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ABSTRACT

3D Multi-Field Multi-Scale Features from Range Data in Spacecraft Proximity

Operations. (May 2012)

Brien Roy Flewelling, B.S., Syracuse University

Co-Chairs of Advisory Committee: John L. Junkins
Daniele Mortari

A fundamental problem in spacecraft proximity operations is the determination

of the 6 degree of freedom relative navigation solution between the observer reference

frame and a reference frame tied to a proximal body. For the most unconstrained

case, the proximal body may be uncontrolled, and the observer spacecraft has no a

priori information on the body. A spacecraft in this scenario must simultaneously

map the generally poorly known body being observed, and safely navigate relative to

it. Simultaneous localization and mapping (SLAM) is a difficult problem which has

been the focus of research in recent years. The most promising approaches extract

local features in 2D or 3D measurements and track them in subsequent observations

by means of matching a descriptor. These methods exist for both active sensors such

as Light Detection and Ranging (LIDAR) or laser RADAR (LADAR), and passive

sensors such as CCD and CMOS camera systems. This dissertation presents a method

for fusing time of flight (ToF) range data inherent to scanning LIDAR systems with

the passive light field measurements of optical systems, extracting features which ex-

ploit information from each sensor, and solving the unique SLAM problem inherent to

spacecraft proximity operations. Scale Space analysis is extended to unstructured 3D

Dr.
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point clouds by means of an approximation to the Laplace Beltrami operator which

computes the scale space on a manifold embedded in 3D object space using Gaussian

convolutions based on a geodesic distance weighting. The construction of the scale

space is shown to be equivalent to both the application of the diffusion equation to the

surface data, as well as the surface evolution process which results from mean curva-

ture flow. Geometric features are localized in regions of high spatial curvature or large

diffusion displacements at multiple scales. The extracted interest points are associ-

ated with a local multi-field descriptor constructed from measured data in the object

space. Defining features in object space instead of image space is shown to be an im-

portant step making the simultaneous consideration of co-registered texture and the

associated geometry possible. These descriptors known as Multi-Field Diffusion Flow

Signatures encode the shape, and multi-texture information of local neighborhoods in

textured range data. Multi-Field Diffusion Flow Signatures display utility in difficult

space scenarios including high contrast and saturating lighting conditions, bland and

repeating textures, as well as non-Lambertian surfaces. The effectiveness and util-

ity of Multi-Field Multi-Scale (MFMS) Features described by Multi-Field Diffusion

Flow Signatures is evaluated using real data from proximity operation experiments

performed at the Land Air and Space Robotics (LASR) Laboratory at Texas A&M

University.
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CHAPTER I

INTRODUCTION

This dissertation develops a methodology for the generalized tracking of 3D fea-

tures in spacecraft proximity operations. The developments are of a basic nature,

however, and contributions to other fields such as computational vision and related

applications are anticipated to flow from this work. While much work has been done in

developing relative navigation solutions in the setting of autonomous spacecraft prox-

imity operations, some aspects of this work also accommodate human input, active

beacons, or communication between proximal bodies. The general problem of identi-

fying and tracking “resident” features in an imaged scene remains an open research

problem. Features in this dissertation are unique geometric or textural fingerprints

whose appearance and especially, its computed descriptor is ideally invariant to a

class of transformations associated with relative motions. Effective tracking requires

extracted features to match accurately over large viewpoint variations encountered

in practice, even in the presence of occlusions and discretization noise artifacts. Fur-

thermore, virtually all of the common methods identify and characterize features in

“image space,” rather than in the 3D “object space”. The advent of high speed,

high spatial density, and accurate range sensors offers an important opportunity to

extend 2D methods to 3D and simultaneously fuse passive vision with active ranging

because the image space texture can be immediately associated with the measured

co-registered 3D geometry.

Several techniques have been developed to approach the problem of autonomous

proximity operations each with varying degrees of success. Perhaps most notably

This dissertation follows the style of Journal of Guidance, Control, and Dynamics.
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DARPA’s Orbital Express used a suite of algorithms and sensors to successfully per-

form a series of supervised, semi-autonomous proximity operations. The Autonomous

Rendezvous and Capture Sensor System (ARCSS [1]) included both vision based tech-

niques as well as active range measurements through the use of a laser ranging device.

The vision aided proximity operations performed during the on orbit experiment used

a template matching approach where a library of spacecraft image templates were used

as match filters and compared to observations. The number of template comparisons

was reduced by using the information provided by the laser ranger. While this on-

orbit experiment was successful, it also served to establish that autonomous proximity

operations research needs to address improved precision, bandwidth, efficiency and

robustness.

Recent advances in scanning LIDAR technology have enabled high rate range

sensing which provides High Definition (HD) range images refreshed at speeds com-

parable to the frame rates of existing cameras. While prior methods treated passive

imaging and active range sensing as separate systems, this dissertation considers the

real-time fusion of high rate range scanning and photogrammetry. The methodology

adopted in this dissertation has been inspired by pioneering works in 2D and 3D data

registration, the Scale Invariant Feature Transform [2,3] its recent extension to range

images [4, 5], Spin-Images [6, 7], and their recent variations [8, 9]. In the image and

range data fusion case, scale is not ambiguous, it is explicitly measured and there-

fore can be exploited to characterize extracted features more accurately and uniquely.

Furthermore, scale space extrema are evaluated over a prescribed set of length scales

and those extrema which persist over multiple scales are defined over their observable

range. The relation between feature scale and sampling is considered and used on

the fly as part of the feature extraction and descriptor generation processes. An inte-

grated analysis of texture and geometry is developed in which geometric and textural
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features are localized at extrema in diffusion flow velocity, which is equivalent to sur-

face curvature for geometric features and corners for texture features. A confidence

measure which indicates the uniqueness and localization accuracy of the feature is also

developed which takes into account the strength and persistence of the geometric and

textural information. Finally, this framework is applied to real measurements during

proximity operations experiments performed at the Land, Air, and Space, Robotics

(LASR) Laboratory at Texas A&M University.

A. Aim and Objectives

Recent advances in range scanning technology have enabled High Definition range

imaging, refreshed at video rates. A range image, is a 2D array whose elements con-

tain the distance to the nearest object space point along an associated line of sight

direction. Some “flying spot” LIDAR systems will also report the energy of the mea-

sured return light or “Return Light Intensity”. This scalar value is also associated

with array elements. While flash LIDAR has been available for several years, it has

lacked the range depth of field variation and lateral spatial resolution afforded by

scanning LIDAR. The natural energy per unit area on the flash LIDAR focal plane

array is proportional to (range)−4, whereas for scanning LIDAR the return energy

is proportional to (range)−2. Therefore, scanning LIDAR is suitable for lower power

imaging for long range standoff distances from the imaged surface. As in computer

vision, it is now possible to generate local models for each “frame” of range data and

register overlapping frames on the fly. In computer vision this process is known as

structure from motion and requires relative camera-to-scene motion to be estimated

as well as the world scene geometry. In applying traditional monocular structure

from motion algorithms, several image frames must be acquired before an adequate
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displacement has occurred to make triangulation numerically well conditioned, effec-

tively generating the needed baseline for triangulation using the motion of the sensor

itself. The density of the estimated scene geometry is dependent on the observable

texture. For bland scenes or objects, stereo systems typically require augmentation

such as a projected texture from a structured light source. Vision based methods alone

are also very sensitive to photometric variations in the scene making their use difficult

in the space environment. Ambient lighting in space may run the gamut from very

few photons to complete saturation of the image and vary with time due to a variety

of factors. Expensive autonomous space systems cannot afford the poor reliability of

traditional vision systems as a primary means of relative navigation. Range images on

the other hand depend on active illumination and measurement of diffusely reflected

energy, to estimate the round-trip time of flight for a scanning pulsed laser over a field

of view. They are known to be more robust to photometric variations and directly

obtain scene geometry with no need for triangulation. Direct measurement of scene

geometry at frame rate allows for the shape and relative pose of proximal bodies to

be more precisely determined as well as real and fine co-registration of imaged texture

and object geometry. Image features tracked using correlation in overlapping images

with large relative displacements may fail in the presence of perspective distortion

due to local surface curvature and sampling. These affects can now be reduced, using

the methods of this dissertation, allowing for rigorously linear estimation of relative

motion while fusing measurements made from various sensors-to-scene poses. Also of

relevance, lens-based imaging, for a given sensor, can produce properly focused im-

ages only for a finite set of ranges between the sensor and the scene. Laser scanning

based LIDAR can operate over many orders of magnitude larger range variations and

therefore affords a more flexible and robust space sensor system. Therefore measured

geometry can only be co-registered with the corresponding texture when well-focused
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imagery exists. These facts have motivated this dissertation, and the results represent

a substantial set of contributions.

1. Scientific Questions

The following scientific questions are addressed in this dissertation:

• By what data driven process can 3D object-space features be best extracted

from textured range imagery and tracked through general relative motion?

The application of the diffusion equation to image data performed in the Scale

Invariant Feature Transform can be rigorously extended to 3D range measure-

ments and associated textures. The resulting multi-field multi-scale interest

points are analogs of corner-like features in image processing. Spin Images are

typically used for determining surface point feature correspondences. A new de-

scriptor inspired by this perspective, the Multi-Field Diffusion Flow Signature,

is used to combine geometric and textural information, and proves useful in re-

gions that are texturally unique but geometrically non-unique. It is the ability

to distinguish features that are texturally non-unique but geometrically unique

as well as features that are geometrically non-unique but texturally unique

which allows for robust feature point detection and tracking in the presence

of repeating structures, symmetry, textured simple surfaces, and bland curved

surfaces.

• How can local geometry and texture be combined to allow point based descrip-

tors to enable rigorously linear six degree of freedom relative motion estimation?

The addition of curvature information and more generally, geometric granular-

ity measurements in both the localization of features and the population of their

descriptors, allows for effective 3D localization of features on geometrically sig-
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nificant structures as well as in texturally significant locations. Understanding

the geometry of textured features allows us to discriminate between texture

features that represent resident object space texture, and photometric textures

due to shadows and reflections. Ensuring feature points are static with re-

spect to object geometry enables effective relative motion estimation by the use

of unique rotational coordinates and the transformations implicit in the Opti-

mal Linear Translation and Attitude Estimator (OLTAE), [10]. We show that

OLTAE eliminates the usual nonlinear least square iteration (based on local

Taylor series expansions) in favor of a rigorously linear least square fusion of

overlapping point clouds. Since the residual errors are a consequence of feature

localization errors only (no linearization approximation), statistically methods

can be involved to reject spurious features and to characterize rigorously local

errors.

• Does the addition of direct range measurement allow for significant increases in

precision or robustness?

Since feature scale is no longer ambiguous, it can be directly used to characterize

features. Can a scale space combining geometry with multiple textures provide

a means to more accurately localize unique variations in object space resulting in

more effective feature tracking in the space environment? Does the simultaneous

consideration of geometric characteristics and texture characteristics give rise

to more unique features?

• Can the combined scale space analysis of 3D object space manifolds and associ-

ated texture along with the application of Multi-Field Diffusion Flow Signatures

result in robust motion estimation for real data in proximity operations?

Experimental evaluation and validation is performed to understand the perfor-
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mance of the proposed architecture. An interactive software is developed in

Matlab to acquire, calibrate, and assess active an passive electro-optical mea-

surements using scale space analysis. This software is used to evaluate feature

detection, localization, and motion estimation for simple relative motions sub-

ject to noise, lighting variation, as well as in and out of plane rotations.

It is noted that the software developed is for research purposes, to efficiently

answer the questions posed above. It follows that subsequent efforts are required

to realize efficient codes for real-time implementation. There are no claims that the

novel algorithms are implemented in a way to achieve computational optimality.

2. Motivation

Space based assets will benefit greatly from precise, robust, and routine ability

to execute autonomous proximity operations. Many space operation tasks such as

spacecraft refueling, inspection, and repair will one day rely on autonomous sens-

ing and relative navigation. In ideal cases a model is available for the target body

involved in a proximity operation and communication between both bodies is pos-

sible. However in other applications such as debris capture and removal, little may

be known about a proximal body, and communication is not possible. A spacecraft

must be capable of discerning from its measurements how to safely navigate relative

to a poorly known proximal body. Recent advances in Light Detection and Ranging

systems have enabled a next generation suite of sensors so replace systems like the

ARCSS system [1] where the measurements are co-registered by calibration to permit

real-time fusion of texture and geometry. Having in hand co-registered range and

image sensors, both measuring millions of points per second over a large (say 30 deg)

field of view, enables a new generation of algorithms for SLAM and vastly improves
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accuracy, robustness, and versatility. This enabling sensor technology in fact allows

us to develop methods which can dramatically reduce the computational burden of 6

DOF relative navigation solutions using 3D geometric and resident textural features,

while simultaneously achieving improved robustness. Conventional methods for ex-

tracting from image data the “most trackable features” vary, but the most promising

detect the most uniquely textured image regions and localize their position in image

(x, y) coordinates and their image-space scale σ. Once the features are localized,

a feature descriptor encodes the gradient information in a locality sampled consis-

tently in image space. While all of these methods are designed to be as “invariant as

possible” in some sense, in practice they all exhibit frequent failures due to:

• Lack of sufficiently dense and unique texture, resulting in too few features.

• Large out of plane rotation, resulting in incorrectly sampled descriptor vectors.

• 3D effects due to local surface curvature, resulting in poorly characterized fea-

tures whose descriptors change with relative pose.

• Occlusions, resulting in multi-view feature variations, poor feature matching,

and localization errors.

• Non-linear or photometric variations, resulting in changes of the texture gradi-

ents and poor feature characterization and matching performance.

• Lack of uniqueness between near-identical scene features, causing mismatches

between feature sets.

The leading approach to the registration of 3D data [6, 7] requires the data to

be triangulated and the nearest neighbors of each point to be known. The data is

also regularized and re-triangulated so that the inter-point distance is consistent in
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object space. Using the Spin Image concept, the local surface normal of each point

is estimated and points in the neighborhood of a point of interest are encoded by

reporting their perpendicular distance from the local tangent plane and their in-plane

radius. Until recently [11], registration by comparing spin images was performed by

means of comparing randomly selected points, or exhaustive comparisons which can

take O(N2) computation time. Spin Images also have several tuning parameters

which are left to be determined by the user. A feature detection method is desired

which (i) localizes features based on uniqueness in multi-field data sets, (ii) encodes

the object-space feature scale(s), (iii) is robust to photometric variations, (iv) can

find trackable locations in the absence of texture, and (v) consistently samples local

geometry in the construction of its descriptor. Establishing such a feature detection

approach is the main goal of this dissertation. It is recognized that such a descriptor

has broad utility and likely will prove to be a basic contribution to computer vision.

It is noted that typical scenes may yield hundreds of detected features, whereas if

the goal is proximity navigation, as few as three features in two or more overlapping

measurement sets are required to determine relative translation and rotation. The

residuals for the heavily redundant, rigorously linear (via the OLTAE algorithm)

least squares registration process provides a strong statistical basis for accepting the

features with smallest residuals and rejecting spurious or poorly localized features

with large residuals.

B. Background

1. A Brief History of Spacecraft Proximity Operations

Spacecraft rendezvous and docking has a rich history and was a necessary capabil-

ity which enabled the more ambitious space missions including the accomplishments
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of the Gemini and Apollo programs. In fact, the Apollo program was built around

rendezvous and docking operations in lunar orbit. Approximately 57 shuttle missions

have called for proximity operations to be performed [12], however, most of these

were performed with human-in-the-loop control. There are many future applications

where autonomous proximity operations will be required and many reasons why au-

tonomous operations will be preferred over manual, human in the loop processes. An

explosion of technology and successful flight demonstrations has occurred in the last

5 years. In 2005 the Air Force Research Laboratory’s XSS-11 spacecraft represented

the first successful series of autonomous proximity operations. In that same year

the ill-fated DART spacecraft also launched with similar ambitions. Whereas XSS-

11 performed successful circumnavigations of the upper stage of its launch vehicle,

DART’s unsuccessful mission was to autonomously rendezvous with a dead commu-

nications satellite and demonstrate its Advanced Video Guidance Sensor. In 2007 the

DARPA Orbital Express mission demonstrated a series of successful proximity opera-

tions including rendezvous, approach, station keeping, docking, and fuel transfer. At

the same time the Naval Research Laboratories SUMO/FREND spacecraft project

was developing technologies and ground-based experiments for autonomous grappling

of spacecraft. Among these technologies was TriDAR, a scanning lidar system and

3DLASSO, machine vision software for relative navigation and tracking. Recent years

have also seen the development and flight of so called Autonomous Rendezvous and

Proximity Operation (ARPO) Systems including the ARCTUS and the Jules Verne

which has successfully performed supervised autonomous proximity operations with

the International Space Station. Even ambitious student satellite programs are begin-

ning to explore the problem including DRAGONSAT and AGGIESAT, a university

nano-SAT program in which students at Texas A&M University and the University

of Texas at Austin are involved in flight testing necessary component technologies
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with the end goal of performing an autonomous docking between the two nano-SATs.

While a variety of proximity operations with various levels of autonomy have been

conducted, there is ample evidence that the reliability and versatility of available

methods are not adequate to meet anticipated needs. Of immediate relevance, the

Land, Air, and Space Robotics (LASR) laboratory at Texas A&M University has

developed a 6DOF space proximity operations research laboratory where advanced

vision sensors, algorithms, and their utility in enhancement of closed loop control

of proximity operations are experimentally evaluated. This laboratory enabled the

experiments reported herein.

2. Developments in 2D and 3D Data Processing

While the interest in and need for autonomous spacecraft proximity operations

has been developing, the necessary mathematical tools have seen rapid development

in the fields of image processing, 3D data processing, differential geometry, and com-

puter vision. The mathematical framework utilizing concepts from differential geom-

etry, as mapped onto machine vision, saw its major developments due to do Carmo

in 1976 [13]. Since those early developments, several examples of applying differ-

ential geometry to develop machine interpretation of 3D manifolds and use of the

signs of the Gaussian and Mean Curvatures to classify surface data emerged in the

1980’s [14–16]. During the same decade, developments in corner detection and feature

tracking were enabling early vision and motion estimation techniques [17,18] and the

mathematical developments of scale space analysis also saw their beginnings [19,20].

In the 1990’s, corner features were generalized to interest points detected by so called

blob detectors where information in their localities was compared by means of corre-

lation techniques and the comparison of feature vectors [21]. Also during this time

frame we saw the emergence of descriptors theoretically invariant to translation and
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rotation [22], similarity transformations [2,3], and affine transformations in the early

2000’s [23–25]. Since the late 1990’s and early 2000’s, the landmark contributions of

2D and 3D image processing have seen widespread use in computer vision, robotics,

visual servoing, and simultaneous localization and mapping. A discussion of scale

space analysis, the Scale Invariant Feature Transform (SIFT) [2,3], Spin Images [6,7],

and recent related developments that are especially relavant to this dissertation is

provided in chapter 2.

While significant and successful applications are widespread, it is fair to say that

there is a “religious” aspect to the use of existing methodologies because all require

significant tuning and heuristic insight to achieve good results on difficult scenes. The

tuning and heuristic issues make “fair comparisons” difficult, and also suggests that

there is signicant room for further improvements in methodology.

C. Overview and Approach

1. Hypothesis

This dissertation develops a new framework for generalized feature detection and

tracking in opto-LIDAR fusion systems and argues that model acquisition, processing,

registration, and relative navigation can be performed accurately using the developed

framework. By extending and combining the methods of 2D and 3D data processing,

and by fusing the geometric measurements of Light Detection and Ranging with the

texture information acquired by a co-registered camera, features may be localized

and tracked in ways not possible to the sensors in isolation. Finally by exploiting

the directly measured geometric information, the descriptors of isolated features may

be populated by means of a process which samples the object space, resulting in

significantly improved performance.
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2. Method

Figure 1 illustrates the general framework for feature detection and tracking

developed in this dissertation. First, a relative calibration is done to determine the

sensor extrinsic parameters, i.e. the relative rotation and translation between the mea-

surement frame of the LIDAR, and the image plane coordinate system of the camera.

After this alignment, the texture information from the camera is co-registered with

the 3D measurements of the laser scanner. Each individual LIDAR measurement, if

visible to the point of view of the camera, is textured with a grayscale value indicating

the intensity of visible light in the image. A second texture value provided by many

LIDAR sensors is the return light intensity, a grayscale value indicating the energy of

the returning photons from the pulsed LIDAR measurement. The intensity variation

over the object is a measure of the wavelength specific albedo of the surface. The dif-

fusion equation is applied to the co-registered geometry and intensity data resulting in

a multi-resolution analysis of 3D geometry, and 2D texture. Feature points are local-

ized in regions containing significant diffusion flow. This occurs when the measured

surface is locally curved in 3D or when the observed texture exhibits large gradient

variations. Once these features are localized, a characteristic dimension is derived

and assigned to the feature which depends on the range to the feature center and the

angular extent of the feature. Using this characteristic dimension to define a sam-

pling neighborhood, the local surface geometry and texture information is encoded

in an object space feature descriptor. Finally features are compared and matched in

subsequent scans and the best matches are used to estimate the 6 DOF relative sen-

sor navigation solution using a rigorously linear algorithm. In a given set of matched

features, there are typically more correspondences than the minimum required for the

Optimal Linear Translation and Attitude Estimator (OLTAE) least squares process.
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Fig. 1: General feature detection and tracking framework for opto-LIDAR fusion
systems

The residuals determined by OLTAE for each correspondence are used to filter the

set of matches and remove any remaining poorly localized or mismatched features.

3. Contributions

This dissertation makes the following important contributions to the field of

aerospace engineering:

• A meshless approach to combined Scale Space analysis of LIDAR and camera

measurements.

• A combined multi-field, multi-scale (MFMS) feature detection process which

defines its descriptor in the object space and is robust to noise and lighting

variations.
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• Statistical characterization of the resulting feature’s OLTAE residuals to select

the most consistent and accurately localized set of MFMS interest points.

• The connection between surface evolution by mean curvature flow and scale

space analysis of images embedded on 2D manifolds is demonstrated and applied

to raw 3D data.

• A software pipeline which allows interactive scale space analysis of range data

and camera imagery as well as enables the visualization of the extracted features

and constructed models.

• Experimental results on real data demonstrate these MFMS features capability

to enable simple examples of spacecraft proximity operations.

4. Overview of Dissertation

This dissertation is organized as follows:

• Chapter 2 provides a review of the literature relating to 2D and 3D feature

extraction.

• Chapter 3 explains the measurement models for each sensor along with an ap-

proach to relative calibration and data fusion.

• Chapter 4 describes the process of feature localization in multi-field data.

• Chapter 5 introduces our novel process for generating point descriptors with

known characteristic scale along with a post-filtering process based on the

residuals generated by the Optimal Linear Translation and Attitude Estima-

tor (OLTAE), a novel, rigorously linear motion estimator .
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• The computer software pipeline is discussed in chapter 6 along with an example

of registration of the Hubble Space Telescope (HST) model.

• Chapter 7 discusses the experimental validation of the new concepts and com-

putational framework.

• The dissertation is concluded and future work is discussed in chapter 8.
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CHAPTER II

BACKGROUND AND LITERATURE REVIEW

There is a significant literature regarding the processing of 2D and 3D data

and the extraction of trackable features. This chapter discusses the most relevant

historical developments that enabled, informed, and motivated this dissertation. The

general analysis of 3D geometry (provided by applying concepts from differential

geometry and its applications to surface scans) is discussed along with methods of

3D point feature localization and description. Important developments in 2D feature

tracking are discussed in the context of camera to scene localization and estimation

of scene geometry. The Scale Invariant Feature Transform is discussed in detail

along with its recent application to range images. The strengths and weaknesses of

this technique with regards to 3D localization and motion tracking are explained.

The important technique of 3D point feature description by Spin Images is also

introduced along with opportunities for the integration of 2D and 3D interest point

detection and description. The chapter concludes by suggesting a path for improving

methods documented in the current literature by combining the analysis of texture

and geometry, as well as regularizing the way point based descriptors are populated

with respect to the measured 3D geometry.

A. Developments in Image Feature Extraction

1. Basic Image Structures and Gradients

A digital image I(x, y), is a matrix representation of pixel response data measured

by a Charged Coupled Device (CCD) or Complementary Metal Oxide Semiconductor
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(CMOS) which typically reports the digitized photo detection measure of energy on

the focal plane, resulting from the projection of light through an optical system.

Each matrix element known as a pixel reports a numerical analog to digital (A/D)

value indicating the collected photons on the corresponding sensor element over the

exposure time. While details of the measurement model are reserved for chapter 3, we

mention here that calibration of a camera generally generates a function which applies

a nonlinear correction to the original image. This correction maps the data such that

it corresponds to a pinhole camera model with a co-linearity condition where a point in

object-space, the principle point of the camera, and the calibration-corrected image

point lie on the same straight line. In the process of projecting the outside world

geometry to the image plane, information on the third dimension, i.e. depth from

the camera is lost. This means that a single image can not discern the range to 3D

points without additional information. Early image processing techniques focused on

the isolation of precise mathematical primitives such as points or lines. Localizing

these primitives relies heavily on the calculation of image intensity gradients.

∇I(x, y) ≡

 Ix

Iy

 =


∂I(x,y)
dx

∂I(x,y)
dy

 (2.1)

Image gradients are 2D image-space vectors with a magnitude M and direction α

which indicate the change in image intensity in the horizontal x and vertical y direc-

tions.

M(x, y) =
√
I2x + I2y (2.2)

α(x, y) = arctan
[
Iy
Ix

]
(2.3)
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Table 1: Arbitrary image pixel and its eight nearest neighbors.

I(x− 1, y − 1) I(x, y − 1) I(x+ 1, y − 1)

I(x− 1, y) I(x, y) I(x+ 1, y)

I(x− 1, y + 1) I(x, y + 1) I(x+ 1, y + 1)

The image partial derivatives in the above equtions are usually approximated by finite

differences over the neighborhood of a chosen pixel. Table 1 illustrates the immediate

neighborhood of a pixel and its 8 neighbors. One method for approximating image

partial derivatives is given by computing central differences at each pixel. An algo-

rithm which implements the central difference derivative approximation in equations

2.4 and 2.5 at every pixel should be reasonably accurate at computing image partial

derivatives of a smooth pixel response, but would not be very robust in the presence

of noise. It is preferred to use operators which compute image quantities as a function

of an area.

[
∂I(x, y)

∂x
' 1

2
[I(x+ 1, y)− I(x− 1, y)] (2.4)

∂I(x, y)

∂y
' 1

2
[I(x, y + 1)− I(x, y − 1)] (2.5)

Often in image processing however image gradients are approximated by use of spatial

operators which implement the above equations or similar operations over a neighbor-

hood. Examples include the Sobel, Prewitt, and Roberts operators and all of them

represent differently weighted finite difference estimates of the image gradients over

the 3x3 neighborhood of an image pixel and its 8 nearest neighbors [26]. The key

to choosing a derivative approximation operator is knowing the desired accuracy of

the derivative approximation and the level of computational complexity allowed. The

Sobel operators shown in figure 2 are an example of a computationally simple oper-
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Fig. 2: The Sobel X and Y derivative operators.

ator since all of its elements are integers and the operator is only 3x3. The resulting

gradient magnitudes do not however, represent the technically correct partial deriva-

tive values of the image intensity function but rather are a weighted area measure

of the intensity change. For many applications, only the gradient magnitude pattern

and gradient direction are of interest, not the exact magnitude. For cases where the

gradient magnitude is more important other operators are used.

These finite difference approximations to the image x and y derivatives are sen-

sitive to noise and are usually applied after an image has been smoothed by applying

a low pass filter. The simplest way to apply smoothing to an image is to use a spatial

filter, which replaces a pixel value by an average of its original value and its neigh-

bors. For example, a 3x3 mean filter would take the average value of a pixel and

its 8 nearest neighbors. Applying the filter to each pixel in an image is done by a

process known as convolution. Convolution approximates the convolution integral by

computing the sum:

I ′(x, y) =
a∑

−i=−a

b∑
j=−b

w(i, j)I(x− i, y − j) (2.6)

It is perhaps more common that a pixel is replaced by a Gaussian weighted average

of its neighborhood, in fact the circular Gaussian density function can be shown to be

a good approximation to the first Bessel function of the first kind used to model the
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passage of light through an optical system with a circular aperture. Romney [27] also

shows that one can derive the Gaussian as the necessary representation of a point in

2D space from a set of fundamental principles:

• Linearity - the measurement is done in a linear fashion.

• Uniformity - there is no preference for location in the image, all locations are

observed by the same aperture function.

• Orientation Invariance - uniform preference for orientation in the image, struc-

tures of any orientation should be equally observable.

• Scale Invariance - no preference for scale, structures of any observable scale

should be measured in the same way.

If we look at the Fourier Transform of equation 2.6 we obtain:

I ′(ωx, ωy) = I(ωx, ωy)G(ωx, ωy) (2.7)

which is the typical array product in frequency domain filtering. Since the desired

operator is required to be isotropic, it is only important to consider the length of

the frequency vector ‖ω‖ =
√
ω2
x + ω2

y . The property of scale invariance requires

G(σ1ω)G(σ2ω) = G(σ1ω + σ2ω). The general solution is given by:

G(σω) = e(ασω)
n

(2.8)

The dimensions are independent and separable, and it is evident that the calculation

of the magnitude of the frequency vector is a 2-norm, so we set n to 2, and for α2 = −1
2

since in the limit as ‖ω‖ → inf G(ω, σ) = 0 we may obtain by the Inverse Fourier

Transform:
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G(ω, σ) = e−
1
2
σ2ω2

(2.9)

Or, in the spatial domain:

G(x, y, σ) = − 1

2πσ2
e−

x2+y2

2σ2 (2.10)

Which is the definition of the Gaussian kernel. This kernel is also the so-called Green’s

Function for the linear, isotropic diffusion equation. To obtain stable estimates for

image derivatives, it is common to use a Gaussian smoothing process combined with

a derivative operator. Since both processes are linear, it is possible to combine the

processes by convolving an image with a Gaussian Derivative operator, which can

be computed by sampling the partial derivative expressions of the Gaussian func-

tion. Examples of Gaussian Derivative operators are shown in figure 3. The standard

and perhaps most reliable method for obtaining image gradients in computer vision

uses the application of Gaussian Derivative operators, in fact, many useful detec-

tors based on image geometry are derived from these operators. Following the early

developments of edge detection in image data, an edge being defined as a set of

pixels belonging to a boundary over which the image gradient magnitude exceeds a

threshold, the special and unique image locations representing large gradients in all

directions where identified as corners in image data [28].

2. Corner Detection

One of the earliest corner detection routines is attributed to Morevec whose 1980

thesis regarding stereo vision techniques for crude object avoidance for an autonomous

rover included an interest operator which defined a neighborhood about a pixel and

compared the sum of squared differences between neighborhoods of neighboring pix-

els. Image locations displaying low self-similarity were candidates for corner features.
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Fig. 3: The Gaussian Kernel and Partial Derivative Operators up to 2nd order.

A more elegant approach to corner detection was presented in 1988 by Harris and

Stephens [18]. Instead of comparing windows over a predefined neighborhood about

an image pixel, they define the structure tensor over a point neighborhood and in-

troduce a Gaussian weighting. By evaluating the eigenvalues of the structure tensor

they were able to classify edge responses from bland regions and corners. For all

participating pixel members of a Gaussian weighted neighborhood, the weighted sum

of squared differences is given by equation 2.11.

SSD(x, y) =
∑
i

∑
j

w(i, j)(I(x+ j, y + i)− I(i, j))2 (2.11)

Here (i, j) are the vertical and horizontal displacement indices of the pixel neighbors.

The weighting function w(i, j) is a gaussian weighting function chosen to match the

size of the pixel neighborhood. The displaced pixel I(x + j, y + i) intensity can be

approximated by using the Taylor Series expansion as:

I(x+ j, y + i) = I(i, j) + Ix(i, j)x+ Iy(i, j)y (2.12)

and by substitution of 2.12 into 2.11 we obtain:
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SSD(x, y) =
∑
i

∑
j

w(i, j)(Ix(i, j)x+ Iy(i, j)y)2 (2.13)

which is a weighted quadratic function of the image partial derivatives and (x, y)

displacements of the pixel neighbors. This can be represented more generally in

vector matrix form by:

SSD(x, y) =
[
x y

]
A
[
x y

]T
(2.14)

where A is the structure tensor and is given by:

A =
∑
i

∑
j

w(i, j)

 I2x IxIy

IxIy I2y

 (2.15)

The eigenvalues of the matrix A, α and β, provide the proportions of the principle cur-

vatures of the local autocorrelation function. Simply put these developments provide

a direct means of evaluating the local curvature of image data. Figure 4 shows the

classification of image response as a function of the eigenvalues of A. The response

function was developed to quickly compare the eigenvalues of the structure tensor

and determine the degree to which the data was curved and therefore represented a

corner. It is given by:

R = det(A)− kTr2(A) = αβ − k(α + β) (2.16)

Here, k is an empirically determined constant used to scale the relative size of the

eigenvalue sum compared to the product of the eigenvalues. By applying a threshold

to the response function of 2.16 instead of directly computing and comparing the

eigenvalues, corner feature strength can be determined without having to compute

the more costly square roots involved in the eigenvalue decomposition. This approach
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Fig. 4: The distribution of image structures as a function of the eigenvalues of the
structure tensor.

works for images of any resolution, and has seen wide application. The next logical

step was to extend this framework to multi-resolution image analysis.

3. Multi-Resolution Image Analysis: The Scale Space

Interest points may occur at all scales in image data. The selection of the param-

eters regarding the extent of a point neighborhood as well as the distance between

samples over which finite differences are used to compute gradients directly affect the

resulting feature locations extracted from an image. Varying these parameters, and

sampling the image at multiple scales so that features can be tracked through different

sampling frequencies are among the desired outcomes of applying scale space theory

to image data. A substantial existing literature with well developed mathematical

principles lies at the heart of scale space theory, only the main developments that

motivate the literature on recent feature detectors will be discussed here. The inter-

ested reader is referred to work of Witkin [20] and Koenderink and Van Doorn [19].

Applications of Scale Space Theory in computer vision are also documented in the

text by Lindeberg [29].

Observable physical phenomena exist at many length scales. This fact is readily
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known as we use several different resolutions and units of measurement to describe

what we see with our instruments. Celestial length scales are many orders of magni-

tude larger than objects we experience every day, while those objects are themselves

orders of magnitude larger than atomic structures. Each measurement device can

be thought of as having a pass band over these length scales through which features

are observable. In image processing the key issue with regard to scale is the num-

ber of pixels required to capture the image-space “size” of feature, sub-features, or

collections of features that emerge in the various feature detection approaches. The

lower limit in spatial scale is bounded by the physical resolution of the measurement

device while the upper limit is bounded by the physical aperture. “Size” has to be

generalized and thought about differently when considering the fusion of image space

measurements with range measurements from a LIDAR sensor and will be discussed

later. Witkin developed scale space theory and applied it to 1D signals. He observed

that the zero crossings of a function’s second derivative at each scale form a so-called

nesting tree, and could be used to characterize the signal by developing a hierarchical

relationship between features at different scales. A scale space is defined by embed-

ding the original signal into a one parameter family of derived signals. This is done by

convolving the original signal with an operator whose scale parameter can be varied

to control the spatial participation of the original signal in the convolved signal. As

it applies to images, this convolution operation is denoted by equation 2.17.

L(x, y, σ) = g(x, y, σ) ∗ I(x, y) (2.17)

Here the function g(x, y, σ) represents the 2D Gaussian function and its standard

deviation σ represents its characteristic scale.
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g(x, y, σ) =
1

2πσ2
e[

(x−xo)2

2σ2
+

(y−yo)2

2σ2
] (2.18)

The ordinate pair (xo, yo) could be interpreted as origin of the gaussian operator

in image coordinates. This origin is swept over the domain of the image through

the process of convolution. The resulting family of derived signals are successively

smoothed representations of the original signal. The extrema of the image derivative

with respect to the scale σ identify points of interest or features in scale space.

The selection of the Gaussian kernel was no accident. Koenderink [19] introduced

the notion of causality, where for grayscale images, no spurious image structure should

occur as the result of applying an operator. This means that every gray level of a

coarse scale should find its source at a finer one. By applying this constraint along

with the requirements that the operator be isotropic and homogeneous, that is, it

should be spatially unbiased and consistent over sampling scales, he determined that

the operator must satisfy the diffusion equation. These requirements are necessary to

ensure that applications of the kernel do not cause spurious maximum and minimum

that are artifacts causing false features and not extrema due to elements of the original

signal. The linear isotropic diffusion equation is given by:

dtL(x, y, t) =
1

2
∇2L =

1

2
(dxx + dyy)L (2.19)

Where dt represents the derivative operator with respect to time, and dxx, dyy are

the second order partial derivative operators with respect to x, and y respectively.

The “time” variable in this context is the scale parameter of the Gaussian operator,

i.e. t = σ2. So diffusion can be thought of as controlling the participation of the

information from neighboring pixels into L(x, y). The Gaussian kernel satisfies the

diffusion equation making it the unique kernel for generating a scale space. The
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standard techniques for generating a scale space increase the dimensionality of the

problem of corner detection. Since Gaussian convolution simulates the localization

process of sampling at various spatial scales, it is also simulating the effect of obtaining

the same image with a lower resolution. In fact combining re-sampling at a scale

consistent with the size of the Gaussian operator results in a very common data

structure: the Gaussian Pyramid.

4. Image Pyramids

Image pyramids are widely used efficient data structures for multi-resolution

image analysis. The construction of an image pyramid involves two processes which

may be performed simultaneously. The first is the convolution of the image with an

operator, usually a Gaussian or Laplacian. The second operation is re-sampling. The

Gaussian pyramid was originally developed for machine vision and image compression.

The space required to store an image pyramid is theoretically 4/3 of the size of the

original image. The REDUCE function [30] is shown in equation 2.20. An example

image pyramid is shown in figure 5.

gk(i, j) = REDUCE(gk−1) =
2∑

m=−2

2∑
n=−2

w(m,n)gk−1(2i+m, 2j +m) (2.20)

The Gaussian Pyramid is an example of a low pass pyramid. A more interesting

type of image pyramid is the band pass pyramid where higher resolution image in-

formation is encoded by its difference from a lower resolution image representation.

In order to take the difference between different resolution levels of the Gaussian

Pyramid, the EXPAND function is required:

gl,k = EXPAND(gl,k−1) = 4
2∑

m=−2

2∑
n=−2

w(m,n)gl,k−1(
i−m

2
,
j − n

2
) (2.21)
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Fig. 5: Example Gaussian Pyramid: The image is repeatedly low pass filtered and
re-sampled by a factor of two.

Fig. 6: Laplacian Image Pyramid built by computing differences between original and
expanded levels of the Gaussian Pyramid. For visualization purposes the absolute
value is shown for each level.

Here the arguments i−m
2
, j−n

2
must be integers to be included in the summation.

By taking the difference between an original level in the Gaussian Pyramid with an

expansion of the next pyramid level, the error images Lk which make up the Laplacian

pyramid may be generated. The corresponding Laplacian Pyramid to Figure, 5 is

shown in Figure 6. To see that this is a band pass we mention here that this approach

to building a Laplacian Pyramid is an approximation to convolving the image with a

series of Laplacian of Gaussian filters which is the isotropic second derivative of the

Gaussian functions. The discrete Laplacian of Gaussian operator is show in figure 7.

Localization of image features in an image pyramid must take into account the

scale factor between the arbitrary level of the pyramid and the original image res-

olution. Most image features are described by a center location in image space, a
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Fig. 7: The Laplacian of Gaussian operator is the result of applying the discrete
isotropic second derivative filter to the Gaussian Operator. Its representation in
spatial and frequency domain is shown where it represents a pass band filter.
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characteristic scale, and a descriptor. The next section details the evolution of the

image descriptor generation process for 2D data.

5. Invariance Principles and Feature Descriptors

One of the earlier and more famous works which applied the Harris corner detec-

tion method to computer vision was that of Zhang [21]. In this work Harris corners

were used as feature locations for estimating the epipolar geometry between cameras

in a stereo pair. Knowing the exact epipolar geometry between two cameras reduces

the dimensionality of the search for point based correspondences from two to one (i.e.

a line search). Zhang isolated corner features in both images of the stereo pair and

then centered a correlation window on each one. Each corner was then compared

to all corners contained in a subregion of the corresponding image inside of which

the corresponding point was expected to lie. The correlation score was computed

for each comparison and candidate matches whose score was greater than a preset

threshold were listed. A relaxation process was then used to disambiguate multiple

potential matches for a single corner. Since scale was not taken into account in this

work the window size used for correlating corners was a free parameter. Nevertheless,

this represented one of the first times a descriptor had been attached to a point based

features for the purposes of matching between images. In this case the descriptor was

the local sub-image with the corner at its center.

Comparing point based features in this way is problematic for many reasons.

First, since the descriptor contains the exact gray values in the vicinity of the point

feature, a perfect match is required to contain exactly the same gray values, in the

same structure. This requires the perception of the gray scale to be the same from

both points of view. Scenes which present this type of photometric behavior are called

Lambertian and it should be noted that Lambertian behavior is very rare in space
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Fig. 8: Candidate corner feature matches in a stereo pair with local area descriptors
compared by correlation.

scenes where only a small subset of candidate features may satisfy this constraint.

Slight out of plane rotations can change this gray scale distribution and may cause

poor correlation in an area that might be the projection of the correct geometric

feature causing a false negative response. For a feature to be successfully tracked

through a class of transformations of the image data, its descriptor must be “relatively

invariant” to that class of transformations. One important logical step is to encode

the local image information contained in the neighborhood of a point based feature

in a manner where the descriptor is invariant to a single axis rotation about the

direction normal to the image plane. A second desired attribute is invariance to scale

changes. The Scale Invariant Feature Transform of David Lowe [2,3] addresses both of

these attributes, rotational invariance and scale invariance; this approach assigns an

orientation to feature points based on the dominant gradient direction and populates

feature descriptors by sampling in a reference frame aligned with this feature-defined

orientation. In fact this framework for the extraction of features based on scale space

extrema, orientation assignment, and the development of scale invariant descriptors

represents a significant step forward in image based feature tracking. The next section
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explains this algorithm in detail and outlines opportunities for its improvement.

6. The Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) is one of the most recognized

frameworks for multi-scale image feature detection and tracking. In his landmark

paper Lowe claimed to have developed a method of extracting features which were

invariant to scale and rotation and exhibited “robust matching” performance when

image features were subject to affine distortions, the addition of noise, and changes in

illumination. The main applications of SIFT-features were intended for were image

matching and retrieval, as well as object recognition. Lowe argues that a strength of

his technique is that his multi-scale features are well localized in the scale space. This

provides estimates for the image position and scale of SIFT features. His algorithm

can be broken down into four key processes:

Scale-Space Extrema Detection: A Gaussian Scale space is generated and imple-

mented as a Difference of Gaussian (DoG) Pyramid. Extrema are identified in

this data structure by means of non-maxima suppression.

Keypoint Localization: Once coarse locations for extrema are determined in the

scale space, a local Taylor-Series (Gauss-Newton algorithm) is used to localize

features to sub-pixel and sub-level accuracy in (x, y, σ).

Orientation Assignment: Each localized feature is assigned an orientation, based

on the dominant intensity gradient orientations in the point neighborhood.

Keypoint Descriptor Population: The point neighborhood is sampled with re-

spect to the feature orientation at the correct level in the scale space. A his-

togram of magnitude weighted gradient orientations is used to populate a 128-D
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vector.

Lowe showed that developing a scale space by approximating the Laplacian of

Gaussian pyramid by a Difference of Gaussian exhibits similar performance to the

scale normalized Laplacian used by Lindeberg [29]. The Difference of Gaussian is

given by:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) ≈ L(x, y, kσ)− L(x, y, σ) (2.22)

Where G(x, y, σ) is the Gaussian kernel of equation 2.18, the ∗ indicates the convo-

lution operator. The partial derivative of the image data with respect to the scale

parameter σ can then be computed by finite difference approximation.

∂G

∂σ
= σ∇2G (2.23)

σ∇2G ≈ G(x, y, kσ)−G(x, y, σ)

kσ − σ
(2.24)

(G(x, y, kσ)−G(x, y, σ)) ≈ (k − 1)σ2∇2G (2.25)

This approximation shows us that the finite difference approximation to the scale

derivative of the image actually represents the implementation of the diffusion equa-

tion. The same diffusion equation which models the flow of heat or information in

thermodynamics. It also shows that the difference of neighboring levels of the Gaus-

sian Pyramid contains the necessary normalization required for scale invariance. Once

the scale space is constructed, maxima and minima are localized in the Difference of

Gaussian pyramid by comparing each admissible feature location in the pyramid to

its eight neighbors in its level, and its nine neighbors in the levels immediately above
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Fig. 9: Non-Maxima Suppression of the Scale Space: Each pyramid location is com-
pared to its 26 neighbors and required to be greater than or less than all of them by
a threshold.

and below. If the value D(x, y, σ) at that location is greater than or less than all of its

neighbors by a preset threshold, it is retained as a keypoint location. This introduces

the first tuning parameter of the SIFT algorithm. The contrast threshold restricts

feature points to be centered at corners with sufficient gradient magnitude.

Following the coarse (pixel-accurate), feature localization, a sub-pixel interpola-

tion process is applied to each feature location, approximating the feature location

by Taylor Series Expansion of the scale space Difference of Gaussian function D(x).

D(x) = D +
∂D

∂x
+

1

2
xT
∂2D

∂x2
x (2.26)

Here x denotes the vector x = [x, y, σ]T , the derivative values are approximated by

finite differences in the 3x3x3 neighborhood of the feature point, and the sub-pixel

displacement vector is approximately solved for by setting the first derivative of the

above function to zero, yielding the Gauss-Newton local minimum estimate (which

can be iterated, but usually isn’t):
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x̂ = −[
∂2D

∂x2
]−1

∂D

∂x
(2.27)

Since features are required to be consistently well localized, edge features, fea-

tures whose local Hessian matrix have only one strong eigenvalue must be removed.

If they are not, experience indicates that subsequent estimation routines will suffer

from the localization error associated with the direction with smallest eigenvalue.

Lowe borrows the technique from the Harris Corner measure and considers the trace

and determinant of the local Hessian matrix to impose a “cornerness” criterion on

features. By considering the ratio of the square of the trace to the determinant of the

Hessian matrix and writes this constraint as a function of the eigenvalue ratio, r ≡ α
β
:

Tr(H)2

Det(H)
=

(α + β)2

αβ
=

(r + 1)2

r
(2.28)

The above expression increases with r, and therefore, for a given value r, a feature

showing sufficient “cornerness” will have a value less than the right hand side of 2.28.

Once the set of features satisfying the constraints above are localized, a canonical

orientation is assigned to the feature. The magnitude and orientation of every sample

in a local neighborhood of each feature is computed by the expressions below:

m(x, y) = sqrt[(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2] (2.29)

θ(x, y) = arctan

[
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y

]
(2.30)

A weighted orientation histogram is then generated using the magnitude of each

gradient to weight its contribution. The peaks of this histogram are then used to

identify the dominant gradient orientation. For distributions with multiple local

maxima in the 360 degree histogram, a duplicate feature is generated for peaks whose
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value are within 80 percent of the global maximum. This represents a redundancy in

the SIFT framework. The vector x = [x, y, σ, θ]T represents a feature frame, i.e. the

necessary information required to define the local reference frame of a SIFT feature.

Local textural information in the scale space is then encoded in a feature descriptor

vector by means of a systematic sampling process aligned with this reference frame.

It is this process which identifies the unique local fingerprint of the image data at this

point. It will be shown later in this dissertation that consistent sampling in image

space turns out to be a restrictive process which can be vastly improved by sampling

not in the image space, but rather in the object space, with the associated samples

taken along the object space surface being measured.

The SIFT feature vector consists of a 4x4 array of gradient orientation histograms

taken from a 16x16 set of samples from the appropriate level of the scale space.

These entries to the orientation histogram are weighted by their magnitude as well

as a Gaussian function fit over the entire feature neighborhood. Each orientation

histogram is divided into 8 orientation bins and the 4 · 4 · 8 = 128 values populate the

feature descriptor. The process is illustrated below over an 8x8 region.

Feature descriptors are then matched in subsequent images by taking the inner

product between the feature vectors of a feature of interest and a candidate match.

In an effort to be partially invariant to illumination changes, the descriptor value is

normalized to be a unit vector, then any components with value greater than 0.2

are set to 0.2 and the vector is re-normalized. The tuning value 0.2 is a tolerance

frequently used in SIFT implementations. The reasoning behind this is that the

magnitude of the image gradients change with local illumination change but the

gradient orientations are somewhat unaffected. In this way the feature descriptor can

still be matched over small variations in image intensity. SIFT features have proven

very useful for image retrieval, and have been used successfully in motion tracking
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Fig. 10: Local sampling of gradient orientations occurs in the appropriate pyramid
level associated with the feature scale, and with respect to the reference orientation
of the feature.

and structure from motion applications where displacement between frames are small.

The various approximations and decisions implicit in Lowe’s SIFT algorithm result

in a fairly widely applicable approach. However, the actual degree of robustness to

the features to scale and rotation variations and robustness to scene and lighting

variations is difficult to predict prior to applying the algorithm to specific images. In

truth, there is substantial room for improvement.

Efforts to improve upon SIFT’s utility and computational efficiency have in-

cluded PCA-SIFT [31],the Speeded-Up Robust Features (SURF) [32], among many

others including the exciting work of T.W.R. Lo who has adapted the SIFT tech-

nique to range images. One of the elusive issues is the accuracy with which the

feature is effectively located in image or object space. The accuracy is known to

be a function of “everything” (the texture of the scene, the illumination, the pose

of the sensor, occlusions, etc. as well as rotation and scale variations all of which
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Fig. 11: An example of 3D data representations, Left: a point cloud, Middle: Voxels
representing volume data, Right: A surface mesh resulting from a Delaunay Trian-
gulation

are application-dependent). Thus, all feature detection methods can benefit from a

posteriori statistical analysis to characterize errors and reject spurious features. The

approach taken herein is to use the residuals from the least squares OLTAE algorithm

to provide this needed insight.

B. Developments in 3D Feature Extraction

Three dimensional data has many forms and methods of acquisition. The most

common types include raw point clouds which are simply a list of the coordinates

of a collection of 3-vectors, volume elements or voxels which can be thought of as

an occupancy grid of a partitioned volume of 3D space, and surface meshes which

include information regarding a derived connectivity between 3D points. A simple

example of these data types is shown in figure 11.

Voxel data is the data type that is most similar to image data. A volume of

3D space representing the domain for the measured data is partitioned into cuboid

elements of constant size. Each volume element represents a location relative to a

3D sensor, and may take on a value indicating occupancy, or some other scalar indi-

cating intensity for example. Voxel based renderings have in fact been referred to as

3D images. Point cloud data is typically the standard raw measurement form for 3D

data acquisition systems. No assumptions are made with respect to the adjacency
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of measurements contained in a point cloud representation. Usually some processing

is required to determine this information. One method, the Delaunay Triangulation

determines the adjacency between points in a point cloud by associating groups of 4

points by constraining the tetrahedron composed of the edges connecting each point

pair. Each admissible triangle must come from a tetrahedron which contains no other

data point within its circumsphere. Though there are efficient methods for comput-

ing meshes, there can be ambiguous solutions, and the process is computationally

intensive as the number of measurements increases. This motivates the need for a

meshless approach to scale space analysis of 3D data and the use of raw point clouds

as the representation of choice for 3D data in this dissertation. Three dimensional

data may be generated passively by stereo-vision techniques or actively by RADAR,

SONAR, or LIDAR which measures the time of flight from the sensor to scene points

with range vector direction measured by the two angular variables (azimuth and el-

evation in the sensor frame). It is well known that range sensors generate spurious

range measurements, so the use of raw point clouds must anticipate the necessity

for data filtering/smoothing. The developments presented in this section apply in

general to 3D data, however we will focus on the concept of a “range camera” or

“range image” which represents an array of range measurements taken by a scanning

LIDAR or other 3D acquisition device.

1. Smoothing 3D Data

Raw LIDAR measurements are noisy with the variance of the noise being de-

pendent on the particular sensor, the object being imaged, as well as atmospheric

conditions in non-vacuum applications. It is often desired to determine local geomet-

ric parameters in 3D datasets, however, such computations are sensitive to noise. As

is the case in image processing, the approach to determining gradients of any mea-
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sured field variable, for example, is usually enhanced by a smoothing step. In very

much the same spirit, 3D data can be smoothed to determine reliable estimates of

surface normals and curvature values. The level of smoothing is dictated by some

estimate of sensor noise in the particular application. When processing 2D data, a

window was defined as a domain for local computations. Due to the discrete nature

of digital images this window was square, but an isotropic weighting was applied to

minimize these effects. One common way to define a neighborhood about a point

in 3D space is to specify a radius in the object space from a reference point and

determine all points in the data set which are within the specified distance to the

reference point. This characteristic distance must be carefully chosen to ensure that

the correct number of neighboring measurements are related. Too few neighbors and

the estimates can be inaccurate due to small sample statistics, too many, and each

computation is too intensive. Clearly the level of point cloud sparsity relative to mea-

surable surface geometry variations is a key issue. If many points are so close together

that they are essentially the same physical point, a simple average will suffice to give

the best estimate. A method is needed to specify the number of neighbors desired,

evaluate the distances to each data point and retain the desired number, taking into

account the measurement error and the local density of the point cloud. This method

can be problematic as it is not a strict definition of a locality in 3D space. Depending

on the point distribution, very large distances can be used to compute estimates for

geometric values which are intended to describe a small region of space.

Just as in the smoothing of image data, smoothing can be applied to scalars

defined on 3D data sets by replacing the coordinates of a point by an average of its

current value and weighted operation on the values contained in the neighborhood.

This averaging process is very similar to the process of convolution. In practice,

smoothing the shape of the measured surface, the 3D position of each measurement is
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Fig. 12: An example of 3D neighborhood definitions, Left: a spherical radius with 9
interior points, Right: K = 20 nearest neighbors containing 1 point at a large distance
with the K = 9 neighborhood shown for comparison.

frequently displaced by a surface evolution process. Surface evolution can be modeled

by the following equation:

∂P

∂t
= F (P ) (2.31)

Integrating the surface evolution equation we can observe the application of a surface

evolution process such as the simplest linear function:

Pk+1 = Pk + F (Pk)∆t (2.32)

Here Pk represents the point cloud locations of all measurements before the appli-

cation of the surface evolution process, F (Pk) represents the application of a local

smoothing/interpolation operator on a subset of points in the point cloud, and ∆t

represents a step in the diffusion process. Recall that in image diffusion the variable

t was related to the scale of the diffusion operator. The diffusion displacement can

be defined as the change in the surface resulting from the application of a diffusion

operator:

∆Pk = Pk+1 − Pk = F (Pk)∆t (2.33)

This change in the surface over time is implemented by applying a diffusion operator
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to the data. A very common operator used in this setting is the so-called umbrella

operator shown below:

L(P ) =
1

n

n∑
i=1

Pi − P (2.34)

where Pi is the i’th of the n neighbors around P . The use of the umbrella operator is

the most basic case of surface evolution by Laplacian smoothing. The degree to which

smoothing occurs for each step ∆t is usually controlled by the parameter λ and it is

also common to weight the importance of each neighbor based on their distance to

the point being smoothed. The surface evolution equation for Laplacian smoothing

along with the expression for the weighted umbrella operator are given in equations

2.35 and 2.36.

Pk+1 = Pk + λL(Pk) (2.35)

Lw(p) =
1∑
wi

n∑
i=1

wiPi − P (2.36)

Again a common weighting used for the weighted umbrella operator is the Gaus-

sian weighting. For surface meshes, the neighborhood can be defined as an “n-ring”

of neighbors. An “n-ring” of neighbors are all points that require only n edges be

traversed to reach point P . Simple smoothing algorithms simply set n to 1. For this

case the choice of inter-point distance used to compute the Gaussian weighting used

in the weighted umbrella operator is inconsequential. For larger values of n it becomes

important to determine if the Euclidian distance is appropriate, or if a surface based

geodesic distance is necessary. An example of the application of Laplacian smoothing

is shown in figure 13.

Laplacian smoothing as defined can cause surface measurements to drift tangen-

tially along the surface causing a regularizing effect on the measurements. This means
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Fig. 13: An example of Laplacian smoothing applied to surface data

that for successive application of the umbrella operator, the object-space distribution

of inter-point distances is not necessarily preserved. It has been shown that even for

points measured on a plane, where zero motion is desired, points will tend to drift

until evenly distributed. This characteristic is not desirable. A second process used

for the smoothing of surface data is known as Mean Curvature Flow.

To avoid the undesired tangential drift which occurs with the use of the umbrella

operator and Laplacian smoothing, mean curvature flow uses the following formula-

tion of the surface evolution equation:

Pk+1 = Pk −Hn̂∆t (2.37)

where H is the mean curvature at each point in the data set and n̂ is the unit normal

to the surface at each point. Per point estimates for the mean curvature values

and surface normal directions can be determined in several ways including principle

component analysis as well as computing approximations to surface derivatives and

using the techniques of differential geometry. Implicitly, we know the accuracy of

the measurements, their spatial density, and the scale associated with underlying

observable features must be considered, at least heuristically in establishing good

smoothing algorithms.
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2. Differential Geometry

Differential geometry [13] is concerned with the rigorous geometric analysis of

curves and surfaces. This discipline has wide ranging applications, including general

relativity, electromagnetics, and Lagrangian and Hamiltonian mechanics. We are

concerned here with the developments which stem from the application of differential

geometry to the geometric modeling of poorly known, discretely measurable surfaces.

Consider the a surface in 3-space parameterized in the following way:

−→r (u, v) = [x(u, v), y(u, v), z(u, v)]T (2.38)

where −→r is the vector from the origin to an arbitrary point in 3D space, and (u, v)

represent two orthogonal directions in a 2D parameter space which describe the em-

bedding of the 3D data. This is exactly the situation explained in chapter 3 where

(u, v) represent steps in elevation and azimuthal angle respectively. It is assumed

that the measured surface is at least twice differentiable, in which case the first two

fundamental forms of differential geometry apply. As is also discussed in chapter 3,

this assumption need only be satisfied locally within the domain of the smoothing

operator which leads to the operator needing to be at least a 5x5 window in the

parameter plane. Of course it is implicit that the deviation of the measured surface

from this assumption may lead to over-smoothing of sharp/discontinuous geometry.

The first fundamental form is given by:

I(u, v, du, dv) = d~r · d~r = Ed2u + 2Fdudv +Gd2v (2.39)

where, E, F, and G are given by −→ru ·−→ru , −→ru ·−→rv , and −→rv ·−→rv respectively. The first order

partial derivatives of the position vector with respect to the embedding parameters

u and v are given by ru and rv, and represent a basis for the local tangent plane
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of a point. The first fundamental form measures the change in d~r = rudu + rvdv

with respect to a change in du and dv, and is considered an intrinsic invariant. This

means that the value of the first fundamental form will be the same for a surface

regardless of its embedding in 3D space. For analytical manifolds which may be

consistently sampled, this useful fact results in point based descriptions that are

invariant of viewpoint. However, in the case of a LIDAR, the sampling of the surface

is a function of the relative position and orientation of the surface with respect to the

LIDAR, and the first fundamental form is not necessarily invariant of sampling. The

redundancy of sampling with some modern sensors, however helps to compensate for

lack of uniformity. The second fundamental form of differential geometry describes

the extrinsic properties of the surface embedding in 3D-Space. It is given by:

II(u, v, du, dv) = −d~r · d~n = Ld2u + 2Mdudv +Nd2v (2.40)

where L, M, and N are given by −→ruu · −→n , −→ruv · −→n , and −→rvv · −→n respectively. The rii

are the second order partial derivatives of the position vector and −→n is the surface

normal vector:

−→n =
ru × rv
‖ru × rv‖

(2.41)

Two additional equally important and widely used surface parameters in differential

geometry are the Gaussian (K) and Mean (H) curvature values:

H =
1

2

EN +GL− 2FM

EG− F 2
(2.42)

K =
LN −M2

EG− F 2
(2.43)

In terms of the principle curvatures (k1, k2) in the parameter plane:
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Table 2: Classification of surface types based on the Mean and Gaussian Curvature
Values.

K(i, j) > 0 K(i, j)=0 K(i, j) < 0

H(i, j) < 0 Peak Ridge Saddle Ridge

H(i, j) = 0 Undefined Flat Minimal Surface

H(i, j) > 0 Pit Valley Saddle Valley

Fig. 14: Surfaces types classified by Mean and Gaussian Curvatures as indicated by
Table 2.

K = k1k2 ⇒ k2 =
K

k1
(2.44)

H =
k1 + k2

2
⇒ k1 = H ±

√
H2 −K (2.45)

The classifications of Table 2 have been used by Besl and Jain [15] to segment surfaces

into 8 types. These surface types range from locally convex (peak) to locally concave

(pit) and their classification with respect to their Gaussian and Mean curvature values

is provided in Table 2; these are illustrated graphically for reference in figure 14.

The common denominator in the equation for both mean and Gaussian curvature
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is the expression EF −G2 which can be shown to be the determinant of the positive

definite matrix:

 E F

F G

 =

 −→ru · −→ru −→ru · −→rv−→ru · −→rv −→rv · −→rv

 (2.46)

The matrix of equation 2.46 is commonly called the Riemanninan metric and is defined

at each surface point. Note that the Riemannian metric is somewhat analogous to

the structure tensor used for corner detection in image processing. This similarity

indicates that using local curvature extrema in range data will be analogous to corner

detection in imagery. Thus the cornerness criteria of 2D is readily extended to the

parameter plane but here it indicates to what degree a point on a surface is displaced

from its neighbors. If at a point we may locally describe the surface by single valued

functions of x and y, we may re-write the surface parameterization in the form:

−→r = [u, v, r(u, v)]T (2.47)

Using this form, the expressions for ru, rv, ruu, rvv, and ruv can be simplified to:

−→ru = [1, 0, fu]
T ; (2.48)

−→rv = [0, 1, fu]
T ; (2.49)

−→ruu = [0, 0, fuu]
T ; (2.50)

−→rvv = [0, 0, fvv]
T ; (2.51)

−→ruv = [0, 0, fuv]
T ; (2.52)

Inserting these expressions into the expressions for Gaussian and mean curvature we

obtain:
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H =
(1 + fv)fuu + (1 + f 2

u)fvv − 2fufvfuv
2(1 + f 2

u + f 2
v )3/2

(2.53)

K =
fuufvv − f 2

uv

(1 + f 2
u + f 2

v )2
(2.54)

In the case that the surface is a fronto-parallel plane, these curvature equations reduce

to the curvature and the determinant of the hessian respectively. The determinant

of the hessian was used to evaluate candidate extrema in the difference of Gaussian

scale space for effective localization. Note that the expression (1 + f 2
u + f 2

v )2 is equal

to determinant of the Riemannian metric of the surface EG− F 2 which for a fronto-

parallel plane (fu = 0, fv = 0) is equal to 1. In this way, we can relate the expression

for an area element dA defined at a point to (dx, dy).

dA =
√
EG− F 2dxdy (2.55)

Notice that the square of the surface area of an infinitesimal surface element is pro-

portional to the assumption of a locally orthogonal plane at a point, and the size of

individual surface elements grows with increasing surface gradients. This is an impor-

tant fact and can be a large source of localization error. 3D surface points displaying

high values of mean curvature make good candidates for 3D feature locations. Similar

to how Harris Corners which display large eigenvalues, represent locations where large

changes in the texture occur for small displacements. It is at these sharp curvature

locations where we define geometric features. Before point based correspondences

were used to register 3D point clouds, exhaustive search techniques like the Iterative

Closest Point method of Besl and McKay [33] or Chen and Medioni [34] were used,

requiring N2 comparisons where N is the number of points in the model. These

methods require a good initial guess for accurate results because they are prone to

converging to local minima and can therefore lead to an incorrect registration. One
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very successful method used for creating point based descriptors in 3D point clouds

is the Spin Image technique introduced by Andrew Johnson [6, 7].

3. 3D Point Based Registration by Spin Images

Spin Images can be defined at every point in a 3D data set, given that a means

exists for identifying a surface normal at each point. This is usually accomplished

by nearest neighbor indexing or adjacency information in a 3D mesh. An Oriented

Point is defined by its cartesian coordinates and its surface normal vector. The

surface normal is usually computed by fitting a plane to the point of interest and its

“n-ring” neighbors. An alternative method is to take the eigenvector associated with

the least eigenvalue of the covariance matrix of a symmetric neighborhood about a

particular point. In this case a symmetric neighborhood is defined by involving all

neighbors of a point which are less than a specified distance away in the computation

of the normal. The distance metric used can be Euclidian or geodesic. In both cases

it is important to have a regularized mesh, and in his dissertation, Johnson provides a

method for controlling mesh resolution. The five degree of freedom basis is defined by

the 3D coordinates of a measured point, and the azimuth and elevation values which

define the direction of the surface normal in the measurement frame. An example of

an oriented point is illustrated in Figure 15.

A Spin Image projects the participating points into a cylindrical coordinate sys-

tem with origin at the point of interest. The computed coordinates are the axial

distance (α) from the normal line and the perpendicular displacement (β) from the

local tangent plane. These are the radius and height in cylindrical coordinates re-

spectively. This technique can be both global, and local depending on the chosen

parameters of the Spin Image. Constraints can be applied regarding the extent of the

local neighborhood, the sampling frequency in α and β, and the support angle, i.e.
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Fig. 15: An example Oriented Point consisting of a position and direction in space.
In this basis only the in-plane radial distance α and the axial distance from the local
tangent plane β are needed to describe a position in this frame.

the allowable deviation in the surface normal of a participating point from the normal

of the interest point. The equations for computing the local cylindrical coordinates of

a Spin Image for a point of interest p and an arbitrary neighboring point x are given

below:

α =
√
‖−→x −−→p ‖2 − (−→n · (−→x −−→p ))2 (2.56)

β = −→n · (−→x −−→p ) (2.57)

Spin Images can be very effective in providing a good preliminary registration

of two meshed models. All of the techniques available to 2D template matching,

such as normalized cross correlation can be used to compare two Spin Images. How-

ever, model registration based on Spin Images has historically relied on exhaustive

search or random sampling techniques to achieve registration. This can be very time

consuming, especially for large Spin Images. Recently, Ho and Gibbons [11] applied
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the technique of defining Spin Images at mesh locations exhibiting high Koenderink

Curvedness and saw vastly improved efficiency. Additional variations of the Spin Im-

age technique have also employed multi-resolution analysis [9], and texture [8]. The

application of scale-space to the Spin Image technique is still an open problem. The

SIFT technique has been extended to range images with some success and represents

a competing point based descriptor. Other point based descriptors are also described

in [35,36].

4. Applying the Scale Invariant Feature Transform to Range Data

Within the last few years, Lo and Seibert [4,5] have applied the SIFT technique

of Lowe [2,3] to range images. In their application, the range images were generated

by using a stereo vision system with projected structured light. The data contained

in the segmented range values of the measured object are first normalized to have

unit standard deviation and zero mean in their z-coordinate. The Gaussian and Mean

curvatures of the surface data are then computed by image gradients. The principle

curvatures are then determined by equations 2.44 and 2.45 and a variant of the shape

index is computed for each location in scale space by:

s =
2

π
arctan

[
k2 + k1
k2 − k1

]
(2.58)

Keypoints are then localized in the scale space by the same method as Lowe [2, 3]

but a new descriptor is populated using shape index values. This provides a means

of extracting scale space extrema from 3D surface data, which can allow for feature

points to be associated with a point cloud or mesh without being a member of the

original set of measured points. In this work, the 3D smoothing of the surface data

is not considered, and therefore the resulting localization of features in the object
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space can suffer increasing inaccuracies with increasing scale. A framework which

further exploits 3D information to account for inconsistent sampling of an object and

describes both geometric and photometric extrema in the object space would be even

more powerful. Applying the diffusion equation to noisy surface data and captured

image data along with developing a descriptor based on mean curvature flow will

result in an effective means for localizing object-space features based on geometric or

textural properties. The following chapters outline a framework to achieve this end.
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CHAPTER III

SENSOR CHARACTERIZATION AND SYSTEM CALIBRATION

Information on the geometry and surface texture of a proximal body can be

measured by a variety of methods. These methods can be passive in the case of camera

observations or active for sensors such as Light Detection and Ranging (LIDAR)

devices. While many other sensors such as Doppler RADAR or flash LIDAR also

provide 3D data, this dissertation is focused on the fusion of rapid scanning LIDAR

(typically millions of measurements per second) and High Definition camera imagery.

An active sensor uses energy to measure the world around it. In the case of a LIDAR,

typically, a pulse of monochromatic light is generated and directed toward the object

to be measured. The round trip time of flight is recorded by an internal clock which is

triggered at the time of the out going pulse, and triggered again when a photo-detector

senses a sufficient number of photons in that wavelength returning from the scene.

More generally, the wave form of the sent and received light pulse may be convolved

with the sent pulse to derive the relative phase and thereby obtain higher accuracy

LIDAR measurements. The resulting range measurement is calculated as the product

of half the round-trip flight time and the speed of light. The resulting output of a

scanning LIDAR is a 3D point cloud, a set of measured points which report the

measured range along a line of sight from the system origin. In contrast to the active

measurement approach of the LIDAR, a camera is a passive optical system. Light

in this case passes through a lens or optical train, and incident energy is integrated

in the pixels of a Charged Coupled Device (CCD) or a Complementary Metal Oxide

Semiconductor (CMOS) pixel array. In this case, the reflected energy from the object

of interest must be the source of the measured photons. The imaging device collects
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photons over an integration period, usually a few tens of milliseconds, and reports

the total received energy of each element in the array. The sections that follow will

explain both of these sensor models in greater detail, introduce the current and future

sensors used in the Land Air and Space Robotics laboratory, and explain a method

for co-registering their outputs after each sensor has been individually calibrated.

A. Measuring Geometry by Light Detection and Ranging

Measurements made by Light Detection and Ranging systems most commonly

report the distance to a scene point along a line of sight vector. An individual

measurement is commonly reported as a vector magnitude, ‖r‖ and a unit vector

direction r̂. A list of these measurements taken from a stationary LIDAR system may

be converted to another form. Consider a spherical coordinate system located at the

origin of the LIDAR, in the case of a scanning LIDAR, the origin is the center of

projection located at the point of intersection of the two spin axes on the plane of

the scanning mirror.

The range vector direction is defined by the azimuth (θ), and elevation (φ) angles

which may be determined from the components of the range unit vector:

θ = arctan
[
rx
rz

]
(3.1)

φ = arctan
[
ry
rz

]
(3.2)

where rx, ry, rz are the horizontal, vertical, and heading directions of the unit range

vector respectively. The selection of the components in this manner is consistent with

a camera coordinate system which chooses the z-direction to be away from the camera

along the bore sight. This geometry is a slight variation of the standard azimuth,

elevation geometry which is given by standard spherical coordinates:
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Fig. 16: A two axis scanning mirror as the origin of a spherical coordinate system.

θ = arctan
[
ry
rx

]
(3.3)

φ = arcsin rz (3.4)

rx = cosφ cos θ (3.5)

ry = cosφ sin θ (3.6)

rz = sinφ (3.7)

In this case the z-axis is the direction associated with φ = 0 and θ = 0 and the x

and y axes are orthogonal. The resulting equations for the orthogonal unit vector

components are given by:

rx =
tan θ√

1 + tan θ2 + tanφ2
(3.8)

ry =
tanφ√

1 + tan θ2 + tanφ2
(3.9)
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Fig. 17: This diagram illustrates the slight variation from traditional spherical coor-
dinates to orthogonal axis coordinates.

rz =
1√

1 + tan θ2 + tanφ2
(3.10)

These orthogonal axis angular coordinates are convenient to use in conjunction with

the camera coordinate system convention where the z-axis is the direction of the bore

sight, and the x and y axis are the orthogonal displacements from that direction. In

both coordinate systems the z-axis points in the direction of increasing depth from

the sensor and displacements in the image plane can be thought of as angular dis-

placements from the center line of sight direction. Figure 17 illustrates this geometry.

For a two axis scanning mirror, it is easy to represent a set of measurements as

a rectangular array which reports the range as a field r(θ, φ). Each element in the

array represents a consistent step dφ, dθ and breaks down the scanner field of view

into a specified number m rows and n columns. Range data in this form is called a

range image. An example range image of an asteroid model is shown in figure 18. In

contrast to a disparity image obtained by stereo vision techniques, the range to the

3D points represented by the gray scale value in each pixel are directly measured, and

the measured azimuth and elevation angle data is part of the original measurement.

For a range image derived by stereo techniques, the 3D point is estimated, and the

angular accuracy is limited by the resolution of the camera. Many LIDAR systems

also report a gray scale value indicating the amount of energy from the original light
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Fig. 18: An example range image, a 2D array of range values taken by a stationary
scanner.

pulse that returned to the photo detector. This gray scale is referred to as the Return

Light Intensity and is directly related to the quality of a LIDAR measurement. The

Light Return intensity is a function of the interaction of the laser spot with the

measured surface and therefore is sensitive to the incidence angle of the measurement

as well as material properties such as surface texture, absorbtion, and diffusivity. An

example image of this texture field is shown for the asteroid model in figure 19.

The Return Light Intensity has seen little use in practice but has been used as

an indicator of measurement confidence as well as a texture field. In this dissertation,

the Return Light intensity is used primarily as a texture field for feature extraction.

The second texture field is provided by the passive observation of the visible light as

measured by a camera.

B. Passive Field Measurements from Camera Imagery

Cameras are passive observers. Photons from observable light sources, including

reflected photons from surfaces are projected through a lens or optical train to a CCD
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Fig. 19: Return Light Intensity Data for the Asteroid Range Image.

Fig. 20: A simple representation of a “Camera Obscura.”

or CMOS device. The geometry of this process can be quite complex, but through a

process known as calibration, data obtained by many camera systems can be mapped

to a common geometric model, the pinhole camera. The pinhole camera model as

its name suggests describes the passage of light through a point or small circular

aperture. In Latin, camera means vaulted or chambered room and the early cameras

or “Camera Obscura” were literally dark rooms with light passing through a small

hole and projecting to a screen [37].

The pinhole camera model relates Object space points ~x = [x, y, z]T to image
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points [ix, iy]
T by:

ix = f
x

z
+ px (3.11)

iy = f
y

z
+ py (3.12)

where f is the focal length of the camera, the distance of the center of projection of the

lens to the imaging plane, and the principle offsets (px, py) indicate the intersection of

the camera principle axis with the image plane. We can conveniently represent this

projection in matrix form using homogeneous coordinates ~X = [x, y, z, 1]T :


fy + pxz

fy + pyz

z

 =


f 0 px 0

0 f py 0

0 0 1 0





x

y

z

1


(3.13)

Notice here that the original relationships of equations 3.11 and 3.12 are obtained by

dividing equations 1 and 2 by row 3. A more general form of observation equation

can be obtained if we consider a camera whose measurement frame and origin are

displaced with respect to a reference coordinate system. In this way, an arbitrary

point would have coordinates:

~x =


x− xc

y − yc

z − zc

 (3.14)

where [x, y, z]T are the cartesian coordinates of an arbitrary point in the reference

coordinate system, and [xc, yc, zc]
T are the cartesian coordinates of the camera system

origin. Considering also that the camera may be rotated with respect to the reference
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Fig. 21: The Colinearity equations describe the pinhole camera with respect to an
arbitrary reference frame.

coordinate system the following co-linearity equations express the requirement that

an arbitrary scene point, the camera center of focus, and its projection to the image

plane all lie on the same ray.

 ix

iy

 =

 px + f
[
R1,1(x−xc)+R1,2(y−yc)+R1,3(z−zc)
R3,1(x−xc)+R3,2(y−yc)+R3,3(z−zc)

]
py + f

[
R2,1(x−xc)+R2,2(y−yc)+R2,3(z−zc)
R3,1(x−xc)+R3,2(y−yc)+R3,3(z−zc)

]
 (3.15)

Calibrating a camera usually requires the determination of the intrinsic and

extrinsic parameters. The intrinsic parameters can be described by the left 3x3 matrix

of the projection matrix in 3.13.
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K =


f s px

0 f py

0 0 1

 (3.16)

The intrinsic parameters include the focal length f , the principle offsets (px, py), and

the skew parameter s which is zero for most cameras today. Once these parameters

have been determined the projection matrix of equation 3.13 may be simply written

as:

~x = K[I3x3|03x1] ~X (3.17)

In this form we can observe that the remaining identity matrix and zero vector in

the projection matrix describe a camera which has its coordinate system aligned with

the reference coordinate system and whose origin is co-located with the origin of the

reference coordinate system. In general, a camera is rotated and translated with

respect to some frame of interest in a particular application, and the determination

of the extrinsic parameters, the rotation and translation of the camera coordinate

system with respect to the frame of interest is called an extrinsic calibration. For the

application of this dissertation, it is desired to determine the cameras position and

orientation with respect to the LIDAR coordinate system.

C. Camera to LIDAR Extrinsic Calibration

The standard approach to camera calibration involves the measurement of world

scene points in the coordinate system of a calibration object. Common calibration

objects include one, or multiple planes with an array of high contrast features in

known locations. For example, a chess board with black and white squares of known
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size is a frequent choice. In a systematic way, a scene point is associated with its

image and a list of image to scene point correspondences is built:

~xi = P ~Xi (3.18)

Using the condition that the vector cross product ~xi × P ~Xi = 0, we can obtain two

independent equations for each point correspondence using two rows of the matrix

relationship below.


0T −zi ~XT

i yi
~XT
i

zi
~XT
i 0T −xi ~XT

i

−yi ~XT
i xi

~XT
i 0T




P T
1

P T
2

P T
3

 = 0 (3.19)

Here the P T
i terms are the 4-vector rows of the projection matrix, the [xi, yi, zi] are the

components of the image point and the XT
i terms are the homogeneous coordinates

of the scene point represented as the row vector XT
i = [Xi, Yi, Zi, 1]. At least six

point correspondences are required to solve the linear system of equations Ap = 0

where A is the 2nx12 matrix of independent rows of equation 3.19. The solution for

P is unique to within a multiplicative scalar, provided that the rank of the coefficient

matrix is 11.

Obtaining a solution for the elements of the projection matrix P does not result in

a matrix which distinguishes the intrinsic and extrinsic parameters. Decomposing the

resulting projection matrix into the form of equation 3.17 can be difficult. Luckily,

it is possible to perform a restricted camera estimation subject to the constraints

imposed by the values expected for the intrinsic parameters. For a camera with

known intrinsic parameters, the relative pose between the camera image and any

other coordinate system may be determined by a non-linear least squares process

which aligns multiple line of sight measurements.
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1. The Vis-Nav Solution

The Vis-Nav Sensor has seen much use in proximity operations of autonomous

systems. Using an array of uniquely identifiable beacons, the problem of determining

the relative pose of a camera is solved by determining the location of the camera origin

in the beacon coordinate system and the elements of the rotation matrix between the

camera coordinate system and beacon coordinate system by non-linear least squares.

Beginning with a measurement model common in attitude estimation:

b̂i = Ar̂i (3.20)

The body fixed measurements bi are the image points found by determining the

centroids of each individual beacon. Using the measured image space coordinates of

the centroid and the known focal length, the line of sight vector to the beacon in the

camera coordinate system can be expressed by:

b̂i ≡
1√

f 2 + x2i + y2i


−xi

−yi

f

 (3.21)

Likewise, the line of sight to each individual beacon may be modeled by:

r̂i ≡
1√

(Xi −Xc)2 + (Yi − Yc)2 + (Zi − Zc)2


Xi −Xc

Yi − Yc

Zi − Zc

 (3.22)

The least squares estimates for the coordinates of the camera center, and the camera

orientation parameters are found by using the Gaussian Least Squares Differential

Correction (GLSDC) which seeks to minimize the cost function J = 1
2
∆bTi W∆bi.
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Here, ∆bi = b̂i− b̃i where b̃i = f(x) is the predicted measurement given the evaluation

of the current estimate of the state variables x = [Xc, σc]
T . Here Xc = [XcYcZc]

T

The attitude state variables σc are typically chosen to be the Modified Rodriguez

Parameters (MRP’s) which parameterize the direction cosine matrix A as shown in

equation 3.23:

[A(σc)] = [I3x3] +
8[σc×]− 4(1− σTc σc)[σc×]

(1 + σTc σc)
2

(3.23)

Starting with the initial guess that the camera frame is aligned with the beacon

frame the differential correction can be written as a function of the Jacobian of the

measurement model, a weighting matrix based on the inverse of the covariance of

each measurement, and the measurement error ∆bi:

∆x = (HTWH)−1HTW∆bi (3.24)

The Jacobian matrix may be computed by H = [ ∂f
∂Xc

∂f
∂σc

] where the vector f(x) is

given by [A(σi)]
[Xi−Xc]
‖Xi−Xc‖ and the partial derivatives are computed by:

∂f

δXi

=
1

‖Xi −Xc‖
[A(σi)](rir

T
i − I3x3) (3.25)

∂f

∂σi
=

4

(1 + σTi σi)
2
[f×]((1− σTi σi)[I3x3]− 2[σi×] + 2σiσ

T
i ) (3.26)

Using the initial estimate of perfect alignment, the normal equations of 3.24, and

evaluating the cost function until convergence results in accurate estimates for the

camera pose with respect to a reference coordinate system. In order to determine

these parameters for a camera in the reference frame of a Light Detection and Rang-

ing device, the beacons of the above discussion must have specific properties. The

approach proposed in this dissertation is to use a set of calibration objects which allow

for easy localization of a characteristic point in both the 3D coordinates measured
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by the LIDAR and the image space of the camera. One choice of targets are small

white styrofoam spheres of known radius. Styrofoam has excellent diffuse reflection

across a wide color spectrum. In order to manufacture accurate point to point cor-

respondences as in the methods introduced above, the center of the best fit sphere

computed for each object is associated with the line of sight defined by the centroid of

the spheres image in the camera. Figure 22 shows the geometry of this type of corre-

spondence, it should be noted that associating the center of the best fit sphere to the

image centroid can provide more accurate point to point correspondences than trying

to associate a single LIDAR measurement with a location in the camera image. Care

should also be taken to ensure that the centroid of the image intensity function is the

line of sight through the center of the sphere which can easily be done by locating a

light source near the camera.

Determining the correct subset of LIDAR measurements to associate with each

calibration object is not trivial. If the LIDAR data is in the form of a list of 3-

vectors, methods for determining nearest neighbors can be used to determine groups

of points which have a variance in their 3D position comparable to the radius of the

calibration sphere. Another, more interactive method is used here. First, a 2D array

of LIDAR measurements is computed by converting the range measurements into the

form r(φ, θ) where θ and φ are the azimuth and elevation angles determined from

the unit line of sight vector by equations 3.1 and 3.2. The nominal steps in azimuth

and elevation δθ and δφ are determined by dividing the field of view dimensions

by the number of columns, and the expected number of measurements per column

respectively. In the case of the Deltasphere 3000 scanner shown in figure 23 [38], these

parameters are provided in the header of the scan file.

An example Return Light Intensity image of a calibration scene is shown in

figure 24 alongside the camera image of the same scene. Since the strength of the
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Fig. 22: 2D-3D point correspondence by associating the center of a best fit sphere to
the centroid of the spheres image.
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Fig. 23: The Deltasphere 3000 scanner operates by pulsing a laser against a mirror
which rotates along the horizontal axis, the entire apparatus is rotated by a motor
along the vertical axis resulting in a raster scan range image.

return light intensity is dependent on the cosine of the incidence angle of a particular

LIDAR measurement, the locations of the sphere which obtain a maximum value

should indicate lines of sight which are nominally through the center of mass of the

sphere.

Manual association of each sphere in the Return Light and Camera images can

easily be achieved using a mouse input function such as Matlab’s ginput function.

Fig. 24: Left:A Return Light Intensity image of six calibration spheres. Right: The
Visible Light image taken by the camera for which a calibration is sought.
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Fig. 25: The object association phase of the calibration process allows the user to
manually identify each calibration object in each image and associate a neighborhood
with each data set over which the best fit sphere and image centroid is determined.

Figure 25 shows this process implemented in a software routine which requires the

user to click the center of the sphere in each image and specify a 2D neighborhood

over which pixel data will be used in the computation of the 2D and 3D characteristic

points.

Once the 2D and 3D neighborhoods of data for each object have been associated,

the 3D points are determined by one of two methods. The first method is to find the

center of the best fit sphere of radius equal to the radius of the calibration object.

This process can again be solved by GLSDC. In this case, we seek to minimize the cost

function J(x) = 1
2

∑
i[‖xi−x̄‖−r‖]2 where the xi are the individual 3D measurements

in the neighborhood, x̄ is the estimate of the sphere center, and r is the known radius.

This process works well for spheres that are large with respect to the localization error

of the measurements. If this method is ineffective, the measurement for which the

cosine of the incidence angle attains a maximum value may be chosen as the line of

sight direction, and the 3D characteristic point may be determined by adding the

radius of the calibration sphere to the measurement in the direction of the line of

sight.
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Fig. 26: Alignment of LIDAR and Camera using Calibration spheres and the Vis-Nav
approach. The blue asterisks indicate the location of the 2D characteristic points, the
red circles display the projected locations of the 3D-points through the co-linearity
equations which result from the calibration.

X̂i = X̃i + rl̂i (3.27)

Determining the centroid of the camera image of each sphere may be done by

computing the center of mass of each neighborhoods intensity function if care has been

taken to be sure that the image of the sphere is under the correct lighting conditions.

An alternative method to centroiding is to threshold the image and determine the

center of the best fit circle to each 2-d neighborhood. Once the 2D and 3D charac-

teristic points have been determined, the Vis-Nav solution to the extrinsic calibration

problem applies directly. An example of the alignment using calibration spheres and

the Vis-Nav calibration approach is shown in figure 26.

Once the extrinsic parameters of the camera are determined with respect to

the LIDAR frame a visible light image from the perspective of the LIDAR may be

generated by determining an intensity value for each LIDAR point visible to the

camera by interpolation. For a camera which is only very slightly displaced with
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respect to the LIDAR, nearly all points will project to a unique location in the camera

and the process of determining the associated visible light value consists of computing

the camera coordinates by the colinearity equations of 3.15 and interpolating the

image data over a small neighborhood about that point. A common approach is to

compute the Gaussian weighted average of the (for example) local 3x3 neighborhood.

V L(θ, φ) =
∑

i=−1:1

∑
j=−1:1

G(i+ 2, j + 2)I(diy + py
dy
e+ i, dix + px

dx
e+ j) (3.28)

Here G(i, j) is a 3x3 matrix of values sampled from the 2D Gaussian kernel. For

a camera with a larger displacement, certain scene geometries can cause occlusions

to occur. Occlusions occur when more than one point in the 3D data set project to

the same pixel location in the camera, or when a subset of the points line of sight

is blocked (occluded) by other points int the scene. In order to correctly apply the

visible light texture to the data set, it is necessary to determine occlusions occur. A

simple method is to determine the range of each 3D point in the camera frame, and

sort the 3D data with respect to this value. The image locations and interpolated

values for each unique data point are then computed. An array the same size as

the camera image is used to indicate if a camera image pixel has been used in a

previous interpolation. Each time an interpolation is perfomed, the associated 3x3

neighborhood of the occupancy image takes the value of the range between the camera

and the interpolated data point. This array or occupancy image is queried each time

a location is determined for a LIDAR measurement, if it is zero at the pixel the

current measurement projects to, the interpolation proceeds. If the value is not zero,

then the range value populating the occupancy image is compared to the range of the

current data point and if the difference is larger than a threshold, the data point is not

interpolated. Figure 27 shows the result of this process on a calibrated range image of
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Fig. 27: Alignment of LIDAR and Camera using Calibration spheres and the Vis-Nav
approach. The blue asterisks indicate the location of the 2D characteristic points, the
red circles display the projected locations of the 3D-points through the co-linearity
equations which result from the calibration.

the 1/10th scale Hubble Space Telescope model at the Texas A&M University Land

Air and Space Robotics Laboratory.

Data in this form represents the data Multi-Field Multi-Scale Features were

designed for. A fusion system consists of a time of flight measurement device, in this

case a LIDAR, externally calibrated with a texture measuring device. This process

could be repeated with an array of cameras of any type. Nothing prevents this process

from being applied to an infra-red or hyper-spectral camera. Increasing the number of

available textures will simply increase the number of fields to be searched for features.

As is shown in figure 27 the LIDAR system does not guarantee a fully populated

image. In many cases pixels in a range image may be empty due to insufficient return

light. It is important to determine if this is a local event or if the LIDAR measurement

truly missed the object being measured. This problem is addressed by use of a hole

filling process which is explained in the next chapter.
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CHAPTER IV

SCALE SPACE ANALYSIS OF MULTI-FIELD DATA ON MEASURED

MANIFOLDS

Following an accurate extrinsic calibration, the range data sensed by a time of

flight scanner and the texture data associated with each sensor is sufficiently co-

registered. Traditional approaches to generating a multi-resolution representation

of the image data involve building a scale-space. A widely adapted approach to

generating a scale-space is to construct a 1-parameter family of signals derived by

convolving the original signal with a Gaussian operator. In two dimensions we have:

L(x, y, t) = g(x, y, t) ∗ I(x, y) (4.1)

The result of a Gaussian convolution is a blurred version of the original image data

where each element of L(x, y; t) at (x, y) is a Gaussian weighted average of its (x, y)

neighbors where t is the scale parameter or variance of the Gaussian operator:

g(x, y; t) =
1

2πt
e
−(x2+y2)

2t (4.2)

An example of a scale space was shown in chapter 2, the Gaussian pyramid is formed

by successively convolving an image with a Gaussian (with t =
√

2, for this spe-

cial case). In a traditional scale-space representation the re-sampling process of the

Gaussian pyramid is not performed. The method proposed in this dissertation will

also preserve all original measurements and therefore will represent a traditional scale

space method. A key difficulty in directly applying Gaussian convolution to a range

image involves the meaning of image elements containing zero values. In an intensity

image, this can mean that an element did not collect any photons, and the zero value
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is considered part of the image texture. In a range image however, this can have sig-

nificant undesired consequences when elements containing a zero value are involved in

an average of geometric measurements. A range measurement is based on the round

trip time of flight to a scene point. A successful range measurement is reported when

a sufficient amount of energy returns to the photo-detector. If the amount of energy

collected is less than a pre-specified threshold over a delay associated with the maxi-

mum expected measurable range, the range measurement is recorded as a failure and

a zero pixel is reported. Physically, this can occur for many reasons. If the maximum

time of flight is exceeded, it can mean that no scene point is close enough to cause

a measurement, or that the projected energy was reflected away from the receiver

which occurs often with high glancing angles and non-Lambertian surfaces. Consider

the range image of the asteroid model shown in figure 28. Smoothing this data set

by applying a Gaussian operation as in image processing results in the zero element

pixels causing significant false gradients in the surface which can been seen in the

representation at the right. This occurs because the zero-valued pixel is replaced by a

Gaussian weighted average of the neighboring range values, and the zero range value

which should not be involved in the computation. Smoothing with an operator which

does not take into account that neighbors may not be populated with measurements

can cause significant distortion artifacts. The most significant distortion occurs at

the object boundaries, which can be expected. This affect has been well addressed

by Brady and Ponce [39] and requires more involved smoothing techniques like the

computational molecules of Terzopolous [40].

In image processing, convolution is implemented by performing a series of array

products with a spatial filter, in this case a Gaussian, and summing the result. For

each array product whose image members are all non-zero, the following process is

equivalent to convolution.
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Fig. 28: Left: A range image of a model asteroid with zero pixels representing bad
range measurements. Right-Top: A surface model showing the result of Gaussian
convolution. Right-Bottom: The same surface textured by Return Light Intensity
values achieved using sampled Gaussian Convolutions.

1. Identify for all participating Image elements f(x, y) the (x, y) coordinates con-

taining non-zero members.

2. Set all locations in the Gaussian operator, G(x, y), corresponding to zero valued

elements to zero.

3. Re-scale the filter values by 1/sum(G(x, y)).

4. Compute the array product and sum the result.

For array products which do contain elements with zero values, this process is an

approximation to the linear process of Gaussian convolution. It is similar to the pro-

cess described in smoothing 3D data by means of the weighted umbrella operator,

but the process described above does not use the measured 3D information and just

performs a smoothing on the range values. In this case, the weights which are com-
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puted for the Gaussian operator are defined assuming unit step distances between

the pixels, and the range values are being blurred much the same way as the scalar

fields of return light and visible light intensities. This approach is undesirable for a

number of reasons. First, blurring the range data as a scalar field is not an effective

3D analysis and does not correctly smooth the noisy LIDAR data. Replacing a range

value, which is the magnitude of a measured position vector, by an average of the

range magnitudes over an area is not the same as surface evolution, and depending

on the way the values are weighted, can cause significant distortions. Second, surface

smoothing, and therefore, the smoothing of any associated scalar data is subject to

tangential drift when points are not regularly sampled on the object. This drift is

caused by poorly selected weights and can be minimized by careful design of the op-

erator. Only for very specific surface types and poses does the condition of consistent

object space sampling occur for a particular sensor. It is desired that the surface

evolution process applied to the measured point cloud data both apply the diffusion

equation to the measurements based on some local assumption of surface properties,

and evolve the data to a representation of a progressively smoother surface in such a

way that the sampling frequency along the surface is not changed. In chapter 2, it was

shown that surface evolution by mean curvature flow contained only displacements

in the direction of the underlying surface normal. Mean curvature flow is a surface

area minimizing flow, and we will show here that it can be achieved by designing an

umbrella operator constructed using the process described above, with modifications

which take into account the measured shape of the surface. Recall that a surface

evolution process may be described by the expression in equation 4.3.

∂P

∂t
= F (P ) (4.3)
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The expression in equation 4.3 can be thought of as the rate of change in the surface

data or the diffusion flow rate cause by applying the process to the points P repre-

sented by F (P ). In chapter 2, this process was defined for mean curvature flow using

the discrete equation in 4.5.

Pk+1 = Pk −Hn̂∆t (4.4)

By writing 4.5 in the form of 4.3 we can show that the diffusion flow rate is given by

the curvature normal, Hn̂.

Pk+1 − Pk
∆t

= −Hn̂ (4.5)

The curvature normal, is defined in differential geometry another way:

Hn̂ =
1

2

∇A
A

= div(n̂) (4.6)

It is shown in [41] that the computation of the curvature normal for a surface mesh

can be achieved by the following equation:

Hn̂ = − 1

4A

∑
j=N1

(cotαi + cotβj)(xj − xi) (4.7)

The expression in equation 4.7 is shown here to make two points. First, the operator

for a mesh which implements mean curvature flow as a surface evolution process is in

the form of an umbrella operator. The umbrella operator in its general form was given

in equation 2.34 and evolves each point in a surface by defining its future location

to be the result of an averaging operation on its original position and the positions

of its neighbors. The umbrella operator was first presented here to introduce surface

evolution by Laplacian smoothing. Laplacian smoothing however, can have undesired

properties like tangential drift. The main point here is that with the correct selection
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of weights, the Laplacian smoothing process results in the mean curvature flow and

correctly evolves the signal without aliasing the spatial position of the points as a

function of scale. The second point made here is that the expression in 4.7 is also

the derived expression for a mesh for an operator known as the Laplace beltrami

operator [41, 42]. The Laplace-Beltrami Operator is the generalization of the Lapla-

cian operator for Riemannian manifolds. If we let f denote a twice differentiable

Riemannian manifold, we may express the Laplace-Beltrami Operator as:

∆f = Div(∇f) (4.8)

The Laplace-Beltrami operator is most commonly implemented using a specifically

weighted umbrella operator:

∆f(P ) =
1∑

i∈N1
wi

∑
i∈N1

wi(P − Pi) (4.9)

Here the wi are the weights associated with the distance between each point (P −Pi).

This expression is typically only evaluated for the 1-ring neighbors N1, but it can be

shown that if one uses the geodesic distance to define the weighting, the equation 4.9,

can be extended past the 1-ring neighbors. In [41], the authors introduce a normalized

curvature normal operator and express the umbrella operator to be:

Hn̂ = − 1∑
j=N1

(cotαi + cotβj)

∑
j=N1

(cotαi + cotβj)(xj − xi) (4.10)

This approximation to the Laplace-Beltrami operator is an extension of the so-called

graph Laplacians which use weights to convey the adjacency information of surface

points. It is well known in the literature, [43] that a point in a point cloud or mesh

can be evolved by mean curvature flow of the surface from which it was sampled by

applying the Laplace-Beltrami operator.
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Fig. 29: A uniformly sampled 1D signal smoothed by the finite difference approxima-
tion to the Laplacian

To illustrate the importance of selecting the correct weights when applying an

umbrella operator to build a scale space of data , consider the approximation of the

Laplacian on a 1-D curve. We seek to build a 1-D scale space which was shown by

Witkin to provide extrema in a nesting tree. This example addresses figures 29 to 31

where the original function is the periodic signal with largest amplitude and successive

applications of a Laplacian operator result in progressively lower amplitude signals.

Consider the signal x(θ) = sin(3 ∗ θ) + (0.2 + 0.4cos(5θ))2 on the interval [0 : 2π]

sampled in steps of π/25. The 1−D discrete approximation to the Laplacian can be

determined by finite differences to be L(xi(t)) = 1
2
(xi−1 − xi) + 1

2
(xi+1 − xi) and the

signal may be evolved by xi(t + 1) = xi(t) + L(xi(t)). The results after each of 10

iterations are shown in figure 29.

If the sampling in θ is allowed to vary instead of being consistently stepped,

successive convolutions do not correctly smooth the data. If we corrupt the theta

values by θ = θ+ dθ
4

N(0,1), the result of the same successive smoothing process using

the standard Laplacian operator is shown in figure 30. Notice the smoothing artifacts
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Fig. 30: A non-uniformly sampled 1D signal smoothed by the finite difference ap-
proximation to the Laplacian

caused by this ill-informed smoothing process which make it difficult to distinguish

each individually smoothed version of the original signal which should lie neatly one

within the other.

The reason for the poor smoothing performance is the equal weighting assigned

to each nearest neighbor regardless of the actual distance θ− θi. When the Laplacian

operator is adapted to take into account the actual inter-point distance we have the

following approximation:

L(θi) =
1

w− + w+
(w−x(θi−1) + w+x(θi+1))− θi (4.11)

where w− = 1
θi−θi−1

and w+ = 1
θi+1−θi are the weights associated with the inverse of the

inter-point distances between the first nearest neighbor in the positive and negative

directions. We note here that the first nearest neighbors represent the 1D analog of

the 1-ring neighbors on a mesh, or the 8 nearest neighbors to a pixel in an image,

and that this approximation to the Laplacian is a weighted umbrella operator. The

result of applying the distance corrected Laplacian operator to the same non-uniform
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Fig. 31: A non-uniformly sampled 1D signal smoothed by the distance corrected finite
difference approximation to the Laplacian

sampling of our example is shown in figure 31, notice here that the desired nested

structure is preserved even thought the inter-sample distance is not constant.

The Laplace-Beltrami operator works in very much the same way as the 1D ex-

ample for points sampled on a surface. Defining an umbrella operator with weights

defined as in 4.10 evolves a surface mesh by mean curvature flow, as all point dis-

placements are only in the direction of the surface normal. The method developed

in this dissertation evolves a measured surface by mean curvature flow, however does

not require that the measured points be meshed. In order to evolve the measured

point cloud by mean curvature flow, it is necessary to find a meshless approximation

to the Laplace-Beltrami operator. Fortunately, it has been demonstrated in [42] that

a good approximation to such an operator is an umbrella operator with Gaussian

weights defined by the geodesic distance.

In Euclidian space, the Laplace-Beltrami operator takes the familiar form of the

standard Laplacian:
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∆f = −
∑
i

∂2f

∂x2i
(4.12)

On a manifold however we may define the Laplace-Beltrami operator as a function of

samples from the manifold and the Riemannian metric tensor G:

∆f =
1√

det(G)

∑
j

∂j

(√
det(G)

∑
i

G−1∂if

)
(4.13)

which reduces to the expression of equation 4.12 in the case of a plane, on which

the metric tensor G is the identity matrix. The standard approximation to equation

4.13 for a point cloud is given by the graph Laplacian which defines weights between

a point in a point cloud and its neighbors to be wij = e
‖xi−xj‖

2

4t where ‖xi − xj‖2

represents the geodesic distance between the ith and jth point. The corresponding

graph Laplacian matrix Ltn is given in equation 4.14.

(Ltn)ij =
−wij, i 6= j∑
k wik, i = j

(4.14)

This matrix indicates the influence of data point i on neighbor j and along the

diagonal, the weights are summed to account for the contribution of points in a

neighborhood. In this way, it is possible to apply the graph Laplacian to functions

defined on the points sampled from a manifold by computing:

Ltnf(x) = f(xi)
∑
j

e
‖xi−xj‖

2

4t −
∑

f(xj)e
‖xi−xj‖

2

4t (4.15)

Here f(x) represents a scalar function defined at the points x. This fact will be

useful when evolving surface data with associated textures, since the surface corrected

application of the diffusion equation can also be used to diffuse associated texture.

The graph Laplacian has been shown to converge to the Laplace-Beltrami operator
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for point sampled surfaces. This theorem as well as the rigorous connection of the

Laplace-Beltrami operator to the Gaussian in geodesic coordinates is provided in [42].

We may begin to understand the connection between the Laplace-Beltrami oper-

ator and the geodesic Gaussian by first observing its connection to the heat diffusion

equation. As is well known in the image processing literature [2, 3, 27, 42] , the lin-

ear isotropic diffusion equation can be determined by convolution with a Laplacian

operator or closely approximated by computing the Difference of Gaussians. By ex-

tension we should expect the Laplace-Beltrami operator, which is a generalization of

the Laplacian to a surface, to also be related to the heat equation which describes

the flow of heat on a manifold. A sufficiently differentiable function f(x, t) satisfies

the heat equation if:

∂

∂t
f(x, t) + ∆f(x, t) = 0 (4.16)

The solution to a differential equation in this form is a member of the semi-group of

heat operators Ht and given an initial distribution f(x, 0), the distribution at time t

may be given by f(x, t) = Htf(x, 0). It has been proven [42], that solutions take the

form of the 1-parameter family of Gaussian functions.

H t(x) = (4πt)−
k
2 e−

‖x−xi‖
4t (4.17)

We may use the heat equation to approximate a Laplace operator for a given appli-

cation. We may write:

∆f(x) = − ∂

∂t
u(x, t)|t=0 = − ∂

∂t
H tf(x)|t=0 = lim

t→0

1

t
(f(x)−H tf(x)) (4.18)

Using the result from the graph Laplacian of equation 4.15 we can obtain an approx-

imation for the limit
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Fig. 32: Asteroid image after 1, 5, and 10 applications of Laplacian smoothing.

∆f(x) =
1

t(4πt)
k
2

Ltnf(x) (4.19)

Much like in the 1 − D example if the inter-point distances used in 4.15 account

for the distribution between points, the application of a graph Laplacian as an ap-

proximation to the Laplace Beltrami operator will evolve a point cloud subject to

the mean curvature flow of the underlying surface. Just as the Laplace-Beltrami op-

erator converges to the isotropic Laplacian in the case that the surface is a plane,

the surface based distance should converge to a euclidian distance in the case of a

plane, and grow as surface curvature increases. This is exactly the behavior of the

geodesic distance. Further, the geodesic distance may be approximated by a sum of

the measured euclidian distances up to third order [42].

To further illustrate the benefit of extending the Laplacian operator to an ap-

proximation of the Laplace-Beltrami operator which takes into account the surface

based distances between points, consider the following 2D example. An image can

be though of as a data set (X(u, v), Y (u, v), I(u, v)) where the coordinates (X, Y ) are

in consistent steps. First, an image of an asteroid is used as a texture (I(u, v)) for a

planar surface which is sampled in constant steps. For this ideal sampling structure,

the techniques of image processing and surface processing are equivalent, operators

constructed under the assumption of constant spacing correctly evolve the data. An

example of applying Laplacian smoothing multiple times is shown in figure 32.
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Fig. 33: Noisy Non-uniform 2D sampling of an asteroid image simulating the obser-
vation of the image surface by a LIDAR.

To simulate the case that this texture data lies on a fronto-parallel plane and is

sampled by a LIDAR, the original sample locations are perturbed by an amount less

than 0.5 pixels in each direction and the texture data is interpolated from the original

image. In this case, the inter-point distance on the X −Y plane is not constant. The

difference in the appearance of the image due to inconsistent sampling is illustrated

in figure 33, notice the texture is appears corrupted due to an inconsistent sampling

being represented in a structured grid.

In this way the original image signal is distorted due to uneven sampling. If the

gray values were placed in the continuous locations of the samples, the texture would

look like the original image, with some holes due to overlapping and missed pixels.

The process of blurring this image benefits from using operators which consider the

actual inter-point sampling distance. After all successive blurring processes, the graph

Laplacian achieves superior results. Figure 34 shows that the sum of the per pixel

error between each blurred image and the original scene is less for the graph Laplacian

which correctly weights the contribution of each nearest neighbor.

Consider the form of the textured LIDAR data described in chapter 3. Each

“frame” is a MxN array of measurement sites where M and N are the expected

number of measurements in the azimuth and elevation angles given the field of view
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Fig. 34: The sum of the per pixel error between the consecutive Laplacian smoothings
of a uniformly sampled signal and the Laplacian and Graph Laplacian smoothing of
the non-uniformly resampled signal. The graph Laplacian achieves lower errors over
all blurs due to correct nearest neighbor weighting.

of the LIDAR and the angular sampling rates. Each element location in the array

can be considered a “pixel” in the sense that it is an image or array element. How-

ever associated with each array element are the 3D position of associated LIDAR

measurement and associated textures. We can represent the data being smoothed in

the 2D example, and the data contained in a textured LIDAR array of measurements

by the triple [X(u,v), RLI(u, v), V L(u, v)]. In the 2D example, the spatial coordi-

nates of the measurements were constrained to lie on the X−Y plane. In the general

case, the vectors X(u,v) are the cartesian coordinates measured by the LIDAR. Each

array element is nominally dφ by dθ, but for points measured by an equal angle sam-

pling device like a 2-axis scanning LIDAR the distance between two arbitrary points

on a measured surface is not characterized by the angle between them. In fact the

fronto-parallel configuration is the only case were equal angle sampling of a plane is

isotropic, and the only geometric structure where this is locally true for all measure-

ment directions in the field of view is a spherical shell displaced from the LIDAR at a
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Fig. 35: Equal angle sampling of a fronto-parallel plane by a two axis scanning LIDAR.
The central point, whose measurement direction is orthogonal to the plane observes a
symmetric distribution in its neighbors while every other point for the same operator
observes an asymmetric distribution.

distance equal to its radius of curvature. Figure 35 shows the case of a fronto-parallel

plane measured by a LIDAR. Notice that the only symmetric distribution of points

can be found in a circular region about the bore sight.

Directly applying a Gaussian operator as in the scale space methods of image

processing, or applying an isotropic operator such as the Laplacian to this data will

incorrectly weight the nearest neighbors in all cases but the central point. In the

case of a spherical shell, the equal angle sampling will result in consistent sampling

of the object space surface. However, a weighting defined on a distance based on the

subtended angle between a point and its neighbors is proportional to the Euclidian

3D distance for the case that the range to the two points is equal, but as the ratio

between the ranges grows the weighting based on the angle between a point and
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its neighbors ceases to accurately reflect the actual distance between two points and

tends to weight too highly points that are far away. Finally the Euclidian 3D distance

is only a distance along a manifold if that manifold is planar. This fact is not of any

consequence for operators that consider only the 1-ring neighbors, but for operators

that are extended to multiple rings, the outer rings will be weighted by a chordal

distance instead of a cumulative distance along the surface.

For an array of measurements representing a point cloud we do not have any

assumptions of connectivity, aside from assuming that the line between an arbitrary

point in the point cloud and its eight neighbors in the array is an admissible path along

the surface. Figure 36 illustrates this array and displays as a graph the directions of

admissible connectivity. Also explained in the same figure, is the 7x7 operator used

to define a graph Laplacian in the form of an umbrella operator which uses a meshless

approximation of geodesic distance for each point in the operator array. Being a 7x7

array, the neighborhood of a fully populated operator, that is when the operator is

being applied to area of the measurement array which has all non-zero elements, is

analogous to a 3-ring neighborhood. It is important to consider that the knowledge

of the measurement order with respect to the scanning process is used to enforce

the previous statement. There are certainly some configurations where a meshing

process, without the knowledge of the true scanning order might change the order of

the measurements.

Computing the geodesic distance for each element in the operator proceeds as

follows:

1. 1-ring Neighbors: The geodesic distance is the Euclidian 3D distance ‖xi−xj‖2

2. 2-ring Neighbors: Compute the sum of Euclidian 3D distances over the n ≤ 3

admissible paths to the 2-ring neighbor. Admissible paths to 2-ring neighbors
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Fig. 36: Left: Graphical representation of the textured LIDAR measurement array.
Lines indicate assumed admissible paths along the surface. Right: A 7x7 graph
Laplacian Operator.

take only 2 steps between nodes to reach the neighbor.

3. 3-ring Neighbors: Given that the minimum path distance is known to the 2-

ring neighbors, determine the minimum distance between the n ≤ 3 admissible

paths from the nearest 2-ring neighbors to each 3-ring neighbor.

The weights used to populate the operator are computed from the standard Gaussian

equation using the computed geodesic distances.

Consider the form for the graph Laplacian operator given in equation 4.15. For

a fully populated operator the summation in the first term goes to 1. We obtain the

following approximation to a Laplacian on the surface:

Ltnf(x) = f(xi)−
∑

f(xj)e
‖xi−xj‖

2

4t (4.20)

This approximation to the Laplacian is in the form of a Difference of Gaussian opera-

tor which was the same approximation used in the Scale Invariant Feature Transform

of Lowe [2]. As will be shown in the next section, the application of the heat equation

to a manifold may be executed in the same way as the image diffusion used in SIFT.
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The approximation of the scale normalized Laplacian achieved by computing the dif-

ference of successive Gaussian convolutions may be extended to manifolds measured

by LIDAR systems by defining the distance used in the Gaussian weighting to be an

arc length along the surface. The generalization of applying the diffusion equation

to a point sampled surfaces requires an operator which when applied to the surface

data evolves 3D data by mean curvature flow. This operator is implemented in the

form of an umbrella operator with Gaussian weights defined by the geodesic distance.

Just as the diffusion equation is implemented in the SIFT algorithm by computing a

Difference of Gaussian scale space, the diffusion equation can be applied to measured

manifolds by computing a Difference of Geodesic Gaussian scale space.

A. Geodesic Gaussian Convolution for Simultaneous Surface Evolution

and Texture Analysis

Consider the 2D example given in the previous section. Each measurement was

made on the plane, however the inter-point distance was not restricted to be multi-

plies of some constant step. This configuration is not unlike how a scanning LIDAR

measures a fronto-parallel surface. The main difference is that many scanning LIDAR

systems tend to sample in equal angle increments. A scanning LIDAR provides an

array of range values and either a unit vector direction or the azimuth and elevation

angles. The Deltasphere 3000 scanner used in this dissertation provides a list of range

values with the measured azimuth and elevation angles. Also provided in the header

of a LIDAR “frame” of measurements are the minimum and maximum values for the

azimuth and elevation angles as well as a nominal number of measurements in each

row and column. The following equations are used to derive a step dφ, dθ used to

build the measurement array.
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dφ =
φmax − φmin

nrows
(4.21)

dθ =
θmax − θmin

ncols
(4.22)

While the Deltasphere LIDAR utilizes uniform (φ, θ) motions, other sensors may

have more complicated foveal scan patterns that are highly non-uniform in (φ, θ).

Modifications to the methods of this dissertation will be needed to accommodate

such highly non-uniform range measurements. It is expected however that a non-

linear map can be defined between the complex scan patterns and 2D the array

representation used in this dissertation.

The first step in performing a scale space analysis on the Deltasphere LIDAR

measurements is to construct the measurement array from the list of LIDAR measure-

ments in the same form as explained in chapter 3. The measured φ and θ values for

each measurement are mapped to the discrete (u, v) coordinates of the measurement

array defined by:

u = dncols −
φ− φmin

dφ
e (4.23)

v = dnrows −
θ − θmin
dθ

e (4.24)

This mapping also accounts for the scanning directions of the LIDAR system. Once

the (u, v) coordinates of each measurement is determined, the images r(u, v), θ(u, v),

and φ(u, v) as well as the associated textures of the return light intensity RLI(u, v)

are constructed. The final texture value is determined by projecting the measured 3D

point using the colinearity equations of chapter 3 to the image plane of the camera

and computing the associated texture V L(u, v). Once this process is complete the

two texture fields and the 3D measurements are able to be analyzed like the planar
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Fig. 37: Measurement array values of range, azimuth angle, elevation angle, return
light, and visible light textures.

example. Figure 37 shows an example data set representing a textured scan of the

HST model used for proximity operations experiments at the Land Air and Space

Robotics laboratory at Texas A& M university.

Generalizing the scale space analysis to surface data and associated texture fields

requires the geodesic Gaussian operator as demonstrated in the last section. In con-

trast to the Euclidian distance, the geodesic distance is associated with an arc length

along the measured manifold. The same operator used to analyze the planar example

can apply directly to the data shown in figure 37. Applying the geodesic Gaussian

operator in order to evolve the surface data by mean curvature flow requires that

the surface be parameterized as X(u,v) = [x(u, v), y(u, v), z(u, v)]T and the operator

be applied to each coordinate individually. For the two-axis scanning LIDAR model,

Besl and Jain have shown in [14] that the cartesian coordinates are provided by:

x(u, v) =
r(u, v) tan(θ(u, v))

(1 + tan2(θ(u, v)) + tan2(φ(u, v)))0.5
(4.25)

y(u, v) =
r(u, v) tan(φ(u, v))

(1 + tan2(θ(u, v)) + tan2(φ(u, v)))0.5
(4.26)
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z(u, v) =
r(u, v)

(1 + tan2(θ(u, v))2 + tan2(φ(u, v)))0.5
(4.27)

The surface data is evolved by the diffusion equation:

∂

∂t
f(X(u,v), t) + ∆f(X(u,v), t) = 0 (4.28)

which is implemented by successive convolutions of the defined graph Laplacian based

on Geodesic distances such that the surface evolution process of equation 4.5 shown

here as:

f(X(u,v), tk+1) = f(X(u,v), tk)−Hn̂∆t = f(X(u,v), tk)−∆f(X(u,v), tk)∆t

(4.29)

Here the operator ∆f(X(u,v), tk) is approximated using the form of equation 4.9:

∆f(X(u,v), tk) =
1∑

i∈N3
wi

∑
i∈N3

(wif(X(u,v), tk))− f(X(u,v), tk) (4.30)

where N3 represents the elements of the 3-ring neighborhood operated on by the

7x7 graph Laplacian and the weighting wi is the weighing defined by the Gaussian

function:

wi(xi, σ) =
1

2πσ2
e
−DGi
2σ2 (4.31)

The geodesic distance DGi is used here to determine the Gaussian weighting. This is

the necessary step to extend the standard Laplacian smoothing of image processing

approximated by a difference of Gaussian convolutions to the 3D mesh evolution

process of mean curvature flow by means of the graph Laplacian approximation to

the Laplace Beltrami operator. The final parameter used to specify this convolution

process is the traditional scale parameter of the Gaussian function. In 2D image
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processing, the scale parameter is typically set to fit a desired area under the 2D

Gaussian curve to the selected window size. Large windows are capable of representing

operators with larger scale values. In general, scale space analysis allows a bit of

freedom in the selection in the operator radius and the associated scale parameter.

A common choice is to define a parameterized relationship between the two values

for example, let sx denote the operator radius and σ be the scale or time parameter.

The expression s = γ2t where γ is a parameter chosen on the interval [1 : 2] is a

common method for relating the operator scale parameter to the size of the operator.

In [2], Lowe chooses the scale parameter for a 7x7 operator to be defined as σ = 21/k

where k is the number of successive convolutions required before the effective scale

is twice the original value of σ. Regardless of the definition of σ based on the 2D

neighborhood of the operator, it is important to make the actual scale parameter of

the operator based on the 3D neigborhood of the data the operator is being applied

to. Consider the case where the operator is being applied to a fully populated 7x7

area in the measurement array, the figure below demonstrates the variability in inter-

point distance as a function of range. For a planar surface orthogonal to the line

of sight direction, the inter-point distance scales by the range to the center point

of the operator. The nominal expected 3D inter-point distance is given by the arc

length subtended by one pixel at the measured range. The scale parameter is made

adaptable to the surface sampling frequency by scaling it by this expected arc length

value.

σ3D = r(u, v)sxσ2D (4.32)

where sx represents the mean subtended angle sx =
√
dθ2 + dφ2. In this way the

geodesic distance based weighting is normalized with respect to the expected value
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Fig. 38: An example of range based scaling of operator scale.

for the inter-point distance and for the case where the surface is accurately represented

locally by a plane orthogonal to the line of cite of the operator origin, the geodesic

distance achieves a value of 3σ and converges to the same methods used to define

scale for the 2D operators.

With the adaptive geodesic distance weighting scheme defined as above, the scale

space representation of textured LIDAR data can be built by extending the diffu-

sion equation to the vector X(u,v) = [X(u, v), Y (u, v), Z(u, v), RLI(u, v), V L(u, v)]T

which changes the equation of 4.28 to:

∂

∂t
f(X(u,v), t) + ∆f(X(u,v), t) = 0 (4.33)

In this way the data is evolved by five simultaneous diffusion processes

f(X(u,v), tk+1) = f(X(u,v), tk)−Hn̂∆t = f(X(u,v), tk)−∆f(X(u,v), tk)∆t

(4.34)

Once the evolution process has been applied to the textured 3D data, the new values

for range, azimuth, and elevation angles can be determined by:

r(u, v) =
√
x(u, v)2 + y(u, v)2 + z(u, v)2 (4.35)
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θ(u, v) = arctan
x(u, v)

z(u, v)
(4.36)

φ(u, v) = arctan
y(u, v)

z(u, v)
(4.37)

Computing the difference of Gaussian values with respect to the cartesian coordinates

results in the components of the curvature normal:

Hn̂(u, v) =


x(u, v, tk+1)− x(u, v, tk)

y(u, v, tk+1)− y(u, v, tk)

z(u, v, tk+1)− z(u, v, tk)

 (4.38)

Here the vector magnitude ‖Hn̂‖ is the value for the mean curvature H and is the

value used to define the diffusion displacements for the extrema field used to describe

geometric features. We define here the fields used for extrema localization as the

two texture fields RLI(u, v) and V L(u, v), and the magnitude of the 3D diffusion

displacements, or the mean curvature. In this way the features are identified as

extrema in the Difference of Geodesic Gaussian scale space in one field describing the

extrinsic geometry of the surface and two fields representing scalar functions defined

on the surface. The first texture field is weakly correlated to material properties

and can be used also as an indicator of measurement confidence. The texture field

associated with the camera texture provides a means for detecting motion when it is

not geometrically apparent. An example of such a case is a constant curvature surface

such as a sphere or plane which is larger than the field of view of the LIDAR. In such a

case, without texture information, it is impossible to deduce if the surface has moved

with respect to the LIDAR. Figure, 39 shows the result of successive applications

of the geodesic Gaussian convolution to the HST spacecraft model. Notice that

the surface is successively smoother, while at the same time the texture mapped

to the surface has also been blurred. The three fields which represent the diffusion
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Fig. 39: Successive surface evolution by geodesic Gaussian convolution on the HST
model. Top: The back plate of the HST model textured by return light intensity
after 0,2, and 5 convolutions. Bottom: The side view of the surface after 0,2,and 5
convolutions.

displacements computed by the Difference of Geodesic Gaussian operator are shown

in figure 40 for the same scenario for two and five convolutions.

This process represents a rigorous extension of the difference of Gaussian operator

to surface evolution by mean curvature flow for manifolds measured by time of flight

devices. The use of the geodesic Gaussian has been demonstrated as a means to

simultaneously apply the diffusion equation to the surface data as well as the scalar

functions defined on the measured surface. Localizing extrema in the fields associated

with the diffusion displacements, either geometric or textural will identify interest

points associated with corner like features in either the mean curvature of the surface,

or in the texture fields. The next section will explain the process of feature extraction

in the multi-field scale space.

B. Feature Extraction in Multi-Field Data

Once the scale space has been constructed, the image stack analogous to the scale

space analysis of image data contains the 3D information associated with successively
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Fig. 40: Image representations of the diffusion displacements computed by the dif-
ference of geodesic Gaussians. Top: Mean Curvature, Return Light Intensity, and
Visible Light for 2 convolutions. Bottom: The same for 5 convolutions.

smoothed representations of the measured surface as well as the evolution of the scalar

texture fields on the surface. In the multi-resolution methods of image processing, a

pixel in the difference of Gaussian image stack would be compared to its 26 nearest

neighbors, the 8 nearest neighbors of its current level in the stack, and the 9 nearest

neighbors in the levels above and below. If this value was either greater than all of

these values or less than all of these values by a preset threshold, it was flagged as

a tentative location for a scale space extrema. This approach known as non-maxima

suppression quickly reduces the image stack to on the order of 103 locations in an

image which have associated with them their image space locations (x, y) as well as

their scale σ. Consider just one level of a scale space. If a pixel is greater than or less

than all of its 8 nearest neighbors, and no other level existed, it would be called an

extrema. Furthermore consider the case of a LIDAR measuring a symmetric curved

surface variation extruded from a planar surface. Figure 41 illustrates this scenario.

In this case, the location associated with a maximum or minimum in mean cur-

vature is displaced along the surface normal direction just like every other point and

usually continues to be a maximum until the convolution smooths it out. In our
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Fig. 41: A persistent geometric feature represented as a surface bump measured by a
LIDAR system.

approach to non-maxima suppression, each measurement in the scale space is asso-

ciated with its immediate neighborhood at its current level in the scale space. The

neighborhood is defined however as a function of the current 2D scale value. Just

as in the Scale Invariant Feature Transform, we define the 2D scale parameter to

be σ = 2
1
k where k is the number of successive convolutions desired before the ef-

fective scale is double the original value for σ. Therefore, the neighborhood is the

local 15x15 region for the first k convolutions since the operator diameter is used

to define the radius of the non-maxima suppression neighborhood. For subsequent

convolutions, the neighborhood is defined by the effective operator radius for the

current octave, so for the next two octaves the neighborhood is 29x29, and 43x43

respectively. This definition of neighborhood sampling results in detected extrema

which are the most significant with respect to the operator domain size. For an ar-

ray location DoG(u, v, w, σ) where w indicates the field of the difference of Gaussian
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function, if a position (u, v) is a maximum, or minimum compared to all members of

its neighborhood, over multiple consecutive levels of the scale space σ, that location is

said to contain a persistent feature. Since the particular blurring process is intended

to minimize tangential drift of points on an evolved surface, extrema commonly exist

in the same location in the range image over several scales. Therefore, persistence is a

strong classifier, or criteria for feature confidence. A feature which exists over several

scales is associated with a scale range as opposed to a single scale. As long as the scale

ranges of features overlap, they are considered admissible candidates for a matching

procedure which compares their associated descriptors and perform hypothesis tests

to solve the feature correspondence problem. Once a location in the multi-field scale

space (u, v, w, σ) or a persistent set of locations (u, v, w, σmin : σmax) is identified as

being an interest point, a key-point is generated which contains the object space 3D

coordinates, the minimum and maximum 2D and 3D scales, the field the interest

point was localized in, and a strength value which indicates a combination of the

relative magnitude of the diffusion displacement with respect to its neighbors. The

2D σ values are useful for visualization purposes on the 2D representations of the

scale space data. The necessary values for characterizing an interest point in this

framework are [x, y, z, σ3D
min, σ

3D
max, Fi, S]. Fi denotes the field from which the keypoint

was extracted. An index of 1 indicates the mean curvature values associated with the

geometry and the return light and visible light intensities are associated with index

values of 2 and 3 respectively. Finally, the strength value, or confidence indicator,

is a function based on the cornerness test of [2] and the magnitude of the diffusion

displacement associated with the key-point.

S =
detHess

trace2Hess
(σHn̂(u, v))2 (4.39)
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Fig. 42: An example of multi-field multi-scale feature extraction on the HST model.
Left: The range field with curvature based features. Middle: The return light intensity
field with texture features. Right: The visible light field associated with camera
texture. The radius of the identified interest points indicates 2D feature scale.

where Hess indicates the local hessian matrix of the difference of Gaussian function,

and Hn̂(u, v) is the displacement value at the (u, v, w, σ) location in the difference

of Gaussian scale space. Only interest points which satisfy the constraint placed on

the eigenvalue ratio of the difference of Gaussian values introduced in [2] as well as

a constraint on the minimum magnitude diffusion displacement are kept as interest

points and fully defined. An example of multi-field multi-scale interest point detection

is shown in figure 42 for the HST model.

Each key-point is associated with a descriptor similar to a spin-image [6,7] which

encodes the geometric information of the surface as well as the texture information

from each intensity field. The generation of this descriptor is the subject of the next

chapter.
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CHAPTER V

MULTI-FIELD DIFFUSION FLOW SIGNATURES FOR ROBUST 3D

REGISTRATION

Once a set of scale space extrema are detected in each field of the data (e.g.

the Curvature Normal field representation of the measured 3D geometry and the

two associated scalar fields representing the measured visible light and return light

intensity) , the next crucial process is to associate with each location a fingerprint

which can be reliably associated with features detected in a subsequent observation of

a surface. It is important that whatever descriptor that is used to associate features

be robust to relative motion induced transformations and the resulting changes in the

sampling of the surface. Furthermore, it is also important for the descriptor to be

flexible and allow for good matching performance in the presence of local variations in

texture. The descriptor developed by Lowe [2] is robust to monotonic changes in local

image intensity, but the descriptor is defined based on uniform sampling in the image

space. One reason for the failure of this descriptor to accurately describe 3D shape

is the lack of 3D information in the descriptor itself. This is to be expected since

it was originally designed for image retrieval and not close range object inspection.

The Spin Image technique of Johnson [6, 7] is one of the more useful point based

descriptors used for registering 3D surfaces. As explained in chapter 2, a spin image

descriptor is generated by first defining an oriented point coordinate system at the

point of interest. This is done by determining the surface normal direction and then

computing the in plane radial distance, α, and the out of plane distance, β, for each

point in the data set or neighborhood.
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α =
√
‖x− p‖2 − (n · (x− p))2 (5.1)

β = n · (x− p) (5.2)

The performance of the Spin Image technique is sensitive to a number of spin image

generation parameters. The first important parameter is the bin size (∆α,∆β) which

is used to define the storage size of the spin image descriptor. It is common to choose

∆α = ∆β but this is not required. Along with the Spin Image width, W , which

is defined in terms of the maximum number of steps ∆α,∆β, the feature support

distances Ds,α, Ds,β can be defined as in equation 5.3. Once the image size, and

bin size parameters are selected, it is easy to visualize the local sampling geometry

used to populate the descriptor. Figure 43 illustrates the local cylindrical sampling

geometry.

Ds,α = W∆α (5.3)

Ds,β = W∆β (5.4)

An additional criteria, the support angle As defines the minimum allowable deviation

in surface normal a neighboring point is allowed to have in order to contribute to

the descriptor. It is implemented as a threshold on the inner product of the feature

point surface normal and the neighboring points surface normal acos(na, nb) ≤ As.

For all admissible points inside of the support distance from the feature, the discrete

locations in the Spin Image array are given by:

i = b
W
2
− β

∆β

c (5.5)

j = b α
∆α

c (5.6)
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Fig. 43: The local sampling geometry associated with 5 steps ∆α and ± 2 steps ∆β

For a simple implementation of the above process, the (i, j) location in the spin image

array is incremented by 1 for every point in the neighborhood. In order to account

for noise in the point locations, the contribution of each point in the neighborhood

is spread out over the local 2x2 element neighborhood in the spin image array by

bilinear interpolation. The interpolation weights are determined by:

a = α− i∆α (5.7)

b = β − j∆β (5.8)

Finally, the contributions to each of the 4 local array elements are given by:

SI(i, j) = (1− a)(1− b) (5.9)

SI(i, j + 1) = (1− a)(b) (5.10)

SI(i+ 1, j) = (a)(1− b) (5.11)
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SI(i+ 1, j + 1) = ab (5.12)

Johnson [6] recommends selecting the bin size to be between 1 and 2 times the size of

the mesh resolution. A significant effort is expended regularizing the mesh built for

a set of 3D measurements before the spin image technique is applied. Given that the

inter-point distance has been regularized, the spin image representation is consistent

for every point in the mesh. This process is an important one because it ensures that

the sampling density in a given area about an arbitrary point on a surface mesh is the

same, giving the descriptors the best chance of being populated in a similar way. Once

spin images are generated for every point in a set of measurements, or for extracted

scale space extrema locations, they can be compared by means of normalized cross

correlation. The linear correlation coefficient between spin image A and the spin

image of a candidate correspondence B is given by:

R(A,B) =
N
∑
AiBi −

∑
Ai
∑
Bi√

(N
∑
A2
i − (

∑
Ai)2)(N

∑
B2
i − (

∑
Bi)2)

(5.13)

Here, N is the number of pixels in the spin image and the index i is a single index

which references all pixels in the spin image from 1 to N . The output of this sim-

ilarity measure is a value between −1 and 1 which indicates if the spin images are

completely anti-correlated, or perfectly correlated respectively. Since the spin image

was introduced in 1997, there have been several variants of the technique includ-

ing mult-scale, and textured spin images [8, 9]. Brusco et. al. [8] in applying their

textured spin image technique to a globe, or textured sphere demonstrated that for

some objects, geometric information alone can be insufficient for registration. The

spin image was enhanced with the texture data by increasing the dimension of the

spin image to include a coarse sampling of the gray scale or color data associated with

each point. For simple geometric shapes, such as a plane or sphere, if the surface is
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Fig. 44: Spin Image population for a uniform distribution of points on a planar
surface.

sampled in consistent steps in the object space, the geometric information encoded

by a spin image with any set of generation parameters is not unique, and will not

guarantee effective matching performance. For a plane, all samples mapped to the

spin image will fall on the α axis, and the pixel values will tend to increase with α.

For this reason, as spin image support distances become smaller, their uniqueness

decreases making the possibility of frequent mismatching more likely. In his disserta-

tion, Johnson proposes using a statistical analysis of the correlation coefficients of the

set of all possible correspondences between the points on the model and the points

on the scene, or current set of measurements. Extreme outliers are those whose cor-

relation scores are at least a distance of 3fs from the population mean. The distance

fs in this case is the distance between the upper and lower fourths of the population.

In the case of a sphere or plane however, there are no outliers. Another way for spin

images to fail is related to object space symmetry. Since spin images are transla-

tion and rotation invariant, they, like all other point based descriptors are subject to

confusion in cases of repeating structures. Since spin images can also be global de-



107

scriptors by selecting a very large support distance, global asymmetries can be used

to distinguish similar local structures from each other, however, global descriptors

can see other difficulties in cases where subsequent data sets represent partial scans

of an object. Finally, the construction of a spin image is sensitive to the estimate of

the oriented point surface normal. For this reason, the process of mesh regularization

is crucial to ensure that every point has the best chance of a repeatable estimate of

the local surface normal. For the case where meshes or point distributions are not

regularized, the uncertainty in the estimated direction of the surface normal can be

significant. This can be problematic when attempting to apply spin-image descriptors

on the fly in proximity operations experiments based on LIDAR data. The proposed

point based feature description technique, the Multi-Field Diffusion Flow Signature

is inspired by the spin image technique, but also exhibits the following qualities which

make it useful for a data-driven solution to the 3D-point correspondence problem:

1. No mesh generation or regularization required for descriptor generation.

2. Zero dependence on feature surface normal estimates which can be subject to

uncertainty.

3. Enhanced texture information to treat local surface variations and texture vari-

ations in the same framework based on the diffusion flow generated during scale

space feature detection.

A. Multi-Field Diffusion Flow Signatures

Multi-Field Diffusion Flow Signatures are point based descriptors which encode

the local information of multi-field scale space extrema. Like spin images, they can be

defined at any point in a set of measurements, but it is most effective to build them



108

in order to describe the extracted feature points resulting from the process described

in chapter 4. Also, much like spin images, a single field Diffusion Flow Signature

is a two dimensional array which encodes a radial distance and a normalized vector

which represents the diffusion flow velocity of each point in a neighborhood around

a feature. In order to avoid the sensitivity of the descriptor population to the local

surface normal estimate, and to use the values determined by applying the diffusion

equation to the surface and its accompanying textures directly, the values for α and

β are given by:

α =
√

(Xj −Xi)2 + (Yj − Yi)2 + (Zj − Zi)2 (5.14)

βk =
DoG(uj, vj, ki)

argmax(DoGG(uN , vN , ki))
(5.15)

Notice that as opposed to the parameters used to define spin images that there is no

dependence on an estimate of the local surface normal. The parameter α is simply the

euclidian distance of between the ith surface point and its jth neighbor. The normal-

ized diffusion flow velocity is reported for each of the k fields by the parameter β. For

the LIDAR-imagery fusion problems discussed here k ranges from 1 to 3 where 1 de-

notes the 3D geometry field based on the curvature normal and the remaining indices

describe the scalar texture fields . In this way, the x, y, z coordinates refer to the mea-

sured 3D cartesian coordinates of the measured surface points and the coordinates

(uj, vj) refer to the image space coordinates of the jth neighbor in the neighborhood

uN , vN . Furthermore, the Difference of Geodesic Gaussian values DoGG(uj, vj, ki),

are the values of the diffusion flow velocities or the diffusion displacements caused

by applying the geodesic Gaussian approximation to the Laplace-Beltrami operator

at the surface point associated with the data located at (uj, vj). In this case, the

local neighborhood is defined to be a spherical neighborhood around the 3D point
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Fig. 45: The 2D and 3D Multi-Field Diffusion Flow Signature Geometry.

of interest. It is derived by first defining an nxn neighborhood about the 2D pixel

location of the extracted feature point where n = 2r + 1 and r, is the neighborhood

radius in image space. Therefore we have uN = ui− r : ui+ r and vN = vi− r : vi+ r.

The geometry is shown in Figure 45.

The 2D neighborhood is used to define an array of candidate nearest neighbors.

The 3D neighborhood is defined by a maximum allowable radial distance which is

bounded by one half the scaled diameter of the 2D neighborhood. The 2D neighbor-

hood diameter n is scaled by the product of the magnitude of the range to the feature

point and the subtended angle of a pixel in the range image. The 3D neighborhood is

subdivided into m spherical shells such that the radial bins represent constant steps

in radius from the feature point. No distinction is made with regard to a preference

in surface normal direction. The second coordinate is computed for each field in the

data set. The diffusion flow value for each field, is stored in the Difference of Geodesic

Gaussian scale space at each pixel in the neighborhood. In each field, the nxn neigh-
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borhood of each Difference of Geodesic Gaussian extrema is normalized by dividing

each pixel member by the value of the element with largest magnitude. This results

in an array of values between −1 and 1. For the particular field from which the scale

space extrema is extracted, all members of the neighborhood have values which are a

fraction of the features diffusion flow value, however this is not necessarily the case in

the other fields. The bounded set of values for each field are sub-divided into n bins

exactly as in the process defined by the spin image technique. A bin size is defined

and the radial, α, and the diffusion flow, [β1, β2, β3] values specify the Diffusion Flow

Signature coordinates:

ik = b
W
2
− βk

∆βk

c (5.16)

jk = b α
∆α

c (5.17)

Here k is an index indicating the field. In the examples of this dissertation k takes

on the values 1 : 3 which indicate the 3D diffusion flow based on surface geometry,

and scalar diffusion flow based on the Return Light Intensity and Visible Light fields

respectively. The resulting descriptor can be visualized as three 2D arrays of equiv-

alent size which integrate the local diffusion flow geometry as a function of radial

distance from the center of the feature point. Figure 46 illustrates the three sets

of Diffusion Flow Signature coordinates and the resulting arrays after applying the

bilinear interpolation process of equations 5.9 through 5.12.

The Diffusion Flow Signature associated with the geometric information of the

surface is perhaps the easiest to visualize. Consider a surface at two different stages of

a diffusion process. Recall that each point on the surface is displaced by applying an

approximation to the Laplace-Beltrami operator which implements surface evolution

by mean curvature flow. Figure 47 shows the surface at times tk and tk+1. Each point
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Fig. 46: Top: Diffusion Flow Signature Coordinates for an arbitrary feature with three
fields. Bottom: The corresponding 2D arrays comprising the Multi-Field Diffusion
Flow Signature.

on the surface is displaced in the direction opposite of its surface normal vector a

magnitude equal to its local mean curvature value. These vectors can be defined by

taking the difference in position d = ~rk+1−~rk. The magnitude of d is the magnitude of

the diffusion flow vector d = ‖Hn̂‖ and is the value reported in each pixel of the first

field of the Difference of Geodesic Gaussian Scale Space. For a constant curvature

surface, all entries to the diffusion flow signature will reside in a row. This represents

a limited information situation, and in the case of a plane, the row will be the center

row exactly like a spin image.

For the scalar fields associated with each texture the diffusion flow values demon-

strate the derivative of the texture information with respect to scale. For a feature

which has the same Difference of Geodesic Gaussian value for all elements in the

descriptor neighborhood, the normalized value will be the same for all pixels, and the

top row of the Diffusion Flow Signature for that field will be populated exactly like

the center row of a spin image for a plane. If the actual texture value is the same for
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Fig. 47: Surface evolution encoded in a Diffusion Flow Signatures. The signature coor-
dinates describe the euclidian distance between a feature point center and neighboring
measurements along with the normalized magnitude of the diffusion flow vectors.

all elements, the DOGG value will be zero, and the center row of the Diffusion Flow

Signature for that field will be populated like a planar spin image. In the case of a

constant valued plane, all 2D arrays in the Diffusion Flow Signature contain entries

in the center row which is an indication of a zero information state. This behavior

provides a simple means to evaluate candidate descriptors to determine if they con-

tain sufficient information to be unique enough to have a high probability of resulting

in a correct correspondence.

By using the information from multiple fields, more information can be conveyed

using fewer points in the descriptor, which was also the conclusion in the work of

[8]. In the case of a consistently textured plane, this descriptor provides no unique

information just like spin images. However, for a textured plane, Diffusion Flow

Signatures encode the observable variations which might make a location in a texture
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3D data set unique. Since Diffusion Flow Signatures are only constructed at scale

space extrema, which are required to be well defined maxima or minima in at least

one field, the computed descriptors are never in a configuration which conveys no

information. This allows features to be extracted and described on bland surfaces

which contain unique local curvature variations, as well as zero information geometric

structures which contain unique variations in texture. This fact, combined with

the feature extraction process described in the previous chapter is unique to the

framework of this dissertation and results in the robust extraction and description of

keypoints which provide the best chance of 3D feature tracking and relative motion

estimation in spacecraft proximity operations. The next section details the processes

of matching Diffusion Flow Signatures and give specific demonstrations of the type of

failure modes that can always occur when using local, point based descriptors along

with the various tuning parameters available to overcome the various challenges in

feature detection, description, and matching in spacecraft proximity operations.

B. Matching Diffusion Flow Signatures: Approach and Remaining Chal-

lenges

Due to the capacity of Diffusion Flow Signatures to describe multi-field data,

the matching process can be very versatile. In some applications, it may be sufficient

to match only the geometric field of the descriptor, in others it may be more impor-

tant to match the texture information. Independent of the criteria used to define an

acceptable match, the approach to evaluating candidate matches involves the compu-

tation of the linear correlation coefficient of equation 5.13 for each field. Computing

multiple correlation coefficients for a candidate match can allow for a higher degree

of discrimination between otherwise similar looking features. The addition of field
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information can be the subtle difference between features experiencing several many

to one mappings, and sets of unique one to one correspondences. What is desired is

a method to determine to what degree each field contributes to the uniqueness of a

feature, and to define a weighting which reflects the relative importance of each fields

contribution to the descriptor. In the previous section, an intuitive interpretation for

each descriptor field was described which demonstrated that poor feature locations

would result in descriptors with entries in only a small number of descriptor elements.

A field with unique information results in an array that has most of its elements pop-

ulated. For this reason we define a weighting which reflects the overall fill factor of

each field in each descriptor involved in a correspondence evaluation. The fill factor γ

is computed by taking the ratio of the number of non-zero bins of the Diffusion Flow

Signature to the total number of bins in the array.

γk =

∑m
i=1

∑n
j=1DFS(i, j, k) > 0

mn
(5.18)

The fill factor γk is computed for each of the k fields in the descriptor for a feature

and its candidate match. The overall similarity score is then computed by defining

the weighted average:

Ξ =
∑
k

wkRk (5.19)

Here, Rk is the linear correlation coefficient computed for the kth field of the descrip-

tors and the weights wk are defined as:

wk =
γi,kγj,k∑
k γi,kγj,k

(5.20)

The individual fill factor values are bounded by [0, 1], therefore the product of the fill

factors for the ith and jth feature given by γi,kγj,k is also bounded on the same interval.
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For the case where all fields have 100% fill factor, the weighted average of equation

5.19 results in an equal weighting between all linear correlation coefficients. The fill

factor values are related to the variance of the local diffusion flow displacements in

that for bland surfaces (flat plane or constant curvature) or textures, wk reports a

small value, and for large curvature variations or texture variations reports a large

value. In this way, features which contain more unique information in one field than

the others, the weighting reflects the relative importance of each fields contribution

to the descriptor. Comparing features in this way has been shown to very rapidly

eliminates potential correspondences which do not have sufficient similarity in well

defined fields. Additionally, this matching process can also penalize feature matches

which have poorly defined descriptors by requiring individual weights to be above a

threshold before they may participate in the weighted average.

Figure 48 demonstrates the matching performance of the described method, fea-

ture sets are extracted for three measurement fields on the HST model in two different

scans taken at different relative poses. The two lists of features are first sorted in

descending order with respect to their 3D scale. Features are only given a score if

they were localized in the same field. Of the 101 and 107 features extracted from

each scene, only 35 satisfied the necessary conditions of the matching process which

include thresholds on each individual correlation coefficient and weighting value. The

sufficiency condition for candidate feature matches is provided by the residuals of the

Optimal Linear Attitude and Translation Estimation algorithm explained in the next

section. Given a set of features which contain a majority of correct correspondences

which are accurately localized, the rigorously linear motion estimation process pro-

vides accurate relative motion estimates, as well as residual information which is a

direct statistical characterization of the localization error. These residuals are used

as a post-filter to remove any correspondences which are poorly localized either due
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Fig. 48: 35 Matched features from approximately 100 extracted features in two scenes
displaced by a 4 degree rotation of the HST spacecraft model.

Fig. 49: N= 24 remaining feature points following OLTAE Residual Post-Filtering

to mismatches or poor accuracy caused by, local noise or sampling issues, repeat-

ing structures, or symmetry. Following the OLTAE residuals based post-filtering,

the remaining matches provide an accurately localized set of correct correspondences

illustrated by Figure 49.

The following examples demonstrate the common types of problems that exist

for all 3D registration techniques based on local and sometimes even global, feature

descriptors and motivate the need for effective statistical characterization of localiza-

tion accuracy to provide the sufficient condition for features to truly be considered

correct correspondences. Given that the extracted point based features are associ-

ated with local descriptors which are intended to be translation, rotation, and scale
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invariant, any sub-structure or data subset which is displaced from the feature being

described, but sufficiently similar to the feature of interest has the potential of scoring

high in a similarity comparison, and therefore may be the cause of a mismatch. The

easiest way to visualize this problem is to think of the global vs. local nature of a

descriptor as an aperture problem. Consider the arrangement of white spheres used

for the relative calibration between the camera and LIDAR shown in figure 50. If a

descriptor is built based on a neighborhood of local data that is not much larger than

the radius of the calibration spheres, there is not sufficient information to tell one

from the other with great certainty. With a larger area for the descriptor however,

it can be possible to distinguish the objects. Typically descriptor neighborhoods are

either of a fixed size or include all available data. Since in most applications a single

LIDAR scan is only a partial scan of the forward facing surface of an observed object,

even “global” descriptors are somewhat local.

Consider now a cylindrical protrusion from a plane, a common structure on

the HST model used for testing in the experiments of this dissertation. Figure 51

demonstrates that an isolated local feature identified on a rotationally symmetric

structure can match an infinite number of locations on the same structure, or on any

other similar structure.

Again, growing the neighborhood of the descriptor can help resolve ambigui-

ties, but does not make this impossible. Features are caused by structure either in

the measured surface, or in the texture. In both cases, this structure can display

global symmetries, both rotation, and reflective, and for similar features that are

sufficiently close together, even expanding the locality of the descriptor to include all

measurements may not necessarily disambiguate even the best constructed descrip-

tors. Couple this fact with inaccurate measurements, variations in the local surface

sampling frequency, and other sources for sensor noise or physical sources for varia-
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Fig. 50: Example feature matching for descriptors based on two different size locali-
ties. The smaller neighborhood feature does not have sufficient data to discriminate
between the candidate locations for its match.

Fig. 51: Point based features extracted from a rotationally symmetric structure. High
potential for ambiguity is demonstrated by comparing two candidate sections of the
arc representing the locus of points representing curvature maxima and maximum
texture gradients. It is virtually impossible to tell where the extracted local features
were taken from.
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tions in observed texture, and it can potentially be very difficult to guarantee that

any feature descriptor pair should have a match in a subsequent observation. Even

so, some features persist and can be uniquely described, and at least for a finite set of

transformations and lighting conditions, can be accurately matched. Sometimes, in

the case of the rotational symmetry example explained above, a very similar appear-

ing extrema on a structure may be matched, and be “reasonably” close in proximity

to the to its future observations. Features of this type can be difficult to localize

with high precision, but, depending on the structure being measured, they may be

all that is available. For this reason, it is important to be able to characterize the

localization accuracy and probability of accurate correspondence on the fly as part

of the motion estimation process. This is precisely the task performed by utilizing

the Optimal Linear Attitude and Translation Estimator as the final filtering process

for statistical analysis of residual errors. Since multiple views of features on the same

rigid body must be mapped with only 6 free parameters (namely the sensor’s relative

linear and angular displacement coordinates), redundancy can be exploited to accept

or reject feature match hypotheses.

C. OLTAE: The Optimal Linear Attitude and Translation Estimator

The Optimal Linear Attitude and Translation Estimator was developed from the

Optimal Linear Attitude Estimator [10] and is a rigorous extension of the techniques

presented in by Mortari, Rojas, and Junkins [10] to include the estimation of transla-

tion. Given a set of multi-field, multi-scale 3D to 3D correspondences, the remaining

task is to estimate the transformation which maps the set of features at time t to their

correspondences at time t+ ∆t. Determining the transformation requires solving for

the parameters involved in the six degree of freedom relative motion solution between
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the LIDAR and the measured scene. The problem may be posed:

~x∗i = R~xi + ~t (5.21)

The common thread between most approaches to solve for the rotation matrix R and

translation vector ~t involves a parameterization which requires a linearized approxi-

mation of the rotation matrix for small angles. For example R may be parameterized

by Euler angles by:

R(φ, θ, ψ) =


1 0 0

0 cos(ψ) sin(ψ)

0 −sin(ψ) cos(ψ)




cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)




cos(φ) sin(φ) 0

−sin(φ) cos(φ) 0

0 0 1


(5.22)

Since the introduction of orientation coordinates to parameterize R leads to Eqs. 5.22

being nonlinear in the rotation coordinates (e.g. φ, θ, ψ), the estimation of [~t, φ, θ, ψ]

is inherently nonlinear. A more effective, and strictly linear approach involves the

Cayley Transform. Recall that a rotation matrix may be parameterized by:

R = [I + q̃]−1[I − q̃] (5.23)

Here q̃ represents the matrix form of the cross product operator and the vector ~q is

the Gibb’s vector.

q̃ = [q×] =


0 q3 −q2

−q3 0 q1

q2 −q1 0

 (5.24)
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The components of the Gibb’s vector are given in terms of the principle axis and

angle by:

~q = tan(
φ

2
)e (5.25)

Substituting equation 5.23 into 5.21 and pre-multiplying by [I + q̃] we obtain:

[I + q̃]~x∗i = [I − q̃]~xi + [I + q̃]~t (5.26)

Computing the products on the right and left hand sides we can write the above

expression as a function of the sum and difference of the associated 3D coordinates.

~x∗i + [q̃]~x∗i = ~xi − [q̃]~xi + [I + q̃]~t (5.27)

In order to write the above equation linearly in terms of the Gibb’s vector components

we use the property [a×]b = −[b×]a giving:

~x∗i − [x̃∗i ]~q = ~xi + [x̃i]~q + [I + q̃]~t (5.28)

~x∗i − ~xi = [x̃∗i ]~q + [x̃i]~q + [I + q̃]~t (5.29)

~x∗i − ~xi = [ ˜x∗i + xi]~q + ~t∗ (5.30)

where ~t∗ = [I + q̃]~t are a set of pseudo-translation coordinates which along with

the components of the Gibb’s vector are linearly contained. Once the values for

the Gibb’s vector coordinates and the values for ~t∗ are determined by solving the

rigorously linear least squares process, the true translation coordinates can be solved

for by ~t = [I + q̃]−1~t∗. The standard linear least squares ỹ = Hx̃ is seen by writing

the set of linear equations of 5.30 in the following form:
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~xidiff = [x̃sum
i, I3x3]

 ~q

~t∗

 (5.31)

where the H matrix is 3N × 6 and the x̂ vector is 6 × 1. The residuals of this least

squares process are only a function of measurement or localization error, and not

associated with errors due to linearization or truncation. They are given by ỹ −Hx̂

or xdiff − x̂diff . An important element to our approach for least squares registration

involves the use of individual residual values as a post filter for removing poorly

localized or incorrectly matched features. A “residual radius” metric is defined which

computes the euclidian distance between a feature point and its motion compensated

match location.

D =
√

[ỹi −Hx̂i]T [ỹi −Hx̂i] (5.32)

Here the distance is computed over the three components of a single measurement

from the set of N feature points. Computing this value for each feature match assigns

a quality metric for each feature. The smaller the value D the better localized the

feature. Figure 52 demonstrates this metric for an accurately localized match, and a

common mismatch.

In order for the linear least squares estimation of the relative motion observed

by matching corresponding 3D to 3D feature points to be accurate, at least three

well localized points must be correctly matched. In many well textured scenes it

may be possible to match on the order of hundreds of feature points, resulting in a

least squares process that is heavily over-determined. In such a case, the localization

error of each individual correspondence is less important, however, the removal of

high residual error features does result in a better OLTAE motion estimate when

recomputing the registration. Analysis of residual statistics permits false matches to
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Fig. 52: Feature Fitness criteria based on OLTAE residuals. Top: A good match with
a low OLTAE residual score. Bottom: A mismatch with a high residual score, scores
above a threshold cause feature matches to be removed.

be easily defeated and deleted, and the statistics of the remaining feature residuals

gives local insight into the accuracy of the model. For the case study used in this

dissertation, the structures which cause features are in symmetric and repeating pat-

terns. There are also few reliable structures to work with on the object while the

rest of the data represents either bland surfaces, inconsistent surface representation

due to local variations in lighting, or high frequency, repeating, and noisy data in the

case of the solar panels. In a situation with all of these common sources for error and

mismatch, it is critical to apply the OLTAE algorithm to a set of correspondences

where the majority are well matched and localized. In some instances, as few as 10

to 20 reliable features are able to be extracted and matched, making each individual

accuracy even more important. Such a scenario calls for an approach which balances

required accuracy of each individual correspondence, with the degree to which the
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least squares estimate is over determined.

The approach used in this dissertation defines a minimum number of required

correspondences to be used in the OLTAE algorithm and iteratively increases the

required localization error from a D value of 1 until the minimum number of points

is exceeded. It is conceivable that for some objects, for instance, a bland sphere,

too few features are able to be extracted in order to obtain an accurate six degree of

freedom solution. On the other hand, other objects may exhibit redundant significant

information in their geometry or in texture resulting in accurate solutions based on

a high number of well localized correspondences. The degree to which these corre-

spondences are achievable over large pose differences depends on the local sampling,

and the consistency of the texture information. Since the appearance of surface fea-

tures depend on lighting conditions, material properties, relative pose, and sampling

effects, potential feature matches can be lost due to a number of reasons. Figures

53 and 54 demonstrate pre and post residual filtering matching results and show the

feature sets used to estimate the relative motion, and the resulting aligned surfaces

respectively.

In addition to using the individual residuals of the OLTAE least squares relative

motion estimate, the covariance values may be computed and used to quantify the

uncertainty in the estimated parameters. Figure 55 shows the magnitude of the

covariance values for each element of the estimated Gibb’s vectors and translation

vectors for each of 28 LIDAR scans of the HST model taken while rotating the model

in 2 deg increments on a robotic platform.

As a method of determining the magnitude of the error in the motion estimate,

a corrective transformation was computed using the Iterative Closest Point algo-

rithm [33], and the magnitude of the associated Gibb’s vector components and trans-

lation vector values. Figure 56 shows the magnitude of the components of the ICP
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Fig. 53: Top: Matched Features used to estimate the alignment of figure 48a. Bot-
tom: Feature matches reduced by OLTAE residual post filtering used to estimate the
alignment of figure 48b.

Fig. 54: Left: Resulting OLTAE surface alignment from unassisted feature matching.
Right: Resulting OLTAE alignment using residual based post filtering.
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Fig. 55: Covariance for Gibb’s vector and translation vector components estimated
by the OLTAE algorithm for 28 consecutive relative motion estimates.

correction parameters and the 3σ covariance bounds. The large covariance values for

the estimated parameters for scenes 7, 11, and 26 indicate a decrease in the accuracy

of the model for those scenes by a factor of 2 to 3. These scenes would be candidates

for additional analysis, or could be removed altogether from the resulting composite

model.

The next chapter will describe the interactive MFMSTracker software devel-

oped in Matlab to implement the framework of this dissertation. The end to end

process of proximal body observation, multi-resolution feature extraction, descrip-

tion, matching, and robust relative motion estimation is demonstrated along with

built-in tracker performance evaluations with respect to sensor noise, artificial light-

ing variations, and re-sampling effects. Relative motion tracking based on Multi-Field

Multi-Scale features and Diffusion Flow Signatures is then evaluated in Chapter 7 for

a series of simple relative motions including out of plane rotation, as well as variations
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Fig. 56: Iterative Closest Point correction values for the Gibb’s vector and translation
vector components with 3σ covariance bounds for 28 consecutive relative motion
estimates.

in lighting, object space sampling, and sensor noise.
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CHAPTER VI

MFMS TRACKER: MULTI-RESOLUTION ANALYSIS OF

MULTI-FIELD DATA FOR PROXIMITY OPERATIONS

A. MFMSTracker Software

The Multi-Field Multi-Scale Tracker (MFMSTracker) software package is a Graph-

ical User Interface (GUI) application developed in the Matlab environment for 2D-

3D data fusion problems. It enables the simultaneous mapping and estimation of

relative motion between a LIDAR-Camera fusion system and an observed proximal

body. MFMSTracker constructs a scale space based on geodesic Gaussian convolu-

tion as defined in chapter 4 of this dissertation. Scale space extrema are identified

and associated with Multi-Field Multi-Scale features which can be stored for use by

a subsequent feature matching, motion estimation, and model registration process.

The key components of the MFMSTracker software are:

1. .rtpi LIDAR file Reader and image input functionality

2. Camera to LIDAR Extrinsic Calibration

3. 2D and 3D Multi-Field Data Display

4. Multi-Field Scale Space Construction by Geodesic Gaussian Convolution

5. Feature Extraction and Description by Multi-Field Diffusion Flow Signatures

6. Feature matching, display, and annotation

7. Control over Required Feature Quality and Number of Features
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Fig. 57: The MFMSTracker GUI environment.

8. Data/Process Modification with respect to Noise, Lighting, Rotation, Sampling

9. Motion Estimation

10. Model Registration and Merging

Figure 57 displays the starting screen that appears when initializing the MFM-

STracker software. The GUI is designed to demonstrate pairwise registration of subse-

quent observations of a proximal body by a calibrated Camera-LIDAR fusion system.

The Camera-LIDAR fusion system used in this dissertation consists of the DeltaS-

phere3000 scanner and a single 1024x768 imager contained in the BumbleBee XB3

stereo camera setup from Point Grey Research. Assuming that both the LIDAR and

the camera are individually intrinsically calibrated, an extrinsic calibration can be

obtained by the methods described in chapter 3 by clicking the “calibrate” button.

A secondary GUI interface is presented which is the internal calibration routine

to MFMSTracker. On this screen, the .rtpi filenames for the calibration scene and

associated camera image file must be input along with the number of calibration

objects, for example the 6 calibration spheres used in the example in chapter 3. The
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Fig. 58: The MFMSTracker Calibration Routine.

Fig. 59: The MFMSCalibrate calibration process.

user may also specify a radius in millimeters for the calibration object, as well as

the expected image radius in pixels. Finally the user may also change the default

values used for describing the camera intrinsic parameters necessary for performing

the extrinsic calibration.

As an alternative to using calibration objects, a manual calibration may be per-

formed by interactively clicking user associated structures to establish correspondence

and localization on the measured object, setting the object radius to zero, and image

radius in pixels to a small neighborhood e.g. 3x3 pixels. Once the files are specified,
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Fig. 60: Resulting calibration performed manually for the HST model.

the “Load” button is pressed to read in the 2D and 3D data. When the indicator

bar reads “Done”, the “Calibrate” button may be pressed to begin the interactive,

manual calibration process. For this process, the user must specify the number of

point to point correspondences to be used in the calibration and enter this number

into the “# of Objects” box. Once the “Calibrate” button is pressed, the user is pre-

sented a sequence of alternating images representing the LIDAR return light intensity

field, and the camera image. The user then clicks the locations for each individual

correspondence, when all of the n correspondences are identified, the calibration is

computed, and the extrinsic parameters are reported in the “R lidar to cam” and “T

lidar to cam” elements. Figure 60 demonstrates the identification of correspondences,

along with a resulting calibration.
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The calibration parameters can then be saved as an mat-file and entered in the

MFMSTracker Calibration File Box for experiments which use a single calibration

for several relative motions of an observed object. Once a calibration has been de-

termined, all subsequent scans and images taken in that configuration are aligned by

the same file. The next step is to specify the two scan files and associated images

to be registered. Once the file names are entered, the “Build SS” button is pressed

to generated the scale spaces of the two textured 3D data sets. The software then

generates a scale space based on the input values for the number of octaves and num-

ber of steps per octave specified. The default values are three octaves at 4 steps per

octave. This generates a scale space with 13 levels where the first level is the original

data set. The Difference of Gaussian scale space has 12 levels and is constructed as

a scalar difference of convolutions for the two texture fields, and a vector difference

in 3D positions for the range field. The range is recomputed at each step to report

the evolved surface data as a function of range, azimuth, and elevation angles. Once

the scale space is constructed, the visualization toolbar may be used for each data set

to observe the different levels and fields of the scale space. Figure 61 demonstrates

the utility of the visualization toolbar. The top image demonstrates viewing differ-

ent scenes in different fields, and the bottom image demonstrates viewing the same

scenes and fields, but at different levels in the scale space. Figure 62 demonstrates

exactly the same views, but for the Difference of Gaussian scale space. The three

fields are the Range, Return Light Intensity (RLI), and Visible Light (VL), specified

for the configurations at To and T1. The gray scale used to represent the data in each

field can be customized by entering values for the upper and lower bounds inside the

brackets in the “Bounds” box. Varying these parameters allows the user to make

inferences and to interpret the results of specific processes applied to the underlying

numerical data. Figures 61 and 62 show the result of using these parameters to view



133

Fig. 61: The Visualization Toolbar is used to change the view to display different
field, and scale space level information for the Gaussian Scale Space.

the Gaussian scale space and Difference of Gaussian scale space respectively.

Finally, the 3D visualization capability of MFMSTracker is demonstrated by

pressing the MeshTo or MeshT1 buttons, resulting in a fully textured 3D model of

the measured object. To specify the level of the scale space used in the 2D and

3D visualizations a number between 1 and the total number of levels in the selected

scale space can be entered the “Level” box. The “Keypoint Field” box is used to

specify the field for texturing the 3D model, and the “Triangle Radius” is used to

place a constraint on the circum radius of the triangles used in the surface mesh.
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Fig. 62: The Visualization Toolbar is used to display information in the Difference of
Gaussian Scale Space.
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This constraint prevents any poorly defined triangles which may be in a degenerate

configuration.

Following the construction of the scale space, the next step is to locate extrema.

This process is called by clicking the “Locate Extrema” button. A non-maxima

suppression process, compares each admissible scale space member to its neighbors

in a local nxn region defined at the same scale. If the measurement is either greater

than or less than all of its neighbors in either of the 3 fields, it is identified as a

candidate feature location. An array containing all candidate feature locations in the

scale space is output and used during the feature extraction process. The candidate

extrema are then subjected to further evaluation of feature strength, cornerness, and

persistence as described in chapter 4 by pressing the “Int. Pts. 2D” button. The top

“n” resulting interest points which satisfy the user specified thresholds on strength,

cornerness, and persistence are then plotted on top of the current view as shown in

figure 63. The user may specify if interest points are to be detected in a single field

by entering a 1, 2, or 3 into the “Keypoint Field” box, or any combination of the

fields by using a colon notation, e.g. for all fields input 1 : 3 to the “Keypoint Field”

box. The “Int. Pts. 3D” button is used to plot the resulting points on the 3D mesh

by displaying them as spheres with radius proportional to the 3D scale determined

for each feature. The proportionality constant defined for the radius of the marker

used to represent the feature and its scale is defined in the “Neighborhood” box.

Finally, the data can be modified in four key ways. First, noise may be added

by specifying the standard deviation of zero mean Gaussian noise to be added to

each field. Noise affects the feature detection process in multiple ways. It changes

the locations of the sampled data with respect to the surface changing curvature

values and also changing where the points project to in the camera. This can cause

a different texture mapping for the case where the camera image remains the same.
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Fig. 63: Detected features displayed over the current view in the MFMSTracker
Software

With the addition of noise in the texture fields, the combined result can potentially

be significantly different looking data sets for small amounts of additive noise. The

second method for modifying the data is to apply a nonlinear transformation to the

lighting. The simple approach used in the software is to raise the texture field values

to a power, and re-normalize the data set. Powers which are less than 1 reduce the

contrast in the texture field, while powers greater than 1 increase the contrast. Figure

64 demonstrates the results of the lighting variation on the same scene.

The remaining modifications that are used in MFMSTracker are associated with

artificial methods in re-sampling the data. The first is a simple re-scaling computed

by specifying a scaling constant to increase or decrease the size of the original data

set. The second method simulates a rotation of the data set about the bore axis of the

LIDAR. Each method requires interpolation of the data which is performed using a

nearest neighbor method to avoid artifacts associated with zero-valued pixels. Figure

65 shows the resulting data sets associated with each of these transformations.

Once data, modified or not has been used to construct a scale space, it can be

viewed in 2D and 3D, and manipulated with the standard pan, zoom, rotate, options
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Fig. 64: Nonlinear transformation in Return Light Intensity for powers of 0.5 and 2
respectively.

Fig. 65: Transformations causing artificial re-sampling associated with scaling and
rotating the data.
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in Matlab by pressing the appropriate button. In the event that the display needs

to be cleared to see a better representation of the data, the “reset” button can be

used. When features have been extracted for each measurement set, the keypoints and

descriptors are used to estimate the relative motion by calling the MergeModels.m

function, currently a manual process not integrated with MFMSTracker GUI. The

next section explains the MergeModels process which reduces feature sets to high

accuracy correspondences, estimates the relative motion using the OLTAE algorithm,

and maps all subsequent observations of an object to the reference frame of the first

observation.

B. Combined Model Registration and Relative Motion Estimation: Merge-

Models.m

The MergeModels function is used to evaluate scan sequences and to quantify

motion estimation and object mapping performance based on extracted feature sets.

It consists of three processes, feature matching by comparing Diffusion Flow Signa-

tures, motion estimation using the OLTAE algorithm, and correspondence rejection

using OLTAE residual post-filtering. The inputs required are data structures con-

taining the sets of keypoints and descriptors for each scan, the original textured scan

data for each scene, and labels used to associate the correct keypoints with the correct

scene. The remaining inputs are constant parameters associated with the input scan

file. The flow chart in figure 66 illustrates the process used to register subsequent

scans using MFMS Features and Diffusion Flow Signatures.

As a final check, the variance of the OLTAE residuals associated with the best

estimate for a scene in the set of scans can be used to accept or reject a scene for use

in the final model. since motion estimates can suffer greatly due to mismatches, it
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Fig. 66: Process Flow for the MergeModels function. Feature matching is iterated
with motion estimation to identify reliable features to track and evaluate motion
estimation performance.
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is occasionally feasible that situations displaying symmetry, rapid photometric varia-

tions, and other sources for non-uniqueness in feature extraction and inconsistencies

in surface appearance will cause a failure to achieve a confident and accurate relative

motion solution. The use of the covariance to accept or reject scenes allows for control

over model quality, as well as for the initiation of a reprocessing procedure which may

require different tuning to more effectively address the current physical situation. An

example of model rejection being used to achieve the best quality model is shown in

the HST case study in chapter 7. The next chapter compares the methods outlined

in this dissertation to a common Matlab implementation of the Scale Invariant Fea-

ture Transform [2,3] for the case of a planar surface and demonstrates the similarity

in feature extraction for the case where the physical surface and image surface are

the same shape. Then the general case of an unknown 3D object is considered and

feature extraction, matching, motion estimation, and object mapping are evaluated

for a simple circumnavigation experiment with real lighting effects.
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CHAPTER VII

EXPERIMENTAL RESULTS

The Mult-Field Multi-Scale Feature detection framework developed in this dis-

sertation exploits the information provided by associated 3D LIDAR measurements

by defining a scale space built by geodesic Gaussian Convolution. Two main experi-

ments were selected to illustrate the extension of scale space techniques to multi-field

3D data and demonstrate their utility in spacecraft proximity operations.

The first experiment considers a simulated constant range surface textured by

imagery, and compares a common implementation of the Scale Invariant Feature

Transform [44] applied in image space to Multi-Field Multi-Scale feature extraction

in object space for two different scenarios. The first case considers a fully populated

scene where every pixel was generated by a measurable scene point. Then, the meth-

ods are compared for the case where an object only occupies a portion of the sensor

field of view, and zero-valued pixels are associated with the absence of a measurement.

We stress in this case that the MFMS scale space generation and feature extraction

processes are data driven with respect to object space measurements while the SIFT

algorithm can not exploit that information.

The second experiment is a simple case study in spacecraft proximity operations.

A scale model of the Hubble Space Telescope is observed by a calibrated Camera-

LIDAR fusion system. The HST model is then articulated by the Holonomic Omni-

directional Motion Emulation Robot (HOMER) through a series of 2 deg rotations

about the HOMER vertical axis. While more complex motions are possible, this

motion is equivalent to moving the sensor system through a constant radius arc

about the center of rotation in the HOMER coordinate system. The HST model is
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illuminated by a point light source co-located with the LIDAR. The measured surfaces

range from partially diffuse to highly specular and do not demonstrate the Lambertian

behavior which is commonly required for many passive computer vision algorithms.

MFMS feature detection and description by Diffusion Flow Signatures is applied to

register 27 of 28 observations and to estimate the relative motion accurate to within

12 millimeters RMS. The results herein demonstrate the rigorous extension of scale

space techniques to data driven estimates of relative motion in proximity operations,

and the accurate mapping of proximal bodies with zero a priori information.

A. Comparison with 2D Multi-Scale Feature Extraction

Two dimensional Scale Space methods do not exploit available 3D information.

They localize points in an image and attempt to be robust to two dimensional trans-

formations and transformations of the image texture. Motion estimation methods

based on two dimensional feature tracking attempt to estimate the six degree of free-

dom relative navigation solution from a large number of 2D to 2D correspondences.

The approach in this dissertation concerns motion estimation based on 3D to 3D cor-

respondences associated with interest points extracted from a textured 3D surface.

For this reason, a multi-resolution feature extraction process was developed which

identifies interest points as locations in textured 3D data which are local maxima

or minima in diffusion flow velocity. This velocity is a function of the geometry and

the texture. The diffusion flow of a surface is implemented by computing successive

convolutions of the data with the Geodesic Gaussian. The difference in Geodesic

Gaussian convolutions was shown to be a good approximation to convolution with

the Laplace-Beltrami operator. The LB operator is the extension of the 2D Lapla-

cian to manifolds. As was shown in chapter 4, the approximation to the LB operator
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Fig. 67: An image texture is associated with a constant range surface sampled in
equal angle segments.

takes into account the inter-sample distance in object space. In order to accurately

compare the scale space feature extraction of image processing, to the methods of

this dissertation, a common implementation of the Scale Invariant Feature Transform

was compared against our results, by associating an image texture with a constant

range surface. Figure 67 shows the constant range surface textured by the Graffiti

image texture provided by the Oxford Visual Geometry Group [45], a common test

image for scale space methods.

By sampling the constant range surface in equal angle increments, the inter-

sample distance in object space is constant and in equal steps exactly as the pixels of

an image are. In each comparison of the scale space techniques for object space and
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image space, the largest 500 extracted features are chosen as a stable subset of features

to be used to evaluate the repeatability of each method. Unique to this evaluation

process is the use of OLTAE residuals to determine the number of well localized

matches used to estimate the 3D transformation from 3D to 3D correspondences. To

this end, three transformations to the original data are considered for comparison, the

addition of noise to the texture, a nonlinear transformation of the gray scale values

achieved by raising the texture values to a power and normalizing the data to the

interval [0, 1], and a rigid body rotation of the object space about the bore sight,

which is equivalent to an image plane rotation. A perfect registration will achieve

an identity rotation matrix and zero translation vector, indicating that all of the

matched features had zero residual error and were identified to be in exactly the same

locations in image space or object space. When evaluating keypoint repeatability in

image processing, localization error is measured in image pixels. In this test, error

is measured on the constant range surface with R = 1000 millimeters, for which 1

pixel is approaximately to 3.5 millimeters. The metrics that are used to evaluate the

feature extraction and matching of both techniques are the number of matches out

of a possible 500, the mean and variance of the match residuals, the principle angle

of the attitude corrective matrix required to return the scene to the desired identity

rotation, and 2-Norm of the estimated translation vector.

1. Complete Ground Scene

The graffiti image, a common choice used in the evaluation of scale space feature

extraction [24, 25] was selected as the texture for a fully populated constant range

surface sampled in equal angle increments. Figure 68, shows the original image next

to the image co-registered with the surface, the pixels in the image can be considered

constant steps in x and y for an image taken by a camera, or constant steps in φ and
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Fig. 68: Original texture used to color a constant range surface sampled in equal
angle segments.

θ as shown in the examples of chapter 3. In the case of equal object space or image

space steps, both methods reduce to building a Gaussian Scale Space. To illustrate

the similarity between both methods with respect to feature extraction, figure 69

shows the 500 largest extracted features for both algorithms using 3 octaves and 4

steps per octave, a cornerness threshold of 5, and a strength threshold of 1.

The similarity in image/object space location and scale of the interest points

extracted for both methods demonstrates that the Diffusion flow approach to con-

structing a scale space of object space measurements is comparable in performance to

state of the art image based multi-resolution feature extraction techniques. To fur-

ther evaluate the descriptor and show that the performance of MFMS interest points

and Diffusion Flow signatures is competitive with SIFT, the descriptor matching per-

formance was compared for variations in texture noise, 2D rotation, and lighting

change. Figure, 70 shows the many variations tested as deviations from the original

data shown in figure 68.

For each SIFT feature located in the data, the associated 3D point is deter-
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Fig. 69: Scale Space Feature Extraction on the Graffiti image texture field for the
Scale Invariant Feature Transform and Diffusion Flow techniques.

Fig. 70: The original Graffiti and Asteroid textures are corrupted and transformed
to evaluate feature descriptor matching performance.
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mined by interpolation of the surface while for each feature extracted using MFMS

features, the 3D point is extracted from the scale space. The matching processes

used were the standard best bin first matching approach with default settings pro-

vided with the SIFT algorithm and the multi-field matching process described in

chapter 5. This evaluation process is intended to illustrate the consistency of feature

extraction, matching and motion estimation afforded by each algorithm. If either al-

gorithm extracts exactly the same set of features after a transformation, the subset of

the 500 largest features will contain the same points, all of which will match correctly

with zero-valued residuals, and a correct motion estimate of identity rotation and

zero translation will be obtained. As the data is transformed, matches are lost due

to different features being extracted from a slightly different scale space construction

in different locations. In all cases, the untransformed case is compared to the trans-

formed case, and a subset of features is retained as sufficiently similar to be called

local feature matches. The OLTAE motion estimation algorithm is then applied to

the resulting 3D correspondences. The errors are then analyzed using the above

metrics. In many cases, errors are due to large residuals caused by mismatched fea-

tures. The best indicator of feature extraction and matching performance is the mean

and variance of the match residuals. Showing consistent values in these parameters

over various transformations demonstrates robust performance in motion estimation,

which requires accurately matched features to work effectively. The following plots

summarize each algorithms performance with respect to image noise.

In figure 71 we see that varying the image noise up to 10% of the maximum

texture value causes a steady decrease in the number of matches reported by each

algorithm down to 50% in the most extreme case. The Multi-Field Multi-Scale match-

ing policy appears to be a little more strict than the SIFT matching policy.

The translational and rotation accuracies of both algorithms in this case are
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Fig. 71: The image noise is varied from zero to 10 percent causing a consistent decrease
in the number of matches.

Fig. 72: Rotational and Translational accuracy vs. image noise for the MFMS and
SIFT algorithms.
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Fig. 73: Residual RMS and Variance vs. image noise for the MFMS and SIFT
algorithms.

less than 0.2 degrees and 6.5 millimeters with the Multi-Field Multi-Scale features

appearing to be more accurate. The Scale Invariant Feature Transform attempts to

determine a sub-pixel location for each feature which for the purposes of this algorithm

comparison is reduced to pixel accurate locations. For features which are right on

the border between pixels, variations of up to 3.5 millimeters are possible for correct

matches.

The root mean square error and variance values for the MFMS approach are lower

than for the Scale Invariant Feature Transform throughout the tested variations in

image noise which indicates a solution which is more robust to noise. Algorithm

performance is completely scene dependent, and while MFMS features appear more

accurate in this case, the performance of both algorithms are very similar with respect

to rotation and lighting for the Graffiti scene. For the tested lighting variations, the

texture values are raised to a power, the number of matches versus this power are

shown in figure 74.

The lighting exponent is varied from 1
4

to 2 which decreases the magnitude of

scene gradients for values less than 1 and increases the magnitude of scene gradients
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Fig. 74: Number of matches reported for the MFMS and SIFT algorithms vs. lighting
variations.

for values greater than 1. By changing the relative magnitudes of scene gradients,

the extracted corners can change in terms of feature strength and location. While

the SIFT algorithm maintains about 70% of its features as matches throughout the

lighting variations, MFMS features rapidly reduces the number of matches while still

achieving very similar accuracies in translation and rotation.

Both algorithms achieve accuracies better than 0.1 degrees and 5 millimeters.

For exponents less than one which artificially make the scene appear more diffuse

the MFMS algorithm is slightly better, but the SIFT algorithm is slightly better for

exponents greater than 1. Both algorithms have similar residual statistics, and are

on the same order of magnitude of the SIFT algorithm performance for noise.

The previous two variations are functions of the field values contained in the

image and not the spatial sampling. By testing the algorithms with respect to im-

age rotation, we observe the variations in performance associated with a simple re-

sampling process. For both algorithms, the convolutions are computed with operators

implemented over square sub-images. As the image rotates, different image or surface
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Fig. 75: Rotational and translational accuracies for the MFMS and SIFT algorithms
vs. lighting variations.

Fig. 76: Residual RMS and Variance values for the MFMS and SIFT algorithms vs.
lighting variations.
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Fig. 77: Number of matches reported for the MFMS and SIFT algorithms vs. rota-
tion.

elements are included in successive convolutions, resulting in slightly different scale

spaces. While both algorithms are robust to this, we do see performance degradations

caused by this fact.

The stricter matching policy used in the MFMS approach results in as many as

75% of the features not matching throughout the rotations. For this test the zero

degree rotation case is compared to rotations from −π to π and for both algorithms a

significant decreased in the number of matched features occurs for odd multiples of π
4
.

The SIFT approach results in more consistent and accurate initial motion estimates

but like the MFMS approach, sees performance degradations for rotation angles which

are odd multiplies of π
4
.

Even though the MFMS approach is slightly less accurate than the SIFT method

for rotations of this scene, the matches used to obtain the motion estimate achieve

similar performance in terms of the accuracy of the residuals. This will be an impor-

tant point in more complex scenes which include data dropout.

For the fully populated Graffiti image scene, the MFMS algorithm achieved sim-
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Fig. 78: Rotational and translational accuracies for the MFMS and SIFT algorithms
vs. rotation.

Fig. 79: Residual RMS and Variance values for the MFMS and SIFT algorithms vs.
rotation.
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ilar performance in feature extraction, matching, and initial motion estimate accu-

racy. More importantly the residual statistics describing the matching performance

are similar and consistent. The next scene represents a simple extension of the scale

space methods to data which is not fully populated. Since the SIFT algorithm was de-

signed for image data, it does not distinguish between pixel which are associated with

a measured object of interest, and pixels that represent the background. This fact

will be important when selecting features to track relative motion between spacecraft

in proximity operations.

2. Space Object Image

This experiment extends the analysis performed in the previous sub-section for

a fully populated surface to a partial surface associated with an object which only

takes up a portion of the field of view of the LIDAR. The asteroid image is again

used to texture a constant range surface, however, only non-zero texture values are

used, if a texture value is a zero, the associated range measurement is removed. This

results in an object with boundaries and holes which presents a difficulty for image

based methods which can not distinguish between holes in surfaces and shadows

for example. In this case, the Gaussian convolutions of each method are identical

only in areas where the entire operator is being applied to a fully-populated region

of data . In locations where this is not the case the scale space construction used

in this dissertation adapts to account for the missing measurements. The resulting

feature sets differ in this case due to the necessity of localizing each feature with a

measured location on the surface. The SIFT technique often results in feature points

which are not localized on the surface but in the black space exterior to the object.

These feature locations are most likely associated with depth discontinuities and are

therefore unstable. Just like the Graffiti image scene, the Asteroid scene was tested
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Fig. 80: Scale Space Feature Extraction on the Asteroid image texture field for the
Scale Invariant Feature Transform and Diffusion Flow techniques. Notice that for the
SIFT technique, many features are extracted in locations which do not reside on the
measured/ object.

with respect to variations in texture based noise, lighting, and rotations about the

LIDAR bore sight. Figure 80 shows an example feature extraction on the asteroid

scene for the Multi-Field Multi-Scale features and the SIFT features.

The following plots and tables report the performance of both methods with re-

spect to the above variations in the data and demonstrate the gain in performance

with respect to 3D motion estimation afforded by using a scale space technique based

on object space measurements. Similar to the Graffiti image, the number of matches

decreases with increasing noise in the texture down to a level of 70% feature matches

at 8% noise. Figure 80 shows the features extracted by each method, notice the large

number of features extracted on external edges by the SIFT method, these locations

can be very dangerous to use when estimating motion by 3D correspondences. These

points are in locations of large depth discontinuities, and in the worse case can be

localized in locations where no measurements are made at all. Including large num-

bers of these features in the least squares estimate of the relative motion can cause
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Fig. 81: The image noise is varied from zero to 8 percent causing a consistent decrease
in the number of matches.

Fig. 82: Rotational and Translational accuracy vs. image noise for the MFMS and
SIFT algorithms.

significant errors.

The MFMS approach is much more accurate in rotation and translation than

then SIFT approach. While both achieve accuracies less than 1 degree in rotation

and 13 millimeters in translations, the MFMS approach is more accurate by an order

of magnitude. This is even more apparent when we look at the residual statistics.

For the MFMS approach, the root mean square error of the match residuals has a

very similar behavior for both the Graffiti scene, and the Asteroid scene. The SIFT

method however has a significantly degraded performance for the asteroid scene. The
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Fig. 83: Residual RMS and Variance vs. image noise for the MFMS and SIFT
algorithms.

Fig. 84: Number of matches reported for the MFMS and SIFT algorithms vs. lighting
variations.

combination of noise with a large number of features located at depth discontinuities

makes it difficult to be confident in the estimated motion. The same behavior is

observed in the cases of lighting variations and in plane rotations.

For this more complex scenario, the performance of each algorithm as measured

by the number of matches retained is more similar with respect to lighting conditions

than the Graffiti image. As the lighting exponent is varied for this scene, the bound-

ary between the object’s outer edge and the background becomes more pronounced,

resulting in more extracted features along depth discontinuities.
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Fig. 85: Rotational and translational accuracies for the MFMS and SIFT algorithms
vs. lighting variations.

Fig. 86: Residual RMS and Variance values for the MFMS and SIFT algorithms vs.
lighting variations.

In this case, the SIFT algorithm achieves results that are accurate to 1 degree

and tens of millimeters while the MFMS approach is still achieving motion estimates

consistent with performance levels achieved in the first scene. This fact is further

illustrated by inspecting the residual statistics. The performance as evaluated by

the statistics of the OLTAE residuals shows that the performance of the SIFT algo-

rithm has degraded by a factor of 3 in the RMS error, while the MFMS approach is

approximately achieving the same level of performance.

In the case of in-plane rotation, the MFMS algorithm again drops to around 20%

matching in the extracted features for rotation angles that are odd multiples of π
4
.
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Fig. 87: Number of matches reported for the MFMS and SIFT algorithms vs. rota-
tion.

Fig. 88: Rotational and translational accuracies for the MFMS and SIFT algorithms
vs. rotation.

A similar behavior is seen in the number of matches for the SIFT algorithm, which

consistently reports between 60% and 90% of the features as accurately matched.

Unlike the in-plane rotation case for the fully populated Graffiti scene, the SIFT

algorithm does not accurately register the scenes.

While the MFMS algorithm achieves a consistent performance and accounts for

the locations where data is missing, the SIFT algorithm does not and therefore is

subject to a higher number of mismatches with more severe effects on the resulting

motion estimate. Again the residual statistics indicate that there should be low

confidence in the motion estimates provided by this method.
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Fig. 89: Residual RMS and Variance values for the MFMS and SIFT algorithms vs.
rotation.

The RMS error and variance of the residuals show a distinct difference between

MFMS feature extraction and matching, and SIFT feature extraction and matching.

MFMS feature extraction requires extrema to lie in regions that are at least continuous

to second order, which means they must at a minimum be at the center of a fully

populated 5x5 region of measurements. While the SIFT algorithm could be adapted

to include this constraint, which would result in a significant increase in performance

for this application, it still does not adapt the convolution kernel to account for

variations in the object space and therefore does not distinguish which edges are

associated with depth discontinuities. This fact is very apparent when observing the

extracted features on the HST model.

3. Multi-Field SIFT vs. MFMS on the Hubble Space Telescope Model

An even more complex scenario is used to demonstrate the benefit of extending

scale space methods to multi-field data. The HST model used in the circumnavigation

experiment of the next section is first scanned and imaged in a single forward facing

orientation. The top 100 features from each field in the MFMS framework are used

to evaluate the performance of feature extraction and matching with respect to the

same variations compared in the previous two scenes. The SIFT algorithm is applied
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Fig. 90: Range, Return Light Intensity, and Visible Light Fields for the HST model.

Fig. 91: Extracted features for each of the 3 Fields for the HST model.

individually to each field in the data set, and the top 100 features from each field are

used as well to estimate motion. Again, the desired motion estimate is an identity

rotation and zero translation. The variations are only 2D in nature in that the HST

model was not moved, only transformations were applied to the texture values, and

the spatial locations of the measurements in the image array. Figure, 90 shows the

three fields supplied to each algorithm for feature extraction.

In the cases of texture based noise and lighting, only the texture fields are trans-

formed by adding noise or raising the field value to a power respectively. In the case

of rotation, the 3D point locations are preserved, only the image space locations are

changed. Figure, 91 shows the extracted features in each field for each algorithm.

It is important to note that the MFMS feature extraction results in a larger
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Fig. 92: The noise in each texture field is varied from zero to 8 percent causing a
consistent decrease in the number of matches.

number of features that are located on object structures that are not also associated

with large depth discontinuities. Many of the extracted SIFT features are in locations

that are associated with depth discontinuities as well as locations that are not part

of the object structure at all. Also, the HST model is not a constant range surface.

It is a complex object with many different structures, repeating patterns, symmetry,

and various surface directions. For this reason the penalty associated with different

mismatches can be much more severe than in the constant range surface case. These

facts explain the overall drop in the accuracies of the initial motion estimates, and

motivate the need for an effective post filtering process based on match residual

statistics.

The MFMS approach again retains fewer matches than the SIFT algorithm down

to approximately 35% of the extracted features for 8% noise in each of the texture

fields. The extracted and matched features in this experiment also appear to achieve

better accuracy in the initial motion estimate.

Both algorithms appear to be accurate to better than 0.5 degrees and 25 millime-

ters but the associated points used in the SIFT algorithm were localized in areas near
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Fig. 93: Rotational and Translational accuracy vs. image noise for the MFMS and
SIFT algorithms.

Fig. 94: Residual RMS and Variance vs. image noise for the MFMS and SIFT
algorithms.

depth discontinuities and data drop outs which corrupts the solution. The confidence

in the solution is summarized by again inspecting the OLTAE residual statistics.

The OLTAE residual RMS error is a good indicator of the quality of the mo-

tion estimate. While the SIFT algorithm appears to be more accurate given the

magnitude of the principle angle and translation vector, the mean localization error

provided by the MFMS algorithms is as much as seven times more accurate than the

SIFT algorithm. This indicates a high number of mismatches and poorly localized

correspondences. A similar result is observed when evaluating the algorithms for

variations in lighting and in plane rotation angle.

The number of retained matches used in the initial motion estimate is very
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Fig. 95: Number of matches reported for the MFMS and SIFT algorithms vs. lighting
variations.

Fig. 96: Rotational and translational accuracies for the MFMS and SIFT algorithms
vs. lighting variations.

similar for all lighting exponents in this test. Both algorithms achieve a similar level

of accuracy with respect to the tested lighting variations, and the order of magnitude

is similar to the case of texture based noise. The MFMS algorithm again achieves a

consistent level of confidence to the case where noise was added to the texture fields

and in this case is as many as two orders of magnitude better than the SIFT solution.

When testing each algorithm’s performance with respect to in-plane rotation, we

again see a small percentage of features used to obtain the initial motion estimate for

the MFMS algorithm. The SIFT algorithm has significant variation in the number
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Fig. 97: Residual RMS and Variance values for the MFMS and SIFT algorithms vs.
lighting variations.

Fig. 98: Number of matches reported for the MFMS and SIFT algorithms vs. rota-
tion.

of features used to obtain its motion estimate.

Both algorithms achieve accuracies better than 3 degrees and 263 millimeters

while the MFMS algorithm appears to be slightly more consistent. The consistency

of the MFMS approach is further supported by the OLTAE residual statistics which

are of the same order of magnitude of the graffiti image and asteroid image residual

statistics. Of further interest is the consistent behavior of the residual statistics in all

MFMS cases where odd multiples of π
4

are slightly less accurate and less consistent

than other rotation angles.
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Fig. 99: Rotational and translational accuracies for the MFMS and SIFT algorithms
vs. rotation.

Fig. 100: Residual RMS and Variance values for the MFMS and SIFT algorithms vs.
rotation.

Even for these simple variations on a more realistic 3D object, traditional scale

invariant feature detection and matching proves to be not as robust as the Multi-

Field Multi-Scale feature detection and matching approach. A more complex scenario

associated with proximity operations involves out of plane rotation resulting in local

sampling variations associated with 3D transformations of the relative pose as well

as textural variations associated with different materials, lighting, and observation

conditions. The next section demonstrates the application of MFMS features and

Diffusion Flow Signatures to a simple but realistic proximity operations experiment.

B. HST Model Case Study

The Hubble Space Telescope model is a 1/10th scale model built to simulate real

photometric an spatial variations of 3D space objects in controlled lighting situations
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in the Land Air and Space Laboratory at Texas A& M University. It is used as

a challenge object to test vision algorithms for spacecraft proximity operations and

vision aided guidance. To date, most structure from motion algorithms based on vi-

sion alone have failed to autonomously obtain accurate reliable motion estimates and

mappings of the complex structures of the HST model. The partial circumnaviga-

tion experiment is used here to demonstrate the practical application of the methods

of this dissertation to real data in a scene which physically represents many of the

challenges experienced in tracking spacecraft in close range proximity operations.

1. Experimental Setup

The partial circumnavigation experiment consists of 28 observations of the HST

model taken with a static, calibrated, camera-LIDAR fusion system. Through each of

the observations, the HST model is rotated in increments of 2 deg about the vertical

axis of a stewart platform located on the Holonomic Omni-directional Motion Emula-

tion Robot (HOMER). With respect to the Z axis of the LIDAR, the forward facing

panel of the HST processes through incidence angles from −30 deg to 30 deg. Figure

76 shows this simple out of plane relative motion with respect to the LIDAR along

with the relative placement of the camera and point light source used to produce the

visible lighting effects observed.

The Multi-Field Multi-Scale feature extraction and matching process is used to

register the observations, estimate the relative motion, and construct a combined

model of the Hubble Space Telescope with zero a-priori knowledge. The results of

the MFMS approach with and without a post filtering process based on the residuals

of the Optimal Linear Translation and Attitude Estimator algorithm are compared

to the results obtained using Scale Invariant Feature based registration. Figures 102

to 105 show the variations in all three fields for all of the scans used in the partial
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Fig. 101: Experimental setup for the HST partial circumnavigation experiment. The
spacecraft is rotated in precise 2 deg increments in front of a Camera and LIDAR
which make simultaneous observations.

circumnavigation experiement.

Significant variation is observed in the measured structure of the HST model as

well as in the Return Light Intensity and Visible Light texture fields. In the case

of the Visible Light, significant and sudden changes in lighting conditions are mea-

sured as values on the front facing plate go from medium gray scale values to near

saturation and back. The measured structure of the HST is asymmetric for large

incidence angles, where only the closer solar panel is measured, and symmetric for

small incidence angles. Specular reflections are also observed in both textures, espe-

cially on the solar panel surfaces. Each algorithm is tested by using feature matches

to specify 3D correspondences which are inputs to the OLTAE motion estimation

algorithm. Each textured scan is mapped back to the first scan in the series, in this

case, the −30 degree pose, and the resulting fused model is inspected for accuracy.
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Fig. 102: Top: Range field information for scans 1-7 in the partial circumnavigation
experiment. Middle: Return Light Intensity field information. Bottom: Visible Light
field information obtained from the camera.

Fig. 103: Top: Range field information for scans 8-14 in the partial circumnavigation
experiment. Middle: Return Light Intensity field information. Bottom: Visible Light
field information obtained from the camera.

Fig. 104: Top: Range field information for scans 15-21 in the partial circumnavigation
experiment. Middle: Return Light Intensity field information. Bottom: Visible Light
field information obtained from the camera.
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Fig. 105: Top: Range field information for scans 22-28 in the partial circumnavigation
experiment. Middle: Return Light Intensity field information. Bottom: Visible Light
field information obtained from the camera.

The metrics used to indicate the quality of each individual motion estimate are the

RMS error and variance of the OLTAE residuals. The following sub-sections illustrate

the performance of each algorithm.

2. Registration Using Scale Invariant Feature Transform

The Scale Invariant Feature Transform is used to extract features from the tex-

tured scan data and the associated 3D correspondences are used as input to the

OLTAE motion estimation algorithm. The Root Mean Square error of the residuals

is reported in figure 106.

Fig. 106: RMS Error for OLTAE residuals for SIFT matches used to obtain motion
estimates.
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The mean RMS error over all motion estimates is 618.0792 millimeters which

indicates poor registration performance. The locations of the extracted features are

similar to the case of the static HST test, resulting in very inconsistent feature ex-

traction and matching.

Fig. 107: Variance of OLTAE residual values of the SIFT matches used to estimate
the relative motion.

The variance of the OLTAE residuals is also very high for all motion estimates

which is a good indicator of poor registration performance. This fact is very clear

when the resulting model consisting of all 28 scans is inspected.

It is difficult to determine if any of the individual models are accurately regis-

tered, and the estimated relative trajectory which should be a circular arc appears

random. Directly applying the Scale Invariant Feature Transform to each field and

determining the closest measured 3D point for each feature does not result in con-

sistent, accurately localized correspondences, and as a result, the motion estimation

algorithm fails.
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Fig. 108: The resulting registration of 28 textured scans using matched SIFT features.

3. Registration Using Multi-Field Multi-Scale Features

The Multi-Field Multi-Scale feature detection and matching framework is used

to determine 3D correspondences which are well defined on the surface of the HST

model. The OLTAE algorithm is again used to estimate the relative motion and

register each of the 28 individual textured scans.

The mean RMS value over all motion estimates is 52.1808 which is an order of

magnitude better than the result obtained using SIFT correspondences and consis-

tent with the algorithms performance for all other experiments demonstrated in this

dissertation. Motion Estimate 21 has a maximum RMS error value of 140.25 which

indicates that for that particular scene the solution is degraded due to poorly local-

ized features or large residual mismatches. If this scene is simply rejected from the

scan sequence, and the motion estimates and registered model are recomputed, we
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Fig. 109: RMS Error for OLTAE residuals for MFMS matches used to obtain motion
estimates.

obtain improved performance. The result of this process is demonstrated at the end

of the next section which results in the final model.

Fig. 110: Variance of OLTAE residual values of the MFMS matches used to estimate
the relative motion.

The model obtained by registering MFMS features and using only the initial

OLTAE motion estimates is shown in figure 111. Notice that the relative motion

trajectory is an arc as expected, but some scans are registered improperly due to

feature mismatches. This process can be improved by employing the OLTAE residual

post filtering described in chapter 6.
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Fig. 111: The resulting registration of 28 textured scans using matched MFMS fea-
tures.

4. Registration using MFMS Features and OLTAE Residual Filtering

Again, the Multi-Field Multi-Scale feature detection framework is used to de-

termine 3D the correspondences that are provided to the OLTAE motion estimator.

Additionally, the residual post filtering process of chapter 6 is used to refine each

individual motion estimate and prevent gross errors caused by feature mismatching.

The resulting RMS error is again improved by an order of magnitude with a mean

value of 6.0532 millimeters over all motion estimates. Candidate scans for rejection

can be easily identified by inspecting the reported variance in the OLTAE residuals

of each motion estimate.

For this experiment the model is expected to improve if the 21st model and

motion estimate is rejected. The resulting improvement is summarized by figures 115

to 117.



175

Fig. 112: RMS Error for OLTAE residuals for the post filtered MFMS matches used
to obtain motion estimates.

Fig. 113: Variance of OLTAE residual values of the post filtered matches used to
estimate the relative motion.

The resulting combined model is significantly improved over feature matching

alone and the estimated relative motion trajectory is a much more consistent arc.

The RMS errors for all motion estimates used to construct the final model are

less than 12 millimeters. The reported accuracy of the Deltasphere 3000 lidar is 7

millimeters. It is encouraging to see that we are achieving registration results at

accuracies comparable to the measurement accuracy of the scanning device.

The final reconstructed model using 27 of the 28 scans is shown in figure 117.
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Fig. 114: The resulting registration of 28 textured scans using post filtered MFMS
matches.

Fig. 115: RMS Error for OLTAE residuals for the post filtered MFMS matches used
to obtain motion estimates.

The cylindrical structure of the body can easily be seen as well as the backward

facing plate which was not directly observed. This relative motion estimation and

object mapping performance is a key element in supporting autonomous spacecraft
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Fig. 116: Variance of OLTAE residual values of the post filtered matches used to
estimate the relative motion.

proximity operations.

Fig. 117: The resulting registration of 27 textured scans using post filtered MFMS
matches.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

The methodology developed in this dissertation extends current techniques in

scale-space image analysis to multi-field data and enables generalized 3D feature ex-

traction and tracking in spacecraft proximity operations. The resident Multi-Field

Multi-Scale features extracted are local extrema in difference images computed be-

tween consecutive convolutions with a geodesic Gaussian defined in the object space.

These features represent local maxima and minima in data curvature making them

capable of describing geometrically interesting but texturally bland objects as well

as texturally rich but geometrically simple objects. This capability is a key necessity

of a feature tracker which is to be used to enable autonomous spacecraft proximity

operations. The developed descriptor known as the Multi-Field Diffusion Flow Sig-

nature, was inspired by the Spin-Image technique [6, 7] used for the global and local

description of regularized 3D models, effectively produced accurately localized 3D

correspondences that were robust to 2D and 3D transformations of the data. Com-

bined feature match rejection driven by the residuals produced by the Optimal Linear

Translation and Attitude Estimator, MFMS feature extraction and Multi-Field Dif-

fusion Flow Signatures were used to accurately track the relative motion of a realistic

space object.

The final model was constructed using 27 partial scans sweeping through an angle

of approximately 60 degrees using motion estimates which were all localized to within

12 millimeters RMS. The approach developed here was also compared to the state

of the art Scale Invariant Feature Transform for the case where surface based and

image based analysis are equivalent. Multi-Scale Multi-Field feature extraction and
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matching achieved comparable performance to SIFT feature extraction and matching

and outperformed the SIFT technique for scenes which included significate areas of

zero measurement.

A. Conclusions

This dissertation sought to answer four main scientific questions:

By what data driven process can features be extracted from textured

range imagery and tracked through general relative motion?

By extending scale space techniques to apply to measured manifolds using a

discrete approximation to the Geodesic Gaussian kernel, it is possible to combine

surface evolution by mean curvature flow with the analysis of texture by extracting

features as extrema in the Difference of Geodesic Gaussian Space. These extrema

are maxima and minima in diffusion flow velocity, which for a range image describe

locations of highest curvature, and for a texture field describe corner like features

much like the standard techniques of scale space feature extraction in imagery. By

using Diffusion Flow Signatures to describe the extracted point features, the descrip-

tor is based on geometric and textural information and is populated in a similar way

as Spin-Images. Diffusion Flow Signatures do not depend on an accurate estimate

of the surface normal using local information which can make the population of the

descriptor inconsistent. Combining both of these techniques for feature extraction

and description with the matching process which weights the quality of each fields

contribution to the descriptor and using the Optimal Linear Translation and Attitude

Estimator to obtain relative motion estimates, results in well conditioned sets of 3D

correspondences can be used and post-filtered to obtain accurate motion solutions

even in the presence of field variations and sampling variations. A byproduct of the
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statistical analysis of OLTAE residuals is a covariance estimate of (i) the model and

(ii) the translation and rotation coordinates.

How can local geometry and texture be combined to allow point based

descriptors to enable rigorously linear six degree of freedom relative mo-

tion estimation?

The combination of Multi-Field Multi-Scale feature extraction and Diffusion

Flow Signatures has been shown to consistently provide a robust set of object space

3D correspondences which provide a well conditioned least squares problem to the

Optimal Linear Translation and Attitude Estimator. Using OLTAE to determine the

relative motion results in rigorously linear estimates of the parameters describing the

relative rotation and translation of the sensor system and observed object. Further-

more, the residual statistics provided by the OLTAE algorithm are an effective tool

which can be used to monitor the confidence in the obtained motion solution as well

as reject scans in the worst case where motion can not be estimated to specified accu-

racy requirements. An important aspect of this approach proved to be the robustness

of the multi-field approach which was able to provide useful features to track even

in the presence of discontinuous surfaces, different materials, and extreme variations

in lighting conditions. For most state of the art vision techniques, lighting is still a

problem and surfaces are expected in the algorithm assumptions to have Lambertian

behavior. This is not a requirement of the methods presented here.

Does the addition of direct range measurement allow for significant

increases in precision or robustness?

Yes, direct range measurements, if incorporated into the construction of the

scale space allow for the information regarding the quality of the sampling along the

surface to drive the feature extraction process. This allows a for the identification

of features which reside on meaningful structure on the measured object and can be
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effective in preventing the extraction of features which reside near significant depth

discontinuities. By knowing the range to extracted multi-scale features it is easy

to define an object space scale which must be closely matched in order to correctly

associate features. This is in contrast to Scale Invariant Features which are subject

to matching features at any two dimensional scale. Finally, having the range to each

extracted feature on the surface allows for simple and effective motion estimation to

be based on 3D to 3D correspondences which reduces the number of required feature

matches. This is important for spacecraft proximity operations where objects can

have very few unique features.

Can the combined scale space analysis of 3D object space manifolds

and associated texture along with the application of Multi-Field Diffu-

sion Flow Signatures result in robust motion estimation for real data in

proximity operations?

Yes, the methods developed in this dissertation have been shown to provide

consistent performance on simulated and real data. The partial circumnavigation ex-

periment demonstrated that multi-field object space feature extraction and matching

is possible even in the presence of significant variations in lighting conditions. The

use of combined geometric and textural scale space analysis proves to be a key tool in

enabling autonomous spacecraft proximity operations. With zero a priori knowledge

of the object to be measured, Multi-Field Multi-Scale feature extraction and descrip-

tion by Multi-Field Diffusion Flow Signatures were successfully applied to register 27

independent scans of a 1/10th scale Hubble Space Telescope model with a maximum

root mean square error of 12 millimeters. The mean RMS error was approximately

6 millimeters which is comparable to the accuracy of the LIDAR sensor itself. A

close-up of the resulting final model is shown in figure 118.

The stated goal of this dissertation was to develop a feature detection and track-
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Fig. 118: The final model resulting from autonomous feature tracking using MFMS
features and OLTAE residual post filtering.

ing approach which (i) localizes features based on uniqueness in multiple data sets,

(ii) encodes the true feature scale(s), (iii) is robust to photometric variations, (iv)

can find trackable locations in the absence of texture, and (v) consistently samples

local geometry in the construction of its descriptor. Multi-Field Multi-Scale feature

extraction does indeed localize features based on uniqueness in multiple data sets.

In fact, it can easily be extended to include more than the three fields used in the

examples of this dissertation. By generalizing the extrema detection process to iden-

tify the local minimum and maximum values of diffusion flow velocities the same

approach was shown to find unique features which can have geometric or textural

meaning, or both. The range was used to associate a measured object space scale

to associate with each keypoint in order to significantly reduce the number of neces-

sary feature comparisons performed to determine 3D point correspondences. In the

partial circumnavigation experiment MFMS feature extraction and matching using
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Diffusion Flow Signatures proved to be robust to significant photometric variations

including in the visible light field near saturation conditions. The extracted features

were localized frequently on meaningful object structure even when the textural in-

formation decreased as the image of the surface became quite bland, the range field

still provided meaningful feature points. Finally the construction of the Diffusion

Flow Signatures was not dependent on the local estimation of geometric properties,

and therefore provided a consistent construction of a local descriptor which proved

to be robust to variations in observation conditions.

This dissertation has made the following important contributions:

• A meshless approach to combined Scale Space analysis of LIDAR and camera

measurements.

• A combined multi-field, multi-scale (MFMS) feature detection process which

defines its descriptor in the object space and is robust to noise and lighting

variations.

• Statistical characterization of the resulting feature’s OLTAE residuals to select

the most consistent and accurately localized set of multi-field multi-scale interest

points.

• The connection between surface evolution by mean curvature flow and scale

space analysis of images embedded on 2D manifolds is demonstrated and applied

to raw 3D data.

• A software pipeline which allows interactive scale space analysis of range data

and camera imagery as well as enables the visualization of the extracted features

and constructed models.
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• Experimental results on real data have demonstrated Multi-Field Multi-Scale

features capability to enable simple examples of spacecraft proximity operations.

Also unique to this dissertation was the method developed to evaluate two dimen-

sional scale-space feature extraction techniques in the object space using associated

3D correspondences and the Optimal Linear Translation and Attitude Estimator. Us-

ing this approach to evaluate feature extraction and matching techniques with the end

goal of supplying well conditions sets of point correspondences to a motion estimator

is an effective way to test developed detection methods, matching algorithms, feature

localization, and robustness to several variations in the data. Scale space analysis

of textured range data is complex and there are several design choices necessary in

the design of an algorithm to be used to enable feature extraction and tracking for

spacecraft proximity operations. The software package developed in this dissertation

was intended allow a user to not only perform feature extraction and matching in

a laboratory setting using a scanner and camera, but also to vary parameters and

thresholds as well as interact with the constructed scale spaces and extracted fea-

tures. Along with many other facets of my continuing work related to the extension

of scale-space techniques to multi-sensor systems, this software will continue to be

developed and improved.

B. Remaining Questions and Future Work

The extension of scale space techniques to multi-field 3D data is still a new and

developing area of research. While much utility and and potential for significant im-

pact to be made in the area of simultaneous localization and mapping in the space

environment has been demonstrated in this dissertation, there is still much more work

to be done to develop efficient, autonomous relative navigation between a spacecraft
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and an unknown object. While developing the methods used in this dissertation,

many more research questions have been asked than answered. Can unknown objects

be decomposed into feature based models? Are features alone enough to build an

accurate reconstruction of observed objects? Is there an effective means to compress

3D model information that preserves quality features while simplifying texturally

bland or geometrically simple regions? Can a more effective use of scale space tech-

niques be designed which uses the known image space boundaries of and object to

dictate the number of useful scales in a scale space? Given a set of detected features

and their known characteristics can subsequent scale spaces be built which will have

higher probability of sampling the object space at the same spatial frequencies given

a predicted relative motion? Can more complex scanning geometries be effectively

accommodated by this framework? To what degree can this process be accelerated

by a priori knowledge? What is the path to parallelizing this approach given that

the kernel is adaptive and data dependent?

Future efforts are underway and are focused on increasing the efficiency of the

current framework, developing a C based implementation as well as extending the

applicability of this approach to other sensors including infra-red cameras, more com-

plex scanning devices, and recent 3-D cameras such as the Xbox Kinect sensor and

Remote Ultra Low Light Imaging (RULLI) which will be used for rapid prototyping

and demonstration of current and future developments on small spacecraft models. To

achieve effective object tracking and mapping with unknown proximal bodies through

truly unrestricted relative motions, all of the above questions need to be addressed.

A solution which further extends the techniques presented in this dissertation to an

effective operational solution running on a space based platform will be a key contri-

bution towards the end goal of achieving successful autonomous spacecraft proximity

operations. Adding these issues will be the focus of my continuing work.
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