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 ABSTRACT 
 

Water Budget Analysis and Groundwater Inverse Modeling. 

 (May 2012) 

Sayena Farid Marandi, B.Sc, Iran University of Science & Technology 

Chair of Advisory Committee: Dr. Binayak P. Mohanty 

 

The thesis contains two studies: First is the water budget analysis using the 

groundwater modeling and next is the groundwater modeling using the MCMC scheme. 

The case study for the water budget analysis was the Norman Landfill site in Oklahoma 

with a  quite complex hydrology. This site contains a wetland that controls the 

groundwater-surface water interaction. This study reports a simulation study for better 

understanding of the local water balance at the landfill site using MODFLOW-2000. 

Inputs to the model are based on local climate, soil, geology, vegetation and seasonal 

hydrological dynamics of the system to determine the groundwater-surface water 

interaction, water balance components in various hydrologic reservoirs, and the 

complexity and seasonality of local/regional hydrological processes. The model involved 

a transient two- dimensional hydrogeological simulation of the multi-layered aquifer. In 

the second part of the thesis, a Markov Chain Monte Carlo (MCMC) method were 

developed to estimate the hydraulic conductivity field conditioned on the measurements 

of hydraulic conductivity and hydraulic head for saturated flow in randomly 

heterogeneous porous media. 
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The groundwater modeling approach was found to be efficient in identifying the 

dominant hydrological processes at the Norman Landfill site including 

evapotranspiration, recharge, and regional groundwater flow and groundwater-surface 

water interaction. The MCMC scheme also proved to be a robust tool for the inverse 

groundwater modeling but its strength depends on the precision of the prior covariance 

matrix. 
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1. INTRODUCTION 

 

Water is the basis of life, and preservation of water and its related ecosystems 

calls for effective water resource management through a scientific understanding of the 

processes and interactions in the hydrological cycle. Modern hydrology aims at building 

a model mimicking the data environment of the unknown processes; that model can be 

regarded as a collection of numerical techniques that deals with the characterization of 

spatial and temporal attributes of the hydrological cycle. Computer simulation of 

groundwater flow is a decision-support, heuristic and predictive tool used to characterize 

the water flow processes in soils and approximate both conceptual models and boundary 

conditions. Hence numerical simulation of subsurface water flow has been undertaken to 

analyze the components of the hydrologic cycle through its process-based capabilities 

[Cosner et al., 1978; Lindgren et al., 1999; McDonald et al., 1998; Purdic, 1989]. Some 

integrated groundwater/ surface water models also have the ability to provide 

comprehensive water budget analysis honoring the law of conservation of  mass 

[Belmans et al., 1983; Markstrom et al., 2008]. 

Many applications of groundwater flow modeling involve water balance analysis 

at a range of scales. Surface soils react dynamically to the climatic sequence of 

precipitation and evapotranspiration events. They accept part of the moisture throughout 

a precipitation event, returning some of it back to the surface during evaporative periods,  

____________ 
This thesis follows the style of  Water Resources Research. 
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and conduct the remainder to the water table [Eagleson, 1978]. The quantitative 

relationship among the long-term averages of this sequence is called the water balance. 

When a surface water body, such as a wetland, is included in the domain, the complexity 

of modeling tends to increase due to the interaction between the surface water and 

groundwater. Groundwater and surface water are hydraulically interconnected, but most 

often their interactions are difficult to observe and measure. However, it is possible to 

quantify the interactions through numerical simulations. Groundwater flow models allow 

calculation of the boundary flux rates and simulation of the surface water/ groundwater 

interactions, including where and when the exchanges take place.  

Comprehensive hydrogeology analyses are not only imperative for water supply 

studies, but also provide information to carry out the hydro-bio-geochemical analysis 

affects fate and transport of contaminants at a location of interest such as a landfill. 

Transport analysis needs a map of key hydrologic parameters such as hydraulic 

conductivity and  effective porosity in addition to  a description of the flow regime in an 

appropriate resolution [Eggleston et al., 1998; Zheng et al., 2002]. Inability to 

characterize different dominant processes and property variations completely contributes 

to uncertainty in flow and transport model analysis. The utilization of a groundwater 

flow model specific to a complex hydrological site leads to the knowledge of a site’s 

hydrogeology which comes not from the data, but from the model. A by-product of the 

application of a groundwater model to an intricate case study is to determine if the 

limitations of the current model call for a far more consequential simulation. In addition 

to groundwater modeling, inverse problems in groundwater modeling have been  also 
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studied extensively by Kitanidis et al.[1983], Yeh [1986], Ginn et al.[1990] ,Sun [1990] , 

McLaughlin et al. [1996] , Woodbury et al. [2000],  Wu et al. [2004] and Carrera [2005] 

to name a few. There are several notable peculiarities in inverse groundwater modeling 

that have posed a challenge to it and, therefore have attracted a remarkable research 

effort. These features include the spatial and temporal variability of measured dependent 

variables such as hydraulic head and solute concentration, different types of parameters ( 

hydraulic conductivity, recharge, boundary fluxes, etc.), scale dependence, model 

uncertainty such as the geometry of the aquifer and heterogeneity patterns controlled by 

the geology, nonlinearity , instability (small errors in the dependent variables cause large 

errors in the parameters) and often low sensitivity of the dependent variables to  the 

aquifer properties [Carrera et al., 2005].  

Inverse problems in groundwater modeling require a mathematical model that 

incorporates variable models and  simulate a dependent variable such as hydraulic head 

or solute concentration at observation points [McLaughlin et al., 1996]. The variable 

models are hydraulic parameters such as hydraulic conductivity, storativity and porosity 

over the whole domain of the aquifer. These properties are one of the key parameters in 

the hydrogeological characterization of the aquifer;  however,  hydraulic conductivity is 

the dominant soil physical property [Woodbury et al., 2000]. Because flow rate in the 

aquifer both upward and downward is governed by the saturated hydraulic conductivity 

of the soil layer [Arnold et al., 1993] . It has also been widely accepted that the 

heterogeneity and spatial variability of the hydraulic conductivity controls the flow field 

and consequently the spread of contaminants. [Dagan, 1986; Gelhar, 1986; Woodbury et 
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al., 2000]. The role of the hydraulic conductivity becomes more apparent particularly in 

an investigative modeling framework that allows more insight into the system behavior 

and hydrological processes.   

Hydraulic conductivity is difficult to measure and, therefore, inverse problems 

are used for its estimation [McLaughlin et al., 1996]. Deterministic and stochastic 

frameworks are two types of groundwater inverse models. In deterministic models, 

nonlinear regression type techniques are used to estimate hydraulic properties in such a 

way that the observation and simulation data fit [Neuman, 1973]. The set of equations in 

this method are highly underdetermined because the number of unknowns is more than 

the data points. To overcome this problem, additional types of data can be considered as 

a priori information which is the case of the Lavenburg-Marquardt algorithm [Press et 

al., 1992].  

In the stochastic approach, the estimate of hydraulic conductivity, K,  is based on 

geostatistics and is represented as a weighted linear combination of all measurements of 

hydraulic properties [Kitanidis, 1996; Woodbury et al., 2000]. Both deterministic and 

stochastic approaches treat hydrogeological properties as spatial functions and, thus,  

there also exist hybrid methods which lie between the two approaches [McLaughlin et 

al., 1996] . 

As an example of the geostatistical approach, in the Cokriging method, the 

unknown log (K) at any location is solved for by the weighted linear combinations of 

observed dependent variables [Kitanidis, 1996; Woodbury et al., 2000]. The approach 

requires a linearized relationship between the log (K) and the dependent variables in 
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order to construct the cross-covariance of the log (K) perturbations. This linearized 

relationship is valid only if the covariance of log (K) is small [Woodbury et al., 2000]. 

Accordingly, for highly heterogeneous cases, the Cokriging method cannot take full 

advantage of pressure head measurements [Woodbury et al., 2000; Yeh et al., 

1995].Another drawback of the method is that the dependent variables found using the 

Cokriging equations in general will not honor their corresponding measurements [Lu et 

al., 2004]. The latter drawback was improved by the work of Yeh et al. [1995] by 

developing an iterative Cokriging technique which allows sequential updating of 

hydraulic conductivities in such a way that the modeled head values were close to the 

observed values within a given error [Lu et al., 2004].  

A full Bayesian approach to the estimation of the hydraulic conductivity field 

using hydraulic head observations and hydraulic conductivity measurements for steady 

state flow was proposed by Woodbury et al. [2000]. In this method, the a priori  

probability density function (pdf) is determined from the maximum entropy method .The 

approach provides an alternative to the Kriging method for spatial interpolation 

[Woodbury et al., 2000].  Lu et al. [2004] developed a Markov Chain Monte Carlo 

(MCMC) method for the groundwater inverse problem to estimate the hydraulic 

conductivity field conditioned on the measurements of hydraulic conductivity and 

hydraulic head .The MCMC method is one of the most computationally intensive 

technique which yields a pdf for the set of parameters and does not require difficult 

assumptions [Carrera et al., 2005]. Therefore ,aquifer characterization using MCMC has 

attracted much research. 
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The first objective of this study was to identify the main components of the water 

budget and the dominant processes controlling the circulation of the water at the closed 

municipal landfill research site in Norman, Oklahoma.  

The second objective was to develop an inverse groundwater model using 

MCMC that accounts for both the measurements of natural log (K) and head 

measurements. The proposed approach utilized variogram-based stochastic simulation to 

obtain the a priori pdf of the parameter. The model was tested for a hypothetical 2-D 

saturated transient flow in a heterogeneous porous medium for which the geology 

pattern and the boundary conditions were inspired by the hydrogeology of the Norman 

Landfill site in Oklahoma . 
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2. GROUNDWATER MODELING 

2.1. Site Description 

The Norman Landfill Research site is a closed municipal landfill situated on the 

alluvial aquifer of the Canadian River in Norman, Oklahoma, and also one of the U.S. 

Geological Survey Toxic Substances Hydrology Program sites. Studies have been 

undertaken at this research site to describe the interaction of the landfill with the 

surrounding environment and the effect of natural biodegradation on the leachate plume 

[Becker, 2002; Eganhouse et al., 1999; Scholl et al., 1999] 

The hydrologic cycle of the Norman Landfill site is influenced by the small 

natural wetland referred to as the “slough”, as well as by the seasonal variations of 

evapotranspiration and recharge [Christenson et al., 1999] . The main source of recharge 

to the wetland is groundwater, including native and leachate-contaminated groundwater, 

and sub-surface flows resulting from large precipitation events [Schlottmann et al., 

1999]. The wetland-aquifer interaction was found to be a complex interface zone 

between groundwater and surface water as well as a bio-geo-chemical filter for water 

quality processes [Baez-Cazull et al., 2008] .Groundwater head measurements by the 

USGS reveal that water levels are lower during the growing season and higher 

otherwise. The soil, vegetation, atmosphere and wetland systems of the site are 

dynamically interconnected with each other by means of physical processes driving the 

energy and water balances. 

Although the seasonal hydrological patterns and the linkage between the wetland 

and  the aquifer are believed to influence chemical, biological [Baez-Cazull et al., 2008; 
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Christenson et al., 1999] and  recharge processes [Scholl et al., 2006], there are no 

published studies dedicated to quantifying the water budget of the site through an 

investigative hydrological model. Such an investigative study would allow more insight 

into the system’s behavior, yet the prediction may not be as robust as the predictive 

models [Bowles et al., 1991].  

 The  site accepted solid municipal waste from 1922 to 1985, by which time it 

was closed and capped with local clay [Schlottmann et al., 1999]. Of particular interest is 

the 1164 m  long a transect referred to as A-A’ (Figure 1) in the direction of the 

groundwater flow. There are 3 water level monitoring wells situated alongside: (1) Well 

WLMLF, located on the mound of the landfill in the west cell, (2) Well IC36, located 35 

m from the edge of the landfill and (3) Well  IC54 located 7 m from the down-gradient 

edge of the wetland (Figure 1).  
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Figure 1. Location of the site, streams, observation wells, transect A-A' and regional potentiometric 
surface map at Norman Landfill Site, Oklahoma. [http://ok.water.usgs.gov/projects/norlan/] 

2.1.1. Climatology 

Annual precipitation at the site is approximately 96 cm, with rainfall rates greater 

than potential evapo-transpiration (ET) during spring, summer and fall seasons. The 

hottest month is July with the average temperature of 28° C and the coldest month is 

January with the average temperature of 3.5° C [www.mesonet.com, 1994]. The growing 

season starts in mid-April and ends in October [Scholl et al., 2006].  
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2.1.2. Land Cover 

The riparian zone of the wetland is densely vegetated with both deep and shallow 

rooted plants. The deep-rooted or phreatophyte type of vegetation consists of willow, 

cottonwood, eastern red cedar and salt cedar while the wetland vegetation includes 

common reed, western ragweed, bermuda grass, johnson grass, bundle flower, ravenna 

grass, giant cane, sandbar willow and black willow [Burgess, 2006]. It has been shown 

by Busch et al. [1992] that willows as well as salt cedar use only groundwater and 

exhibit little evidence of water acquisition from the unsaturated zone, while cottonwoods 

use both soil water and groundwater [Busch et al., 1992]. Most of these plants are rooted 

in the soil and they grow in dense thickets along the wetland.  

2.1.3. Recharge 

The recharge study in the Norman Landfill Research site over 2 years (1998-

2000) conducted by Scholl et al. [2006], suggested that recharge to the riparian area is 

around 16% to 64% of rain events. The wide range of the recharge rate is mainly due to 

the difference between the chemical and physical methods used in the recharge 

estimation. Chemical methods involved measuring the change in recharge water in the 

saturated zone, as defined by isotopic signature, specific conductance or chloride 

measurements; and infiltration rate estimates using storm event isotopic signatures 

[Scholl et al., 2006]. Physical methods included measurement of water table rise after 

each rain event and on an approximately monthly time scale [Scholl et al., 2006]. 

Isotopes analyses showed that recharge entered the groundwater system in winter 
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(December 21- March 20) and spring (March 20- June 20), and was removed during the 

growing season [Scholl et al., 2006].  

2.1.4. The Wetland 

The wetland is impounded by a beaver dam in the former channel of the 

Canadian River with a length of approximately 700 m [Scholl et al., 2006] (Figure 2). 

The wetland has a complex hydrological regime which results from a multifaceted 

interplay between the climate and aquifer characteristics. Interactions between the 

groundwater-surface water system may be a dominant component of the water budget 

since inland wetlands are usually connected with the groundwater system [Winter, 

1999]. In particular, existence of surface water bodies can strongly affect the hydraulic 

heads in the surficial aquifers through hydraulic influence and exchanges of water with 

the atmosphere [Merritt et al., 2000]. The wetland not only has interaction with the 

atmosphere, it also receives lateral flow from upstream and discharges into a wastewater 

effluent stream from the City of Norman wastewater treatment plant. The wetland is a 

surface expression of the water table and it serves both as a source and a sink in the 

water budget system during wet and dry seasons [Christenson et al., 1999]. It is fed by 

the groundwater recharge and precipitation during the wet seasons and in the dry periods 

it is depleted by ET. 
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Figure 2. The beaver dam that formed the wetland in the Norman Landfill Site. (Photo by Scott 
Christenson, USGS Toxic Substance Hydrology Program-Norman Landfill Project) 

2.1.5. Groundwater Flow System 

The groundwater flow system at the site consists of local, intermediate and 

regional recharge or discharge into/from the domain. The local groundwater flow system 

gains water at the higher topographies and discharges into immediately adjacent lows, 

while the regional groundwater system is recharged and discharged at major topographic 

highs and lows respectively [Carter, 1996; Winter, 1976]. The intermediate flow system 

occurs between these two topographic bounds [Carter, 1996; Winter, 1976] (Figure 3). 

In the winter of 1995-1996, a network of shallow temporary wells was 

constructed in the Canadian River alluvium to create a potentiometric-surface map 

[Scholl et al., 1998]. The winter season was chosen to minimize the effects of 
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transpiration of water by deep-rooted plants [Scholl et al., 1998]. The potentiometric 

surface indicated that the hydraulic gradient was approximately 2.8 m/km north of the 

Norman Landfill and 1.4 m/km south of the landfill. It also showed that the direction of 

the groundwater flow was generally north-northeast to south-southwest, toward the 

Canadian River.    

 
Figure 3. Ground water flow system: Local, intermediate and regional ground water flow systems related 
to topographic highs and lows. Source:[Carter, 1996; Winter, 1976] 

2.1.6. Canadian River 

The Canadian River is a low-sinuosity sand-bed river, which changes in pattern 

from braiding to meandering [Marston et al., 2001]. Natural migration or flood activity 

of the stream inundates the floodplain without barrier until the edge of the landfill 

[Marston et al., 2001].  The Canadian River floodplain sediments include sand bars and 

mud layers. The geomorphology of the river is a consequence of the continuous 

dissection of the sand bars formed by braiding of the channel and mud layers developed 

as silt and clay settles from suspension each time [Marston et al., 2001].  
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2.1.7. Topography 

The highest elevation of the domain is found on the west cell reaching 343 m 

while the lowest points are near the wetland and the Canadian River. The landfill 

accepted municipal solid waste from the early 1920’s and then in the 1960’s and 1970’s 

waste was buried in shallow trenches and covered with sand [Christenson et al., 2003]. 

By the time the landfill was closed, the fills were covered with earthen caps. The capped 

landfills rise 12-13 m above the floodplain [Christenson et al., 1999]. 

2.2. Methods and Data 

Groundwater models are computer programs of groundwater flow systems for 

the analysis of groundwater flux and their interactions with the atmosphere and surface 

water [Todd et al., 2005]. The uncertainty exists in the configuration of the physical 

system, including the values of its parameters, input variables and field observations, 

plays a large role in the nature of a groundwater system. Also because of the simplifying 

assumptions embedded in the mathematical equations, a model must be viewed as an 

approximation and not an exact representation of a real world system. The key to proper 

conceptualization of a system is to avoid oversimplification or under-simplification 

[Todd et al., 2005]. With an oversimplified conceptual model we cannot capture the 

essential features of the system which leads to a numerical model that is powerless of 

simulating observed field conditions. In contrast, an under-simplified conceptual model 

tends to make the numerical model too complex and computationally demanding. [Todd 

et al., 2005] 
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2.2.1. Model Development 

Development of the groundwater flow model involved the following steps: (a) 

collecting and analyzing data, (b) developing the conceptual model and mathematically 

simulating it, (c) calibrating the model for the year 1998-1999, (d) and validating for the 

year 2005. Recent developments of numerical methods for approximations of the 

groundwater-surface water flow system make it convenient to simulate complex 

hydrology systems [Winter, 1976]. MODFLOW-2000 was used to construct the local 

scale transient model by numerically solving the two-dimensional groundwater flow 

equation for a porous medium.   

A number of software packages were used to facilitate the groundwater 

investigation in the study area. A geographic Information Systems (GIS) tools allowed 

organizing a considerable quantity of groundwater and surface water information in 

addition to expediting analysis through their ability to manage and map the data. Visual 

MODFLOW v.2010 [Schlumberger Water Services et al., 2010] provided a graphical-

user interface for preparing MODFLOW-2000 inputs and for viewing model outputs. It 

was used to input GIS files, visualize the input data, run MODFLOW-2000 and display 

the results. The PEST [Doherty, 2004] tool was used to estimate the parameters of 

interest. PEST is a nonlinear model-independent parameter estimator equipped with an 

inversion engine and the ability to set bounds on parameters while minimizing the 

discrepancy between model results and field observations. The Marquardt-Lavenberg 

algorithm [Gill et al., 1978; Press et al., 1992] implemented in PEST has to minimize 

the weighted sum of squared differences between model-generated observation values 
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and those actually measured in the field. HYDRUS-1D [Simunek et al., 1998] which is a 

modeling environment for variably saturated porous media was used for calculations of 

potential evapotranspiration.  

 Based on the complexity of the domain and data availability, a 2-D approach 

was preferred over 3-D simulation. By choosing the x- axis along transect A-A’ while 

the z-axis is aligned in the direction of gravity, the flow variations in the y-direction were 

ignored. The y-axis runs approximately parallel to the span of the wetland. The 2-D 

model is by integrating the 3-D form of the Darcy equation coupled with the continuity 

equation over the length of the wetland. Development of Equation (2.1) is discussed in 

most textbooks of groundwater hydrology [Domenico, 1972; Todd et al., 2005].                                                                                   
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Kxx, Kyy, and Kzz are the hydraulic conductivities along the x,y and z coordinates, 

respectively, h is the potentiometric head, W is the volumetric flux per unit volume 

representing sinks or sources. Ss is the specific storage of the porous medium and t is 

time. Kxx, Kyy, Kzz and Ss are functions of space (x,y,z) and W is a function of space and 

time (x,y,z,t) [Todd et al., 2005]. The interval of the integration [l1, l2] is roughly the 

distance across the wetland. The integration leads to the following form:   
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by adopting two simplifying assumptions: 
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1)  0


y
h  which means that the pressure head of the wetland does not change 

significantly with respect to y (along the length of the wetland). In other words, it 

indicates that the potentiometric gradient in the y-direction does not change. This is a 

reasonable assumption for a vegetated wetland since the vegetation reduces the flow and 

decreases the velocity of water [Carter, 1996].  

2) W and Ss do not change in the y-direction, showing that there is no 

considerable sink or source affecting the water flow in y-direction . The storativity and 

time variability of the pressure head are also negligible in this direction.  

The length of the wetland (l2-l1) cancels out on both sides of Equation (2.2); 

therefore, the governing equation is independent of the y dimension. In order to get the 

actual fluxes throughout the slough extent, the solution of the model must be multiplied 

by (l2-l1).  

It is true that the above-mentioned simplifying assumptions of the 2-D approach 

could be a source of uncertainty in the water balance calculations but the lack of 

sufficient data creates a bottleneck for building a 3-D groundwater flow model. 

Notwithstanding, the 2-D framework may lead to a perception of the nature of stream 

flow dynamics in the Norman Landfill site, which can then be expanded into a more 

complicated 3-D simulation when the physical processes are relatively well-understood.  

The 2-D finite difference model consists of 1 row, 37 columns, and 9 layers. 

Totally, 333 grid cells cover the profile area of about 52,380 m2. The resolution of grids 

near the wetland was made finer to adjust for the greater flow concentration and larger 
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number of field observations of hydrologic conditions. Geometry of the layers refers to 

the horizontal geologic units described by Scholl et al. [1998] and Marston et al. [2001]. 

The transient model simulates groundwater flow using daily time step. MODFLOW-

2000 has a series of  modules for various types of boundary conditions. In addition to the 

Basic (BAS) module that provides the overall program control and Layer-Property Flow 

(LPF) module, the following head-dependent and head-independent modules were 

chosen to construct the model. 

2.2.1.1. River Module 

The effect of flow between the Canadian River and groundwater system were 

modeled via a seepage layer separating the surface water body from the groundwater 

system using the River module. Depending on the hydraulic gradient between the river 

and the groundwater system, the river may either contribute water to the groundwater 

system, or act as a groundwater discharge zone. The underlying assumption in this 

approach is that leakage through the river bed does not change the river stage 

[McDonald et al., 1998].   

2.2.1.2. Lake Module 

The head-dependent Lake module developed by Merrit et al.[2000] was used to 

simulate the wetland.  The implicit assumption of this module is that the variation of the 

wetland stage is in response to the hydraulic stresses applied on the aquifer and the other 

external stresses. The wetland is represented as a finite volume of space within the 

model. The Lake module relies on an independent water budget that accounts for the 
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seepage, rainfall, overland runoff, evaporation and anthropogenic gains and losses. The 

riparian area of the wetland allows a funnel effect that concentrates runoff towards the 

wetland. This means that the rate of precipitation would need to be increased 

proportionally to encompass the rate that runoff entering the wetland. 

 Estimation of the daily evaporation rate of the wetland for the years 1998-1999 

were obtained by using linear regression analysis of the 2005 pan evaporation data. The 

dependent variables were precipitation, relative humidity, air temperature, wind speed 

and solar radiation. Transpiration rates of the phreatophyte type of vegetation calculated 

by the Penman-Monteith equation were also taken into account.  

2.2.1.3. ET Module 

A third head-dependent package is the Evapotranspiration Segments (ETS1) 

module developed for use with MODFLOW-2000 by [Banta, 2000]. It evaluates the 

water loss in the water budget from plant ET at the ground surface by removing water 

from the saturated groundwater regime. When the water table is at or above the elevation 

of the top grid cell, ET loss occurs at a maximum rate. When the water table exceeds a 

specified depth known as the “extinction depth”, ET rate is zero. Between these two 

limits, the rate of the ET varies based on the defined relation between the ET rate and 

hydraulic head. The relation adopted decreased the ET rate monotonically with 

increasing slope toward the extinction depth. This approach to calculate the actual ET is 

not precise in the sense that ET losses from the unsaturated zone are not taken into 

account. More accurate estimations of ET and vegetation habitat modeling require 

extensive information about the ecosystem of the Norman Landfill site including crop 



 

 
 

20

growth data and root water uptake parameters. Lack of these information restricts using 

more advanced packages for MODFLOW-2000 such as RIP GIS-NET [Ajami et al., 

2012] and HYDRUS [Twarakavi et al., 2008]. The landfill modeling domain was 

divided into six zones to account for the different vegetation types that exist there, and 

their ET rates and extinction depths. Four zones were assigned to the topographic 

prominences of the mound area. The wetland bank has its own ET zone, and the rest of 

the domain up to the Canadian River was allocated as the sixth ET zone. 

2.2.1.4. Well Module 

Regional groundwater recharge was simulated using the well module; therefore, 

the recharge rates were calculated based on the potentiometric map of the site. Regional 

groundwater flow in the winter season runs toward the Canadian River with the 

hydraulic gradient approximately 1.4 to 2.2 m/km.  The average groundwater velocity 

based on this hydraulic gradient, the median hydraulic conductivity from slug tests 

( 5106.6  m/s) and median porosity of 0.34 was found to be about 71071.2  to 

71027.4   m/s. The respective pumping rates calculated according to the continuity 

equation were about 5.2 to 8.3 m3/day for winter time, and lower during the summer 

season. Seasonal variation for the pumping rate was considered during the calibration to 

honor the seasonal pattern of the regional groundwater recharge. 

2.2.1.5. Recharge Module 

    Surficially distributed recharge to the groundwater system was simulated by 

assigning recharge boundary condition to the top grid cells of the model. Recharge rate 
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is a pre-requisite for efficient groundwater simulation and it was assumed to be a 

percentage of the precipitation. The multiplier depends on many factors including land 

use and vegetation type, surface topography, soil cover material and antecedent soil 

moisture condition [Eagleson, 1978; Todd et al., 2005]. A comprehensive recharge 

process at the site was studied by Scholl et al. [2006] through analysis of stable isotopes 

and water table fluctuations. Their findings from recharge, ET and seasonal groundwater 

observation analyses point out that the infiltration rate is greatly affected by the ET rate 

during the growing season. The plant roots easily uptake the needed water from 

percolating rainfall in both saturated and variably saturated zones during the growing 

season. Therefore, a substantial amount of percolating water is removed by the 

vegetation before reaching the water table. During the dormant season the net recharge 

rate is significant and ET rate is insignificant. The opposite occurs in the growing 

season. The possible reasons behind these characteristics of the recharge process are: (a) 

the densely vegetated site during the growing season increases the interception which 

reduces the deep infiltration, and (b) more rain events happen in winter time when there 

is no demand for ET. Part of this water moves downward by gravity into the saturated 

zone and in the meantime fills the pores in the unsaturated zone up to the specific 

retention. Since there are very limited ET losses in the root zone, the soil reaches 

saturation by the late winter.  This situation clearly describes the antecedent soil 

moisture condition at the beginning of the growing season. The recharge boundary 

condition was distributed on the domain in five recharge zones. The area on the landfill 

mound with its steep topographic terrain and grass-type vegetation differs in infiltration 
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rate with the riparian zone of the wetland with gentle topography and shoreline plants. 

zone 1 was assigned to the mound area, and zone 2 to the distance between the toe of the 

landfill and left bank of the wetland. The area between the right bank and the Canadian 

River is zone 3, the right bank is zone 4 and the left bank was assigned zone 5 .  

2.2.1.6. Time Domain 

In both calibration and validation simulations, the time series graph of the water 

level for the wetland is about 0.8 m below the water level in well WLMLF. Additionally 

the fluctuations in the wetland showed more dynamic behavior than the water level in 

the mound (Figure 4).  

 
Figure 4. Time series of the measured water levels in wetland and well WLMLF during the year 1999 and 
2005. Growing season starts about mid-April through October. 

The calibration study was conducted from November 1st, 1998 until August 8th, 

1999, encompassing 298 transient stress periods. Validation study was carried out from 

January 1st, 2005 to November 8th, 2005. Although the water fluctuations in well 
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WLMLF showed very fast response time (hourly) (Figure 5), the forcings driving the 

hydrological cycle such as precipitation and solar radiation have daily measurements that 

put limitation to the length of the stress periods. This limitation enforced the 

hydrological processes in the model to operate in daily stress period. 

 
Figure 5. Water  level measurements in well WLMLF in period of 48 hours. 

2.2.2. Meteorological Data 

Meteorological data including historical daily precipitation, average relative 

humidity, air temperature (maximum, minimum, and average), wind speed, mean sea 

level pressure and total solar radiation were obtained from the Norman station of the 

Oklahoma MESONET [www.mesonet.com, 1994]. Local measurements of precipitation, 

wind speed, relative humidity and solar radiation were also obtained from the USGS 

Norman Landfill Project [http://ok.water.usgs.gov/projects/norlan/] . Sunshine hours as 

well as geographical parameters were acquired from the National Weather Service [NWS 

Internet Services Team]. The Moderate Resolution Imaging Spectroradiometer (MODIS) 
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provides spectral details important to modeling of the Earth’s energy budget. The level-4 

MODIS global Leaf Area Index (LAI) product which is available every 8 days at 1 km 

resolution was retrieved from the MODIS website [http://modis.gsfc.nasa.gov]. This 

quantity expressed as the area of leaf per area of ground and it is unit less [Jordan, 

1969]. The LAI values for both riparian area and landfill mound were 10 to 14 during 

the summer and gradually decreased to 1 to 3 in the winter.  Evaporation data for the 

wetland were obtained from measurements made by [Masoner et al., 2008] using a 

modified Class A floating evaporation pan for the period of February through August 

2005.  

2.2.3. Hydrological Data 

Measurements of the stage of the Canadian River and the wetland were 

collected from the USGS gaging station 07229050 (Canadian River at Norman, 

Latitude 35°11'40", Longitude 97°29'05") and gaging station 07229053 

(Canadian River Tributary at Norman, Latitude 35°10'02", Longitude 

97°26'53"). The data set includes daily values for mean discharge, gauge height 

and water stage. Groundwater level measurements in the three wells alongside 

transect A-A’ and continuous surface-water measurements in the wetland were 

obtained from the USGS Toxic Substances Hydrology Program-Norman 

Landfill Project [http://ok.water.usgs.gov/projects/norlan/]. 

 This program provides data sets containing the raster data of the digital elevation 

model (DEM), vector data sets including hydrography of the domain, bathymetry of the 

wetland, potentiometric surface, delineation of the landfill cells, and water levels. A 
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groundwater level monitoring well (WLMLF) was drilled through the west cell of the 

landfill and continuously measured the groundwater level at 30 minute intervals with an 

accuracy of 3.5 cm [Becker, 2002].  The other two groundwater monitoring wells (Well 

IC 36 and Well IC 54) had sparse as monthly data sets.  

2.2.4. Geological Data 

 Besides the head monitoring wells, 5 slug test wells used to characterize 

hydraulic conductivity variations in the domain were situated near transect A-A’. The 

unconfined alluvial aquifer at the site is 10 to 15 m thick, composed of unconsolidated 

sedimentary deposits ranging from clay to gravel with medium grained sands being 

dominant [Scholl et al., 1999] (Figure 6). The aquifer is underlain by Hennessey Shale 

which acts as a confining unit [Scholl et al., 1998]. The altitude of the bedrock was 

obtained from Becker [2002] and it was measured using shallow seismic shear-wave 

refraction data and drilling information. 
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Figure 6. Permeability structure of the alluvium plain along transect A-A' at the Norman Landfill site 
using core description and slug test results (Source : [Scholl et al., 1999]) 

The Canadian River alluvium aquifer consists of fluvial sediments of the 

Canadian River. According to the laboratory tests and core analyses reported by USGS, 

porosity ranged from 0.34 to 0.44 for the alluvium aquifer [Scholl et al., 1998]. This 

range expands from 0.40 to 0.92 for the material of the landfill mound. Specific yield 

(Sy) is defined as the volume of water that an unconfined aquifer releases from storage 

per unit surface area per unit decline in the water table [Todd et al., 2005]. This 

parameter is unit less and varies with the grain size distribution of the aquifer material 

and the height of the water table, the capillary fringe above the water table, the depth of 

the water table below the land surface, the magnitude of the change in water level, 
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whether the water table is rising or falling, and the time allowed for the aquifer to reach 

equilibrium [Nachabe, 2002]. At the Norman site, water table rise followed rain events 

within 24 hours [Scholl et al., 1999] . For this short term  fluctuations of the water table, 

a range of 0.10-0.30 for the alluvium aquifer and even less  for the landfill mound were 

considered part of the initial data [Scholl et al., 2006; Todd et al., 2005]. Sy varies based 

on hydraulic conductivity and hydrogeological situation and in this study six Sy zones 

were utilized (Figure 7). 

 
Figure 7. Sy is allocated into six zones. Zone 1 contains the lower layers except the Slough area. The upper 
layers are divided into 4 zones: the mound area, the area between the mound and riparian, the riparian and 
the area between the riparian and Canadian River 

Martson et al. [2001] used conductivity logs and soil cores, and Scholl et al.  

[1998] used slug tests to verify the existence of a high permeability coarse gravel layer 

in the alluvium aquifer located at the base of the alluvial fill. This layer acts as a 
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preferred permeability pathway within 1.5 m above the lower confining unit. The 

stratigraphy of the floodplain described by Martson et al. [2001] and Scholl et al. [1998] 

defined the geometry and thickness of the alluvium layers. The former study 

demonstrated that the alluvium was partitioned into five layers.  

 A basal layer consisting of coarse grained sediments and gravel with thickness 

ranging from 1.8 to 2.4 m from base of the alluvium.  

 Sand layers about 3 m thick overlying the basal layer.  

 A layer ranging in thickness from 4.5 to 6.0 m, characterized by extensive 

mud layers and clay lenses above the sand layer.  

 Another sand layer overlying the   mud layers with 2.4 to 2.7m of thickness.  

 The top layer extending 1 m down from the ground surface composed of very 

fine-grained sands.  

This classification of the aquifer layers depicted the stratigraphic heterogeneity 

of subsurface sediments and the variability pattern of hydraulic conductivities was 

assigned accordingly (Figure 8). A study of spatial variation of hydraulic conductivity 

using the slug test reported a wide range of 7104.8    to 4108.2  m/s with a median 

value of  5106.6   m/s [Scholl et al., 1998].  

The least known attribute needed in mapping the physical heterogeneity of the 

soil is the ratio of the horizontal to the vertical hydraulic conductivity (Kx/Kz). This ratio 

is important particularly in areas of recharge and discharge where the wetland interacts 

with groundwater [Winter, 1976]. Winter [1976] discussed the importance of this ratio 

and concluded that if the ratio were to be less than 100, surface water is rarely lost to the 
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groundwater system.  If the ratio was greater than 1000, surface water is lost under many 

conditions, and a ratio between 100 and 1000 indicates other controlling factors to 

become dominant in the interaction of the surface water and groundwater systems. 

Considering the Winter [1976] study, ratios of 300, 500 and 700 were tested for the 

geologic matrices around the wetland.  

 
Figure 8. Hydraulic conductivity zones assigned for study area at the Norman landfill site. Totally 10 
zones were allocated to represent the heterogeneity in the domain. 

2.3. Results and Discussion 

The model proposed in this study was able to adequately describe the 

fundamental hydrological processes and useful to understand the contributions of 

different processes to the overall water balance. It also showed the relative importance of 

each component of water balance varies both spatially and temporally. However it is 

worth to note that there is no fully objective model as a result of uncertainties in 
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conceptualizing the aquifer layers and stratification, boundary conditions, parameter 

distributions and dominant stresses. There could be alternative plausible conceptual 

models, yet using the same original information but in a different manner. 

 The time series discrepancy of the water balance for the validation simulation 

represents the temporal changes in the flow mass balance which means the difference 

between the total flow IN and total flow OUT expressed as a percentage of the total flow 

(Figure  9). The discrepancy percentage varied in range of ±4% with the maximum 

discrepancy between the simulation and observation data appearing on January 7th , 

2005. 

 
Figure  9.  Percent discrepancy graph plots the temporal changes in the flow mass balance (total flow IN – 
total flow OUT) expressed as percentage of the total flow for the validation simulation. 
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2.3.1. Calibration Results 

The process of model calibration was done by applying both PEST and trial-and-

error parameter adjustment .The goodness-of-fit of the calibrated model was basically 

based on a visual judgment by comparing the observed and the simulated pressure heads 

and the numerical measures of the goodness-of-fit such as the normalized root mean 

squared error (NRMS) between the observed and simulated pressure head and the 

correlation coefficient. Indeed there is no generally accepted objective measure of 

comparison and the judgment is subjective [Madsen, 2000]. As a consequence the 

NRMS of 15%, correlation coefficient of 0.85 and confidence interval of 90% were 

adopted to assess explicitly the soundness of the model.  The calibration results of the 

model in terms of pressure head for four observation locations with overlying 

precipitation rates are shown in Figure 10 and the statistical details are given in Table 1. 

The 1:1 scatter plot of calculated vs. observed pressure head values for the year 

1998-1999 is presented in Figure 11. The plot shows the comparison between the values 

calculated by the model (x- axis) and the values measured in the wells (y-axis). If all the 

data points intersect the 45 degree bisector line (x=y) on the graph, then it characterizes a 

perfect calibration scenario which is not likely to happen for real situations. Points that 

appear above the bisector line denote positive residuals indicating the model is over 

predicting and points appearing below the bisector line represent negative residuals 

indicating that the model is under-predicting the pressure head. The 95% confidence 

intervals are also shown in Figure 11 which allows visualization of the range of 
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calculated values within the 95% intervals. The graph shows that the majority of the data 

points laid in the acceptable confidence intervals. 

   A     
 

   B     
Figure 10.  Calibration graphs of the calculated and observed pressure head at the Norman site for the four 
observation points (A) Wetland , (B)  WLMLF, (C) IC 54 and (D) IC 36 
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   D      
Figure 10. Continued. 
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Figure 11. Scatter graph of the calculated vs. observed pressure head values for the calibration simulation 
and overall statistical results. 

Table 1. Statistical results for the calibration simulation. NRMS stands for normalized root mean squared 
error and Res. stands for residual 

Well NRMSE Correlation 
Coefficient Max Res. (m) Min Res. (m) Mean Res. (m) 

WLMLF 9.74 0.97 -0.18 0.00 0.07 
SLOUGH 6.86 0.95 -0.27 0.00 -0.01 

IC 36 10.77 0.87 -0.42 0.00 -0.02 
IC 54 14.84 0.96 -0.20 0.00 -0.08 

Overall 6.845 0.96 -0.42 0.00 -0.03 
 

2.3.2. Validation Results 

The results of the validation study for the year 2005 are shown in Figure 12 and 

the statistical details are given in Table 2. Data was available only from the wetland and 

well WLMLF during this period.  Figure 13 represents the 1:1 scatter plot of calculated 

vs. observed pressure heads for the validation study. It is seen that the majority of the 

data points are in the 95% confidence intervals. Histograms of the distribution of 

residuals for the wetland, well WLMLF and all data points together are shown in Figure 
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14. Ideally the distribution of the residuals for a large number of data points is clustered 

around the value of zero and resembles the Student distribution curve. The Student 

distribution curve which was obtained by normalizing residual values was also displayed 

to determine the likelihood of calculated data points. Figure 14 showed that although the 

residual histogram for the wetland and well WLMLF did not exactly follow a normal 

distribution, the residual histogram of the all data points together did follow a normal 

distribution.  

Apart from statistical point of view, the calibration and validation simulations 

shared the following hydrological characteristics. Both the calibration and validation 

graphs showed that the high level phase of pressure head started from the beginning of 

the first autumn/winter rain event and lasted to mid- June and the low level phase lasted 

from mid-June through September (Figure 10 and Figure 12). Although the water table 

rise and fall are in phase with the timing of recharge events, the distinct seasonal patterns 

also induced the hydrologic regime of the groundwater system. In other words, the 

groundwater net recharge is tightly linked to precipitation and ET; therefore the water 

table fluctuates with dry and wet cycles as well as seasonally.  The diurnal water table 

fluctuations in the wetland demonstrated that there is a functional association between 

water stage and riparian phreatophyte transpiration. The long-term climatic cycle and the 

Canadian River stage also influence the wetland stage in a longer time scale. 
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   A     
 

   B     
Figure 12. Validation  graphs of the calculated and observed pressure head at the Norman site for the (A) 
wetland and (B)  WLMLF 

Table 2. Statistical results for the validation simulation. NRMS stands for Normalized Root mean Squared 
and Res. stands for Residual 

Well NRMSE 
Correlation 
Coefficient Max Res. (m) Min Res. (m) Mean Res. (m) 

WLMLF 6.53 0.99 0.66 0.00 0.05 

Wetland 6.14 0.99 0.27 0.00 0.03 

Overall 4.27 0.99 0.32 0.00 0.04 
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 Figure 13. Scatter graph of the calculated vs. observed pressure head values for the validation simulation 
and overall statistical results. 

A  B   
Figure 14 .  Residual histogram of the (A)WLMLF , (B) wetland and (C) overal points of the validation simulation 
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 C   
  Figure 14. Continued. 

2.3.3. Hydraulic Conductivity 

Horizontal hydraulic conductivities estimated from PEST were in agreement with 

the permeability structure suggested for the domain by Marston [2001] (Figure 15 ). 

Cells bordering the wetland had Kx/Kz ratios of approximately 1000. The hydraulic 

conductivities that were assigned to the geologic matrix were representative of sand, 

gravel, clay, silt, loam and peat. Sensitivity analyses for the hydraulic conductivity 

showed that the model was primarily sensitive to the horizontal hydraulic conductivity 

of the highly permeable bottom layer (zone 5) and secondly to the Kx of zone 1. Kx of the 

zone 7 as well as both Kx and Kz of the mound area (zone 6) and Kz of the zone 1 also 

showed relatively large sensitivity values. The uncertainty analysis for hydraulic 

conductivities implied that the Kx of zone 5 has the highest uncertainty . 
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Figure 15. Horizontal hydraulic conductivity distribution in cross section 
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2.3.4. Specific Yield 

Variability of the specific yield (Sy) in the Norman Landfill is significant and 

analyses showed that even the top layer of the transect did not have a unique value 

which can be interpreted as significant heterogeneity of the top layer soil.  The Sy for the 

landfill mound and riparian area were estimated to be 0.08 and 0.17, respectively, while 

for the rest of the top layer grid cells Sy was estimated to be 0.19.  The estimated Sy in the 

lower layers was 0.18 (Figure 16).  Sensitivity analyses results showed that the Sy values 

controlled the amplitudes of the fluctuations in the water table at well WLMLF (Figure 

17). Higher values of the Sy had a damping effect and lower values increased the 

amplitude. The variability in the Sy parameters of each zone is shown in Figure 18.  

2.3.5. Recharge Parameters 

Table 3 shows the values of the recharge multiplier for both the growing and 

dormant seasons. The wetland receives direct precipitation and some runoff from the 

surrounding uplands. The zones 2, 4 and 5 representing the riparian area of the wetland,  

have the greatest recharge multipliers for both seasons. The large difference in recharge 

rates between the riparian area and other zones can be explained by considering the 

topography and landscape. The ground slope causes the excess precipitation that falls 

outside the wetland to be transported in the direction of the wetland. The vegetative 

composition and soil type of the wetland bank reduce the water flow velocity and the 

water has a chance for deep percolation into the ground. A significant seasonal 

difference in recharge multiplier appearing in zone 1 (landfill mound) can be related to 
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the substantial difference of the vegetation during the actively growing or dormant 

seasons. 

Table 3. Recharge Multiplier values for different zones and different seasons in the Norman  Landfill site 

Zone 1 2 3 4 5 
Growing Season 0.23 0.7 0.34 0.7 0.45 
Dormant season 0.69 0.8 0.35 0.80 0.54 

 

2.3.6. Head Equipotential Map and Water Flow Velocity Vectors 

The results of the numerical simulation of the Norman Landfill in terms of head 

equipotential values, velocity vectors and water table levels for the first day of months 

January and July 2005 are shown in Figure 19 to represent the winter and summer time. 

The velocity vectors in the bottom layer clearly show the pathway for subsurface water 

flow, which is towards the Canadian River. The water table in the wetland is at its 

maximum level in January and gradually declining with time to reach its minimum in 

August. The velocity vectors in the direction of wetland point out that the seepage 

occurred mainly into the wetland. The velocity vectors under the mound showed 

significant velocities (indicated by the length of the arrow) in summer time although the 

recharge multipliers for the mound area during the growing season are relatively small in 

comparison to the dormant season. These high infiltration rates may relate to the low 

wetting front and more intense rain events during the growing season. The velocity 

fields of groundwater flow in the two different seasons also represent the direction and 

magnitude of the regional, intermediate and local groundwater flow in the domain across 

time.
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Figure 16. Spatial distribution of specific yield in cross section
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Figure 17. Sensitivity of the water level in the well WLMLF with respect to specific yield value of the 
mound area (zone 3) 

 
Figure 18. Uncertainties associated with specific yield parameters 
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  A                     

 
Figure 19. Head equipotential map, velocity vectors and water table elevation in cross section of the Norman landfill site. (A) January 1st  and (B)  July 
1st , 2005 
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Figure 19. Continued.

Water Table 
Velocity Vector 



 

 
 

46

2.3.7. Water Balance Components 

2.3.7.1. Aquifer Storage 

Time series plots of the temporal changes in the rate of aquifer storage are shown 

in Figure 20. STORAGE IN is the rate of mass added to the system through sources 

(precipitation, regional groundwater recharge)  and STORAGE OUT is the rate of 

reduction in mass storage. The STORAGE IN peaks in June and July and STORAGE 

OUT peaks in September and May. Storage capacity is lowest during the dormant season 

when plants are not transpiring heavily and the wetland stage is high. During the 

growing season, storage capacity increases as ET increases and wetland stage decreases.  

 
Figure 20. Aquifer storage rate IN and OUT from the system for the validation simulation . (m3/day) 
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2.3.7.2. Wetland Seepage  

Groundwater discharge occurs through ET when the plant roots reach the water 

table and through seepage when the water table in the wetland or river is lower than the 

groundwater in aquifer bordering the wetland or river. The wetland stage is 

approximately 0.8 m below the local groundwater level, which means that generally 

seepage occurs from the surficial aquifer to the wetland and the result of the simulation 

recognized the flow-through the wetland process (Figure 21). Flow reversal may also 

occur when groundwater flow direction from the riparian area to the wetland shifts back 

to the riparian area during the active growing season mainly because of high ET rates 

from phreatophyte vegetation [Doss, 1993]. Usually this reversal occurs at a very small 

scale in the vicinity of the wetland and thus the model could not completely capture this 

hydraulic gradient between the water level in the riparian zone and the wetland.  

 
Figure 21. The wetland seepage rate into and from the aquifer (m3/day). 
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2.3.7.3. River Leakage 

Leakage into the Canadian River is shown in Figure 22 with rather decreasing 

pattern in winter time and fairly consistent leakage rate during the growing season. The 

Canadian River always acts as a sink for the groundwater and its water stage variability 

affects the leakage rate. 

 
Figure 22. Leakage rate into the Canadian River for the validation simulation (m3/day) 

2.3.7.4. ET 

Loss of water to the atmosphere is a key component in the water budget of the 

Norman Landfill. ET rates are highly variable seasonally, daily and spatially [Carter, 

1996]. ET losses from the landfill vary with plant types, density and status and also 

water table elevation. During the active growing season in May, ET rate starts increasing 

gradually (Figure 23) and in June and July, ET rates are at the highest levels. The ET 

gradually decreasing through October and in the winter, it is at its minimum rate. ET 

rates were plotted for four zones in the domain:  wetland, mound, riparian and the area 

between the right wetland banks to the Canadian River (Figure 24). ET in the mound 
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was found to have a different pattern in that it reached its peak rate about twenty days 

earlier than the other zones. Possible reasons for this phenomenon in the growing season 

could be shallow rooted vegetation on the landfill mound. In the riparian area the water 

table was shallow and water availability and soil moisture was not a limiting factor for 

the ET. Thus the controlling factors are status of the riparian plants and climatological 

condition. Analysis showed that the ET rate in the wetland calculated by the model was 

higher than the floating pan evaporation measurements (Figure 25). Apart from the 

uncertainty existing in the model and measurements, this comparison implied a high rate 

of phreatophyte transpiration in the wetland.  

 
Figure 23. Total ET from the domain for the validation simulation (m3/day) 
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   A   
 

B           
Figure 24. (A)ET rate for the wetland for the validation simulation which has negative correlation with the 
wetland stage. During winter time, the wetland stage is high and the ET rate is low and during the summer 
time, the wetland stage decreased while the ET rate increased .(B) ET rate by zones for the validation 
simulation (m3/day). Mound ET is in different phase with the wetland and riparian ET  
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Figure 25. Calculated wetland ET and pan evaporation measurement for the year 2005. The difference 
indicates the rate of transpiration in the wetland. 
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3. A MARKOV CHAIN MONTE CARLO METHOD FOR THE 

GROUNDWATER INVERSE PROBLEM 

A MCMC method for the groundwater inverse problem is presented in this 

section. The model was tested for a hypothetical 2-D saturated flow in a heterogeneous 

porous medium . 

3.1. Statement of the Problem 

The 2-D transient groundwater flow in a saturated heterogeneous porous 

medium, satisfying both the continuity equation and Darcy’s law  and subject to initial 

and boundary conditions was solved using MODFLOW-2000.  The partial-differential 

equation of groundwater flow used in MODFLOW-2000 is: 

   
t
hSW

z
hK

zx
hK

x szzxx 














 )()(                                                         (3.1)

 

 

Here Kxx and Kzz are values of saturated hydraulic conductivity along the x and z 

coordinate axes (L/T); h is the potentiometric head (L), W is a volumetric flux per unit 

volume representing sources and/or sinks of water (T-1), Ss is the specific storage of the 

porous media (L-1).  The anisotropy ratio for Kxx / Kzz was considered 10 and throughout 

the study, the unknown parameter Kxx was referred to as Ks. In this study, we treated 

Y(u)=ln [Ks(u)] as a random function with mean ⟨Y(u)⟩ and covariance function CY (u) in 

which u=(x,z) is the vector of the two Cartesian coordinates. We assumed that there were 

nY measurements of Y(u) and nh measurements of hydraulic head at one observation 

location (nh different times). Then the problem was to determine the Y(u) by combining 
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Bayesian updating of Y(u) given the natural log (K) measurements 

T
nuYuYY )}(),...,({ 10   and hydraulic head measurements T

nhhh },...{ 10  . 

3.2. Representation of the Parameters 

MODFLOW-2000 solves  Equation (3.1) using the finite-difference (FD) method 

in which the groundwater flow system is divided into a grid of cells and for each cell, 

there is a single node at which hydraulic head is calculated [Harbaugh et al., 2000]. The 

number of the parameters in Y(u) field was considered to be equal to the number of 

nodes (m) in the discretization of the groundwater flow system. In general the number of 

parameters being estimated is much larger than the number of measurements and the 

inverse problem may become ill-posed [Hadamard, 1902]. Therefore a compromise 

must be made by reducing the number of parameters to be estimated without losing the 

ability to reproduce spatial variability [Carrera et al., 2005]. 

3.3. Bayesian Inference 

3.3.1. Statistical Model and Likelihood Function 

The Metropolis algorithm [Metropolis et al., 1953] was implemented as a generic 

method of approximation to the posterior pdf corresponding to any combination of prior 

pdf and likelihood function. The likelihood function was defined using a forward model 

(G) , known model parameters (d) , unknown model parameters Y(u) and observed data 

(h0). In this study, the forward model was MODFLOW-2000 and the known model 

parameters (d) included all the required parameters of the forward model subject to the 
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appropriate boundary conditions, excluding Y(u). The measurement error ε was 

represented by the following model: 

   iii uYdGh  )](,[                                  i=1,…,n                                         (3.2) 

where εi was assumed to be an independent and identically distributed (i.i.d.)  

random variable from a normal distribution with a mean of zero and a  unconditional 

variance of σ2 =1.0. 

The model provided a complete specification of the joint probability density of 

the observed data,  h1,…hn , conditional upon the data and the model parameters [d , Y(u)] 

[Hoff, 2009]. In this manner, the combination of the forward modeling and measurement 

errors were assumed Gaussian which allowed the likelihood function to be characterized 

by the normal pdf [Hoff, 2009; Woodbury et al., 2000] where: 
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3.3.2.  Prior Information 

Bayesian statistical inference also required a prior pdf )(Y  for the parameters 

Y=(Y1,…,Ym)T  which represented our judgment about the Y(u) field. In practical data 

analysis situations,  it is hard to mathematically formulate our prior beliefs and thus 

)(Y  is often chosen in a somewhat ad hoc manner or for reasons of computational 
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convenience [Hoff, 2009]. Still,  specifying a prior pdf for the model parameters in a 

logical and consistent way is a fundamental problem [Woodbury et al., 2000].  

Geostatistics is generally considered to be a reasonable choice for the estimation 

of the appropriate prior pdfs for hydrogeological applications [Chen et al., 2001; Copty 

et al., 1995; Deutsch et al., 1998; Ezzedine et al., 1999; Journel, 1989]. The 2-point 

statistics-based simulation is a geostatistical means for generating multiple equiprobable 

realizations of the random variable which aims at reproducing a covariance or variogram 

model. A variogram model is a statistical relation between any two values Y(u) and 

Y(u+l) in space in which l denotes a lag vector representing separation between two 

spatial locations [Remy et al., 2008] . A variogram model indicates how the various 

constitutive random variables relate to each other and to the data (Y0(u)). The 2-point 

simulation generates L number of equally probable realizations using the sequential 

Markov Chain process.  

The Sequential Gaussian Simulation (SGSIM) algorithm [Journel, 1993]  was 

utilized in this study to get the prior pdf for the model parameters. In the SGSIM 

algorithm, the mean and variance of the Gaussian distribution was estimated by the 

kriging estimate and the kriging variance. The requirements for this algorithm were a 

prior decision of stationarity and a variogram model. The resulting L simulated 

realizations honored both the data and the variogram model [Remy et al., 2008]. In this 

paradigm, the prior belief for the Y(u) field was intended to statistically distributed as a 

multivariate normal distribution with a mean of point-wise arithmetic average of L 

simulated realizations ⟨Y(u)⟩  and an empirical covariance structure CY (u).   
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3.3.3. MCMC Simulations 

Given the prior information and the likelihood function, a large collection of Y(u) 

values, })(,...,)({ )()1( suYuY  was constructed to obtain the Monte Carlo approximation to 

the posterior distribution of  Y(u). 

As stated earlier, the Metropolis algorithm was implemented in this study. The 

basic intuition behind the Metropolis algorithm is that for any two different values Y(u)a 

and Y(u)b we have (Equation 3.4) 

)|)((
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})(collection in the s')({#
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0
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huYp
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a
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

                                    (3.4) 

Therefore adding a new value Y(u)* (proposed value) to the collection depends 

on the comparison of p(Y(u)*| h0) to p(Y(u)(s)| h0). The comparison can be made through 

computing the acceptance ratio (r) [Hoff, 2009] (Equation 3.5) : 
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If r >1, Y(u)* is accepted into the set since Y(u)* has a higher probability than  

Y(u) (s) ; and if r <1, the relative frequency of Y(u) values in the set equal to Y(u)* , 

compared to those equal to Y(u) (s)  should be r
huYp

huYp
s 

)|)((
)|)((

0
)(

0
*

 [Hoff, 2009]. The 

proposed variable Y(u)*  is sampled from a symmetric proposal distribution  J(Y(u)*|Y(u) 

(s)) =uniform(Y(u)(s)- δ, Y(u)(s) + δ) with high probability being near Y(u) (s). In summary, 

the procedure implemented in this study can be described as follows: 
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1. Parameters were initialized at some value (Y(u) (1)). Theoretically, vector Y(u) 

can be initialized by any number. In this study, we chose one of the realizations 

of the SGSIM and added noise to each component to make it perturbed.  

2. Y(u)*  ~ J(Y(u)| Y(u) (s)) was sampled by drawing a value Y(u)*  from the uniform 

distribution (Y(u)(s)- δ, Y(u)(s) + δ) where  δ is a pre-determined small number .   

3. The acceptance ratio (r) was computed. If r>1,  we accepted Y(u)*   into 

our set, i.e. Y(u) (s+1)= Y(u)* .  If r<1 then  we  set Y(u) (s+1) equal  to  

either Y(u)*  or Y(u) (s) , with probability r and (1-r) respectively. This 

was accomplished by sampling )1,0(~ uniformq  and setting Y(u) (s+1) = 

Y(u)*   if q< r and setting Y(u) (s+1)= Y(u) (s) otherwise [Hoff, 2009]. 

4. Steps  2 and 3 were repeated until the chain converges. 

The early iterations, the so called “burn-in” period in which the Markov Chain 

moved from its initial value to a region of high posterior probability, were discarded.  

3.4. Case Study 

The numerical application of the MCMC approach to the inverse problem of a 

hypothetical groundwater model is demonstrated in this section. The groundwater model 

was constructed using MODFLOW-2000 with the domain size of 220 m in the x-

direction and 14 m  in the z-direction which was discretized into 10 layers and 15 

columns (Figure 26) .  In addition to the 150 nodes in the FD grid, the time domain 

consists of 100 days of transient stress periods.  The same discretization was used for the 

SGSIM. The no-flow boundary conditions were prescribed at the left-hand side of the 

domain in addition to  the  bottom layer. Evapotranspiration  and recharge boundary 
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conditions [Harbaugh et al., 2000] were applied to the top layer and General Head 

Boundary (GHB) conditions [Harbaugh et al., 2000] were applied to  the right-hand 

boundary of the domain . 

      
 

Figure 26. MODFLOW-2000 model discretization into 10 layers and 15 columns. The green column on 
the right represents the General Head Boundary condition . 
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A    
 

B    
 

C    
Figure 27. (A) ET rate, (B) Recharge rate  and (C) General Head Boundary (GHB) condition. The 
Recharge and ET rate were obtained from the real measurements at the Norman Landfill site 
[http://www.mesonet.org].  



 

 
 

60

The measurements of the hydraulic conductivity were adopted from the study 

conducted by Scholl et al. [1998] at the Norman Landfill site.  According to Scholl et 

al.[1998], the hydraulic conductivity measurements were made using the slug test 

method along a 215 m flow path transect through a 11 m thick aquifer (Figure 6).   The 

SGSIM algorithm calls for input of only 2-point statistics (variogram) and hence it 

cannot deliver any image with existence of definite geologic patterns or structures. 

[Remy et al., 2008]. Due to this limitation, the clayey layers at the Norman Landfill site 

were excluded.  In addition, the high hydraulic conductivity layer at the base of the 

aquifer was discarded in order to simulate a heterogeneous spatial distribution of 

hydraulic conductivity within a homogeneous lithoface. The changes in the actual field 

were made to provide the stationary condition. 

 Figure 28 shows the variability of the data in the field and Figure 29 and Figure 

30 are the histogram and quantile-quantile plots to check for any significant deviations 

from normality.   

 



 

 
 

61

0 50 100 150 200
0

2

4

6

8

10

12

X (m)

Z 
(m

)

 

 

0

0.5

1

1.5

2

2.5

3

 
Figure 28. Profile map of the log hydraulic conductivity measurement  (m/day) distributed throughout the 
field. 
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Figure 29. Relative histogram of the measured Log hydraulic conductivity data (m/day) with a normal 
density superimposed . Data count number is 38 with the mean of 1.85 and variance of 0.55. 
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Figure 30. Normal quantile-quantile plot- shows that the log hydraulic conductivity does not deviate too 
severely from normality 

The semivariogram model used in the stochastic simulation consists of a nugget 

of 0.0 , a Gaussian component with a maximum range of 12.6 and a sill of 0.52 (Figure 

31) 
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Figure 31. The empirical semivariogram (red x) and the semivarigram model (black line) of the log 
hydraulic conductivity with azimuth= 90 and dip=0. 

At first, a random field using the specified variogram model was generated by 

means of the SGSIM and considered the “true” field (reference field, Figure 32). The 

reference field was estimated later using the proposed inverse procedure.  

    
Figure 32. Reference log (K) field.  (m/day) 
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Using the reference field, direct measurements of the hydraulic head at one 

location (middle column, top layer) were taken for the whole period of transient flow 

simulation (h0) (Figure 33).   
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Figure 33. Hypothetical hydraulic head measurements for 100 days of transient flow simulation. (location 
of observation: top layer, middle column) 

1000 realizations were generated using SGSIM and the ensemble statistics were 

taken as the prior mean and the prior covariance. Figure 34 shows a few samples from 

the 1000 realizations : 

 

 

 



 

 
 

65

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Six samples out of thousand realizations of the log hydraulic conductivity field.  (m/day) 

The prior mean and prior covariance structure are illustrated in Figure 35. 
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A    
 

B   
Figure 35. (A) Prior mean of log hydraulic conductivity (m/day)  and (B) Prior covariance structure. 



 

 
 

67

3.5. Results and Discussion 

Using the Metropolis algorithm, 1000 values of log (K) for each grid cell were 

generated  })(,...,)({ )1000()1( uYuY with the average acceptance ratio of 0.10 . The Monte 

Carlo approximation to the posterior density of the Y(u) for the first four grid cells of 

column one are illustrated in Figure 36. 
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Figure 36. Trace plots for the first four grid cells of the first column. 
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Figure 36. Continued. 
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Figure 36. Continued. 

The above trace plots indicate that the chain for each variable got stuck for long 

periods indicating a low acceptance ratio. Proposals were accepted for only 10% of the 

iterations, and so  )1()( suY were set equal to  )()( suY  90% of the time , resulting in a 

highly correlated Markov chain. In order to alleviate the burden of highly correlated 

Markov chain, only a fraction of the scans of the Markov chain were saved. This practice 

of throwing away part of iterations of a Markov chain is common and referred to as 

thinning [Hoff, 2009] .  

The effect of the Markov chain on the hydraulic head at the observation point is 

an implicit measure of estimation accuracy. Figure 37 illustrates the hydraulic head 

simulations in which only every 10th iteration of 1000 sequential samples was selected 
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(black asterisks are the “truth” hypothetical observation points). The color bar represents 

the order of thinned iterations from blue as the first iteration to red as the last one. Figure 

37 clearly shows that the hydraulic head simulations improved through the inversion 

method.  
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Figure 37. Hydraulic head simulations for 100 iterations and the “true” hypothetical observation points. 

Figure 38(a) shows the estimated log hydraulic conductivity field and Figure 38 

(b) shows the true versus estimated log hydraulic conductivity values with correlation 

coefficient of 0.67 and root mean squared error of 1.67 . It seems that the inverse model 
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performance was relatively good for the mid-values of Y(u) but not good at the extrema 

as shown in Figure 38(b). 
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Figure 38. (A) Estimated log hydraulic conductivity (m/day) (B) Estimated versus true log hydraulic 
conductivity values 
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The key source of uncertainty in this study is the simplifying assumptions that 

were made to conduct the MCMC scheme. These assumptions include normality of the 

log (K) field for calculating the prior covariance matrix using the empirical covariance 

function and also stationarity for obtaining the variogram model. 

Another source of uncertainty comes from the way the parameters were updated  

in the MCMC framework. In the proposed method, the components of the Y(u) were 

updated all together to expedite the generation of the Markov chain which is unlike the 

Metropolis rule to update the components of Y(u) one at a time.  
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4. CONCLUSIONS 

In the light of the results from the numerical simulation of the Norman Landfill 

site, the following conclusions can be derived. The analysis showed that the hydraulic 

conductivity and the specific yield play an important role in water table fluctuations 

through storage but the general trend of the water table is controlled by the recharge and 

ET rate at the Norman Landfill. Soil properties are dominant factors in controlling the 

amplitude of the rise in the water table due to rain events. The structure of soil properties 

presented here cannot be unique solutions for the model. By utilizing PEST, hundreds of 

scenarios of hydraulic conductivity, specific yield and recharge patterns were tested for 

the optimum calibration simulation and to represent the processes occurring in the field. 

The constraints imposed on the model parameters were based on field measurements and 

earlier studies at the site or other similar sites.  The hydrologic regime of the wetland is 

governed by its relationship to climate, soil and vegetation dynamics as well as its 

interconnection with the aquifer. The model was successfully used to understand the 

relative contributions of different hydrological processes in the wetland such as 

groundwater inflow, outflow and ET. 

During the transient calibration it was identified that in order to reproduce the 

observed groundwater levels, recharge multiplier would be divided into different zones 

with each individual zone having its own characteristics.. Results from the numerical 

model suggest the range of 23% to 84% as the recharge multiplier for the domain. The 

recharge values have distinct seasonal patterns especially for the mound area. Cozzarelli 

et al. [2000]observed that leachate contaminated groundwater discharges to the wetland 
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along the northeast bank and that wetland water recharges to the aquifer along the 

southwest bank [Cozzarelli et al., 2000]. Following this observation the model dealt with 

a flow-through wetland by considering the specific ratio of Kx/Kz. Model results indicate 

that the wetland is fed by the groundwater flow but it could not precisely quantify the 

outflow from the wetland. This could be a serious modeling challenge in the surface 

water- groundwater interaction but does not undermine the validation of the model.  

Comparisons of simulated and observed water levels are valuable for evaluating 

the limitations of the model. The discrepancies between the total inflow and out-flow 

from the water budget analysis were helpful to assess whether the model does or does 

not account for important processes. Uncertainties related to recharge and specific yield 

have to be included in order to assess if mass balance calculations resulted in erroneous 

quantification of groundwater inflow/outflow. Without uncertainty analysis it is difficult 

to draw a definite conclusion. 

In this part of the study we quantified the water balance components in the 

aquifer-wetland system at the Norman Landfill site. Important hydrological processes 

were quantified such as the inflow, outflow, recharge and ET rates also the rate and 

volume of groundwater entering the wetland. These are the necessary components to 

evaluate the surface water – groundwater interactions. Model results of the response of 

an aquifer-wetland system to climate, soil and vegetation were useful to understand the 

intensity and duration of groundwater recharge, differences in ET rates between the 

mound, riparian area and the wetland. 
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The results from the second study demonstrated that the MCMC method captured 

the structure of the reference field only for the mid-values of the hydraulic conductivities 

which implies that the inverse model has not reached a desired level of maturity. In this 

study we worked with a covariance matrix of high dimension. Calculating the prior 

covariance matrix becomes computationally prohibitive as the size of the matrix 

increases. In addition, increasing the size of the covariance matrix may decrease its 

precision. The MCMC scheme has been proved to be applicable to covariance matrix of 

high dimension [Smith et al., 2002].  Therefore we can conclude that the robustness of 

the inverse model depends on the precision of the covariance matrix.  

The hypothetical example is a special study to test the groundwater inverse 

modeling for the reason that the reference field is already defined. Since the reference 

field of the hydraulic conductivity is available, comparison between the estimation and 

the “truth” state can be made. However, in reality, the variability of hydraulic 

conductivity in the field can never be known with certainty and the performance of the 

inverse model would depend only on the matching between the simulated and measured 

dependent variables. Therefore, the model’s ability to improve the simulation of the 

dependent variable is considered as the measure of model accuracy. The simulation 

result in this study demonstrated that the transient head simulations favorably improved 

through the inverse model. 
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