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ABSTRACT

Application of the Stretched Exponential Production Decline Model to Forecast
Production in Shale Gas Reservoirs. (May 2012)
James Cody Statton
B.S., Texas A&M University

Chair of Advisory Committee: Dr. John Lee

Production forecasting in shale (ultra-low permeability) gas reservoirs is of great
interest due to the advent of multi-stage fracturing and horizontal drilling. The well
renowned production forecasting model, Arps’ Hyperbolic Decline Model, is widely
used in industry to forecast shale gas wells. Left unconstrained, the model often
overestimates reserves by a great deal. A minimum decline rate is imposed to prevent
overestimation of reserves but with less than ten years of production history available to
analyze, an accurate minimum decline rate is currently unknown; an educated guess of
5% minimum decline is often imposed. Other decline curve models have been proposed
with the theoretical advantage of being able to match linear flow followed by a transition
to boundary dominated flow. This thesis investigates the applicability of the Stretched
Exponential Production Decline Model (SEPD) and compares it to the industry standard,
Arps’ with a minimum decline rate. When possible, we investigate an SEPD type curve.

Simulated data is analyzed to show advantages of the SEPD model and provide a

comparison to Arps’ model with an imposed minimum decline rate of 5% where the full
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production history is known. Long-term production behavior is provided by an analytical
solution for a homogenous reservoir with homogenous hydraulic fractures. Various
simulations from short-term linear flow (~1 year) to long-term linear flow (~20 years)
show the ability of the models to handle onset of boundary dominated flow at various
times during production history. SEPD provides more accurate reserves estimates when
linear flow ends at 5 years or earlier. Both models provide sufficient reserves estimates
for longer-term linear flow scenarios.

Barnett Shale production data demonstrates the ability of the models to forecast
field data. Denton and Tarrant County wells are analyzed as groups and individually.
SEPD type curves generated with 2004 well groups provide forecasts for wells drilled in
subsequent years. This study suggests a type curve is most useful when 24 months or
less is available to forecast. The SEPD model generally provides more conservative

forecasts and EUR estimates than Arps’ model with a minimum decline rate of 5%.
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I. INTRODUCTION

1.1 Importance of Research

The majority of shale gas reservoirs and ultra-tight source rocks have long been
considered non-commercial hydrocarbon deposits. Advances in horizontal drilling and
multi-stage fracturing treatments combined with favorable commodity prices have
revolutionized natural gas and petroleum liquids production from ultra-low permeability
rocks over the last decade. One of the most notable shale gas reservoirs, the Barnett
Shale, began its take off during the early 2000’s in and around Fort Worth, TX.

With only a basic understanding of post completion fracture geometries (natural
and hydraulic), it is difficult for reservoir engineers to effectively model Barnett Shale
production. Further, reservoir modeling is not always a feasible method to forecast
hundreds or thousands of wells because of time and resource constraints. For this reason,
most if not all companies use decline curve analysis to predict future production from oil
& gas wells. This practice has been accepted in industry for many years in conventional
and unconventional reservoirs alike. With less than 10 years of data available for
horizontal wells with multi-stage fracture completions, many questions and uncertainties
remain concerning the long-term behavior of shale gas reservoirs like the Barnett Shale.
The question of how well decline curves will predict future volumes in shale gas wells is

one of great concern.

This thesis follows the style and format of SPE Journal.



Predicting the volume of hydrocarbons that can be produced economically
(reserves) is of the utmost importance to engineers, investors, and government
organizations. Since we do not have long-term production data available from shale gas
wells with multi-stage fractures, the best we can do is investigate our models for various
possibilities that may occur — whether good or bad. Determining the level of accuracy
our models provide and quantifying the changes in reserves estimates as more
production history becomes available are steps we must take to answer the big questions.
This work puts two of the most popular models to the test with simulated data and actual

production data of Barnett Shale gas wells.

1.2 Status of the Question

The most widely used decline curve model was developed by J. J. Arps (Arps,
1945). As noted by Lee and Sidle (Lee and Sidle, 2010), Arps’ decline curve model is
totally empirical and consists of three forms: exponential, hyperbolic, and harmonic (Lee
and Sidle, 2010). All three forms are based on Eq. 1 where the specific form is defined
by the value of the “b factor” as follows: b=0 for exponential; b=1 for harmonic; O<b<l1

and b>1 for hyperbolic.

1
q=4q 5
(1+bD;t)B

Where q is production rate at time t (volume over time), b is Arps’ hyperbolic decline
constant (dimensionless), q; is initial rate (volume/time), and D; is Arps’ initial decline

constant (dimensionless).



Fetkovich et al. provided proof that Arps’ exponential model can be derived for
producing reservoirs (Fetkovich et al., 1996) that honor the following assumptions:

1) Boundary-dominated flow (depletion period)

2) Constant bottomhole pressure

3) Low or slightly compressible fluids

4) Fixed skin factor
Inherent in these assumptions is the fact the “b factor” remains constant. Several authors
have shown the “b factor” to be unstable and usually decreasing with time when
forecasting tight gas simulated data sets and field cases (Kupchenko et al., 2008;
Rushing et al., 2007). The reason for the instability is attributed to long periods of
transient flow prior to a transition to boundary dominated flow — a condition that is often
seen in wells producing from tight reservoirs with hydraulic fracture stimulations.
During transient flow, the “b factor” that best fits production data in tight gas wells is
often greater than 1. When the “b factor” is greater than 1, an unconstrained Arps’ model
has been shown to yield high to excessively high reserves estimates. (Ilk et al., 2008;
Lee and Sidle, 2010).

Industry personnel often apply one of two common constraints to Arps’
hyperbolic model to put a cap on reserves estimates. Those methods are the minimum
decline rate method (Harrell et al., 2004) and the terminal decline method. The minimum
decline rate method combines an Arps’ hyperbolic fit with an imposed minimum decline

rate (Dpin) in order to prevent excessively high reserves estimates. The terminal decline



method begins with an Arps’ hyperbolic fit (often with a “b factor” greater than 1)
followed by exponential decline that is forced at a specified date or production rate.

With the explosion of shale gas activity during the last decade, new methods
have been proposed to model the behavior exhibited by long horizontal wells with multi-
stage hydraulic fractures in shale reservoirs. These methods include but are not limited
to the Stretched Exponential Production Decline (SEPD) model (Valko and Lee, 2010),
the Power Law model (Ilk et al., 2008), and Duong’s model (Duong, 2010).

The Power Law model and SEPD are based off of the stretched exponential
function first introduced by Kohlrausch in 1854 to describe the discharge of capacitors
(Ilk et al., 2010). The authors note that while these models are empirical, there are
multiple references in physics’ literature providing evidence of the stretched exponential
function’s ability to model decays — particularly decays in randomly disordered and
chaotic systems. The Power-Law (Eq. 2) and SEPD (Eq.3) rate-time equations are

defined as follows:

G(E) = GeXP[=Dit™ ] eeeeeeeeeeeeeeeeeeeeeee e )

q(t) = g;exp[— (%)n] ....................................................................... 3)

Where q(t) is production rate (volume/day), D; is the rate-time equation parameter, D™, t
is production time, n is the time exponent (dimensionless), and t is the characteristic
time constant (time). Ik et al. (2008) provide several theoretical advantages of the
stretched exponential models (Power Law and SEPD) over Arps’ model, namely the

ability of the stretched exponential models to transition from non-exponential decline



early on to exponential decline later in the life of a well; they provide evidence with
diagnostic plots, simulations and field data using the Power Law.

In 2010, Duong of Conoco Phillips released a model based on the assumption of
linear flow. He suggests the connected fracture density of the fractured area has to be
increasing over time to support fracture flow over the life of a producing well (Duong,

2010). The following equations (Eq. 4 and Eq. 5) govern Duong’s model:

Where t is time, tp,x 1s time at maximum flow rate, q is flowrate (volume/time), m is
slope of the straight line through the data on a log-log q/G,, vs. time plot, and quay 18 the
maximum rate (volume/time). Duong’s model is shown to perform quite well in
situations where long-term linear flow is exhibited. Little evidence exists to show
Duong’s model will handle a transition to boundary dominated flow halfway through the

life of a well. Further studies need to be performed to answer this question.

1.3 Research Objectives

The objectives of this work are to:
e Determine practical limits for the variable T used in the SEPD model
e Develop a spreadsheet to rapidly forecast public data using the SEPD

model

e Evaluate suitability of the following models for shale gas forecasting:



e Arps’ model with a minimum terminal decline - most common
method used in industry

e SEPD model — promising new method designed to handle
transient and boundary dominated flow

e Evaluate uncertainty in models

¢ Simulated cases

¢ Field cases

e Examine changes in forecasts and EUR estimates as more
historical production data becomes available (6 months, 12
months, 24 months, etc.)

¢ Examine influence of boundary dominated flow on forecasts

e Determine if and when a type curve is useful



II. STRETCHED EXPONENTIAL PRODUCTION DECLINE MODEL

2.1 SEPD Introduction

As noted previously, the stretched exponential model is the basis for the Power
Law and SEPD models that were recently proposed in the Petroleum Engineering world
to forecasts tight gas and shale gas reservoirs. Our study focuses on the SEPD model
proposed by Valko and Lee in 2010 (Valko and Lee, 2010). The following equations

(Eq. 6, Eq. 7 and Eq. 8) govern the SEPD model:

0 o (D) L ©)

Where Eq. 6 is the defining differential equation of the model, Eq. 7 is the rate
expression as a function of time and Eq. 8 is the cumulative production as a function of
time. The parameters with units used in this work are as follows:

n: exponent parameter in SEPD model — similar to “b factor” in Arps’ model,
dimensionless

7: characteristic time parameter for SEPD model, month

q: gas flow rate, mcf/month

qo: initial gas rate*, mcf/month

t: production time, months

Q: cumulative gas production up to a specified time, t, mcf
*Initial gas rate is forced to maintain material balance; it will be different than the highest observed volume

As noted by Valko and Lee, rate decline ratios (i.e. Q2 years OVer Qj year) provide a

stable method to solve for SEPD parameters (as opposed to minimizing the error



between observed data points and solved data points). Using cumulative ratios provides
a more transparent method to solve for SEPD model parameters and helps prevent a few
anomalous points from having undue influence. Hence in this work we use cumulative
production ratios to solve for SEPD parameters. We solve the following two nonlinear
equations (Eq. 9 and Eq. 10) for n and 7 (by eliminating the qo parameter, we solve two

equations for two unknowns).

& R 7 T e a7 S
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% 1 l"[l]—l‘[%,(t?l)n] .......................................................................... (10)

Rather than using Excel’s solver or other software to solve for model parameters, we
perform trial and error with various values of n and 7 and find the minimum error from

the following equation (Eq. 11):

(T21,actual - T21,observed)2 + (T31,actual - T31,observed)2 '''''''''''''''''''''' (11)

Finally, we solve for go. Observe that ¢ is an instantaneous rate solved to preserve
material balance. For a given n and 7, go may be much larger (or smaller) than the
highest observed data point. When solving for gy, we provide a cumulative volume and
the time at which the cumulative volume is observed; in this way, the solved cumulative
volume is forced to be equal to the observed cumulative volume at the specified time.

We rearrange Eq. 12 to solve for g as follows:

G0 = L2 /(T[] = 1[5, () [} (12)



2.2 Parameter Ranges

For all practical purposes, the variable n ranges from 0.1 to 1.0. An n value of 1.0
corresponds to exponential decline while an n value of 0.1 corresponds to a very flat
decline. Fig. 1 gives a visual interpretation of what varying the parameter n does when 7

is held constant.
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Fig. 1 — A lower n value results in a flatter decline as seen in long-term linear flow situations;
an n value of 1.0 gives an exponential forecast.

The practical range for the parameter 7 has not been well established. While
Valko and Lee never used values greater than 1.0 in their work with Barnett Shale wells,
there is no evidence to suggest it should be constrained to 1.0. To determine the practical
limits, we apply the model to five simulated cases varying from long-term linear flow

(>20 years) to short-term linear flow (~1 year). For each case, we match the entire
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simulated history and determine the t values that correspond to the best match. Three
field cases (two Barnett and one Fayetteville) are also analyzed using 36 months of data
to match production decline. We vary 7 from 0.01 to 100 by 0.001 and vary n from 0.01
to 1 by 0.01.

The following figures provide examples of several different scenarios including
simulations with known production decline out to 30 years, and shale gas well groups
with 4-6 years of production to match. For all cases, a t range of 0.01 to 100 gives
sufficiently small errors (on order of 10™®). We note several of the simulations need 7
values greater than 10 to match 360 months of production data (Fig. 2, Fig. 3, Fig. 4,
and Fig. 5). The long-term linear flow simulation (Fig. 6) and the field cases (Fig. 7,
Fig. 8, and Fig. 9) have minimum errors when 7 is less than 10. From this analysis, we
conclude ranging 7 from 0.01 to 100 and n from 0.1 to 1 provides acceptable errors
between predicted and actual volumes. We use these parameter ranges when matching

production with the SEPD model for the remainder of the study.
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Fig. 2 — Circled are the minimum errors for a case with long-term linear flow; T values
associated with the minimum are around 8.
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Fig. 3 — Circled are the minimum errors for a case with linear flow transitioning to boundary
dominated flow around 16 years; T values associated with the minimum are in the 70s.

11



Log of Minimum Error

il 02 03 0.4 05 06 07 0.8 09 1

n

0

Fig. 4 — Circled are the minimum errors for a case with linear flow transitioning to boundary
dominated flow around 7 years; T values associated with the minimum are in the 60s.
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Fig. 5 - Circled are the minimum errors for a case with linear flow transitioning to boundary
dominated flow around 3 years; T values associated with the minimum are in the 40s.
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Log of Minimum Error

Fig. 6 — Circled are the minimum errors for a case with linear flow transitioning to boundary
dominated flow around 1 year; T values associated with the minimum are in the 20s.

Log of Minimum Error

Fig. 7 — Circled are the minimum errors for a group of 2004 Denton County wells (Barnett
Shale); T values associated with the minimum are around 5.



Log of Minimum Error

Fig. 8 — Circled are the minimum errors for a group of 2004 Tarrant County (Barnett Shale)
wells; T values associated with the minimum are around 7.

Log of Minimum Error

Fig. 9 - Circled are the minimum errors for a group of 2007 Conway County wells
(Fayetteville shale); T values associated with the minimum are around 2.
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III. SHALE GAS SIMULATIONS

3.1 Barnett Shale Simulated: Parameter Set 1

The Barnett Shale located in and around Fort Worth, Texas has been producing
from vertical wells with hydraulic fractures for over 25 years. Starting in 2004, the well
design transitioned to primarily horizontal wells with multi-stage fracture stimulations.
The majority consensus in literature is hydraulic fractures intersect natural fractures and
form complex fracture network systems.

Before developing our simulated cases, we look to the field data to see what
types of decline behavior we should anticipate. The data used here and in the remainder
of this study is monthly data provided by Drillinginfo.com ©. To reduce noise seen in
individual wells, first we analyze groups of wells. The production for all individual wells
drilled in a given year is normalized to a common start date and summed. Investigating
the log-log plot of rate vs. time for several Barnett Shale yearly well groups and
individual wells with smooth production decline profiles provides us with a few
estimates of how long linear flow could last. Linear flow is identified by a -1/2 slope on
the log-log plot. Fig. 10 shows a group of 48 wells drilled in Denton County during
2004. An evident departure from linear flow is seen around 3 years. A Denton County
2005 well group (74 wells) does not display evidence supporting a transition from linear
flow (Fig. 11). It appears linear flow may end around 2 years, but linear flow could be
argued again after the departure; the last trend starting around 3.2 years is difficult to

diagnose. A clear transition from linear flow for the 2006 Denton County well group is
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not easily identified (Fig. 12). The transition may occur around 2 years but the evidence
is not conclusive. Linear flow looks to last the full history for the Denton County 2007

well group (Fig. 13). The last few points suggest a transition but more points need to be

observed for verification.
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Fig. 10 — For the 2004 Denton County well group, a departure from linear flow occurs around
3 years.
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Fig. 11 - It is unclear whether linear flow ends or continues after a change in trend around 2
years for the 2005 Denton County well group; the end of history suggests a transition is likely
forthcoming.
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Fig. 12 - For the 2006 Denton County well group, a deviation from linear flow occurs around
2 years but linear flow may resume shortly thereafter.
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Fig. 13 — The 2007 Denton County well group (113 wells) does not appear to deviate from
linear flow before the end of history.

Investigating individual wells with smooth decline profiles gives a good
indication of what flow regimes we expect to encounter in Barnett Shale gas wells
drilled during and after 2004. Linear flow lasting the life of the well is shown in Fig. 14
and Fig. 15 for a Denton County well and a Tarrant County well respectively. Fig. 16
and Fig. 17 provide examples of individual wells drilled in Denton County that exhibit a
deviation from linear flow and an apparent transition to boundary dominated flow as
evidenced by the concave downward shape shortly after the end of linear flow. With
only a few examples, we conclude our models will need to handle a wide variety of
scenarios. Therefore we test the SEPD model and Arps’ model with a minimum decline
rate against simulations with linear flow lasting from as short as 1 year to as long as 20

years.
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Fig. 14 — Linear flow lasts 6+ years in Denton County well, 42-121-32446.
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Fig 15 — Tarrant County Barnett Shale well, 42-439-31031, exhibits linear flow for 6+ years.
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Fig. 16 — Linear flow last for 3 years in Denton County well, 42-121-32159; a transition is seen
after an apparent change in operating conditions.
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Fig. 17 — Linear flow lasts for 4 years in Denton County well, 42-121-32558; a transition to

boundary dominated flow begins evidenced by the concave downward shape starting at year
4.
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In this work we do not attempt to model the reservoir complexity of the Barnett Shale
noted in literature. Instead we simplify the problem for illustrative purposes and assume
a homogeneous reservoir and homogenous hydraulic fractures.

The following five cases are simulated for two different sets of Barnett Shale
parameters:

1) Long-term linear flow lasting ~20 years followed by a transition to boundary

dominated flow (BDF)

2) Linear flow for ~8 to 10 years followed by a transition to BDF

3) Linear flow for ~5 years followed by a transition to BDF

4) Linear flow for ~2.5 years followed by a transition to BDF

5) Linear flow for ~1 year followed by a transition to BDF

The Horizontal Multi-Fracture Composite Model in Fekete F.A.S.T WellTest™
provides our simulations. For Parameter Set 1, all reservoir properties and parameters
except the number of fractures can be found in International Petroleum Technology
Conference paper 13185 by Cipolla et al. (Cipolla, Lolon, and Mayerhofer, 2009).

The number of fractures is varied from one case to the next in order to create the five
scenarios previously mentioned. We use log-log plots of rate vs. time to establish the end
of linear flow — as evidenced by the departure from -1/2 slope.

Table 1 lists Parameter Set 1 properties used for five cases. A bottomhole
pressure constraint of 1000 psi is used in all cases. The simulations are run for 30 years

or until bottomhole pressure is at equilibrium with reservoir pressure, whichever comes
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first. It is assumed that flow from outside the stimulated reservoir volume (SRV) is

negligible and fracture height is equal to the formation thickness.

Table 1: Parameter Set 1 for Barnett Shale Simulations Based on IPTC 13185

Parameter Case 1.1 Case 1.2 Case 1.3 Case 1.4 Case 1.5

Initial Pressure 3000 3000 3000 3000 3000 psi
Frac Half Length 1000 1000 1000 1000 1000 ft
FcD 40 40 40 40 40 -

# Fractures 4 6 9 14 24

Matrix Perm 0.0001 0.0001 0.0001 0.0001 0.0001 md
Thickness 300 300 300 300 300 ft
Porosity 3 3 3 3 3 %
Sg 70 70 70 70 70 %
Xe 2500 2500 2500 2500 2500 ft
Ve 2000 2000 2000 2000 2000 ft
Fracture

Interference Time 20.0 10.0 5.7 2.8 1.3 years

We provide the log-log plot with normalized data for all simulated cases in Fig.
18. The end of linear flow and the concave downward shape due to BDF is much easier
to distinguish with smooth simulated data. In Fig. 19, we take a look at the log-log plot
of Cases 1.3, 1.4, and 1.5 and an overlay of the Denton County 2004 well group data
(Fig. 10 — transition is around 3 years). It is no surprise the 2004 group decline
resembles the decline of Case 1.4 where fracture interference occurs at ~3 years. Next
we look at a log-log plot (Fig. 20) with normalized data from Cases 1.1, 1.2, and 1.3
combined with an overlay of production data from Denton County well 42-121-32446

(Fig. 14).
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Fig. 18 — Simulated data sets exhibit clear transitions from linear flow to BDF.
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Fig. 19 - 2004 Denton County well group (linear flow ends between 3 and 4 years) exhibits a
decline profile most like that of Case 1.4 where linear flow ends at 2.8 years.
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Fig. 20 — Denton County well, 42-121-32446, exhibits long-term linear flow; we cannot
establish which case the well is most likely to resemble based on linear flow analysis.

A hindcast is a forecasting procedure where only a portion of the known
production history is matched so the remaining production history can be compared
against forecasted volumes. Hindcasts are presented in this work with varying amounts
of simulated production history used to forecast. The errors between simulated reserves
and reserves forecasted by SEPD or Arps’ model with a minimum decline rate of 5% are
then calculated. Fig. 21 is an example of several hindcasts for Case 1.1, a long-term
linear flow scenario. The cumulative vs. time plot in Fig. 22 shows that the SEPD model
will converge to a near perfect EUR match for the long-term linear flow scenario.
Another important observation is the rate forecasts start conservative and work upward

towards the simulated decline behavior.
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Fig. 21 — For Case 1.1 (long-term linear flow), the SEPD model forecasts reserves within 10%
of the simulated values using 36 months of data or greater.
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Fig. 22 — With 60 months of simulated data used to forecast the 30 year EUR, a near perfect
forecast is achieved for Case 1.1 using the SEPD model.
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Fig. 23 shows the error in reserves for Case 1.1 forecasts using the SEPD model
and Arps’ model with a minimum decline rate of 5%. Positive errors equate to reserves
being underestimated. Conversely, negative errors mean reserves are being
overestimated. Arps’ minimum decline model gives the best estimate when less than 36
months of data is available but diverges to a maximum error of 12% when up to 120
months of data is used. The SEPD model provides very conservative estimates with less
than 24 months of data but converges within 4% error in reserves when 60 months or
more is used to forecast. Plots for the error in the estimated ultimate recovery (EUR) can
be found in Appendix A. We prefer to focus on the ability of the models to forecast
reserves rather than their ability to fit data that has already occurred. In shale gas wells,
large production rates are often seen early in the life of a well. Considering data prior to

the forecasting period can lead us to a false belief that error in reserves is low.
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Fig. 23 - For Case 1.1, SEPD starts off conservative and converges to within 5% of the true
solution with 60 months of history used; Arps with a 5 % minimum decline starts off closer to
the true solution but ends up being more conservative as more history is used.

Unlike Case 1.1, the fracture interference time for Case 1.2 is seen much earlier
in history (vertical black bar in figures) and occurs around the 10 year mark. Fig. 24
shows SEPD converging up to 24 months and diverging slightly for subsequent forecasts
up to 60 months. Looking at the error in the reserves, Fig. 25, we see SEPD reserves
errors again start conservative leveling out around -13% until beginning to gradually
converge when 132 months or more is available to forecast. Both models are within
+15% when 24 months or more is available to forecast. In Cases 1.1 and 1.2, SEPD and
Arps’ model with a minimum decline rate of 5% both give acceptable reserves forecasts.
The SEPD model shows the ability to converge to the most accurate forecast. For Case
1.2, Arps’ model with a minimum decline rate is more accurate with 24 months of data

or less and remains the better of the two models until late in the life of the well. That
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being said, both models have narrow error ranges (+15%) with 24 months or more

available to forecast.

100,000

¢ Actual Data
— G Months
e 12 Months
e 24 Months
e 36 Months

o
% 10000 e 48 Months ||
E, 60 Months
o
_\ *\
1,000 . - [l \n.;
& 5 in is 20 25 30

Tirme, years

Fig. 24 — For Case 1.2, SEPD forecasts start conservative but begin to overestimate slightly
when 36 months or greater is used.
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Fig. 25 — With fracture interference occurring at 10 years, SEPD again gives conservative
estimates early; both models are within -15% using 24 months of data or more (Case 1.2).

The first two cases represented relatively long periods of linear flow. As
previously mentioned, natural fracturing is known to be prevalent in much of the Barnett
Shale resulting in high initial rates. Periods of linear flow may or may not last as long as
those seen in Cases 1.1 and 1.2 - we can confirm that linear flow ends earlier in many
2004 wells. When attempting to quantify the uncertainty in Barnett Shale forecasts, we
feel Cases 1.3 and 1.4 are likely to represent the type of behavior that will be exhibited
in wells with large fracture treatments. Cases 1.1 and 1.2 provide valuable information
on how the models are likely to respond when applied to reservoirs where long-term
linear flow occurs. Further, long-term linear flow is matched relatively well by both
models so they should provide accurate estimates for individual wells exhibiting long-

term linear flow.
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Fracture interference occurs at 5 years in Case 1.3 and as intuition might suggest,
the SEPD model does not predict a change prior to the transition from linear flow to
boundary dominated flow (Fig. 26). The error in reserves (Fig. 27), show SEPD
provides better estimates for the life of the simulation relative to Arps’ model with a
minimum decline rate of 5% but SEPD does not begin converging towards the true
simulated values until 60 months or more is used to forecast. An error range of +15% is
not reached until ~108 months or more is used with SEPD and 228 months or more is
used for Arps’ model with a minimum decline of 5%. Note the SEPD reserves forecasts
in this case are all more conservative and more accurate than Arps’ model with a

minimum decline rate of 5%.

500,000 -
: + Actual Data

— G Months
e 12 Months
e 24 Months
= 36 Months
48 Months

60 Months
——————— |

5,000 -

Sy 4t n T N N i1 ’ - L T R T S e
AW 3 ¥ T b T

T, veurs

Fig. 26 — SEPD begins overestimating reserves with 12 months of data until a maximum error
of -35% with 48 months used to forecast.
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Fig. 27 — Neither model provides consistently reliable results until after fracture interference
occurs (Case 1.3).

Recall Case 1.4 with a fracture interference time of 2.8 years appears by visual
inspection to have a similar decline profile to the 2004 Denton County yearly well
group. Fig. 28 shows the SEPD model quickly converging towards the true simulated
decline. Investigating the error in reserves in Fig. 29, we see the SEPD model provides
more conservative forecasts than Arps’ early on and provides more accurate forecasts for
the remainder of the life of the simulation. Both models overestimate reserves by a great
deal early with SEPD converging from a maximum error of -55% using 24 months of
data to within -14% using 60 months. With 84 months or greater available, SEPD
provides reserves estimates within a -5% to 0% window. Arps’ model with a minimum
decline rate of 5% reaches a maximum error of 105% at 24 months and first provides an

estimate within -15% error when 192 months of data or greater are available.
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Fig. 28 — SEPD model overestimates early on for Case 1.4 where fracture interference is seen
at 2.9 years and begins to converge towards the true decline behavior forecasting reserves
within -15% when 60 months of data is used.
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Fig. 29 — SEPD provides better reserves estimates for the entire life of the simulation with a
maximum error of -55% when 24 months of data is used (Case 1.4).
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For the final case using Parameter Set 1, linear flow is designed to last for only a
period of 1.3 years. The reserves estimates for the SEPD model converge relatively
quickly, Fig. 30, and with 24 months of data or more the model achieves error in
reserves of -5% or less. Arps’ model with a minimum decline of 5% is within the £15%
window when 120 months or greater is used. With 6 months of data, Arps is off by -
155%. We note both models overestimate reserves early instead of underestimate as the

United States Securities and Exchange Commission would prefer (Fig. 31).
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Fig. 30 — For Case 1.5 where linear flow lasts only 1.3 years, the SEPD model converges to the
correct forecast quicker than any of the previous cases achieving a reserves estimate with just
-5% error using 24 months of data.
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Fig. 31 — SEPD converges quickly to the correct forecast while Arps with a minimum decline
overestimates reserves significantly early and does not converge within -15% until 120
months of data or greater is used (Case 1.5).

3.2 Barnett Shale Simulated: Parameter Set 2

The second set of parameters used for Barnett Shale simulations is based on
those found in SPE 125530 by Cipolla et al (Cipolla, Lolon, Erdle, et al., 2009). Table 2
provides the parameters used with the number of fractures being the only variable. The
main differences between Parameter Set 1 and Parameter Set 2 are the permeability is
lower by an order of magnitude, fracture conductivity is increased by five times, and the

length of the well is increased.
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Table 2 — Properties for Parameter Set 2 Based on SPE 125530

Parameter Case 2.1 Case 2.2 Case 2.3 Case 2.4 Case 2.5

Initial Pressure 3800 3800 3800 3800 3800 psi
Frac Half Length 1000 1000 1000 1000 1000 ft
FcD 200 200 200 200 200 -

# Fractures 14 21 30 47 80

Matrix Perm 0.00001 0.00001 0.00001 0.00001 0.00001 md
Thickness 300 300 300 300 300 ft
Porosity 3 3 3 3 3 %
S 70 70 70 70 70 %
Xe 3000 3000 3000 3000 3000 ft
Ve 2000 2000 2000 2000 2000 ft
Fracture

Interference Time 17.5 8.3 5.0 2.2 1.0 years

We start our analysis of models using Parameter Set 2 with the long-term linear
flow case. Case 2.1, Fig. 32, shows the ability of the SEPD model to converge within
17% error in reserves with 24 months of data and 8% with 36 months of data. The

estimates start conservative and work their way up to the true simulated values.
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Fig. 32 — SEPD model converges quickly for long-term linear flow Case 2.1.

Arps’ model with a minimum decline rate of 5% gives estimates within 5% of
the simulated reserves when 36 months of data or less is used. The SEPD model
provides rather conservative estimates with less than 36 months of data used. As
seen in Fig. 33, when more than 36 months is used, SEPD provides more accurate

re