
ACQUIRING 3D FULL-BODY MOTION FROM

NOISY AND AMBIGUOUS INPUT

A Dissertation

by

HUI LOU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2012

Major Subject: Computer Science

ACQUIRING 3D FULL-BODY MOTION FROM

NOISY AND AMBIGUOUS INPUT

A Dissertation

by

HUI LOU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Jinxiang Chai
Committee Members, Ergun Akleman

John Keyser
Dezhen Song

Head of Department, Duncan M. Walker

May 2012

Major Subject: Computer Science

iii

ABSTRACT

Acquiring 3D Full-body Motion from

Noisy and Ambiguous Input. (May 2012)

Hui Lou, B.S., University of Science and Technology of China

Chair of Advisory Committee: Dr. Jinxiang Chai

Natural human motion is highly demanded and widely used in a variety of appli-

cations such as video games and virtual realities. However, acquisition of full-body

motion remains challenging because the system must be capable of accurately cap-

turing a wide variety of human actions and does not require a considerable amount

of time and skill to assemble. For instance, commercial optical motion capture sys-

tems such as Vicon can capture human motion with high accuracy and resolution

while they often require post-processing by experts, which is time-consuming and

costly. Microsoft Kinect, despite its high popularity and wide applications, does not

provide accurate reconstruction of complex movements when significant occlusions

occur. This dissertation explores two different approaches that accurately recon-

struct full-body human motion from noisy and ambiguous input data captured by

commercial motion capture devices.

The first approach automatically generates high-quality human motion from noisy

data obtained from commercial optical motion capture systems, eliminating the need

for post-processing. The second approach accurately captures a wide variety of hu-

man motion even under significant occlusions by using color/depth data captured

by a single Kinect camera. The common theme that underlies two approaches is the

use of prior knowledge embedded in pre-recorded motion capture database to reduce

iv

the reconstruction ambiguity caused by noisy and ambiguous input and constrain

the solution to lie in the natural motion space. More specifically, the first approach

constructs a series of spatial-temporal filter bases from pre-captured human motion

data and employ them along with robust statistics techniques to filter noisy motion

data corrupted by noise/outliers. The second approach formulates the problem in a

Maximum a Posterior (MAP) framework and generates the most likely pose which

explains the observations as well as consistent with the patterns embedded in the

pre-recorded motion capture database. We demonstrate the effectiveness of our ap-

proaches through extensive numerical evaluations on synthetic data and comparisons

against results created by commercial motion capture systems. The first approach

can effectively denoise a wide variety of noisy motion data, including walking, run-

ning, jumping and swimming while the second approach is shown to be capable of

accurately reconstructing a wider range of motions compared with Microsoft Kinect.

v

DEDICATION

To All Whom I Love

vi

ACKNOWLEDGMENTS

Sometimes it is hard to believe that it has been five years and a half since I first

came to study at Texas A&M University. This journey is coming to an end. A lot

of things happened during this period and my feelings are very complicated at this

special moment. It is time to make a conclusion and welcome a new future. All

in all, I am very proud of myself for what I have decided and accomplished. Most

importantly, I am very grateful to a lot of people who have supported me along the

way.

First, I would like to thank my academic advisor, Professor Jinxiang Chai, for

his constant support, guidance, without which this dissertation would have been

impossible. Throughout the past years, I have gained profound understanding of

a lot of things, including and far beyond research topics. I have become a much

more mature, stronger, and more confident person and Dr. Chai is well deserving of

the credits. I would also like to thank all my committee members, Professor Ergun

Akleman, Professor John Keyser and Professor Dezhen Song, for their valuable time,

insightful feedback and support all the time. Besides, the classes I have taken from

Professor Keyser and Professor Song have greatly inspired my work.

I enjoy the experience of being a teaching assistant a lot, and I would love to thank

all the Professors I have worked with, who have made it wonderful, enjoyable and

rewarding. They are Dr. Jinxiang Chai, Dr. Walter Daugherity, Dr. Donald Friesen,

Dr. Teresa Leyk, Dr. Scott Schaefer and Dr. Ronnie Ward. I would also like to take

this opportunity to express my gratitude to the Department of Computer Science and

Engineering at Texas A&M University especially for the generous financial support.

vii

I am also very grateful to my lab mates Yenlin Chen, Jianyuan Min and Xiaolin

Wei for their generous help, support and the laughter they have brought to me. They

are very smart and diligent and I have learned a lot from them as a peer.

My Ph.D. life would be incomplete without mention of my dear friends who have

helped me in various ways. They are like colors and have made my life colorful and

interesting. In addition to my lab mates, they are Shu Du, Lei He, Ruoguan Huang,

Huajun Liu, Xiaoyong Li, Tingting Ma, Yanan Tao, Saira Viqar, Lei Wang, Qing

Xing, Wenjun Zhao etc.

Last, my deepest gratitude goes to my lovely family and my beloved fiancé Yang

Qin. They are always by my side throughout all the tears and joys, believing in me

and wishing me the best. I would never have gone this far without their encourage-

ment, comfort and love. I will cherish them in my heart forever.

viii

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . v

ACKNOWLEDGMENTS . vi

TABLE OF CONTENTS . viii

LIST OF TABLES . x

LIST OF FIGURES . xi

1. INTRODUCTION . 1

1.1 Contributions . 5
1.2 Organization . 6

2. EXAMPLE-BASED HUMAN MOTION DENOISING 7

2.1 Background . 9
2.2 Human Motion Denoising . 11

2.2.1 Construction of Filter Bases 12
2.2.2 Dealing with Outliers . 17
2.2.3 Objective Function . 18
2.2.4 Iterative Optimization . 19
2.2.5 Missing Data Fill-in . 22

2.3 Results . 23
2.3.1 Testing on Real Data . 24
2.3.2 Testing on Simulated Data . 25
2.3.3 Evaluation . 30

2.4 Discussion . 32

3. ACQUIRING 3D FULL-BODY HUMAN MOTION
USING A SINGLE KINECT DEVICE . 34

3.1 Background . 35
3.1.1 Marker-based Human Motion Capture 36
3.1.2 Markerless Human Motion Capture 37
3.1.3 Statistical Priors . 39

ix

Page

3.2 System Overview . 40
3.2.1 Problem Formulation . 41
3.2.2 Major Components . 43

3.3 Preprocessing . 44
3.3.1 Data Acquisition . 44
3.3.2 Tracking Initialization . 45

3.4 Observation Constraints Identification 47
3.4.1 3D Surface-based Constraints 48
3.4.2 3D Edge-based Constraints 50

3.5 Motion Priors Learning . 52
3.6 Runtime Optimization . 54
3.7 Results . 56

3.7.1 Experiments on Synthetic Data 57
3.7.2 Experiments on Real Data . 60

3.8 Discussion . 63

4. CONCLUSIONS AND FUTURE WORK 67

REFERENCES . 70

VITA . 78

x

LIST OF TABLES

TABLE Page

3.1 Details of testing examples. 59

3.2 Details of motion capture databases. 59

xi

LIST OF FIGURES

FIGURE Page

1.1 Commercial motion capture systems: (a) Xsens inertial motion capture
system [3]; (b) Ascension magnetic motion capture system [4]; (c) Vicon
optical motion capture system [1]; (d) Microsoft Kinect camera [2]. . . . 2

2.1 Example-based human motion denoising: (top) input motion data cor-
rupted by outliers (knee joint); (bottom) filtered motion data. 8

2.2 Reconstruction errors vs. the number of filter bases used within a fi-
nite size (20) window. The reconstruction errors are evaluated via cross-
validation techniques. 15

2.3 The robust estimator (Welsch function) vs. the least-square estimator:
(a) the function for measuring the residual distance (r) between the recon-
structed motion and noisy measurement (ρ(r)); (b) the influence function
for each data point (φ(r) = ∂ρ(r)/∂r); (c) the weights for each data point
(φ(r)/r). Note that the weights for outliers become zero for robust estimators. 16

2.4 Filtering real noisy motion data in 3D position space: (top left) the cor-
rupted motion data in position space; (bottom left) the filtered motion
data in position space; (top right) the corrupted motion data in joint-
angle space; (bottom right) the filtered motion data in joint-angle space. 24

2.5 Motion generalization: (left) joint angle values (knee) of training data
set, noisy motion data and filtered motion data; (right) joint angle values
(thorax) of training data set, noisy motion data and filtered motion data.
Note that knee joint is corrupted by outliers across the entire motion
while the thorax joint is not corrupted by any outliers. 26

2.6 Filling in missing data in the 3D position space: (top) missing motion
data in 3D position space; (middle) completed motion data in 3D position
space; (bottom) completed motion data in joint-angle space. 27

2.7 Comparisons with alternative signal denoising techniques: (left) recon-
struction errors vs. different noise levels; (right) reconstruction errors vs.
different percentages of outliers. 28

xii

FIGURE Page

2.8 Comparisons of joint angle values (thorax): (a) our result vs. ground
truth data; (b) our result vs. results obtained by three baseline filtering
algorithms. 29

2.9 Evaluation of the performance of the denoising algorithm with respect to
different window sizes: (a) filtering a noisy walking sequence (σ = 3); (b)
filling in missing values in a jumping sequence. The errors are measured
by degrees per joint angle per frame. 31

3.1 Results for 360 ◦ walking motion: (top left) Kinect results superimposed
on input color images; (bottom left) our results superimposed on input
depth data; (top right) 3D depth edges from observed depth data in yellow
and 3D depth edges from our results in pink; (bottom right) our results
rendered from another viewpoint. We use different colors to distinguish
left limbs from right limbs. 36

3.2 Skeleton model and colored depth points: (a) the simplified skeleton
model, with a different color for each bone; (b) 3D depth points with
colors from images, camera view (points displayed are downsampled by
9); (c) 3D depth points from a second view with the same downsampling
rate. 41

3.3 System overview. 42

3.4 First frame initialization: (a) joint projections superimposed on the corre-
sponding color image; magenta asterisks represent projections of 5 joints
of an initial given pose (head projection is out of image boundary); red
circles represent targets extracted from Kinect result; green downward-
pointing triangles represent the projections after optimization; (d) Kinect
result superimposed on the corresponding color image with red spheres
representing the 5 target joints used for optimization; (b) and (c) show
optimized poses, corresponding to green projections in (a), from 2 differ-
ent views along with depth points; (e) and (f) show optimized poses after
applying our tracking procedure to the pose shown in (b) for one time
step. 46

xiii

FIGURE Page

3.5 3D edges and closest correspondences. Rendered 3D edge is shown in
pink while observed 3D edge is shown in yellow and red lines connect 3D
points on the observed edge with their closest correspondences. The first
two images are from camera view and a second view. The third image
shows an enlarged view. 51

3.6 Comparisons on 2 sets of experiments: (a) comparisons on results ob-
tained using different components on synthetic dancing motion; (b) com-
parisons on results reconstructed using different motion priors on syn-
thetic bending motion. 58

3.7 Results for poker face motion: (top left) Kinect results superimposed on
input color images; (bottom left) our results superimposed on input color
images; (top right) Kinect results from another view; (bottom right) our
results from another view. 60

3.8 Results for yoga tree motion: (top left) Kinect results superimposed on
input color images; (bottom left) our results superimposed on input depth
data; (top right) observed 3D depth edges in yellow and rendered 3D
depth edges from our results; (bottom right) our results rendered from
another viewpoint. 61

3.9 Results for forward bending motion and diagonal bending motion: (top
left) Kinect results and depth edges for forward bending motion; (top
right) Kinect results and depth edges for diagonal bending motion; (bot-
tom left) our results for forward bending motion (camera view and a
second view); (bottom right) our results for diagonal bending motion
(camera view and a second view). 62

3.10 Results for front kicking motion and backward turning motion: (top left)
Kinect results and depth edges for front kicking motion; (top right) Kinect
results and depth edges for backward turning motion; (bottom left) our
results for front kicking motion (camera view and a second view); (bottom
right) our results for backward turning motion (camera view and a second
view). 63

xiv

FIGURE Page

3.11 3D edge evaluation: (top left) results without edge for sitting motion
(camera view and a second view), with results from camera view super-
imposed on input color images; (bottom left) results with edge for sitting
motion (camera view and a second view), with results from camera view
superimposed on input color images; (top right) results without edge for
yoga triangle motion (camera view and a second view), with results from
camera view superimposed on input color images; (bottom right) results
with edge for yoga triangle motion (camera view and a second view), with
results from camera view superimposed on input color images. 64

3.12 LPCA evaluation: (top left) results without LPCA for 360 ◦ walking mo-
tion (camera view and a second view), with results from camera view
superimposed on input color images; (bottom left) results with LPCA for
360 ◦ walking motion (camera view and a second view), with results from
camera view superimposed on input color images; (top right) results with-
out LPCA for yoga tree motion (camera view and a second view), with
results from camera view superimposed on input color images; (bottom
right) results with LPCA for yoga tree motion (camera view and a second
view), with results from camera view superimposed on input color images. 65

1

1. INTRODUCTION

Natural human motion data has been widely used in a lot of areas including

education, sports, video games, virtual realities and animation. There have been

great advances in human motion modeling, acquisition and synthesis in the past few

decades. Available popular commercial motion capture systems include inertial sys-

tems (Fig. 1.1 (a)), magnetic systems (Fig. 1.1 (b)), optical systems (Fig. 1.1 (c)) and

Microsoft Kinect (Fig. 1.1 (d)). While modern motion capturing technologies such

as optical and magnetic capturing systems enable high-accuracy capturing with high

frame rates, the capturing systems are usually expensive, intrusive, cumbersome and

restrictive. Moreover, they often require hours of manual post-processing, which is

not only time-consuming, but also error-prone. So, acquiring natural human motion

data in inexpensive and non-obtrusive ways has been a long-standing challenging

problem in the graphics and animation community. Furthermore, a practical system

must be capable of capturing a wide variety of motions, which is also an important

problem attracting numerous research efforts.

This dissertation explores motion reconstruction approaches from noisy and am-

biguous input data captured by two commercial motion capture devices, Vicon and

Kinect (Fig. 1.1 (c) and (d)). The first approach to be presented in Section 1 au-

tomatically reconstructs high-quality human motion from corrupted motion input

(containing outliers, noise or missing data) obtained from Vicon optical capturing

system [1] before post-processing, thereby saving significant amount of time and ef-

fort. The approach in Section 2 aims to accurately reconstruct a wide range of motion

from monocular color/depth sequences obtained from a single Kinect camera [2],

This dissertation follows the style of IEEE Transactions on Visualization and Computer Graphics.

2

which is even more challenging due to camera noise and especially self-occlusions

arising from monocular view.

(a) (b)

(c) (d)

Fig. 1.1. Commercial motion capture systems: (a) Xsens inertial
motion capture system [3]; (b) Ascension magnetic motion capture
system [4]; (c) Vicon optical motion capture system [1]; (d) Microsoft
Kinect camera [2].

3

A common challenge facing the two work explored in this dissertation is that

the input signals from both systems are noisy and ambiguous. More specifically,

motion capture data from optical motion capture systems like Vicon [1] frequently

contain missing data due to occlusions and outliers caused by matching ambiguities

between 2D markers. Non-optical commercial motion capture systems like inertial

systems [3] or magnetic systems [4] do not have occlusion problems but the obtained

data are often very noisy. Kinect sensors [2] are low-cost, however, the data from

Kinect sensors are very noisy and often contain missing data due to self-occlusions.

It is also ambiguous because 3D reconstruction requires associating each pixel with

corresponding bone segment.

The fundamental reason why the problems are so challenging is that human move-

ments are high dimensional and often cannot be accurately determined by noisy and

ambiguous inputs from current motion capture systems. Human body is very com-

plex, even a simplified human model usually contains at least 30 DOFs. However,

the DOFs are not completely independent of each other. Actually quite the contrary,

human motions are highly coordinated movements. For example, arms move in a

certain way along with legs’ movements in a walking motion; both legs move simi-

larly in a jumping motion. Besides, consecutive frames exhibit temporal coherence.

To model and utilize the patterns of natural human motion, we take advantage of

pre-recorded motion capture databases by learning statistical models, which is the

common theme underling both approaches to be presented in this dissertation. We

use Vicon, a commercial optical motion capture system, to record high-quality mo-

tion databases, which contains various styles of motions, such as walking, running,

jumping, dancing, boxing, bending, turning etc. We increase the variations of a

specific motion style by recording the same motion multiple times, for example in

different speeds, directions or moods as needed. Statistical models learned from the

4

databases constrain the search space to natural human motions. We have demon-

strated the effectiveness of data-driven priors in both systems of this dissertation.

The goals of the first work include filtering noise, removing outliers and filling

in missing data. Human motion denoising is challenging because human motion

involves highly coordinated movement, and the movements between different de-

grees of freedom are not independent. Standard signal denoising techniques such as

Gaussian low-pass filter and Kalman filter [5] often process each degree of freedom

independently. Therefore, motions filtered by standard filtering techniques often ap-

pear uncoordinated or unnatural because they cannot preserve the spatial-temporal

characteristics embedded in natural human motion. The problem becomes even more

complicated when captured motion data is corrupted by a certain percentage of out-

liers or missing values. In Section 1, we propose a novel data-driven technique for

human motion denoising. The proposed system not only filters corrupted motion

data but also keeps spatial-temporal patterns embedded in natural human motion

data.

The second work is closely related to vision-based motion tracking and recon-

struction [6–9], which has been an active research area for decades mainly because

its potential in providing an inexpensive and non-obtrusive way to obtain human

motion. Despite countless efforts and approaches from lots of researchers, it remains

an open problem due to the significant challenges e.g. inherent depth ambiguity from

a single view, occlusions, cloth/skin deformation, and illumination changes.

One popular approach for vision-based tracking and motion reconstruction is

model-based approach, which approximates human body as a skeleton model param-

eterized in joint angle space. At each time step, a pose configuration is estimated

which matches image measurements as well as being consistent with the previously

estimated pose. Common image measurements include intensities, edges and sil-

5

houettes. Model-based sequential tracking requires pose initialization at the first

frame and is subject to error accumulations. With the recent advances in sensing

technologies, there has been more and more research on utilizing depth cameras due

to their outstanding advantages, such as 3D information and low-cost. The ability

of providing 3D data makes monocular tracking using depth cameras very practical.

However, it remains a challenging problem due to strong noise in depth data and self-

occlusions arising from monocular data. In Section 2, we propose an approach which

effectively handles self-occlusions by taking advantage of prior knowledge embedded

in pre-recorded motion capture database.

1.1 Contributions

This dissertation explores two data-driven approaches to reconstruct full-body

human motion from noisy and ambiguous input data captured by commercial motion

capture devices, Vicon and Kinect. The effectiveness of both approaches is demon-

strated through extensive numerical evaluations on synthetic data and comparisons

against results created by commercial motion capture systems. More specifically, the

contributions are as follows:

Contributions of the first approach:

1. A data-driven filtering process for transforming corrupted motion capture data

obtained into high-quality motion data.

2. A spatial-temporal statistical motion model for effective motion modeling and

filtering.

3. A unified filtering framework that utilizes the constructed statistical motion

models to filter noise, remove outliers, and fill in missing data.

6

4. An efficient optimization procedure for finding the optimal solution of a data-

driven filtering problem.

Contributions of the second approach:

1. An online motion reconstruction process that sequentially reconstructs 3D

skeletal poses using color/depth sequences obtained from a single Kinect cam-

era.

2. A unified Maximum a Posterior (MAP) motion estimate framework that com-

bines depth data, color information and 3D edges with human motion priors

for 3D skeletal pose estimation.

3. An efficient optimization procedure for finding a MAP solution to our 3D

skeletal pose reconstruction problem.

1.2 Organization

This dissertation is organized as follows. In Section 1, we describe the details

of example-based human motion denoising on inputs from Vicon. Then, in Section

2, we present our work on reconstructing 3D full-body human movements from a

combination of color and depth information captured by a single Kinect camera. In

the end, we conclude the dissertation and discuss some future work.

7

2. EXAMPLE-BASED HUMAN MOTION DENOISING

One of the most popular and successful approaches for creating natural-looking

human animation is to use motion capture data. A recent notable example of motion

capture data is the movie Beowulf, where prerecorded motion data were used to

animate all of the characters in the film. Meanwhile, in the animation community,

a number of researchers have explored how to edit, transform, interpolate, retarget

and recompose captured motion data to achieve new tasks.

All of these exciting applications and developments start with an accurate ac-

quisition of high-quality human motion data. However, even with high-fidelity and

expensive motion capture equipment, motion capture data may still contain noise

and outliers that must be removed before further processing. For example, motion

data recorded by commercial optical systems such as Vicon [1] often includes outliers

and missing data, due to marker occlusions and mislabeling. Motion data captured

by inertial or magnetic systems is often corrupted by sensor noise, output drifting or

environment disturbances. However, the post-processing of noisy data often requires

manual user editing, which is not only time-consuming, but also error-prone.

Human motion denoising is challenging because human motion involves highly

coordinated movement, and the movements between different degrees of freedom

are not independent. Standard signal denoising techniques such as Gaussian low-

pass filter and Kalman filter [5] often process each degree of freedom independently.

Therefore, motions filtered by standard filtering techniques often appear uncoordi-

nated or unnatural because they cannot preserve the spatial-temporal characteristics

embedded in natural human motion. The problem becomes even more complicated

©2010 IEEE. Reprinted, with permission, from H. Lou and J. Chai, “Example-Based Human
Motion Denoising,” IEEE Transactions on Visualization and Computer Graphics, pp. 870–879,
2010.

8

Fig. 2.1. Example-based human motion denoising: (top) input mo-
tion data corrupted by outliers (knee joint); (bottom) filtered motion
data.

when captured motion data is corrupted by a certain percentage of outliers or missing

values.

This work proposes a novel data-driven technique for human motion denoising.

The proposed system not only filters corrupted motion data, including noise reduc-

tion, outlier removal and missing data completion, but also keeps spatial-temporal

patterns embedded in human motion data (see Fig. 2.1). The key idea of our ap-

proach is to automatically learn a series of spatial-temporal filter bases from pre-

recorded human motion data and use them to filter corrupted human motion data.

Mathematically, we formulate the motion denoising problem in a nonlinear optimiza-

tion framework. Our objective function measures the residual between the noisy

input and the filtered motion in addition to how well the filtered motion preserves

spatial-temporal patterns embedded in natural human motion. Optimizing the ob-

9

jective function generates high-quality human motion data which is “closest” to the

input data.

We demonstrate the performance of our system by testing the algorithm on real

and simulated motion data. We show how the system can effectively denoise a wide

variety of noisy motion data, including walking, running, jumping and swimming.

The quality of the filtered motions produced by our system highly depends on the

percentage of outliers and the noise level in the noisy data. Therefore, we also evalu-

ate how increasing or decreasing the percentage of outliers or the noise level influences

the filtering results. We show the superior performance of our algorithm by com-

paring it with one of the most advanced commercial motion capture data processing

software packages (Vicon Blade) and three baseline motion denoising techniques, in-

cluding Gaussian filter, general Kalman filter and data-driven Kalman filter. Finally,

we evaluate the performance of our algorithm in terms of filter bases learned from

different databases and the size of the filtering window.

2.1 Background

This section briefly reviews related work in human motion denoising. Our al-

gorithm is data driven–the system automatically learns a series of spatial-temporal

filter bases from pre-captured motion data and uses them along with robust statistics

techniques to filter noisy motion data. Consequently, we also discuss background in

data-driven methods and robust statistics.

One popular approach for denoising human motion data is to apply linear time-

invariant filters to noisy motion data [10–14]. For example, Lee and Shin [10] formu-

lated rotation smoothing as a non-linear optimization problem and derived smooth-

ing operators from a series of fairness functionals defined on orientation data. Fang

10

et al. [11] applied a low-pass filter to the estimated angular velocity of an input

signal to reconstruct a smooth angular motion by integrating the filter responses.

Lee and Shin [13] presented a linear time-invariant filtering framework for filtering

orientation data by transforming the orientation data into their analogues in a vector

space, applying a filter mask on them, and then transforming the results back to the

orientation space. Similar low-pass filters have also been implemented in commercial

motion capture packages such as Vicon Blade [14].

An alternative solution is to use the Kalman filter framework [5] to sequentially

filter noise present in human motion data [15, 16]. Shin and his colleagues [15]

applied the Kalman filter to transform the movements of a performer recorded by

an online optical motion capture system to an animated character in real-time. Tak

and Ko [16] adopted an unscented Kalman filter framework and used it to convert

a sequence of human motion data into a physically plausible motion sequence.

Unlike previous work, our denoising process is data-driven because the filter bases

are automatically constructed from prerecorded human motion data. One key ad-

vantage of the data-driven denoising approach is the preservation of spatial-temporal

patterns embedded in natural human motion data. It also enables us to detect and

remove outliers and fill in missing values.

Several researchers have also explored techniques that transform human motion

data into physically correct motion [17,18] or expressive animation [19]. For exam-

ple, Yamane and Nakamura [17] introduced a dynamics filter to convert a physically

infeasible source motion sequence into a feasible one. Recently, Wang and his col-

leagues [19] presented a cartoon animation filter that takes an arbitrary input motion

signal and modulates it in such a way that the output motion is more alive or ex-

aggerated. However, none of the systems have attempted to process human motion

data corrupted with outliers, noise and missing values.

11

Our work builds on the success of spatial-temporal human motion modeling for

human motion synthesis and processing. Recent efforts have focused on construct-

ing various motion models from pre-captured motion data and applying them in

such applications as motion synthesis [20–22], inverse kinematics [23, 24], motion

compression [25], motion quantification [26], motion registration [27], and footskate

detection [28]. Our work is different because we construct a series of spatial-temporal

filters with multi-channel singular spectrum analysis (M-SSA) [29,30] and use them

for human motion denoising. M-SSA has been successfully applied to many practical

problems in geophysics [30]. In this work, we significantly extend the idea of M-SSA

to human motion data modeling and filtering.

To filter noisy motion data corrupted by outliers, we apply robust estimators

[31, 32] to measure the residual between filtered motion and noisy input. Robust

statistics have also been applied to deal with outliers in graphics problems such as

3D mesh smoothing [33] and surface reconstruction [34].

2.2 Human Motion Denoising

The goal of this work is to develop a motion denoising algorithm for simultane-

ously filtering noise and outliers in input human motion data. To achieve this goal,

we propose to construct a series of filter bases from prerecorded human motion data

and use them along with robust statistics techniques for human motion denoising.

In this section, we first explain how to construct a series of filter bases from

pre-captured motion data (Section 2.2.1), and then discuss how to deal with outliers

from noisy motion data (Section 2.2.2). We formulate the motion denoising problem

in a nonlinear optimization framework and define the object function for human

motion denoising (Section 2.2.3). We develop an iterative algorithm for efficient

12

optimization of the object function (Section 2.2.4). Finally, we discuss how to extend

the framework to filling in missing values (Section 2.2.5).

2.2.1 Construction of Filter Bases

The key idea of our approach is to construct a series of filter bases that capture

spatial-temporal patterns embedded in natural human motion. We model a series of

filter bases using multi-channel singular spectrum analysis (M-SSA) [29, 30], which

is based on the use of the Singular-value decomposition of the trajectory matrix

obtained from training examples (time series data) by the method of delay. Ap-

plying the M-SSA to pre-captured human motion data enables us to identify a set

of orthogonal spatial-temporal patterns embedded in natural human motion data.

For simplicity’s sake, we focus our description on constructing the M-SSA from one

motion sequence.

Let {xl(t) : l = 1, ..., L; t = 1..., N} denote a sequence of prerecorded human

motion data used for training, where L is the number of degrees of freedom to define

a character pose and N is the number of the total frames. Let xt = [x1(t), ..., xL(t)]T

represent a full-body character pose at frame t. Similarly, let {yl(t) : l = 1, ..., L; t =

1..., T} be a sequence of noisy input motion data and let yt = [y1(t), ..., yL(t)]T denote

a character pose at frame t.

13

We first form a channel-specific trajectory matrix Xl by augmenting each channel

{xl(t) : t = 1, ..., N} of the training data with SN lagged copies of itself:

Xl =

xl(1) xl(2) . . . xl(M)

xl(2) xl(3) . . . xl(M + 1)

· · . . . ·

xl(SN) xl(SN + 1) . . . xl(N)

, (2.1)

where M is the size of the lagged windows and SN = N−M+1 is the total number of

the lagged windows across the entire training sequence. This is a standard procedure

in time series analysis [35], which essentially transfers a one-dimensional time series

{xl(t) : t = 1, ..., N} into a multi-dimensional time series {xml (i) : i = 1, ..., SN} with

vectors xml (i) = (xl(i), ..., xl(i + M − 1))′ ∈ RM . Each vector xml (i) characterizes

the temporal structure of the original time series and M is chosen large enough to

extract this temporal information.

We further form a fully augmented trajectory matrix:

D =
(
X1 X2 . . . XL

)
. (2.2)

To find the spatial-temporal patterns in degrees of freedom of human motion data,

we compute a grand lag covariance matrix CD as follows:

CD = DTD
SN

=

C1,1 C1,2 . . . C1,L

· C2,2 . . . ·

· · . . . ·

CL,1 CL,2 . . . CL,L

, (2.3)

14

where the blocks of CD are given by

Cl,l′ =
XT
l Xl′

SN
, l, l′ = 1, ..., L, (2.4)

with entries

(Cl,l′)j,j′ =
∑SN

n=1
xl(n+j−1)xl′ (n+j′−1)

SN
,

j, j′ = 1, ...,M.
(2.5)

The covariance matrix Cl,l′ computes the covariance between trajectories of the l-th

dof and the l′-th dof within a finite size (M) window. The grand lagged covariance

matrix CD is a symmetric M ×L by M ×L matrix, and it encodes spatial-temporal

correlations of all degrees of freedom within a finite size window M . For example,

the quantity (C3,4′)1,2′ encodes the correlation between the 3-rd dof of the 1-st frame

and the 4-th dof of the 2-nd frame within the window.

The key idea of the M-SSA is to apply the singular value decomposition (SVD)

technique to the grand lag covariance matrix CD and extract the spatial-temporal

patterns embedded in the captured motion data. More specifically, we use the SVD

technique to diagonalize the grand lagged covariance matrix and yield M ×L eigen-

vectors {ek ∈ RM×L|k = 1, ...,M × L}. The M × L eigen-vectors provide a set

of orthogonal filter bases, which can be used to reconstruct any segment of human

motion data within a finite size window M :

x1:M =
M×L∑
k=1

< ek,x1:M > ek, (2.6)

where the vector x1:M ∈ RM×L sequentially stacks all poses across the entire window

and the operator <> represents the dot product between two vectors. In practice,

human movement is highly correlated. Therefore, a small number of patterns are

15

Fig. 2.2. Reconstruction errors vs. the number of filter bases used
within a finite size (20) window. The reconstruction errors are eval-
uated via cross-validation techniques.

often sufficient to represent natural human motion variation within a finite size win-

dow. Fig. 2.2 shows that for human walking data, 50 filter bases might be sufficient

to model spatial-temporal variation within a window of size 20.

The extracted orthogonal eigen-bases are conceptually similar to “sine” and “co-

sine” waves in Fourier analysis. As a result, we can design similar “low-pass” filters

with orthogonal bases ek. This motivates us to design the following data-driven

filter:

z1:M =
∑K
k=1 cke

k

=
∑K
k=1 < ek,y1:M > ek,

(2.7)

where the vector z1:M ∈ RM×L sequentially stacks all poses of the filtered motion

across an entire window. The coefficients ck, k = 1, ..., K are the filter weights. The

cutoff threshold K is similar to cutoff frequency used in standard filters. In our

experiment, we automatically determine the cutoff threshold by keeping 99% of the

original motion variation.

As we’ve discussed earlier, the filter bases can be easily constructed by applying

the singular-value decomposition technique to the grand lag covariance matrix CD.

16

(a) (b)

(c)

Fig. 2.3. The robust estimator (Welsch function) vs. the least-
square estimator: (a) the function for measuring the residual distance
(r) between the reconstructed motion and noisy measurement (ρ(r));
(b) the influence function for each data point (φ(r) = ∂ρ(r)/∂r); (c)
the weights for each data point (φ(r)/r). Note that the weights for
outliers become zero for robust estimators.

The whole learning process runs very fast. For example, it takes about two minutes

to construct filter bases of a finite size window (20) from a training database of 2000

frames with our Matlab implementation.

17

2.2.2 Dealing with Outliers

Real motion data from optical motion capture systems often contains outliers due

to marker occlusions and mislabeling. However, the data-driven filter described in

Equation (2.7) will not work well for outliers because least-square solutions (i.e. the

dot product between the input data and eigen patterns) give too much influence to

outliers, and a single degree of freedom with a large error (an outlier) will deteriorate

the solution dramatically. One effective way to deal with outliers is to use robust

estimators to reduce the influence of outliers [31,32].

We measure the distance between the filtered data zl(t) and the noisy data yl(t)

with robust estimator ρ:

Edata(z1:T ,y1:T) =
∑
t

∑
l

ρ(zl(t)− yl(t)), (2.8)

where Edata measure the distance between the noisy input and the filtered motion.

The robust estimator ρ is a function of the residual rl(t) = zl(t)− yl(t) between the

noisy data and reconstructed data. The derivative of this function characterizes the

bias that a particular measurement has on the solution. In the least-square case, the

influence of data points increases linearly and is unbounded.

To increase robustness we only consider estimators for which the influences of

outliers tend to zero (see Fig. 2.3). We choose the Welsch estimator but the treatment

here could be equally applied to a wide variety of other estimators. A discussion of

various estimators can be found in [31,32].

Mathematically, the Welsch robust function is defined as follows:

ρ(r) =
p2

2
(1− exp(−r

2

p2
)), (2.9)

18

where the scalar p is a parameter for the robust estimator and r is the residual

between the measured data and reconstructed data, which equals to zl(t) − yl(t)

from equation (2.8). We experimentally set the parameter of Welsch estimator (p)

to 3.

2.2.3 Objective Function

We now combine the data-driven filter bases ek ∈ RM×L, k = 1, ..., K with the

robust estimator ρ(r) for robust filtering of noisy motion data. Mathematically, we

formulate the whole denoising process in an optimization framework. We define an

objective function by measuring the distance between the input motion yt and the

filtered motion zt as well as how well the filtered motion zt preserves the spatial-

temporal patterns ek, k = 1, .., K embedded in pre-captured motion data.

We denoise human motion data within a finite size window by solving the follow-

ing unconstrained optimization problem:

ĉ, ẑ1:M = arg min
c,z1:M

M∑
t=1

L∑
l=1

ρ(zl(t)− yl(t)) + λ‖z1:M − Ec‖2, (2.10)

where the matrix E = [e1...eK] stacks the filter bases ek, k = 1, ..., K constructed

from training data. The vector c = [c1, ..., cK]T stacks all the filter weights. The

first term, which is the robust estimation term defined in Equation (2.9), makes sure

the filtered motion stays as “close” as possible to the input motion (while discarding

outliers at the mean time). The second term is reformulated from the data-driven

filter described in Equation (2.7), and measures how well the filtered motion matches

the spatial-temporal patterns embedded in pre-captured motion data. The weight λ

controls the importance of two terms. We experimentally set the weight to 0.1.

19

To filter a motion sequence y1:T of the length T (T > M), we slide a window of

the size M throughout the motion and simultaneously compute the filtered motion

across the entire sequence. After summing over the optimization functions of all the

sliding windows, we have the following optimization problem:

{ĉs, ẑt} = arg min{cs},{zt}
∑T
t=1

∑L
l=1 ρ(zl(t)− yl(t))+

λ
∑S
s=1 ‖zs,1:M − Ecs‖2,

(2.11)

where the vectors cs and zs,1:M are the filtering coefficient and the filtered motion

for the s-th sliding window respectively. The quantity S = T −M + 1 is the total

number of sliding windows used for data filtering. Similarly, the first term evaluates

the distance between the input motion data y1:T , and the filtered motion data z1:T

across the entire sequence. The second term makes sure that the filtered motion

preserves spatial-temporal patterns embedded in human motion data.

2.2.4 Iterative Optimization

The overall cost function (Equation 2.11) includes two groups of unknowns: the

filtering coefficients cs, s = 1, ..., T − M + 1 for each sliding window, and the fil-

tered motion z1:T across the entire sequence. The total number of the optimization

parameters is K ∗ (T −M + 1) + T ∗ L.

We have found that direct optimization of the cost function is not efficient, partic-

ularly when T is large. The system often runs out of memory and becomes very slow;

the optimization is also prone to fall into local minima. To address these issues, we

introduce an iterative optimization algorithm to decompose the large optimization

problem into a series of small optimization problems that can be solved efficiently.

20

In each iteration, we keep one group of the unknowns constant and search for

the optimal update for the other group of unknowns. More precisely, we initialize

the filtered motion ẑ1:T with the noisy data y1:T . We then iteratively update the

filtered motion and the filtering coefficients until the solution converges: (i). keep

the filtered motion ẑ1:T constant and seek the optimal filtering coefficients cs; (ii).

keep the filtering coefficients cs constant and update the filtered motion ẑ1:T . We

discuss the two steps in more detail in the following section.

Weight Update

In this step, we keep the filtered motion ẑ1:T constant and seek an optimal update

of the filtering weights cs. Given the filtered motion ẑ1:T , we can estimate the

optimal filtering coefficients cs by decomposing the whole optimization function into

S = T −M + 1 independent quadratic functions:

ĉs = arg mincs ‖ẑs,1:M − Ecs‖2, s = 1, ..., S. (2.12)

The quadratic objective functions have the following closed-form solution:

{ĉs} = ET ẑs,1:M , s = 1, ..., S. (2.13)

21

Motion Update

After we update the filtering weights ĉs, we keep them temporarily constant and

use them to update the filtered motion ẑ1:T . This allows us to decompose the whole

optimization function into the T small independent optimization functions:

ẑt = arg minzt λ
∑m=min{M,t}
m=max{1,t−T+M} ‖zt − Emĉt−m+1‖2

+
∑
l ρ(zl(t)− yl(t)), t = 1, ..., T,

(2.14)

where the vector zt represents the filtered pose at frame t, t = 1, ..., T . The matrix

Em is an L×K matrix that stacks rows M(l − 1) + m, l = 1, ..., L of the matrix E.

The min and max functions are used to deal with the first and the last M−1 frames,

respectively.

The resulting optimization problem can be reformulated as an iteratively re-

weighted least square (IRLS) problem [32,36]. After applying IRLS to the objective

function in Equation (2.14), we can iteratively solve the following weighted least-

square problem:

ẑt = arg minzt λ
∑m=min{M,t}
m=max{1,t−T+M} ‖zt − Emĉt−m+1‖2

+
∑
l wl(t)(zl(t)− yl(t))2, t = 1, ..., T,

(2.15)

where the weights wl(t) can be computed by wl(t) = ϕ(zl(t)− yl(t))/zl(t)− yl(t) and ϕ(.)

is the derivative of the Welsch function ρ(.)

Iterative Optimization Procedure

Given an initial guess of the filtered motion, the motion denoising algorithm

iteratively updates the filtered motion and the filtering weights across the entire

22

sequence until the solution converges. The whole iterative procedure is outlined as

follows:

1. Initialize ẑ0
1:T = y1:T

2. Update the coefficients ĉs and the motion ẑ1:T

2.1. Update ĉs = ET ẑs,1:M s = 1, ..., S

2.2. Update motion ẑ1:T with IRLS techniques.

3. Repeat step 2 until the change of the cost function value is smaller than a

user-defined threshold.

The decomposition of the large optimization problem into a series of small op-

timization problem significantly speeds up the optimization process. In our experi-

ments, we have found that the algorithm typically converges after 10 to 20 iterations

(less than five seconds).

Post Processing

Given an appropriate set of training data, the example-based motion denoising

algorithm transforms noisy motion data into high-quality motion. However, the

filtered motion might violate kinematic constraints imposed by the environment be-

cause the filter bases do not encode foot contact information in motion data. The

most visible artifact is footskate. When this happens, the system uses the method

in [37] to correct the footskate artifact.

2.2.5 Missing Data Fill-in

Motion capture data from optical motion capture systems often contains missing

values due to marker occlusions. Our framework can easily be extended for filling in

missing values in motion capture data. We assume that the index to missing data

23

points is known in advance (this is often the case for optical motion capture systems).

We use binary weights αl,t ∈ {0, 1}, l = 1, ..., L; t = 1, ..., T to indicate whether or

not the observed data entries yl(t) contain missing data.

To reduce noise and remove outliers as well as fill in missing data, we solve the

following optimization problem:

{ĉs, ẑt} = arg min{cs},{zt}
∑T
t=1

∑L
l=1 αl,tρ(zl(t)− yl(t))

+λ
∑S
s=1 ‖zs,1:M − Ecs‖2.

(2.16)

Similarly, we use the iterative procedure described in Section 3.4.3 to efficiently

optimize the above objective function.

2.3 Results

The performance of our denoising algorithm has been evaluated with both real

and simulated noisy data. We first evaluate the performance of our algorithm using

real data captured by optical motion capture systems. Then we quantitatively assess

the accuracy of our system with simulated noisy data and compare it with three

baseline algorithms. The performance of our system highly depends on the filter

bases and size of filtering windows. Therefore, we also evaluate how the database

influences the resulting motion and how increasing or decreasing the window size

influences the accuracy of the filtering algorithm. Our results are best viewed in the

accompanying video although we show sample frames of a few results here.

We have tested our algorithm on a variety of human motion data, including

walking, running, jumping, and swimming. Our algorithm works well for both joint

angle data (.amc) and 3D marker position data (.c3d). In our experiments, all

of the data were originally captured at 120 fps and then downsampled to 30 fps.

24

Fig. 2.4. Filtering real noisy motion data in 3D position space:
(top left) the corrupted motion data in position space; (bottom left)
the filtered motion data in position space; (top right) the corrupted
motion data in joint-angle space; (bottom right) the filtered motion
data in joint-angle space.

Our training database is behavior-specific and typically contains a small number of

motion examples with different style variations. For example, the training data for

walking contains five walking examples with different speeds and step sizes. We set

the window size (M) to 20 frames. We automatically determine the number of bases

(K) by keeping the energy to be at 99%, that is, the energy of the K largest eigen

values is approximately 99% of the total energy.

2.3.1 Testing on Real Data

Due to occlusions and marker mislabeling, real motion capture data from Vicon

systems often contain a certain percentage of missing values and outliers. Our algo-

25

rithm can be used to filter noisy motion in both original marker position space (.c3d

files) and joint-angle space (.amc). Fig. 2.1 and Fig. 2.4 show the filtering results in

joint angle space and marker position space respectively.

We have evaluated the performance of our algorithm on real motion data captured

by optical motion capture systems (Vicon). Most corrupted motion capture data

reported here were downloaded from the CMU online motion capture library1. For

example, we constructed the filter bases from two online motion files “83-04.c3d”

and “83-55.c3d” and then use them to denoise one corrupted motion sequence “83-

68.c3d”. All three files are from the same subject (No. 83). Our experiments show

that our algorithm can filter motions that are not in the training database. Fig. 2.5

visualizes joint angle data (knee and thorax) of the training examples, the input

noisy motion data, and the filtered motion data, respectively. Note that the filtered

motion has a different phase and scale from the training data set.

We also tested our algorithm on completing missing data in both joint angle and

marker position space. Fig. 2.6 shows sample frames of our results, where all the

markers on both arms are completely missing.

2.3.2 Testing on Simulated Data

We have quantitatively assessed the performance of our algorithm by comparing

it with three baseline human motion denoising techniques: Gaussian filter, the simple

general Kalman filter [5], and the data-driven Kalman filter. We applied a standard

Gaussian filter to every degree of freedom independently. We experimentally set

the window size to 11. We also implemented two types of Kalman filter. For the

first one, we set its system matrices to identity matrices by simply choosing the

1http://mocap.cs.cmu.edu

26

(a)

(b)

Fig. 2.5. Motion generalization: (left) joint angle values (knee) of
training data set, noisy motion data and filtered motion data; (right)
joint angle values (thorax) of training data set, noisy motion data and
filtered motion data. Note that knee joint is corrupted by outliers
across the entire motion while the thorax joint is not corrupted by
any outliers.

27

Fig. 2.6. Filling in missing data in the 3D position space: (top)
missing motion data in 3D position space; (middle) completed motion
data in 3D position space; (bottom) completed motion data in joint-
angle space.

28

Fig. 2.7. Comparisons with alternative signal denoising techniques:
(left) reconstruction errors vs. different noise levels; (right) recon-
struction errors vs. different percentages of outliers.

29

prediction model as follows: zl(t+ 1) = zl(t) + N(0, σ). The second Kalman filter is

a simple data-driven algorithm, which learns the system matrices from the same set

of training data as used in our algorithm.

Our evaluation is based on simulated noisy motion data corrupted by different

percentages of outliers and different levels of Gaussian noise. We tested a number

of trials on each setting and computed the average reconstruction errors measured

by degrees per joint angle per frame. More specifically, we pulled testing motion

sequences out of the training database and added simulated noise to the testing

motion sequence. We then employed our algorithm as well as baseline algorithms

to filter the simulated noisy motion data. The filtering error is computed by the

average squared distance between the filtered motion data and ground truth data.

(a) (b)

Fig. 2.8. Comparisons of joint angle values (thorax): (a) our result
vs. ground truth data; (b) our result vs. results obtained by three
baseline filtering algorithms.

Fig. 2.7 shows the comparison of four algorithms under various outlier percentages

and noise levels. Our algorithm produces the best results for all testing scenarios.

Fig. 2.8.(b) shows how both Gaussian filter and general Kalman filters fail to detect

30

and remove outliers in the corrupted motion data. A simple data-driven Kalman filter

cannot preserve spatial-temporal patterns in the input motion. Only our algorithm

can filter noise and remove outliers while still keeping spatial-temporal patterns in

the input motion.

2.3.3 Evaluation

The quality of the filtered motion depends on the filtering priors and the size of

the filtering window. Therefore, we have designed several experiments to evaluate

the performance of our algorithm.

Different filtering priors. We have evaluated the importance of filter bases

by filtering the same set of noisy examples with priors learned from different motion

databases. More specifically, we have tested on filtering noisy walking data with filter

bases learned from a small walking data, a large walking database, and a mixed

database which includes walking and running data. The small walking database

includes 1624 frames of walking data recorded from the same motion capture subject

as the testing data. The large walking database contains 60452 frames of walking

data collected from 15 different subjects. The mixed database includes 45419 frames

of walking and running data from 10 different subjects. The accompanying video

shows the denoising results with different motion priors. We have observed that the

system can produce good results for all three databases. However, the quality of the

filtered motion becomes slightly worse when we use a large or mixed database to filter

the noisy walking motion. This is due to the fact that spatial-temporal models are

built on the entire database and larger databases tend to have more variations than

necessary for the corrupted input motion, thereby lowering the quality of filtering. In

addition to the good results on walking data, the system can produce a good result

31

when we filter a noisy running sequence with filter bases learned from the mixed

database.

(a) (b)

Fig. 2.9. Evaluation of the performance of the denoising algorithm
with respect to different window sizes: (a) filtering a noisy walking
sequence (σ = 3); (b) filling in missing values in a jumping sequence.
The errors are measured by degrees per joint angle per frame.

Different window sizes. We quantitatively evaluated the effectiveness of our

algorithm with respect to different window sizes (M). More specifically, we pulled a

testing motion sequence out of the database, and added the simulated noise to the

testing data. Next, we applied our filtering algorithm to transform the simulated

noisy data into the filtered data, and compared the filtered data with ground truth

data. In our experiments, we have observed that the influence of the window size

on the performance of our algorithm is action-specific. For example, Fig. 2.9.(a)

shows the filtering errors for a noisy walking sequence (σ = 3) with respect to

different window sizes. The filtering errors are relatively large when the window

size is smaller than 10. However, when the window size is larger than 10, the error

becomes relatively insensitive to the window size. Fig. 2.9.(b) shows the filtering

errors for filling in missing values in a jumping sequence with respect to different

32

window sizes. Please note that there is a drop in reconstruction error for the jumping

data around window size of 60, but not for the walking data. This can be explained

by the fact that the jumping motion (180 ◦ jumping) has a longer cycle than normal

walking motion, which therefore requires a larger window which needs to be large

enough to better capture the temporal structure of the jumping motion, producing

a smaller reconstruction error.

The accompanying video also shows a comparison with one of the most advanced

motion capture softwares Vicon Blade. Our method produces better results than

Vicon Blade. In particular when markers on both arms are missing throughout the

motion, Vicon Blade fails to handle this case. In contrast, our algorithm successfully

fills in the missing data on both arms across the entire sequence (see Fig. 2.6).

The system often fails to generate a good result if the training data does not

contain any variations of the input motion. As shown in the accompanying video,

the system produce poor results when we filter noisy walking data using the filter

bases learned from a running database. Similarly, it is not appropriate to use a

walking prior to fill in the missing values in a running sequence.

2.4 Discussion

We have presented an example-based algorithm for human motion data denoising.

The key idea of our approach is to construct a series of filter bases from pre-captured

human motion data and employ them along with robust statistics techniques to filter

noisy motion data corrupted by outliers.

The constructed filter bases are similar in spirit to other filter bases used in

signal processing community, such as “sine” waves, “cosine” waves, and “wavelet”

bases. They are normalized and orthogonal to each other; a complete set of the

33

filter bases can be used to uniquely reconstruct a segment of human motion data

within a specific window size. One unique property of our filtering process is that

it keeps important human motion patterns while discarding patterns that cannot be

interpreted by training data. Therefore, the data-driven denoising filters can still

keep high-frequency components of the input motion because frequent patterns may

still contain high-frequency components. Another benefit of the data-driven filter

bases is that it enables the system to detect outliers and fill in missing values.

Similar to other data-driven methods, one limitation of our approach is that an

appropriate database must be available. We require the training data be “clean”

(perceptually high-quality) and contain similar motion patterns of the input motion.

Fig. 2.5 shows that our algorithm can filter an input motion sequence that is different

from captured motion data. However, filtering the noisy input with completely dif-

ferent motion patterns (denoising walking data with running patterns, for instance)

is not likely to yield reasonable results.

Our system has generated good results by filtering motion data containing differ-

ent levels of noise and different percentages of outliers. We have observed that the

denoising results deteriorate rapidly when the percentage of outliers is larger than

15%. However, we have not rigorously assessed when our system will break down.

In the future, we would like to explore how to construct spatial-temporal filter

bases from the noisy data itself. It might be possible to extend our optimization

framework to simultaneously estimate spatial-temporal filter bases ek, k = 1, ..., K,

filtered motion ẑ1:T , and coefficients ĉs, s = 1, ..., S from noisy input data ŷ1:T . In

addition, we plan to add joint angle limit constraints into the motion denoising

framework in our future work.

34

3. ACQUIRING 3D FULL-BODY HUMAN MOTION

USING A SINGLE KINECT DEVICE

Natural human motion is highly demanded and widely used in a variety of appli-

cations such as video games and virtual realities. However, acquisition of full-body

motion at low-cost remains challenging because, meanwhile, the system must be

capable of accurately capturing a wide variety of human actions. For instance, com-

mercial optical motion capture systems such as Vicon, despite its high accuracy and

frame rate, are very expensive, intrusive and require significant setup and cleanup

time and efforts. Due to these limitations, a lot of work have been contributed to

video-based motion capture [7–9], which does not require the use of tight suits or

markers and also provides a cheap solution. Despite countless efforts from lots of

researchers, it remains an open problem due to the significant challenges e.g. inher-

ent depth ambiguity from a single view video, occlusions, cloth/skin deformation,

and illumination changes. With the recent advances in sensor technologies, much

further progress has been made by utilizing low-cost depth cameras to capture mo-

tion [38–41]. Microsoft Kinect [2] is a very successful example among these work.

Despite its high popularity and wide applications, Microsoft Kinect does not provide

accurate reconstruction of complex movements when significant occlusions occur.

This paper explores an approach that accurately reconstructs a wide variety of 3D

full-body human motion from monocular color/depth sequences captured by a single

Kinect camera.

Different from the detection algorithm used in Microsoft Kinect, however, our

approach is based on a simplified skeleton model and treats the problem as a model-

based tracking problem. Human motion is advanced from time t to time t+1, given

estimated initial pose at the first frame, and observations, including both color and

35

depth data, at time t and t+ 1. At each time step, a pose configuration is estimated

which matches color/depth measurements as well as being consistent with the prior

knowledge. The problem is essentially formulated as a Maximum a Posterior (MAP)

problem by combining observations and prior knowledge. Maximizing the posterior

generates the most likely pose which explains the new observations and is also con-

sistent with the patterns embedded in the pre-recorded motion capture database.

Observed 3D points, containing both color and depth information, are utilized to

measure the likelihood of a pose. Besides, 3D depth edges are introduced to enhance

the quality of the measurement and proved to be effective in preventing error drifting

particularly in the case of fast movements or large body parts partially occluded by

small body parts (e.g. arms in front of the torso). However, there is another type

of occlusion where body parts disappear mostly or completely for a short period

time due to occlusions (e.g. one arm and one leg are occluded periodically during

profile walking). To reduce ambiguities introduced by this type of occlusions as well

as motion blurs, illumination changes and cloth deformations, we incorporate local

motion priors into our framework to serve as additional constraints. We demonstrate

the effectiveness of our approach by performing numerical evaluations on synthetic

data and comparisons with Kinect results on real data. Our approach is shown to be

capable of reconstructing a wider range of motions compared with Kinect (Fig. 3.1).

3.1 Background

Our work falls into the category of markerless human motion capture. So we will

focus on the related work in this area in general. It would be incomplete, however,

if we omit its counterpart, marker-based human motion capture, so we first briefly

review the marker-based motion capture techniques available and the limitations.

36

Fig. 3.1. Results for 360 ◦ walking motion: (top left) Kinect results
superimposed on input color images; (bottom left) our results su-
perimposed on input depth data; (top right) 3D depth edges from
observed depth data in yellow and 3D depth edges from our results
in pink; (bottom right) our results rendered from another viewpoint.
We use different colors to distinguish left limbs from right limbs.

3.1.1 Marker-based Human Motion Capture

Marker-based motion capture techniques have been commercialized for quite a

while and have influenced a lot of areas, including education, sports, and recently,

computer animation for tvs and movies, video games, virtual realities etc. Vicon [1]

is one of the most accurate optical commercial motion capture systems using this

kind of technologies. However, it requires the performers wear skin-tight clothing and

a set of retro-reflective markers, usually in the number of 40-50, which is not only

intrusive, but also cumbersome. Besides, it needs a significant amount of setup time

and often demands hours of post-processing by high-skilled experts. Furthermore, it

is very expensive. Those limitations drive a lot of researchers to dedicate themselves

to markerless motion capture.

37

3.1.2 Markerless Human Motion Capture

Markerless human motion capture have been studied for more than two decades

and remains an active research area in computer vision and computer animation

community. There is a vast literature on this topic and the reader is referred to [6–9]

for a complete overview.

Studies can be divided into two main categories depending on whether human

models are used or not, model-based [42–44], and model-free methods [45–49]. Model-

based approaches typically define and use a humanoid kinematic model to find a

sequence of pose configurations that best matches the observations by using an

analysis-by-synthesis methodology. These approaches typically require an initial

pose at the first frame to activate the tracking. Model-free methods, on the con-

trary, do not assume a priori skeleton model and estimate poses by probabilistically

assembling detected and labeled body parts in 2D in a bottom-up approach [50–53],

or by learning a mapping from 2D image features such as silhouettes to 3D poses

directly [48, 54–56], or by looking up a database of exemplars together with their

corresponding pose descriptors to find the most similar example [49,57–60]

Approaches can also be classified as single hypothesis or multiple hypothesis.

For example, single hypothesis approaches are mostly local-optimization methods

[42,61,62], which often suffer from error accumulations. Multiple hypothesis methods

use sampling-based approaches [44,63–67] to track non-linear motion and reduce the

possibilities of getting stuck in local minimums. In contrary to sequential tracking,

batch methods [54,68–70] optimize poses over a window of frames or an entire motion.

Methods also fall into two classes based on the number of cameras used, monoc-

ular and multi-view [43, 71]. Monocular work [56, 72–77] is very appealing since, in

many applications, only a single camera or an image sequence from a single view is

38

available. However, it is much more challenging compared with multi-view work due

to the inherent depth ambiguities caused by 2D observations from one view. The

techniques employed often add additional constraints such as kinematic constraints,

or key frame constraints or movement constraints [42,62,78] etc.

Besides, there are a number of researchers dedicating themselves to markerless

performance capture, which captures more detailed body deformations [71, 79–82].

For instance, the work by De Aguiar et al. [71] allow subjects to wear everyday

apparel, such as a skirt in a dancing motion. It recovers poses by deforming mesh

models of the subjects to match recorded images from 8 synchronized video cameras.

There are also commercial systems available for markerless motion capture, including

Organic Motion [83].

Our approach falls into the category of model-based single hypothesis sequential

tracking.

With the recent availability of low-cost depth cameras, more research efforts have

been put on markerless motion capture using depth data [38–41,84,85,85–91]. Grest

et al. [39] use Iterative Closest Point (ICP) technique to sequentially track an articu-

lated mesh model from monocular depth data along with silhouette correspondences

between the projected model and the image, mainly for upper body movements. ICP

technique is also used in [40], which uses degenerated cylinders to model all body

parts and combines 2D tracking results based on features of face and hands into the

tracking framework. Besides tracking approaches, there are detection techniques,

which usually do not assume a priori skeleton model and estimate poses by prob-

abilistically assembling detected body parts in a bottom-up approach. Plagemann

et al. [85] construct 3D meshes to detect geodesic extrema interest points and then

apply learned patch classifiers to label them as head, hands or feet without distin-

guishing left from right. The core algorithm [41] used in Microsoft Kinect also takes

39

a detection approach by formulating it as a per-pixel classification problem for each

frame independently. It trains Randomized Decision Forests on a large synthetic

depth image database rendered from motion capture data. Plagemann et al. [86]

directly predict joint positions by regression based on Hough forests. Research ef-

forts have also been put into combining detection and tracking techniques to benefit

from both. Siddiqui and Medioni [87] combine bottom-up detections results and top-

down likelihood in a data-driven MCMC framework for upper body pose estimation.

Ganapathi and his colleagues [88] utilize body part detections obtained from [85] and

further conduct local model-based search exploiting kinematic and temporal infor-

mation. Ye et al. [89] utilize a data-driven pose detection technique to first identify

a similar pose in the pre-captured motion database and then refine pose through

non-rigid registration. Baak et al. [90] contribute in a similar manner by combining

local optimization with global retrieval techniques.

Our work differs from any of the above work since we use a combination of

color/depth and 3D edge information in our tracking and, most importantly, utilize

effective local statistical priors to help reduce ambiguities, which makes the system

more robust and reliable. To the best of our knowledge, none of the previous ap-

proaches have demonstrated the capability of reconstructing such a wide variety of

complex movements with high accuracy.

3.1.3 Statistical Priors

There has been a long history of using statistical priors learned from prerecorded

motion capture database to model, synthesize and track human motions due to

their compact representations and generalizabilities. Approaches mainly fall into

two categories, generative approaches [24, 72, 77, 92–101] and discriminative meth-

40

ods [45, 55, 56, 102, 103]. Howe et al. [72] build a mixture-of-Gaussians probability

density model from training data and recover 3D motion from snippets of 2D track-

ing data by solving a Maximum A Posterior (MAP) problem. Chai et al. [24] learn a

series of online Principle Component Analysis (PCA) models from pre-recorded mo-

tion capture database to reconstruct motion from low-dimensional signals from two

views. The authors of [104] explore temporal motion models by performing PCA on

a multi-activity database. Lou et al. [100] learn spatial-temporal patterns embedded

in motion capture database to automatically clean up noisy motion capture data.

Baak et al. [99] integrate motion priors dynamically retrieved from databases to sta-

bilize sequential tracking. Li et al. [105] learn globally coordinated mixture of factor

analyzers from motion capture data with each fact analyzer modeling a part of the

manifold. While inspired by the work in [24], our second approach in this disserta-

tion differs from [24] in two ways. First, temporal coherence is used implicitly in our

work. Second, we combine online models with monocular depth data, color infor-

mation and 3D edges rather than 3D marker positions obtained from synchronized

cameras.

3.2 System Overview

The key idea of this approach is to identify important cues from the color/depth

observations and combine them with prior knowledge to significantly reduce recon-

struction ambiguities due to self-occlusions, lighting changes, clothes deformations

etc.

41

(a) (b) (c)

Fig. 3.2. Skeleton model and colored depth points: (a) the simplified
skeleton model, with a different color for each bone; (b) 3D depth
points with colors from images, camera view (points displayed are
downsampled by 9); (c) 3D depth points from a second view with
the same downsampling rate.

3.2.1 Problem Formulation

First, our work employs a simplified articulated skeleton model of 15 bones as

shown in Fig. 3.2 (a), which has 34 DOFs totally including root rotation and transla-

tion. Bones are represented by elliptic cylinders and spheres, e.g. head is modeled as

two spheres at ends and one cylinder in the middle, and torso is modeled as a single

cylinder. Given this model, pose at each frame is parameterized in 34-dimensional

space and tracking essentially becomes a parameter estimation problem for each

frame.

Assume known pose configuration qt at time t, then at time t + 1, we formulate

the parameter estimation problem in a Maximum a Posterior (MAP) framework.

The goal is to infer the most likely pose qt+1, given the new observation ct+1 at time

t+ 1 along with the previous pose qt and ct. Based on Bayes’ theorem, we have

arg maxq Pr(q|c) = arg maxq
Pr(c|q)Pr(q)

Pr(c)

∝ arg maxq Pr(c|q)Pr(q)
(3.1)

42

Fig. 3.3. System overview.

where Pr(c) is a normalizing constant, Pr(q) represents the prior probability and

Pr(c|q) is a likelihood probability.

Take the negative log of Pr(q|c), the maximization problem described in Equation

3.1 becomes a minimization problem as follows:

q̂ = arg minq−lnPr(q|c)

= arg minq−lnPr(c|q)︸ ︷︷ ︸
Elikelihood

−lnPr(q)︸ ︷︷ ︸
Eprior

(3.2)

where the first term measures how well a pose matches the observations and the sec-

ond term measures the a priori likelihood of the pose using the knowledge embedded

in the pre-recorded motion data.

43

3.2.2 Major Components

The system consists of four major components (see Fig. 3.3):

Preprocessing. Before running our algorithm, we need to capture and process

data using a Kinect device with the assistance of Kinect SDK [106]. Also, the pose

for the first frame, q0, needs to be estimated to initialize the tracking process. Please

note that we assume skeleton models of the subjects are known in advance.

Observation Constraints Identification. Our system employs two main cri-

teria to evaluate how well a pose matches the observations, 3D surface-based con-

straints and 3D edge-based constraints. The former measures the match between the

rendered surface points and observed surface points, while the latter measures the

consistency between the rendered edge points and observed edge points. This step

takes current pose qt, Image sequence, Depth sequence and Skeleton model (Fig. 3.3)

as inputs and produces two terms for our overall objective function, Surface term

and Edge term as shown in Fig. 3.3.

Motion Priors Learning. Our system automatically learns a local statistical

model from selected motion capture data at each time t + 1 based on the previous

pose qt. The learned model adds additional knowledge or constraints to help reduce

the ambiguities arising especially due to occlusions. This correspondes to Prior term

in Fig. 3.3.

Runtime Optimization. At each time t+ 1, our system solves a linear system

iteratively to automatically find a pose qt+1 that best matches the constraints from

the observations and is also consistent with the statistical patterns learned from the

pre-captured data. We also use Smoothness term (Fig. 3.3) to help avoid sudden

pose changes. This optimization is done by minimizing the overall objective function

44

consisting of all these four terms. Reconstructed qt+1 will be used as a previous pose

for the estimation of a new current pose qt+2.

The preprocessing step is done off-line, while the rest are performed online se-

quentially. We describe these components in detail in the next four sections.

3.3 Preprocessing

In this section, we describe two steps prior to running our algorithm. The first

step involves recording data from Kinect online, and processing recorded data off-

line, which is relatively computational expensive and will decrease the frame rate if

done in the online step. The second step prepares the initial pose for the tracking.

3.3.1 Data Acquisition

The recent release of Kinect SDK [106] has made both the data capturing and

comparisons a lot easier. A single Kinect device, consisting of a depth camera and a

video camera, is used as the source for all the real data used in our experiments. We

simultaneously record video data with a resolution of 640 × 480 pixels, depth data

of 320 × 240 pixels, and pose estimations while a subject wearing normal clothes

performs in front of the Kinect cameras. Afterwards, video data with a resolution

of 320 × 240 pixels is obtained by registering the coordinate system of the video

camera to that of the depth camera. Meanwhile, 3D depth points are obtained for

each frame of the record. All those steps are facilitated by the SDK. Furthermore,

intrinsic parameters of the depth camera are available in the SDK, which eliminates

the need for camera calibration. All the real data sequences used in our work are

obtained as described above.

45

For synthetic data, we use ground truth motion data originally captured by Vicon

system [1] to generate video and depth data, each with the resolution of 320 × 240

pixels, and 3D depth points. More specifically, color images are synthesized through

rendering; 3D depth points are obtained by un-projecting from screen space to world

space for all visible points; depth images are obtained by taking z values of 3D depth

points for foreground and a user-specified large number (e.g. 100) for background.

Camera parameters are also known in this case.

3.3.2 Tracking Initialization

Initialization of the first frame is a necessary step for our model-based tracking.

In our work, for synthetic data, the first frame of the ground truth motion is used.

For real data, there are two steps specifically to achieve this purpose with no user

interaction needed.

First, we use 5 joint locations (head, left wrist, right wrist, left ankle, and right

ankle) as targets to obtain an initial pose. This can be achieved typically by having

user click 5 2d projections on the images. In our work, however, we simply take

advantage of the 3D joint positions extracted from Kinect result. An initial pose

is obtained by minimizing the differences between the extracted constraints and the

positions of those 5 joints, which can be calculated via forward kinematics in terms

of the joint angle pose. It is a typical inverse kinematics problem, and a normal

standing pose is sufficient as an initial guess to this problem. Fig. 3.4 (a) to (d) show

this step.

The result from the above step usually is not good enough for successful tracking

since it is solely based on a few 3D targets. To improve it, the depth data and

3D depth edge of the first frame needs to be exploited, which is very similar to

46

(a) (b) (c)

(d) (e) (f)

Fig. 3.4. First frame initialization: (a) joint projections superim-
posed on the corresponding color image; magenta asterisks represent
projections of 5 joints of an initial given pose (head projection is
out of image boundary); red circles represent targets extracted from
Kinect result; green downward-pointing triangles represent the pro-
jections after optimization; (d) Kinect result superimposed on the
corresponding color image with red spheres representing the 5 target
joints used for optimization; (b) and (c) show optimized poses, cor-
responding to green projections in (a), from 2 different views along
with depth points; (e) and (f) show optimized poses after applying
our tracking procedure to the pose shown in (b) for one time step.

47

the tracking step detailed in the next section except that no color information is

available and used in the process of building correspondences. Fig. 3.4 (b)/(c) and

(e)/(f) present the results before and after this step.

3.4 Observation Constraints Identification

This section presents the details of observation constraints and how we obtain

them.

At each time t, the observations consist of a color image C, a depth image D,

and a set of 3D depth points denoted by P . C is 320× 240 and each pixel contains

an intensity value. D is also of size 320×240, with every pixel containing the z value

of the corresponding 3D depth point.

The observations together actually is equivalent to a point cloud, where each

point has both 3D position and color information (see Fig. 3.2 (b) and (c)). The

constraints from the observations can be categorized into two groups: 3D surface-

based constraints and 3D edge-based constraints. The 3D surface-based constraints

measures the match between the rendered surface points and observed surface points,

while the 3D edge-based constraints measures the consistency between the rendered

edge points and observed edge points. These two groups of constraints are completely

independent of each other due to the fact that they are obtained independently even

for the same point. For instance, for an edge point on the rendered surface, its

corresponding point in the group of 3D surface-based constraints usually is not an

edge point, while its corresponding point in the group of 3D edge-based constraints

must be an edge point. Therefore, the likelihood term in Equation 3.2 can be

decomposed into two terms as follows:

48

Elikelihood = − lnPr(c|q)

= − lnPr(csurf , cedge|q)

= − lnPr(csurf |q)︸ ︷︷ ︸
Esurf

− lnPr(cedge|q)︸ ︷︷ ︸
Eedge

(3.3)

3.4.1 3D Surface-based Constraints

Let qt denote the pose configuration at frame t, Ot(C,D, P) represents all the

observations at frame t, with C as the color image, D as the depth image and P

as the 3D depth points; similarly, Rt(D,P,A) represents all the rendered data at

frame t given the pose qt and camera parameters. The goal is to solve qt+1, which

best explains Ot+1(C,D, P). Rt(P) is obtained by un-projecting from screen space

to world space for all visible points at frame t. Besides, each rendered point has

additional information represented in Rt(A) = Rt(bid, loc), with Rt(bid) denoting

the bone IDs to which Rt(P) belong and Rt(loc) representing the local coordinates

with respect to Rt(bid). Rt(bid) can be easily obtained by rendering different bones

in different colors (see Fig. 3.2 (a)) while Rt(loc) can be calculated based on qt,

Rt(bid) and Rt(P) . Rt(D) consists of the z values of all Rt(P) for foreground pixels

and a user-specified large number (we use 100) for background pixels.

At time t+1, csurf is obtained by searching for the closest observed point Ot+1(pi)

in Ot+1(P) for each rendered point Rt+1(pi) in Rt+1(P) based on qt+1. More specif-

ically, the search is conducted in a small neighborhood defined by a window of size

15×15 centered at the projected 2D pixel location of the rendered point, and weights

are experimentally set to 1.0 and 0.0001 for depth difference and color difference re-

spectively. Window size is also set experimentally. Generally speaking, larger window

sizes produce better matching accuracy while demanding more computational power.

49

However, there is not much improvement in accuracy once the window size is larger

than a threshold value, which is different for motions with different speeds. Through

experiments, we find 15×15 is large enough to achieve the balance between efficiency

and accuracy for a lot of motions and we use this value for all the testing examples.

We assume Gaussian noise with a standard deviation σsurf for csurf , then the

likelihood term for csurf can be defined as follows:

Esurf = − lnPr(csurf |q)

= −ln∏i
1√
2π

exp −‖Ot+1(pi)−f(Rt+1(ai),qt+1)‖2
σ2
surf

= −∑i ln
1√
2π

+
∑
i
‖Ot+1(pi)−f(Rt+1(ai),qt+1)‖2

σ2
surf

(3.4)

where Rt+1(ai) = Rt+1(bidi, loci) is the bone ID and local coordinates corresponding

to Rt+1(pi) and f is the forward kinematics function which computes the global point

position given the pose configuration qt+1, bone ID bidi, and local coordinates loci

of the point. In this minimization problem, qt+1 is initialized to be equal to qt, and

a ∆q is solved in a least square method iteratively with the update qt+1 = qt+1 + ∆q

at the end of each iteration. Here comes the derivation for ∆q:

Esurf = −∑i ln
1√
2π

+
∑
i
‖Ot+1(pi)−f(Rt+1(ai),qt+1)‖2

σ2
surf

= −∑i ln
1√
2π

+
∑
i
‖Ot+1(pi)−f(Rt+1(ai),qt+1+∆q)‖2

σ2
surf

= −∑i ln
1√
2π

+
∑
i

‖Ot+1(pi)−f(Rt+1(ai),qt+1)−
∂fi

R
∂qt+1

∆q)‖2

σ2
surf

(Taylor expansion)

(3.5)

Let the derivative of the above objective function with respect to ∆q equal 0, we

have

∑
i

2
∂fi

R
∂qt+1

T

(
∂fi

R
∂qt+1

∆q+f(Rt+1(ai),qt+1)−Ot+1(pi))

σ2
surf

= 0 (3.6)

50

where f iR = f(Rt+1(ai), qt+1).

Reorganizing the equation leads to:

∑
i

(J iR)TJ iR︸ ︷︷ ︸
Asurf

∆q =
∑
i

(J iR)T biR︸ ︷︷ ︸
bsurf

(3.7)

where J iR = ∂f iR/∂qt+1 and biR = Ot+1(pi) − f(Rt+1(ai), qt+1). This procedure differs

from conventional Iterative Closest Point (ICP) technique by integrating color in-

formation from the observations seamlessly into the measurements. This is allowed

by the fact that each observed 3D point has a color associated with it, and so does

any rendered point overlapping with the observed color image of the same frame.

Color information helps increase accuracy of tracking as demonstrated in the results

section.

3.4.2 3D Edge-based Constraints

The above optimization is prone to local minimum especially when pose changes

fast, therefore, it is not good enough to measure the match between the estimated

poses and the observations. Edges are very important features. However, if edges

points are treated the same as any other point on the rendered surface, the closest

points found are often not edge points of the observed surface when the truth is

quite the opposite. We introduced 3D edge constraints into the tracking framework

(Fig. 3.5), where for each point on the observed 3D edge, the closest point on the

rendered 3D edge needs to be searched for in a small neighborhood defined by a

window of size 21 × 21 (experimentally set) centered at its 2D pixel location. All

found closest points will be used as new constraints to solve for a likely pose change

similar to the procedure in the above section. To obtain a 3D edge, we first apply

51

Fig. 3.5. 3D edges and closest correspondences. Rendered 3D edge
is shown in pink while observed 3D edge is shown in yellow and
red lines connect 3D points on the observed edge with their closest
correspondences. The first two images are from camera view and a
second view. The third image shows an enlarged view.

Canny edge detector to the depth image to get a 2D edge. Since each foreground

pixel in the depth image corresponds to a 3D depth point, the 3D edge can be easily

obtained by associating all 3D depth points with the pixels on the 2D edge. There

are cases when 2D edge pixels of the detection results are actually background pixels,

3D depth points associated with their immediate foreground neighbor pixels are used

instead if there is any. This component is similar to the 3D surface-based constraints,

however it greatly increases the influence of key features.

Notations for 3D edges can be simply adapted from notations for 3D surfaces by

replacing R and O with RE and OE respectively. To be precise, we use RE(P,A) and

OE(P) to represent 3D edges for rendered depth data and observed depth data re-

spectively. Again, RE(A) = RE(bid, loc) is the additional information corresponding

the RE(P). Similarly, we assume Gaussian noise with a standard deviation σedge for

cedge, the likelihood term for cedge is defined as follows and can be solved accordingly.

52

Eedge = − lnPr(cedge|q)

= −ln∏i
1√
2π

exp −‖OEt+1(pi)−f(REt+1(ai),qt+1)‖2
σ2
edge

= −∑i ln
1√
2π

+
∑
i
‖OEt+1(pi)−f(REt+1(ai),qt+1)‖2

σ2
edge

= −∑i ln
1√
2π

+
∑
i
‖OEt+1(pi)−f(REt+1(ai),qt+1+∆q)‖2

σ2
surf

= −∑i ln
1√
2π

+
∑
i

‖OEt+1(pi)−f(REt+1(ai),qt+1)−
∂fi

RE
∂qt+1

∆q)‖2

σ2
surf

(Taylor expansion)

(3.8)

∑
i

(J iRE)TJ iRE︸ ︷︷ ︸
Aedge

∆q =
∑
i

(J iRE)T biRE︸ ︷︷ ︸
bedge

(3.9)

where J iRE = ∂f iRE/∂qt and biRE = OEt+1(pi)− f(REt+1(ai), qt).

3.5 Motion Priors Learning

The pose update inferred in the previous section is purely based on the likeli-

hood of matching the observations. However, human pose is high dimensional, still

having 34 DOFs even though expressed with a simplified skeleton model. Only ob-

served constraints from monocular sequences are far from sufficient to determine a

meaningful pose update especially in the case of occlusions. To address this prob-

lem, we use a series of local linear models learned from pre-captured motion capture

database to constrain the current search space. More specifically, we learn local Prin-

cipal Component Analysis (PCA) models indirectly based on K nearest neighbors

of the previous pose and evaluate how well an estimated pose can be expressed by

learned PCA models. PCA is a dimensionality reduction technique, which has been

widely used and proven to be effective in a variety of areas including data compres-

53

sion, image processing, visualization, pattern recognition and time series prediction.

However, PCA model is a linear model and human motion exhibits highly nonlinear

patterns, so a single PCA is not sufficient for an entire motion. Therefore, we use

a series of Local PCA (LPCA) models, with each of them modeling an instant part

of the motion. While the reader is referred to [107, 108] for detailed mathematical

derivations, we briefly describe in this section how to build LPCA models and com-

bine them with the previous formulation. Note that original motion capture data

has 30 bones and 62 DOFs including root position and orientation. We preprocess

them to suit the simplified skeleton model before model learning.

Given pose qt at frame t, K closest poses are selected from the motion capture

database efficiently by the method discussed in [24]. The following w poses of each

of the K poses in their original motion sequences will be stacked together into a

data matrix D of size (m − 6) by N , where m is the dimensionality of qt and N

is total number of frames used, N <= K ·w considering frames close to the end

of the motions do not have w subsequent frames, and we exclude root position and

orientation in model learning. We experimentally set w = 3, K = 50. Apply Singular

Value Decomposition(SVD) to the covariance data matrix C = D̃ · D̃T/(N − 1), where

D̃ is obtained by subtracting mean pose q̄ from each column of D, now we have:

U ·S ·V T = SV D(C) (3.10)

Each row vector of U is an eigenvector and S is a diagonal matrix of eigenvalues. We

use the following criteria to determine how many basis vectors to keep and energy

is experimentally set to be 0.95.

e = min{d,
∑d
i=1 S(i)∑m−6
i=1 S(i)

≥ energy} (3.11)

54

To evaluate how well a pose qt+1, in high dimensional space, matches the learned

model, we first transform the pose qt+1 to low space and then transform it back to

high space as pose q̃t+1. We measure the differences between qt+1 and q̃t+1, which

is known as reconstruction error. The smaller the reconstruction error is, the better

pose qt+1 is consistent with the natural patterns embedded in the motion database.

Similar to the formulation in the previous section, we have

Eprior=− lnPr(q)

=− ln 1√
2π

+ ((UeUT
e −I)‖qt+∆q−q̄)‖2

σ2
q

(3.12)

where Ue is of size m by e, with first 6 rows all 0’s and the rest from the first e

column vectors of U . I is an identity matrix of size m by m except that the first 6

rows and the first 6 columns contain all 0’s. σq is the assumed standard deviation

for q. Again, let the derivative with regard to ∆q equal 0, we get:

JTq Jq︸ ︷︷ ︸
Aprior

∆q = JTq bq︸ ︷︷ ︸
bprior

, (3.13)

where Jq = UeU
T
e − I, bq = Jq(q̄ − qt+1).

3.6 Runtime Optimization

Given initialized pose at the first frame, at each time t, the MAP problem actually

solves for a pose change so that the new pose matches the corresponding observations

as well as the statistical properties learned from captured data.

The overall objective function derived from the MAP is a weighted combination

of two constraints terms and an online motion prior term. We also add a smoothness

term to help avoid sudden pose changes in the reconstructed motion.

55

arg minq Esurf + λ1Eedge + λ2Eprior + λ3Esmoothness (3.14)

In our experiments, λ1 is set to 10; λ2 is set to between 0.001 and 0.01 (we used 0.001

for all the experiments except for the 360 ◦ walking example when we used 0.01.) λ3

is set to 0.00001.

It is easy to derive that the overall Jacobian term is a weighted combination

of the individual Jacobian terms derived in the above sections (Note we ignore the

differences among the standard deviations).

Asurf + λ1Aedge + λ2Aprior + λ3Asmooth︸ ︷︷ ︸
Atotal

∆q = bsurf + λ1bedge + λ2bprior + λ3bsmooth︸ ︷︷ ︸
btotal

(3.15)

where Asmooth = I and bsmooth = qt − qt+1.

∆q = (Atotal)
−1btotal (3.16)

qt+1 is initialized with qt and solved iteratively. The algorithm consists of the follow-

ing steps:

1. Obtain R(D,P) through rendering based on the skeleton model, pose config-

uration at frame t, qt, and known camera parameters. Initialize pose at frame

t+ 1 with the previous pose, qt+1 = qt.

2. Calculate R(A) and build correspondences for visible points. Specially, for

each point visible in the rendered image R(pi) ∈ R(P), determine which bone

R(bidi) it belongs to, calculate the local coordinates R(loci) with respect to

R(bidi), and record the corresponding pixel’s image intensity. This step is a

must for the evaluation of partial derivatives ∂f iR/∂q and ∂f iRE/∂q.

56

3. Calculate RE(P,A) and OE(P). RE(P) and OE(P) are acquired by first

applying Canny edge detection to R(D) and O(D) respectively, followed by a

mapping from 2D screen space to 3D world space. RE(A) is easily obtained

in a similar way to R(A).

4. Build online local database by searching for the K-Nearest Neighbors (K-NN)

based on pose qt, and using the w subsequent frames of each of the K nearest

neighbors. Learn a LPCA model as detailed in Section 3.5.

5. Evaluate Atotal and btotal from Equation 3.15.

6. Compute ∆q by Equation 3.16 and then update qt+1 = qt+1 + ∆q. Go to step

1 if ∆q is larger than a pre-defined threshold.

This algorithm typically converges in 10 iterations. For step 2, we ease the process

by rendering each bone in a unique color. So, for each visible point’s projection

s = (u, v) on the rendered color image, the bone ID can be easily determined by

indexing a pre-stored color map. Besides, the local coordinates can be obtained

by un-projecting from screen space (u, v, w) to world space and then transforming

to bone’s local space. We normally down sample the screen space by 4 in each

dimension when computing Rt(P), which means the number of visible points used

for 3D surface-based constraints is roughly 1/4× 1/4 of the total.

3.7 Results

In this section, we present the results. We conduct experiments on both synthetic

data, rendered from ground-truth motions, and real data, recorded from a Kinect

Device. For real data, we conducted 3 capture sessions and processed the data using

the method as described in Data Acquisition section, with the latest available SDK

releases back then, Kinect SDK beta 1 and beta 2 respectively. Data for motion 1,

57

2, 4 were captured using Kinect SDK beta 1 and data for motion 3, 5, 6, 7 were

captured using Kinect SDK beta 2. Up to the writing of this dissertation, there has

been another release, v1. We didn’t recapture and reprocess the data due to time

constraints, and most importantly, there are no visual differences between Kinect

results of different versions on the motions we are testing on.

3.7.1 Experiments on Synthetic Data

Experiments are conducted on synthetic data to assess and justify different com-

ponents of our approach. Two ground-truth motions, a dancing motion of 118 frames

and a bending motion of 88 frames, are used to generate all the video images, depth

images and 3D depth points. The dancing motion is rendered from a viewpoint

without obvious occlusions while the bending motion is rendered with the left arm

completely occluded for a duration of 7 frames. The first frame from the ground

truth motion is used to initialize the tracking for each experiment. Three different

experiments are performed progressively on the dancing motion to demonstrate the

importance of color and edge while three other experiments on the bending motion

are conducted to assess the influence of different motion priors. For dancing motion,

the first experiment only considers depth information and color information is ne-

glected in the step of looking for closest points. The second experiment distinguishes

itself from the first one by taking color information into consideration when searching

for closest points. The third experiment advances further by extending ICP to 3D

edges. For bending motion, the first experiment utilizes no prior knowledge, which

differentiates itself from the other two. The other two experiments use a specific

database with only bending motions, a total of 4355 frames, a mixed database with

5 different motions including bending motions, a total of 13115 frames, respectively.

58

To quantitatively evaluate all these components, tracking results from all ex-

periments are compared against ground truth motion. The error metric measuring

the discrepancy between an estimated pose and a ground truth pose is used for ev-

ery frame. Specifically, they are computed as follows. At each time step, for each

joint (totally 16 including root), the L2 difference between its estimated position

and ground truth position is calculated. The average difference per joint is there-

fore obtained. This is repeated for all frames of all estimated motions. Fig. 3.6 (a)

shows the experimental results on the dancing motion and it is clearly seen the effec-

tiveness of incorporating color and especially 3D edge information into the tracking

framework. Fig. 3.6 (b) illustrates the importance of an appropriate database on

the tracking results as well as the necessity of a local motion prior in order to use a

general database.

(a) (b)

Fig. 3.6. Comparisons on 2 sets of experiments: (a) comparisons on
results obtained using different components on synthetic dancing mo-
tion; (b) comparisons on results reconstructed using different motion
priors on synthetic bending motion.

59

Table 3.1
Details of testing examples.

No. Motion Name Database Compare with Kinect

1 dancing 1 No Comparable
2 dancing 2 No Comparable
3 poker face dancing No Comparable
4 sitting No Better
5 yoga triangle No Better
6 yoga tree database 1 Better
7 360 ◦ walking database 1 Better
8 front kicking database 2 Better
9 forward bending database 2 Better
10 diagonal bending database 2 Better
11 backward turning database 2 Better

Table 3.2
Details of motion capture databases.

No. Database Name No. of different motions No. of frames

1 database 1 2 6146
2 database 2 5 13115

60

3.7.2 Experiments on Real Data

We also perform experiments on real data collected from a single Kinect device.

Kinect works pretty well when there are no occlusion or minor occlusions, however, in

the presence of significant occlusions, it often fails. To demonstrate the effectiveness

and advantages of our approach, we show results on a variety of motions, with a focus

on the motions involving varying levels of occlusions where Kinect shows failures. Our

results are best viewed in the accompanying video although we show sample frames

of a few selected results here.

Fig. 3.7. Results for poker face motion: (top left) Kinect results
superimposed on input color images; (bottom left) our results su-
perimposed on input color images; (top right) Kinect results from
another view; (bottom right) our results from another view.

Comparisons with Kinect

The experiments fall into 4 categories. The first category contains 3 different

motions, on which our algorithm and Kinect work equivalently well. One of the

examples, named poker face dancing (Table 3.1), is from the choreography of the

poker face dancing in Dance Central game. Fig.3.7 shows the selected key frames

61

Fig. 3.8. Results for yoga tree motion: (top left) Kinect results
superimposed on input color images; (bottom left) our results super-
imposed on input depth data; (top right) observed 3D depth edges in
yellow and rendered 3D depth edges from our results; (bottom right)
our results rendered from another viewpoint.

of Kinect results and our results. The other 3 categories consist of motions which

demonstrate the superiority of our approach. Specifically, the second category has

2 motions, which has little occlusions and our algorithm exhibits advantages over

Kinect without the support of prior knowledge. The third category has 2 motions,

the yoga tree motion and 360 ◦ walking motion, with obvious occlusions and local

motion priors learned from a small mixed database (Table 3.2) is used to reduce the

ambiguities caused by the occlusions. There are 4 motions in the fourth category

and they all share the same mixed database consisting of a total of 13115 frames

of 5 different motions. Table 3.1 and Table 3.2 summarize the testing motions and

databases used in all those experiments on real data. database 1 contains yoga tree

motion and 360 ◦ walking motion, both of which are different from the corresponding

testing motions. database 2 consists of diagonal bending motion, forward bending

62

Fig. 3.9. Results for forward bending motion and diagonal bending
motion: (top left) Kinect results and depth edges for forward bend-
ing motion; (top right) Kinect results and depth edges for diagonal
bending motion; (bottom left) our results for forward bending mo-
tion (camera view and a second view); (bottom right) our results for
diagonal bending motion (camera view and a second view).

motion, front kicking motion, 180 ◦ turning motion and a dancing motion similar

to testing motion dancing 2. Fig. 3.8, Fig. 3.9, and Fig. 3.10 display the selected

key frames of reconstructed motions as well as Kinect results. Our results are best

viewed in the accompanying video although we show sample frames of a few results

here.

Evaluations on 3D Edge and LPCA

We also evaluate the importance of 3D edge by running our algorithm with and

without the component, respectively, and then compare the results visually by show-

ing them side by side. Similar experiments are conducted to show the importance of

LPCA. Fig. 3.11 and Fig. 3.12 show the selected key frames from those comparisons.

63

Fig. 3.10. Results for front kicking motion and backward turning
motion: (top left) Kinect results and depth edges for front kicking
motion; (top right) Kinect results and depth edges for backward turn-
ing motion; (bottom left) our results for front kicking motion (cam-
era view and a second view); (bottom right) our results for backward
turning motion (camera view and a second view).

3.8 Discussion

In this work, we proposed an approach, which effectively reconstructs 3D full-

body human motion from a combination of color and depth streams obtained from a

single Kinect device on subjects performing wearing normal clothes. We introduced

3D edge obtained from depth stream into our framework to increase the accuracy of

tracking, proven to be effective especially when pose change is large or smaller body

parts occluding larger ones. Moreover, motion priors learned from pre-recorded mo-

tion capture database are employed to handle obvious occlusions where body parts

are mostly or completely occluded. It is worth noting that we do not consider situa-

tions when the subject is fully occluded by other people or objects in the environment.

Therefore, from time t to time t+1, only some parts disappeared or re-appeared while

64

Fig. 3.11. 3D edge evaluation: (top left) results without edge for
sitting motion (camera view and a second view), with results from
camera view superimposed on input color images; (bottom left) re-
sults with edge for sitting motion (camera view and a second view),
with results from camera view superimposed on input color images;
(top right) results without edge for yoga triangle motion (camera
view and a second view), with results from camera view superim-
posed on input color images; (bottom right) results with edge for
yoga triangle motion (camera view and a second view), with results
from camera view superimposed on input color images.

the rest’s visibility status remains the same. LPCA priors tend to have a stronger in-

fluence over the pose solving when ambiguities rise due to body parts disappearing or

re-appearing. This framework enhances the accuracy and robustness of tracking by

taking advantage of all available information, which is demonstrated by experiments

on both synthetic and real data.

Our approach is subject to common limitations shared by any other model-based

tracking work, including the requirement of an initial pose and the need of a fitted

skeleton model. Our work eliminates the need of heavy user interaction or man-

ual process by taking advantage of Kinect’s results as initial constraints. A normal

65

Fig. 3.12. LPCA evaluation: (top left) results without LPCA for
360 ◦ walking motion (camera view and a second view), with results
from camera view superimposed on input color images; (bottom left)
results with LPCA for 360 ◦ walking motion (camera view and a sec-
ond view), with results from camera view superimposed on input
color images; (top right) results without LPCA for yoga tree motion
(camera view and a second view), with results from camera view su-
perimposed on input color images; (bottom right) results with LPCA
for yoga tree motion (camera view and a second view), with results
from camera view superimposed on input color images.

standing pose is all that we need to feed to our algorithm, which makes the initial-

ization a much easier job. For the skeleton model, currently cylinders and spheres

are used to approximate the geometries of all bones. Although we have not rigor-

ously evaluated how sensitive our algorithm is to the accuracy of the skeleton, we use

the same skeleton for all the experiments, with the subject wearing three different

outfits. However, we believe a more accurate model, e.g. skinned mesh models, will

show more promise in the quality of the tracking results. Currently, the parameters

for the skeleton model, e.g. the lengths and widths for the limbs, are manually set.

It is not difficult, however, to apply a similar optimization procedure to solve for

66

lengths and widths if provided with the ground truth poses. We show that our algo-

rithm can deal with a wider range of motions than Kinect does with the assistance

of motion priors. However, it requires the availability of an appropriate database,

which contains the same motion patterns as that in the testing sequences. LPCA

priors allow the use of a general database instead of a specific one, which decreases

the need for user intervention.

Another limitation of the current system is that it does not allow the user to

move freely in the space. This is caused by the limited space covered by a single

Kinect camera of 43 ◦ vertical by 57 ◦ horizontal field of view because our algorithm

itself is capable of reconstructing motions happening over a region, instead of being

limited to motions with overall static root positions/orientations. We demonstrate

this capability to some extent through a few examples. For instance, poker face

dancing motion is reconstructed with obvious root translations in the direction par-

allel to the camera image plane, 180 ◦ turning motion and 360 ◦ walking motion have

obvious changes in root orientation. Our system is suitable for a lot applications

which expect users to face toward the camera or act in a restricted area.

67

4. CONCLUSIONS AND FUTURE WORK

Obtaining natural human motion from various inputs at a low cost has been an

active research area for a few decades. It remains a challenging problem due to the

high complexity of human model and motion. All the existing solutions have their

own limitations, e.g. Vicon commercial motion capture system is very expensive,

intrusive and requires significant amount of setup and cleanup time despite of its

high accuracy, Microsoft Kinect gaming platform often fails to detect certain motions

although it is low-cost and allow users to wear everyday apparel. The research work

presented in this dissertation aims to address the problem of reconstructing 3D full-

body human motion from noisy and ambiguous inputs.

In Section 2, we introduced an algorithm to make the data cleanup of Vicon

motion capture an automatic process. The input to the system is either noisy 3D

joint position data or noisy joint angle data, and the system automatically filters

the noisy data to generate natural human motion data. In Section 3, we presented

an approach to reconstruct a wide variety of human motion from a combination

of video and depth streams from a single Kinect device. It is effective and low-

cost. In general, both work take noisy and ambiguous signals as inputs and solve

an under-constrained problem by adding additional constraints from pre-recorded

motion capture database. Furthermore, we demonstrated the effectiveness of both

work by doing comparisons on real data.

Both work learns statistical priors from the database; however, they differ from

each other by the way priors are learned. The work in Section 2 learns a spatial-

temporal prior which is based on windows of motion segments and encodes not only

the spatial correlation, but also the temporal correlation embedded in the motion

database. However, the work in Section 3 learns a sequence of spatial priors to

68

reduce the reconstruction ambiguities at each time step. Temporal information is

implicitly encoded by learning each spatial prior based on the previous estimated

pose. One of the main reasons for choosing different priors is that the first work is

more suitable for an off-line solution while the second one shows more promise in a

lot of applications with an online solution.

As any other data-driven approach that uses database, our work bears a similar

limitation, which is the need for an appropriate database. Otherwise, if the motion

database does not contain similar motion patterns as desired, prior knowledge learned

from the database will jeopardize the reconstruction results. We have evaluated how

our algorithms respond to general databases, e.g. a walking database of five walking

examples with different speeds and step sizes was used for walking in Section 2, and a

mixed database of 5 different motion behaviors was used for reconstruction of 4 real

sequences in Section 3. In general, the work in Section 2 demands behavior-specific

databases while the work in Section 3 tolerates more general databases with different

motion patterns. This difference is caused by the fact that the online local models

used in Section 3 are capable of extracting a relevant portion from the entire motion

capture database dynamically by doing K-NN searches at each time step while the

off-line models employed in Section 2 are built on the entire motion capture database

at all times.

The work presented in this dissertation along with other related work has demon-

strated the effectiveness of data-driven approaches in generating natural motions,

however, those statistical models do not consider physics behind motions, such as

contact forces, so they lead to physically implausible motions easily, e.g. foot sliding,

foot-ground penetrations and motion jerkiness. So combining statistical models with

physics models is one of the directions I am interested to explore in future to generate

motions that are not only natural, but also physically plausible.

69

Currently, our work in Section 3 needs pose initialization at the first frame prior

to tracking. Although the initialization needs no user interaction, it still restricts

the work from being used in a lot of interactive applications. Besides, sequential

tracking is inherently subject to error accumulations although the 3D edge compo-

nent introduced in our work in Section 3 is proved to be effective in reducing such

error. This is particularly true in case of fast motions. In the meantime, there have

been increasing interests and progress in motion reconstruction by detection. Kinect

gaming platform is a great example using this technique. Sequential tracking and

detection both have their strengths and are truly complimentary to each other. In

future, I would like to study how to combine tracking and detection together to take

advantages of both techniques.

The skeleton model used in Section 3 consists of cylinders and spheres only. We

believe a more accurate model, e.g. a skinned mesh model, will help increase the

tracking accuracy. This can also be studied in future. In addition, we manually set

the parameters for the limbs, e.g. the widths and lengths. This limits the scalability

and availability of the system considering there exists a wide range of body shapes.

However, this problem can be easily solved in a similar manner. Briefly speaking, we

can assume known poses by having users imitate several pre-defined poses and solve

for skeleton model parameters, which best match the observations.

70

REFERENCES

[1] Vicon. (2012) Vicon. [Online]. Available: http://www.vicon.com

[2] Microsoft. (2012) Kinect. [Online]. Available: http://www.xbox.com/en-
US/kinect

[3] Xsens. (2012) Xsens MVN. [Online]. Available: http://www.xsens.com/en/
general/mvn

[4] Ascension. (2012) MotionStar. [Online]. Available: http://www.ascension-
tech.com/realtime/RTMotionSTARTethered.php

[5] G. Bishop and G. Welch, “An introduction to the kalman filter,” in Proc.
SIGGRAPH Course, vol. 8, pp. 27 599–3175, 2001.

[6] D. Gavrila, “The Visual Analysis of Human Movement: A Survey,” Computer
Vision and Image Understanding (CVIU 1999), vol. 73, no. 1, pp. 82–98, 1999.

[7] T. Moeslund, A. Hilton, and V. Kruger, “A survey of advances in vision-based
human motion capture and analysis,” Computer Vision and Image Under-
standing (CVIU 2006), vol. 104, no. 2-3, pp. 90–126, 2006.

[8] D. Forsyth, O. Arikan, L. Ikemoto, J. O’Brien, and D. Ramanan, “Compu-
tational studies of human motion: part 1, tracking and motion synthesis,”
Foundations and Trends® in Computer Graphics and Vision, vol. 1, no. 2-3,
pp. 77–254, 2005.

[9] R. Poppe, “Vision-based human motion analysis: An overview,” Computer
Vision and Image Understanding (CVIU 2007), vol. 108, no. 1-2, pp. 4–18,
2007.

[10] J. Lee and S. Shin, “Motion fairing,” Computer Animation (CA 1996), pp.
136–143, 1996.

[11] Y. Fangt, C. Hsieh, M. Kim, J. Chang, and T. Woo, “Real time motion fairing
with unit quaternions,” Computer-Aided Design, vol. 30, no. 3, pp. 191–198,
1998.

[12] J. Lee and S. Shin, “A coordinate-invariant approach to multiresolution motion
analysis,” Graphical Models (GM 2001), vol. 63, no. 2, pp. 87–105, 2001.

[13] ——, “General construction of time-domain filters for orientation data,” IEEE
Trans. on Visualization and Computer Graphics (TVCG 2002), vol. 8, no. 2,
pp. 119–128, 2002.

[14] Vicon. (2012) Vicon Blade. [Online]. Available: http://www.vicon.com/
products/blade.html

71

[15] H. Shin, J. Lee, S. Shin, and M. Gleicher, “Computer puppetry: An
importance-based approach,” ACM Trans. on Graphics (TOG 2001), vol. 20,
no. 2, pp. 67–94, 2001.

[16] S. Tak and H. Ko, “A physically-based motion retargeting filter,” ACM Trans.
on Graphics (TOG 2005), vol. 24, no. 1, pp. 98–117, 2005.

[17] K. Yamane and Y. Nakamura, “Dynamics filter-concept and implementation
of online motion generator for human figures,” IEEE Trans. on Robotics and
Automation, vol. 19, no. 3, pp. 421–432, 2003.

[18] K. Sok, M. Kim, and J. Lee, “Simulating biped behaviors from human motion
data,” ACM Trans. on Graphics (TOG 2007), vol. 26, no. 3, pp. 107–es, 2007.

[19] J. Wang, S. Drucker, M. Agrawala, and M. Cohen, “The cartoon animation
filter,” ACM Trans. on Graphics (TOG 2006), vol. 25, no. 3, pp. 1169–1173,
2006.

[20] M. Brand and A. Hertzmann, “Style machines,” in Proc. 27th Annual Confer-
ence on Computer Graphics and Interactive Techniques, pp. 183–192, 2000.

[21] Y. Li, T. Wang, and H. Shum, “Motion texture: a two-level statistical model
for character motion synthesis,” in Proc. of the 29th Annual Conference on
Computer Graphics and Interactive Techniques, pp. 465–472, 2002.

[22] J. Chai and J. Hodgins, “Constraint-based motion optimization using a statis-
tical dynamic model,” ACM Trans. on Graphics (TOG 2007), vol. 26, no. 3,
p. 8, 2007.

[23] K. Grochow, S. Martin, A. Hertzmann, and Z. Popović, “Style-based inverse
kinematics,” ACM Trans. on Graphics (TOG 2004), vol. 23, no. 3, pp. 522–531,
2004.

[24] J. Chai and J. Hodgins, “Performance animation from low-dimensional control
signals,” ACM Trans. on Graphics (TOG 2005), vol. 24, no. 3, pp. 686–696,
2005.

[25] O. Arikan, “Compression of motion capture databases,” ACM Trans. on
Graphics (TOG 2006), vol. 25, no. 3, pp. 890–897, 2006.

[26] L. Ren, A. Patrick, A. Efros, J. Hodgins, and J. Rehg, “A data-driven approach
to quantifying natural human motion,” ACM Trans. on Graphics (TOG 2005),
vol. 24, no. 3, pp. 1090–1097, 2005.

[27] Y. Chen, J. Min, and J. Chai, “Flexible registration of human motion data
with parameterized motion models,” in Proc. 2009 Symposium on Interactive
3D Graphics and Games (i3D 2009), pp. 183–190, 2009.

[28] L. Ikemoto, O. Arikan, and D. Forsyth, “Knowing when to put your foot down,”
in Proc. 2006 Symposium on Interactive 3D Graphics and Games (i3D 2006),
pp. 49–53, 2006.

[29] H. Von Storch and F. Zwiers, Statistical analysis in climate research. New
York, NY: Cambridge Univ. Press, 2001.

72

[30] M. Ghil, M. Allen, M. Dettinger, K. Ide, D. Kondrashov, M. Mann, A. Robert-
son, A. Saunders, Y. Tian, F. Varadi et al., “Advanced spectral methods for
climatic time series,” Rev. Geophys, vol. 40, no. 1, p. 1003, 2002.

[31] P. Huber, E. Ronchetti, and E. Corporation, Robust statistics. Hoboken, NJ:
Wiley, 1981, vol. 1.

[32] F. Hampel, E. Ronchetti, P. Rousseeuw, and W. Stahel, Robust statistics: the
approach based on influence functions. Hoboken, NJ: Wiley, 2011, vol. 114.

[33] T. Jones, F. Durand, and M. Desbrun, “Non-iterative, feature-preserving mesh
smoothing,” ACM Trans. on Graphics (TOG 2003), vol. 22, no. 3, pp. 943–949,
2003.

[34] S. Fleishman, D. Cohen-Or, and C. Silva, “Robust moving least-squares fitting
with sharp features,” ACM Trans. on Graphics (TOG 2005), vol. 24, no. 3,
pp. 544–552, 2005.

[35] H. Hassani and A. Zhigljavsky, “Singular spectrum analysis: methodology and
application to economics data,” Journal of Systems Science and Complexity,
vol. 22, no. 3, pp. 372–394, 2009.

[36] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical recipes (3rd
edition): the art of scientific computing. New York, NY: Cambridge Univ.
Press, 2007.

[37] L. Kovar, J. Schreiner, and M. Gleicher, “Footskate cleanup for motion cap-
ture editing,” in Proc. 2002 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA 2002), pp. 97–104, 2002.

[38] D. Grest, J. Woetzel, and R. Koch, “Nonlinear body pose estimation from
depth images,” Pattern Recognition (PR 2005), pp. 285–292, 2005.

[39] D. Grest, V. Krüger, and R. Koch, “Single view motion tracking by depth
and silhouette information,” in Proc. 15th Scandinavian Conference on Image
Analysis, pp. 719–729, 2007.

[40] S. Knoop, S. Vacek, and R. Dillmann, “Sensor fusion for 3D human body
tracking with an articulated 3D body model,” International Conference on
Robotics and Automation (ICRA 2006), pp. 1686–1691, 2006.

[41] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kip-
man, and A. Blake, “Real-time human pose recognition in parts from single
depth images,” Computer Vision and Pattern Recognition (CVPR 2011), vol. 2,
p. 3, 2011.

[42] C. Bregler, J. Malik, and K. Pullen, “Twist based acquisition and tracking
of animal and human kinematics,” International Journal of Computer Vision,
vol. 56, no. 3, pp. 179–194, 2004.

[43] J. Gall, C. Stoll, E. De Aguiar, C. Theobalt, B. Rosenhahn, and H. Seidel, “Mo-
tion capture using joint skeleton tracking and surface estimation,” Computer
Vision and Pattern Recognition (CVPR 2009), pp. 1746–1753, 2009.

73

[44] H. Kjellstrom, D. Kragic, and M. Black, “Tracking people interacting with
objects,” Computer Vision and Pattern Recognition (CVPR 2010), pp. 747–
754, 2010.

[45] R. Rosales and S. Sclaroff, “Inferring body pose without tracking body parts,”
Computer Vision and Pattern Recognition (CVPR 2000), p. 2721, 2000.

[46] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recogni-
tion using shape contexts,” IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI 2002), pp. 509–522, 2002.

[47] K. Grauman, G. Shakhnarovich, and T. Darrell, “Inferring 3D structure with a
statistical image-based shape model,” International Conference on Computer
Vision (ICCV 2003), pp. 641–647, 2003.

[48] N. Howe, “Silhouette lookup for automatic pose tracking,” Computer Vision
and Pattern Recognition Workshop (CVPRW 2004), pp. 15–22, 2004.

[49] R. Poppe, “Evaluating example-based pose estimation: Experiments on the hu-
maneva sets,” Computer Vision and Pattern Recognition Workshop (CVPRW
2007).

[50] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: Real-time
tracking of the human body,” IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI 1997), vol. 19, no. 7, pp. 780–785, 1997.

[51] D. Forsyth and M. Fleck, “Body plans,” Computer Vision and Pattern Recog-
nition (CVPR 1997), pp. 678–683, 1997.

[52] T. Roberts, S. McKenna, and I. Ricketts, “Human pose estimation using learnt
probabilistic region similarities and partial configurations,” European Confer-
ence on Computer Vision (ECCV 2004), pp. 291–303, 2004.

[53] X. Ren, A. Berg, and J. Malik, “Recovering human body configurations using
pairwise constraints between parts,” International Conference on Computer
Vision (ICCV 2005), vol. 1, pp. 824–831, 2005.

[54] M. Brand, “Shadow puppetry,” International Conference on Computer Vision
(ICCV 1999), vol. 2, pp. 1237–1244, 1999.

[55] A. Elgammal and C. Lee, “Inferring 3D body pose from silhouettes using ac-
tivity manifold learning,” Computer Vision and Pattern Recognition (CVPR
2004), vol. 2, pp. II–681, 2004.

[56] A. Agarwal and B. Triggs, “Recovering 3D human pose from monocular im-
ages,” IEEE Trans. on Pattern Aanalysis and Machine Intelligence (PAMI
2006), pp. 44–58, 2006.

[57] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with
parameter-sensitive hashing,” International Conference on Computer Vision
(ICCV 2003), pp. 750–757, 2003.

74

[58] E. Ong, A. Micilotta, R. Bowden, and A. Hilton, “Viewpoint invariant
exemplar-based 3D human tracking,” Computer Vision and Image Understand-
ing (CVIU 2006), vol. 104, no. 2, pp. 178–189, 2006.

[59] N. Howe, “Silhouette lookup for monocular 3D pose tracking,” Image and
Vision Computing (IVC 2007), vol. 25, no. 3, pp. 331–341, 2007.

[60] R. Wang, S. Paris, and J. Popović, “Practical color-based motion capture,”
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (SCA
2011), 2011.

[61] I. Kakadiaris and D. Metaxas, “Three-dimensional human body model acqui-
sition from multiple views,” International Journal of Computer Vision (IJCV
1998), vol. 30, no. 3, pp. 191–218, 1998.

[62] S. Wachter and H. Nagel, “Tracking persons in monocular image sequences,”
Computer Vision and Image Understanding (CVIU 1999), vol. 74, no. 3, pp.
174–192, 1999.

[63] N. Gordon, D. Salmond, and A. Smith, “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation,” Radar and Signal Processing, vol. 140,
no. 2, pp. 107–113, 1993.

[64] M. Isard and A. Blake, “Condensation-conditional density propagation for vi-
sual tracking,” International Journal of Computer Vision (IJCV 1998), vol. 29,
no. 1, pp. 5–28, 1998.

[65] J. Deutscher, A. Blake, and I. Reid, “Articulated body motion capture by
annealed particle filtering,” Computer Vision and Pattern Recognition (CVPR
2000), vol. 2, pp. 126–133, 2000.

[66] C. Sminchisescu and B. Triggs, “Covariance scaled sampling for monocular
3D body tracking,” Computer Vision and Pattern Recognition (CVPR 2001),
vol. 1, pp. I–447, 2001.

[67] F. Caillette, A. Galata, and T. Howard, “Real-time 3-D human body tracking
using learnt models of behaviour,” Computer Vision and Image Understanding
(CVIU 2008), vol. 109, no. 2, pp. 112–125, 2008.

[68] R. Plänkers and P. Fua, “Tracking and modeling people in video sequences,”
Computer Vision and Image Understanding (CVIU 2001), vol. 81, no. 3, pp.
285–302, 2001.

[69] D. Liebowitz and S. Carlsson, “Uncalibrated motion capture exploiting articu-
lated structure constraints,” International Journal of Computer Vision (IJCV
2003), vol. 51, no. 3, pp. 171–187, 2003.

[70] R. Navaratnam, A. Thayananthan, P. Torr, and R. Cipolla, “Hierarchical part-
based human body pose estimation,” British Machine Vision Conference, 2005.

[71] E. De Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H. Seidel, and S. Thrun,
“Performance capture from sparse multi-view video,” ACM Trans. on Graphics
(TOG 2008), vol. 27, no. 3, p. 98, 2008.

75

[72] N. Howe, M. Leventon, and W. Freeman, “Bayesian reconstruction of 3D hu-
man motion from single-camera video,” Neural Information Processing Systems
(NIPS 1999), vol. 1999, p. 1, 1999.

[73] H. Sidenbladh, M. Black, and D. Fleet, “Stochastic tracking of 3D human
figures using 2D image motion,” European Conference on Computer Vision
(ECCV 2000), pp. 702–718, 2000.

[74] C. Sminchisescu and B. Triggs, “Kinematic jump processes for monocular 3D
human tracking,” Computer Vision and Pattern Recognition (CVPR 2003),
vol. 1, pp. I–69, 2003.

[75] C. Barrón and I. Kakadiaris, “Monocular human motion tracking,” Multimedia
Systems, vol. 10, no. 2, pp. 118–130, 2004.

[76] X. Wei and J. Chai, “Videomocap: modeling physically realistic human mo-
tion from monocular video sequences,” ACM Trans. on Graphics (TOG 2010),
vol. 29, no. 4, pp. 1–10, 2010.

[77] Y. Chen and J. Chai, “3D reconstruction of human motion and skeleton from
uncalibrated monocular video,” Asian Conference on Computer Vision (ACCV
2009), pp. 71–82, 2010.

[78] G. Loy, M. Eriksson, J. Sullivan, and S. Carlsson, “Monocular 3D reconstruc-
tion of human motion in long action sequences,” European Conference on Com-
puter Vision (ECCV 2004), pp. 442–455, 2004.

[79] B. Rosenhahn, U. Kersting, K. Powell, and H. Seidel, “Cloth x-ray: Mocap of
people wearing textiles,” Pattern Recognition (PR 2006), pp. 495–504, 2006.

[80] A. Balan, L. Sigal, M. Black, J. Davis, and H. Haussecker, “Detailed hu-
man shape and pose from images,” Computer Vision and Pattern Recognition
(CVPR 2007), pp. 1–8, 2007.

[81] J. Starck and A. Hilton, “Surface capture for performance-based animation,”
Computer Graphics and Applications (CGA 2007), pp. 21–31, 2007.

[82] H. Li, B. Adams, L. Guibas, and M. Pauly, “Robust single-view geometry and
motion reconstruction,” ACM Trans. on Graphics (TOG 2009), vol. 28, no. 5,
p. 175, 2009.

[83] Organic Motion. (2012) Organic Motion. [Online]. Available: http:
//www.organicmotion.com/

[84] Y. Pekelny and C. Gotsman, “Articulated object reconstruction and markerless
motion capture from depth video,” Computer Graphics Forum, vol. 27, no. 2,
pp. 399–408, 2008.

[85] C. Plagemann, V. Ganapathi, D. Koller, and S. Thrun, “Real-time identifica-
tion and localization of body parts from depth images,” International Confer-
ence on Robotics and Automation (ICRA 2010), pp. 3108–3113, 2010.

76

[86] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon, “Efficient
regression of general-activity human poses from depth images,” International
Conference on Computer Vision (ICCV 2011), pp. 731–738, 2011.

[87] M. Siddiqui and G. Medioni, “Human pose estimation from a single view point,
real-time range sensor,” Computer Vision and Pattern Recognition Workshops
(CVPRW 2010), pp. 1–8, 2010.

[88] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real time motion
capture using a single time-of-flight camera,” Computer Vision and Pattern
Recognition (CVPR 2010), pp. 755–762, 2010.

[89] M. Ye, X. Wang, R. Yang, L. Ren, and M. Pollefeys, “Accurate 3D pose
estimation from a single depth image,” International Conference on Computer
Vision (ICCV 2011), pp. 731–738, 2011.

[90] A. Baak, M. Muller, G. Bharaj, H. Seidel, and C. Theobalt, “A data-driven
approach for real-time full body pose reconstruction from a depth camera,”
International Conference on Computer Vision (ICCV 2011), pp. 1092–1099,
2011.

[91] Y. Zhu, B. Dariush, and K. Fujimura, “Kinematic self retargeting: A frame-
work for human pose estimation,” Computer Vision and Image Understanding
(CVIU 2010), vol. 114, no. 12, pp. 1362–1375, 2010.

[92] V. Pavlovic, J. Rehg, and J. MacCormick, “Learning switching linear models of
human motion,” Advances in Neural Information Processing Systems (ANIPS
2001), pp. 981–987, 2001.

[93] H. Sidenbladh, M. Black, and L. Sigal, “Implicit probabilistic models of human
motion for synthesis and tracking,” European Conference on Computer Vision
(ECCV 2002), pp. 784–800, 2002.

[94] C. Sminchisescu and A. Jepson, “Generative modeling for continuous non-
linearly embedded visual inference,” in Proc. 21st International Conference on
Machine Learning, p. 96, 2004.

[95] A. Agarwal and B. Triggs, “Tracking articulated motion using a mixture of au-
toregressive models,” European Conference on Computer Vision (ECCV 2004),
pp. 54–65, 2004.

[96] R. Urtasun, D. Fleet, A. Hertzmann, and P. Fua, “Priors for people tracking
from small training sets,” International Conference on Computer Vision (ICCV
2005), vol. 1, pp. 403–410, 2005.

[97] R. Urtasun, D. Fleet, and P. Fua, “3d people tracking with gaussian process
dynamical models,” Computer Vision and Pattern Recognition (CVPR 2006),
vol. 1, pp. 238–245, 2006.

[98] R. Li, T. Tian, and S. Sclaroff, “Simultaneous learning of nonlinear manifold
and dynamical models for high-dimensional time series,” International Con-
ference on Computer Vision (ICCV 2007), pp. 1–8, 2007.

77

[99] A. Baak, B. Rosenhahn, M. Muller, and H. Seidel, “Stabilizing motion tracking
using retrieved motion priors,” International Conference on Computer Vision
(ICCV 2009), pp. 1428–1435, 2009.

[100] H. Lou and J. Chai, “Example-Based Human Motion Denoising,” IEEE Trans.
on Visualization and Computer Graphics (TVCG 2010), pp. 870–879, 2010.

[101] J. Tautges, A. Zinke, B. Krüger, J. Baumann, A. Weber, T. Helten, M. Müller,
H. Seidel, and B. Eberhardt, “Motion reconstruction using sparse accelerometer
data,” ACM Trans. on Graphics (TOG 2011), vol. 30, no. 3, p. 18, 2011.

[102] A. Thayananthan, R. Navaratnam, B. Stenger, P. Torr, and R. Cipolla, “Multi-
variate relevance vector machines for tracking,” European Conference on Com-
puter Vision (ECCV 2006), pp. 124–138, 2006.

[103] C. Sminchisescu, A. Kanaujia, and D. Metaxas, “BM3E: Discriminative Den-
sity Propagation for Visual Tracking,” IEEE Trans. on Pattern Analysis and
Machine Intelligence (PAMI 2007), pp. 2030–2044, 2007.

[104] R. Urtasun and P. Fua, “3D human body tracking using deterministic temporal
motion models,” European Conference on Computer Vision (ECCV 2004), pp.
92–106, 2004.

[105] R. Li, T. Tian, S. Sclaroff, and M. Yang, “3D human motion tracking with a
coordinated mixture of factor analyzers,” International Journal of Computer
Vision (IJCV 2010), vol. 87, no. 1-2, pp. 170–190, 2010.

[106] Microsoft. (2012) Kinect SDK. [Online]. Available: http://www.microsoft.
com/en-us/kinectforwindows

[107] R. Duda, P. Hart, and D. Stork, Pattern classification, 2nd ed. Hoboken, NJ:
Wiley, 2000.

[108] H. Abdi and L. Williams, “Principal component analysis,” Wiley Interdisci-
plinary Reviews: Computational Statistics, vol. 2, no. 4, pp. 433–459, 2010.

78

VITA

Hui Lou received her B.S. in Computer Science from University of Science and

Technology of China (USTC) in 2006. Hui Lou received her Ph.D. degree in Com-

puter Science in May, 2012, under the supervision of Dr. Jinxiang Chai. Her research

interests include data-driven animation, computer graphics and computer vision.

Hui Lou can be reached at Department of Computer Science, Texas A&M Uni-

versity, College Station, TX 77843-3112. Her email is: wslh85@gmail.com.

The typist for this dissertation was Hui Lou.

