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ABSTRACT 

 

Early Life History and Resurgence of Snook (Family Centropomidae) in Texas. (May 

2012) 

Christopher Jacob Chapa, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Andre M. Landry, Jr.  

 

 The resurgence of Texas’ snook (Family Centropomidae) recreational fishery is 

coupled with an uncertainty as to what species occur in State waters, a limited 

understanding of life history, and habitat needs of its constituents.  This study described 

species composition and early life history aspects of juvenile (< 100 mm SL) 

centropomids taken in bag seine collections in estuarine and freshwater habitats along 

the upper, middle, and lower coast of Texas during 2006 to 2010.  Centropomus 

specimens (n = 548) captured from 41 locations across the Texas coast as well as 

congeners from Mexico (n = 24), Florida (n = 7), and Costa Rica (n = 3) were used in a 

genetics- and meristic-based determination of species composition, growth rates, range 

of hatching dates, geographic distribution, and habitat association.    

 Genetic analyses of the mitochondrial DNA 16s ribosomal RNA gene and the 

mitochondrial control region (D – loop) validated the presence of smallscale fat snook 

(C. parallelus Poey, 1860, n = 333), common snook (C. undecimalis Bloch 1792, n = 

212) and Mexican snook (C. poeyi Chavez, 1961, n = 3) in Texas, with the last of these 

validations representing the first known record of this species in Texas.  AMOVA of 16s 
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and D – loop sequences failed to detect genetic differentiation within Texas for C. 

parallelus and C. undecimalis.  However, AMOVA for 16s and D – loop C. undecimalis 

sequences did yield significant genetic differences between Texas and Mexico against 

those from Florida and Costa Rica. 

 Juvenile centropomids (< 100 mm SL) in Texas occupied backwater habitats 

with dissipated currents similar to those of Florida congeners (tidal sloughs, freshwater 

habitats, and structured shorelines).  Coastal ranges of these species differed with C. 

parallelus taken from the Rio Grande to West Galveston Bay, whereas C. undecimalis 

was captured from the Rio Grande northward near Palacios.  Three C. poeyi were 

captured at only two locations (Laguna Vista and Port Aransas).  Daily growth rates 

varied between species and capture years, with these ranging from 0.22 to 0.97 mm d
-1

.  

Analyses of hatch-date distribution suggest centropomids in Texas begin spawning in 

August and continue it through late September into mid-November.   
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CHAPTER I 

INTRODUCTION  

 

 Snook are a monogenetic group of fishes (genus Centropomus) comprising the 

Family Centropomidae (Nelson 2006).  Twelve constituent species occur in tropical and 

subtropical coastal waters of the American Atlantic and Pacific; none occur in both 

oceans (Rivas 1986, Aliaume et al. 1997, Tringali et al. 1999b, Orrell 2003).  

Centropomids are distributed in the American Atlantic from Florida (Atlantic and Gulf 

coasts), Greater and Lesser Antilles, southern coast of the Gulf of Mexico (GOM), 

continental Caribbean coast southward to Brazil (Shafland & Foote 1983, Rivas 1986, 

Howells et al. 1990, Pope et al. 2006).  Although Centropomus species have been 

reported from Cape Hatteras, North Carolina and Port Aransas, Texas, their distribution 

in northern latitudes is limited by thermal intolerance, with few fish occurring in water 

cooler than 7 to 12 °C (Cooley 1974, Shafland & Foote 1983, Matlock & Osburn 1987, 

Howells et al. 1990).  Nearly all descriptions of juvenile and adult centropomid life 

history demonstrate constituent species’ use of brackish and freshwater tidal sloughs as 

nurseries for feeding, protection, growth, and overwintering (Volpe 1951, Marshall 

1958, Martin & Shipp 1971, Fore & Schmidt 1973, McMichael et al. 1989, Blewett et al. 

2006).   

Largescale fat snook (Centropomus mexicanus Bocourt, 1886), smallscale fat 

____________ 

This thesis follows the style of Bulletin of Marine Science. 
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snook (C. parallelus Poey, 1860), and common snook (C. undecimalis Bloch, 1792) are 

the only known representatives of six centropomid species with an Atlantic distribution 

assumed to inhabit Texas coastal waters (Mark Fisher & Randy Blankenship, TPWD, 

pers. comm., Martin & King 1991).  Centropomus undecimalis exhibits the widest 

geographical range of all species in the genus and is the model for centropomid 

distribution (Figure 1.1).  Swordspine snook (C. enserferus Poey, 1860), tarpon snook 

(C.  pectinatus Poey, 1860), and Mexican snook (C. poeyi Chavez, 1961) exhibit a more 

restricted distribution and are not known from Texas, possibly as a result of their 

inability to tolerate variable environmental conditions (Rivas 1986, Tringali et al. 1999a, 

Tringali et al. 1999b).    

Centropomid populations supported a commercial fishery in Texas during the 

early 20
th
 century (Marshall 1958, Matlock & Osburn 1987, Alvarez-Lajonchère & 

Taylor 2003).  Annual commercial landings in Texas peaked at 104,451 kg in 1928 

followed by steady declines through 1961 (113 kg), after which no landings were 

reported (Matlock & Osburn 1987).  Texas Parks and Wildlife Department prohibited 

the commercial capture and sale of centropomids in 1987 and set bag and size 

restrictions that were subsequently modified in 1991 and 1996.  Current fisheries 

regulations in Texas for all Centropomus species include a one-fish bag limit per day 

and a slot limit of 61.0 to 71.1 cm (24 to 28 inches).  
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Centropomid Life History 

 Centropomus undecimalis and C. parallelus exhibit relatively similar life 

histories (Volpe 1951, Alvarez-Lajonchère et al. 2002a, Temple et al. 2004, da Silva 

Rocha et al. 2005, Tsuzuki et al. 2007a, Tsuzuki et al. 2007b), whereas comparable 

documentation for other centropomids is lacking.  These species are estuarine-

dependent, protandric hermaphrodites, maturing first as males within one year of age 

and later converting to females 2.5 – 3.5 years old (McMichael et al. 1989, Taylor et al. 

Figure 1.1. Distribution of the six recognized Centropomus species in the western 

Atlantic (Rivas 1986). 
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2000, Muller & Taylor 2006, Alvarez-Lajonchère & Tsuzuki 2008).  All female 

centropomids are considered sexually mature on the assumption they have developed 

directly from males that have previously participated in spawning events (Taylor et al. 

2000).  Females migrate to high salinity regions at the mouths of passes, canals, and 

ocean inlets just offshore during the spring and summer to spawn (Volpe 1951, Marshall 

1958, Tucker & Campbell 1988, Peters et al. 1998b, Taylor et al. 1998), with this 

activity influenced by water temperature, salinity, tidal current and moon phase (Table 

1.1, Taylor et al. 1998, Yanes-Roca et al. 2009).  The biogenic need to spawn near tidal 

passes was confirmed by (Ager et al. 1976) who reported that C. undecimalis requires 

saltwater for sperm activation, after which fertilized eggs depend on salinities of 28 ‰ 

or greater for buoyancy that ensures optimal developmental conditions (Chapman 1987, 

Peters et al. 1998a).  The necessity for higher salinities during spawning has also been 

confirmed for C. parallelus (Alvarez-Lajonchère et al. 2002b, Alves et al. 2006, 

Alvarez-Lajonchère & Tsuzuki 2008, Cerqueira & Tsuzuki 2009) and C. poeyi (Carvajal 

1975).   

 

Table 1.1.  Status of information on spawning dynamics of Atlantic Centropomus species. 

Species Spawning Season Location Citation 

Centropomus ensiferus NA NA - 
Centropomus mexicanus NA NA - 
Centropomus parallelus  June – August Veracruz (Chavez 1963) 
 Spring – Summer Brazil (Santos et al. 2009) 
Centropomus pectinatus NA NA - 
Centropomus poeyi July – August Veracruz & Campeche (Carvajal 1975) 

Centropomus undecimalis June – July SW Florida (Volpe 1951) 
 June – November SW Florida (Marshall 1958) 
 July – October SE Florida (Tucker & Campbell 1988) 
 April – December SW Florida (McMichael et al. 1989) 
 April – October SE & SW Florida (Taylor et al. 1998) 

NA, no information currently available  
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 Centropomid larvae occur mainly in open waters near spawning locations but are 

eventually transported by tidal flow and currents to nursery habitats (Peters et al. 1998a).  

Settlement-sized centropomids (6 to 7 mm SL) spend their first months of life utilizing 

freshwater and marine marshes, seagrasses, and mangrove prop-root habitats (Tolley et 

al. 1987, Aliaume et al. 1997, Alvarez-Lajonchère & Tsuzuki 2008), primarily feeding 

on crustaceans (Fore & Schmidt 1973, Gilmore et al. 1983, Muller & Taylor 2006).  

Spatial distribution of these new recruits depends on circulation patterns and habitat 

suitability of each estuary.  (Peters et al. 1998b) suggested that the low salinity 

requirement for newly settled C. undecimalis is misleading, by observing settlement 

sized (> 6 mm SL) C. undecimalis in polyhaline waters (18 to 30 ‰).  Like their larval 

counterparts, juvenile centropomids prefer low-energy habitats and sporadically occur 

under overhanging vegetation and within submerged structure of freshwater tributaries 

and estuaries (Peters et al. 1998a, Peters et al. 1998b, Stevens et al. 2007).  With growth, 

Centropomus species move from shallow riparian habitats to seagrass meadows, 

mangrove fringe, and deeper estuarine waters such as passes, nearshore reefs, jetties, and 

beachfronts (Muller & Taylor 2006).   

Study Justification 

 The Texas centropomid fishery vanished 50 years ago; however, reopening of the 

Rio Grande and recent occurrence of milder winters may have facilitated a resurgence of 

populations of one or more Centropomus species from Mexico into Texas waters where 

they occupy the northern limit of their range in the western GOM.  Increasing reports of 

centropomids taken by anglers, TPWD fisheries-independent and fisheries-dependent 
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surveys, and Texas A&M University at Galveston Field Ichthyology (MARB 312) 

classes confirm this reappearance.  Fisheries-independent surveys conducted by TPWD 

since 1975 have yielded only a small number of centropomids tentatively identified as 

three species that are at the northern limit of their range in the western GOM (C. 

undecimalis n = 532, C. mexicanus n = 111, and C. parallelus n = 48; Mark Fisher, 

TPWD, pers. comm.).  All published studies on the genus Centropomus in Texas refer 

only to C. undecimalis and are limited to ecologically-related articles that describe freeze 

related mortalities (Gunter 1941, 1951, Moore 1976, Holt & Holt 1983), sporadic 

occurrence (Springer & Pirson 1958, Moore 1975), and surveys of the LLM (Breuer 

1962), Baffin Bay (Breuer 1957), South Bay (Hook 1991), and the Rio Grande (Breuer 

1970, Edwards & Contreras-Balderas 1991).  These studies coupled with TPWD data 

provide little information on the species composition, recruitment patterns, or habitat 

requirements that sustain constituent species.  Lack of the aforementioned information 

and the need to manage an emerging fishery prompt the study described herein to 

identify species composition, extent of the spawning season, and age structure and 

growth characteristics.   

  



 7 

Research Objectives 

 Research described herein characterized early life history and ecology of the 

Family Centropomidae in Texas, with specific objectives to: 

 determine species composition in Texas waters;  

 identify early recruitment habitats into which initial settlement occurs;  

 determine age, growth and hatch-date distribution of juvenile centropomids 

recruiting to Texas waters. 
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CHAPTER II 

GENETIC ANALYSIS OF CENTROPOMUS SPECIES IN TEXAS COASTAL 

WATERS 

 

Introduction 

 Systematic reviews and revisions have classified Centropomus on the basis of 

morphology (Greenfield 1975, Rivas 1986, Orrell 2003); however, misidentification of 

species is common among researchers and field technicians unfamiliar with constituents 

of the Family Centropomidae.  Rivas’ (1986) thorough evaluation of centropomid 

classification examined multiple meristic and morphological characteristics 

differentiating these species.  Although complete, Rivas’ identification key lacks the 

ability to correctly identify centropomids < 100 mm SL due to unstable characteristics 

found within constituent life history stages.  Since many Centropomus species co-occur 

over the range of the genus it is necessary to correctly identify juveniles to ensure that 

systematically valid studies of early life history, recruitment, and growth are conducted 

(Tringali et al. 1999a).  Determination of molecular genetic data supporting 

morphological classification of centropomids provided by Rivas has been accomplished 

through allozyme electrophoresis and sequencing of the mitochondrial DNA 16s 

ribosomal RNA (rRNA) gene (Tringali et al. 1999a).   

 Currently, TPWD has identified C. mexicanus, C. parallelus, and C. undecimalis 

occurring in Texas bay systems through routine fisheries-dependent and fisheries-

independent sampling efforts.  The three Centropomus species occurring in Texas waters 
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look similar and are difficult to distinguish from one another.  Confirmation of two 

Centropomus species’ presence in Texas coastal waters has been verified through 

genetics (C. parallelus; Martin & King 1991) and historical data (C. undecimalis; Moore 

1975, Holt & Holt 1983, Matlock & Osburn 1987, Pope et al. 2006).  However, the 

occurrence of C. mexicanus in Texas waters is questionable, as no taxonomic 

investigation has been conducted to confirm such a presence.  Additionally, mere 

mention of C. mexicanus in the scientific literature is restricted to Rivas’ (1986) 

centropomid identification key, a report of this species’ feeding habits in Brazil by 

(Sazima 2002) and genetic investigations conducted by (Tringali et al. 1999a) & 

(Seyoum et al. 2005).  Based on mtDNA data, (Tringali et al. 1999a) identified C. 

mexicanus and C. parallelus as sister species, differing by only 1% divergence.  

Morphological analysis conducted by (Rivas 1986) separates these two species through 

overlapping scale counts (Table 2.1).  Possible reasons for limited information on C. 

mexicanus could stem from the smaller sizes attained by this species (maximum 43 cm, 

common to 18 cm TL; Rivas 1986), cryptic behavior and associated capture difficulty 

within its habitat or misidentification as another species.  

 Centropomus parallelus is a commercially valuable species in Central and South 

America due to characteristics (robustness, resistance to disease, tolerance to high 

stocking densities, and euryhalinity) that foster culture success (Ribeiro & Tsuzuki 

2010).  Despite this commercial importance, limited genetic investigations involving C. 

parallelus have been conducted (Martin & King 1991, Tringali et al. 1999a, Prodocimo 

et al. 2008).  Conversely, the recreationally popular C. undecimalis has been extensively 
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studied, with numerous genetic assessments characterizing restrictive gene flow 

(Donaldson & Wilson 1999, Tringali & Leber 1999, Seyoum et al. 2005), divergence 

rate (Donaldson et al. 1993), and genetic markers (Wilson et al. 1997); however, all of 

these were limited to Florida’s centropomid fishery.    

 

 

Table 2.1. Morphological comparison between Centropomus mexicanus and Centropomus parallelus 

derived from Rivas (1986). 

Quantitative Characters Centropomus mexicanus Centropomus parallelus 

Ray count   
First dorsal VIII VIII 

Second dorsal I + 10 I + 10 
Anal fin III + 6 III + 6 

Pectoral fin 15 15 

Scale count    
Lateral line 68 – 79 79 – 92 

Second dorsal fin to lateral line 10 – 16 10 – 16 
Anal fin to lateral line 12 – 16 13 – 18 

Scales around caudal peduncle 24 – 28 26 – 31 

Gill raker count   
Lower limb 11 – 12 11 – 12 

 

 

 Although TPWD has developed and implemented a sound sampling program to 

assess the health of Texas’ marine fisheries, considerable portions of the state’s estuary 

systems go uninvestigated due to sampling difficulties in constituent habitats.  

Ecologically important groups such as the Family Centropomidae whose various life 

history stages use habitats not sampled by TPWD are poorly known from both a 

taxonomic and natural history perspective.  Such a lack of information is problematic for 

strategic management of Texas’ centropomid stocks and the fisheries that may harvest 

these stocks.  Additionally, implementation of a regional management plan for spotted 
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seatrout (Cynoscion nebulosus Cuvier, 1830) in the LLM (lowering bag and possession 

limits from ten to five) may redirect recreational fishing pressure toward the developing 

centropomid fishery in Texas.  The possibility of misidentification of unknown 

Centropomus species occurring in Texas justifies the necessity for genetic analyses of 

constituent species.  A common perception is that two or more Centropomus species are 

utilizing Texas estuaries.  Effective, long-term management of Texas’ centropomid 

populations will depend upon an understanding of the species’ constituency and their 

genetic structure.  This chapter assesses species composition of centropomids in Texas, 

with specific attention to: 

 species identity of juvenile centropomids found in Texas waters;  

 genetic diversity of each species;  

 morphological characteristics that aid in field identification of centropomids. 

Materials and Methods 

Study Areas 

Juvenile centropomids were collected at spatially restricted wetland sloughs, boat 

ramps, and other tidal- and freshwater- influenced habitats from Carancahua Bay 

(Palacios, Texas) to the Rio Grande (US – Mexico border).  Selection of each collection 

site was based on historical data generated by TPWD and TAMUG as well as published 

(Breuer 1962, 1970, Pezold & Edwards 1983, Contreras-Balderas et al. 2002, Pope et al. 

2006) and anecdotal reports of larval and juvenile centropomid occurrence.  Collection 

sites were classified according to regions along the upper (Galveston to Matagorda Bay), 

middle (San Antonio Bay to Corpus Christi), and lower Texas coast (Port Mansfield to 
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Boca Chica) that are divided into two major climatological zones (temperate and 

subtropical).  The only temperate climate collection site was located in the upper coast 

region, within the upper reaches of Carancahua Bay south of Palacios. The remaining 

study areas were located within the Aransas and LLM estuaries that exhibited 

subtropical climates.  The Aransas estuary housed the middle coast collection sites that 

included Goose Island State Park (Rockport), Redfish Bay (at two locations along SH 

361, Stedman Island), and a drainage ditch located in the city of Aransas Pass on SH 35.  

Lower coast collections were conducted from the southernmost portion of the LLM and 

included the Arroyo Colorado (and surrounding drainages), Laguna Vista, San Martin 

boat ramp and channel, Mexiquita Flats, Padre Island Coast Guard Station (northwest of 

the Brazos Santiago Pass) and Boca Chica (Rio Grande and surrounding sloughs).  

Sampling Protocol 

 Bag seine tows were conducted biweekly at the aforementioned study sites from 

April to November 2006, September 2007 to January 2008, and September 2009 to 

January 2010 to increase sample size for genetic and age-growth analysis.  Standardized 

and randomized tows of a 9.1 m long by 1.2 m deep bag seine with 0.6 cm bar mesh 

wings and a 0.3 cm bar mesh 1.2 x 1.2 x 1.2 m bag were used to sample juvenile 

centropomids.  Three (15.2 m long x 6.0 m wide) standardized tows were conducted at 

each collection site to generate CPUE data on spatial and temporal occurrence.  This 

sampling protocol was complemented by randomized bag seine sampling that took two 

forms: 1) a minimum of 30 minutes of non-standardized effort with the aforementioned 

bag seine at each collection site to characterize centropomid occurrence in any habitat 



 13 

type not sampled during standardized sampling and to capture additional centropomids 

for age growth analysis; and 2) non-standardized effort conducted at sites and habitats 

other than those described previously in response to additional information on possible 

centropomid settlement grounds that was received during the study.  Fin clippings from 

centropomids from Jacksonville, Florida; Barra del Colorado, Costa Rica; Campeche, 

Campeche, Mexico; and Frontera, Tabasco, Mexico were used as sources of additional 

DNA material for genetic analysis.  Additional samples were obtained through hook and 

line sampling from LLM guides and local anglers.  Subsequently, in January 2010, cold- 

killed centropomids from the upper Texas coast also were obtained for genetic analysis.  

Meristic Analysis  

 All centropomids captured were kept on ice for transport to the laboratory where 

they were processed immediately or frozen for subsequent analysis.  Species 

identification to the lowest possible taxon relied on keys by (Greenfield 1975), (Rivas 

1986), (McEachran & Fechhelm 1998), and (Orrell 2003).  Each specimen was 

enumerated SL and TL were measured to the nearest millimeter, and with meristic 

counts recorded as follows: Spines and soft rays in the first and second dorsal and anal 

fins were counted.  Scale counts followed Rivas’ (1986) protocol wherein lateral line, 

second dorsal to lateral line, and anal fin to lateral line scale counts were recorded.  

These morphological characteristics were examined for potential differences to aid in 

identification of centropomid species found in Texas.  
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DNA Isolation 

 Genetic identification of centropomids to the species level was performed in 

collaboration with TPWD’s Perry R. Bass Marine Fisheries Research Center in Palacios 

following the protocols of (Tringali et al. 1999a) and (Anderson & Karel 2009).  A 

single eyeball was removed from each centropomid to isolate DNA using Qiagen 

DNeasy Blood and Tissue Kit (Qiagen Inc., Valencia, California, USA) and 

PUREGENE DNA Isolation Kit (Gentra Systems Inc., Minneapolis, Minnesota, USA), 

following the manufacturers’ protocols, with final rehydration values between 75 and 

100 µL.  Determination of quantity and purity of DNA was analyzed through 

spectrophotometry using a NanoDrop 1000 (NanoDrop Tech., Wilmington, Delaware, 

USA).  Isolated DNA samples were stored at -20 °C.   

PCR Reactions  

 PCR primers specific to the 16s rRNA (16s) region were designed using 

sequence data from previously published studies to investigate genetic identification in 

centropomids.  The mitochondrial DNA control region (D – loop) was also 

characterized; data from the D – loop sequences, because of the substantially higher 

levels of variation, and thus resolution, compared to 16s data, were used to test a 

subsample of centropomids to identify any cryptic speciation and finer phylogeographic 

partitioning.  Sequencing of 16s and D – loop was conducted according to protocols 

developed by(Tringali et al. 1999a) and  (Anderson & Karel 2009).  Amplifications of 

template DNA were conducted via PCR under a modified touchdown protocol by using 

Ready-To-Go PCR beads (GE Healthcare, Piscataway, New Jersey, USA) on a Techne 
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Genius thermocycler (Techne Inc., Princeton, New Jersey, USA).  Reactions consisted 

of 1 L of template DNA (50 ng/L), one Ready-To-Go bead, and 24 L of forward and 

reverse primer cocktail (0.4 M standard concentration of each primer), for a total of 25 

L.  The touchdown PCR protocol utilized for all reactions consisted of the following: 

an initial single denaturation period of 2 minutes at 95 C, 10 cycles of initial 

amplification (95 C for 30 seconds; 55 C for 30 seconds, lowering 1 C each cycle; 

and 72 C for 1 minute), 20 cycles of primary product amplification (95 C for 30 

seconds; 55 C for 30 seconds; and 72 C for 1 minute, adding 3 seconds of extension 

per cycle), and a final extension period of 7 minutes at 72 C.  The primer sequences 

used for 16s PCR were: 16Sar (5’-CGCCTCTTTATCAAAAAC-3’) and 16Sbr (5’- 

CCGGTCTGAACTCAGATCACG-3’) (Palumbi 1994, Tringali et al. 1999a).  The 

primer sequences used for D – loop PCR were: L15990 snk (5’-

TACCGTCAACTCCCAAAGCTA-3’) and CRSNOOK4H (5’-

CTGCCCTCTGGAAATAATGCTRGGC-3’).   

PCR products were purified using ExoSAP-IT (USB, Cleveland, Ohio, USA) to free 

DNA of excess primers and nucleotides.  Following the manufacturer’s 

recommendations, 5 L of PCR product were mixed with 2 L of enzyme and placed on 

a thermocycler for 15 minutes at 37 C, followed by an inactivation step for 30 minutes 

at 80 C. 
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Sequencing Reactions 

 Sequencing reactions were carried out according to (Anderson & Karel 2009) 

using 10 L volumes by means of Genomelab Quick Start Master Mix DTCS (Beckman 

Coulter Inc., Fullerton, California, USA).  Primers for sequencing were the same as 

those used in PCR.  Cycle sequencing parameters consisted of 30 cycles of denaturing at 

96 C for 20 seconds, annealing at 50 C for 20 seconds, and extension at 60 C for 4 

minutes.  Sequencing reactions were precipitated by adding 1/20 volume of a cocktail 

containing 2 L sodium acetate (3M), 2 L EDTA (100mM) and 1 L glycogen, 

followed by 2 volumes of 95% ethanol, and centrifuged at 3,700 rpm for 30 minutes to 

form pellets.  Resulting pellets were then rinsed twice with a 70% ethanol, dried, and 

rehydrated by using a formamide sample loading solution (Beckman Coulter, Fullerton, 

California, USA).  Finally, sequences were separated and analyzed on a Beckman 

CEQ8000 capillary sequencer (Beckman Coulter, Fullerton, California, USA) using 

default sequencing module parameters.  Examination of raw sequences for base-calling 

errors was trimmed manually.  Forward and reverse traces for each sequence were 

aligned using Sequencher version 4.2 (Gene Codes Corp., Ann Arbor, Michigan, USA), 

and haplotypes were characterized only for those sequences that contained overlapping 

forward and reverse reads.   

Genetic Analysis 

 Positive identification of centropomid species was confirmed via BLAST 

searches through GenBank (GenBank accession numbers: U85008, U85012, U85014, 

U85016, U85017, U85018; Tringali & Leber 1999) coupled with gene trees 
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reconstructed in MEGA 5.0 (Tamura et al. 2011).  Gene tree structure was determined 

via NJ based on Tamura-Nei distances, as well as Maximum Likelihood (ML) distances 

among haplotypes.  Statistical support for branching patterns was tested by bootstrap 

consensus.  DnaSP v5.10 (Librado & Rozas 2009) was used to obtain genetic diversity 

estimates, including haplotype diversity (h), nucleotide diversity (), number of pairwise 

nucleotide differences (k), number of haplotypes (m), and segregating sites (S) for all 

centropomid species identified.  Parsimony-based haplotype networks were constructed 

from the data using MEGA 5.0 (Tamura et al. 2011).  Nested Clade Analysis was 

performed using the TCS program and statistical parsimony (v1.13; Clement et al. 2000)  

and to subsequent phylogeographic inference.  The degree of genetic variation among 

samples of each centropomid species identified was measured with analysis of molecular 

variance (AMOVA) using Arlequin 3.5.1.2 (Excoffier & Lischer 2010).  Estimates of 

gene flow and genetic differentiation among sampling areas were based on Wright’s FST 

using Arlequin.   

Results  

Identification of Centropomids 

 Overall, 580 centropomid specimens were examined for genetic analyses and 

meristic comparisons. Distribution of samples collected for genetic analysis is listed in 

Tables 2.2, 2.3 and Figure 2.1.  Centropomids identified included Centropomus 

parallelus, C. poeyi, and C. undecimalis.  Meristic comparisons were not useful in 

distinguishing among juveniles (< 100 mm SL) due to lateral line scale counts that were 

difficult to determine due to incomplete and/or missing scales.  However, anal fin to 
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lateral line and second dorsal to lateral line counts were relatively easy to perform but 

did not accurately separate species due to overlapping values.  Physical characteristics 

described by (Greenfield 1975), pelvic fins reaching past the anus in C. parallelus and 

not reaching past the anus in C. poeyi and C. undecimalis, was useful.   

Nucleotide sequences of 16s ranged from 621 bp for C. parallelus, 609 bp for C. 

poeyi, and 628 bp for C. undecimalis; sequences were aligned and trimmed to 475, 535, 

and 483 bp, respectively.  Sequence submissions to GenBank (using BLAST) revealed 

matches with three species: C. parallelus, C. poeyi, and C. undecimalis. Consensus 

sequences for each species identified (C. parallelus n = 337, C. poeyi n = 4, and C. 

undecimalis n = 239) were generated and aligned against the six recognized Atlantic 

centropomid representatives from GenBank (Figure 2.2; Tringali et al. 1999a) to assure 

positive genetic identification.   

 

Table 2.2. Catch distribution of Texas centropomids. 

Site # County Location 
Latitude 

N 

Longitude 

W 

C. parallelus 

(n) 

C. poeyi 

(n) 

C. undecimalis 

(n) 

1 Galveston Hitchcock Diversionary Canal 29 20.134 95 01.417 1 - - 

4 Brazoria Bastrop Bayou 29 05.598 95 16.940 4 - - 

7 Brazoria Oyster Creek 29 00.059 95 18.070 1 - - 

8 Brazoria Intracoastal waterway 28 57.850 95 17.533 1 - - 

9 Brazoria Brazos River 28 52.803 95 22.780 1 - - 

13 Jackson Carancahua Bay 28 44.252 96 24.121 10 - 1 

14 Matagorda Matagorda Bay 28 43.593 95 47.124 2 - - 

21 Nueces Redfish Bay 27 53.637 97 07.676 10 - - 

22 Nueces Redfish Bay at Stedman  Island 27 53.341 97 07.063 9 - 3 

23 Nueces Aransas Pass 27 53.566 97 09.188 37 1 8 

28 Willacy Port Mansfield 26 33.822 97 16.590 2 - - 

30 Cameron Arroyo Colorado 26 20.998 97 23.483 94 - 25 

32 Cameron Laguna Vista 26 05.705 97 17.024 88 2 79 

33 Cameron Lower Laguna Madre 26 04.461 97 12.878 3 - - 

34 Cameron Lower Laguna Madre 26 04.356 97 09.994 5 - - 

35 Cameron Mexiquita Flats 26 04.044 97 11.659 3 - 1 

36 Cameron South Bay 26 01.529 97 10.272 20 - 22 

38 Cameron Lake San Martin 26 00.125 97 17.913 17 - 12 

40 Cameron Rio Grande (6 km from mouth) 25 57.613 97 11.116 28 - - 

41 Cameron Rio Grande (mouth) 25 57.556 97 08.810 3 - 55 
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Table 2.3. Locations of Centropomus species captured outside of Texas. 

Locality Collector Capture date 
Latitude 

N 

Longitude 

W 

C. parallelus 

(n) 

C. poeyi 

(n) 

C. undecimalis 

(n) 

Barra del Colorado, Costa Rica      
A. Landry January 2006 10 46.170 83 35.566 - - 3 

Jacksonville, Florida      
M. Hanke October 2008 30 28.801 81 28.841 - - 7 

Frontera, Tabasco, Mexico      
C. Chapa January 2010 18 31.773 92 39.224 4 - 7 

San Pedro, Tabasco, Mexico      
C. Chapa January 2010 18 30.646 92 39.034 - 1 - 

Campeche, Campeche, Mexico      
C. Chapa January 2010 19 50.506 90 32.039 - - 12 

 

 

 

Figure 2.1.  Map of the Texas Gulf coast, illustrating study site locations (numbered) within major 

bay systems.  Refer to Table 2.3 to identify numbered sites. 
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Figure 2.2.  NJ tree, using the Maximum Composite Likelihood method, identifying Texas captured 

Centropomus parallelus, Centropomus poeyi, and Centropomus undecimalis 16s mtDNA consensus 

sequences with 16s mtDNA sequences from (Tringali et al. 1999a). Bootstrap values above 50% are 

shown. 
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Patterns of Variation in the mtDNA 16s Gene 

 The 475 bp region of the 16s gene for 337 assayed C. parallelus identified six 

variable positions, seven haplotypes, and six polymorphic sites; of which two were 

parsimoniously informative that corresponded to six transitions and zero transversions.  

Base frequencies of the 16s region for C. parallelus were 28.6% for A, 24.8% for C, 

21.7% for G, and 24.8% for T.  One haplotype (par – 1) was widely distributed 

throughout Texas and Mexico and represented 97% of all samples taken (Table 2.4, 

Figure 2.3).  The remaining six haplotypes (par – 2 through par – 7) were restricted to 

Texas’ LLM, with low overall haplotype diversity (h = 0.053) and nucleotide diversity 

( = 0.000) differing by less than one substitution event.  The absence of genetic 

differentiation among all localities of C. parallelus 16s is result of a dominant haplotype 

found throughout, thus a regional AMOVA was not executed.   

 

Table 2.4.  Haplotype relative frequency, distribution, and polymorphic sites contained within the 

475bp segment of the 16s gene among Centropomus parallelus collected from Texas and Mexico.  

Identical bases (.) are shown.   

Haplotype 

Texas 
Mexico Total 

Polymorphic Sites 

Upper Middle Lower  1 1 2 3 4 

n = 18 n = 52 n = 263 n = 4 n = 337 
3 4 9 6 8 2 
8 1 2 7 8 4 

par – 1 1.000 1.000 0.966 1 0.973 A G G G C T 

par – 2 0 0 0.004 0 0.003 . . . A . . 

par – 3 0 0 0.004 0 0.009 . . . . T . 

par – 4 0 0 0.004 0 0.003 . . . . . C 

par – 5 0 0 0.008 0 0.003 G . . . . . 

par – 6 0 0 0.004 0 0.006 . A . . . . 

par - 7 0 0 0.011 0 0.003 . . A . . . 
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Figure 2.3.  TCS network of the seven Centropomus parallelus 16s mtDNA haplotype sequences. 
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 The 535 bp region of 16s sequenced from four C. poeyi specimens revealed 

three haplotypes and two variable sites corresponding to two transitions.  Base 

frequencies for the four C. poeyi were: A = 28.5%, C = 26.9%, G = 22.1%, and T = 

22.4%.  Haplotype diversity was high (h = 0.833); distribution and frequency of C. poeyi 

haplotypes are shown in Table 2.5.  Low nucleotide diversity for C. poeyi ( = 0.001) 

was similar to that for all centropomids sampled, possibly due to the reduced number of 

substitution events.  AMOVA was not conducted on C. poeyi 16s data due to small 

sample size (n = 4). 

Of the three species identified using 16s sequences, the 483 bp region of C. 

undecimalis was the most variable.  A total of 12 variable sites, corresponding to 12 

transitions and one transversion, generated 15 haplotypes (Table 2.6).  The base 

frequencies were 29.7% for A, 26.1% for C, 20.4% for G, and 23.8% for T.  Two 

haplotypes were most common (und – 1 and und – 2), each with frequencies greater than 

0.05% that accounted for 90.3% of all C. undecimalis sampled.  The remaining 13 

haplotypes occurred at a frequency lower than 1%.  Basic haplotype diversity estimates 

for each species and region sampled are provided in Table 2.7. 
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Table 2.5.  Haplotype relative frequency, distribution, and polymorphic sites contained within the 

535bp segment of the 16s gene among Centropomus poeyi collected from Texas and Mexico.  

Identical bases (.) are shown. 

Haplotype 

Texas 

Mexico Total 

Polymorphic Sites 

Middle Lower 5 5 
4 5 

n = 1  n = 2 n = 1 n = 4 1 7 

poe – 1 0 0.500 0 0.250 A G 

poe – 2 1.000 0 0 0.250 G A 

poe – 3 0 0.500 1.000 0.500 . A 

 

 



 

 

2
5 

 

Table 2.6.  Haplotype relative frequency, distribution, and polymorphic sites contained within the 483bp segment of the 16s gene among 

Centropomus undecimalis collected from Texas, Florida, Costa Rica, and Mexico.  Identical bases (.) are shown. 

Haplotype 

Texas Florida 

 

 

n=7 

Costa 

Rica 

 

n = 3 

Mexico 

 

 

n = 19 

Total 

 

 

n=239 

Polymorphic sites 

Upper 

 

n=1 

Middle 

 

n=17 

Lower 

 

n=192 

 1 1 1 2 2 2 2 2 3 3 3 

4 3 8 9 0 0 2 3 9 3 4 4 

0 6 4 6 2 7 6 5 9 3 3 9 

und – 1  0 0.235 0.344 0.857 1.000 0.316 0.356 T G A G T A T C C G A G 

und – 2 1.000 0.706 0.557 0.143 0 0.526 0.548 . . . . . . . . . . . A 

und – 3  0 0 0.026 0 0 0 0.021 . . G . . . . . . . . A 

und – 4  0 0 0.005 0 0 0 0.004 . . . . . . . . . . . C 

und – 5  0 0 0.005 0 0 0 0.004 . . . . . . . T . . . . 

und – 6  0 0 0.021 0 0 0.105 0.025 . . . . . . . . . . G . 

und – 7  0 0 0.005 0 0 0.053 0.008 . A . . . . . . . . . A 

und – 8  0 0 0.005 0 0 0 0.004 . . . A . . . . . . . . 

und – 9  0 0 0.005 0 0 0 0.004 . . . . . G . . . . . A 

und – 10  0 0 0.005 0 0 0 0.004 C . . . . . . . . . . . 

und – 11 0 0 0.005 0 0 0 0.004 . . . . . . . . T . . A 

und – 12  0 0 0.005 0 0 0 0.004 . . . . . . C . . . . . 

und – 13 0 0 0.005 0 0 0 0.004 . . . . C . . . . . . . 

und – 14 0 0 0.005 0 0 0 0.004 . . . . . G . . . . . . 

und – 15 0 0.059 0 0 0 0 0.004 . . . . . . . . . A . A 
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Table 2.7.  Summary of haplotype diversity statistics of 16s for all Centropomus species including 

sample size (n), segregating sites (S), number of haplotypes (m), haplotype diversity (h), nucleotide 

diversity (π) and pairwise nucleotide differences (k). 

Species n S m h π k 

Centropomus parallelus 337 6 7 0.053 0.000 0.053 

Texas – upper 20 0 1 0 0 0 

Texas – middle 50 0 1 0 0 0 

Texas – lower 263 6 7 0.067 0.000 0.068 

Mexico 4 0 1 0 0 0 

Centropomus poeyi 4 2 3 0.833 0.002 0.002 

Texas – middle 1 0 1 0 0 0 

Texas – lower 2 1 2 1.000 0.002 1.000 

Mexico 1 0 1 0 0 0 

Centropomus undecimalis 239 12 15 0.574 0.001 0.668 

Texas – upper 10 2 3 0.600 0.001 0.002 

Texas – middle 8 1 2 0.250 0.000 0.250 

Texas – lower 192 11 14 0.573 0.001 0.671 

Mexico 19 3 4 0.643 0.002 0.795 

Florida 7 1 2 0.286 0.000 0.286 

Costa Rica 3 0 1 0 0 0 

 

 

 AMOVA results for Texas C. undecimalis yielded no significant genetic 

differentiation for 16s between regions of capture (Table 2.8), most likely due to the 

shared haplotypes across regions.  Virtually all variation (100%) is within the population 

(p = 0.36).  An expanded AMOVA investigation across Gulf (Texas versus Costa Rica, 

Mexico, and Florida individually) identified differences between Florida/Costa Rica and 

Texas samples.  The comparison of C. undecimalis from Texas and Florida yielded a 

significant (p = 0.01) proportion of variation between populations at 22.02%.  Similarly, 

AMOVA revealed additional differences between Mexico and Florida populations (p = 

0.04, Variation = 21.91%).  A haplotype network tree displaying the distribution of C. 

undecimalis haplotypes sampled in this study is found in Figure 2.4. 
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Table 2.8.  Summary of AMOVA results of Centropomus undecimalis 16s mtDNA. 

Species Source of variation d.f. Percentage of variation (p) 

Centropomus undecimalis 

Texas (upper vs. middle vs. lower) 

Between populations 2 -0.43 (0.36) 

Within populations 207 100.43 

Texas vs. Mexico 

Between populations 1 -1.29 (0.57) 

Within populations 227 101.29 

Texas vs. Florida 

Between populations 1 22.02 (0.01) 

Within populations 215 77.89 

Mexico vs. Florida 

Between populations 1 21.91 (0.04) 

Within populations 14 78.09 

Texas vs. Costa Rica 

Between populations 1 29.89 (0.04) 

Within populations 211 70.11 

Costa Rica vs. Mexico 

Between populations 1 27.73 (0.09) 

Within populations 20 72.27 

  Bold items indicate significant difference 
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Figure 2.4.  TCS network of the 15 Centropomus undecimalis 16s mtDNA haplotype sequences.   

 

 

D – loop 

 The length of the mitochondrial control region (D – loop) for both C. parallelus 

and C. undecimalis resulted in 500+ bp sequences with multiple (ten plus) tandem 

repeats for each species (Table 2.9) thus, sequences were aligned and edited manually, 

resulting in 181 bp and 152 bp sequences for C. parallelus and C. undecimalis, 

respectively.   
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Table 2.9.  Repeated sequences found in mitochondrial control region (D – loop) for Centropomus 

parallelus (41 bases) and C. undecimalis (39 bases) 

Species Repeated Sequence  

C. parallelus  TACATAAAGTGTATGCCCCTGACATACTATAATGGTGGTAA 

C. undecimalis  GGTGATTATACATAGAATGTATAATTTATCATCATATAT 

 

 

Variation in the 181 bp segment of the mitochondrial control region (D – loop) 

was analyzed for 82 C. parallelus. Forty-eight polymorphic sites were found, with six 

transversions and 46 transitions.  Haplotype diversity was high, as expected due to rapid 

evolution and divergence of the D – loop sequence (Table 2.10).  A total of 47 

haplotypes was observed, with the most common haplotype (Dpar – 1) accounting for 

25.6% of the sample (Table 2.11).  Specimens representing Dpar – 1 all came from the 

LLM and Aransas Pass collection sites. AMOVA results of C. parallelus D – loop 

sequences identified no significant differences among regions at any level (Table 2.13).  

The results of these AMOVAS (upper coast versus middle, upper versus lower, and 

middle versus lower) suggest a lack of regional genetic differentiation (Figure 2.5).    

A segment 152 bp long of the D - loop was characterized for seventy-four C. 

undecimalis.  The segment contained 27 polymorphic sites corresponding to four 

transversions and 28 transitions.  Similar to the D-loop of C. parallelus, the D – loop of 

C. undecimalis is characterized by relatively low nucleotide diversity values within 

samples, indicating that haplotypes are closely related concurrent with high values of 

haplotype diversity (Table 2.10).  There were 24 haplotypes with two haplotypes, Dund 

– 4 and Dund – 5, accounting for 38.2 and 14.9% of the sample, respectively (Table 

2.12).  The two most common C. undecimalis haplotypes (Dund - 1 and Dund - 2) 
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consisted of samples largely from LLM and Aransas Pass collection sites.  Frequencies 

of all other haplotypes for both species were less than 10%.  Many C. undecimalis 

haplotypes were not detected in the GOM; for instance, Dune – (1,2,6,8, and 20) was 

restricted to Florida and Costa Rica, and these were highly divergent from the majority 

of haplotypes present in Texas and Mexico.  The NJ tree developed for C. undecimalis D 

– loop haplotypes indicated divergence between Texas samples and those from Costa 

Rica and Florida (Figure 2.6).  AMOVA for C. undecimalis revealed similar results for 

intrastate comparisons of D – loop analysis, with no significant variation (p = 0.06) 

between middle and lower coast populations, suggesting a lack of genetic population 

structure within Texas (Table 2.13).  Comparisons between Texas C. undecimalis and 

Florida conspecifics illustrated significant difference among populations (p = 0.00), with 

20.5% of the genetic variation among Texas and Florida.   Lastly, a comparison of Texas 

C. undecimalis to Costa Rica conspecifics yielded similar significant difference results 

among groups (p = 0.00). 

 

 

Table 2.10.  Summary of D - loop haplotype diversity statistics for 156 Centropomus specimens 

including sample size (n), segregating sites (S), number of haplotypes (m), haplotype diversity (h), 

nucleotide diversity (), and pairwise nucleotide differences (k). 

Species n S m h π k 

Centropomus parallelus    Texas 82 48 47 0.929 0.023 4.154 

Texas – upper 2 6 2 1.000 0.034 6.000 

Texas – middle 8 13 6 0.928 0.025 4.392 

Texas – lower 72 47 44 0.928 0.023 4.095 

 

Centropomus undecimalis  Texas 74 27 24 0.820 0.027 3.787 

Texas – middle 6 7 5 0.766 0.021 2.933 

Texas – lower 58 19 17 0.755 0.012 1.593 

Florida 7 13 4 0.714 0.028 3.905 

Costa Rica 3 3 2 0.667 0.014 3.905 
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Table 2.11.  Haplotype distribution and frequency of Centropomus parallelus D - loop sequences. 

Haplotype 

Texas 
Total 

Upper Middle Lower 

n = 2 n = 8 n = 72 n = 82 

Dpar – 1 0 0.250 0.264 0.256 

Dpar – 2 0 0 0.014 0.012 

Dpar – 3 0 0 0.014 0.012 

Dpar – 4 0 0 0.014 0.012 

Dpar – 5 0 0 0.014 0.012 

Dpar – 6 0 0.125 0.014 0.024 

Dpar – 7 0 0.250 0.042 0.061 

Dpar – 8 0 0 0.014 0.012 

Dpar – 9 0 0 0.014 0.012 

Dpar – 10 0 0 0.014 0.012 

Dpar – 11 0 0 0.014 0.012 

Dpar – 12 0 0 0.014 0.012 

Dpar – 13 0 0.125 0.014 0.024 

Dpar – 14 0 0 0.014 0.012 

Dpar – 15 0 0 0.014 0.012 

Dpar – 16 0 0 0.014 0.012 

Dpar – 17 0 0 0.028 0.024 

Dpar – 18 0.50 0 0 0.012 

Dpar – 19 0 0 0.014 0.012 

Dpar – 20 0 0.125 0.028 0.037 

Dpar – 21 0 0 0.028 0.024 

Dpar – 22 0 0 0.014 0.012 

Dpar – 23 0 0 0.028 0.024 

Dpar – 24 0 0 0.014 0.012 

Dpar – 25 0 0 0.014 0.012 

Dpar – 26 0 0 0.014 0.012 

Dpar – 27 0 0 0.014 0.012 

Dpar – 28 0 0 0.014 0.012 

Dpar – 29 0 0 0.014 0.012 

Dpar – 30 0 0 0.014 0.012 

Dpar – 31 0 0 0.056 0.049 

Dpar – 32 0 0 0.028 0.024 

Dpar – 33 0 0 0.014 0.012 

Dpar – 34 0 0 0.014 0.012 

Dpar – 35 0 0 0.014 0.012 

Dpar – 36 0 0 0.014 0.012 

Dpar – 37 0 0 0.014 0.012 

Dpar – 38 0 0.125 0 0.012 

Dpar – 39 0 0 0.014 0.012 

Dpar – 40 0 0 0.014 0.012 

Dpar – 41 0 0 0.014 0.012 

Dpar – 42 0 0 0.014 0.012 

Dpar – 43 0 0 0.014 0.012 

Dpar – 44 0 0 0.014 0.012 

Dpar – 45 0 0 0.014 0.012 

Dpar – 46 0.50 0 0 0.012 

Dpar – 47 0 0 0.014 0.012 
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Figure 2.5.  Unrooted NJ tree based on 47 Centropomus parallelus D - loop haplotypes from Texas 

using the Maximum Composite Likelihood method.  Bootstrap values above 50% are shown by the 

nodes. 
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Table 2.12.  Haplotype distribution and frequency of Centropomus undecimalis  D - loop sequences. 

Haplotype 

Texas 
Florida Costa Rica Total 

Middle Lower 

n = 6 n = 58 n = 7 n = 3 n = 74 

Dund – 1  0 0 0.571 0.667 0.081 

Dund – 2 0 0 0.143 0 0.014 

Dund – 3  0.167 0.034 0 0 0.041 

Dund – 4  0.333 0.466 0 0 0.392 

Dund – 5  0.167 0.172 0 0 0.149 

Dund – 6  0 0 0 0.333 0.014 

Dund – 7  0 0.017 0 0 0.014 

Dund – 8  0 0 0.143 0 0.014 

Dund – 9  0 0.017 0 0 0.014 

Dund – 10  0.167 0 0 0 0.014 

Dund – 11 0 0.069 0 0 0.054 

Dund – 12  0 0.034 0 0 0.027 

Dund – 13 0 0.017 0 0 0.014 

Dund – 14 0 0.034 0 0 0.027 

Dund – 15 0 0.017 0 0 0.014 

Dund – 16  0 0.017 0 0 0.014 

Dund – 17 0 0.017 0 0 0.014 

Dund – 18 0 0.017 0 0 0.014 

Dund – 19 0 0.017 0 0 0.014 

Dund – 20  0 0 0.143 0 0.014 

Dund – 21 0 0.017 0 0 0.014 

Dund – 22  0 0.017 0 0 0.014 

Dund – 23 0 0.017 0 0 0.014 

Dund – 24 0.167 0 0 0 0.014 
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Figure 2.6.  Twenty-four Centropomus undecimalis D – loop haplotypes displayed on an unrooted NJ 

tree using the Maximum Composite Likelihood method. Bootstrap values above 50% are shown by 

the nodes. 
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Table 2.13. Summary of AMOVA results of Centropomus species D – loop sequences.   

Species Source of variation d.f. Percentage of variation (p) 

Centropomus parallelus 

Texas (upper vs. middle vs. lower) 

Between populations 2 0.83 (0.35) 

Within populations 79 99.17 

Centropomus undecimalis 

Texas (middle vs. lower) 

Between populations 1 11.19 (0.06) 

Within populations 62 88.81 

Texas vs. Florida 

Between populations 1 79.26 (0.00) 

Within populations 1 20.74 

Texas vs. Costa Rica 

Between populations 1 84.43 (0.00) 

Within populations 1 15.57 
  Bold items indicate significant difference 

 

 

 

Morphological Identification 

 Using results of the aforementioned genetic identification, a subset of 20 

randomly selected individuals from C. parallelus and C. undecimalis and all three C. 

poeyi (< 100 mm SL) was examined to produce identification aids.  Meristic analysis 

yielded morphological differences between all three species as described by (Greenfield 

1975), where pelvic fins (P2) in C. parallelus reach past the anus but fail to reach the 

anus in C. undecimalis and C. poeyi (Figures 2.7)  Separation of C. undecimalis and C. 

poeyi can be differentiated by Rivas’ (1986) use of first dorsal spine (D1) counts, 

wherein C. undecimalis = 8 and C. poeyi = 7 (Figure 2.8).   
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Figure 2.7.  Ventral view of Centropomus species showing relationship of pelvic fin termination (P2) 

to anal opening. 

 

 

 

Figure 2.8.  Images of dorsal fin spine counts for Centropomus poeyi and Centropomus undecimalis 

illustrating differences between species. 
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Discussion 

Genetic analysis of the mtDNA16s gene from centropomids collected during this 

study yielded three species in Texas: C. parallelus, C. poeyi, and C. undecimalis.  The 

presence of C. mexicanus could not be confirmed with mitochondrial data.  The 

existence of C. parallelus in Texas waters was previously documented (Martin & King 

1991).  The occurrence of C. undecimalis in Texas is a presumption largely based on 

historical documentation and the common misconception that all centropomids in the 

state were C. undecimalis (Gunter 1941, 1951).  The capture of only three C. poeyi in 

Texas 500 km from their closest established range (Carvajal 1975, Chavez 1981, 

Alvarez-Lajonchère & Tsuzuki 2008) provides little indication of a resident population 

in Texas.  However, otolith microstructure analyses (Chapter 4) for two C. poeyi 

captured in Laguna Vista, Texas indicate that these specimens were spawned 80 to 90 

days prior to their capture.  Possible reasons for this species’ presence in Texas include: 

1) successful transport of larvae from resident spawning grounds in Mexico via long-

shore currents, and 2) populations of C. poeyi have migrated further north along the 

Mexican coast and have colonized Texas waters.   

Warmer winters may have facilitated a northern advancement of other 

centropomids into Texas waters may have also facilitated C. poeyi’s migration beyond 

their normal range into northern localities with suitable habitats.  However, the only 

information about the possibility of C. poeyi conducting large-scale migrations is based 

on a small scale tagging study in the Papaloapan River system south of Veracruz, 

Veracruz, Mexico.  (Chavez 1981) identified migrations of C. poeyi between the 
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Papaloapan and Grijalva River systems, where one specimen traveled 333 km south to 

the Grijalva River.  The remaining C. poeyi that were recaptured in Chavez’s study were 

found within the confines of the Papaloapan estuary, only migrating out of the river to 

the GOM during their reproductive season to spawn.  The single C. poeyi found in the 

Grijalva River suggests that C. poeyi and possibly all centropomids are not limited to a 

single estuary and freely move from one estuary to another.  Additionally, the migration 

patterns of Florida’s Atlantic C. undecimalis are known to migrate up to 350 km along 

the Atlantic coast (Tringali & Bert 1996).  Migration patterns identified by Chavez 

(1981) and Tringali & Bert (1996) indicate that settlement into new estuaries is possible 

if new habitats are adequate for establishment.   

The low genetic diversity and shared haplotypes found within Texas’ C. 

parallelus 16s suggest a lack of genetic population structure; most likely all Texas C. 

parallelus are from an expanding population originating from Mexico.  Haplotype par – 

1 accounted for 328 of the 337 (97.3%) C. parallelus examined in this study, and could 

be considered as the genetic hub from which all different C. parallelus haplotypes 

develop.  Specimens from this haplotype ranged from the northernmost collection site of 

any centropomid captured in this study (Freeport, Texas) to the most southern collection 

site (Frontera, Tabasco, Mexico).  The remaining haplotypes (par – 2 through par – 7) 

were represented by few individuals (less than two in most cases) and were only found 

in the LLM.  

AMOVA results for 16s C. undecimalis specimens within Texas and Mexico 

region yielded no significant genetic variation; however, variation was found within 
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Texas and Florida/Costa Rica comparisons. These results suggest that centropomids 

from Texas are reproductively isolated from those in Florida and Costa Rica.  The 

separation between populations utilizing of 16s mtDNA haplotypes is notable, since 

(Tringali & Bert 1996) found differences between Atlantic and Gulf populations of C. 

undecimalis in Florida utilizing the entire mtDNA nucleotide sequence.  AMOVA for 

the 16s C. poeyi samples were not conducted due to small sample size (n = 4); however 

it is important to note that the single sample from Frontera, Tabasco, Mexico shared a 

haplotype with a specimen from Laguna Vista, Texas.  The shared haplotype suggests a 

potential connection between Mexico and Texas populations. Size and age of C. 

parallelus and C. undecimalis (Chapter 4) captured in this study provide evidence that 

recruits found in Texas stem from a resident spawning population rather than from long-

range dispersal that is strongly dependent on favorable long-shore currents.   

D –loop sequences were perceived as a diagnostic tool to identify any potential 

hybridization or cryptic speciation within C. parallelus and the potential probability of 

the occurrence of C. mexicanus.  However, the D – loop sequence analysis of C. 

parallelus stocks present in Texas revealed no genetic differentiation, suggesting that C. 

parallelus populations could be treated as a single genetic stock.  Centropomus 

undecimalis exemplified the same lack of genetic differences among Texas populations; 

however, analysis of D – loop data revealed differences between the samples of  Texas 

and Mexico against those from Florida and Costa Rica.   

The absence of genetic population structure between both C. parallelus and C. 

undecimalis within Texas can be explained by the reproductive patterns of these species.  
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Spawning strategies documented for centropomids (spawning at the mouths of passes) 

allow for dispersion of these species, thus facilitating gene flow; however, a noticeable 

decrease in genetic differentiation is expected for new or invading populations.   

Conclusion 

 This study successfully confirmed the identification of early juveniles of three 

centropomid species (C. parallelus, C. poeyi, and C. undecimalis) in Texas waters.  The 

lack of population structure resolvable by 16s data most likely reflects the highly 

conserved nature of this mitochondrial gene.  D – loop AMOVA of C. undecimalis 

indicated significant differences between Texas and Florida/Costa Rica populations, a 

finding supported by the separation shown on the NJ tree (Figure 2.6) and nucleotide 

diversity for each clade (Texas dominant clade  = 0.012 and Florida/Costa Rica clade  

= 0.008).  Along with these differences, the potential for differences between Texas and 

Mexico should be investigated for both C. parallelus and C. undecimalis using satellite 

markers.  Genetic validation aided in morphological identification of species captured in 

Texas.  Termination of P2 in relation to the anal opening separates C. parallelus from C. 

poeyi and C. undecimalis, and D1 counts separated the latter two species from one 

another.  This separation follows a combination of identification characteristics given in 

keys developed by (Greenfield 1975) and (Rivas 1986), and should assist fisheries 

biologists in correctly identifying similar looking centropomids.   

Sources of centropomid recruits to Texas populations have yet to be determined 

and could originate from distant spawning grounds and not a contribution from resident 

populations.  An assessment of sources and pathways of centropomid populations into 
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Texas waters remains to be conducted.  Otolith microstructure analyses (Chapter 4) 

insinuate a proximal spawning population, and additional otolith chemistry studies could 

also aid in determination of origins and possible separate populations.  Further 

morphometric and molecular analyses are necessary to interpret population structure, 

relationships, origins, and possible morphological or genetic divergence of centropomids 

in Texas.  Additionally, examination of a larger sample size of Centropomus species 

from ecologically- and geographically-diverse locations along the Texas coast, spanning 

multiple spawning seasons across several years, is necessary to clarify genetic diversity 

on a regional basis.  Continued genetic analysis will elucidate the population structure of 

centropomids and assess the potential for additional species occurring in Texas waters.   
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CHAPTER III 

 DISTRIBUTION AND OCCURRENCE BY HABITAT OF CENTROPOMUS 

SPECIES IN TEXAS 

 

Introduction 

 The Texas Gulf shoreline stretches 595 km from the Sabine River to the Rio 

Grande, and spans seven major and five minor estuaries covering one million hectares.  

These estuaries serve an important role by providing habitats, nurseries, food, and 

spawning grounds for estuarine dependent fishes (Blaber & Blaber 1980, Boesch & 

Turner 1984, Adams et al. 2006).  Despite their importance, Texas estuaries are 

confronted with significant problems related to anthropogenic alterations of freshwater 

inflow (Longley 1994, Adams et al. 2009) and habitat loss (Bell et al. 1988, Rozas et al. 

2007, Engle 2011) that impact fish assemblages.  Additionally, the susceptibility of 

Texas estuaries to severe climatic impacts due to regional climate and coastal geology 

(Larkin & Bomar 1983, Montagna et al. 2011) can affect fish population structure.   

 Changes in global temperatures are occurring more rapidly (IPCC 2008), 

intensifying impact on sea surface temperature and subsequently affecting estuarine 

ecosystems.  Population cycles, fish kills, and range expansions have been linked with 

fluctuations in water temperature (Gunter 1941, Matlock & Osburn 1987, Enfield et al. 

2001, Hare & Able 2007).  The eastern equatorial Pacific and Texas’ Gulf coast 

represent excellent examples where temperature shifts have resulted in changes in fish 

community structure.  Climatic variability along the Texas coast investigated by (Tolan 
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& Fisher 2009) determined that the presence of gray snapper (Lutjanus griseus Linnaeus, 

1758) in inshore waters of Texas is related to increased water temperatures.  Additional 

studies support the interplay between estuarine biological expansions and climate change 

(Barber & Chavez 1983, Oviatt 2004, Preston 2004, Roessig et al. 2004, Winder et al. 

2011).   

 Members of the Family Centropomidae are semicatadromous, stenothermic, 

euryhaline, and protandric hermaphroditic group of species represented by a single 

genus Centropomus (Tringali & Leber 1999) inhabiting subtropical and tropical waters 

of North and South America (Gilmore et al. 1983, Rivas 1986).  Although one species 

(C. undecimalis) has been collected as far north as New York (Schaefer 1972), 

centropomids occur mostly from Florida south to Rio de Janeiro, Brazil along the 

Atlantic and throughout Mexico, and in Texas from Port Aransas southward to the US – 

Mexico border (Marshall 1958, Seaman & Collins 1983, Rivas 1986).   

 Centropomus undecimalis’ intolerance of low water temperature has been 

historically cited for southern Texas being this species’ northernmost limit in the western 

GOM (Tucker & Campbell 1988).  Juvenile and adult C. undecimalis have been 

collected in 14.2 to 35.6 C waters in Florida (Marshall 1958, Fore & Schmidt 1973, 

McMichael et al. 1989).  Four reports have identified centropomids as unresponsive, 

stunned, or killed as a result of winter cold events throughout their distributional range in 

Texas waters (Gunter 1941, 1951, Moore 1976, Holt & Holt 1983).  Temperature 

tolerances of all centropomids may vary throughout their range due to genetic 

composition, salinity, size, and diet (Shafland & Foote 1983, Howells et al. 1990).   
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 This chapter describes habitat and distribution of juvenile Centropomus species 

captured for the genetics and age growth portions of this study.  The experimental design 

deployed during this study did not allow for analysis of CPUE due to sporadic sampling 

frequency and severely limited catch (<2%) in standardized tows prerequisite to 

determining CPUE.  Specific objectives of this chapter were to:   

 identify habitats used by settled centropomids;  

 identify habitats utilized by juvenile centropomids.   

Materials and Methods 

Juvenile centropomids were collected at wetland sloughs, boat ramps, and other 

tidal- and freshwater- influenced habitats from Carancahua Bay (Palacios) to the Rio 

Grande (US – Mexico border).  Selection of each collection site was based on historical 

data generated by TPWD and TAMUG as well as published and anecdotal reports of 

larval and juvenile centropomid occurrence (Martin & King 1991, Pope et al. 2006).  

Collection sites were classified according to upper, middle, and lower regions of the 

Texas coast and divided into two major climatological zones (temperate and subtropical; 

Figure 3.1).  The temperate climate collection area was located in the upper coast region 

within the Galveston and Matagorda Estuary Systems.  Upper coast collection sites 

included Caney Creek (south of Sargent), Tres Palacios River (at its intersection along 

FM 521), upper reaches of Carancahua Bay (near FM 35), and Lavaca Bay (near Port 

Lavaca). 
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Figure 3.1 Texas sampling sites. Numbers correspond to sites labeled in Table 3.1. 
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 Remaining study areas were located within the Aransas and LLM Estuary 

Systems that featured subtropical climates.  The Aransas Estuary represented the middle 

coast collection site that included Goose Island State Park (Rockport), Redfish Bay (at 

two locations along SH 361, Stedman Island), and a drainage ditch located in the city of 

Aransas Pass on SH 35.  Lower coast collections were conducted from the southernmost 

portions of the LLM Estuary System and included the Arroyo Colorado (and 

surrounding drainages), Laguna Vista, San Martin boat ramp and channel, Mexiquita 

Flats, Padre Island Coast Guard Station (northwest of the Brazos Santiago Pass), and 

Boca Chica (Rio Grande and surrounding sloughs).  Complete information regarding all 

sample locations is listed in Table 3.1. Sampling protocol was the same as that described 

in Chapter 2. 

Hydrographic data taken during each collection included: 1) dissolved oxygen 

content (mg/L) and water temperature (°C) using an YSI 550 DO meter (YSI Inc., 

Yellow Springs, OH, USA); 2) wind speed (meters per second) and air temperature (°C) 

using an EA-3010 anemometer (La Crosse Technology Ltd., La Crosse, WI, USA); 3) 

salinity (‰) using an SR6 Salinity Refractometer (Aquatic Ecosystems Inc., Apopka, 

FL, USA); and 4) turbidity (cm) using a 20 cm Secchi disk (Aquatic Ecosystems Inc., 

Apopka, FL, USA).  Habitat characteristics including shoreline vegetation, submerged 

aquatic vegetation, bottom structures and obstructions were documented and 

photographed to aid in determination of settlement habitats of Centropomus species. 
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Table 3.1. Geographical information for all sites sampled. 

Site # County Location Region of the Texas coast Latitude Longitude 

1* Galveston Diversionary Canal Upper 29 20.134 N 95 01.417 W 

2 Galveston East Lagoon Upper 29 19.209 N 94 45.489 W 

3 Galveston West Galveston Bay Upper 29 12.725 N 94 57.409 W 

4* Brazoria Bastrop Bayou Upper 29 05.598 N 95 16.940W 

5 Brazoria San Luis Pass Upper 29 04.728 N 95 07.847 W 

6 Brazoria Christmas Bay Upper 29 02.928 N 95 09.933 W 

7* Brazoria Oyster Creek Upper 29 00.059 N 95 18.070 W 

8 Brazoria Intracoastal Waterway Upper 28 57.850 N 95 17.533 W 

9 Brazoria Brazos River Upper 28 52.803 N 95 22.780 W 

10 Brazoria San Bernard River Upper 28 52.586 N 95 28.171 W 

11 Matagorda Tres Palacios River Upper 28 47.147 N 96 08.977 W 

12 Brazoria Caney Creek Upper 28 46.329 N 95 38.063 W 

13 Jackson Carancahua Bay Upper 28 44.252 N 96 24.121 W 

14* Matagorda Matagorda Bay Middle 28 43.593N 95 47.124W 

15 Matagorda Turtle Creek Upper 28 43.251 N 96 16.417 W 

16 Calhoun Lavaca Bay Upper 28 39.898 N 96 34.378 W 

17 Calhoun Lavaca Bay Upper 28 38.297 N 96 36.659 W 

18 Aransas Aransas Bay Middle 28 07.677 N 96 59.164 W 

19 Aransas Copano Bay Middle 28 05.747 N 97 03.137 W 

20 Aransas Little Bay Middle 28 01.854 N 97 02.341  W 

21 Nueces Redfish Bay Middle 27 53.637 N 97 07.676 W 

22 Nueces Redfish Bay Middle 27 53.341 N 97 07.063 W 

23 Nueces Aransas Bay Middle 27 53.566 N 97 09.188 W 

24 San Patricio Nueces Bay Middle 27 51.515 N 97 21.193 W 

25 Nueces Redfish Bay Middle 27 50.396 N 97 07.734 W 

26 Nueces Corpus Christi Bay Middle 27 45.010 N  97 09.003 W 

27 Nueces Packery Channel Middle 27 37.592 N 97 12.987 W 

28** Willacy Lower Laguna Madre Lower 26 34.193 N  97 25.637 W 

29 Willacy Creek West of Port Mansfield Lower 26 30.221 N 97 29.320 W 

30 Cameron Arroyo Colorado Lower 26 20.998 N 97 23.483 W 

31 Cameron Harlingen Shrimp Farm Lower 26 08.097 N 97 18.017 W 

32 Cameron Laguna Vista Lower 26 05.705 N 97 17.024 W 

33 Cameron Lower Laguna Madre Lower 26 04.461 N 97 12.878 W 

34 Cameron Lower Laguna Madre Lower 26 04.356 N 97 09.994 W 

35 Cameron Mexiquita Flats Lower 26 04.044 N 97 11.659 W 

36 Cameron South Bay Lower 26 01.529 N 97 10.272 W 

37 Cameron Bahia Grande Lower 26 00.826 N 97 16.537 W 

38 Cameron Lake San Martin Lower 26 00.125 N 97 17.913 W 

39 Cameron Port Brownsville Lower 25 57.795 N 97 24.123 W 

40 Cameron Rio Grande (6 km upstream) Lower 25 57.613 N 97 11.116 W 

41 Cameron Rio Grande (mouth) Lower 25 57.556 N 97 08.810 W 

 *  centropomids were collected at this location after January 2010 freeze event 

 **  centropomids were collected at this location after October 2009 red tide event 
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Results 

Environmental Conditions 

 Water temperature differed significantly with presence or absence of 

centropomids (p = 0.03) across all collections.  Mean water temperature values at 

collection sites where centropomids were present was 23.3 °C and ranged from 12.5 to 

33.1 °C (Table 3.2).  Collection sites where centropomids were not captured displayed a 

slightly wider temperature range (10.9 to 32.4 °C) while averaging 25.1 °C.  Water 

temperature varied seasonally, with mean readings highest in summer (29.2 °C) and 

declining steadily from 23.4 to 18.8 °C during fall and winter, respectively. Centropomid 

presence or absence was not related to salinity or DO levels, as attested by non-

significant ANOVA results (salinity p =0.10, DO p = 0.08).  Mean salinity readings did 

not differ significantly among seasons or regions but displayed significant variation (p = 

0.007) among years 2006 (21.3 ‰, n = 16), 2007 (24.5 ‰, n = 23), 2008 (22.8 ‰, n = 

2), and 2009 (24.9 ‰, n = 3).  Conforming to seasonal variability in water temperature, 

salinity averaged 22.4, 15.0 and 21.0 ‰ in winter, summer and fall, respectively.  

Regional salinity differences followed trends in the amount of freshwater inflow along 

the Texas coast, with mean salinities increasing from upper (16.5 ‰) to middle (19.6 

‰), and finally the lower coast (21.9 ‰).  Dissolved oxygen concentrations, averaging 

6.14 mg/L coast wide and ranging from 2.28 to 11.86 mg/L at collection sites, failed to 

exhibit significant differences between regions, seasons, years, and presence or absence 

of centropomids. 
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Table 3.2.  Summary for hydrographic parameters at sites sampled where centropomids were 

present or absent, arranged by region and overall.   

 Upper 

 Present Absent 

 n = 4 n = 36 
 Mean Min – Max Mean Min - Max 

Temperature (°C) 17.8 12.6 – 23.7 26.1 19.9 – 32.4 

Salinity (ppt) 16.5 5.0 – 35.0 18.7 0.0 – 34.0 

Dissolved O2 (mg/L) 5.81 4.46 – 6.43 6.55 2.75 – 9.89 

 Middle 

 Present Absent 
 n = 11 n = 49 
 Mean Min – Max Mean Min - Max 

Temperature (°C) 21.9 12.5 – 31.6 25.3 12.8 – 31.9 

Salinity (ppt) 21.2 0.0 – 38.0 25.1 3.0 – 41.0 

Dissolved O2 (mg/L) 6.60 3.04 – 10.38 7.04 2.75 – 11.86 

 Lower 

 Present Absent 
 n = 27 n = 31 
 Mean Min – Max Mean Min - Max 

Temperature (°C) 24.8 18.4 – 33.1 25.3 10.9 – 30.6 

Salinity (ppt) 21.9 3.3 – 40.0 28.8 0.0 – 50.0 

Dissolved O2 (mg/L) 6.63 2.28 – 11.27 6.63 2.48 – 11.40 

 Overall 

 Present Absent 
 n = 42 n = 116 
 Mean Min – Max Mean Min - Max 

Temperature (°C) 23.5 12.5 – 33.1 25.1 10.9 – 32.4 

Salinity (ppt) 21.3 0.0 – 40.0 24.2 0.0 – 50.0 

Dissolved O2 (mg/L) 6.16 2.28 – 11.27 6.78 2.48 – 11.86 

 

 

Species Distribution 

Centropomus parallelus captured during this study ranged from 10 to 411 mm 

SL (size mode: 27 mm SL), and C. undecimalis captured ranged from 12 to 271 mm SL 

(size mode: 27 mm SL; Table 3.3, 3.4).  Centropomus parallelus was taken from the 

Freeport/Brazos River area to the Rio Grande.  Distribution of C. undecimalis ranged 

from its northernmost capture site near Palacios south to the Rio Grande.  Collections 

were dominated by C. parallelus at all sites except for those conducted at the Rio 

Grande.  Centropomus undecimalis was found at the mouth of the Rio Grande whereas 
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only C. parallelus was found up river; however, this observation was based on a single 

up river collection.  Twenty-seven percent of collections with any centropomid 

contained at least two Centropomus species, revealing that Texas centropomids co-occur 

over their range during early life history. Additionally, the current study identified the 

occurrence of one new species, Centropomus poeyi, previously unknown from Texas.  

Three specimens of C. poeyi captured were 52, 55, and 62 mm SL.  Two C. poeyi were 

captured at Laguna Vista on 10 November 2007 and the remaining conspecific was 

captured at the Aransas Pass ditch on 26 October 2007.   

 

 

Table 3.3.  Percent composition of Centropomus species listed by region of capture along the Texas 

coast.  

 Upper Middle Lower 

C. parallelus 95% 74% 57% 

C. poeyi 0% 1% 1% 

C. undecimalis 5% 25% 42% 

 

 

Table 3.4.  Size distribution of all Centropomus species by region capture along the Texas coast. 

Centropomus parallelus n Min Max Average 

Upper 20 20 376 150.4 

Middle 50 16 160 63.6 

Lower 243 10 411 37.6 

Centropomus poeyi n Min Max Average 

Middle 1 - - 62 

Lower 2 52 55 53.5 

Centropomus undecimalis n Min Max Average 

Upper 1 - - 27 

Middle 17 34 271 65.6 

Lower 172 12 113 47.6 
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Habitat Utilization 

Ninety-four percent of the 506 Texas centropomids captured were < 100 mm SL 

(mean: 38.4 mm; mode: 21 mm; range: 10 to 100 mm SL; Table 3.5).  Habitats utilized 

by these centropomids varied broadly, making the characterization of primary habitat 

use difficult.  Smallest centropomids (5 to < 15 mm SL, 5.0% of the catch) were 

collected in shallow, sheltered riverine or drainage areas with mud substrates in the 

Arroyo Colorado and a sewage effluent ditch at Laguna Vista.  The Arroyo is one of few 

freshwater tributaries to the LLM and serves to support riparian, freshwater wetland, and 

estuarine habitats.  The Laguna Vista effluent ditch was primarily influenced from 

discharge of the Laguna Madre Water District and received additional influence from 

tidal exchange with the LLM during high tides.  No submerged vegetation was found at 

either site; furthermore, constituent habitats were proximate to complex structures such 

as boat ramps, debris, and bulkheads.  Scattered shoreline vegetation included black 

mangrove (Avicennia germinans), saltmeadow cordgrass (Spartina patens), and spike 

grass (Distichlis spicata).  Each of these areas contained habitat described as early 

settlement sites for centropomids in Florida (Gilmore et al. 1983, McMichael et al. 1989, 

Peters et al. 1998a).   
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Table 3.5.  Size distribution of Centropomus species < 100 mm SL by region along the Texas coast. 

C. parallelus n Range Mode Average 

Upper 11 20 – 69 29 40.9 

Middle 46 16 – 95 48 57.7 

Lower 231 10 – 76 21 27.3 

C. poeyi  n Range Mode Average 

Middle 1 - - 62 

Lower 2 52, 55 - 53.5 

C. undecimalis n Range Mode Average 

Upper 1 - - 27 

Middle 16 34 – 78 52 52.8 

Lower 168 12 – 100 27 46.1 

 

 

Post-settlement sized centropomids (>15 to 50 mm SL, 65.2% of the catch) 

occurred across three distinct habitats: predominantly freshwater, semi-isolated sloughs 

and ditches, and complex structure.  Freshwater-influenced sites (Arroyo Colorado, 

Carancahua Bay, and a slough 6.5 km from the mouth of the Rio Grande) were protected 

backwater habitats with dissipated currents and a soft mud/silt substrate.  Sites with 

semi-isolated ditch and slough habitats included Laguna Vista, Aransas Pass, and tidal 

sloughs near Redfish Bay and mouth of the Rio Grande. Laguna Vista and Aransas Pass 

sites were influenced primarily by storm drain discharge from surrounding communities 

and local sewage treatment plants.  Each of these habitats was frequently isolated from 

their respective estuary during low tide and exhibited soft muddy substrates.  The post-

settlement size class was routinely captured in the vicinity of structure provided by 

shoreline vegetation such as prop roots and rhizomes of black mangroves, palms (Sabal 

and Serenoa spp) and man-made structures consisting of debris and culverts. Largest 

centropomids (50 mm SL and greater) were captured across multiple habitat types 

previously described for smaller size classes at Aransas Pass and Laguna Vista.   
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Discussion 

  Statistical support from CPUE data was lacking, three percent of all 

centropomids captured were the result of standardized sampling.  However, habitats used 

by settlement-sized and early juvenile centropomids were identified.  The tendency for 

settlement-sized Centropomus species to occupy backwater habitats with dissipated 

currents is similar to that observed for C. undecimalis in Florida (Peters et al. 1998a, 

Peters et al. 1998b).  Texas juvenile centropomids were captured in habitats comparable 

to those of tidal sloughs described by (Fore & Schmidt 1973) and (McMichael et al. 

1989), freshwater habitats identified by (Volpe 1951) and (Gilmore et al. 1983), and 

utilization of shoreline vegetation as protective structure described by (McMichael et al. 

1989).  Similarities found between Florida and Texas conspecifics during early life are 

noteworthy; however, there is little documentation to support that all phases of Texas 

centropomid life history are analogous to that observed elsewhere. 

 Two of the three centropomid species captured during this study (C. parallelus 

and C. undecimalis) dominated capture totals.  The aforementioned dominance and 

expanded range exhibited by C. parallelus was unexpected, given the fact this species 

composed < 7% of TPWD’s fisheries-independent centropomid catch data.  Temperature 

tolerances for C. parallelus have yet to be determined; however, this species’ wide 

geographical distribution across the Texas coast may imply it has greater tolerance of 

cooler water than does C. undecimalis.  However, both C. parallelus and C. undecimalis 

were found in water temperatures as low as 12.6 ºC, which has been documented as the 

upper boundary of C. undecimalis’ lower lethal temperature (Shafland & Foote 1983, 
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Howells et al. 1990).  The geographical range of C. poeyi has been reviewed by (Chavez 

1961) and (Rivas 1986) and consists of a restricted distribution along the Mexican Gulf 

coast from Tampico, Tamaulipas to Campeche, Campeche, Mexico (Chavez 1961, 1981, 

Rivas 1986, Orrell 2003).  The potentially similar spawning habits shared by all 

centropomids (Chavez 1963, Carvajal 1975, Taylor et al. 1998) could have aided in the 

widespread dispersion of C. poeyi larvae outside their native range through pelagic 

larvae dispersal. 

 Relatively mild winters were an additional factor that may have allowed for 

apparent northward expansion of centropomids captured in this study.  Above-average 

winter temperature minima across Texas estuaries during the past decade (Tolan & 

Fisher 2009, Montagna et al. 2011) may have benefitted centropomids, allowing for 

increased settlement, survival, and growth rates.  Other species that are sensitive to low 

winter temperatures (Lutjanus griseus and Avicennia germinans) are flourishing in 

Texas estuaries (Sherrod & McMillan 1981, Tolan & Fisher 2009). Several exogenous 

factors other than temperature per se may influence centropomid settlement in Texas 

waters, including reduced frequency of freeze events (Sherrod & McMillan 1981, Hare 

& Able 2007, Tolan & Fisher 2009, Montagna et al. 2011), genetic change (Tringali & 

Bert 1998, Tringali et al. 2008), essential habitat availability (Blaber & Blaber 1980, 

Aliaume et al. 1997, Peters et al. 1998a, Stevens et al. 2007), and freshwater sources 

(Volpe 1951, Fore & Schmidt 1973, Peters et al. 1998b).   
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Conclusion 

 Although C. parallelus and C. undecimalis have been previously reported to 

inhabit Texas coastal waters (Moore 1975, Martin & King 1991), the present study is the 

first to document the geographical distribution and habitat types used by early life 

history constituents of these species.  The geographical distributions of these two species 

overlap one another, although that of C. parallelus is broader.  Lack of captures north of 

Palacios may indicate C. undecimalis’ use of nursery grounds and developmental habitat 

in Texas is limited to that along the middle and lower coast.  Lastly, this study’s capture 

of multiple life history stages at various collection sites mandate that thorough 

investigations be conducted on the biology and ecology of Centropomus species in 

Texas to provide information prerequisite to developing successful management 

practices. 
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CHAPTER IV 

AGE, GROWTH, AND HATCH-DATE DISTRIBUTION OF JUVENILE 

SMALLSCALE FAT SNOOK (CENTROPOMUS PARALLELUS) AND COMMON 

SNOOK (CENTROPOMUS UNDECIMALIS) IN TEXAS  

 

Introduction 

The Family Centropomidae consists of inshore tropical euryhaline species that 

are valued recreationally in Texas and Florida and support important food fisheries in 

Central and South America (Roberts et al. 1999, García-Galano et al. 2003, da Silva 

Rocha et al. 2005, Jackson & Ockelmann-Lobello 2006, Lemos et al. 2006).  Increased 

abundance (TPWD fisheries-independent and fisheries-dependent collection data, Mark 

Fisher, TPWD, pers. comm.) and growing recreational popularity of centropomids in 

Texas have failed to motivate comprehensive examination of constituent species’ life 

history, including age and growth analysis.  Considerable life history data exist for 

centropomids in Florida; however, the majority of studies reported on the genus 

Centropomus in Texas are based on opportunistic capture (Martin & King 1991, Pope et 

al. 2006) and reflect sporadic occurrence of C. undecimalis (Springer & Pirson 1958, 

Moore 1975).  Studies on growth and developmental biology of Centropomus species 

present in Texas are needed to effectively characterize and manage nursery areas utilized 

by constituent taxa.   

Information on growth and development of C. parallelus is limited to 

aquaculture studies in Central and South America (Alvarez-Lajonchère et al. 2002a, 
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Temple et al. 2004, da Silva Rocha et al. 2005, Tsuzuki et al. 2007a, Tsuzuki et al. 

2007b) that indicate its spawning parameters and embryonic development are similar to 

those of C. undecimalis (Alvarez-Lajonchère et al. 2002a, Cerqueira & Tsuzuki 2009). 

Summer spawning of C. parallelus has been reported by (Chavez 1963) in Veracruz, 

Veracruz, Mexico while comparable results were obtained via histological examination 

by (Santos et al. 2009) in Brazil (Table 4.1).  Reported size at age data for C. parallelus 

are the result of aquaculture pilot studies and reflect little information on naturally 

occurring growth rates. A synopsis of these data is presented in Table 4.2.  

 

 

Table 4.1.  Status of information on spawning dynamics of Atlantic Centropomus species. 

Species  Spawning season Location Citation 

Centropomus ensiferus NA NA - 

Centropomus mexicanus NA NA - 

Centropomus parallelus June – August Veracruz (Chavez 1963) 

 Spring – Summer  Brazil (Santos et al. 2009) 

Centropomus pectinatus NA NA - 

Centropomus poeyi July – August Veracruz & Campeche (Carvajal 1975) 

Centropomus undecimalis June – July SW Florida (Volpe 1951) 

 July – November SW Florida (Marshall 1958) 

 July – October SE Florida (Tucker & Campbell 1988) 

 April – December  SW Florida (McMichael et al. 1989) 

 April – October SE & SW Florida (Taylor et al. 1998) 
 NA denotes no information available 
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Table 4.2.  Reported size (SL & TL) at age (days) for Centropomus parallelus from aquaculture 

studies in Mexico and Brazil. 

Age SL (SD) (mm) TL (SD) (mm) Citation 

28 9.6 (1.4) - (Alves et al. 2006) 

48 14.2 (1.12) - (Alves et al. 2006) 

56 - 22.7 (NA) (Corrêa & Cerqueira 2007) 

66 29.7 (2.53) - (Cerqueira et al. 1995) 

76 26.4 (0.3) - (Tsuzuki et al. 2007b) 

88 57.6 (0.1) - (Alvarez-Lajonchère et al. 2002b) 

90 - 52.4 (1.4) (Alvarez-Lajonchère et al. 2004) 

106 32.1 (0.22) - (Tsuzuki et al. 2007b) 

126 38.2 (0.13) - (Tsuzuki et al. 2007b) 

156 70.0 (5.7) - (Tsuzuki et al. 2008) 

190 - 112.0 (1.4) (Ribeiro & Tsuzuki 2010) 

 

 

 There are numerous studies involving spawning patterns (Taylor et al. 1998, 

Roberts et al. 1999, Taylor et al. 2000), early development (Lau & Shafland 1982), and 

growth of C. undecimalis (McMichael et al. 1989, Peters et al. 1998b, Aliaume et al. 

2000, Taylor et al. 2000).  The most comprehensive study on C. undecimalis spawning 

was conducted by (Taylor et al. 2000) who observed female oocyte maturation extending 

from April – October throughout Florida.  Age determination of larval and early juvenile 

C. undecimalis (3.5 to 22.0 mm SL) was conducted under laboratory conditions by (Lau 

& Shafland 1982) who determined growth rates increase gradually with increasing size 

from 0.15 to 0.50 mm d
-1

.  Studies of juvenile C. undecimalis (15 to 150 mm SL) from 

southern Florida reported growth rates of 0.9 to 1.0 mm d
-1

 (Fore & Schmidt 1973, 

Gilmore et al. 1983).  Reported growth rates for juvenile C. undecimalis in the wild 

ranged from 0.5 to 1.0 mm d
-1

and 0.41 to 0.67 mm d
-1

 for western Florida (McMichael 

et al. 1989) and Puerto Rico (Aliaume et al. 2000). 
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 Age, growth, and hatch-date distribution of juvenile C. parallelus and C. 

undecimalis from Texas as determined by otolith microstructure analysis are 

characterized in this chapter.  Although general patterns of centropomid spawning and 

age growth characteristics are known (Taylor et al. 1998), no study has been conducted 

to determine these characteristics for Centropomus species in Texas waters.  Specific 

objectives were to:   

 estimate age and model age and growth of C. parallelus and C. undecimalis;  

 assess spatial and temporal variation in growth of these species;  

 determine hatch-date distribution of spawning centropomids;  

 compare growth rates of Texas centropomids with those published for C. 

undecimalis.   

Materials and Methods 

Sample Processing 

All C. parallelus and C. undecimalis were sampled, identified, and processed as 

described in Chapter II.  Juvenile centropomids captured for otolith analysis were kept 

on ice for transport to the laboratory where they were processed immediately or frozen 

for subsequent analysis.  Individual specimens were measured to the nearest 1.0 mm SL 

and, when possible, TL.   

Otolith Microstructure Analysis 

 Sagittal otoliths were removed, cleaned and processed following protocols 

developed by (Secor et al. 2002), while those for age and growth analysis follow 

procedures developed by (Aliaume et al. 2000) for C. undecimalis.  One sagitta from 
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each centropomid was randomly selected for age determination and mounted in Struer’s 

Resin (EPOES/EPOAR; Struers Inc., Cleveland, Ohio, USA).  Otoliths were then 

sectioned along a transverse plane, adjacent to the core, using a Buehler IsoMet 1000 

Precision Saw (Buehler, Lake Bluff, Illinois, USA).  Each otolith section containing the 

core was fixed to a 27 mm x 46 mm petrographic slide (Lakeside Microscope 

Accessories, Monee, Illinois, USA) with Crystal Bond (Armeco Products Inc., Ossining, 

New York, USA), sanded on Buehler CarbiMet paper discs (320, 400, 600 and 800 grit) 

and polished with Buehler 0.3 μm MicroPolish Alumina on a microcloth following 

techniques reported by (Rooker et al. 2004).   

Sectioned and polished otoliths were examined through transmitted light on an 

Olympus BX41 compound microscope at 40X magnification.  Image analysis software 

Image Pro Plus (version 4.5, Media Cybernetics Inc.) was utilized to enumerate daily 

growth increments, beginning at the core and counting along the sulcus to the otolith 

edge.  Ages were based upon the average of two independent counts conducted by a 

single reader.  In the event of a mean difference of counts greater than 10%, a third count 

was taken for age estimation.  If the third count was within 10% of one of the prior 

readings, the mean of the two was used for analysis.  If the third count differed by 10% 

or more, the otolith was not used for analysis.  A random subsample of C. parallelus and 

C. undecimalis otoliths (n = 25) was read by a second independent reader to ensure 

quality control in ageing techniques.  Validation of daily increment formation has been 

conducted for C. undecimalis in aquaculture and wild specimens (Tucker & Warlen 
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1986, McMichael et al. 1989, Joyeux et al. 2001) and, thus, was not performed in this 

study.   

Age, Growth, and Hatch-date Analysis 

Centropomus species greater than 100 mm SL were considered too large for 

effective sampling in this study, and therefore were not included in age and growth 

analysis.  Growth of centropomids was determined by otolith-derived age estimates and 

length data (C. parallelus n = 168, C. undecimalis n = 113).  Length-length conversion 

regression (SL & TL) relationships were calculated for comparison with other studies 

conducted on C. undecimalis.  Length-frequency histograms for C. parallelus and C. 

undecimalis were generated by categorizing lengths into 5-mm increments to determine 

the size distribution of juvenile centropomids sampled by species. 

Linear regression was applied to otolith-derived age data to determine growth 

rates (C. parallelus n = 171, C. undecimalis n = 114) using the following equation: 

1. Standard length = slope*age (days) + y-intercept 

To complete hatch-date distributions, ages were also predicted for individuals with 

unreadable otoliths (C. parallelus n = 119, C. undecimalis n = 72).  Equations predicting 

age of individuals were developed for each year (Table 4.3).  Daily instantaneous growth 

was estimated utilizing an exponential model: 

2. Lt = L0e
gt
 

Where Lt = length (mm SL) at time t (days); L0 = the estimated length at hatching; g = 

the daily instantaneous growth coefficient; and t = otolith-derived age in days.   
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Table 4.3.  Equations for predicting age of individuals with unreadable otoliths. 

 n Linear Equation r
2
 

Centropomus parallelus 

2006 24 Predicted age = 1.1593SL + 34.644 0.95 

2007/2009 141 Predicted age = 1.3756SL + 29.262 0.83 

2008 4 Predicted age = 1.687SL + 36.148 0.62 

Centropomus undecimalis 

2006 79 Predicted age = 0.8506SL + 38.124 0.73 

2007 17 Predicted age = 0.9234SL + 29.838 0.90 

2009 16 Predicted age = 0.9335SL + 60.759 0.21 

 

 

All statistical analyses were preformed on SPSS 17.0 (IBM Corp., Somers, New 

York, USA), and significance was accepted at the α= 0.5 level.  Temporal and spatial 

variation in environmental parameters was analyzed across year, season, and region 

using one-way analysis of variance (ANOVA); however, these analyses were not used to 

evaluate variations in growth due to unequal sampling effort across 2006 – 2009.  

Analysis of covariance (ANCOVA) was used to assess intra- and inter-annual variability 

of growth by comparing growth of each species captured across years (covariate: age). 

Results 

Centropomid Otolith Structure and Age Determination 

Sagittal otoliths of C. parallelus and C. undecimalis were similar in appearance:  

elliptical in shape and concavo-convex with a deep sulcus on the medial surface.  

Otoliths from both species exhibited a rounded rostrum differing along the margins of 

the antirostrum and dorsal surface and the path of the sulcus groove.  Thin transverse 

cross-sections of each otolith revealed a singular central primordia, followed by 

alternating translucent and opaque zones (Figure 4.1) indicating the formation of daily 

growth increments.  The counting path of transverse-sectioned otoliths consisted of a 
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dorso-ventral path from the core to increments that were followed to the sulcus, 

continuing counts to the otolith edge. 

 

 

 

Figure 4.1.  Transverse, polished section of Centropomus parallelus otolith (29 mm SL; 67 d). 

 

 

Catch Composition 

 Juvenile centropomids collected from Texas coastal waters during 2006 – 2009 

(n = 474) were used for age and growth analysis (Table 4.4).  Only 284 otoliths (C. 

parallelus n = 169, C. poeyi n = 2, and C. undecimalis n = 113) were included in otolith 

microstructure analysis (Table 4.5). Seven otoliths were excluded from the analysis 

because of reader disagreement while the remaining otolith complement (n = 185) was 

either unreadable or destroyed during the polishing process. Quality control of reader 

accuracy indicated high reader agreement between the primary reader and the second 

independent reader based upon linear regression: 
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3. Primary reader age = 0.9855 * Second reader + 1.4515  r
2
 = 0.98 

 

 

Table 4.4.  Number, size range, and capture year of all juvenile centropomids used in age structure 

and growth analysis.  Size range given in millimeters of SL. 

 Upper 

 2006 2007 2008 2009 
 n Range n Range n Range n Range 

C. parallelus 5 27 – 32 0 - 0 - 6 20 – 69 

C. undecimalis 1 27 0 - 0 - 0 - 

 Middle 

 2006 2007 2008 2009 
 n Range n Range n Range n Range 

C. parallelus 6 16 - 90 25 48 – 95 6 45 – 65 9 35 – 79 

C. undecimalis 9 34 - 61 0 - 0 - 7 49 – 78 

 Lower 

 2006 2007 2008 2009 
 n Range n Range n Range n Range 

C. parallelus 24 12 - 47 207 10 – 76 0 - 0 - 

C. poeyi 0 - 2 52, 55 0 - 0 - 

C. undecimalis 112 14 - 87 34 12 - 100 0 - 21 48 - 94 

 

 

Table 4.5.  Number, size range, and capture year of the 284 otoliths used in age structure and 

growth analysis.  Size range given in millimeters of SL. 

 Upper 

 2006 2007 2008 2009 

 n Range n Range n Range n Range 

C. parallelus 3 27 - 32 0 - 0 - 5 20 – 69 

C. undecimalis 1 27 0 - 0 - 0 - 

 Middle 

 2006 2007 2008 2009 
 n Range n Range n Range n Range 

C. parallelus 6 16 – 90 16 48 – 95 4 45 – 65 5 35 – 49 

C. undecimalis 6 70 - 90 0 - 0 - 4 49 – 61 

 Lower 

 2006 2007 2008 2009 
 n Range n Range n Range n Range 

C. parallelus 15 13 - 47 115 10 - 76 0 - 0 - 

C. poeyi 0 - 2 52, 55 0 - 0 - 

C. undecimalis 72 14 – 72 17 12 - 83 0 - 12 48 – 91 
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Centropomid Length and Age Distribution 

Standard length of centropomids examined for age and growth (Figure 4.2) 

ranged from 10 to 100 mm (C. parallelus: 10 to 95 mm SL, mean 32.6, SD = 17.5; C. 

undecimalis: 12 to 100 mm SL, mean 46.6, SD = 20.1).  Intra-annual differences in 

mean length of centropomids were observed across C. parallelus (ANOVA, p < 0.001) 

and C. undecimalis (ANOVA, p < 0.001); smallest mean lengths were observed in 

September for C. parallelus (24.4 mm SL, SD = 20.3) and October for C. undecimalis 

(39.3 mm SL, SD = 18.2).  Largest individuals of both species were captured in March 

(C. parallelus: 66.5 mm SL, SD = 17.7; and C. undecimalis: 62.5 mm SL, SD = 11.0).   

Centropomid ages ranged from 36 to 168 d (C. parallelus 36 to 168 d, mean = 

74.6, SD = 26.0; C. undecimalis 37 to 164 d, mean = 80.2, SD = 24.5).  Intra-annual 

differences in mean ages of centropomids were observed across species, C. parallelus 

(ANOVA, p < 0.001) and C. undecimalis (ANOVA, p < 0.001); youngest mean ages 

corresponded to length distributions (C. parallelus: 59.4 d, SD = 29.4, September; and 

for C. undecimalis: 67.6 d, SD = 14.7, October).  Oldest centropomids for both species 

were captured in March (C. parallelus: 120.5 d, SD = 24.7; C. undecimalis: 119.3 d, SD 

= 17.4).  The length-length regressions for C. parallelus and C. undecimalis were 

significantly different (ANCOVA, intercepts test, p < 0.001); relationships between SL 

and TL are presented in Table 4.6. 
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Table 4.6.  Relationship between SL and TL of Centropomus parallelus and Centropomus 

undecimalis <100 mm SL. 

Y = a + bX 

Y X n Species a B r
2
 

SL TL 277 C. parallelus -0.124 0.773 0.99 
SL TL 188 C. undecimalis 0.277 0.776 0.99 
TL SL 277 C. parallelus 0.379 1.288 0.99 

TL SL 188 C. undecimalis 0.021 1.278 0.99 

 

 



 

 

67 

 

Figure 4.2.  Bimonthly length frequency distribution of Centropomus parallelus and Centropomus 

undecimalis from 2006 through 2009. 
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Age and Growth 

Centropomus parallelus growth rate was similar (0.61 mm d
-1

, r
2
= 0.83) during 

2007 (n = 131) and 2009 (n = 10; ANCOVA slopes p = 0.397, ANCOVA intercept p = 

0.335).  Inter-annual variation (Figure 4.3, 4.4) in C. parallelus growth was detected in 

2006 (n = 24, 0.82 mm d
-1

, r
2

 = 0.95) and 2008 (n = 4, 0.37 mm d
-1

, r
2

 = 0.63).  A linear 

growth equation was fitted to length-age data to produce an overall growth description 

for all years C. parallelus were captured: 

4. SL = 0.6026 * age – 12.277     [n = 169, r
2
 = 0.84] 

 Centropomus undecimalis displayed inter-annual variation in growth across all 

years sampled (ANCOVA slopes p < 0.001; Figure 4.5, 4.6).  Growth of C. undecimalis 

in 2006, based on the largest number (n = 79) of otoliths examined, was 0.86 mm d
-1

 (r
2 

= 0.73).  This species’ highest growth rate occurred in 2007 (n = 17, 0.97 mm d
-1

, r
2 
= 

0.90) while 2009 yielded the lowest (n = 16, 0.22 mm d
-1

, r
2
 = 0.21).  Overall growth of 

juvenile C. undecimalis was described by the linear equation:  

5. SL = 0.6227 * age – 4.1629      [n = 112, r
2
 = 0.70] 

Centropomus parallelus data from 2007/2009 were further analyzed to examine the 

influence of geographic location on growth from three different regions (upper, middle, 

lower coast).  No significant differences were detected in 2007/2009 C. parallelus 

growth across these regions (ANCOVA slopes p = 0.150, ANCOVA intercept p = 

0.636).  Geographical influence on growth for 2006 C. parallelus was not detected 

among regions sampled (ANCOVA slopes p = 0.092, ANCOVA intercept p = 0.097).  

Collections in 2008 were all made at a single location (Aransas Pass); consequently, the 
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influence of geographical distribution could not be assessed.  No geographic or intra-

annual effect was detected for C. undecimalis (ANCOVA slopes p = 0.081, ANCOVA 

intercept p = 0.069).   

Hatch dates for both Centropomus species, based on otolith-based and predicted 

age, indicate centropomids captured in Texas are the result of spawning that occurs from 

late May to early December. A unimodial hatch-date distribution was observed for C. 

parallelus, represented by a single peak in late August (Figure 4.7).  Alternatively a 

bimodial hatch-date distribution was observed for C. undecimalis, with a major peak in 

early September and a minor peak in mid-November.   

Centropomus poeyi Age Characteristics 

Three Centropomus poeyi were captured in two locations (Aransas Pass, n = 1; 

Laguna Vista, n = 2) in 2007. Specimen identification was based on genetic analysis of 

16s mtDNA described in Chapter II. On October 26, a 62 mm SL C. poeyi was captured 

in Aransas Pass (San Patricio County). Age of this specimen was not determined due to 

destruction of both sagittal otoliths during the polishing process. Two other C. poeyi 

were captured in Laguna Vista (Cameron County) on November 10 that measured 52 

and 55 mm SL (aged 90 and 79 d, respectively). Hatch dates for Laguna Vista specimens 

were August 12 and 23.   
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Figure 4.3.  Size at age relationships by year for Centropomus parallelus (<100 mm SL) from Texas. 
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Figure 4.4. Exponential growth comparison in SL among years sampled for C. undecimalis (<100 

mm SL) from Texas.   
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Figure 4.5.  Size at age relationships by year for Centropomus undecimalis (<100 mm SL) from 

Texas. 
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Figure 4.6.  Exponential growth comparison in SL among years sampled for C. undecimalis (<100 

mm SL) from Texas 
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Figure 4.7.  Monthly hatch-date distribution for Centropomus species from Texas coastal waters. 

 

 

Discussion 

All specimens in age and growth analysis were captured via unmethodical 

sampling conducted at opportunistic times of the year that would yield highest 

abundances.  Mortality estimates based on age and abundance (i.e., catch curves) were 

not determined due to discontinuity in capture efforts.  Most centropomids from upper 

and middle coast collection sites were captured via single-day sampling trips that 
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allowed for repeated effort but resulted in low yield (upper n = 12, middle n = 62).  

Lower coast collection sites, not regularly sampled due to logistical limitations 

associated with the distance and time required to get to these sites, yielded the highest 

catch of centropomids (n = 399).  Therefore, the ability for this study to quantify growth 

rates other than differences among years was limited.  The finding that C. parallelus 

exhibited significantly higher growth in 2006 (n = 24) than it did in 2007 (n = 131) may 

be the result of a smaller sample size in 2006. However, differences in instantaneous 

growth rates for specimens of similar age (46 to 56 days) across 2006 and 2007 were 

negligible (0.06 mm d
-1

). Additionally, comparison of overall growth rate for both 

species yielded similar slopes (ANCOVA, slopes, p = 0.832) yet different intercepts 

(ANCOVA, intercepts, p < 0.001).   

The smallest specimens captured (10 to 15 mm SL) for both species in this study 

indicate that larvae and early juveniles along the Texas coast spend approximately the 

first 30 to 40 days in the plankton (planktonic larval duration) before settling into 

nursery grounds.  This finding is not much different from that of (Gilmore et al. 1983), 

(McMichael et al. 1989), (Peters et al. 1998a), and (Adams & Wolfe 2006) who 

concluded that settlement sizes range from 13 to 25 mm SL for C. undecimalis.  

However, this study and that of the aforementioned studies were conducted years apart 

and on opposite sides of the GOM; additionally, differences observed could be 

accounted for by sampling gear, temperature regimes, and habitats.  Spawning activity 

has been documented for higher salinity waters of inlets, mouths of coastal rivers, and 

secondary embayments in Florida (Tolley et al. 1987, Tucker & Campbell 1988, Taylor 
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et al. 1998) and could support inshore spawning of centropomids in Texas.  The 

hypersaline environment of Texas’ LLM is a possible inshore spawning ground that 

could provide quick access to proximal settlement habitats for juvenile centropomids.  

The only major freshwater source for the LLM is the Arroyo Colorado, a distributary of 

the Rio Grande no longer connected to the river.  The Arroyo Colorado serves as a major 

drainage of the Lower Rio Grande Agricultural District (Onuf 1996) and seemingly 

provides characteristic C. undecimalis habitat described by (McMichael et al. 1989) and 

(Fore & Schmidt 1973).  Alternatively, it is anticipated that centropomids in Texas 

spawn near inlets such as the Mansfield Channel, Brazos Santiago Pass, or the Rio 

Grande, thus following Florida’s centropomid spawning pattern.  

Centropomus parallelus Growth 

Determination of growth rate of smallest C. parallelus captured was relevant 

only for 2007 catches.  Length-specific growth rate of the 2007 C. parallelus (36 to 46 

days old ranging from 10 to 20 mm SL) averaged 0.27 mm d
-1

.  These C. parallelus 

were considered settlement sized according to (Peters et al. 1998a) who categorized 

settlement size for C. undecimalis as 15 mm SL.  Although inter-annual differences in 

growth was observed, variability in seasonal growth was not observed for a single year-

class of centropomid.  Nonetheless, four C. parallelus captured in January 2008 (winter) 

displayed a significantly lower growth rate (ANCOVA, slopes, P < 0.001; 0.37 mm d
-1

) 

when compared to that of conspecifics sampled in other years.  This estimate of winter 

growth rate, however, should be viewed with caution owing to the small sample size 

involved. However, this species’ stenothermic nature (Marshall 1958) and determination 
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of seasonally influenced growth rates of C. undecimalis (McMichael et al. 1989) render 

it plausible that all centropomids achieve faster growth over the summer.  Although a 

literature review provided no estimates of growth rates in C. parallelus, eight 

aquaculture trials (Cerqueira et al. 1995, Alvarez-Lajonchère et al. 2002b, Alvarez-

Lajonchère et al. 2004, Alves et al. 2006, Corrêa & Cerqueira 2007, Tsuzuki et al. 

2007b, Tsuzuki et al. 2008, Ribeiro & Tsuzuki 2010) reported size at age data for C. 

parallelus (Table 4.2).  Comparisons between findings of the current study and those 

from the eight trials show variable growth for certain age classes (Table 4.7).  The 

apparent growth discrepancy between C. parallelus in Texas versus that recorded during 

aquaculture trials may be a result of several factors including wild versus laboratory-

reared stock, genetic differentiation, water temperature, and food availability.   

 

 

Table 4.7.  Comparison of size at age data from 2007/2009 and various aquaculture studies of 

Centropomus parallelus (size in mm SL). 

Age (days) Texas coast Aquaculture study 

48 16.6 14.2 (Alves et al. 2006) 

56 21.5 22.7* (Corrêa & Cerqueira 2007) 

66 27.5 29.7 (Cerqueira et al. 1995) 

76 33.5 26.4 (Tsuzuki et al. 2007b) 

88 40.8 57.6 (Alvarez-Lajonchère et al. 2002b) 

90 42.0 52.4* (Alvarez-Lajonchère et al. 2004) 

106 51.6 32.1 (Tsuzuki et al. 2007b) 

126 63.7 38.2 (Tsuzuki et al. 2007b) 

156 81.7 70.0 (Tsuzuki et al. 2008) 
 * TL converted to SL from equations given in Table 4.5 
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Centropomus undecimalis Growth 

Estimated growth of C. undecimalis along the Texas coast displayed variable 

rates across every year sampled.  This could be due to small sample sizes during 2006, 

2007, and 2009 (n = 76, 17, 16, respectively).  Growth rate of smallest C. undecimalis 

(47 to 57 days, 14 to 29 mm SL) averaged 0.51 mm d
-1

 and was well above the 

instantaneous growth rate for equally sized C. parallelus (0.32 mm d
-1

 and 0.39 mm d
-1

, 

respectively) for 2007 and 2006.  This difference could be due to the larger size typically 

attained by C. undecimalis and an indication of faster growth (Rivas 1986, Tringali et al. 

1999b).  Failure to observe seasonal variation in growth in any year-class was probably 

due to lack of year-round capture.  The winter capture of C. undecimalis in 2009 did not 

provide viable data to establish reduced growth rates (r
2
 = 0.21); however, it could be 

assumed that slower growth rates occur during winter months.   

 Comparison of growth rates of C. undecimalis in this study with those of similar 

investigations revealed that estimated growth rates for 2006 constituents from Texas 

(0.85 mm d
-1

) were similar to values reported in the literature.  Faster growth rates were 

reported (through length frequency distribution analysis) for C. undecimalis for Ten 

Thousand Island, Florida (Fore & Schmidt 1973) and the Indian River Lagoon, Florida 

(Gilmore et al. 1983; 1.0 to 0.9 mm d
-1

, respectively).  Otolith-based estimates of SL 

growth for C. undecimalis from Tampa Bay, Florida (McMichael et al. 1989) varied 

between 0.5 and 1.0 mm d
-1

.   
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Factors on Centropomid Growth 

The habitat description for C. undecimalis by (McMichael et al. 1989) resembles 

that for habitats in which Texas centropomids were collected during this study.  

However, aside from inter-annual differences, this study did not detect differences in 

growth of centropomids among regions that could be temperature related.  Upper and 

middle coast sites, when sampled, did not vary significantly in their temperature regimes 

(ANOVA, p = 0.551).  However, comparison of lower coast water temperatures to the 

aforementioned regions (independently and combined) yielded statistical significance 

(ANOVA, p < 0.001).  The impact of salinity on growth in this study was not assessed.   

Temperature’s influence on centropomid growth rates has been assessed under 

aquaculture trials for C. parallelus and C. undecimalis (Zarza-Meza et al. 2006) and with 

wild C. undecimalis (McMichael et al. 1989).  These studies considered temperature a 

determinant factor in yielding growth variation (Neidig 2000, Alvarez-Lajonchère & 

Tsuzuki 2008, Cerqueira & Tsuzuki 2009), also observed in this study’s capture of C. 

parallelus during 2008.  However, this study’s lack of year-round sampling and 

associated hydrographic data limits the ability to assess variability in growth across 

regions.   

Hatch-date Distribution 

 The wide distribution of hatch dates for both species reflects a protracted 

spawning period.  These species spawn earlier than Florida’s C. undecimalis (Tucker & 

Campbell 1988, McMichael et al. 1989, Taylor et al. 1998) and Mexico’s C. parallelus 

(Chavez 1963).  Termination of spawning in Texas occurs in November and is similar to 



 

 

80 

that for Florida and Mexico conspecifics, and this implies that spawning behavior of C. 

parallelus and C. undecimalis throughout their North American range is generally 

similar.  Initiation of spawning might be temperature dependent (Figure 4.8), when 

highest spawning peaks coincide with or near yearly maximum temperatures.  However, 

(Chapman 1987), (Peters et al. 1998b), and (Yanes-Roca et al. 2009) reported that C. 

undecimalis in Florida spawned on either side of the new and full moon, correlating with 

stronger tides.  This study found that spawning activity of 2007 C. parallelus and 2006 

C. undecimalis corresponded with moon phase (Figure 4.9).  Additionally, the bulk of 

the spawning during this period alternated between species, with the majority of C. 

parallelus hatched under a new moon whereas most C. undecimalis hatched under a full 

moon.   

Conclusion 

 The present study has provided knowledge of centropomid growth and spawning 

periods in Texas that is considered prerequisite to strategic management of fisheries 

populations.  Additionally, identification of growth characteristics is important to 

generate growth models that can be used to better understand population dynamics and 

facilitate effective management of these species.  The findings of this study revealed that 

growth patterns for C. parallelus and C. undecimalis do not differ greatly from those of 

Florida C. undecimalis growth studies; however, further work is necessary to fully 

understand the settlement period of centropomids in Texas estuaries.  Identifying 

spawning locations and the dynamics of spawning frequency of these species through 

acoustic telemetry tags and histological analysis should aid in discovery of other 
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proximal settlement habitats.    

The comparisons made in this study of centropomid growth and hatch-date 

distributions should be further investigated due to the lack of year round sampling and 

the variations found among years sampled.  Findings generated by the present study 

should be considered a starting point for TPWD to further pursue research on 

centropomid age growth characteristics.  Even implementation of a small-scale mark and 

recapture project could aid TPWD in further understanding the growth, habitat use, and 

possible spawning characteristics of Centropomus species in Texas.  Moreover, 

examination of young-of-the-year and juvenile mortality, linkages between spawning 

grounds, and additional larval recruitment locations should be the next step in the 

research.  
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Figure 4.8.  Weekly hatch-date distributions for C. parallelus and C. undecimalis in Texas.  

Comparisons shown are for mean weekly water temperatures from Aransas Pass (x) and South 

Padre Island (+) during 2006 - 2009. 
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Figure 4.9.  Daily hatch date distributions for C. parallelus (2007) and C. undecimalis (2006) 

collected from Texas coastal waters and moon phase (● = full moon; ○ = new moon) during their 

collection. 
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CHAPTER V 

SUMMARY 

 

 Genetic analyses of 548 Texas captured centropomids resulted in successful 

identification of C. parallelus, C. poeyi, and C. undecimalis.  

 The capture of three C. poeyi is the first known occurrence of this species in 

Texas waters.  

 AMOVA for D – Loop sequences revealed significant differences between Texas 

and Florida/Costa Rica populations. 

 Morphological identification key developed by this study should aid fisheries 

biologist in correctly identifying Centropomus species. 

 Geographic distribution between the two dominant species varies with C. 

parallelus capture range extending from the Rio Grande to Galveston, whereas 

C. undecimalis ranged was limited from the Rio Grande to Palacios. 

 Faster growth rates were observed for C. undecimalis versus C. parallelus in 

Texas, additionally growth rates for Texas and Florida C. undecimalis 

assemblages.   

 Texas spawning season ranges from August to September for C. parallelus and 

from August to November for C. undecimalis. 



 

 

85 

LITERATURE CITED 

 

 

Adams A, Wolfe KR, Barkowski N, Overcash D (2009) Fidelity to spawning grounds by 

a catadromous fish Centropomus undecimalis. Marine Ecology Progress Series 

389:213-222 

Adams AJ, Dahlgren CP, Kellison GT, Kendall MS, Layman CA, Ley JA, Nagelkerken 

I, Serafy JE (2006) Nursery function of tropical back-reef systems. Marine 

Ecology Progress Series 318:287-301 

Adams AJ, Wolfe RK (2006) Cannibalism of juveniles by adult common snook 

(Centropomus undecimalis). Gulf of Mexico Science 24:11-13 

Ager LA, Hammond DE, Ware F (1976) Artificial spawning of snook. Proceedings of 

the Annual Conference of the Southeastern Association of Fish and Wildlife 

Agencies 166:158-166 

Aliaume C, Zerbi A, Joyeux JC, Miller JM (2000) Growth of juvenile Centropomus 

undecimalis in a tropical island. Environmental Biology of Fishes 59:299 

Aliaume C, Zerbi A, Miller JM, North C (1997) Nursery habitat and diet of juvenile 

Centropomus species in Puerto Rico estuaries. Gulf of Mexico Science 15:77-87 

Alvarez-Lajonchère L, Cerqueira VR, dos Reis M (2002a) Desarrollo embrionario y 

primeros estadios larvales del robalo chucumite, Centropomus parallelus Poey 

(Pisces, Centropomidae) con interes para su cultivo. Hidrobiologica 12:89-100 

Alvarez-Lajonchère L, Cerqueira VR, Silva ID, Araujo J, dos Reis M (2002b) Mass 

production of juveniles of the fat snook Centropomus parallelus in Brazil. 

Journal of the World Aquaculture Society 33:506-516 

Alvarez-Lajonchère L, Cerqueira VR, Silva ID, Araujo J, dos Reis M (2004) First basis 

for a sustained juvenile production technology of fat snook Centropomus 

parallelus Poey. Hidrobiologica 14:37-45 



 

 

86 

Alvarez-Lajonchère L, Taylor RG (2003) Economies of scale for juvenile production of 

common snook (Centropomus undecimalis Bloch). Aquaculture Economics and 

Management 7:273-292 

Alvarez-Lajonchère L, Tsuzuki MY (2008) A review of methods for Centropomus spp. 

(snooks) aquaculture and recommendations for the establishment of their culture 

in Latin America. Aquaculture Research 39:684-700 

Alves TT, Cerqueira VR, Brown JA (2006) Early weaning of fat snook (Centropomus 

parallelus Poey 1864) larvae. Aquaculture 253:334-342 

Anderson JD, Karel WJ (2009) A genetic assessment of current management strategies 

for spotted seatrout in Texas. Marine and Coastal Fisheries: Dynamics, 

Management, and Ecosystem Science 1:121-132 

Barber RT, Chavez FP (1983) Biological consequences of El Niño. Science 222:1203-

1210 

Bell JD, Steffe AS, Westoby M (1988) Location of seagrass beds in estuaries: effects on 

associated fish and decapods. Journal of Experimental Marine Biology and 

Ecology 122:127-146 

Blaber SJM, Blaber TG (1980) Factors affecting the distribution of juvenile estuarine 

and inshore fish. Journal of Fish Biology 17:143-162 

Blewett DA, Hensley RA, Stevens PW (2006) Feeding habits of common snook, 

Centropomus undecimalis, in Charlotte Harbor, Florida. Gulf and Caribbean 

Research 18:1-14 

Boesch D, Turner R (1984) Dependence of fishery species on salt marshes: The role of 

food and refuge. Estuaries and Coasts 7:460-468 

Breuer JP (1957) An ecological survey of Baffin and Alazan Bays. Publications of the 

Institute of Marine Science, University of Texas 4:134-155 

Breuer JP (1962) An ecological survey of the Lower Laguna Madre of Texas, 1953-

1959. Institute of Marine Science 8:153-183 

Breuer JP (1970) A biological survey of the tidewater areas of the Rio Grande. Project 

CF-2-1. (Job No 2), Coastal Fisheries Project Report 1969 and 1970 TPWD. 

Austin, Texas:127-139 



 

 

87 

Carvajal RJ (1975) Contribución al conocimiento de la biología de los róbalos 

Centropomus undecimalis y C. poeyi en la laguna de Términos, Campeche, 

México. Boletino del Instituto Oceanografico Universidad de Oriente, Cumana 

14:51-71 

Cerqueira VR, Macchiavello JAG, Brugger AM (1995) Produção de alevinos de robalo, 

Centropomus parallelus Poey, 1860, através de larvicultura intensiva em 

laboratório Proceedings of 7th Simpósio Brasileiro de Aqüicultura, Peruíbe, São 

Paulo, p 191-197 

Cerqueira VR, Tsuzuki MY (2009) A review of spawning induction, larviculture, and 

juvenile rearing of the fat snook, Centropomus parallelus. Fish Physiology and 

Biochemistry 35:17-28 

Chapman RW (1987) Changes in the population structure of male striped bass, Morone 

saxatilis, spawning in the three areas of the Chesapeake Bay from 1984 to 1986. 

Fishery Bulletin 85:167-170 

Chavez H (1961) Estudio de una nueva especie de robalo del Golfo de Mexico Y 

redescripcion de Centropomus undecimalis (Bloch) (Pisc., Centropom.). Ciencia 

21:75-83 

Chavez H (1963) Contribucion al conocimiento de la biologia de los robalos, chucumite 

y constantino (Centropomus sp) del Estado de Veracruz. Ciencia 5:141-161 

Chavez H (1981) Tagging of Centropomus poeyi in the Papalapan River Basin. Ciencia 

Pesquera 1:17-26 

Clement M, Posada D, Crandall KA (2000) TCS: A computer program to estimate gene 

genealogies. Molecular Ecology 9:1657-1659 

Contreras-Balderas S, Edwards RJ, Lozano-Vilano MDL, Garcia-Ramírez ME (2002) 

Fish biodiversity changes in the lower Rio Grande/Rio Bravo, 1953-1996. 

Reviews in Fish Biology and Fisheries 12:219-240 

Cooley NR (1974) Occurrence of snook on the north shore of the Gulf of Mexico. 

Florida Scientist 37:98-99 

Corrêa CF, Cerqueira VR (2007) Effects of stocking density and size distribution on 

growth, survival and cannibalism in juvenile fat snook (Centropomus parallelus 

Poey). Aquaculture Research 38:1627-1634 



 

 

88 

da Silva Rocha AJ, Gomes V, Van Ngan P, De Arruda Campos Rocha Passos MJ, Rios 

Furia R (2005) Metabolic demand and growth of juveniles of Centropomus 

parallelus as function of salinity. Journal of Experimental Marine Biology and 

Ecology 316:157-165 

Donaldson EM, Devlin RH, Solar II, Piferrer F (1993) The reproductive containment of 

genetically altered salmonids. NATO ASI (Advanced Science Institute) Series, 

Series A, Life Sciences 248:113-129 

Donaldson KA, Wilson RR (1999) Amphi-panamic geminates of snook (Percoidei: 

Centropomidae) provide a calibration of the divergence rate in the mitochondrial 

DNA control region of fishes. Molecular Phylogenetics and Evolution 13:208-

213 

Edwards RJ, Contreras-Balderas S (1991) Historical changes in the ichthyofauna of the 

lower Rio Grande (Rio Bravo del Norte), Texas and Mexico. The Southwestern 

Naturalist 36:201-212 

Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation 

and its relation to rainfall and river flows in the continental U.S. Geophysical 

Research Letters 28:2077-2080 

Engle V (2011) Estimating the provision of ecosystem services by Gulf of Mexico 

coastal wetlands. Wetlands 31:179-193 

Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to 

perform population genetics analyses under Linux and Windows. Molecular 

Ecology Resources 10:564-567 

Fore PL, Schmidt TW (1973) Biology of juvenile and adult snook, Centropomus 

undecimalis in the Ten Thousand Islands. In: Carter MR, Burns LA, Cavinder 

TR, Dugger KR, Fore PL, et al. (eds) Ecosystems Analysis of the Big Cypress 

Swamp and Estuaries. Environmental Protection Agency Publication Number 

EPA 904/9-74-002, Atlanta pXVI-1 - XVI-18 

García-Galano T, Gaxiola G, Pérez JC, Sánchez A (2003) Effect of feeding frequency on 

food intake, gastric evacuation and growth in juvenile snook, Centropomus 

undecimalis (Bloch). Revista de Investigaciones Marinas 24:10 



 

 

89 

Gilmore RG, Donahoe CJ, Cooke DW (1983) Observations of the distribution and 

biology of the east Florida populations of the common snook, Centropomus 

undecimalis (Bloch). Florida Scientist 46:313-336 

Greenfield DW (1975) Centropomus poeyi from Belize, with a key to the western 

Atlantic species of Centropomus. Copeia 1975:582-583 

Gunter G (1941) Death of fishes due to cold on the Texas coast, January, 1940. Ecology 

22:203-208 

Gunter G (1951) Destruction of fishes and other organisms on the south Texas coast by 

the cold wave of January 28-February 3, 1951. Ecology 32:731-736 

Hare JA, Able KW (2007) Mechanistic links between climate and fisheries along the 

east coast of the United States: explaining population outbursts of Atlantic 

croaker (Micropogonias undulatus). Fisheries Oceanography 16:31-45 

Holt SA, Holt GJ (1983) Cold death of fishes at Port Aransas, Texas: January 1982. The 

Southwestern Naturalist 28:464-466 

Hook JH (1991) Seasonal variation in relative abundance and species diversity of fishes 

in South Bay. Contributions in Marine Science 32:127-141 

Howells RG, Sonski AJ, Shafland PL, Hilton BD (1990) Lower temperature tolerance of 

snook, Centropomus undecimalis. Northeast Gulf Science 11:155-158 

IPCC (2008) Climate change and water IPCC, Geneva 

Jackson TL, Ockelmann-Lobello L (2006) Centropomidae: Snooks. In: Richards WJ 

(ed) Early stages of Atlantic fishes: an identification guide for the western central 

North Atlantic Vol 1. CRC Marine Biology Series, Boca Raton, p 1197-1206 

Joyeux JC, Aliaume C, Zerbi A (2001) Brief communications - An alternative to 

validation of otolith microincrementation. Journal of Fish Biology 58:873-879 

Larkin TJ, Bomar GW (1983) Climatic atlas of Texas. Texas Department of Water 

Resources Austin, Texas:151 

Lau SR, Shafland PL (1982) Larval development of snook, Centropomus undecimalis 

(Pisces: Centropomidae). Copeia 1982:618-627 



 

 

90 

Lemos D, Netto B, Germano A (2006) Energy budget of juvenile fat snook Centropomus 

parallelus fed live food. Comparative Biochemistry and Physiology - A 

Molecular and Integrative Physiology 144:33-40 

Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA 

polymorphism data. Bioinformatics 25:1451-1452 

Longley WL (1994) Freshwater inflows to Texas bays and estuaries: ecological 

relationships and methods for determination of needs, Vol. Texas Water 

Development Board and Texas Parks and Wildlife Department, Austin, Texas 

Marshall AR (1958) A survey of the snook fishery of Florida, with studies of the biology 

of the principal species, Centropomus undecimalis (Bloch), Vol, Virgina Key, 

Miami, Florida 

Martin JH, King TL (1991) Occurrence of fat snook (Centropomus parallelus) in Texas: 

evidence for a range extension. Contributions in Marine Science 32:123-126 

Martin JR, Shipp RL (1971) Occurrence of juvenile snook, Centropomus undecimalis, in 

North Carolina waters. Transactions of the American Fisheries Society 100:2 

Matlock GC, Osburn HR (1987) Demise of the snook fishery in Texas, USA. Northeast 

Gulf Science 9:53-58 

McEachran JD, Fechhelm JD (1998) Fishes of the Gulf of Mexico, Vol. University of 

Texas Press, Austin 

McMichael KM, Peters GR, Parsons GR (1989) Early life history of the snook, 

Centropomus undecimalis, in Tampa Bay, Florida. Northeast Gulf Science 

10:113-125 

Montagna P, Brenner J, Gibeaut J, Morehead S (2011) Coastal Impacts. In: Schmandt J, 

Clarkson J, North GR (eds) The impact of global warming on Texas. University 

of Texas Press, Austin 

Moore RH (1975) Occurrence of tropical marine fishes at Port Aransas, Texas 1967-

1973, related to sea temperatures. Copeia 1975:170-172 

Moore RH (1976) Observations on fishes killed by cold at Port Aransas, Texas, 11-12 

January 1973. The Southwestern Naturalist 20:461-466 



 

 

91 

Muller RG, Taylor RG (2006) The 2005 stock assessment update of common snook, 

Centropomus undecimalis, Vol. Fish and Wildlife Conservation Commission, 

Florida Marine Research  Institute, St. Petersburg, FL 

Neidig CL (2000) Techniques for spawning common snook: Broodstock handling, 

oocyte staging, and egg quality. North American Journal of Aquaculture 62:103-

113 

Nelson JS (2006) Fishes of the world, Vol. John Wiley, Hoboken, N.J. 

Onuf CP (1996) Biomass patterns in seagrass meadows of the Laguna Madre, Texas. 

Bulletin of Marine Science 58:404-420 

Orrell TM (2003) Centropomidae snooks. In: Carpenter KE (ed) The living marine 

resources of the Western Central Atlantic FAO Species identification guide for 

fishery purposes and American Society of Ichthyologists and Herpertologist 

p1286-1293 

Oviatt C (2004) The changing ecology of temperate coastal waters during a warming 

trend. Estuaries and Coasts 27:895-904 

Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. 

Annual Review of Ecology and Systematics 25:547-572 

Peters KM, Giordano SD, Adams JM, Fenwick RW, McWilliams RW, Berill NJ (1998a) 

Factors influencing the distribution of larvae of the common snook, Centropomus 

undecimalis (Bloch), in southwest Florida. Florida Marine Research 

Publications:33p 

Peters KM, Matheson Jr RE, Taylor RG (1998b) Reproduction and early life history of 

common snook, Centropomus undecimalis (Bloch), in Florida. Bulletin of 

Marine Science 62:509-529 

Pezold FL, Edwards RJ (1983) Additions to the Texas marine ichthyofauna, with notes 

on the Rio Grande estuary. The Southwestern Naturalist 28:102-105 

Pope KL, Blankinship DR, Fisher M, Patino R (2006) Status of the common snook 

(Centropomus undecimalis) in Texas. Texas Journal of Science 58:325-332 



 

 

92 

Preston BL (2004) Observed winter warming of the Chesapeake Bay estuary (1949–

2002): Implications for ecosystem management. Environmental Management 

34:125-139 

Prodocimo V, Tschá MK, Pie MR, Oliveira-Neto JF, Ostrensky A, Boeger WA (2008) 

Lack of genetic differentiation in the fat snook Centropomus parallelus 

(Teleostei: Centropomidae) along the Brazilian coast. Journal of Fish Biology 

73:2075-2082 

Ribeiro FF, Tsuzuki MY (2010) Compensatory growth responses in juvenile fat snook, 

Centropomus parallelus Poey, following food deprivation. Aquaculture Research 

41:e226-e233 

Rivas LR (1986) Systematic review of the perciform fishes of the genus Centropomus. 

Copeia 1986:579-611 

Roberts SB, Jackson LF, King V W, Taylor RG, Grier HJ, Sullivan CV (1999) Annual 

reproductive cycle of the common snook: Endocrine correlates of maturation. 

Transactions of the American Fisheries Society 128:436-445 

Roessig JM, Woodley CM, Cech JJ, Hansen LJ (2004) Effects of global climate change 

on marine and estuarine fishes and fisheries. Reviews in Fish Biology and 

Fisheries 14:251-275 

Rooker JR, Landry AM, Geary BW, Harper JA (2004) Assessment of a shell bank and 

associated substrates as nursery habitat of postsettlement red snapper. Estuarine, 

Coastal and Shelf Science 59:653-661 

Rozas LP, Minello TJ, Zimmerman RJ, Caldwell P (2007) Nekton populations, long-

term wetland loss, and the effect of recent habitat restoration in Galveston Bay, 

Texas, USA. Marine Ecology Progress Series 344:119-130 

Santos AA, Egami MI, Ranzani-Paiva MJT, Juliano Y (2009) Hematological parameters 

and phagocytic activity in fat snook (Centropomus parallelus): Seasonal 

variation, sex and gonadal maturation. Aquaculture 296:359-366 

Sazima I (2002) Juvenile snooks (Centropomidae) as mimics of mojarras (Gerreidae), 

with a review of aggressive mimicry in fishes. Environmental Biology of Fishes 

65:37-45 



 

 

93 

Schaefer RH (1972) First record of a snook from New York waters. New York Fish and 

Game Journal 19:182-183 

Seaman W, Collins M (1983) Species profiles: Life histories and environmental 

requirements of coastal fishes and invertebrates (south Florida) - snook. US Fish 

Wildlife Service FWS/OBS-82/1116  US Army Corps of Engineers TR EL-82-

4:16pp 

Secor DH, Campana SE, Zdanowicz VS, Lam JWH, Yang L, Rooker JR (2002) Inter-

laboratory comparison of Atlantic and Mediterranean bluefin tuna otolith 

microconstituents. ICES Journal of Marine Science 59:1294-1304 

Seyoum S, Tringali MD, Sullivan JG (2005) Isolation and characterization of 27 

polymorphic microsatellite loci for the common snook, Centropomus 

undecimalis. Molecular Ecology Notes 5:924-927 

Shafland PL, Foote KJ (1983) A lower lethal temperature for fingerling snook, 

Centropomus undecimalis. Northeast Gulf Science 6:175-177 

Sherrod CL, McMillan C (1981) Black mangrove, Avicennia germinans, in Texas: past 

and present distribution. Contributions in Marine Science 24:115-131 

Springer VG, Pirson J (1958) Fluctuations in the relative abundance of sport fishes as 

indicated by the catch at Port Aransas, Texas, 1952-1956. Publications of the 

Institute of Marine Science, University of Texas 5:169-185 

Stevens PW, Blewett DA, Poulakis GR (2007) Variable habitat use by juvenile common 

snook, Centropomus undecimalis (Pisces: Centropomidae): Applying a life-

history model in a southwest Florida estuary. Bulletin of Marine Science 80:93-

108 

Tamura K, Dudley J, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: 

Molecular evolutionary genetics analysis using maximum likelihood, 

evolutionary distance, and maximum parsimony methods. Molecular Biology 

and Evolution submitted 

Taylor RG, Grier HJ, Whittington JA (1998) Spawning rhythms of common snook in 

Florida. Journal of Fish Biology 53:502 



 

 

94 

Taylor RG, Whittington JA, Grier HJ, Crabtree RE (2000) Age, growth, maturation, and 

protandric sex reversal in common snook, Centropomus undecimalis, from the 

east and west coasts of south Florida. Fishery Bulletin 98:612-624 

Temple S, Cerqueira VR, Brown JA (2004) The effects of lowering prey density on the 

growth, survival and foraging behaviour of larval fat snook (Centropomus 

parallelus Poey 1860). Aquaculture 233:205-217 

Tolan JM, Fisher M (2009) Biological response to changes in climate patterns: 

Population increases of gray snapper (Lutjanus griseus) in Texas bays and 

estuaries. Fishery Bulletin 107:36-44 

Tolley SG, Dohner ET, Peebles EB (1987) Occurrence of larval snook, Centropomus 

undecimalis (Bloch), in Naples Bay, Florida. Florida Scientist 50:34-38 

Tringali MD, Bert TM (1996) The genetic stock structure of common snook 

(Centropomus undecimalis). Canadian Journal of Fisheries and Aquatic Sciences 

53:974 

Tringali MD, Bert TM (1998) Risk to genetic effective population size should be an 

important consideration in fish stock-enhancement programs. Bulletin of Marine 

Science 62:641-659 

Tringali MD, Bert TM, Seyoum S (1999a) Genetic identification of centropomine fishes. 

Transactions of the American Fisheries Society 128:446-458 

Tringali MD, Bert TM, Seyoum S, Bermingham E, Bartolacci D (1999b) Molecular 

phylogenetics and ecological diversification of the transisthmian fish genus 

Centropomus (Perciformes: Centropomidae). Molecular Phylogenetics and 

Evolution 13:193-207 

Tringali MD, Leber KM (1999) Genetic considerations during the experimental and 

expanded phases of snook stock enhancement. Bulletin of National Research 

Institute of Aquaculture 1:109-119 

Tringali MD, Seyoum S, Wallace EM, Higham M, Taylor RG, Trotter AA, Whittington 

JA (2008) Limits to the use of contemporary genetic analyses in delineating 

biological populations for restocking and stock enhancement. Reviews in 

Fisheries Science 16:111-116 



 

 

95 

Tsuzuki MY, Cardoso RF, Cerqueira VR (2008) Growth of juvenile fat snook 

Centropomus parallelus in cages at three stocking densities. Boletim do Instituto 

de Pesca 34:319-324 

Tsuzuki MY, Cerqueira VR, Teles A, Doneda S (2007a) Salinity tolerance of laboratory 

reared juveniles of the fat snook Centropomus parallelus. Brazilian Journal of 

Oceanography 55:1-5 

Tsuzuki MY, Sugai JK, Maciel JC, Francisco CJ, Cerqueira VR (2007b) Survival, 

growth and digestive enzyme activity of juveniles of the fat snook (Centropomus 

parallelus) reared at different salinities. Aquaculture 271:319-325 

Tucker JW, Campbell SW (1988) Spawning season of common snook along the east 

central Florida coast. Florida Scientist 51:1-6 

Tucker JW, Warlen SM (1986) Aging of common snook Centropomus undecimalis 

larvae using sagittal daily growth rings. Northeast Gulf Science 8:173-176 

Volpe AV (1951) Aspects of the biology of the common snook, Centropomus 

undecimalis (Bloch) of southwest Florida, Vol. Marine Laboratory, University of 

Miami, Miami 

Wilson RR, Donaldson KA, Frischer ME, Young TB (1997) Mitochondrial DNA control 

region of common snook and its prospect for use as a genetic tag. Transactions of 

the American Fisheries Society 126:594-606 

Winder M, Jassby AD, Mac Nally R (2011) Synergies between climate anomalies and 

hydrological modifications facilitate estuarine biotic invasions. Ecology Letters 

14:749-757 

Yanes-Roca C, Rhody N, Nystrom M, Main KL (2009) Effects of fatty acid composition 

and spawning season patterns on egg quality and larval survival in common 

snook (Centropomus undecimalis). Aquaculture 287:335-340 

Zarza-Meza EA, Berruecos-Villalobos JM, Vásquez-Peláez C, Álvarez-Torres P (2006) 

Experimental culture of snook Centropomus undecimalis and chucumite 

Centropomus parallelus (Perciformes: Centropomidae) in artisanal earthen 

ponds. Ciencas Marinas 32:219-227 

 

 



 

 

96 

APPENDIX A 

 

 

Figure A-1.  Consensus sequence of the 475bp segment of Texas captured Centropomus parallelus 

16s mtDNA gene. 
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Figure A-2. Consensus sequence of the 535bp segment of Texas captured Centropomus poeyi 16s 

mtDNA gene.  
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Figure A-3.  Consensus sequence of the 483bp segment of Texas captured Centropomus undecimalis 

16s mtDNA gene. 
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Figure A-4.  Consensus alignment of 181bp long segment of the D – loop of 82 Centropomus parallelus. 
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Figure A-4.  Continued.   
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Figure A-5.  Consensus alignment of 152bp long segment of the D – loop of 74 Centropomus undecimalis
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Figure A-5.  Continued.
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