c) The two tetrahedra be-

come disconnected. The embedded triangle becomes implicitly

disconnected as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 High-level overview of preprocessing stages. Triangle assignment

is first performed where each triangle is assigned to one ore more

tetrahedra via its barycentric coordinates. Internal boundary tex-

turing processes the tetrahedral boundaries which are inside the

object and rasterizes them for future fracture boundaries. Colli-

sion geometry creates the geometry used in the physical collision

detection/handeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Overview of the preprocessing steps. Input includes a polygonal

mesh and a tetrahedral mesh. The polygonal mesh is embedded

within the tetrahedral mesh. Texturing is then performed on the

interior portions of the tetrahedral mesh. Finally, collision spheres

are generated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Subsection of a mesh and a single tetrahedron. Red portions

correspond to the triangles and sub-sections of triangles which

are outside the tetrahedron, and green portions correspond to the

sections which are inside. . . . . . . . . . . . . . . . . . . . . . . . . 20

6 The Stanford bunny model with an example tetrahedral control

cage and the intersections between graphical and physical geom-

etry. 6(a) The model and the intersection lines can be seen. 6(b)

A single tetrahedron around the ear gets filled. . . . . . . . . . . . . 23



ix

FIGURE Page

7 The triangles are projected to 2-dimensional space in order to

avoid numerical precision errors. . . . . . . . . . . . . . . . . . . . . 24

8 A triangle is stored as one half of a square texture. . . . . . . . . . . 25

9 Two possible configurations for inside/outside along a face. Using

information from the vertices is required. . . . . . . . . . . . . . . . . 26

10 The scan-line approach fills in texels one-by-one by marching from

a vertex assigned as inside/outside and keeping track contour in-

tersection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

11 An example of how the basis matrix is built from the relative

configuration of the nodes in a tetrahedron. . . . . . . . . . . . . . . 35

12 Rotations are factored out of the deformation gradient in order to

represent pure relative displacements from rest shape. . . . . . . . . . 36

13 An example of a fracture occurring between two tetrahedra. The

plane is computed, and then forced to conform to the boundary

of the tetrahedra. The fractured node is split into positive and

negative nodes. Nodes on the positive side are assigned the pos-

itive split node, and negative nodes are assigned the other split

node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

14 An example of how barycentric coordinates are used. 14(a) A

section of the mesh with control tetrahedra. 14(b) Triangles which

intersect tetrahedron. Red portions correpond to the triangles and

sub-sections of triangles which are outside the tetrahedron. 2(c)

The final display triangles. Only sections inside the tetrahedron

are displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

15 An example triangle embedded inside two tetrahedral elements.

15(a) A portion of the mesh without texturing. 15(b) A portion

of the mesh with texturing. . . . . . . . . . . . . . . . . . . . . . . . 49

16 Left: The interior portion of the surface without normal mapping.

Right: The surface is rendered with normal mapping. The e↵ects

of normal mapping are enhanced via specular shading as can be

seen in the image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



x

FIGURE Page

17 The order of shader execution within the OpenGL graphics pipeline.

Note that only programmable shaders are shown. The geometry

shader is not used in this research. . . . . . . . . . . . . . . . . . . . 50

18 A portion of the mesh which is interior is tessellated to provide

an increase in geometry. Node the extrusion is exagerated from

what would be used in reality. Left: Detailed geometry. Right:

Coarser geometry of the same patch. . . . . . . . . . . . . . . . . . . 53

19 Top: Far away from the geometry, the tessellation is allowed to

be coarser. Bottom: Closer to the geometry will call for finer ge-

ometry. The images on the left represent the actual view the user

would see, and the right side is a close-up of the actual tessellation

being produced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

20 Graph of number of vertices which are interpenetrating a surface

with multiple counts of collision geometry. . . . . . . . . . . . . . . . 56

21 Timings for physical and graphical simulation comopnents. As

the tetrahedron count increases, the display simulation time does

not increase substantially. . . . . . . . . . . . . . . . . . . . . . . . . 57

22 Timings for physical and graphical simulation components. As

the triangle count increases, the physical update step stays rel-

atively the same which means the display and physical portions

are adequately decoupled. . . . . . . . . . . . . . . . . . . . . . . . . 59

23 The bunny’s face intersects with the tetrahedral boundary. The

painted texture can clearly be seen in the wavy portion. Note the

specular high-lights. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

24 Same regions of the model with a di↵erent resolution of tetrahe-

dral mesh. A triangle that is not duplicated is shown in green, a

triangle that is duplicated only once is yellow, and a triangle that

is duplicated 2 or more times is shown in red. . . . . . . . . . . . . . 62

25 Di↵erent control meshes used in early experiments. Left: Ar-

madilloman with control cage. Right: Control cage of bunny. . . . . 63

26 Early results using the entire tetrahedron as collision geometry.

A ball hits the armadilloman from the left of the screen. . . . . . . . 63



xi

FIGURE Page

27 Early display triangle counts for various tetrahedron counts. . . . . . 64

28 An example of di↵erent material parameters and di↵erent resolu-

tion tetrahedral meshes. 28(a) A sti↵ mesh. 28(b) A mesh which

deforms more due to less sti↵ material parameters and more DoF

due to more tetrahedra. . . . . . . . . . . . . . . . . . . . . . . . . . 65

29 Highly tessellated subregion. Left: Real distance from camera.

Right: Close-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

30 Low tessellation due to camera being far away. Bump mapping is

not a↵ected. Left: Real distance from camera. Right: Close-up. . . . 67



1

CHAPTER I

INTRODUCTION

Real-time environments require that the underlying physical representation of a scene

be combined with the graphical representation in a way that allows for real-time per-

formance. One method of achieving interactivity is to separate what the user sees

from the underlying physical systems at play. When complex e↵ects such as the

breaking-up of objects are considered, the physical models underlying the simulation

become complex and oftentimes computationally restrictive. Recent advances in em-

bedded methods allow for an evolution of a coarse physical model to update a fine

resolution graphical model. While many of these methods produce plausible results,

the mesh oftentimes must be re-meshed during fracture in order to represent the in-

ternal boundaries. Furthermore, many physical simulations still require the graphical

mesh in order to perform physical processes such as collision detection. It is advan-

tageous to keep the entire graphical mesh which the user sees static in memory (no

addition/deletion/merging of triangles) to allow e�cient computation and display of

the mesh.

In this thesis I explore methods which help speed up current deformation/fracture

simulations while allowing the graphical model design process to be completely ag-

nostic of the physical representation used in the simulation. I will explore if it is

possible to use an embedding method to divorce entirely the physical computations

from the graphical representation of the mesh. This work will show how complex

geometry can be e�ciently embedded inside a low-resolution physical mesh and then

be simulated over time. The physical model may deform due to elastic stress and

The journal model is IEEE Transactions on Automatic Control.



2

strain, and subsequently may break apart. Since the physical mesh is agnostic of the

graphical mesh, the physical simulation is not slowed down due to a high graphical

polygon count. Since the mapping from high-to-low degrees of freedom will undoubt-

edly have approximation errors associated with it, an investigation into how close

the embedding mapping comes to the best theoretical possible solution will be per-

formed. The methods developed will allow for the graphical mesh to remain static

in GPU memory while giving the illusion that it is being deformed/broken apart to

the user. Since no re-meshing is required, a method to close o↵ the gaps associated

with interior regions will be investigated by using texture mapping in a preprocessing

step. Because the goal of this research is to be create a believable simulation, GPU

functionality will be exploited to help provide detail in areas of the mesh which may

appear to be too flat due to the linear nature of the physical tetrahedral mesh.

To summarize, the main contributions of this work are the following:

1. Completely separate the graphical representation of the simulation mesh from

the physical representation in a virtual environment.

2. Use the physical representation to perform physical simulations involving de-

formation and fracture.

3. Show how the boundaries of the physical mesh may be used to display the

graphical mesh directly by using modern graphics processing unit (GPU) func-

tionality without re-meshing the input assets.

4. Experimentally determine the error associated with the collision detection/response

system.

5. Utilize modern GPU features in combination with displacement mapping to

display portions of the mesh which contain no embedded geometry but should



3

be filled (interior portions).

A. Motivation

Physically based deformation of complex geometry for real-time scenarios has in-

creasingly been researched in the past, with applications from video games to virtual

surgery simulations. The continuing necessity for a higher state of visual fidelity

has allowed for complex, visually stunning simulations which appear to react as they

would in the real world. The development of e�cient algorithms for deforming ma-

terials in a virtual world has allowed for amazing simulations taking place simulta-

neously in a user’s virtual environment. Common materials which may be seen in

current big-budget titles include deformable and breakable solids, cloth, and even

fluid simulations, all at real-time frame rates.

While the computational power of modern platforms continues to increase, the

visual fidelity of the physics simulations will naturally increase as well. The sheer

performance power of future systems will provide increased complexity and believ-

ability. With the added increase in memory, digital assets will become increasingly

complex as well. There is still a strong need for algorithms which are both compu-

tationally e�cient and allow asset artists to focus on the content (3D models in this

case) without worrying about how the complexity of the model will adversely a↵ect

the performance of the physical simulations.

One method to couple the graphical model with a coarse physical model is to

embed the graphical mesh within a finite element mesh composed of tetrahedrons as

in Figure 1. A problem arrises when discontinuities occur since the graphical mesh

emulates a solid object but is only represented as the boundary of the object. Remesh-

ing the graphical model to close o↵ holes and discontinuities also requires complex



4

Fig. 1. The bunny enclosed in a finite element tetrahedral mesh. The mesh is first

generated as a control triangle mesh and then tetrahedralized.

geometric calculations to occur during simulation time. Furthermore, modern graph-

ical processing units (GPUs) are very e�cient in drawing geometry stored locally

in the GPU’s memory, but constantly transferring geometry information across the

CPU-GPU bus is an expensive operation.

In the finite element mesh, tetrahedrons are used as elements and the nodes

connecting them form the basis functions for the elements. In order to keep the

graphical geometry static in GPU memory, a method to represent the interior portions

of a graphical mesh must be developed which does not arise from a re-triangulation

step. In order to solve this problem, cracks and breaks that form can be confined to

tetrahedral boundaries allowing the initial tetrahedral mesh to not be re-meshed. A

mapping between graphical mesh and finite element mesh can be created, and during

animation this mapping is evaluated to derive the graphical positions relative to the

finite element positions. The physical mesh is a much coarser mesh than the graphical

mesh (see Figure 1). The obvious advantage to this approach is that the graphical

performance and physical performance are decoupled from each other. The basic



5

notion of embedding is what inspired this research and is fundamentally connected

to the idea of free-form deformation. See Sederberg and Perry [1] for the basis of

free-form deformation.

(a) No deformation (b) Deformation (c) Fracture

Fig. 2. An example triangle embedded inside two tetrahedral elements. 2(a) An initial

undeformed mesh. A single triangle is embedded inside two tetrahedra. 2(b)

One tetrahedron moves, although both tetrahedra are still connected. 2(c)

The two tetrahedra become disconnected. The embedded triangle becomes

implicitly disconnected as well.

Even if the tetrahedra are used to perform the breaking of an object, the interior

boundaries will still appear linear since they are essentially the walls of tetrahedrons

(see figure 2) Given that the graphical geometry is separated exactly at the walls

of their embedding tetrahedrons, the interior walls must be roughened in order to

appear more realistic.

B. Overview of Research

In this work, methods were explored which would allow for the simulation mesh

(for physics) and the rendered mesh (for graphics) to be properly divorced during



6

simulation. The inputs to the simulation are a triangle model for graphical display

and a tetrahedral control mesh which encloses the entire graphical model. The high-

level overview of the simulation is outlined in the following:

1. Preprocessing stage. During this stage, assets are created and stored for later

use during the simulation. This step must only be run once for each graphical

model and tetrahedral control mesh. The assets created include additional

graphical geometry and collision geometry.

2. Simulation initialization. During this stage a mapping between graphical mesh

and physical mesh is created. Triangles of the graphical mesh are assigned

tetrahedra based on which ones they need to be embedded within. Display lists

are created and geometry is o✏oaded to the GPU for subsequent display.

3. Simulation run. The simulation processes in discrete time steps. External

influences may distort the shape of the meshes which will give rise to internal

stresses and strains. If the material fails, a fracture occurs and the physical

mesh’s connectivity is updated accordingly.

4. Graphical animation. The graphical object is drawn to the screen. The mapping

from physical space to graphical space is performed in a shader using precom-

puted weights. Portions of the physical mesh may have been partially textured

during the preprocessing step which could be displayed to the user as well.

A preprocessing step is first performed. The preprocessing system uses as input

a triangle mesh and a tetrahedral control mesh. The preprocessing step serves the

following main purposes:

1. Create the collision geometry of the object directly from the graphical mesh.

The collision geometry itself is a coarse approximation of the ”true” geometry



7

of the mesh.

2. Create graphical geometry which is not part of the input mesh and add this

geometry to the graphical mesh’s triangle list.

3. Close o↵ interior portions of the graphical mesh along the facial boundaries of

the embedding tetrahedrons.

The preprocessing stage contains the most expensive portions of the simulation. This

stage does not need to be run every time the simulation begins, but instead it should

only be run once during asset generation. Once the assets are created, they can

be loaded every time the simulation begins along with the graphical model and the

tetrahedral model.

The simulation algorithm itself can be described almost entirely in terms of the

physical tetrahedral mesh. Unlike methods which rely on the graphical geometry to

perform at least a subset of the physical calculations (such as collision detection), in

this work only the invisible coarse portions are used to perform physics calculations.

Stresses and strains are computed within the physical mesh using standard physical

models adapted from classical mechanics by O’Brien and Hodgins [2]. These stresses

and strains represent internal forces occurring inside the physical model. Depend-

ing on the material of the model, these forces may exceed the material limit which

would induce a fracture plane. Following the work done by Parker and O’Brien [3],

instead of re-meshing individual elements that become discontinuous, a fracture plane

is snapped to the boundaries of the elements. While this technique produces phys-

ically inaccurate results, it still produces physically believable results and prevents

costly re-meshing. Once the fracture plane is determined, elements may become dis-

connected. The discontinuity is represented solely by the connectivity structures,

which in this case are the nodes of the mesh. Fracture will cause these nodes to split



8

apart and separate adjoining tetrahedra.

During a simulation the physical mesh is invisible to the user and instead the

user sees the results of the mapping to the graphical object. Due to the availability

of programmable graphics hardware, the mapping of the graphical mesh from the

embedding mapping can be done entirely on the GPU in a shader. A novel tech-

nique to break geometry is performed entirely in the GPU as well by exploiting the

interpolation functionality inherent in the graphics pipeline.

Collision detection and reaction is another major component of any physically

based simulation. While collision detection could be performed using the graphical

mesh, it makes much more sense to also divorce the collision model from the actual

graphical model as well. In most production environments, artists are constrained to

created meshes which conform to a maximum polygon count. The reason for this is so

the mesh itself doesn’t cause a bottleneck in producing real-time frame rates. While

polygon count will always a↵ect the graphical performance of a system, it would

be nice to at least decouple the physical portion from the mesh. By utilizing this

decoupling, the artist has more freedom to design more complex and polygon-dense

meshes. This research aims to develop a collision system which also does not depend

on the graphical mesh during the simulation. In this research, a method was designed

to measure the best possible collision reaction given the embedding paradigm. This

method essentially allows us to compute a lower-bound on the error expected from any

collision system which uses the mapping from fine-to-coarse embedding. Experiments

are performed which measure how close this system comes to the best possible lower-

bound error solution.

The organization of this thesis is as follows. In Chapter 2, background work in

the field of physically based simulation as well as fracture simulation will be reviewed.

In Chapter 3 the preprocessing phase will be discussed. In Chapter 4 the formulas



9

relating to deformation and fracture will be discussed as well as how the fracture

plane is computed. The approximating fracture plane is primarily inspired by Parker

and O’Brien [3]. In Chapter 5, the graphical components of the simulation will be

discussed as well as an overview of how tessellation shaders are used to help displace

geometry. Chapter 6 will give an overview of the results. This chapter will also

contain the results of experiments to determine the error of the collision response of

the system as well as how close to the best possible solution the simulation comes.

Finally, Chapter 7 will conclude with possible future research as well as a discussion

of the pitfalls discovered during the course of this research.



10

CHAPTER II

BACKGROUND

A. Early Work

Early work in applying physical deformations to computer simulations borrowed very

much from classical mechanical engineering literature. These methods often required

integrating complex energy functions across the solid. The main pioneering work

in applying these energy functions to computer graphics was Terzopoulos et al. [4].

While the results included very simple shapes and the calculation of each frame was

by no means quick, their work laid the framework for applying their ideas in future

research. Their research was also some of the first to show how to apply general

physical models to graphical simulations. A year later, Terzopoulos and Fleicher [5]

showed how add permanent plasticity and fracture to their simulations.

Late in the 90’s, a few key breakthroughs were made in the realm of time inte-

gration methods and deformation/fracture. Bara↵ and Witkin [6] were able to derive

an implicit time integration scheme which allowed for very sti↵ materials while re-

laxing the small time step requirement. The method developed in this seminal work

was used as the integration scheme of choice for this research. Key work in apply-

ing fracture mechanics to computer graphics was performed by O’Brien and Hodgins

[2] in 1999. They showed how to properly compute strains and stresses in order to

induce discontinuities in the material. While their method was slow and required

re-meshing, it laid the foundation for future research in graphical fracture. A few

years later, O’Brien et al. [7] extended previous research to include plasticity in the

object. Plasticity allows for the simulation of a model which would be permanently

deformed if the stresses exceeded a certain threshold (material-dependent).



11

B. Time Integration Methods

While not the essential focus of this thesis, it is worthwhile to present an overview

of typical physically based time integration schemes. In Hauth and Etzmuß’ work

[8], an overview of time integration steps and an overall architecture was explained.

Volino and Magnenat-Thalmann [9] gave a theoretical and empirical comparison of

popular integration schemes when applied to a deformable cloth simulation. Bara↵

and Witkin [6] were the first to show how an implicit integration scheme could be

used in physically based modeling, specifically with applications to cloth simulation.

The implicit time integration scheme allows for large stable time steps.

C. Free-Form Deformation

Free-form deformation allows geometry to be embedded within a control mesh for an

artist to easily manipulate and morph the geometry. The field of free-form deforma-

tion has evolved since the mid 1980’s. While the earliest work focused on giving a

digital artist more freedom to design content and warp shapes, the ideas fundamental

to that field have been extended to other applications, including physically based

modeling.

Work has been done in free-form deformation which involves embedding geometry

into a control mesh. The control mesh may be modified which will, through a mapping

function, implicitly modify the embedded mesh. Sederberg and Parry [1] showed

one of the first methods of using free form deformation techniques. Others such as

Coquillart [10], MacCracken and Joy [11], and Faloutsos et al. [12] extended FFD for

various scenarios. Of particular application to physically based systems was Melek

and Keyser’s work [13] where they simulated a complex physical process by mapping

forces arising inside a control mesh to drive the visual simulation of combustible



12

material. Nesme et al. [14] showed how to derive a mapping to embed elements in a

non-homogenous method, which allowed for di↵erent material types within the same

mesh.

D. Mesh-Based Fracture

Research in fracturing physical objects has been abundant in the last few decades.

One of the earliest papers which showed how to fracture objects in a physical envi-

ronment is by O’Brien and Hodgins [2]. In this paper, they used an explicit finite

element method to model forces over the volume of the object to be deformed or

fractured. Their work was based o↵ of standard elasticity theory from continuum

mechanics literature. O’Brien et al. [7] showed how their algorithm could be used

with a plastically deformable object as well. With a modification to the rest shape of

the object, ductile fracture which induces a permanent deformation in the object was

realized. Smith et al. [15] discretized the volume of the objects into tetrahedra and

used point-mass constraints to hold the object together. When forces became to high,

the geometry was broken up along the faces of the tetrahedra. They use a fractal

subdivision algorithm to make the elements look like shards rather than tetrahedra.

Their time integration scheme was based o↵ of constraint methods developed a few

years earlier. Müller et al. [16] showed how static analysis could be used to allow

fracturing in real time. In their algorithm, they treated the sti↵ object as a rigid

body until contact, at which point they treated the region around a collision as an

influence region and fractured that portion of the mesh while leaving the remaining

portion of the object fixed in space. They solved for the static equilibrium equation,

which relates the internal forces arising in an object to the external forces. Müller et

al. [17] were able to factor out rotations from individual finite elements in order to use



13

linearized strain tensors. Etzmuß et al. [18] showed how Cauchy’s linear strain tensor

could be applyed to a finite element simulation with large deformations by first fac-

toring out a rotation from each element’s sti↵ness matrix. The results were applyed

to a cloth simulation. Müller and Gross [19] fractured a surface mesh embedded in a

lower resolution coarse control mesh. Rotations were factored out of each tetrahedron

before calculating stress / strain as in Etzmuß et al. [18]. Once rotations were fac-

tored out, they could use a linear, non-rotationally invariant Cauchy stress which is

computationally cheaper to compute. Unlike the method proposed here, their method

required re-meshing the underlying surface mesh in order to simulate the fracturing

of the embedded geometry. Muller et al. [20] showed how a mesh represented only by

the surface mesh could be fractured. Their algorithm required discretizing space into

hexadedra and using the nodes of the hexahedra to close o↵ holes forming between

the surface mesh and the internal volume of the object. Their method still required

remeshing in the cases of fracture. Bao et al. [21] used the finite element method with

respect to thin shell simulations. Their simulation allows for fracture as well as plastic

deformations. Parker and O’Brien [3] showed how fracturing could be accomplished

in a real production scenario. They used the same fracture algorithm as O’Brien

and Hodgins [2], but instead restricted crack propagation to the faces of the tetrahe-

dra. They also took advantage of parallel processing to speed up computations for a

real-time scenario. Molino et al. [22] used tetrahedral elements to simulate cutting

material. Their method allowed tetrahedra to be partially filled with material during

the simulation. During collisions, a triangle boundary for the interior portions of the

tetrahedra was created and added to the element boundary list for collision detection

and handling. Wicke et al. [23] utilized current research in tetrahedral robustness to

create an elastic and plastic simulation which could involve splitting by dynamically

re-meshing over the time step intervals to prevent degeneracies. Their algorithm used



14

both a simulation space model and a rest space model with a mapping from one to

the other. Remeshing happens on the rest space mesh, and as the mesh deforms, the

rest space mesh could also deform which naturally leads to plastic behavior in the

simulation mesh. Sifakis et al. [24] allowed explicit cutting of tetrahedral elements

while displaying an embedded high-resolution mesh. Their method is exceptionally

well suited to rigid body simulations as well as precise cuttings/incisions. For an

overview fracture mechanics, it is recommended to see Anderson [25].

E. Mesh-less Methods

There have been significant advances in the realm of mesh-less deformation and frac-

ture as well. Mesh-less techniques do not keep an explicit topology of the mesh being

simulated, but instead usually consist of a discrete set of sampled points within an

object which represents the volume or surface of the object. Pauly et al. [26] extended

the mesh-less approach and used a dynamic re-sampling approach during the fracture

of the object. In their approach, they used an initial volumetric sampling which may

be dynamically updated and re-sampled as the object deforms or breaks apart. Müller

et al. [27] presented a method to perform shape matching and integrated the equa-

tions of motions by defining target shapes and moving the current shape towards its

respective target. The target shape was derived from the relationship of the current

configuration of the object to the rest configuration of the object. Sifakis et al. [28]

gave a method to deform a solid based on a distribution of particles. Hard binding

constraints were used to set target positions and soft binding constraints were used

to allow force integration and propagation throughout the triangular mesh.



15

F. Organic Visualization and Surgery Simulation

Mendoza and Laugier [29] showed how to use the finite element method in order to

cut through soft tissue. Their method required re-meshing into multiple tetrahedra.

Because tetrahedra were used to represent the fracture mesh, a degeneracy such as

a single connecting vertex may arise. For muscle visualization, Teran et al. [30] and

[31] gave a geometric formulation of deformation using the finite volumetric method.

They used tetrahedra to visualize deforming muscles which were allowed to contract

and deform. They embeded complex geometry in a coarse tetrahedralized mesh,

similar to the methods used in this research. In the case of topologically disconnected

geometry which falls into the same tetrahedron, they created tetrahedra which may

be coincident but contained distinct geometry. See Nealen et al. [32] for a survey of

deformation research.



16

CHAPTER III

PREPROCESSING

In order to e�ciently embed and simulate the graphical mesh at run-time, a prepro-

cessing phase is required. During the preprocessing phase, assets are created such as

textures and collision geometry which will be loaded and used during run-time. While

the preprocessing phase is the most computationally complex and data-intensive step

of the simulation, it must be performed only once during content generation. Subse-

quent runs of the simulation will simply load the results of the preprocessing phase

from disk. The overview of the components of the preprocessing section can be seen

in Figure 3.

Fig. 3. High-level overview of preprocessing stages. Triangle assignment is first per-

formed where each triangle is assigned to one ore more tetrahedra via its

barycentric coordinates. Internal boundary texturing processes the tetrahe-

dral boundaries which are inside the object and rasterizes them for future frac-

ture boundaries. Collision geometry creates the geometry used in the physical

collision detection/handeling.



17

Table I. Terminology associated with the preprocessing discussion.

T The graphical triangle mesh.

T

k

A subsection of the triangle mesh belonging to physical tetrahedron k.

t An individual triangle in the graphical mesh T .

P The physical tetrahedral mesh.

p A single tetrahedron of the physical mesh P .

f

k

i

The i

th triangular face of tetrahedron k where i 2 [1, ..., 4]

�

ij

Barycentric coordinates of the j

th vertex of the i

th triangle in the graphical mesh T .

A set of common symbols will be used to denote which components of the mesh

are currently being discussed. Table I lists the symbols and terminology associated

with the following chapter.

The input to the preprocessing phase will be a triangle mesh T and a tetrahedral

mesh P that encloses the triangle mesh. T must be a mesh free of holes and self-

intersections. The mesh T simply consists of a collection of triangles defined by

their vertices and faces. No adjacency information or connectivity information is

required. The tetrahedral mesh P should be generated such that each primitive of

T will be completely contained within one or more primitive of P . Not all triangles

in T belong to exactly one tetrahedron p but instead might span a subset of P . To

generate P , a coarse triangle mesh is constructed to completely enclose T . From this

coarse triangle mesh, any tetrahedralization algorithm may be used to create internal

connected tetrahedra. For this research, the package TetGen [33] was used in order

to create P

In this chapter, the 3 main functions of the preprocessing phase will be explained.

First, the triangle assignment procedure will be discussed. The assignment procedure



18

includes a discussion of how barycentric coordinates are used to assign triangles to

a tetrahedron in the mesh. Following the triangle assignment phase, the texturing

phase will be discussed. During the texturing phase, walls of each tetrahedron are

partially textured based on whether they are inside/outside of the geometry. Finally,

collision geometry generation will be discussed. The collision geometry phase is the

most computationally intensive component of the algorithm. See Figure 4 for a high-

level view of the preprocessing stage.

Fig. 4. Overview of the preprocessing steps. Input includes a polygonal mesh and a

tetrahedral mesh. The polygonal mesh is embedded within the tetrahedral

mesh. Texturing is then performed on the interior portions of the tetrahedral

mesh. Finally, collision spheres are generated.

A. Barycentric Coordinates

Barycentric coordinates are used in this simulation to create a linear interpolation

function and are used to perform the embedding procedure. Barycentric coordinates

have the property that they are used to perform a convex combination of an individual



19

tetrahedron’s vertices into one single point. The barycentric coordinates themselves

can also be used to determine properties of the embedded points with respect to their

embedder tetrahedron. Given the j

th vertex of triangle i defined as t

ij

2 R3 with

barycentric coordinates �

ij

2 R4 with coordinates [u, v, w, t], and the tetrahedral

vertices p

0

, p
1

, p
2

, and p

3

2 R3, the function used to determine the 3-D position of

t

ij

is

t

ij

= �(u, v, w, t) = u ⇤ p
0

+ v ⇤ p
1

+ w ⇤ p
2

+ t ⇤ p
3

(3.1)

Barycentric coordinates have the property of a�ne invariance which, for the

purposes of this research, intuitively means that as the tetrahedron deforms, each

embedded point’s new position will have the same barycentric coordinate as in the

undeformed state. A�ne invariance is important when considering deformation across

boundaries of the tetrahedron. If a face of a single tetrahedron is connected (i.e. all the

vertices of the face are co-incident with the vertices of another tetrahedron’s face upon

initialization), a single point that lies on the shared face that is actually contained

in both tetrahedra will remain coincident as long as that face is still shared. During

deformation (avoiding fracture) a surface crossing a shared face of the embedded

geometry between two tetrahedra will remain C

0 continuous across this boundary. C0

continuous means there will be no positional discontinuities in the geometry within

the shared regions of the surface even though the normal across these regions may

change discontinuously.

The calculation of barycentric coordinates is simple and straightforward. One

way to compute the coordinates is to solve a linear system. The system can be set

up as follows,



20

2

64
p

1

p

2

p

3

p

4

1 1 1 1

3

75

�

ij

�
=

2

64
t

ij

1

3

75 (3.2)

where p
i

is the tetrahedron’s ith vertex defined as [px
i

, p

y

i

, p

z

i

]t, �
ij

are the barycen-

tric coordinates of vertex t

ij

defined as [�u

ij

, �

v

ij

, �

w

ij

, �

t

ij

]t with respect to the tetrahe-

dron, and t

ij

is the point’s position defined as [tx
ij

, t

y

ij

, t

z

ij

]t.

Both p

i

and t

ij

are given, so the system is solved for �
ij

. Note the bottom row

of the left matrix consists of 1s because the barycentric coordinates should all sum

to 1. Assuming the tetrahedron is not degenerate (i.e. vertices are not coplanar

or coincident), the system can be solved with any number of techniques. For this

research, Cramer’s rule was utilized to solve the system. For more information on the

properties of barycentric coordinates, see Farin [34].

Fig. 5. Subsection of a mesh and a single tetrahedron. Red portions correspond to the

triangles and sub-sections of triangles which are outside the tetrahedron, and

green portions correspond to the sections which are inside.

Barycentric coordinates can also be used to determine whether a point is outside

or inside the tetrahedron. Given t

ij

and its barycentric coordinates �

ij

, t
ij

is inside



21

the tetrahedron if all 4 components of �
ij

are positive. The point lies outside the

tetrahedron if any of the components are negative. See figure 5 for an example of

barycentric correspondence to a tetrahedron.

B. Triangle Assignment

Initially T consists of a collection of triangles defined by their vertices and their faces.

No adjacency information for the triangles is required. This phase in the preprocessing

procedure consists of iterating over all triangles t in T and assigning them to one or

more p in P . In order to test for assignment, it is not su�cient to simply test whether

a vertex belongs to a tetrahedron or not. A triangle may span multiple tetrahedra, or

a portion of the interior of the triangle may be intersecting a tetrahedron. For each

tetrahedron in the physical mesh P , each triangle t of T will be tested for possible

inclusion.

A simple test between the triangle in question and all triangular faces fk

i

of the

tetrahedron is first performed. The vertices of each t are first converted to barycentric

coordinates with respect to the current tetrahedron. First, a simple intersection test

is performed between the triangle t and the 4 triangular faces fk

i

of tetrahedron p. If t

does not intersect p then an additional test is performed. The barycentric coordinates

�

k

i

of each vertex of t is computed and checked for inclusion inside p. As previously

mentioned, a vertex of t is inside the tetrahedron if all of its barycentric coordinates

are 0. If no vertices of t are found to be within p, then it fails the second test. A

triangle that passes at least one test is embedded within p.

These two checks are performed for every triangle in P and every tetrahedron

in T . While it could be argued that some form of spatial subdivision scheme should

be used to cull out impossible intersections, no such scheme was used in this research



22

since performance is not an issue for the preprocessing step. Any triangle that is

embedded within any tetrahedron gets added to that tetrahedron’s list of included

triangles. The barycentric coordinates of the triangle’s 3 vertices are stored as well.

These coordinates along with their tetrahedral counterpart are needed for display. It

is important to note that a single triangle may get assigned to multiple tetrahedra and

may be duplicated. Duplication only occurs on the boundaries of each tetrahedron.

Obviously the number of duplicated triangles is determined by the number of tetra-

hedra, but typically the size of P will be very small compared to the size of T . Details

on the numbers of tetrahedra and corresponding graphical triangles can be found in

the results chapter. Duplicated triangles will not cause graphical artifacts since the

portions of the triangles that fall outside of their tetrahedra are not displayed.

Once all of the triangles in T have been assigned to tetrahedra in P , the mesh is

then checked again for empty tetrahedra. Empty tetrahedra occur due to alignment

issues in the control mesh or from the generation of tetrahedra in the tetrahedraliza-

tion algorithm. Empty tetrahedra represent portions of the control mesh which lie

outside of the graphical mesh altogether.

C. Texturing

A method to close o↵ the boundaries of the tetrahedra was created. This method is

not exact and contains small-scale gap artifacts when zooming close to the geometry,

but in practice and real-time scenarios these artifacts are unnoticeable and can be

alleviated with higher resolution textures.

The texturing phase uses the triangle lists generated in the previous step to

paint the walls of the tetrahedra in P which fall within the physical solid object. The

painting of the walls does not require any type of re-meshing and simplifies some GPU



23

based e↵ects during graphical simulation. The textures that are created are the only

graphical portions of P which the user will see during run-time. Each tetrahedron in

P will reference exactly two square textures. Each texture will contain two faces of

the tetrahedron.

A scan-line approach is taken to create the tetrahedral wall texturing. This

approach takes advantage of the fact that T is a closed manifold mesh without any

holes. For this reason, the intersections of the triangles and the tetrahedra will be

completely connected across tetrahedral boundaries as can be seen in Figure 6.

(a) Bunny with interestions with
tetrahedra.

(b) One tetrahedron being
filled.

Fig. 6. The Stanford bunny model with an example tetrahedral control cage and the

intersections between graphical and physical geometry. 6(a) The model and

the intersection lines can be seen. 6(b) A single tetrahedron around the ear

gets filled.

First each triangle of the embedded geometry will be intersected with its respec-

tive embedding tetrahedron. A set of contour lines are created from this intersection.

Each contour line will belong to a face of a tetrahedron and is stored in a list.

Once all contour lines are computed from the intersections, all tetrahedral faces

are rasterized using the scan-line algorithm. For the scan-line algorithm, each tetra-



24

Fig. 7. The triangles are projected to 2-dimensional space in order to avoid numerical

precision errors.

hedral face will be bi-linearly interpolated from its vertices. In order to perform

bi-linear interpolation, a ghost point is computed for the tetrahedral face which will

cast the face into a triangular half of a quad. Given f

k

i

representing the i

th face of

tetrahedron k, the vertices of the face can be represented as v
i

with i = 1, ..., 3 in a

counter-clockwise ordering. Let v

1 (u, v) = s where s 2 R3 lies on f

k

i

if 0  u  1

and 0  v  1. Also, define a ghost point v
g

= v

1

+ (v
2

� v

3

) (see Figure 7). Then

v

1 (u, v) = (1� v) ⇤ ((1� u) ⇤ v
1

+ u ⇤ v
g

) + v ⇤ ((1� u) ⇤ v
3

+ u ⇤ v
2

) (3.3)

is a bilinear interpolation for the first half of the texture where v1(0, 0) = v

1

, v(1, 1) =



25

v

2

, and v(0, 1) = v

3

. For the second half of the texture, the same function is defined

with u and v reversed,

v

2 (u, v) = (1� u) ⇤ ((1� v) ⇤ v
1

+ v ⇤ v
g

) + u ⇤ ((1� v) ⇤ v
3

+ v ⇤ v
2

) (3.4)

and will give the values of v1(0, 0) = v

1

, v(1, 1) = v

2

, and v(1, 0) = v

3

. By casting the

triangle problem into that of a quadrangular interpolation problem, the faces can be

evenly interpolated in a single loop over u and v.

Fig. 8. A triangle is stored as one half of a square texture.

Starting at one vertex of the triangle, the algorithm loops through the u and

v coordinates. This loop means to increment u and v by du and dv respectively.

du and dv are dependent on the width and height of the target texture and are

computed as du = 1

w

and dv = 1

h

where w and h are the width and height of the

texture, respectively. Figure 8 shows an example of a triangle being rasterized in a

2D-texture space. Upon each increment of u or v, the contour lines from the current



26

triangle are checked for intersection with the line segment formed from the current

and previous u and v. An approach common to computer graphics is adapted for use

in this determination. Consider a 3D polyhedron which is closed and manifold. Given

a single point, a ray can be cast in any direction. If the ray crosses an odd number of

faces of the polyhedron then the point is inside the space enclosed by the polyhedron.

If the ray crosses an even number of faces of the polyhedron then the point is outside

the space. This approach to using a ray cast to perform an inside/outside test on a

polyhedron is used in 2-dimensions here: instead of a polyhedron we have a set of line

segments in 3-dimensional space and the rays are scan-lines marching over the face of

a tetrahedron (within the same plane as the face). The situation is made a bit more

di�cult since an explicit edge is not computed for the tetrahedral facet’s boundaries.

The edges of the tetrahedral face can not simply be used either as it creates a possible

arbitrary assignment for the point (see Figure 9). More information about the edges

must be known to create a true boundary for the contour lines.

Fig. 9. Two possible configurations for inside/outside along a face. Using information

from the vertices is required.



27

Instead of closing o↵ the contour lines, a di↵erent approach is taken. In this

approach, an initial inside/outside denotation is performed for the vertices of each

tetrahedron. These vertices can be considered inside or outside by using the method

discussed previously along with the 3D mesh T . With the inside/outside information

for the vertices of the tetrahedrons, it is possible to begin at one vertex and scan

across an individual tetrahedron’s face. Initially the current state is set to either

inside or outside depending on the starting vertex. While marching over each tetra-

hedron’s face (using the interpolation scheme previously discussed), each intersection

of the marching ray with the contour lines will swap the current state to ”inside” or

”outside”. A counter is used and the odd/even scheme is used in the case that du

or dv is su�ciently large enough to cross multiple isolines. This process is performed

for every texel in every tetrahedral face to create the wall textures. For an example,

see Figure 10.

Fig. 10. The scan-line approach fills in texels one-by-one by marching from a vertex

assigned as inside/outside and keeping track contour intersection.

The marching algorithm attempts to compare 3-dimensional line segments with



28

other 3-dimensional line segments. In order to avoid numerical precision errors and

epsilon-like computations, the tetrahedral faces are first projected to 2D. For each

tetrahedral face, there is a choice for choosing the projection dimensions from a

3- dimensional space. The 2 dimensions chosen are the dimensions which have the

smallest absolute value components in the face’s normal. This projection is motivated

by image collision techniques found in Faure et al. [35]. Once the faces of the triangles

are projected to 2D, the problem of intersecting the 2D line segments becomes easier.

The color stored for the current texel is given an alpha component of 1 if it is

inside the contour region and 0 if it is outside. Once all of the faces of the tetrahedra

are rasterized, the textures are then stored in memory. Before the simulation begins,

the textures are used with alpha blending enabled and the alpha culling function set

to ”greater than 0”. Because the texels which were determined to be outside the

contour regions have alpha components of 0, these will be culled out by the graphics

API pipeline. The portions which are set as inside have an alpha component of 1 and

will be displayed during animation. The other colors in the texture are arbitrary and

may be used whatever the developer desires, such as a normal for a normal map.

D. Collision

The model so far consists of a set of triangles for graphical display, a set of tetrahe-

drons for physical simulation, a set of textures which will be painted onto the faces

of the tetrahedrons for graphical display, and a set of mappings from triangles to

tetrahedrons. In order to have a simulation which contains any interesting e↵ects, a

method to perform collisions must be created.



29

1. Image Based Collisions

Initially a well-known image-based collision technique was researched and imple-

mented for this problem. The technique is attributed to Faure et. al. [35]. The

image-based collision approach would correspond well to this technique since there

are portions of the graphical mesh which are implicit, i.e. the painted textures. In

the image-based approach, an object is drawn from three orthogonal directions. A

layered-depth image (Shade et al. [36] and Everitt [37]) is used to perform multi-

ple renders on di↵erent layers of the geometry in screen space. From these layered

depth images rendered from 3 orthogonal directions, intervals can be created which

represent the interior of the object. Using these intervals, collision detection can be

determined as well as the associated collision response. The collision response in-

cludes using the relative positions of the interval endpoints and mapping the gradient

of the penetration volume to the object’s exterior vertices. While this approach works

well for solid deformable objects, it was found to su↵er from multiple deficiencies with

the inclusion of fracture. When pieces of the object break away, the bounding box

used to render the object could grow very large. Due to the discretization inherent

in rendering to a texture/framebu↵er, precision is lost as the bounding box grows

larger. Furthermore, performing multiple passes on separated pieces of geometry is

a possibility, but each piece of the object would have to be rendered multiple times.

Obviously this is ine�cient and undesirable. While other image-based collision ap-

proaches were considered, none were found su�cient to deal with geometry breaking

apart into multiple geometry. The development of an image-based collision scheme

with a fracture simulation is an area of possible future research.



30

2. Collision Spheres

Instead of using an image-based approach, a particle-centric approach was decided

upon. Using a particle-centric collision method allowed the collision detection to

remain simple and e�cient. While the particle-based approach may allow interpene-

tration of the graphical mesh, the visual results are negligible in a real-time scenario.

A bounding box is first computed for every tetrahedral element in the physical

mesh P . An initial target radius is chosen by the user. This radius a↵ects the

maximum bounds on the particle radii which are computed. Depending on the radius

chosen, the volume of the box is looped over in discrete intervals. At each interval, the

current position is tested for containment inside the current element. If the current

position is found to be inside, a particle is added to the current tetrahedron and

barycentric coordinates are assigned to the particle with respect to that tetrahedron.

If, during the scan of a tetrahedron, at least 3 particles are not created, then the radius

is halved and the tetrahedron is rescanned. The reason for decreasing the radius

length and rescanning the volume is due to the error inherent with a discretized

volume. The 3-particle minimum criteria was selected since 3 points are required

to create a plane. With less than 3 points, pieces of the object may never settle

when laying stationary on the ground. After particles have been assigned to their

respective tetrahedra, they are rescanned for possible exclusion. If a particle is found

to be completely surrounded by a certain amount of neighbors, it is deleted from the

collision volume. For this research, 26 was used as the culling number. The spheres

are culled since the simulation avoids any re-meshing of the individual tetrahedra and

thus collision particles which are completely surrounded by other particles will never

collide with external geometry.

From the initial particle assignment, a center of mass for each tetrahedron can



31

computed. In this research, the mass for a tetrahedron corresponds to the fraction of

the total volume the particle spheres account for and the total volume of the tetrahe-

dron. The center of mass itself is also be stored barycentrically for each tetrahedron

and the mass computed is distributed to the tetrahedron’s nodes via these barycentric

coordinates.



32

CHAPTER IV

PHYSICAL FORMULATION

In this chapter, the fundamental equations relating elasticity and strain will be shown

as well as how deformation forces may be derived from these properties. For this

discussion, general fracture will be ignored and instead the deformation of the object

will be considered. The equations relating to deformation were derived by the early

work of Terzopoulos et al. [4] and subsequently extended to handle fracture by

O’Brien and Hodgins [2]. From a high level point of view, the simulation begins

with a tetrahedron mesh which will represent the domain on which the equations of

motion will be derived. The simulation is then treated as an initial value problem.

A time-step is chosen which is used to update the object’s position, velocity and

internal/external forces. Without regarding any external environment, the object

will simply continue to fall due to gravity and will eventually hit terminal velocity if

air forces are used. If the object comes into contact with the environment, an inter-

penetration constraint moves nodes which have crossed physical boundaries back to

the surface of the boundary. Using the FEM, equations will be integrated over the

tetrahedra which will give rise to internal forces acting on those nodes. Intuitively,

these forces will be greater the larger the deviation from relative rest state. During

each time-step, internal forces within the object will be integrated and subsequent

velocities and positions of the nodes will be modified based on Newton’s second law

of motion.

A. Overview of Finite Element Method as Applied

Only recently have truly massive destructible interactive environments been imple-

mented in production quality software. Many of the destruction models make use of



33

a simplified finite element method (FEM) simulation. The finite element method has

been employed extensively in mechanical engineering and numerical analysis due to

its properties of being very amenable to algorithmic computations. The main idea

behind the FEM is to use a finite approximation of a surface or volume in order to

solve some function over the domain of that object. The simplest way to define the

function over these elements is linear interpolation. Multiple basis functions can be

chosen for each element such that there is a basis function which computes to 1 at an

element node and falls to 0 for all other nodes, and there is one such basis function

for each node in the finite element mesh. Other functions can be defined in terms of

these basis functions which leads to a piecewise linear approximation of the function

being evaluated.

By defining a basis matrix for each element, any function can be interpolated

over the volume of the tetrahedron. Stresses and strains were evaluated over the

finite element volume which were derived from the relative changes from rest shape

to current simulation shape. Deformations arising from the deviation from rest state

create stresses and strains within the material of the object. From these forces a

fracture plane is computed which represents a failure in the material. The failure

in the material gives rise to a fracture, a.k.a a discontinuity in the material. The

evaluation of these forces/fractures could then be repeated at discrete time-steps

as is typical of physically-based simulations. The model presented by O’Brien and

Hodgins [2] and Parker and O’Brien [3] will be used for this work.

B. Elastic Deformation

Elastic deformation occurs in an object when a deviation from the relative rest state

to the current positions of an object changes. Purely rigid body displacements (trans-



34

lations and/or rotations) do not change the relative configuration of an object’s nodes

with the other nodes and thus do not result in a deformation of the object. In the case

that the relative positions of an object do change, internal forces will arise. These

internal forces are equalization forces which attempt to ”undeform” the object back

to its rest state.

The rest positions of the object can be represented by u

i

where u 2 R3 and i

is the i

th position of the object. In this work, the rest position is determined by the

initial position of the object. The rest position will not change throughout the entire

simulation. The current positions of the object are represented by x

i

where x 2 R3

is defined as u. It is from these two components of the object that the stress/strain

relationships are derived.

C. Deformation Gradient

In order to compute internal forces acting on the object, a deformation gradient is

computed for each element. Since the finite element method is a piecewise linear

method, using only one deformation gradient per element corresponds to the linear

nature of the domain.

A deformation gradient is a 3 x 3 matrix describing how the element is deform-

ing with respect to its material rest coordinates. The deformation gradient itself is

computed regardless of whether the transformation is rigid or deformable. In or-

der to compute the deformation gradient, a basis matrix must be computed for the

tetrahedron. The basis matrix is a 3 x 3 matrix and is computed using the material

coordinates of the tetrahedron. Each column of the basis matrix is a vector represent-

ing an edge in material space of the tetrahedron. All column vectors will originate at

the same vertex. A graphical visualization can be seen in Figure 11. More formally



35

a matrix Du will be defined as

Du

j

= u

j

� u

0

where j is a 3-component column of the matrix Du.

Fig. 11. An example of how the basis matrix is built from the relative configuration

of the nodes in a tetrahedron.

Using Du the basis matrix � is defined as Du

�1. The deformation gradient is

computed from a linear combination between the basis matrix and a matrix Dx which

can be computed similarly to Du. The deformation gradient can be defined as

F =
@x

@u

= D

x

� (4.1)

The co-rotational formulation is used to extract a rotation from the deformation

tensor since Cauchy’s infinitesimal strain tensor is not invariant to rotations. Fol-

lowing Etzmuß et al. [18], Muller and Gross [19], and Parker and O’Brien[3] among

others, polar decomposition is performed on the deformation gradient F . Polar de-

composition will factor F = QA where Q is an orthogonal matrix and A is a positive



36

semi-definite symmetric matrix. Q represents a rotation of the element from rest

shape, and A represents the amount of stretching/shearing of the element. Since

Cauchy’s tensor is a linearized strain tensor, factoring out the rotation such that

F̂ = Q

T

F (4.2)

will provide the deformation gradient in unrotated space (see Figure 12 for an example

of the rotation being factored out). Further calculations will require the factored

deformation gradient F̂ and the 3 x 3 matrix Q. Since Q is orthonormal, equations

involving Q

�1 can instead be computed simply using Q

T which will allow for more

e�cient computations.

Fig. 12. Rotations are factored out of the deformation gradient in order to represent

pure relative displacements from rest shape.

D. Strain Tensor

From the previous formulation, a strain tensor and stress tensor can be computed.

The strain tensor describes the linear relationship between how a portion of the object

is being deformed with respect to its rest shape. The strain tensor used in this research

is Cauchy’s infinitesimal strain tensor which is not invariant with respect to rotation.



37

As will be shown in a subsequent section, a rotation of the deformation gradient will

allow us to use a linear strain tensor instead of a higher order tensor. Cauchy’s tensor

is defined as

" =
1

2
(F̂ T + F̂ )� I (4.3)

where F̂ is the deformation gradient with rotations factored out which can be

computed as in the previous section and I is the identity matrix.

E. Stress Tensor

The stress tensor can be computed as

� = �Tr(")I + 2µ" (4.4)

where � is Lame’s first parameter and µ is the shear modulus. Equation 4.4 is

a 3D generalization of Hooke’s law for linear isotropic materials. The stress tensor

of the material can be used to compute the forces that a single tetrahedral element

exerts on one of its nodes. The force is defined as

f

i

= Q�n

i

(4.5)

where f

i

is the force exerted on node i of the tetrahedral element and n

i

is the

area-weighted outward normal of the face opposite of node i.

F. Time Integration

Originally, explicit time integration schemes were tested using the forces computed

directly from equation 4.5. Both simple Eulerian time integration and Runge-Kutta



38

4 were tested. While Runge-Kutta 4 provided a substantial increase in stability over

the explicit Euler method, both required restrictive requirements on the time step dt

which limited real-time performance.

The choice was made to use an implicit integration scheme following recent work

by Parker and O’Brien [3] since implicit integration schemes provide unconditional

robustness using any size time step. While any size time step could be used, smaller

time steps typically provide much more vibrant simulations. For this research, the

time step of the simulation uses a variable time step method. Implicit time stepping

methods allow for arbitrarily large time steps at the expense of solving a linear system.

The derivation used in Bara↵ and Witkin [6] and subsequently Parker and O’Brien

[3] was used in this research. For a full treatment and explaination of the implicit

time stepping method, see Bara↵ and Witkin’s research publication [6].

For implicit integration, a global sti↵ness matrix must be computed for the entire

system of nodes. The sti↵ness matrix of each individual element is first computed

and these are assembled into the global matrix.

For a given element, the sti↵ness matrix can be computed from the set of Jaco-

bians within the element. A set of 4 3x3 Jacobian matrices are computed for each

node in the tetrahedron (a total of 16 matrices per tetrahedron). The Jacobian is the

set of partial derivatives of the force exerted on one node with respect to the position

of another node.

J

ij

= �Q(�n
i

n

T

j

+ µ(n
i

· n
j

)I + µ(n
j

n

T

i

))QT (4.6)

where J

ij

is a 3x3 matrix of the Jacobian of a force on node i with respect to

the position of node j, n
i

is the normal of the face opposite of node i, � and µ are

Lame’s constants relating to material properties, and Q is the matrix factored out of



39

the deformation gradient by the polar decomposition step.

The sti↵ness matrix of an element is a 12x12 matrix which contains all 16 3x3

Jacobian matrices of element. Specifically,

K

i

=

2

66666664

J

00

J

01

J

02

J

03

J

10

J

11

J

12

J

13

J

20

J

21

J

22

J

23

J

30

J

31

J

32

J

33

3

77777775

(4.7)

where K

i

is the sti↵ness matrix for the ith element.

A global sti↵ness matrix, K, can be computed from the Jacobians of a node.

Assembling a sti↵ness matrix from individual sti↵ness matrices is standard practice

in the finite element method. Individual entries in the sti↵ness matrix will be summed

up if multiple tetrahedra share an edge with each other. The global sti↵ness matrix

K is defined as

K =

2

66666664

J

tot

0,0

J

tot

0,1

· · · J

tot

0,n�1

J

tot

1,0

J

tot

11

· · · J

tot

1,n�1

...
...

. . .
...

J

tot

n�1,0

· · · · · · J

tot

n�1,n�1

3

77777775

(4.8)

where J tot

i,j

is the sum of all the Jacobians of the ith node with respect to the jth

node. The sum comes into play when two tetrahedra share an edge.

G. Fracture

The computations of the fracture planes are very straight forward and can be derived

from the strain and stress tensors. Following O’Brien and Hodgins [2], a separation

tensor is computed for each node from the tensile and compressive forces acting on



40

that node. The eigenvalues and eigenvectors of the separation tensor will determine

if there is to be a fracture at the node and how the fracture plane is oriented. For

this simulation, the fracture plane is not used to explicitly drive crack propagation.

The plane itself is used to split a single node into two nodes. The tetrahedra that

are connected to the split node are assigned to one of the new nodes based on their

orientation with respect to the fracture plane. Fracture will cause discontinuities on

tetrahedral boundaries only (see Figure 13).

(a) A fracture plane is computed. (b) Nodes split.

Fig. 13. An example of a fracture occurring between two tetrahedra. The plane is

computed, and then forced to conform to the boundary of the tetrahedra. The

fractured node is split into positive and negative nodes. Nodes on the positive

side are assigned the positive split node, and negative nodes are assigned the

other split node.



41

1. Computing Tensile and Compressive Forces

The tensile and compressive stresses are due to expansion of an element and the

contraction of the element, respectively. The fracture method is derived from ap-

proximations stemming from fracture mechanics. For more information about the

theoretical mechanics involved, see Anderson [25]. For information about the approx-

imation used in this research, see O’Brien et al. [2].

2. Separation Tensor

Once the tensile and compressive stresses are computed they can be used in order to

create a separation tensor at each node. The separation tensor can be used to find

the plane of separation.

Let the separation tensor be ⇣. The tensor represents the balanced tensile and

compressive loads at a node in the object. From the tensor, a determination for

whether there is material failure can be made. Before beginning, a function must be

defined which is a outer product of a vector followed by a scaling of the vector’s norm.

m(v) =

8
><

>:

vv

T

/ k v k
2

if k v k
2

6= 0

0 otherwise
(4.9)

Where v is an arbitrary vector. This matrix has the properties that its eigenvector

is v normalized, and its eigenvalue is k v k
2

. Using this matrix formulation and the

tensile/compressive force set on a given node, the separation tensor can be computed

as

⇣ =
1

2

 
�m(f+

tot

) +
n

+X

i=1

f

+

i

+�m(f�
tot

)�
n

�X

i=1

f

�
i

+

!
(4.10)

f

+

tot

and f

�
tot

is the sum of all tensile forces can compressive forces respectively at



42

the node, and n is the number of total tensile/compressive contributions at the node.

Eigen decomposition is performed on the separation tensor. Separation tensors

which have an eigenvalue greater than the material strength of the node will fail at

that node. The separation plane will be perpendicular to the largest eigenvector.

When the material fails, the node will be split into two separate nodes which will be

on each side of the separation plane. The above method deviates from O’Brien and

Hodgins [2] since it does not re-mesh a tetrahedron by cutting it with the separation

plane. Following the idea presented in Parker and O’Brien [3], the simulation is

greatly accelerated by not re-meshing individual elements of the mesh, but instead

constraining fracture and crack propagation to the boundaries of individual elements.

While re-memshing is appropriate for simulations where a solution as close to exact as

possible is desired, this research is concerned only with an approximation appropriate

for interactive scenarios. Once the nodes are separated, the simulation continues with

the newly added nodes. It is worthwhile to note that no nodes are ever removed

throughout the entire simulation.

H. Collision Handeling

Collisions with geometry are handled during the simulation using the collision ge-

ometry computed during the preprocessing stage. Initially, collisions were confined

to be on the faces of the tetrahedra. Obviously this constraint produces noticeable

artifacts when empty portions of the geometry appear to be solid. The collision

spheres computed in the preprocessing phase allow collision detection to only be de-

rived from a more accurate representation of the embedded geometry without using

the embedded geometry explicitly. Using spheres as the collision geometry greatly

simplifies the equations relating to collision detection and handling. This simplified



43

model allows certain interpenetrations of the graphical models to occur, but the in-

terpenetrations are small. Furthermore, real-time environments involving scenarios

of high-impact physics often use approximation models similar to this in order to

not bog down the speed of the simulation. Fast collision handling and detection for

high-resolution models is an active area of research. As mentioned in the preprocess-

ing section, image-based collision methods were first used to help speed up collision

detection since portions of the geometry (painted walls of the tetrahedral mesh) are

not part of the physical model and thus can not be used in the collision detection al-

gorithm without first being rasterized in some way. Image-based collision techniques

break down when multiple geometries are allowed to become arbitrarily far apart.

The accuracy of the collision is inherently based on the resolution of the screen-space

rasterization process. While loss of accuracy may be acceptable for graphical e↵ects,

collision detection a↵ects the physics of the simulation and a loss in accuracy could

lead to unacceptable scenarios for the user.

The collision system that was used in the research is based on impulse-based

forces. When a sphere collides with an object an instantaneous change in its owning

tetrahedron’s velocity and position will occur. Whether a sphere collides with another

sphere, a plane, or any other object a vector is computed which corresponds to the

normal of the collision surface which is being collided with.

Given a sphere S with barycentric coordinates S
b

with respect to tetrahedron T

with vertex velocities V
i

where i 2 [x, y, z], the velocity V

s of the embedded sphere can

be computed as a barycentric combination of the tetrahedral node velocities. Given

a normal N which is the normal of the surface the sphere comes into contact with,

the normal component and tangental components of the collision can be determined

as

S

n

= (N · S
pos

)S
pos

(4.11)



44

S

t

= S

pos

� S

n

(4.12)

with S

n

and S

t

being the normal and tangental components, respectively, and

S

pos

being the sphere’s real 3D position computed using barycentric coordinates.

An o↵set vector is computed which will move the sphere back to the surface of the

colliding object (disregarding the tetrahedron it is embedded within) and the formula

for doing so is

s

o = N ⇤ �S

n

(4.13)

where so
t

is an o↵set vector for node t of the tetrahedron and can be distributed to

the vertices of the embedded tetrahedron. There may be multiple sphere collisions in

one time step, so for each t in the tetrahedron, the so
t

giving the maximum euclidean

norm kso
t

k arising from all the spheres will be used. Once all spheres in the tetrahedron

have been tested for collision, the final o↵set vector is computed as

t

o = max(so
t

) (4.14)

where max(so
t

) is the maximum o↵set vector on node t. The index of the sphere

corresponding to the contribution for each node is stored for use in the elastic/friction

calculations. O↵setting the tetrahedral nodes will result in an instantaneous change

in the tetrahedral nodes’ positions. Since the finite element model is being used, this

change will give way to stress and strain forces within the object. The velocities of the

nodes are also o↵set due to elastic/friction reactions. These reactions are calculated

as is typical of physically based particle simulations (see Witkin and Bara↵’s 2001

SIGGRAPH course notes [38]). The computation of forces arrising from collision with

the surface make use of the velocity of each sphere.



45

CHAPTER V

GRAPHICAL SIMULATION

The graphical portion of the simulation renders the graphical model in conjunction

with the graphical portions of the physical model in a way that makes the user be-

lieve the object itself is deforming and breaking apart. The actual graphical geometry

is first o✏oaded to the GPU after the preprocessing stage. Modern graphics cards

support multiple types of memory for use with storing display data. While the types

of memories vary from card to card, the two most common types of memory types

are static and dynamic. Static portions of the graphics card memory are used for

geometry which will not be changed through API calls during the simulation. Dy-

namic areas are portions which may be modified frequently during the coarse of the

simulation. Since the the embedded triangles do not need to be re-meshed during the

simulation, they can be stored in the static area of memory on the graphics card.

Embedded triangles are stored as a vertex bu↵er object consisting of 4-component

vertices. The 4 components of each vertex are the barycentric coordinates of the ver-

tex with respect to its owning tetrahedron. During the display of the triangle, the

vertex shader will use the barycentric coordinates to transform the owning tetrahe-

dron’s vertices into a single vertex of the embedded triangle. Physical tetrahedra are

stored as vertices 2 R3 in a dynamic memory location of the graphics card. During

the simulation, API calls will be used to update the graphical tetrahedra with the

data from the current frame of the simulation. The vertices of the tetrahedra array

are accessed during embedded triangle position computation. Because each embedded

triangle must know which tetrahedron to use, an attribute for each triangle consisting

of the owning tetrahedron’s index is passed to the graphics pipeline as well.



46

A. Discontinuities

Simply drawing all embedded triangles is not enough, even when fracture is not

involved. Triangles along the boundaries of the tetrahedra are duplicated for each

tetrahedron they are contained within since each instance of the triangle in each

tetrahedron requires a di↵erent set of barycentric coordinates. Artifacts could occur

during deformation which will cause the triangles to appear to be discontinuous and

jagged along the the boundaries. Furthermore, triangles would appear to penetrate

each other during fracture which is obviously not ideal. Instead of displaying the

triangles as-is, the triangles are clipped to the boundaries of the tetrahedron they are

embedded within. Modern graphics APIs allow user-defined clipping planes which

will restrict regions of the 3D space from being displayed. This approach was tested

first while drawing each set of triangles by first setting the clipping planes to be the

boundaries of the tetrahedral elements before drawing the triangles contained within

those sets. Setting the clipping planes of the simulation amounts to a state-change in

the underlying graphics API which is ine�cient to perform for every element in the

simulation.

A simpler and more e�cient alternative to using clipping planes is to exploit the

interpolation abilities of the graphics pipeline in conjunction with alpha culling in

order to discard fragments of the graphical triangles which would be clipped by their

owning tetrahedron. Attributes assigned to vertices of a triangle are automatically

interpolated on a per-fragment basis for use in a fragment shader. Color interpolation

is the simplest example of this technique. Color values are assigned to each vertex of

the triangle, and along the interior of the triangle the colors are linearly interpolated

between the vertices. For more information on the rasterization properties of mod-

ern graphical hardware, see Foley [39]. Barycentric coordinates themselves represent



47

(a) Section of a Mesh (b) Barycentric Color-
ing

(c) Final Display

Fig. 14. An example of how barycentric coordinates are used. 14(a) A section of the

mesh with control tetrahedra. 14(b) Triangles which intersect tetrahedron.

Red portions correpond to the triangles and sub-sections of triangles which

are outside the tetrahedron. 2(c) The final display triangles. Only sections

inside the tetrahedron are displayed.

attributes at vertices of the triangles and will be interpolated over the face of the

triangle. The barycentric coordinates for each vertex of a graphical triangle is passed

through from the vertex shader to the fragment shader. During the execution of the

fragment shader, the barycentric coordinates of the current fragment are checked for

inclusion within the owning tetrahedron. The check consists of a simple conditional

statement on whether each barycentric component falls within the range [0, 1]. If

any component falls outside this range then the alpha value of the fragment is set

to 0. If all components pass the unit interval inclusion test, the alpha value for the

fragment is set to 1. Before displaying the graphical mesh, alpha culling is turned

on with a function of ”greater than 0” set. Alpha culling will not allow fragments

to be written to the frame bu↵er if they fail the alpha culling function. Thus, using

linear interpolation in conjunction with the barycentric coordinates of each triangle’s



48

vertices and alpha culling enables the triangles to be properly clipped to their own-

ing tetrahedron’s boundaries. See figure 14 to see how triangles belonging to one

tetrahedron are displayed.

B. Texturing

Since portions of the tetrahedral faces may be displayed along with the display mesh,

the triangles of the tetrahedral mesh are used with the textures that were computed

during the preprocessing phase. Due to the approximative quality of the fracture

plane computation, the resulting elements all appear to be very linear and flat along

the boundaries. The approximation presents artifacts where the user can see the

tetrahedral boundaries, as well as whole tetrahedra for portions of the physical mesh

which are completely inside. In order to alleviate these artifacts, normal mapping

and displacement mapping are used to make the mesh appear to have a non-flat

surface. The surface properties are derived from a normal map or a displacement

map and can be used to both shade the surface and displace graphical geometry on

the surface. Normal mapping is a well-founded technique and for a general survey

of displacement mapping and normal mapping techniques the reader is encourage

to see Szirmay-Kalos and Umenho↵er [40]. In order to perform normal mapping, a

set of textures must be first generated with the desired material properties before

the simulation begins. The displacement textures and/or normal maps are included

with the assets to be loaded for the simulation. The textures could be either a 3D

texture which would be accessed from the shaders, or it could be one or more textures

which are assigned to di↵erent tetrahedron faces. See Figure 15 for an example of a

disconnected mesh without and with texturing.



49

(a) No Texture (b) Texture

Fig. 15. An example triangle embedded inside two tetrahedral elements. 15(a) A por-

tion of the mesh without texturing. 15(b) A portion of the mesh with textur-

ing.

1. Normal Mapping

Boundaries of the mesh which are being intersected by geometry are displayed using

normal mapping. Normal mapping is a well-founded technique which manipulates

the normals along the surface in order to imitate detailed geometry on the face of

a primitive. In this work, normal mapping is used on the faces of tetrahedra which

are being intersected by the graphical mesh in order to give the face a more detailed

look. See Figure 16 to see the di↵erence.

Fig. 16. Left: The interior portion of the surface without normal mapping. Right:

The surface is rendered with normal mapping. The e↵ects of normal mapping

are enhanced via specular shading as can be seen in the image.



50

C. GPU Tessellation

Recent advances in GPU technology have allowed for dynamic tessellation of geometry

on the GPU. Three new shader stages are included in the OpenGL graphics pipeline

in addition to the common vertex and fragment shaders: the geometry shader, the

tessellation control shader, and the tessellation evaluation shader. See Figure 17 to

see the flow of the graphics pipeline with respect to the shader stages.

Fig. 17. The order of shader execution within the OpenGL graphics pipeline. Note

that only programmable shaders are shown. The geometry shader is not used

in this research.

The tessellation control shader and the tessellation evaluation shader were uti-

lized to provide displacement mapping on tetrahedral boundaries which are com-

pletely contained inside the graphical object (no intersections of the graphical mesh

along the surface of the face). Both of these shaders are designed to operate on



51

an OpenGL patch primitive. A patch is simply a collection of vertices defined by

their 3-dimensional positions and are designated as either triangular or quadrangular

patches.

1. Tessellation Control Shader

The tessellation control shader takes as input the patch defined by its vertices and

performs some type of transformation on these vertices, similar to the vertex shader.

The main di↵erence between the tessellation control shader and the vertex shader is

that it must set level-of-detail parameters for triangulation, and it is able to see all

of the other vertices that are part of the patch. The purpose of the control shader

is to first transform and optionally provide a change-of-basis for parametric patch

evaluation in the tessellation evaluation shader. A set of level-of-detail parameters

must also be set which determine the level of triangulation to be performed. For

triangular patches, 3 outer edge level-of-detail parameters and 1 inner edge level-of-

detail parameter must be set. The level-of-detail parameters are then passed into a

fixed-function tessellator unit which will subdivide the patch and produce a set of

triangles. Intuitively, larger level-of-detail parameters will produce a finer tessellation

than smaller ones. Optionally, the level-of-detail values may be fractional which would

allow for smooth adaptive tessellation.

2. Tessellation Evaluation Shader

The tessellation evaluation shader takes as input the transformed patch vertices from

the tessellation control shader. The execution of the evaluation shader is many-to-few

with respect to the control shader since the tessellation and generation of triangles

takes place before the evaluation shader executes. The evaluation shader can see as

input all vertices of the patch. Also as input, parametric variables are available to



52

the evaluation shader. The parametric variables are used to evaluate the patch and

output the final position/attributes of the current triangle vertex being processed. For

a triangular patch, 3 variables u, v, and w are available, and for a quadrangular patch,

2 variables u and v are available. It is intuitive to think of these variables as linear

interpolation variables. The simplest form of patch evaluation is linear interpolation in

which the corners of the patch are used in combination with the parametric variables

to produce a bi-linearly or tri-linearly interpolated surface of points. Various options

are available to the tessellation evaluation shader as well, such as how the primitives

being received by the shader are ordered (counter-clockwise or clockwise).

3. Using Tessellation Control and Evaluation Shaders

For this research, the tessellation functionality of newer GPUs was used in order to

alleviate the linear nature of tetrahedral elements. The tetrahedral boundaries are

drawn using triangle patches consisting of 3 vertices. The tessellation shaders are used

to trilinearly interpolate along the surfaces of the patches, producing a new collection

of triangles. During the evaluation stage, the displacement texture is sampled at the

given texture coordinate and the positions are o↵set along the normal based on the

displacement texture. It should be noted that this will cause surface interpenetration

in the interior of the object being simulated, but these artifacts are hardly seen at all

during fracture. The purpose of using the tessellation shader is to allow individual

pieces to not appear so lienar in nature. The surface of a tetrahedron is only displaced

if that tetrahedral wall is completely marked as inside the object. Also, the amount of

displacement must be small so that surfaces on the interior do not penetrate surfaces

on the exterior of the object, producing visual artifacts even when no fracturing is

being used. See Figure 18 for an example of how tessellation is being used. Figure 19

also shows how adpative, view-dependent level of detail could be used in conjunction



53

with the tessellation shader.

Fig. 18. A portion of the mesh which is interior is tessellated to provide an increase

in geometry. Node the extrusion is exagerated from what would be used in

reality. Left: Detailed geometry. Right: Coarser geometry of the same patch.



54

Fig. 19. Top: Far away from the geometry, the tessellation is allowed to be coarser.

Bottom: Closer to the geometry will call for finer geometry. The images on

the left represent the actual view the user would see, and the right side is a

close-up of the actual tessellation being produced.



55

CHAPTER VI

RESULTS AND DISCUSSION

This chapter will present the results of the implementation of this research as well

as a discussion on the various advantages and disadvantages, possible improvements,

and future research. Additionally, an experimental analysis of the error associated

with the force mapping involved in collision detection is included.

A. Setup

1. Computer Used

All tests were run on an Intel i5-2500K CPU running Windows 7 64-bit with 8 GB of

RAM. The graphics cards used were two Nvidia GTX 460s running in SLI. For the

purposes of implementing and analyzing the algorithms used, multi-threading was

not utilized in the implementation. Future research will include utilizing both CPU

and GPU multi-threading in order to e�ciently speed up the simulation.

2. Meshes

The two models which were used were the bunny and armadillo-man from the Stanford

repository and subsequently simplified to various polygon counts. The control meshes

for the models were designed first as a triangle mesh enclosing the graphical mesh.

The triangle mesh was then tetrahedralized using TetGen [33]. The following chart

lists the tetrahedral meshes used for each model as well as the tetrahedron count and

display triangle count as a result. Please note that the increase in tetrahedron count

increases the display triangle count as well due to boundaries.



56

B. Analysis

The preprocessing stage is responsible for generating the collision geometry and var-

ious textures for use during simulation. This section presents the meshes used in the

simulation, experimental error analysis of the collision geometry, and timings of the

preprocessing section as well as sample images from real simulations.

1. Collision Geometry

The relative error associated with mapping forces from the collision geometry to the

tetrahedra was used to determine the visual accuracy of the simulation. Figure 20

lists the number of spheres that were actually added to the simulation as well as the

largest error associated during collision time. The errors represent the amount of

graphical triangles which actually inter-penetrate environmental surfaces.

Fig. 20. Graph of number of vertices which are interpenetrating a surface with multiple

counts of collision geometry.



57

As can be seen in Figure 20, as the number of spheres used in the collision detec-

tion increases, the amount of triangles which interpenetrate the surfaces is reduced.

The reduction in error is intuitive because as more spheres are added (by making the

resolution smaller and thus the radii of the spheres smaller), the more acurately the

spheres comform to the actual geometry.

2. Timings

Since one of the goals was to decouple the graphical representation of the simula-

tion from the physical representation, the timings related to each section are shown.

What was being tested was whether the graphical display time went up as a result

of increasing tetrahedron count, and if the tetrahedron count went up as a result of

increase graphical display triangles. The results of the timings can be seen in Figure

21 and in Figure 22 for the Stanford Bunny model.

Fig. 21. Timings for physical and graphical simulation comopnents. As the tetrahe-

dron count increases, the display simulation time does not increase substan-

tially.

As can be seen in Figure 21, as the tetrahedron count gets higher, only the phys-

ical portion is substantially a↵ected. Most of the time spent in the physical update

was in the linear system solver when performing the implicit integration step. The



58

replication will increase the graphical timing a bit (as can be seen when the tetrahe-

dron count reaches around 70), but is nothing compared to the amount of increase in

the physical update step. A consequence of using the simple spherical collision detec-

tion scheme is that an increase in tetrahedra does not necessarily increase the time to

perform collision detection substantially. One reason for this is because the spheres

are mostly the same volume which means that there will be a similar count of total

collision spheres given a high tetrahedron count compared to a low tetrahedron count.

If more substantial geometry were to be used for collision detection such as a coarse

triangle mesh, there may be replication along the boundary which would increase

the amount of collision geometry with an increase in tetrahedron count. By using

the spherical collision system, the collision geometry complexity is decoupled from

the complexity of the tetrahedron mesh. Unfortunately, an increase in tetrahedron

count will cause input display triangles to be replicated along the boundaries of the

tetrahedra. The time to update the tetrahedral vertices on the GPU was not taken

into account in these timings but was instead included in the graphical timing results

which could also be a reason for the slight increase in display time. Finally, the graph-

ics could be adversly a↵ected since with more tetrahedra there will be more painted

walls to draw for the user. In practice this has presented only a miniscule increase in

display time. Note that no parallization optimization have been performed.

As can be seen in Figure 22, as the triangle count of the simulation is allowed to

increase, the time to perform the graphical portion of the simulation increases sub-

stantially. The physical update time stays relatively the same while the triangle count

rises. This result is to be expected since the physical step is completely decoupled

from the graphical step. The graphical results are using a mesh consisting of only 10

tetrahedra.



59

Fig. 22. Timings for physical and graphical simulation components. As the triangle

count increases, the physical update step stays relatively the same which

means the display and physical portions are adequately decoupled.

3. Texturing

During the preprocessing phase the walls of the tetrahedra are painted with the

texture that is used to display the interior portions of the mesh (see Figure 23).

Point-wise sampling is performed during texture look-up instead of linear inter-

polation or mip-mapping in order to prevent portions of one face leaking into the

other face of the tetrahedron. Point-side sampling will cause noticeable gaps along

the boundary, but as long as the resolution of the textures is high enough then the

e↵ects are not noticeable unless zooming into the geometry very closely. The gaps

appear because the square texels associated with the texture can not perfectly con-

form to the linear boundary of the model. Future research in this area will include

using various types of texturing schemes in order to more accurately fit the texture

to the contour lines of the face.



60

Fig. 23. The bunny’s face intersects with the tetrahedral boundary. The painted tex-

ture can clearly be seen in the wavy portion. Note the specular high-lights.

4. Display Triangle Count

Unfortunately, the addition of graphical triangles leads to an increase in the amount

of memory consumption by the algorithm, but usually the tetrahedral mesh is very

coarse and the increase is not substantial in practice. Furthermore, since the point of

this research is to focus on a simplification of the collision detection, the mesh should

remain as simple as possible (many orders of magnitude less than the graphical mesh).

Note that the addition of triangles is not a form of remeshing in the typical sense.

All triangles are added during preprocessing which prevent us from having to remesh

on-the-fly during fracture simulation. The results of the display triangle count can be

seen in Table II where the columns represent the number of graphical triangles which

were replicated 1 through 7 times. As the tetrahedron count goes up, the number of

graphical triangles which must be replicated 2 or more times goes up as well due to

more tetrahedral edge crossings. Even with a large number of tetrahedra, the total

count of the graphical triangles rises to only about 150% of the original.



61

Table II. Counts for replicated triangles
Tetrahedron Count 1X 2X 3X 4X 5X 6X 7X Total

10 4315 661 18 6 0 0 0 5715

20 3871 1049 62 14 4 0 0 6231

31 3575 1275 109 32 5 4 0 6629

41 3353 1467 137 29 6 6 0 6880

50 3358 1445 144 37 7 5 2 6907

60 3258 1532 145 39 14 10 2 7057

72 3040 1713 174 42 16 13 2 7328

82 2972 1733 204 55 20 10 6 7472

91 2972 1733 204 55 20 10 6 7472

100 2856 1848 209 51 16 17 3 7586

Figure 24 shows the model with di↵erent colors corresponding to regions which had

triangles duplicated.

5. Early Results

Early results were obtained by using a simplified collision detection model and no

displacement mapping. The collision detection occurred completely on the tetrahe-

dral boundaries. The early implementation was designed to test the embedding and

display algorithm. Initially, a procedural control mesh was used which was created

by generating a uniform grid of cubes around the volume of the solid object. The grid

was then subdivided into tetrahedra. One reason for using a procedural control mesh

in the beginning was to see how the number of rendered triangles would compare to

the original mesh’s triangle count when the triangle count increased. Triangles which

cross tetrahedral boundaries will be stored once for each tetrahedron. Unfortunately,

with a large amount of tetrahedra the number of displayed triangles could actually

be double the amount of original triangles. In order to prevent a large number of

triangles from being created due to boundaries, the initial tetrahedral control mesh

must be small. The early display triangle counts can be seen in figure 5.



62

Fig. 24. Same regions of the model with a di↵erent resolution of tetrahedral mesh. A

triangle that is not duplicated is shown in green, a triangle that is duplicated

only once is yellow, and a triangle that is duplicated 2 or more times is shown

in red.

As can be seen in Figure 25, the control mesh follows a uniform grid alignment.

The tetrahedral boundaries do not align up with the underlying graphical mesh.

Current research uses an artist rendered physical mesh in order to more accurately

align the control mesh with the graphical mesh.

The collision detection scheme was originally tested by using the tetrahedra as

the bounding geometry (see Figure 26). Obviously artifacts resulted from treating

empty regions of space as filled.

One noticeable di↵erence between earlier results using a uniform grid and results

using a control mesh is that the number of graphical triangles which are replicated is

significantly more in the case of using a uniform grid (see Figure 27). The reason for

this di↵erence is that the early results used a regular grid and subdivided to obtain

the tetrahedra. The newer results use tetrahedra formed from a control mesh which



63

Fig. 25. Di↵erent control meshes used in early experiments. Left: Armadilloman with

control cage. Right: Control cage of bunny.

Fig. 26. Early results using the entire tetrahedron as collision geometry. A ball hits

the armadilloman from the left of the screen.

more accurately corresponds to the geometry and may have subdivisions in places

such as wrists or necks which are thinner and have fewer triangles. The comparison

results of the graphical triangle replication count shows that it is important to use a

control mesh which accurately depicts its embedded geometry.

C. Discussion

This section will present some discussion of the algorithm that was developed. Pit-

falls that were encountered in the process of designing the algorithm will be discussed

as well as well as possible future work.



64

Fig. 27. Early display triangle counts for various tetrahedron counts.

1. Collision Geometry

The spherical-based collision geometry provided a simple method to perform collision

detection with the object without using the entire surface geometry. The simplicity

detection algorithm also results in various artifacts. One obvious artifact is that the

graphical mesh’s geometry can interpenetrate in regions where a sphere might not be

present. Adding more spheres will help to alleviate this issue but it will also increase

the computational time of the simulation. This type of collision detection could be

improved by using geometry which more closely aligns with the graphical mesh such

as a simplified collision mesh. The generation of such a mesh is di�cult to perform

automatically (which is desired from a production pipeline point-of-view). Future

research in this area would include how to automatically generate a collision mesh

which would reduce the artifacts associated with the sphere-based approach while

being able to be generated automatically during preprocessing.



65

2. Choosing Proper Material Parameters

The choice of material values is important in the simulation since the underlying equa-

tions are derived from continuum mechanics for real materials. Various parameters

were experimented with for this research in order to produce di↵erent results. Many

texts on the subject of continuum mechanics and fracture analysis include tables of

material parameters from real items which were empirically measured. In our case,

the user interface of the simulation contains slots for manipulating and experiment-

ing with di↵erent material parameters. See Figure 28 for an example of how material

parameters and control mesh complexity can change the way the mesh interacts with

the environment.

(a) Sti↵ Mesh

(b) Non-sti↵

Fig. 28. An example of di↵erent material parameters and di↵erent resolution tetrahe-

dral meshes. 28(a) A sti↵ mesh. 28(b) A mesh which deforms more due to

less sti↵ material parameters and more DoF due to more tetrahedra.



66

3. Graphical Display

It can be seen from and Figure 29 and Figure 30 that using normal mapping along

with displacement mapping greatly enhances the linear boundaries of the physical

mesh. One issue with using displacement mapping is that the interior may interpen-

etrate outer geometry if the tetrahedral face is too close to the surface. This issue

can be greatly alleviated by displacing the geometry with a maximum displacement

factor of the distance to the exterior polygons. Unfortunately this information is not

available for the GPU and involves computing a distance field for ever texel sam-

ple of every tetrahedral face. Instead of computing the distance field, which is both

computationally and memory intensive, we only displace the geometry for tetrahedral

faces which are contained completely inside the mesh and use normal mapping for the

other faces. While interpenetration artifacts may still occur if the displacement is too

large, tetrahedral faces which are completely inside the mesh are usually far enough

away from the exterior graphical geometry. Furthermore, allowing these completely

interior tetrahedral faces to only displace inwards is another option. Both options

were tested for this research.

Fig. 29. Highly tessellated subregion. Left: Real distance from camera. Right:

Close-up.



67

Fig. 30. Low tessellation due to camera being far away. Bump mapping is not a↵ected.

Left: Real distance from camera. Right: Close-up.

The use of GPU tessellation techniques is also restricted to newer GPU hardware.

For older hardware which does not implement the tessellation shader functionality,

using normal mapping would be a fall-back for displaying the interior portions of the

tetrahedra.



68

CHAPTER VII

CONCLUSION

The method that has been developed allows for an e�cient means to simulate em-

bedded geometry involving fracture without a need to remesh the graphical geometry

during the simulation. Various GPU techniques were used to both display the graph-

ical mesh and display portions of the physical mesh which may be within the solid

object without the need to compute and store extra triangles along those faces. The

algorithm requires a semi-expensive preprocessing step in order to create the assets,

but it allows for a complete separation between the graphical mesh and the physical

mesh. The regions of space which are within the intersections of the graphical mesh

and tetrahedral mesh are textured in order to simulate a solid region during fracture.

Future research will focus on adding parallelism to the simulation, creating algorithms

to automatically generate the control mesh and boundary textures, use of more exact

algorithms for displaying the boundary tetures, and continuing research into image

based collision techniques to handle fractured geometry.

A. Future Research

1. Utilizing Parallelism

The fundamentally most time consuming process in the physical loop is time-stepping.

While using implicit time-stepping allows for much larger time steps, there are var-

ious portions which can be trivially parallelized. Since the main focus of this thesis

has been on designing and testing the embedding algorithm, parallelization has not

been utilized. The physical calculations of stress and strain on an element are fun-

damentally independent operations. One area of possible parallelization is during



69

stress/strain calculations since the only coordination between the elements comes

into play during sti↵ness matrix assembly and time integration.

2. Multiple Materials in the Same Tetrahedral Element

It may be that multiple materials could be embedded elements. Many researchers

have simply created a new element for each set of connected material within the

object (see Nesme et al. [14]). This formulation presents challenges to fracture since

the nodes between adjoining tetrahedra are connected.

3. Image-based Collision Techniques

Image based collision techniques still o↵er the promise of accurate and robust col-

lision detection in screen space which is beneficial for our algorithm since portions

of the mesh (tetrahedral faces) do not have an explicit representation. Furthermore,

the simplified spherical collision techniques presented in this research allow for inter-

penetration artifacts in a virtual world. Future research into image-based collision

techniques will focus on reducing the CPU to GPU data transfer as well as the number

of rendering passes required. The resolution of the image-based collision technique as

pieces of the mesh break apart and become further away must also not restrict and

diminish the quality of the physical simulation.



70

REFERENCES

[1] T.W. Sederberg and S.R. Parry, “Free-form deformation of solid geometric mod-

els,” ACM SIGGRAPH Computer Graphics, vol. 20, no. 4, pp. 151–160, 1986.

[2] J.F. O’Brien and J.K. Hodgins, “Graphical modeling and animation of brittle

fracture,” in Proceedings of the 26th Annual Conference on Computer Graphics

and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co., 1999,

pp. 137–146.

[3] E.G. Parker and J.F. O’Brien, “Real-time deformation and fracture in a game

environment,” in Proceedings of the 2009 ACM SIGGRAPH/Eurographics Sym-

posium on Computer Animation. ACM, 2009, pp. 165–175.

[4] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically deformable

models,” in ACM SIGGRAPH Computer Graphics. ACM, 1987, vol. 21, pp.

205–214.

[5] D. Terzopoulos and K. Fleischer, “Modeling inelastic deformation: viscolelastic-

ity, plasticity, fracture,” in ACM SIGGRAPH Computer Graphics. ACM, 1988,

vol. 22, pp. 269–278.

[6] D. Bara↵ and A. Witkin, “Large steps in cloth simulation,” in Proceedings of

the 25th Annual Conference on Computer Graphics and Interactive Techniques.

ACM, 1998, pp. 43–54.

[7] J.F. O’Brien, A.W. Bargteil, and J.K. Hodgins, “Graphical modeling and ani-

mation of ductile fracture,” in ACM Transactions on Graphics (TOG). ACM,

2002, vol. 21, pp. 291–294.



71

[8] M. Hauth, O. Etzmuß, and W. Straßer, “Analysis of numerical methods for the

simulation of deformable models,” The Visual Computer, vol. 19, no. 7, pp.

581–600, 2003.

[9] P. Volino and N. Magnenat-Thalmann, “Comparing e�ciency of integration

methods for cloth simulation,” in Computer Graphics International 2001. Pro-

ceedings. IEEE, 2001, pp. 265–272.

[10] S. Coquillart, “Extended free-form deformation: a sculpturing tool for 3d ge-

ometric modeling,” ACM SIGGRAPH Computer Graphics, vol. 24, no. 4, pp.

187–196, 1990.

[11] R. MacCracken and K.I. Joy, “Free-form deformations with lattices of arbitrary

topology,” in Proceedings of the 23rd Annual Conference on Computer Graphics

and Interactive Techniques. ACM, 1996, pp. 181–188.

[12] P. Faloutsos, M. Van de Panne, and D. Terzopoulos, “Dynamic free-form defor-

mations for animation synthesis,” Visualization and Computer Graphics, IEEE

Transactions on, vol. 3, no. 3, pp. 201–214, 1997.

[13] Z. Melek and J. Keyser, “Driving object deformations from internal physical

processes,” in Proceedings of the 2007 ACM Symposium on Solid and Physical

Modeling. ACM, 2007, pp. 51–59.

[14] M. Nesme, P.G. Kry, L. Jeřábková, and F. Faure, “Preserving topology and

elasticity for embedded deformable models,” in ACM Transactions on Graphics

(TOG). ACM, 2009, vol. 28, p. 52.

[15] J. Smith, A. Witkin, and D. Bara↵, “Fast and controllable simulation of the



72

shattering of brittle objects,” in Computer Graphics Forum. Wiley Online Li-

brary, 2001, vol. 20, pp. 81–91.

[16] M. Müller, L. McMillan, J. Dorsey, and R. Jagnow, “Real-time simulation of de-

formation and fracture of sti↵ materials,” Computer Animation and Simulation

2001, pp. 113–124, 2001.

[17] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler, “Stable real-

time deformations,” in Proceedings of the 2002 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, July, 2002, pp. 21–22.

[18] O. Etzmuß, M. Keckeisen, and W. Straßer, “A fast finite element solution for

cloth modelling,” in Computer Graphics and Applications, 2003. Proceedings.

11th Pacific Conference on. IEEE, 2003, pp. 244–251.

[19] M. Müller and M. Gross, “Interactive virtual materials,” in Proceedings of

Graphics Interface 2004. Canadian Human-Computer Communications Society,

2004, pp. 239–246.

[20] M. Muller, M. Teschner, and M. Gross, “Physically-based simulation of objects

represented by surface meshes,” in Computer Graphics International, 2004. Pro-

ceedings. IEEE, 2004, pp. 26–33.

[21] Z. Bao, J.M. Hong, J. Teran, and R. Fedkiw, “Fracturing rigid materials,”

Visualization and Computer Graphics, IEEE Transactions on, vol. 13, no. 2, pp.

370–378, 2007.

[22] N. Molino, Z. Bao, and R. Fedkiw, “A virtual node algorithm for changing mesh

topology during simulation,” in ACM SIGGRAPH 2005 Courses. ACM, 2005,

p. 4.



73

[23] Martin Wicke, Daniel Ritchie, Bryan Matthew Klingner, Sebastian Burke,

Jonathan Richard Shewchuk, and James F. O’Brien, “Dynamic local remeshing

for elastoplastic simulation,” ACM Trans. Graph., vol. 29, no. 4, pp. 49:1 –

49:11, 2010.

[24] E. Sifakis, K.G. Der, and R. Fedkiw, “Arbitrary cutting of deformable tetrahe-

dralized objects,” in Proceedings of the 2007 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation. Eurographics Association, 2007, pp. 73–80.

[25] T.L. Anderson, Fracture mechanics: fundamentals and applications, CRC Pr I

Llc, 1995.

[26] M. Pauly, R. Keiser, B. Adams, P. Dutré, M. Gross, and L.J. Guibas, “Meshless

animation of fracturing solids,” in ACMTransactions on Graphics (TOG). ACM,

2005, vol. 24, pp. 957–964.

[27] M. Müller, B. Heidelberger, M. Teschner, and M. Gross, “Meshless deformations

based on shape matching,” in ACM Transactions on Graphics (TOG). ACM,

2005, vol. 24, pp. 471–478.

[28] E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw, “Hybrid simulation of deformable

solids,” in Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium

on Computer Animation. Eurographics Association, 2007, pp. 81–90.

[29] C. Mendoza and C. Laugier, “Simulating soft tissue cutting using finite ele-

ment models,” in Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE

International Conference on. IEEE, 2003, vol. 1, pp. 1109–1114.

[30] J. Teran, S. Blemker, V. Hing, and R. Fedkiw, “Finite volume methods for

the simulation of skeletal muscle,” in Proceedings of the 2003 ACM SIG-



74

GRAPH/Eurographics Symposium on Computer Animation. Eurographics As-

sociation, 2003, pp. 68–74.

[31] J. Teran, E. Sifakis, S.S. Blemker, V. Ng-Thow-Hing, C. Lau, and R. Fedkiw,

“Creating and simulating skeletal muscle from the visible human data set,” Vi-

sualization and Computer Graphics, IEEE Transactions on, vol. 11, no. 3, pp.

317–328, 2005.

[32] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson, “Physically

based deformable models in computer graphics,” in Computer Graphics Forum.

Wiley Online Library, 2006, vol. 25, pp. 809–836.

[33] Hang Si, “Tetgen: A quality tetrahedral mesh generator and 3d delaunay trian-

gulator.,” Feb. 2012.

[34] G.E. Farin, Curves and surfaces for CAGD: a practical guide, Morgan Kaufmann

Pub, 2002.

[35] F. Faure, S. Barbier, J. Allard, and F. Falipou, “Image-based collision detection

and response between arbitrary volume objects,” in Proceedings of the 2008

ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Euro-

graphics Association, 2008, pp. 155–162.

[36] J. Shade, S. Gortler, L. He, and R. Szeliski, “Layered depth images,” in Pro-

ceedings of the 25th annual Conference on Computer Graphics and Interactive

Techniques. ACM, 1998, pp. 231–242.

[37] C. Everitt, “Interactive order-independent transparency,” White paper,

nVIDIA, vol. 2, no. 6, pp. 7, 2001.

[38] A. Witkin and D. Bara↵, “Physically based modeling,” Feb. 2012.



75

[39] J.D. Foley, Computer graphics: principles and practice, Addison-Wesley Pro-

fessional, 1996.

[40] L. Szirmay-Kalos and T. Umenho↵er, “Displacement mapping on the gpustate

of the art,” in Computer Graphics Forum. Wiley Online Library, 2008, vol. 27,

pp. 1567–1592.



76

VITA

Name: Billy Russell Clack

Address: Department of Mathematics, Mailstop 3368, Texas A&M

University, College Station, TX 77843-3368 Rm. 608 D

Email Address: scyfris@gmail.com

Education: B.M., Music, Stephen F. Austin State University, 2009

M.S., Computer Science, Texas A&M University, 2012


