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ABSTRACT 
 

N-Type Thermoelectric Performance of Functionalized Carbon Nanotube-Filled 

Polymer Composites. (May 2012) 

Dallas D. Freeman, B.S., Brigham Young University 

Chair of Advisory Committee: Dr. Choongho Yu 
 

Carbon nanotubes were dispersed and functionalized with polyethylene imine 

(PEI) before incorporation in a polyvinyl acetate matrix. The resulting samples exhibit 

air-stable N-type characteristics with electrical conductivities as great as 1600 S/m and 

thermopowers as high as 100 μV/K. Thermopowers and electrical conductivities 

correlate, in a reversal of the trend found in typical materials. This phenomenon is 

believed to be due to the increase in the number of tubes that are evenly coated in a 

better dispersed sample. Increasing the amount of PEI relative to the other constituents 

positively affects thermopower but not conductivity. Air exposure reduces both 

thermopower and conductivity, but a stable value is reached within seven days following 

film fabrication. The atmospheric effects on the electrical conductivity prove to be 

reversible. Oxygen is believed to be the primary contributor to the decay. 
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NOMENCLATURE 

 

CNT Carbon Nanotube 

PEI Polyethylene Imine 

SDBS Sodium Dodecylbenzene Sulphonate 

PVAC Polyvinyl Acetate 

S Thermopower (Seebeck Value) 

σ Electrical Conductivity 

wt. % Weight Percent 
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1. INTRODUCTION: THE NEED FOR THERMOELECTRIC POLYMERS 
 

 The search for energy sources to serve as alternatives to fossils fuels remains one 

of the most important engineering challenges facing humanity. This broad field includes 

research into the thermoelectric effect, whereby a voltage difference is produced along a 

heated material with a polarity running either from the hot side to the cold side for p-

type materials or vice versa for n-type materials.  

Functional thermoelectric devices can produce electricity anywhere there is a 

temperature gradient. Conversely, they can be employed as refrigeration devices if a 

voltage is supplied, creating refrigeration without pumps or fluids. This property, known 

as the Seebeck effect, was first discovered in 1823 by Thomas Seebeck.1 Over a century 

later in the 1950s, it was discovered that semiconductors are better than metals at 

producing higher voltages per degree of temperature gradient. All known 

semiconductors were evaluated as potential generators before it was determined that a 

combination of bismuth telluride and bismuth antimony alloys prove the most efficient.2 

These alloys have coefficients of performances of about 1/3 those of typical home 

refrigerators, limiting potential applications to those where longevity, space 

requirements and quiet operation are of greater importance than efficiency.3   

Starting in the 1990s, research into thermoelectric materials has continued and 

improvements have been made to the efficiency of the bismuth alloys through control of  

 
____________ 
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the material properties at the nano scale.2 Other materials are also being reevaluated 

using these new techniques. Potential applications include energy reclamation in existing 

generators, improvement of efficiency in solar cells, portable refrigeration units and 

active cooling of computer processing chips. 

 

 

 

Figure 1. Schematic of a thermoelectric generator with legs containing positive charge 
carriers (p-type) and negative charge carriers (n-type). 

 

 

A thermoelectric device consists of two semiconductor legs connected in series 

electrically and in parallel thermally (Figure 1). The n-type leg uses electrons as the 

primary charge carrier, while the p-type charge carrier is a theoretical construct 

describing an electron vacancy known as a hole, which has a charge equal and opposite 

P-type N-type

Heat
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to that of an electron.  While either n-type or p-type thermoelectric materials produce 

voltages in the presence of temperature gradients, a working thermoelectric device 

employs both n- and p-type components in order to maximize current flow.  

The thermoelectric figure of merit, used to describe the thermoelectric 

effectiveness of any material, is given by  

  

 
2SZ σ
κ

=   (1) 

where S is the thermopower, 𝜎 is the electrical conductivity and 𝑘 is thermal 

conductivity.4  Thermopower, also known as the Seebeck value, is a temperature-

dependent measure of how much voltage a thermoelectric material generates divided by 

the temperature difference needed to produce it.3 The Seebeck value is generally high in 

insulators and low in metals. Electrical and thermal conductivity are, conversely, low in 

insulators and high in metals. As can be seen from Equation 1, a good thermoelectric 

material will have a high electrical conductivity so that charge carriers, energized by the 

heat flowing into the hot side of the material, can have the mobility to move towards the 

cold side, creating the potential difference. The good thermoelectric material will also 

have a low thermal conductivity, so that the temperature gradient between both ends is 

maximized. Semiconductors are typically used because charge carriers move freely 

through the bulk material, resulting in a higher electrical conductivity than thermal 

insulators. However, the reduced amount of free charge carriers relative to metals leaves 

most of the thermal energy conducted not by electrons, as in metals, but by slower 
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moving atomic lattice vibrations, or phonons, which results in a lower thermal 

conductivity.5 

 Since their discovery in 1991, carbon nanotubes (CNTs) have been extensively 

studied as potential solutions in a wide range of applications due to their unique 

mechanical, electrical and geometric properties.6 Many of the tubes, which are 

composed of one or more rolled sheets of the carbon honeycomb structure known as 

graphene, are semi-conductive depending on the lattice vector by which they are rolled. 

Intrinsically n-type, semiconducting nanotubes are highly susceptible to oxygen doping 

and become p-type in atmosphere.7  

Several methods have been demonstrated for the production of air stable n-type 

nanotubes, including passivation of a protective film around the tubes to prevent oxygen 

doping, application of viologens for a direct redox reactions,  and the use of metal 

electrodes with low work functions.8-10  A simpler production method has also been 

demonstrated wherein the physical adsorption of branched polyethylene imine (PEI) 

onto carbon nanotubes results in a conversion of the tubes’ conducting properties from 

p-type back to n-type.11 Nanotubes functionalized with PEI have been been used to 

produce p-n junctions, photovoltaic cells, and field-effect transistors11-14 In our previous 

work, the thermopower of thin films composed of PEI-doped tubes was measured to be 

as high as 60 µV/K.15 Such films, composed almost purely of carbon nanotubes, are not 

prime candidates for thermoelectric generation because their thermal energy transport is 

too high, and because they are physically bound to a rigid, thermally insulating substrate. 
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A few years after their discovery, CNTs were first incorporated into a polymer 

matrix for the purpose of electrical doping.16 It was determined that the electrical 

conductivity of these composites are best described using percolation theory, wherein 

nanotubes form a network of conductive filler within the composite.17 The ability of 

energy carriers to move along this network is the limiting factor for the conductivity of 

the composite. Such composites have since been researched extensively for a variety of 

applications.16 Effort has been made to reduce the percolation threshold, or the required 

weight percent of CNTs required for a network to form.18 The goal is to reduce cost 

while maximizing mechanical and electrical properties of the final composites. 

CNT/Polymer composites have been evaluated for their thermoelectric 

properties.19  Although thermal and electrical conductivities are usually correlated, these 

composites exhibit electrical conductivities nearly as high as films composed exclusively 

of tubes, but still possess thermal conductivities closer to those their polymer matrices. 

This phenomenon results from the relative ease with which charge carriers travel across 

the nanotube network. The thermal carriers, or phonons, have relative difficulty with 

transport because they are scattered at the CNT surfaces and at the junctions between the 

tubes, limiting the speed at which they cross the bulk material.18 The result is a material 

with high electrical conductivity, low thermal conductivity, and a resulting high 

thermoelectric figure of merit. P-doped composites have been produced which exhibit 

electrical conductivities as high as 105 S\m .
19 While several studies have been conducted 

on carbon nanotube/polymer composites, none of them have investigated the 
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thermoelectric properties of such polymers when the nanotubes are converted into air-

stable n-type. 
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2. EXPERIMENTAL 
 
 

Single and double walled carbon nanotubes, made using combustion carbon 

vapor deposition by CheapTubes Inc., were used for the experiment. The mixture of 

single and double walled tubes was approximately 50/50 with tube diameters and lengths 

of 1-2 nm and 3-30 µm respectively. The manufacturer claimed 90% purity for the first 

batch of tubes, having eliminated almost all of the catalyst and amorphous carbon 

materials. The second batch was rated at 99% purity. 

For each experiment, 60 mg of Carbon Nanotubes (CNTs) were dispersed in 

between 5 to 15 ml of deionized water with a prescribed amount of the surfactant 

Sodium Dodecylbenzene Sulfonate (SDBS). Sonication was conducted in two modes.  

The first was to sonicate using the XL-2000 pen-type sonicator from Misonix for 15 

minutes and for additional 15 minutes on the FB 120 from Fisher. The other mode was 

to use the Branson 1510 bath type sonicator for 24 hours (Figure 2). 
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Figure 2. Bath type (left) and pen type (Right) sonicators used for dispersion. 

 

 

 Afterward, a determined amount of 5% water solution of PEI was added with a 

pipette into the dispersion. It has been demonstrated that PEI attaches to nanotubes by 

physisorption on the tube sidewall.20 To maximize the occurrence of physisorption and 

create an even coating of PEI on the nanotubes, the dispersions were stirred for 48 hours 

while being maintained at a temperature of 50-60 ° C. The prescribed amount of 

polyvinyl acetate, Vinnapas 401 (Wacker Polymers), which had been diluted in water for 

ease of measurement, was subsequently added into the dispersion. The nanotubes were 

dispersed by both pen-type sonicators for 30 minutes each and then cast using a 5 cm x 5 

cm x 2 cm plastic container as a substrate (Figure 3). Films 20-80 µm thick formed as 

the dispersion dried, in a process that usually took between 24 and 48 hours. Dried 
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samples were then thermally annealed in a vacuum oven at 60° C for 4 hrs. to any water 

which had permeated the film (Figure 4).  

 

 

 

Figure 3. Dried composite film in container. 

 
 
 
 

 
 

Figure 4.  Drying was completed in a vacuum oven. 
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Three series of samples were run.   In the first, the weight percent of SDBS was 

varied while the weight percentages of CNT and PEI were maintained at 20 and 10 wt. 

%, respectively.  The second series consisted of two parts, one of which varied PEI wt. 

% while maintaining SDBS and CNT both at 20 wt. % and the other which did the same 

except that SDBS was held at 40 wt. %. All weight percentages were determined by 

measuring the mass of the material on a scale before including it in the sample. The 

weight percent Vinnapas was varied in each series to make up whatever difference was 

left between the total of the other three weight percentages and 100 percent. A summary 

of the experiments is included in Table 1. 

It should be noted that a certain amount of variability was necessarily tolerated. 

For example, the oven treatments were sometimes as little as 3.5 hours, and the 

sonication times may have been reduced or lengthened by as much as 10% percent. 

More controlled experiments would probably result in less variability, but the nanotube 

production and the composite formation procedures themselves will need to advance 

significantly for consistency to reach commercially acceptable levels. 
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Table 1 Summary of preparation conditions for three series run. 

 

 

Series CNT SDBS PEI PVAC
1-1 20 20 10 50
1-2 20 40 10 30
1-3 20 60 10 10
1-4 20 60 10 10
1-5 20 40 10 30
1-6 20 20 10 50
1-7 20 60 10 10
1-8 20 60 10 10
2-1 20 20 40 20
2-2 20 20 20 40
2-3 20 20 10 50
2-4 20 20 5 55
2-5 20 20 40 20
2-6 20 20 50 10
2-7 20 20 50 10
2-8 20 20 50 10
2-9 20 20 10 50
2-10 20 20 20 40
2-11 20 20 30 30
2-12 20 20 40 20
2-13 20 20 50 10
3-1 20 20 10 90
3-2 20 20 20 40
3-3 20 20 30 50
3-4 20 20 10 20
3-5 20 20 20 10
3-6 20 20 30 10
3-7 20 20 40 10
3-8 20 20 40 50
3-9 20 20 10 40
3-10 20 20 40 30
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After fabrication, each sample was tested for conductivity and Seebeck value. To 

this end, a rectangular test sample of the dried and annealed film was removed from the 

plastic container. Conductive silver paste was applied to the sample strip to minimize 

electrical and thermal contact resistance and the relevant dimensions were measured 

using a micrometer (Figure 5).   

 

 

 

Figure 5.  Diagram of electrical testing strip with conductive silver paint applied. 

 

 

A four point probe resistance measurement was run, scanning 20 data points with 

ranges of plus or minus 4, 7 and 10 volts. Figure 6 show an example measurement where 

the resistance value is 80 Ω. After the resistance was measured, the sample conductivity 

was calculated from the resistance and dimension values with: 

 

 L
R w t

σ =
⋅ ⋅

 (2) 

L

W
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Where σ is the electrical conductivity, R is the average resistance from the three ranges, 

L is the distance between the edges of the conductive strips and w, and t are the width 

and thickness.  

 

 

 

Figure 6. Sample data series for resistance measurement. Three data sets where run for 
each measurement with voltages varying from plus or minus 4, 7, and 10 volts. 
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Figure 7. Test apparatus used to measure electrical conductivity and thermopower. 

 

 

 The Seebeck value was measured using a Keithley 2400 multimeter controlled 

by a data acquisition device from National Instruments.  On average, eight temperature 

differences were measured using thermocouples placed at either end of the sample. 

Voltage differences between the two thermocouples were then immediately measured.  

The thermopower was calculated as the slope of the linear regression line formed using 

the temperature differences as the dependent variable and the voltage differences as the 

independent variable. Figure 8 is an example of one measurement where the 

thermopower is equal to 60µV/K. It was here that the determination of main carrier type 

was made, as the negative thermopowers of n-type materials will result in a positive 

slope for this graph. This slope maintains its sign even if the probe polarities were 

reversed, as doing so would change the signs of both the voltage and the temperature 

gradient, cancelling any sign change.   

 

Thermocouples

TE Cells
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Figure 8. Typical data set used for calculation of thermopower. The positive slope 
indicates the sample is n-type.  

 

 

After the initial test, several samples were tested at different times to determine 

how the properties would change.  Additionally, select samples were cold fractured in 

liquid nitrogen. Scanning electron micrographs were taken of the cold fractured edges 

for the purpose of examining the relationship of the micro-scale structures and the 

electrical properties that were measured.  
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3. RESULTS AND DISCUSSION 
 

Dispersion remains a primary consideration in the production of CNT 

composites, whether structural or electrical.21 In this work, the surfactant SDBS was 

chosen to facilitate dispersion based on its superior performance and for its tendency to 

form smooth coating layers around the CNTs.22, 23 The principle challenge specific to 

this research resulted from the use of polyethylene imine.  PEI is the polymer dopant 

which donates electrons to the nanotubes, making them air-stable n-type 

semiconductors. The polymer contains one of the highest densities of amine groups of 

all polymers, (Figure 9) and it is these which donate their electrons to the carbon 

nanotubes.15 

 

 

 

Figure 9. Structure of branched PEI 
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The PEI used in this study had an average molecular weight of 1800, indicating 

that it was composed of molecules that were made of four units like the one shown in 

Figure 9. Although covalent bonding has been demonstrated for the case of F-

functionalized (fluorinated) CNTs, pristine CNTs like those used in this study will 

interact with PEI via physisorption.23 In this process, the PEI molecules wrap around the 

CNTs and form bonds other PEI molecules or with the opposite ends of the molecule. It 

has been shown with AFM imaging that this coating of PEI molecules causes the tube to 

double in diameter relative to uncoated tubes.24 In previous experiments where the tubes 

were soaked in PEI solutions, filtered rinsed and allowed to dry, the doped tubes were 

heavier than they were before being added to the solution. This finding is especially 

intriguing given the expected loss of tubes in the filtering and rinsing processes which 

have been observed in the lab to be about 25%. This increase in volume and mass 

indicates a need for more intense sonication than is required for pristine tubes.  

 Essential as it is to produce the desired n-type polymers, PEI also acts as a 

coagulant for CNTs in water which can counteract the effects of the surfactant.25 Even 

high quality dispersions in water were observed to form agglomerations of tubes if too 

much PEI was added. Acceptable mechanical properties were attained by Muñoz et al. 

with nano-sized spun fibers containing 75 wt. % nanotubes and 25 wt. % PEI.25 In my 

study, similarly low concentrations of PEI produced composites with good mechanical 

properties. However, as the concentration of PEI increased to 50 wt. %, the samples 

were qualitatively observed to have lost elastic modulus and ultimate strength. This 

effect is attributed to the difficulty PEI adds to the dispersion process, and to PEI's room 
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temperature liquid state. Experiments using a stronger matrix polymer, one capable of 

mitigating these undesirable mechanical effects, may prove useful. 

 

 

 

Figure 10. Change in properties as a function of surfactant weight percent.  Correlation 
is positive for thermopower magnitude and electrical conductivity. 
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Figure 11. SEM images of cold fractured surfaces for samples with 20 wt. % CNT and 
60, 40, and 20 wt. % SDBS (a, b, and c respectively.)  Fractures become increasing 
sharp and disorganized as less surfactant is included, eventually forming non 
homogenous structures as seen in (c). 

(a)

(b)

(c)



 20 

The first series revealed correlation between SDBS and both thermopower and 

electrical conductivity (Figure 10). This correlation is readily understandable in the case 

of conductivity.  As shown in the SEM images for three samples of different 

conductivities (Figure 11), the samples with higher SDBS weight percent exhibit 

smoother cleavages and fewer CNT pullouts. Both of these are characteristics of good 

dispersion, indicating that SDBS weight percent at a ratio of 3 to 1 with CNT is more 

effective at deconstructing the bundles than smaller ratios. As the amount of SDBS goes 

down, the CNTs agglomerate more, forming networks around internal voids like those 

shown in Figure 11 c. Being insulators, voids such as these will reduce overall electrical 

conductivity for the composite. Figure 10 also demonstrates a large difference between 

tubes rated as having 99% purity and those at 90%, probably due to the lower 

conductivity of amorphous carbon and the catalyst impurities.26 The heavy catalyst 

particles may also have a negative effect on dispersion, forcing tubes to which they are 

attached to fall into a precipitate. 

The correlation of thermopower and electrical conductivity warrants discussion. 

The opposite situation is found in most material systems where thermopower and 

conductivity have an inverse relationship, explained qualitatively by the fact that an 

increased amount of charge carriers will drive down the voltage potential being induced 

by the temperature gradient.2 Even p-doped carbon nanotube composites follow the 

inverse trend.27 The effects observed in this work can be explained in a number of ways.  

The first hypothesis involves the thickness and the aggregation of tube bundles.  

Studying Figure 11, one notices that, as SDBS increases, surface roughness increases 
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with it and, in the case of the third sample, there is also a formation of a heterogeneous 

microstructure of tubes running around voids which appear as the dark, smooth areas on 

the image.  This increase in composite heterogeneity can have negative effects on 

electrical conductivity and thermopower via at least two modes. The first is a reduction 

in electron pathways through the material. Fewer pathways mean that the composite as a 

whole will have less conductivity than a material where the tubes were more completely 

dispersed (Figure 12). This is the explanation offered for results involving a similar 

system where epoxy was the polymer matrix used.28 Conversely, a decrease in the 

number of nanotubes in each bundle results in an increase in the amount of tubes coming 

into physical contact with the PEI molecules, allowing for more effective doping as 

fewer of the tubes from the center of the bundles are allowed to remain P-type and 

reduce the magnitude of the composite Seebeck value. This is illustrated schematically 

in Figure 13, though it is important to note that the actual bundles contain dozens to 

hundreds of tubes, greatly limiting the effect of PEI on tubes in the interior of the 

bundles. 
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Figure 12. CNT bundles cross sections in composites with good dispersion (left) and 
bad dispersion (right). 

 

 

Figure 13. How poor dispersion limits the physical contact of PEI molecules (green) 
with carbon nanotubes when they form part of large bundles. 
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Figure 14. Effect of weight percent of PEI on properties for samples containing 20 wt. 
% SDBS (left) and 40 wt. % (right) 
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sonication (green diamonds) and pen type sonication (red squares and black circles). The 

lack of effect was somewhat surprising as unpublished findings in the lab with CNTs 

undergoing treatments different from the ones in this study have shown that the 

prolonged exposure to the lower power ultrasonic waves generated by the bath sonicator 

produce superior dispersions. This does not generally appear to be the case for the 

samples studied, with the notable exception of the 50 wt. % sample in series two, where 

the electrical conductivity is higher than those of surrounding samples. This single point 

is, of course, proof of nothing, but there is reason to believe that if such variables as the 

dispersion temperature, the amount of water used in fabrication and the relative levels of 

the water inside the container and the water in the bath were carefully controlled, bath 

sonication has the potential for superior dispersion without the inclusion of large 

amounts of SDBS. 

 It should be noted that the error bars for the two bath-sonicated samples in series 

two represent multiple samples, prepared using the same conditions at different times. 

This is also the case for the highest SDBS wt. % sample in series one.  For all other 

samples, the error bars are a result of measurement uncertainty, with the largest 

contributor being the difficulty in precisely measuring the thickness using calipers, given 

that the samples are often highly compressible. 

Aside from the uncertainty in the measurement, the trends clearly show a high 

level of variability. This could be owed to any number of things which were not 

controlled during the experiment. These include humidity and the temperature of the 

sample during drying, as well as such sonication conditions as probe position relative to 
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the container and whether or not the container was held in place or allowed to slide as its 

contents were exposed to vibration. As discussed earlier in this section, the presence of 

PEI increases the difficulty in producing useful composites and approximately 10 % of 

sample attempts failed to produce a testable film. In the future, greater effort should be 

made to control as many of these conditions as possible to reduce variability and observe 

trends. That aside, the data we currently have does provide access to several insights. 

 The two PEI series do not reveal a correlation between electrical conductivity 

and PEI weight percent at the levels studied. The first three levels of series two (0.1, 1, 

and 5 wt. % PEI) demonstrate a positive correlation between PEI weight percent and 

thermopower. The sample containing only 0.1 wt. % has a p-type thermopower 

comparable to control samples made without incorporating PEI. The 1 wt. % sample 

exhibits n-types properties of lower magnitude. Above 5 wt. %, the samples demonstrate 

only a slight correlation with thermopower and additional PEI weight percent, with 

thermopowers comparable and opposite to the tubes which were not doped.   M. Shim et 

al. estimated the doping fraction of PEI on CNT to be between 1-6 x 10-3. 11 The ratio of 

the weight percentages of PEI to those of CNT varies in this study from 5 x 10-3 to 0.5. 

Given the average atomic weight of the PEI used, (1800 AMU) and the average 

dimensions of the carbon nanotubes (see experimental section) it can be calculated that, 

for these experiments, the ratio of PEI’s n-doping amine groups to CNT’s carbon atoms 

ranges from 1 x 10-3 to 0.1. Therefore, the failure of the sample containing the lowest 

level of PEI to convert to n-type is not unexpected, as the amount used was at the lowest 

reported doping ratio. This is especially true when one considers that M. Shim measured 
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the amount of PEI molecules which had actually attached to the nanotubes, whereas, in 

this study, it can be assumed that dopant molecules were evenly dispersed throughout 

the composite, many of them not even coming into contact with CNT. The value for the 

thermopower of the 1 wt. % PEI sample supports this hypothesis that the PEI molecules 

are evenly dispersed.  Assuming an even dispersion of PEI throughout the composite, it 

can be estimated that in these samples, which all contain 20 wt. % CNTs, somewhere 

around 20% of the PEI molecules used would occupy positions in useful proximity to 

the CNTs. The second sample could be estimated to have a doping ratio of 5 x 10-3, a 

value within the ranges of the ratios measured by Shim et al.  

More analysis will be required to determine whether the PEI aggregates around 

the tubes or distributes itself evenly throughout the composite. A good starting point 

would be to maintain the CNT:PEI weight percent ratio seen in this second sample of 

1200 while varying the weight percent of CNTs. If the thermopower remained consistent 

for the various samples, this would provide evidence that PEI attaches to the CNTs 

preferentially over SDBS and PVAC molecules. If the thermopower decreased with 

increasing CNT concentration, there would be additional evidence supporting even 

distribution within the sample. 

  Saturation beyond 10 wt. % PEI is to be expected. At this point, there simply 

ceases to be room for any additional PEI to attach. However, series three does reveal a 

weak correlation between PEI weight percent and thermopower, and this phenomenon 

does bear an attempt at explanation. 
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Key to the hypothetical explanation for this behavior is the improved 

thermopower and the lack of effect on electrical conductivity which is observed for the 

third series. Such behavior has been observed to result from a phenomenon known as 

energy filtering.2 The following equation for thermopower will be useful to the 

explanation. 
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Here, e is the charge on the electron, T is the temperature, ν is the average electron 

velocity, τ is the relaxation time, 0f is Fermi-Dirac distribution, and D(E) is the density 

of states.11 In simplest terms, thermopower is the measure of the average carrier energy 

above the Fermi level ( )fE E− . Any increase to this average will increase the 

thermopower.  

Within the composite, nanotubes form junctions from one tube to the other. 

These junctions serve as potential barriers, blocking low energy carriers and raising the 

average energy of the carriers which make it across the bulk material (Figure 15).29  
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Figure 15. Effect of low energy barrier on average carrier energy 

 
 
 

The observed effects of the dispersion on thermopower can be understood along 

these lines. As the bundles become better dispersed, each carrier encounters more of 

these junctions, effectively increasing average carrier energy and therefore thermopower 

(Figure 16). This increase is greater than the loss in electrical conductivity due to the 

added resistance of the additional junctions. This provides one explanation for the results 

seen in the third series. 
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Figure 16. Effect of dispersion on the number of junctions within a conduction network 
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   Comparing the results of series two and three, the average conductivities for 

each were 380 S/m for series two and 660 S/m for series three. A similar improvement 

of the thermopower is achieved. (Compare A with B and C with D in Figure 14.) This is 

an observation of the same effect observed in the first series. Originally, it was thought 

that the insulating surfactant would adversely affect electrical conductivity by creating 

an insulating layer between adjacent tube bundles. However, far from being deleterious, 

the weight percent of surfactant had a much stronger positive effect on the composites’ 

thermoelectric properties than the amount of n-type dopant used because of its favorable 

effects on nanotube dispersion. This is an illustrative example of the difficulty involved 

with predicting the thermoelectric behavior of even seemingly simple composite 

materials systems. Moving forward it will be useful to see if this increase in performance 

is correlated with the ratio of the weight percentages of SDBS to CNT as assumed or if it 

is more strongly tied to the concentration of SDBS in the water solution 
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Figure 17. Change in properties as a function of time after vacuum annealing for select 
samples.  The point labeled “20/40/40/0” underwent an additional vacuum annealing on 
day 21, restoring its electrical conductivity to the original value. 

 
 
 

The effects of air on the samples over time are illustrated in Figure 17. The 

values of conductivity and the thermopower both decay somewhat in the presence of air, 

owing to the increased levels of oxygen doping on the material. The effects on electrical 

conductivity were also found to be completely reversible through an additional vacuum 

annealing process of four hours at 60 ° C (see 20/40/40/0 Annealed).  The simultaneous 

reduction in conductivity and thermopower can be understood in terms of a mixed 

carrier model, where a conductor uses both electrons and holes as charge carriers.  In this 

situation, the conductivity of the material is governed by  
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 h eσ σ σ= +  (4) 

Where eσ and hσ  are the conductivities due to electrons and holes, respectively.11 The 

model applies to the current research for a number of reasons. The first is that CNTs 

exhibit different electrical properties depending on their chirality, or the arrangement of 

the graphene hexagons relative to the tube axis. These electronic differences can make 

individual tubes more or less responsive to doping, in addition to making them metallic 

or semiconducting. In addition, because each nanotube bundle in the composite studied 

will theoretically be composed of n-type tubes on the outside where the PEI is attached 

while the tubes inside the bundle will maintain their initial oxygen-induced p-type state, 

the entire composite is a mixture of p- and n-type charge carriers. The sample as an 

aggregate exhibits n-type characteristics when eσ in equation 4 exceeds hσ . 

As the sample is left exposed to the atmosphere, more oxygen molecules will 

infiltrate the polymer and remove more electrons from the tubes (Figure 18). This 

reduces eσ  more than it increases in hσ  equation 4, and the overall conductivity is 

reduced.  It should be noted that in the case for pristine n-type nanotubes in vacuum, air 

exposure results in an increase of conductivity, as oxygen donates sufficient holes to 

overcome the loss in electrons.30 This suggests that PEI not only reverses oxygen’s p-

type doping, but provides CNTs with more electron carriers than they had originally.  

 A similar explanation can account for the simultaneous loss in thermopower 

magnitude. The relevant equation is  

 e e h hS SS σ σ
σ
+

=  (5) 
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Where eS is the thermopower due to electrons, (having a negative value,) and hS  is the 

value for holes.15 As can be seen, a reduction in conductivity due to electrons will 

decrease the overall thermopower.  Once again, changes in electrical conductivity track 

with changes in thermopower. The mixed carrier model is a likely explanation. 

 

 

 

 

Figure 18.  The effects of atmospheric doping on CNT bundles 
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 Additional samples were created besides those that fit into the three series 

discussed thus far. Most notably, a sample containing 40 wt. % CNTs, 40 wt. % SDBS, 

10 wt. % PEI and 10 wt. % PVAC was created twice, exhibiting electrical conductivity 

of 1600-3100 S/M and thermopower of approximately -40µV/K. The electrical 

conductivity is much higher than those of the samples containing only 20 wt. % CNT, 

which is probably due to the increase in electron paths available at higher 

concentrations. The thermopower is lower than is typical for the three series, this could 

possible indicate that at higher concentration of CNTs, the atypical correlation of 

thermopower and electrical conductivity no longer applies. Unfortunately, further 

research into films containing large weight percentages of CNTs is hampered by the 

need to maintain a ratio of one to one with CNT and SDBS.  

 Still, now that it is determined that a sample containing 5 wt. % of PEI performs 

as well as one containing much more, it may be advisable to run additional experiments 

using higher concentrations of CNTs with lower concentrations of PEI. In addition, now 

that the recipe used in samples 1-8 and 1-4 has been determined to produce the most 

favorable results, two more series should be run where the CNT weight percent is varied.  

In the first, the SDBS and PEI weight percentages should be maintained as they are in 1-

8 and 1-4, and in the second, the ratio of CNTs to these two constituents should be 

preserved. A comparison of the two may yield insight into the arrangement of the 

molecules within composite as well as aid future researchers in determining the most 

economical amount of CNTs to use, balancing energy efficiency with overall cost.  
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 During the course of this research, other tubes besides those produced by 

CheapTubes Inc. were tested. These included tubes from PS2, CCNI and Unidym. Billed 

as having higher quality, with fewer imperfections and having proven to produce 

composites with higher p-type electrical conductivities than those from CheapTubes, 

these tubes failed to undergo n-type conversion. Though an explanation as to why would 

be purely hypothetical, it may have to do with the observed tendency for CNTs with a 

higher concentration of imperfections in their sidewalls to be more reactive and 

responsive to functionalization. (Srivastava 1999) The idea here is that the carbon atoms 

at these sites at bonded with their neighbors in a way that is energetically unfavorable. 

This increases their tendency to bond with molecules capable of functionalizing them. 

While this may or may not be a valid explanation for the failure of the other brands of 

CNTs to undergo n-type conversion, the fact remains that while other CNTs have been 

shown in other labs to respond to PEI-doping, I can only claim success with 

CheapTubes. 
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4. CONCLUSION 

 
Air-stable n-type thermoelectric polymer composites were created using carbon 

nanotubes functionalized with PEI. Thermoelectric properties were measured. Weight 

percentages of SDBS correlated positively both with thermopower magnitude and 

electrical conductivity. This was hypothesized to be the result of an increased number of 

carrier paths in the case of conductivity. In the case of thermopower, the affect was 

likely due to an increased surface area available for doping interactions. It was 

determined that increasing the amount of weight percent of PEI will only correlate with 

thermopower if the amount of PEI is below 5 wt. % and above this only if the nanotubes 

are sufficiently dispersed within the matrix. This was hypothesized to be the result of 

energy filtering. The effects of oxygen doping over time were observed and determined 

to be in keeping with a mixed carrier model. 

In the future, studies could be conducted to determine the percolation threshold 

of the composites by reducing the concentration of CNT and maintaining the ratios 

between CNT, PEI and SDBS. Different, stronger matrix polymers could be used to 

combat the deleterious effects of PEI on composite mechanical properties. Eventually, a 

working combined p and n type cell should be fabricated and evaluated for the 

thermoelectric figure of merit. This work will pave the way for lightweight, non-toxic 

and flexible thermoelectric cells capable of harvesting thermal energy from the human 

body, solar cells and a host of other areas where it is currently going to waste. 
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APPENDIX 
 
 This section contains supplemental figures and images collected from the 

experiments and a more complete table listing experimental conditions and results. 

Photographs of representative samples from each series are also included for the purpose 

of demonstrating the variability in film quality between the recipes. 

Figures 19-21 were taken at the same time as Figure 11, which is a group of the 

images, one from each series, that were chosen as representative.  The increase in 

surface roughness with a reduction in SDBS weight percent can be seen in these images 

as well, and in addition, one can see the variation in each sample due to random fracture 

events as well as the inhomogeneity in the composite due to poor dispersion and settling 

that occurred during drying. 
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Figure 19. SEM images of sample composed of wt. percentages 20/60/10/10 for 
CNT/SDBS/PEI/PVAC.  Scale bars on the top indicate 5 µm and 10 µm is indicated on 
the bottom row   
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Figure 20. SEM images of sample composed of wt. percentages 20/40/10/30 for 
CNT/SDBS/PEI/PVAC.  Scale bars indicate 10 µm on the left and 5 µm on the right. 
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Figure 21. SEM images of sample composed of wt. percentages 20/20/10/50 for 
CNT/SDBS/PEI/PVAC Scale bars indicate 10 µm on the left and 5 µm on the right. 
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Figures 22-24 are photographs of the prepared films with the testing samples for each of 

the three series. Several of the samples, especially from the final two series, exhibit 

visible agglomerations which are believed to be composed largely of CNTs which were 

not well dispersed. These agglomerations tend to be associated with lower thermopowers 

and thermal conductivities. 

 

 

 

 

 
Figure 22. Photographs of typical samples from series one with SDBS weight 
percentages of 20 wt. % (left column) 40 wt. % (middle) and 60 wt. % (right). 



 45 

 
 
 

 

Figure 23. Photographs of typical samples from series two with PEI weight percentages 
of (left to right) 10, 20 30, 40 and 50 wt. %. 
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Figure 24. Photographs of typical samples from series three with PEI weight 
percentages of (left to right) 10, 20, 30 and 40 wt. %. 
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Table 2 is a summary of the preparation conditions and the results for the three series.  

The samples were not produced and tested in the order shown, as the different series 

were run several times with the different sonication and the two purities of CNTs. It 

should also be understood that in cases where a recipe can be part of two series, its 

information is copied in both places with a series specific name for ease of reference. 

The same test of the same prepared sample is meant, despite the fact that it appears in 

multiple locations, (see samples 1-1 and 2-3). In addition, please note that the negative 

thermopower values for all but sample 3-13 indicate successful n-type conversion. 

Lastly, for a few high performing samples, the experiment was repeated with the exact 

same preparation conditions. In these cases, the results are displayed in the graphs as 

error bars, whereas most of the bars are merely indicative of measurement error for the 

sample being studied. 
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Table 2 Summary of experimental procedures and results 

Trial CNT SDBS PEI PVAC Conductivity Seebeck Sonication  CNT Purity (%) 
1-1 20 20 10 50 5.3133004 -5.3133 PEN 90 
1-2 20 40 10 30 23 -24 PEN 90 
1-3 20 60 10 10 120.24 -38.98 PEN 90 
1-4 20 60 10 10 1479.09 -60.7 PEN 99 
1-5 20 40 10 30 853.76 -75.9 PEN 99 
1-6 20 20 10 50 427.39 -65.86 PEN 99 
1-7 20 60 10 10 959 -82.8 PEN 99 
1-8 20 60 10 10 1219.045 -71.75 PEN 99 
2-1 20 20 40 100 21 -59 PEN 90 
2-2 20 20 20 40 26 -41 PEN 90 
2-3 20 20 10 50 5.3133004 -5.3133 PEN 90 
2-4 20 20 5 55 9.426332 -36.88 PEN 90 
2-5 20 20 40 20 1585 -82.1 BATH 99 
2-6 20 20 50 10 954.18 -61.82 BATH 99 
2-7 20 20 50 10 4.82 -62.81 BATH 99 
2-8 20 20 50 10 756 -57.9 BATH 99 
2-9 20 20 10 50 427.39 -65.86 PEN 99 
2-10 20 20 20 40 388.67 -69.1 PEN 99 
2-11 20 20 30 30 313.49 -72.41 PEN 99 
2-12 20 20 40 20 415.13 -67.09 PEN 99 
2-13 20 20 50 10 358.28 -69.19 PEN 99 
3-1 20 40 10 90 23 -24 PEN 90 
3-2 20 40 20 40 15.86 -84 PEN 90 
3-3 20 40 30 50 2.05 -117 PEN 90 
3-4 20 40 10 20 853.76 -75.9 PEN 99 
3-5 20 40 20 10 582.6 -71.7 PEN 99 
3-6 20 40 30 10 897.379562 -106.6 PEN 99 
3-7 20 40 40 10 329.66 -100.73 PEN 99 
3-8 20 40 40 50 635.3 -82.45 PEN 99 
3-9 20 40 10 40 90.66 -63.14 BATH 99 
3-10 20 40 40 30 348.57 -89.45 BATH 99 
3-11 20 40 5 35 590.42 -97.68 BATH 99 
3-12 20 40 1 39 500.06 -56.91 BATH 99 
3-13 20 40 0.1 39.9 616.28 106.94 BATH 99 
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Finally, these last images are scanning electron micrographs of samples which 

possessed small differences in electrical properties. With the exception of Figure 25, 

they are less instructive on individually then they are on the aggregate.  Of principle 

interest with Figure 25 is the atypical amount of CNTs pulled out of the polymer matrix. 

This sample, which was believed to be composed of 20/20/40/20 CNT/SDBS/PEI/PVAC 

wt. %, possessed properties which were atypically good for composites containing only 

20 wt. % of CNTs.  The images call this composition into question, as does the fact the 

subsequent attempts at replicating the properties have all failed. 

 The other images (Figure 26Figure 29) are mostly instructive in terms of the 

variation in micro scale structure that can be observed between samples which have 

similar electrical properties in addition to the variation that can be seen for samples of 

the same compositions. 
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Figure 25. SEMs of sample once believed to be 20/20/40/20. 
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Figure 26. SEM of sample 2-6 
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Figure 27. SEM Images of sample 2-11 
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Figure 28. SEM images of Sample 3-5 
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Figure 29. SEM images of sample 3-6 
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