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ABSTRACT

The Robust Classification of Hyperspectral Images Using Adaptive Wavelet Kernel

Support Vector Data Description. (May 2012 )

Revathi Sharma Kollegala, B.S, National Institute of Technology Karnataka

Chair of Advisory Committee: Dr. Deepa Kundur

Detection of targets in hyperspectral images is a specific case of one-class clas-

sification. It is particularly relevant in the area of remote sensing and has received

considerable interest in the past few years. The thesis proposes the use of wavelet

functions as kernels with Support Vector Data Description for target detection in

hyperspectral images. Specifically, it proposes the Adaptive Wavelet Kernel Support

Vector Data Description (AWK-SVDD) that learns the optimal wavelet function to

be used given the target signature. The performance and computational require-

ments of AWK-SVDD is compared with that of existing methods and other wavelet

functions.

An introduction to target detection and target detection in the context of hyperspec-

tral images is given. This thesis also includes an overview of the thesis and lists the

contributions of the thesis. A brief mathematical background into one-class classi-

fication in reference to target detection is included. Also described are the existing

methods and introduces essential concepts relevant to the proposed approach. The

use of wavelet functions as kernels with Support Vector Data Description, the con-

ditions for use of wavelet functions and the use of two functions in order to form the

kernel are checked and analyzed. The proposed approach, AWKSVDD, is mathe-

matically described. The details of the implementation and the results when applied

to the Urban dataset of hyperspectral images with a random target signature are

given. The results confirm the better performance of AWK-SVDD compared to con-
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ventional kernels, wavelet kernels and the two-function Morlet-Radial Basis Function

kernel. The problems faced with convergence during the Support Vector Data De-

scription optimization are discussed. The thesis concludes with the suggestions for

future work.
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1. INTRODUCTION

An overview of the thesis is included in Section 1.1. An introduction to the target

detection problem is considered in Section 1.2 and Section 1.3 lists the contributions

of this thesis.

1.1 Overview

Sensors capable of recording images over a wider spectral range were discovered

only over the past decade. However, this technique of hyperspectral imagery has

already been the focus of increasing interest with the potential for a wide range of

applications. [1] In specific, hyperspectral imagery has proves to be a useful tool

in the area of remote sensing to distinguish types of vegetation, building materials

and similar spectrally similar materials that are otherwise indistinguishable using

conventional methods of imagery. Many tools have been developed ( [2], [3]) in order

to work with hyperspectral images. Target detection is one of the main applications

of hyperspectral images. This thesis proposes a more robust approach, Adaptive

Wavelet Kernel Support Vector Data Description (AWKSVDD), for target detection,

and compares it with conventional methods.

1.2 Target Detection Problem

1.2.1 Target Detection

Target detection, in general, involves distinguishing target material in available

data. This is described as a classification problem, where each sample of data ob-

tained needs to be classified as being either a target, or not. The rejected samples

are termed outliers. Target detection has a wide range of applications in several

This thesis follows the style of IEEE Transactions letters .
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areas including medical imaging, multimedia signal processing, remote sensing and

telecommunications.

1.2.2 Target Detection Of Hyper-spectral Images

Target detection in the context of hyperspectral images refers to the spectral clas-

sification of each pixel as a target or an outlier. Example target spectral signatures

are used in order to characterize the target. However, the presence of other materials

in the same spatial region representing a pixel leads to spectral mixing. This is a

challenge for accurate target detection. Several methods have been proposed in order

to achieve better target detection. [4]. This thesis proposes a new method,Adaptive

Wavelet Kernel Support Vector Data Description, for better target detection.

1.3 The Contributions Of This Thesis

1.3.1 Organization Of The Thesis

This thesis describes a brief mathematical background of essential concepts and

existing methods in Chapter 2. Chapter 3 introduces the proposed method and

alternate methods. Chapter 4 contains details of the implementation, the results

and observations. The thesis concludes with Chapter 5 containing a brief summary

and the scope for future work.

1.3.2 The Proposed Approach: AWK-SVDD

The contributions of this thesis and the proposed approach are as follows:

• The thesis proposes the use of wavelet functions, including the Morlet wavelet

function and the Adaptive Wavelet Kernel, as kernels in the context of target

detection in hyperspectral images with Support Vector Data Description.
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• It compares and analyzes the performance of conventional kernel functions,

such as the Radial Basis Function and the Sigmoid function, with that of

wavelet kernels, including the Morlet wavelet function, in the context of one-

class classification.

• The thesis introduces the use of two kernel functions in the context of once-class

classification. It discusses the implementation of one such implementation com-

posed of the Morlet wavelet function and Radial Basis Functions and compares

their performance with the use of single function kernel.

• The thesis proposes the Adaptive Wavelet Kernel Support Vector Data De-

scription (AWK-SVDD) for one-class classification. It discusses and compares

the performance and computational time requirements of this method with

existing kernel methods and the wavelet kernel methods mentioned previously.
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2. A BRIEF MATHEMATICAL BACKGROUND

This chapter gives a brief overview of the essential theoretical concepts. Sec-

tion 2.1 talks about hyper-spectral images, how they contain information in the

spectral domain and the technical challenges in processing them. This is followed by

a brief introduction to the wavelet transform and a description of some commonly

used wavelets used in this thesis in Section 2.2. Section 2.3 describes the concepts

of Support Vector learning methods and kernel functions. In Section 2.4, we explain

the relevance of the proposed scheme compared to the existing methods.

2.1 Hyper-Spectral Imagery

Most of the visual data acquisition systems acquire data in the red, green and

blue(RGB) bands of the visual spectrum. The human eye is also accustomed to

RGB images. However, for the past few decades, high resolution remote sensing or

spectral imaging has been an active focus of research [5].

Spectral imaging is the technique of acquiring and using images beyond the visible

spectral range. In this technique, the spectral region is sampled at an increased

number of points.

Multi-spectral imaging samples the spectrum at 10-15 points, whereas hyper-spectral

images involve the sampling of the spectrum at more than 20-30 points. Acquisi-

tion of hyper-spectral images requires the use of specialized equipment, such as the

NASA’s AVIRIS sensor [2]

2.1.1 The Hyper-spectral Data Cube

The hyper-spectral sensors acquire several images across the spectrum, with each

image containing information corresponding to the reflectance of the objects across

a portion of the spectral range. Thus, each image corresponds to a ”spectral band”.
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Thus, together, the images, can be combined to form a three-dimensional data cube

across the spectral dimension [3]. This is known as the spectral cube. The spectral

cube contains information about the area imaged in both the spatial and the spectral

domain.

The spectral domain

In remote sensing images, each image cell or pixel in a spectral band physically

represents an area covered. This is known as the spatial resolution of the image.

Existing imaging systems have resolutions of upto 1 sq. m. per pixel.

However, across the spectral cube, each image cell can also be represented as a spec-

tral signal. This is referred to as the representation of the area in the spectral domain.

Thus, the spectral signal contains information about the reflectance properties of the

objects in the spatial area covered. This information has been shown to be useful for

data mining and classification of the image cells [3], [6], [4], [7], [8]. This thesis aims

to improve upon the previous attempts on classification using the spectral domain.

2.1.2 Challenges In Hyper-Spectral Image Processing

Large spatial variability of the hyper-spectral target signature

The hyperspectral signature of the target signature can vary widely depending

on the spatial characteristics.

Atmospheric effects

The hyperspectral data contains the reflectance values of the objects. The atmo-

spheric effects may cause a huge margin of error. However, the image datasets used

were pre-processed to remove the atmospheric effects.
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The dimensionality of the hyperspectral information

All the spectral information contained in the hyperspectral image may not be

essential for classification. This dimensionality of the data increases the complexity

in data processing.

2.2 A Brief Introduction to Wavelets

Wavelets have been used extensively over the past decade to analyze signals.

Wavelet analysis works by the representation of the given signal in terms of a set of

basis functions. Due to the nature of the basis functions involved, wavelet analysis

has been shown to better represent the given signal better and achieve greater nu-

merical stability in reconstruction. As a result, they are easier to manipulate and

hence, a useful tool in data analysis [9], [10], [11], [12] and [5].

2.2.1 Mother Wavelet And The Concept Of Wavelet Decomposition

The basis functions used in wavelet analysis are termed as wavelets. These

wavelets are obtained as shifted and scaled forms of a fixed function called the mother

wavelet.

The mother wavelet function

A complex-valued function, ψ, satisfying the following two conditions can be

considered for use as a mother wavelet:

Finite energy condition
∫ ∞

∞

|ψ(t)|2dt <∞, (2.1)

Admissibility criterion

cψ = 2π

∫ ∞

−∞

|Ψ(ω)|2
ω

dω <∞, (2.2)
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where Ψ is the Fourier Transform of ψ. The second condition implies that if Ψ(ω) is

smooth, then Ψ(0) = 0.

The continuous wavelet transform

Given a mother wavelet, ψ, the continuous wavelet transform of a real signal y(x)

with respect to the wavelet function ψ(x) is defined as:

y(b, a) =
1√
a

∫ ∞

−∞

ψ̃

(

x− b

a

)

y(x)dx, (2.3)

where ψ̃ denotes the complex conjugate of ψ, b ∃ R, a > 0. Here, b corresponds to

the time shift and a corresponds to the scale of the wavelet.

The translated and scaled version of the mother wavelet can be represented as:

ψa,b(x) =
1

√

(a)
ψ

(

x− b

a

)

. (2.4)

Using this terminology, the equation (2.3) can be rewritten as

Y (b, a) =

∫ ∞

−∞

ψ̃a,b y(x)dx. (2.5)

The inverse transform is given by:

y(x) =
1

cψ

∫ ∞

−∞

Y (b, a)ψa,b(x)
db.da

a2
. (2.6)
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The Discrete Wavelet Transform

The discrete form of the continuous wavelet transform given in Eq. (2.5) is ob-

tained by substituting a = am
0
, b = nb0, m, n ∈ I. This gives us the discrete wavelet

transform defined as follows:

Y (m,n) =

∫ ∞

−∞

ψ̃m,n(x)y(x)dx, (2.7)

where

ψm,n(x) = a
−m/2
0

ψ

(

x− nb0
am
0

)

. (2.8)

Similarly, the discrete form of (2.6) gives us the inverse discrete wavelet transform

as follows:

y(x) = kψ
∑

m

∑

n

Ym,nψm,n(x), (2.9)

where kψ is the normalization factor.

Parametrized Quadrature Mirror Filter (QMF) Wavelet Decomposition

The discrete wavelet transform (DWT) coefficients of a given signal can be com-

puted using a Quadrature Mirror Filter (QMF) bank. A QMF consists of high-pass

and low-pass filters, h and g and are related to a single mother wavelet. Ana-

lytic formulae for these filters are specific to the filter length, but are useful for the

parametrization of QMF generation.

The following equations are an example of parametrization of a QM Filter bank

of length, L = 4 [13]:

i = 0, 3 : h[i] =
1− cosα + (−1)i sinα

2
√
2

i = 1, 2 : h[i] =
1− cosα + (−1)i−1 sinα

2
√
2

(2.10)
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for a given angle, αǫ[0, 2π].

2.2.2 Common Wavelet Functions

The proposed approach, Adaptive Wavelet Kernel Support Vector Data Descrip-

tor (AWK-SVDD), takes advantage of the improved representation of the signal

using wavelet functions. While any function that satisfies the conditions given in

(2.1) and (2.2) can be used as a wavelet function, the use of particularly a few of

them have been explored in this thesis. These wavelets are explained in the following

sub-section.

Gaussian wavelet

A Gaussian wavelet has the form:

ψ(x) = exp

(

−x
2

2
+ ωx

)

, (2.11)

where usually, ω > 5, so that the DC component of the Fourier Transform of the

mother wavelet is negligible [9]. Fig. 2.1 shows the Gaussian mother wavelet.

Morlet wavelet

The Morlet wavelet is one of the popular complex wavelets in practice. The

mother wavelet, as used in this thesis, for the Morlet wavelet is defined as [11]:

ψ(x) = cos(1.75x) exp

(

x2

2

)

(2.12)

Fig. 2.2 shows the Morlet wavelet function.
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Fig. 2.1. The Gaussian mother wavelet function

2.3 Pattern Classification Using Support Vector Data Description

The classification of the individual pixels of hyper-spectral images into the target

and the background is a specific case of pattern recognition.

Pattern recognition, in a broad sense, can be described as the problem of approxi-

mating a mapping from the n-dimensional data, xi to the corresponding class labels,

yi. In other words, it aims to estimate the function f , such that:

(xi, yi), . . . (xn, yn) ∈ RN → {±1} (2.13)

Many methods have been traditionally used for pattern recognition. Some of them

assume the knowledge of the structure of the classes involved. These are known to be
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−1

−0.8
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0

0.2

0.4

0.6

0.8

1
Morlet wavelet

Fig. 2.2. Morlet wavelet function

parametric methods. The Linear Discriminant Analysis method is one such method

and has been applied in a variety of classification problems [14]. The methods that

do not assume any prior knowledge are known as the non-parametrized methods.

Most of the pattern recognition methods such as the Neural Networks employ Em-

pirical Risk minimization. This implies that the methods attempt to minimize the

error of misclassification. However, Support Vector Machines (SVM) and Support

Vector Data Descriptions (SVDD) employ structural risk minimization - They at-

tempt to minimize the probability of misclassifying a randomly drawn, unseen, data

point from a fixed but unknown probability distribution. This has made these meth-

ods popular in several applications. AWK-SVDD, proposed in this thesis, is derived

from the SVDD (Support Vector Data Description) method.
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2.3.1 Support Vector Machines

The basic formulation of Support Vector Machines is used for two-class classifi-

cation. Support Vector Data Description is derived from a Support Vector Machine,

specifically when the focus is on classifying one class from the rest.

Support Vector Machines - Linear decision surface

The Support Vector Machine method aims at finding the Optimal Separating

Hyperplane between the two classes of data points. [14]

Given that xi, i ∈ [1, n] are the linearly separable data points given with the cor-

responding labels, yi ∈ {−1,+1}, a linearly separating hyperplane is characterized

by the parameters, (w, b), w ∈ Rn, b ∈ R, satisfying the condition:

yi (〈w · xi〉 + b) ≥ 1 (2.14)

The equation of the hyperplane is given by:

〈w · x〉 + b = 0 (2.15)

It can be shown that 1

||w||
is the lower bound on the distance between xi and the

hyperplane, defined by (w, b).

The optimal separating hyperplane is defined as the hyperplane for which the distance

between the data points and the hyperplane is maximum. In other words, this boils

down to maximizing 1

||w||
, subject to the constraint, (2.14). This is formulated as

min
1

2
〈w · w〉 (2.16)

subject to yi (w · xi + b) ≥ 1, i = 1, 2, . . . , n (2.17)
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The above problem, (2.16) can be solved by the method of Lagrangian multipliers.

The corresponding Lagrangian function is given by:

L(w, b, α) =
1

2
w · w −

n
∑

i=1

αi{yi (w · xi + b)− 1} (2.18)

where the Lagrangian multipliers are given by α = {α1, α2, . . . αi . . . , αn}, αi > 0, i =

1, 2, . . . , n. At the saddle point, L(w, b, α) reaches a minimum for w = ŵ, b = b̂ and

a maximum for α = α̂. Thus,

∂L

∂b
=

n
∑

i=1

yiαi = 0 (2.19)

∂L

∂w
= w −

n
∑

i=1

αiyixi = 0 (2.20)

given that
∂L

∂w
=

(

∂L

∂w1

,
∂L

∂w2

, . . .
∂L

∂wn

)

(2.21)

Substituting (2.19) and (2.20) into (2.18), the Lagrange function to be maximized

can be written as:

L(α) =

n
∑

i=1

αi −
1

2

∑

i,j=1

nαiαjyiyj〈xi · xj〉 (2.22)

subject to the constraint, (2.19) and given that, α ≥ 0. This is known as the dual

formulation of (2.18) and can be written as:

min − 1

2
aTDa+

n
∑

i=1

αi (2.23)

subject to
∑

i=1

nyiαi = 0, α ≥ 0 (2.24)
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where D is an N ×N matrix such that

Dij = yiyj〈xi · xj〉 (2.25)

Also, from (2.20),

ŵ =

n
∑

i=1

α̂iyixi (2.26)

And from the Kharush Kuhn-Tucker conditions of optimization theory [15],

α̂i

(

yi

(

ŵ · xi + b̂
))

= 0, i = 1, 2, . . . , n (2.27)

Most of the α̂i are usually null. As a result, the vector ŵ is a linear combination of

only some of the points, xi, known as support vectors. Only these points are needed

to determine the Optimal Separating Hyperplane. The parameter,b̂ is obtained from

the Kuhn Tucker conditions. And hence, the classification of a new data point is

determined by the sign of:

〈ŵ · x〉+ b̂ (2.28)

Support vector machines - The non-linearly separable case

If the set of support vector data points are non-linearly separable, the previous

analysis fails. N slack variables are introduced for a penalty in case of misclassification

and analysis is conducted as above.

Support Vector Machines - The kernel trick

The previous section, 2.3.1, describes the solution for a linear decision surface us-

ing Support Vector Machines. However, the strength in the Support Vector learning

methods is in their applications to general decision surfaces. The following section

elaborates on the use of kernel functions.
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2.3.2 The Significance Of Kernel Functions

Definition of a kernel

For a general decision surface, the set of input data vectors, {x1, x2, . . . , xn} are

transformed to a higher dimensional feature space, using a mapping, Φ(xi) :→ zi,

such that the feature vectors obtained after mapping, {z1, z2, . . . , zn}, are linearly

separable. It can be observed that the solution of this problem only requires the

computation of the inner product of the feature vectors, 〈Φ (xi) ,Φ (xj)〉 in the higher-

dimensional space. Thus, the accuracy can be significantly improved by the choice

of a suitable function, K, such that

〈Φ(xi),Φ(xj)〉 = K(xi, xj) (2.29)

This function is known as a Kernel function.

Mercer’s theorem

Mercer’s theorem gives the conditions to be met by a function in order to be

considered for use as a kernel.

Let K(xi, xj) be a continuous symmetric kernel defined in the closed interval, a ≤
xi, xj ≤ b. Then,

1. The kernel expansion is given by

K(xi, xj) =

∞
∑

i=1

λiΦ(xi)Φ(x
′
j) (2.30)

with positive coefficients, λi > 0, ∀i
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2. A necessary and sufficient condition for the above expansion, (2.30), is, ∀g(x),
given that,

∫ b

a
g2(x)dx <∞,

∫ b

a

∫ b

a

K(xi, xj)g(xi)g(xj)dxidxj ≥ 0 (2.31)

The numbers λi are known as the eigenvalues of the expansion and the functions,

gi(x) are called the eigenvalues of the expansion. All the eigenvalues are positive and

hence, a kernel function, is positive definite.

Commonly used kernels

Using a suitable kernel function to classify non-linear data using Support vector

learning methods is known as the kernel trick. The kernel chosen highly influences

the result of the classification.

Several kernel functions are very commonly used. Some of these functions are listed

as follows:

Polynomial kernel

K (xi, yj) = (xi · xj + 1)d (2.32)

Here, the order of the polynomial, d is a kernel parameter.

Radial Basis Function (RBF)

K (xi, yj) = exp

(

−||xi − xj ||2
2σ2

)

(2.33)

where σ ∈ R, is a kernel parameter.
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Table 2.1
Popular kernel functions

No Kernel Formula (K(x, y) =)

1 Polynomial (xi · xj + 1)d

2 Radial Basis Function exp
(

− ||xi−xj ||
2

2σ2

)

3 Exponential exp (− (||xi − xj ||) /β)

Exponential kernel

K (xi, xj) = exp

(− (||xi − xj ||)
β

)

(2.34)

where β is a kernel parameter.

Table 2.1 summarizes the kernels described above.

2.3.3 Support Vector Data Description

The Support Vector Data Description(SVDD) is a solution to the data domain

classification problem. ( [16]) The data domain classification aims to distinguish a

desired class of data as given in the training data and reject all other possible data

points. The desired class is known as ”the target class” and the rejected data belong

to ”the outlier class”.

SVDD for a spherical distribution

It is assumed that a description is required of a data set containing N data points,

given by, {x1, x2, x3, . . . , xN}. The idea is to obtain a sphere of minimum volume

containing the data objects. Since the volume of the sphere is extremely sensitive to

the most outlying object, slack variables, ξi, are introduced to allow for data points

to lie outside the sphere.
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Given that the sphere is described by the center a, and radius R, the problem is to

minimize the radius of the resultant sphere, given by,

F (R, a, ξi) = R2 + C
∑

i

ξi (2.35)

where C gives the trade-off between the volume of the sphere and the number of

target data points allowed to be rejected. This represents the trade-off between

simplicity and the number of errors. The constraints for this minimization are given

by:

(x− a)T (x− a) ≤ R2 + ξi ∀i, ξi ≥ 0 (2.36)

Incorporating the constraints, (2.36), into (2.35), the following Lagrangian is con-

structed:

L(R, a, αi, ξi) = R2+C
∑

i

ξI −
∑

i

αi{R2+ ξi−
(

x2i − 2axi + a2
)

}−
∑

i

γiξi (2.37)

with the Lagrange multipliers, αi, γi ≥ 0. Finding the saddle point of the Lagrangian

and setting the partial derivatives to zero, we get:

∑

i

αi = 1 (2.38)

a =

∑

i αixi
∑

i αi
=
∑

i

αixi (2.39)

C − αi − γi = 0 , ∀i (2.40)

(2.41)

Rewriting eq.(2.37) using the equations in (2.40) to maximize w.r.t αi:

L =
∑

i

αi (xi · xi)−
∑

i,j

αiαj (xi · xj) (2.42)
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subject to the constraints, 0 ≤ αi ≤ C,
∑

i αi = 1. As in the case of the support

vector machine, the parameters of the sphere only depends on the support vectors.

A test point, x̄, is accepted when the distance to the center of the sphere determined

as above is smaller than the radius. Expressing this in terms of the support vectors,

the test point is accepted when:

(x̄ · x̄)− 2
∑

i

αi (x̄ · xi) +
∑

i,j

αiαj (xi · xj) ≤ R2 (2.43)

SVDD for the general case

The equation,(2.43), obtained in the previous section, assumes a spherical distri-

bution of data. However, SVDD can be used in the general case too, by applying

the kernel trick, i.e, replacing all inner products 〈xi, xj〉 by the value of the kernel,

K (xi, xj). In this case, the problem (2.42) is rewritten as:

L =
∑

i

αiK (xi, xj)−
∑

i,j

αiαjK (xi, xj) (2.44)

subject to the constraints, 0 ≤ αi ≤ C,
∑

i αi = 1. Similarly, as in (2.43), a test

point, x̄, is accepted when

K (x̄i, x̄j)− 2
∑

i

αiK (x̄i, x̄j) +
∑

i,j

αiαjK (x̄i, x̄j) ≤ R2 (2.45)

As in the case of an SVM, the choice of the kernel highly influences the classification

results.

2.4 The Need for Adaptive Wavelet Kernel SVDD (AWKSVDD)

This section highlights the advantages of using Support Vector learning methods

for pattern recognition and goes on to describe why one-class classification is more
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relevant for the hyper-spectral target classification problem. The section also explains

why the proposed approach AWK-SVDD is required and offers an advantage over

the existing methods.

2.4.1 The Advantages Of Support Vector Classification Methods

Support vector-based classification methods have been shown to be more relevant

for the classification of hyper-spectral data ( [6]) due to the following reasons:

• Support Vector methods have been shown to be efficient at handling large input

spaces. [17], [18]

• Previous research has demonstrated that Support Vector methods are quite

robust in the presence of noisy samples. [19]

• The resulting solution depends only on the support vectors and hence, the solu-

tion requires computations only on a subset of the training set. This produces

sparse solutions that are easier to compute. [18], [20]

• The flexibility offered due to the use of a kernel supports the use of the methods

for different data distributions, subject to the application of a suitable kernel

function. [20]

• Compared to traditional methods, with a suitable kernel, the support vector

learning methods have been shown to work well in the absence of a-priori

information about the data distribution. [18]

2.4.2 The Relevance Of One-class Classification

One-class classification has been used mainly to recognize a particular class, in-

dependent of the characteristics of the other classes. Support Vector Data Descrip-
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tion has been successfully used for the one-class classification of several types of

data. [21], [4], [7], [8]

• SVDD inherits all the advantages of using an SVM for binary-class classification

as described in the previous section. These include, efficient output for large

input spaces, robustness w.r.t noisy samples, sparse structure of the solution

and the flexibility due to the kernel trick.

• Previous research has shown that SVDD can be successfully used to determine

the boundary of a target data set in the case of availability of a very small

sample set. [22]

• SVDD, with the optimal choice of decision threshold and tuning of false alarm

rate, has been applied successfully when pure target data is difficult to obtain.

[21]

• Data description has also been successfully used in the case of highly imbal-

anced datasets, where the samples of each of the classes are not equally dis-

tributed. [23]

2.4.3 The Need For An Adaptive Wavelet Kernel

The use of SVDD for the classification of hyperspectral images is a relatively new

area. Particularly, the use of wavelet kernels with SVDD has not been studied in

detail yet. However, several attempts have been made to use the discrete wavelet

transform followed by support vector machines [12] or support vector machines with

wavelet kernels [10] in pattern recognition problems. An attempt has also been

made to use SVDD for target detection in hyper-spectral images, however, these

approaches suffer from several discrepancies and, as a result, the proposed approach

with an adaptive wavelet kernel, presents itself as an intuitive solution.
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• It has been shown that the wavelet transform is an admissible kernel using

Mercer’s conditions and, under optimization, it models the data better than

the normal Gaussian kernel. [10]

• Hence, several wavelets including the ones mentioned in this chapter satisfy

the Mercer’s conditions and can be used as kernels. The resultant efficiency of

classification for each wavelet, however, varies with the data.

• Hyper-spectral images usually have a large number of spectral bands and due

to the high correlation between these bands, feature selection is essential. This

requires that the optimal wavelet coefficients be chosen during the computation

of the kernel.

• A kernel learning approach to decide the type of wavelet would solve the prob-

lem of the choice of the mother wavelet function. Yger, Rakotomamonjy et.

al. [24] proposed the Wavelet Kernel Learning method (WKL) that learns the

shape of the mother wavelet, selects the best wavelet coefficients and learns

a large-margin classifier, when used with a support vector machine. Thus, it

achieves optimal kernel learning and feature selection.

• Adaptive Wavelet Kernel - Support Vector Data Description (AWK-SVDD),

while retaining the advantages of WKL, uses kernel learning with SVDD, mak-

ing it suitable for one-class classification. As explained previously, this is par-

ticularly relevant in the context of target detection in hyper-spectral images.
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3. ADAPTIVE WAVELET KERNEL - SUPPORT VECTOR DATA

DESCRIPTION (AWK-SVDD)

This chapter explains the proposed approach Adaptive Wavelet Kernel -Support

Vector Data Description in Section 3.2. It also discusses mathematical background

in Section 3.1.1 necessary for the validity of AWKSVDD. The Morlet wavelet kernel

and the Morlet-RBF wavelet kernel, analyzed novelly in the context of one-class

classification, are discussed in Section 3.1.2 and Section 3.1.3 respectively.

3.1 SVDD With Wavelet Kernels

In this section ,we theoretically analyze the use of wavelet kernels with Support

Vector Data Description. In particular, Section 3.1.1 discusses the general conditions

for admissibility of a wavelet function as a kernel and specifically, the Morlet and

Morlet-RBF wavelet functions are described.

3.1.1 Admissibility Of Wavelet Kernels

In the previous chapter, it has been mentioned that the conditions, Eq.2.31 and

Eq.2.30, are required for a function to be used as a kernel. The formula for a wavelet

transform in terms of the mother wavelet, Eq.2.10 has also been seen. Wavelet

functions, being translation invariant functions, can be shown to satisfy the Mercer’s

conditions, and hence be used as kernels. ( [10])

Translation-invariant kernels

A translation-invariant kernel is one that satisfies the following property:

K (xi, xj) = K (xi − xj) (3.1)
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It has been shown that the necessary and sufficient condition for translation-invariant

kernel to satisfy the Mercer’s conditions is given by:

F [K](ω) = (2π)−N/2
∫

RN

exp (− (ω · x))K(x)dx ≥ 0 (3.2)

where F [K](ω) gives the Fourier Transform of K(x).

Wavelet functions as translation-invariant kernels

From the previous chapter, the translated and scaled version of a mother wavelet,ψ,

is given by

ψa,b(x) =
1

√

(a)
ψ

(

x− b

a

)

where b ∈ R gives the shift in time and a > 0 gives the scale of the wavelet.

The continuous wavelet transform (Eq.(2.5)) of a function y(x) can also be written

as:

Y (b, a) = 〈y(x) · ψa,b(x)〉 (3.3)

where 〈 · 〉 denotes an inner product in the L2-normed space. This thesis aims to

analyze the performance of wavelet functions as kernel functions. Specifically, the

performance of Morlet wavelet kernel, discussed in Section 3.1.2, the Morlet-RBF

wavelet kernel, discussed in Section 3.1.3 and the proposed Adaptive Wavelet Kernel

discussed in Section 3.2 are analyzed in the context of one-class classification.

3.1.2 Morlet Wavelet Kernel

From the previous chapter, the mother wavelet for a Morlet wavelet is given by

Eq.(2.12) as:

ψ(x) = cos(1.75x) exp(
x2

2
)
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Fig. 3.1. The Morlet Mother Wavelet Function

Substituting the above equation in the formula for a translation-invariant kernel(Eq. 3.1),

we get the wavelet kernel for the Morlet wavelet as:

K (xi, xj) =

N
∏

k=1

(

cos

(

1.75

(

xki − xkj
a

))

exp

(

−
||xki − xkj ||2

2a2

))

(3.4)

where xki and xkj denote the kth element of the data vector xi and xj respectively. a

is a kernel parameter. Fig. 3.1 shows a Morlet mother wavelet function.

3.1.3 Morlet-RBF Wavelet

The use of two kernels, and the Morlet-RBF kernel in particular, was shown

by Jiang. et al. [25] to perform better than the existing kernels in medical image
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classification with Support Vector Machines. This thesis attempts to use the Morlet-

RBF kernel in the context of one-class classification and analyze the performance.

The use of two kernels

The use of Morlet-RBF kernel is based on the assumption that, in instances

where one time mapping of the data is not sufficient to make data linearly separable,

twice mapping can be used. However, the two kernels need to be similar in order to

have a consistent transform process. The Morlet and Gaussian kernels are similar in

distribution and hence, are a suitable choice.

Mathematical formula for the Morlet-RBF kernel

If K1(x1, x2) is used to represent the Morlet kernel between the set of feature

vectors, x1 and x2 and K2(x1, x2) is used to represent the Gaussian wavelet, the

Morlet-RBF kernel, K(x1, x2) can be represented as follows:

K(x1, x2) = ψ(ϕ(x1), ϕ(x1))

= K2(ϕ(x1), ϕ(x1))

= exp(−γ‖ϕ(x1)− ϕ(x2)‖2)

= exp(−γ[ϕ(x1)− ϕ(x2)− 2ϕ(x1) · ϕ(x2) + ϕ(x1) · ϕ(x2)])

= exp= γ[2− 2K1(x1, x2)]

(3.5)

3.2 Adaptive Wavelet Kernel - Support Vector Data Description

Adaptive Wavelet Kernel Support Vector Data Description (AWK-SVDD) was

motivated by the wavelet kernel learning method, proposed by F.Yger and

A.Rakotomamonjy [24].
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3.2.1 Multiple Kernel Learning

Recent research has shown that using multiple kernels instead of a single kernel

improves classification performance. [26]. One of the commonly used approaches is

to consider the resultant kernel K(x1, x2) as a convex combination of basis kernels

as follows:

K(x1, x2) =

M
∑

m=1

dmKm(x1, x2) (3.6)

given
M
∑

m=1

dm = 1, dm ≥ 0 (3.7)

where each Km(x1, x2), m = 1, . . . ,M is a positive definite kernel belonging to the

reproducing kernel Hilbert Space (RKHS), H, and dm are the corresponding weights.

Thus, the problem of finding an accurate kernel representation is reduced to finding

the optimal weights by solving the above formulation. One such solution is the

Simple Multiple Kernel Learning (Simple MKL) was proposed by Rakotomamonjy

et. al. ( [26]). Wavelet Kernel Learning is another solution based on Simple MKL

and is discussed in the following section. [24]

3.2.2 Adaptive Wavelet Kernel Learning for Support Vector Data Description

Wavelet Kernel Learning assumes that each of the kernels, Km(, ) in Eq.3.6 is

formed by the coefficients given by a wavelet decomposition, as described in Eq.2.10.

The method uses an iterative approach to find the classification boundary and the

kernel weights using a Support Vector Machine as the classifier.

Wavelet Kernel using a Quadratic Mirror Filter

A multiple kernel learning approach is adopted to determine the optimal wavelet

features and the optimal mother wavelet to be used. Suppose the orthogonal mother
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wavelet is given by φα obtained by parametrization of the wavelet using QMF banks

as in Eq. 2.10. Let this wavelet be dilated at scale s and translation t, giving φα,s,t.

Then, given the signals, x, y ǫRd, the linear wavelet kernel is given as follows:

Kα,s,t(x, y) =< φα,s,tx > · < φα,s,ty > . (3.8)

where Kα,s,t is the product of the wavelet coefficients obtained at scale s and trans-

lation t.

Formulation of wavelet kernel learning

Consider a training set (xi, yi)
n
i=1
, where xi ∈ R

d, and the labels are given by

yi = {1,−1}. Using wavelet kernels Km(, ) parametrized with Quadratic Mirror

Filters as defined in the previous section, it has been shown that the decision function

for the Support Vector Machine, f(x) can be obtained from the solution of the

Multiple Kernel Learning problem with the following primal formulation: [26]

min
d
J(d) =















min
{fm},b,ξ

1

2

∑

m

dm‖fm‖2Hm
+ C

∑

i

ξi

s.t. yi
∑

m

fm(xi) + yib ≥ 1− ξi, ξi ≥ 0, ∀i

s.t.
∑

m

dm = 1, dm ≥ 0, ∀m

(3.9)

The kernel weights dm obtained from the above solution and the dual variables α∗

give the following decision function:

f(x) =
∑

i

α∗
i yi(
∑

m

dmKm(xi, xi)) + b (3.10)

AWK-SVDD considers a similar formulation that can be applied to one-class classi-

fication as follows:
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min
d
J(d) =























min
α

J(d) =
N
∑

i=1

N
∑

j=1

αiαj
∑

m

dmKm(xi, xj)−
N
∑

i=1

αi
∑

m

dmKm(xi, xi)

s.t.
N
∑

i=1

αi = 1, 0 ≤ αi ≤ C, ∀i

s.t.
∑

m

dm = 1, dm ≥ 0, ∀m

(3.11)

An infinite number of kernels needs to be dealt with for the solution to the above

multiple kernel learning framework. Yger et. al. proposed an iterative approach

in order to solve this with a reduced computational complexity and a finite kernel

space. [24] This is described in the following section.

Iterative solution to the wavelet kernel weight learning problem

The wavelets used in the adaptive wavelet kernel problem(Eq. 3.11) are parametrized

using the parameter θ as described previously in Eq. 2.10. An iterative approach

similar to the one suggested by Yger. et. al [24] is used to solve this. This section

describes the implementation of this approach. A finite set of kernels, described by

Θ = θ is sampled from the otherwise infinite kernel space, described by [0, 2π]M−1.

This leads to an exponential number of kernels. However the iterative approach

proposed by Yger. et. al. [24] provides a reasonably efficient solution.

The problem can be rewritten as the following non-linear convex and differentiable

simplex formulation:

minimize
d

J(d)

subject to
∑

m

dm = 1

dm ≥ 0, ∀m.

(3.12)



30

Using Kharush Kuhn Tucker conditions, at optimality, it follows that:

∂J(d)

∂dm
= −λ if dm > 0

∂J(d)

∂dm
≥ −λ if dm = 0

(3.13)

where λ is the corresponding Lagrangian multiplier. It can also be shown that:

∑

m:dm>0

dm
∂J(d)

∂dm
= −λ (3.14)

It follows that, at optimality, all kernels with non-zero dm have equal gradients. The

kernels with dm > 0 are termed as Active Kernels and non-active otherwise. The

Wavelet Kernel Learning method uses this property to check on each iteration if

optimality is reached using Eq. 3.13, and update the set of kernels if not. Three

update strategies are used as proposed by Yger. et. al.:

Exhaustive search

In this update strategy, the kernel which maximally violates the contraint is

chosen first.

Stochastic search

It is assumed that θ ∈ Θ, where Θ represents an infinite set of kernels. In order

to find a constraint violating kernel, a QMF is randomly generated by randomly

sampling on Θ. The first violating kernel is selected by visiting all wavelet coefficients

in ascending scale order. If a violating kernel is not found after a certain pre-set

number of samplings (20), the solution is considered optimal.



31

Full stochastic search

This search strategy involves random sampling on the wavelet scale and transla-

tion alongwith random sampling on the infinite set Theta. The first violating kernel

through randomly generated QMF, scale and translation until a pre-decided number

of sampling is reached.

The iterative method of update has been proved to be robust compared to the

existing methods. In addition, multiple kernel learning has been shown to have

greater accuracy compared to conventional kernels [24]. However, they have been

applied only in the case of binary or multi-class classification. The proposed Adaptive

Wavelet Kernel Support Vector Data Description implements these features in the

context of one-class classification, better suitable for many applications, including

the target detection in hyperspectral images.
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4. IMPLEMENTATION AND RESULTS

Hyper-spectral data from the Urban dataset was used with varying signal to noise

ratio. This chapter talks about the method used for simulating the target signature

in Section 4.1, the results of the comparison between the proposed AWKSVDD ap-

proach and other wavelet kernels in Section 4.2, their computational requirements in

Section 4.3 and discusses these results in Section 4.4.

4.1 Data And Preparation

The dataset and assumptions taken into account for target detection are explained

in this section.

4.1.1 Hyper-spectral Image Data

An image from the HYDICE (Hyperspectral Digital Imagery Collection Exper-

iment) sensor was chosen to test the method. HYDICE is an airborne pushbroom

imager. HYDICE images have 210 spectral bands covering wavelengths of 0.4 - 2.5

microns in roughly 10nm bandwidths. The image of the urban scenery is shown in

Fig 4.1. For the ease of visualization, it is displayed such that the colors red, green

and blue correspond roughly to the bands 420nm, 440nm and 2400nm respectively. It

is practically difficult to obtain the ground truth image in order to verify the accuracy

of classification. For this reason, the targets were simulated using a Gaussian model

and inserted at 300 randomly chosen pixels, roughly about half percent of the total

pixels, in order to simulate the low-probability target detection arrangement. [7].
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Fig. 4.1. Urban dataset hyperspectral image visualized at R =
420nm, G = 440nm and B = 2400nm

4.1.2 Gaussian Model Of Target Detection

A random target signature was created and a simple Gaussian noise model was

used to obtain the corrupted samples of this signature. These corrupted samples were

inserted at the 300 random locationsThe corrupted target signature, tc is obtained

from the pure target signature, t by adding noise n as follows:

tc = t+ n (4.1)

where n Nk[t, σ
2I]. In other words, n belongs to a K-dimensional Gaussian distri-

bution with mean t and per-band variance σ2. The variance σ was adjusted so that

the resulting Signal to Noise Ratio (SNR) was 6 dB. (Usually classified as a highly

corrupt signal). The comparison of the results obtained on this data using AWK-

SVDD and known one-class classification methods are presented in the rest of this

chapter.



34

4.2 Comparison Of Performance With Previously Established Methods

AWK-SVDD was used to classify the data obtained as described in Section 4.1

and its performance was compared with that of known classification methods. The

F-measure was chosen as the measure of performance. This section explains the

significance of using F-measure and the results obtained.

4.2.1 F-measure Value

F-measure is a statistical measure used to determine the accuracy of classifica-

tion. F-measure (F ) is defined as the harmonic mean of the statistical parameters,

precision (P ) and recall (R) as follows:

F =
2PR

P +R
(4.2)

Precision and recall are defined as below:

P =
TP

TP + FP
(4.3)

P =
TP

TP + FN
(4.4)

where TP is the rate of true positives (the probability that a given sample classified

as a target is a true target), FP is the rate of false positives (the probability that a

given sample classified as a target is not a target) and FN is the rate of false negative

(the probability that a target sample is rejected). Thus, the value of the F-measure

can vary from 0 to 1, with 0 being very poor classification accuracy and 1 signifying

the highest classification accuracy. The F-measure is widely used as a performance

measure when precision and recall are equally valued.



35

4.2.2 Comparison of F-measure

AWK-SVDD and Support Vector Data Description with conventional kernel meth-

ods were used to classify the hyperspectral image data. Cross-validation and repeated

iterations were used for a better estimation of predictive measure. The average F-

measure obtained was noted. The plot of corresponding F-measures is given in

Fig 4.2. In the figure, the value of F-measure for AWK-SVDD is the average of the

F-measure values for all update strategies. It can be seen that the average F-measure

Fig. 4.2. F-measure plotted as a function of the number of training points

is the highest for the proposed AWK-SVDD method.

4.2.3 Variation Of Performance With The Number Of Training Samples

The Fig 4.2 shows the average F-measure for various kernels plotted against the

number of training samples. It can be seen that, as expected, the F-measure in-

creases with the number of training samples. For the Sigmoid kernel, the Support

Vector Data Description optimization refused to converge for lesser number of train-
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ing samples. It can be seen that AWK-SVDD performs well even with decreased

number of training samples.

4.3 Analysis Of Computational Time Requirements
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Fig. 4.3. Computational time taken by each method

The plot of average computational times for each of the methods per classification

for N = 30 training samples is given in Fig 4.3. AWK-SVDD, being a multiple kernel

learning method, requires more computational time as expected. However, it was

seen that the time taken using the stochastic update strategy and the full stochastic

update strategies are comparable with the time required by the Morlet kernel and the

Morlet - RBF kernel. However, it should be noted that the value of the computational

time is highly dependent on the implementation of the algorithm.

4.4 Results And Discussion

The results obtained are tabulated in Section 4.4 and the shortcomings of the

approach are discussed in Section 4.4.2.
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Table 4.1
Average precision values

METHOD N = 15 N = 20 N = 30
RBF 1 1 1
Sigmoid NaN 0.0291 0.0291
Morlet 1 1 1
Morlet-RBF 1 1 1
AWK-SVDD 1 1 1

Table 4.2
Average recall values

METHOD N = 15 N = 20 N = 30
RBF 0.2267 0 0.7
Sigmoid NaN 1 1
Morlet 0.25 0.3983 0.9
Morlet-RBF 0.31 0.41 0.8333
AWK-SVDD 0.3983 0.55 0.9333

4.4.1 Tabulated Results

Table 4.1 lists the average precision values obtained according to the Eq. 4.3for

each of the methods with various number of training samples. It should be noted

that the NaN values were obtained when the solution to the quadratic optimization

formulation in the Support Vector Data Description did not converge.

Table 4.2 lists the average recall values for each of the methods obtained according

to the Eq. 4.4 with various number of training samples. The resulting F-measure

values obtained from the precision and recall values calculated as in Eq. 4.2 are listed

in Table 4.3.

Table 4.4 summarizes the average computational time taken by each method with

N = 30 training samples, plotted in the Fig. 4.3
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Table 4.3
Average F-measure values

METHOD N = 15 N = 20 N = 30
RBF 0.3503 NaN 0.8235
Sigmoid NaN 0.0566 0.0566
Morlet 0.3826 0.551 0.9474
Morlet-RBF 0.4618 0.5714 0.9091
AWK-SVDD 0.551 0.7097 0.9655

Table 4.4
Average computational time

METHOD Average time per classification
RBF 4.3212
Sigmoid 27.1754
Morlet 38.5478
Morlet-RBF 38.3138
AWK-Ex 50.2837
AWK-Stoc 42.3154
AWK-Ex 41.2143
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4.4.2 Discussion And Short-comings

Computational complexity

As evident from table 4.4 and fig. 4.3, the average computational time taken

varies widely with the update strategy. In general, the computational time varied

widely between the iterations with the same dataset depending on the random seed

used for the iterations. However, the average computational time is comparable with

that of the regular Morlet wavelet kernel with increased performance.

Convergence of the method

During the classification tests, it was observed that the quadratic optimization

formulation associated with the Support Vector Data Description did not converge

at times. Checking for this and updating the kernel with updated weights resulted

in a converging formulation. This might be due to an ill-conditioned kernel matrix

and occurred irrespective of the kernel used. However, this needs to be checked with

a wider variety of kernels and data in order to check the convergence of the method.
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5. CONCLUSION

The proposed method Adaptive Wavelet Kernel Support Vector Data Descrip-

tion (AWK-SVDD) for the one-class classification of hyperspectral images in the

context of target detection was discussed and analyzed. The Morlet and the Morlet-

RBF wavelet kernels were also used in the context of one-class classification for the

first time. The advantages of the proposed solution and possible improvements are

discussed here in Section 5.1 and Section 5.2 respectively.

5.1 Advantages Of The Proposed Solution

• The method conveniently combines feature selection with kernel optimization.

• AWK-SVDD is based on one-class classification and hence, suits most practical

applications of targeted object identification in hyperspectral images and many

other classification problems.

• From the results, AWK-SVDD is quite robust even with lesser number of train-

ing samples.

• The computational time taken by AWK-SVDD can be significantly reduced

using a suitable strategy as observed in the Fig. 4.3.

5.2 Scope For Improvement And Future Work

• The efficiency of classification was emphasized during the implementation of

AWK-SVDD. However, computational efficiency can be further improved.

• AWK-SVDD focuses on using the spectral characteristics of the pixels for target

detection. This does not take into account the inter-spatial correlation between

the pixels. A spatio-spectral focus on classification would better exploit the

information that hyper-spectral images have to offer.
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• Several attempts have been made on combining one-class classifiers for multi-

class classification. The results on combining AWK-SVDD for multi-class clas-

sification can be observed and analyzed.

• Batch processing can be implemented and the memory used in classification

can be analyzed and optimized.
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