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ABSTRACT 

Degree of Whiteness and Maturity among World Cotton Cultivars. (May 2012) 

Kendra Lyn Gregory, B.S., Abilene Christian University; B.A., Abilene Christian 

University 

Co-Chairs of Advisory Committee: Dr. C. Wayne Smith 

                                Dr. Eric F. Hequet 

 

 

Increased US export of cotton and global competition necessitates that plant 

breeders continue to improve fiber properties of upland cotton, Gossypium hirsutum (L.). 

Cotton cultivars having whiter fibers and more mature fibers are desirable due to 

decreased processing costs. TAM B182-33 ELS (Extra Long Staple) germplasm line of 

upland cotton, and Tamcot CAMD-E, a short staple obsolete cultivar were crossed with 

36 cultivars representing unique germplasm pools from China (12 cultivars), west and 

central Africa (7 cultivars), south Africa (10 cultivars), and the United States (7 

cultivars) that represent distinct germplasm pools.  Parents and F1s were grown in 

College Station, TX, in a Line x Tester design during the summers of 2010 and 2011. 

Seedcotton was harvested by hand (to avoid the presence of thrash particles in the lint 

that could bias the color measurements), deburred and allowed to dry in limited light.  

Cotton samples were ginned on a laboratory saw gin, separated into 2.00 gram 

subsamples, and color measurements were taken using a Konica-Minolta CR-310 

reflectance colorimeter.  Absolute color measurements were obtained in two color 

systems (tristimulus XYZ and CIE L*a*b*).  At the Fiber and Biopolymer Research 
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Institute (FBRI) in Lubbock, TX, 50.0 mg samples of the 38 parents and F1s were used 

to determine maturity ratio (MR), ribbon width (RbWth) and micronaire (Mic) on a 

Cottonscope
®
.  The fibers were cut into 2.0 mm snippets and immersed in an aqueous 

solution containing a surfactant and NaCl.  Approximately, 20,000 snippets per entry 

were analyzed for MR, RbWth and Mic in the Cottonscope
®
 using polarized light.    

General and specific combining abilities for all the variables were calculated from the 

data collected. 

Despite the evident genetic variation from this study for the degree of fiber 

whiteness, the difficulties in the phenotypic screening of this trait and its importance 

relative to other fiber traits are problematic.  At this time, it is not advisable to begin a 

cotton breeding program based upon degree of fiber whiteness. Genetic variation also 

existed for MR, RbWth and Mic among the distinct germplasm pools utilized in this 

study, but it is not advisable to begin a breeding program based on RbWth or Mic.  

However, a cotton breeding program to improve MR would be feasible, especially with 

fast and repeatable measurements from the Cottonscope
®
. 
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CHAPTER I 

INTRODUCTION 

Cotton Color Measurements 

Cotton, Gossypium hirsutum L.,  color is influenced by numerous environmental 

factors including weathering, insects, fungi, bacteria, and contact with cotton leaves, 

soil, oils or greases in the machinery (2001).  Color can be affected by higher levels of 

moisture or temperature during storage of either seedcotton or cotton fibers after 

ginning.  As a result of weathering and bacterial or fungal activity (under high moisture 

conditions) cotton becomes grayer and the fiber strength may be reduced.  This leads to 

poorer processing efficiency and lower dye uptake.  Whiter cottons are preferable since 

such fiber logically would result in textile manufacturers reducing use of bleaching 

agents and other finishing chemicals prior to dyeing, resulting in lower production costs 

and a more environmentally friendly product.  The marketing of “greener” textile 

products may be favorable for textile manufacturers. 

Cotton color grading, prior to the invention of the Nickerson-Hunter cotton 

colorimeter, was accomplished by trained United States Department of Agriculture 

(USDA) cotton color graders.  The number and description of the various cotton color  

grades and classes have changed over the years. The United States Cotton Standards Act 

 

in 1923, established nine grades of white cotton (good ordinary, strict good ordinary, 

low middling, strict low middling, middling, strict middling, good middling, strict good  

middling and middling fair) and seven color classifications for upland cotton (white, 

 

   

This thesis follows the style and format of Crop Science. 



 

 

2 

2
 

blue-stained, gray, spotted, yellow-tinged, light-stained and yellow-stained) (Brown, 

1927).  The color classifications for upland cotton were decreased to only six classes by 

1938 (gray, extra white, white, spotted, tinged and yellow-stained) (Brown, 1938).  

These upland cotton color classifications were decreased again by 1962 to only five 

classes (white, light spotted, spotted, tinged and yellow-stained), but sub-categories of 

gray and light gray were used to denote differences in leaf content in the white class 

(Kohel and Lewis, 1984).  Since 1993, the USDA has maintained 25 official color 

grades for upland cotton, with five substandard color grades (Table 1).  However, only 

15 of the color grades have physical standards applied to them; the remaining grades are 

strictly descriptive standards and as such, are somewhat more subjective in nature 

(2001). 

 

Table 1. United States Department of Agriculture (USDA) cotton color grading 

standards. 

Grade  White Light-spotted Spotted Tinged Yellow-stained  

Good Middling  11* 12 13 --- ---  

Strict Middling  21* 22 23* 24* 25 

Middling  31* 32 33* 34* 35 

Strict low Middling  41* 42 43* 44* ---  

Low Middling  51* 52 53* 54* ---  

Strict Good Ordinary  61* 62 63* --- ---  

Good Ordinary  71* --- --- ---- ---  

Below Grade  81 82 83 84 85 

*Physical standards maintained by the USDA. 
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Human cotton color classers began to be replaced, when Nickerson developed a 

disk colorimeter that was used to prepare cotton grade standards (Nickerson, 1931).  

This disk colorimeter gave color values in the Munsell space (value or lightness, and 

chroma), while hue was not included because cotton was considered to have a constant 

hue (Nickerson, 1931; Rodgers et al., 2008).  Later on, the Nickerson-Hunter reflectance 

colorimeter was developed in 1948 to replace human cotton classers.  It was 

standardized for readings on a 2-D scale for Rd (reflectance) and +b (yellowness) values 

that would classify the cotton sample into one of the USDA color grades (Nickerson et 

al., 1950). Rd measures the degree of lightness or darkness, while +b measures the 

amount of yellowness or blueness in a cotton.   In  colorimetric machinery, Rd values 

range from 40 to 90%, while +b values range from 0 to 20 (Nickerson, 1951).  The third 

measurement typically associated with color grading (redness or greenness) was 

discounted for inclusion in the cotton grading system because it was determined to not 

contribute to statistical correlations between the USDA cotton grades and the calibration 

standards. 

A two digit coding system was developed to correspond to the traditional USDA 

cotton color grades.  The first digit referred to the grade number associated with grade 

names (good middling, strict middling, middling, strict low middling, low middling, 

strict good ordinary, and good ordinary), and the second digit referred to the cotton color 

classes (white, light-spotted, spotted, tinged and yellow-stained).  Since 2005, the USDA 

color grade includes subdivisions and a third digit that correspond to differences within 

each particular color grade or the color quadrant.  A two digit color grade and a single-
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digit color quadrant are reported by locating the intersection of the High Volume 

Instrument (HVI) Rd and +b values on a two dimensional plane (USDA, 2005) (Figure 

1). 

 

Figure 1. United States Department of Agriculture – Agricultural Marketing Service 

(USDA-AMS) High Volume Instrument (HVI) colorimeter chart. 
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While Rd and +b have been used in the United States for many years as cotton-

specific color measurements, this color system is not as prominent in international cotton 

market where human grading is still prevalent.  Other industries such as plastics, food 

science or man-made fiber textiles use more internationally accepted color systems.  Of 

particular concern to those who work in the cotton industry is the fact that Rd and +b 

standards are not recognized officially by the National Institution of Standardization and 

Technology (NIST) (Rodgers et al., 2006; Rodgers et al., 2008).  As such, there is no 

“traceability” associated with the cotton color standards that are maintained by the 

USDA.  All US HVI colorimeters are standardized to a master colorimeter, which is 

housed in Memphis, TN, at the Cotton Program’s Standardization and Engineering 

branch.  This master HVI colorimeter is recalibrated to new calibration cottons and 

ceramic tiles every 3 or 4 years.  Unfortunately, there is no concrete evidence that these 

cotton color standards used for calibration are not drifting from year to year. 

Research has improved the consistency of cotton color classification and 

supports a switch to a more internationally recognized color system, such as the XYZ or 

L*a*b* system that was developed by the International Commission on Illumination 

(CIE).  Statistically significant correlations between Rd and +b to the L*a*b* color 

system (including DEab*) and the L C H color system have been reported (Xu et al., 

1998a; Rodgers et al., 2006; Rodgers et al., 2008; Matusiak and Walawska, 2010; 

Rodgers et al., 2010).  Even though scientific evidence exists to support the transition of 

the cotton color grading system to a more well-known system (XYZ or L*a*b*), such 

change has not occurred.  And yet with all these studies, the environmental influences on 
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cotton fiber samples were not partitioned out in order to better understand the genetic 

aspects associated with cotton whiteness. 

Fiber Color Determination 

A reflectance colorimeter was incorporated into the HVI machines during the 

1970s, but it was not until the 1990s that the Rd and +b values were used by the USDA 

in cotton color classifications.  A 227g sample of fibers are taken from every bale of US 

cotton, with which USDA Agricultural Marketing Service (AMS) Cotton Classing 

Offices determine  HVI  fiber properties (upper half mean length (UHML), length 

uniformity index (UI), fiber bundle strength, micronaire and color). The HVI reflectance 

colorimeter specifically measures the Rd and +b values associated with the cotton color 

classification because of the historic use of the Nickerson-Hunter reflectance colorimeter 

(Nickerson et al., 1950).   

Despite the fact that the Rd and +b cotton color grading system has been widely 

adopted and used throughout the US since its inception, this color grading system is  too 

specific to cotton color classification to have substantial meaning for those outside of the 

cotton or textile industry.  The current standards for HVI cotton colorimeters are 

reference ceramic tiles provided by the USDA-AMS, which are not recognized by the 

NIST as scientifically appropriate standards (Rogers et al., 2008).  Studies have been 

conducted to determine the feasibility of developing “traceable” cotton color standards 

(either ceramic tiles) by reporting inter-instrument agreement on a subset of 

spectrophotometers; while they demonstrated that inter-instrument agreement is 

possible, the use of glass between the cotton fibers and the machines diminished that 
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agreement (Rodgers et al., 2006; Shofner et al., 2006).  The AMS system is a 2-D color 

grading system that does not take into consideration the redness or greenness component 

(Xu et al., 1998b). A more internationally recognized color grading system (XYZ or 

L*a*b*) for use in cotton color classification or HVI testing has been proposed by 

several researchers (Xu et al., 1998a; Xu et al., 1998b; Shofner et al., 2006; Rodgers et 

al., 2006; Rodgers et al., 2008; Rodgers et al., 2010).  They suggested that the CIE 

L*a*b* color system should be used because of its already established usage in several 

international industries and because of its effectiveness in mathematically representing 

color as perceived by the human eye.  

Three components are essential for the perception of light by a machine or a 

human eye.  First, light, and its spectral energy, is required for color perception.  Second, 

an object is required that in some way modifies the spectral energy.  Objects of varying 

colors will modify the spectral energy in different manners, allowing for the perceptions 

of these differences.  And third, a receptor (either an eye or a photodetector) is necessary 

to absorb the modified spectral energy and interpret it in a meaningful way (HunterLab, 

2008).  There exist a variety of color systems that mathematically represent aspects of 

the color of an object, and these color systems have been improved over time relative to 

their accuracy at representing color in numerical terms. 

Most color systems attempt to address three specific aspects of color 

measurement: hue, lightness and saturation.  Hue is the predominant color as it is 

perceived such as red, blue, green etc.  Lightness or reflectance is how light or how dark 

the perceived color is, and saturation is a measurement of the color intensity or chroma 
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(Konica Minolta Sensing, 2007).  Chromaticity incorporates both hue and chroma into 

two coordinates that may be plotted on a 2-D plane.  The third variable typically 

corresponds to the lightness of the object in order to maintain precision in color 

measurement (Konica Minolta, 1991). 

XYZ Color System 

 The XYZ tristimulus values were defined by the CIE in 1931 using color-

matching functions              and      . The mathematical formulas for most of the 

other CIE color systems are derived from the XYZ tristimulus color system (Konica 

Minolta, 1991).  These color-matching functions are the tristimulus values from an equal 

energy spectrum overlaid as a function of a specific wavelength.  The human eye and its 

perception of colors were the basis for the development of the color-matching functions 

in order to shift color measurements from a subjective art to a more objective science.  

Since the XYZ color system is a simple mathematical transformation of the earlier 

developed CIE RGB color system, the tristimulus variables, X, Y and Z do not have 

units. These color-matching functions are utilized for a viewing angle of 4° or less 

(Ohno, 2000). The following formulas are utilized to define the reflected color of an 

object: 
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Where, 

S(λ) = Relative spectral power distribution of the illuminant 

             and       = color-matching functions for CIE 2° Standard Observer 

R(λ) = Spectral reflectance of specimen (Konica Minolta Sensing, 2007).   

CIE L*a*b* Color System 

 A number of different color systems were developed to adapt the tristimulus 

values via non-linear transformations to result in improved perception of colors (Rogers 

et al., 2008).  A chromaticity diagram can be made by transforming the tristimulus XYZ 

values onto a unit plane, where X+Y+Z = 1 in a 2-D diagram.  In this diagram, the color 

of an object is related as the coordinates (x, y) (Ohno, 2000).  Unfortunately, this 

chromaticity diagram does not depict the color of an object uniformly because equal 

distances on the chromaticity diagram do not reflect equal differences in the color 

perceived (Konica Minolta, 1991).  The color measurements are somewhat skewed in 

this non-uniform color system, which can lead to problems in color measurements and 

data interpretations. 

 The CIE also has developed several uniform color grading systems that more 

accurately represent the color perception of the human eye and minimize issues related 

to the non-uniform color systems.  The L*a*b* system, developed by the CIE in 1976, is 

perhaps one of the most common uniform color systems; it utilizes a 3-D rather than a 2-

D coordinate system.  In the L*a*b* system, the L* represents lightness (or reflectance), 

a* represents red/green dimensions and b* represents yellow/blue dimensions.  The L* 

values vary from black (0) to completely white (100), so it can be thought of as a 
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percentage.  A positive a* value indicates a redder color, while a negative a* value 

indicates a greener color.  A positive b* value indicates a yellower color, while a 

negative b* indicates a bluer color (Konica Minolta, 1991).  The L*a*b* values are 

calculated from corresponding XYZ values of a given object and they are corrected for 

by the Xn, Yn and Zn tristimulus values of white point, which depends upon the 

illumination setting used during testing (Ohno, 2000).  The following formulas are used 

to calculate the L*a*b* values from the corresponding XYZ values: 

       
 

  
 
 

      

        
 

  
 
 

   
 

  
 
 

    

        
 

  
 
 

   
 

  
 
 

    

Where, 

X, Y, and Z = tristimulus values XYZ of the object 

Xn, Yn and Zn = tristimulus values XYZ of an ideal reflecting diffuser (Rogers et al 

2008). 

 The Xn, Yn and Zn values depend upon the type of illumination used to measure 

the color of the object.  North sky daylight or average daylight (C illumination) and 

average of noon daylight across the world (D65 illumination) are two of the most 

common illuminations used (HunterLab, 2008).  The Xn, Yn and Zn values for C and 

D65 illumination are listed in Table 2. 
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Table 2. XYZ Tristimulus values for C and D65 illuminations. 
Illumination Xn Yn Zn 

    

C 98.072 100.00 118.225 

D65 95.045 100.00 108.892 

 

 

Reflectance Spectrophotometer and Reflectance Colorimeter 

 The two primary methods of obtaining color measurements for opaque or semi-

opaque objects (such as cotton fibers) are either a reflectance spectrophotometer or a 

reflectance colorimeter.  A reflectance spectrophotometer typically will use 

polychromatic illumination (although some use monochromatic illumination) to separate 

the spectrum of light (between 400 nm and 700 nm) reflected from an object, relative to 

a predetermined standard (AATCC, 2006). The values for the tristimulus XYZ values 

and corresponding values in other color systems may be calculated based upon the 

reflectance values of the object, the spectrum of the illuminant used in the measurement 

and the observer values (Rodgers et al., 2008).  In contrast, a reflectance colorimeter 

uses broad band filters (usually two or three between 400nm to 700nm) that are 

specifically designed for use with one illuminant and one observer angle to directly 

measure the tristimulus XYZ values (AATCC, 2006; Rogers et al., 2008; Rogers et al., 

2010).  With a colorimeter, it is not inherently possible to obtain reflectance spectrums at 

specific wavelengths of light, thus limiting the number of color measurements possible.  

However, the low production costs and portability of reflectance colorimeters make 

them a logical alternative to reflectance spectrophotometers for very specific color 

measurements. 
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Cotton Maturity Measurements 

Cotton fiber whiteness depends upon the quantity of the pigments, the fiber 

diameter, and the wavelengths of light refracted from the cellulose deposition in the cell 

wall.  Cotton fiber maturity is defined as the secondary cell wall development inside an 

individual cotton fiber relative to the fiber perimeter.  Fiber maturity is heavily 

influenced by environmental conditions such as temperature, moisture, heat or drought 

stress.  Even though fiber maturity is of great importance to the textile industry, as of yet 

a fast, inexpensive, and reliable indirect or direct measurement of maturity does not exist 

(Hequet et al., 2006).  Immature fibers inherently are weaker than more mature fibers 

and have a tendency to break during mechanical processing, which increases short fiber 

content (SFC) and  in turn increases negative parameters in yarn quality such as neps 

(entanglements of immature fibers), thick places, thin places and yarn hairiness (Xu et 

al., 2009).  Immature fibers typically do not have enough cellulose to effectively uptake 

dye, causing white specks in the fabric produced (Damian and Xu, 2010). 

Caustic Soda Swelling Test 

Using the caustic soda swelling test to determine fiber maturity, cotton fibers are 

swollen in 18% caustic soda solution and divided into three groups based upon 

appearance under a microscope.  Normal fibers are those fibers that are nearly solid, 

with no or an intermittent lumen and possess well-defined convolutions.  Dead fibers 

have a continuous lumen, and a flat, nonconvoluted secondary cell wall thickening with 

a wall thickness less than one-fifth the fiber ribbon width.  Thin-walled fibers are those 

fibers that do not meet the requirements for the other two groups.  This test usually looks 
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at about 500 fibers and the results are reported in the average percentages of normal (N) 

and dead (D) fibers.  The following equation relates degree of cell wall thickening (θ), 

with the Normal and Dead fibers: 

        
   

   
       (Pierce and Lord, 1939) 

The Maturity Ratio (MR) is [(N-D)/200 + 0.70] and also may be defined as the ratio of 

fibers with 0.5 (or more) circularity divided by the amount of fibers with 0.25 (or less) 

circularity.  A MR of 1.0 indicates an average degree of secondary cell wall thickening 

of 0.577. 

HVI: Micronaire 

 Micronaire (Mic) is a single measurement that is a combination of gravimetric 

fiber fineness and fiber maturity.   Mic may be influenced by environmental conditions 

including sunlight, moisture, temperature and plant population density (2001).  As a 

component of HVI testing, Mic is a relatively inexpensive and quick measurement. For 

upland cotton, Mic should be between 3.5 and 4.9, with the premium range between 3.7 

to 4.2 (Smith and Cothren, 1999). Currently, the textile industry uses Mic to provide an 

approximation of a combined gravimetric fineness/maturity measurement.   Mic is a 

nondestructive testing method.  It determines the relationship between air flow and fiber 

linear density based upon the theory expounded by Darcy’s Law, which was further 

refined by Kozeny (1927).  Kozeny applied these physics theories to textiles by use of 

the following equation: 
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Where, 

S0 = Specific particle surface in cm
2
/cm

3 
 

A = Area of the cross section of the specimen in cm
2
  

ΔP = Pressure difference across the ends of the specimen in g/cm
2
  

μ = Air viscosity at 20° C and 65% relative humidity in 10
-6

 poises 

L = Length of the specimen in cm 

Q = Rate of flow in cm
3
/second 

K = Constant which depends on the shape and arrangement of fibers, (K0/ξ) 

K0 = Factor of shapes of section and flow channels 

ξ = Constant factor for any arrangement of fibers 

ε = porosity or proportion of space unoccupied by material (Hequet et al., 2006) 

In essence, Mic is proportional to the inverse of the square of the specific surface 

of the cotton fibers because nearly every other variable in Kozeny’s derived equation is 

considered to be a constant.  Airflow is passed over the cotton sample, and the porosity 

is used to determine the Mic in the HVI machine (2001).  If the cotton fibers are small, 

then the air flow will be decreased inside the testing chamber, and the fibers will have a 

lower Mic.  On the other hand, if the cotton fibers are large, then the air flow will be 

increased, and the fibers will have a higher Mic. Lord (1956) was one of the first to 

establish the relationship between Mic and a product of cotton fiber maturity and 

fineness, using 100 reference cottons. 

In practical terms for cotton breeding purposes, Mic is not a good representation 

of the complexity associated with the fiber quality trait of gravimetric fineness because it 
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is  strongly impacted by the fiber maturity; Mic fails to distinguish between gravimetric 

fineness and maturity since the two fiber qualities are confounded (Morton and Wray, 

2008; Xu et al., 2009).  Hence, it is theoretically possible that two cotton bales can have 

the same Mic, but have entirely different fiber properties.  A fiber sample with finer, 

more mature fibers could conceivably have the same Mic value as a fiber sample with 

coarser, immature fibers (Hequet et al., 2006; Abbott et al., 2010).  Finer and more 

mature cotton fibers will produce a finer quality yarn (Abidi et al., 2007).   

Image Analysis: Fiber Maturity and Perimeter 

Microscopic image analysis of cotton fiber cross-sections provides the most 

accurate and direct measurement of fiber maturity and perimeter, and is used as the 

preferred reference method for fiber maturity (Hequet et al, 2006).  When Pierce and 

Lord (1939) conducted research to determine a relationship between fiber maturity, 

gravimetric fineness and Mic, they established this relationship based upon two 

methods: measurements of swollen fibers treated with sodium hydroxide and gravimetric 

fineness determined by fibers that were cut into 1cm segments, weighted and counted.  

When using image analysis for cross-sectional fiber maturity measurement, two 

discrete steps are involved: making the fiber cross-sections and the image analysis.  

Fiber cross-sectioning procedures must result in usable fiber samples that can be imaged 

by the appropriate computer software.  The fiber cross-sections can be produced by 

embedding a bundle of parallel fibers in a mixture of hardening solution and polymer 

resin, such as methacrylate. The bundle of fibers in the methacrylate is then polymerized 

under ultraviolet (UV) light (Boylston et al., 1993; Boylston et al., 1995).  The fiber cross-
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sections are cut perpendicular to the longitudinal axis with a diamond knife into 1μm 

slices. A microscope and appropriate computer imaging software are used to determine 

the fiber maturity and cell wall perimeter via refracted light (Xu and Huang, 2004).   

Cross-sectional image analysis is a highly reproducible method of cotton fiber maturity 

measurement, but it is tedious, slow and expensive (Hequet et al., 2006).  Thus, while 

this method of determining fiber maturity is important as a reference method for 

validation of other measurement methods, it is impractical to use it on a commercial 

scale. 

AFIS: Maturity and Fineness 

Advanced Fiber Information System (AFIS) provides a direct gravimetric 

method for measurement of cotton fiber fineness in units of mass per unit of length. 

AFIS measures fiber maturity using optical signals that are interpreted by computer 

algorithms to determine the size and shape of each individual fiber. It enables the testing 

of individual fibers in order to obtain more precise and accurate measurements.  Despite 

the advantage of AFIS maturity and fineness to HVI Mic, AFIS is slower and more 

expensive.  AFIS measurements are not feasible on a large industry-wide scale because 

of the impracticalities associated with its decreased speed and higher cost.  

Longitudinal Measurements  

In pursuit of a rapid, but accurate measurement of cotton fiber maturity that does 

not have the confounded problems associated with Mic, Xu et al. (2009) suggested that 

fiber maturity may be predicted by the fiber ribbon width (RbWth) (fiber convolution) 

and translucency (secondary cell wall thickness).  Cotton fibers twist along their 
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longitudinal axes and when depicted in a 2-D image, the fiber convolutions will 

demonstrate large variations in RbWth.  The more immature the fiber snippet is, the 

more variable its cross-section shape is (linear shape, U shape, etc.). It translates into 

greater variability in RbWth when projected in a 2-D image (Xu et al., 2009). 

Fiber Image Analysis System (FIAS) is a microscopic image analysis system that 

was developed to measure both cross-sectional and longitudinal measurements of cotton 

fibers snippets (Damian and Xu, 2010).  The sample preparation for the FIAS is 

automated and takes a matter of seconds instead of days for cross-sectional image 

analysis.  Direct and indirect fiber fineness and maturity data may be obtained from the 

FIAS measurements.  Xu et al. (2009) could not accurately predict θ based solely upon 

RbWth because RbWth is related to both fiber maturity and fiber diameter.  Damian and 

Xu (2010) reported a lack of correlation between cross-sectional fiber maturity values 

and longitudinal measurements, which they attributed to the differences in preparation 

methods and the miscounted dead or immature fibers from cross-sectional image 

analysis.  They proposed to either combine RbWth measurements with translucency or 

Mic values to obtain a better estimate of fiber maturity.  However, such a confounded 

indirect measurement of maturity results in other problems already addressed in this 

work. 

Cottonscope
® 

 The Cottonscope
®
 is a relatively new invention developed by the Commonwealth 

Scientific and Industrial Research Organisation (CSIRO) in Australia (Rodgers et al., 

2012). It uses polarized light to determine cotton fiber maturity on fiber snippets and 
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uses a computerized system to agitate an aqueous solution containing the snippets in 

order to assess cotton fiber fineness.  While the Cottonscope
®
 is still considered to be a 

prototype, it potentially will provide more accurate and repeatable measurements of 

cotton fiber maturity and fineness.  A study conducted by Rodgers et al. (2012) 

determined that the Cottonscope
® 

demonstrated good agreement with image analysis and 

microscopy methods for fiber fineness and maturity measurements. That information 

would be of value to cotton breeders as they develop new cultivars with enhanced fiber 

properties. 

 The precursor to the Cottonscope
®
 was the Cottonscan

TM
, also developed by the 

CSIRO. The Cottonscan
TM

 utilized computer algorithms to measure the fiber linear 

density by directly measuring the total length of a known mass of cotton fiber fragments 

to extrapolate a mass per unit length (Abbott et al., 2010).  In a study conducted by 

Abbott et al., the Cottonscan
TM

 demonstrated a larger within-sample variation than 

between-machine effects and the only statistically significant differences between 

machines were found for extremely coarse cottons. The Cottonscan
TM

 was upgraded to 

reduce the sample processing time (from 6 minutes to only 1 minute), and these 

upgrades did not adversely affect the performance (Abbott et al., 2011a; Abbott et al., 

2011b; Abbott et al., 2011c). Unlike the Cottonscope
®
, the Cottonscan

TM
 only measures 

fiber fineness and not MR, RbWth, and Mic. 

 The precursor to the Cottonscope
®
 in measurement of cotton fiber maturity was 

the SiroMat
TM

, also developed by CSIRO.  It measures cotton fiber maturity through the 

use of polarized light microscopy (Long et al., 2010).  Polarized light and the resulting 
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interference colors have been used to determine relative fiber maturity for some time, 

but this measurement of fiber maturity has been considered to be too subjective because 

the color assessments were human estimates (Schwarz and Hotte, 1935).  The SiroMat
TM

 

(and now the Cottonscope
®
) overcame this subjectivity in testing by introducing a color 

charged couple device (CCD) camera and computer software with specially designed 

algorithms to assess the inference colors of the fiber snippets (Long et al., 2010). 

General and Specific Combining Abilities 

 Sprague and Tatum first used general combining ability (GCA) “to designate the 

average performance of a line in hybrid combinations” and specific combining ability 

(SCA) “to designate those cases in which certain combinations do relatively better or 

worse than would be expected on the basis of the average performance of the lines 

involved” (1942).  More specifically, GCA of a line should be understood as a deviation 

from the mean of all the mean performances of all of its crosses; thus, it is the average 

performance of all the F1s with this specific line as one parent stated as a deviation from 

the overall average performance of every F1 (Falconer and Mackay, 1996).  The GCA of 

a given genotype has no practical meaning associated with it unless this genotype is 

compared in relation to other genotypes and the tester and environment are specified 

(Henderson, 1952). Unless the genotypes involved in an experiment have been chosen at 

random, GCA and SCA measurements are relative and solely dependent upon the 

genotypes involved in a particular mating design, such as a diallel or Line x Tester 

design (Griffing, 1956; Bartolome and Gregorio, 2003). 
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The GCA values obtained in an experiment generally reflect the additive 

variances of the lines involved for the traits of interest, while the SCA values obtained in 

an experiment generally reflect the dominant variances of the lines involved for the traits 

of interest (Sprague and Tatum, 1942).  A larger GCA value indicates if a particular line 

is either better or worse than the overall average performance of the combined lines, thus 

indicating that the genes involved in the quantitative trait of interest are primarily 

additive in nature.  A low SCA value indicates that the hybrid performed as it was 

expected to perform based upon the average GCA estimates of the two parents.  On the 

other hand, a large SCA value indicates that a hybrid either performed better or worse 

than expected based upon the average GCA estimates of the two parents, leading to the 

conclusion that the genes involved in the quantitative trait of interest are primarily 

dominant or epistatic in nature.  Fehr (1991) reported that top-cross tests, also known as 

Line x Tester designs, generally should be used in preliminary testing of germplasm to 

gauge the GCAs of the lines, while single-cross tests should be used in later generation 

testing to more accurately determine SCA estimates of specific superior hybrids. 

As general and specific combining abilities are related in terms of a Line x Tester 

experimental design, their general definitions are as follows: GCA is the average 

performance of a line in all its hybrid combinations compared to the performance of all 

hybrids, while SCA is the deviation of the observed hybrid performance from the 

expected parental performance.  The expected parental performance is defined using the 

GCAs of both parents (the average contribution of both parent 1 and parent 2 to the 
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hybrid) in addition to the average performance of all hybrids (Falconer and Mackay, 

1996; Bartolome and Gregorio, 2003). 

Research Objectives 

1. Determine degree of whiteness, MR, RbWth, and Mic in the phenotypes of 36 

world cultivars collected from 3 continents and their F1 progenies. 

2. Evaluate parents and F1s in a Line x Tester design to determine general and 

specific combining abilities for the degree of whiteness, MR, RbWth, and Mic. 
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CHAPTER II 

MATERIALS AND METHODS 

 The 36 parents used as females (or lines) in this study represent unique upland 

cotton germplasm pools from different geographic regions of the world.  Of the 

accessions in the US cotton germplasm collection, 12 accessions from China, 7 

accessions from west or central Africa,  and 10 accessions from south Africa were 

chosen as representative of the genetic diversity from their specific geographic region.  

Table 3 lists the cultivars with their respective geographic regions and plant inventory 

(PI) numbers. All of these cultivars were added to the US cotton germplasm collection 

between 1953 and 2001. Non-transgenic commercial cultivars developed in the US were 

also included as representing recent germplasm that are currently under US Plant Variety 

Protection (PVP), except for Del Cerro an obsolete US cultivar, and as such are not 

currently available from the US Cotton Germplasm Collection (Hinze et al., 2012).  

These US commercial upland cultivars were developed after 1990, except Del Cerro.    
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Table 3. Plant Inventory (PI) numbers and Geographic groupings for 36 upland lines and 

2 upland testers. 
 

Genotype Geographic area 

 

PI number 

   

Females 

China 632 China PI451750 

Chung Mein-Jue #7 China PI529467 

Duck Shelter China PI452101 

Jiangsu #3 China PI452103 

Kang Bin Chang Mienne China PI433732 

Lintsing Sze Tze 4B China PI528889 

Lishan Big Boll China PI452105 

Nanging #12 China PI529483 

Pengze China PI529486 

Shan 5245 China SA-3203 

Small Leaf China PI438958 

Zhong Mian Suo 9 Hao China SA-3207 

Allen 333 West Africa PI392289 

Allen 333-61  CB 4027 West Africa PI529302 

BJA 592 West Africa PI529492 

F 280 West Africa PI529383 

Funtua FT-5 West Africa PI607222 

PAN 575 West Africa PI529385 

Reba W 296 West Africa PI529387 

A 7215 South Africa PI529054 

A-637-33 South Africa PI408999 

ALA 70-11 South Africa PI529332 

Albacala 7 South Africa PI529319 

BPA 68  CB 4030 South Africa PI529305 

Komati South Africa PI607192 

Limpopo South Africa PI607199 

Marico (Smooth) South Africa PI607197 

Sabie South Africa PI607193 

UK 64 South Africa PI407455 

Acala 1517-99 US PI612326 

Del Cerro US PI414135 

Deltapine 491 US PI618609 

Phytogen 72 US PI617043 

ST 474 US PI578877 

Tamcot 22 US PI635877 

Tejas US PI591047 

   

Males 

TAM B182-33 ELS US PI654362 

Tamcot CAMD-E US PI529633 
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The two parents used as males, or testers, in this study were TAM B182-33 ELS 

(Extra long staple) and Tamcot CAMD-E.  The US Cotton Germplasm Collection 

maintains historical records of its various accessions.  However, the pedigrees and 

breeding histories of the parents (from Africa and China) used in this study as females, 

or lines, are nebulous and incomplete (Hinze et al., 2012).  It is assumed that these 

accessions were derived from pedigree-type breeding programs. The genetic 

backgrounds of the US cultivars are well-documented and understood.  In particular, the 

genetic backgrounds of the two testers are as follows: 

 

TAM B182-33 ELS: TAM 94L-25/PSC 161 (Smith et al., 2009). 

Tamcot CAMD-E: MDR.SP7-67/17M2/ / SP46-67/17M2 (Bird, 1979). 

 

 The parents were crossed during the summers of 2009 and 2010 in a Line x 

Tester mating design as described by Kempthorne (1957).  All the parents and F1 

progenies were grown in a randomized complete block design with three replications at 

the Texas A&M University AgriLife Research Farm near College Station, TX, during 

the summers of 2010 and 2011.  The parents and F1s were planted on April 27, 2010 and 

on April 18, 2011, respectively, with skips replanted on May 10, 2011.  Plots were a 

single row, 6.1m x 1.0m.  After plant establishment, the plots were thinned to one plant 

approximately every 10cm.  Soil type at Texas A&M University AgriLife Research 

Farm was a Westwood silt loam, a fine-silty, mixed thermic Fluventic Ustochrept, 

integraded with Ships clay, a very fine, mixed, thermic Udic Chromustert.  Agronomic 
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practices common to cotton production in the region were utilized such as furrow 

irrigation and periodic pesticide and herbicide treatments. 

 Five boll samples per entry per replication were harvested as the bolls matured 

(defined as sutures cracked naturally or under human hand pressure).  First position bolls 

between the 5
th

 and 10
th

 main stem fruiting branches (middle fruiting zone) were 

selected preferentially, yet a limited number of second position bolls were harvested as 

necessary to compensate for missing first position bolls.  The bolls were harvested in this 

manner in order to minimize any environmental influences that could bias the color 

measurements and to avoid the presence of thrash particles in the lint.  The bolls were 

deburred the night after harvest in limited light.  Any bolls that had insect, bacterial or 

fungal damage (typified by yellowish or greenish tints to the cotton fibers) were 

discarded and replaced. 

 The seedcotton was allowed to air dry in limited light for at least 72 hours.  The 

five bolls were combined and ginned on a table-top laboratory saw-gin without lint 

cleaners.  Fibers were separated into 2.00g subsamples.  Absolute color measurements 

were taken on a Konica-Minolta CR-310 reflectance colorimeter in two color systems 

(XYZ and L*a*b*) using D65 illumination.  Each subsample of randomly oriented fibers 

was placed in a measurement container beneath 5 mm thick glass that applied constant 

pressure to the subsample. Use of a layer of glass is recommended when measuring 

cotton color to present a compressed surface to the measuring head (Rogers et al., 2010).  

Four repetitions of each subsample were measured. Each repetition was taken after a 90° 

rotation of the colorimeter measuring head.   The values obtained from repetitions per 
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subsample and across subsamples per entry were averaged together before statistical 

analysis.   

Calibration plate readings were taken between every eight experimental 

subsamples and two calibration cotton samples.  Calibration plate readings were taken 

after ten subsample measurements in the following order: calibration plate, four 

experimental subsamples, one calibration cotton sample, four experimental subsamples, 

one calibration cotton sample and another calibration plate reading. The calibration 

cotton readings were averaged together for each consecutive day of testing to ensure the 

stability of the CR-310 reflectance colorimeter. The calibration plate readings were used to 

provide correction to the experimental subsample measurements by use of the following 

formula:    
         

 
    , where 

M = measured value of the subsample 

PrCP = previous calibration plate reading 

PoCP = post calibration plate reading 

RV = reference value for calibration plate 

Cotton fiber maturity measurements on all parents and F1s from both consecutive 

years were taken at the Fiber and Biopolymer Research Institute (FBRI), based in 

Lubbock, TX, from January 9, 2011 to January 20, 2011 using the Cottonscope
®

.  The 

cotton samples were allowed to equilibrate to the constant atmospheric conditions of the 

FBRI (20° C and 65% relative humidity) for a period of 48 hours.  A sample of 50.0mg 

was utilized from each entry from both field years of the experiment.  The fibers were 

cut using a guillotine system developed for the Cottonscan
TM

 (Abbott et al., 2010; 
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Rodgers et al., 2012) into 2.0mm snippets and immersed in an aqueous solution 

containing a surfactant and NaCl.  Approximately 20,000 snippets per entry were 

analyzed for MR, RbWth and Mic in the Cottonscope
®
 using polarized light.  An 

average value for each variable was obtained, and each sample was read by the 

Cottonscope
®
 twice.  These two replicates were averaged together to obtain a single data 

set for each variable. Since the Cottonscope
®
 is a prototype machine, three calibration 

cottons were read with three repetitions at the start and conclusion of daily testing.  The 

calibration cotton readings were averaged together for each consecutive day of testing to 

ensure the stability of the Cottonscope
®
, despite some daily fluctuations for the 

calibration cottons.  

The General Linear models procedure of SAS was used to conduct the analysis 

of variance (ANOVA) with years, genotypes, lines and testers considered fixed effects 

(SAS Institute Inc., SAS 9.2, Cary, NC).  GCAs for parents and SCAs for their F1 

progenies were obtained for XYZ and L*a*b* color systems and maturity measurements 

(MR, RbWth and Mic) from the means squares of the ANOVA. GCAs and SCAs were 

calculated using the formulas as described by Singh and Chaudhary (1979). The GCAs 

and SCAs were determined to be significant at a 95% confidence interval, if they fell 

outside of an interval including two times the appropriate standard errors as calculated 

by the formulas of Singh and Chaudhary (1979).  The GCAs and SCAs were determined 

to be significant at a 99% confidence interval, if they fell outside of an interval including 

three times the appropriate standard errors. 
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Because only two testers were used in the experiments reported herein, if there 

was a significant Line x Tester interaction, then only the SCAs of the F1 progenies are 

reported. The GCA values should not be calculated with only one tester represented in a 

data set, since the value would simply be a SCA.  If there was not a significant Line x 

Tester interaction, then only the GCAs of the lines and testers are reported because the 

corresponding SCAs would not deviate from the expected F1 values based upon the 

GCAs of both parents. GCA and SCA values combined over years give a more 

appropriate representation of the combining abilities of the different lines and testers as 

opposed to separating out GCA and SCA values based upon significant year interaction 

terms. 
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CHAPTER III 

RESULTS AND DISCUSSION 

Machinery Stability 

  Based on findings by Montgomery (1985), the exponentially weighted moving 

averages for L*, a*, b*, MR, RbWth, and Mic were obtained to document the accuracy 

of both the reflectance colorimeter and the Cottonscope
®
 during the periods of testing.  

The exponentially weighted moving averages for L*, a*, b*, MR, RbWth, and Mic for 

2010 and 2011 are shown in Figures 2-7.  The two separate periods of color testing were 

combined to validate the overall calibration procedures which occurred between the two 

testing periods.  The Cottonscope
®
 testing for the cotton samples from both years 

occurred simultaneously, so an overall calibration procedure did not occur.  By use of 

the exponentially weighted moving averages, both large and small drifts in the values of 

the calibration cottons are revealed.  The overall trends in the stability of both the 

reflectance colorimeter and Cottonscope
®
 confirm the experimental findings discussed 

herein.  The boundary lines (dotted lines) above and below the mean (solid line) in all 

the figures correspond to three standard deviations away from the mean values.  The 

intervals that encompass three standard deviations from the respective mean for all the 

variables are narrow (Table 4).  These intervals were calculated using the following 

formula:              ].  

 The trends of both L* and a* demonstrate some fluctuations among days of 

testing for the reflectance colorimeter, which may indicate some instability within the  
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Figure 2. L*, reflectance, exponentially weighted moving averages versus time for 

standards analyzed on the Konica-Minolta CR-310 reflectance colorimeter. 

 

 
Figure 3. a*, redness/greenness, exponentially weighted moving averages versus time for 

standards analyzed on the Konica-Minolta CR-310 reflectance colorimeter. 
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Figure 4. b*, yellowness/blueness, exponentially weighted moving averages versus time 

for standards analyzed on the Konica-Minolta CR-310 reflectance colorimeter. 

 

 

 

Figure 5. Maturity Ratio (MR) exponentially weighted moving averages versus time for 

standards analyzed on the Cottonscope
®
. 
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Figure 6. Ribbon-width (RbWth) exponentially weighted moving averages versus time 

for standards analyzed on the Cottonscope
®
. 

 

 
Figure 7. Micronaire (Mic) exponentially weighted moving averages versus time for 

standards analyzed on the Cottonscope
®
. 
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Table 4. Range of Konica-Minolta CR-310 reflectance colorimeter  

and Cottonscope
®
 measurements for cotton standards.  

Trait Range 

L* 1.24 

 (σ = 0.21) 

a* 0.96 

 (σ = 0.16) 

b* 0.80 

 (σ = 0.13) 

MR† 0.13 

 (σ = 0.02) 

RbWth 0.40 

 (σ = 0.07 μm) 

Mic 0.96 

 (σ = 0.16) 

 † MR, Maturity Ratio; RbWth, Ribbon Width; Mic, Micronaire. 

 

 

machine itself, but these fluctuations do not go beyond the bounds of the upper 

confidence limit (UCL) and lower confidence limit (LCL), making it reasonable to 

conclude that the colorimeter is consistent in measuring these color values.  The trend 

for b* begins below the LCL at the start of testing in 2010 and ends above the UCL at 

the end of testing in 2011.  It is difficult to definitively explain the reason for this trend 

in the exponentially weighted moving averages for b*, but perhaps the machine was not 

entirely stable for this color value.  More likely, the calibration cottons may have 

yellowed in storage between the testing periods from 2010 to 2011 despite precautions 

taken to ensure the maintenance of the calibration cottons. 
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In contrast, the trends for MR, RbWth and Mic are extremely stable with 

minimal fluctuations around the mean lines.  These results demonstrate the possibility 

for the Cottonscope
®
 to be a reliable and efficient means of obtaining fiber maturity and 

fineness information as demonstrated by Rodgers et al. (2012).  Although, as the 

Cottonscope
®
 is simply a prototype, further calibration and standardization may be 

required before it has the potential to accurately measure fiber maturity and fineness 

without the increased preparation time and cost associated with AFIS testing. 

XYZ Color System 

 The data sets for the tristimulus X, Y and Z values all failed to meet the 

underlying assumptions of homogeneity and normality for ANOVA.  Therefore a data 

transformation (to the x
6
) was applied to the data sets for X, Y and Z.  These 

transformations resulted in nonsignificant p-values for the Bartlett and Shapiro-Wilks 

tests of homogeneity and normality.   

All genotypes differed significantly (p < 0.001) for the tristimulus X, Y and Z 

values (Table 5).  Specifically, the Parents, F1s, and Parents vs. F1s significantly differed 

(p < 0.001) for the X, Y and Z values.  The ANOVA table did not reveal any significant 

genotype x year interactions, except for F1s x year (p < 0.05) for tristimulus values X 

and Y as well as line x year (p < 0.05) for all the X, Y and Z values.  The results were 

combined from both years for further analysis, but also the means were separated out by 

year based on the significant year interaction terms.  For all three variables, the line x 

tester interaction was significant (p < 0.05), indicating that the 36 lines combined 

differently with the 2 testers in both years.  Therefore, only the SCAs of the F1s are 
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appropriate for discussion, since it would be duplicative to report also GCAs for the lines 

for each tester.   

For both X and Y tristimulus values, line and tester were significant at p < 0.05.  

Yet for the Z values, line and tester were significant at p < 0.01 and p < 0.05, 

respectively.  These significant values may be attributed to using the line x tester 

interaction term as an error term for line and tester, as described by Singh and 

Chaudhary (1979), which has fewer degrees of freedom. An error term with fewer 

degrees of freedom decreases the power to detect statistical differences among lines and 

testers.  Due to the significance of genotype, parents, parents vs. F1s and F1s, it is logical 

to conclude that there is genetic variation for X, Y and Z among the 36 lines and 2 

testers used in this experiment. 
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Table 5. Mean squares for tristimulus XYZ values for 38 world upland cultivars and 

their F1 progeny grown under irrigated field culture near College Station, TX in 2010 

and 2011. 

Source df X
 

Y Z 

Year 1 199.7913 233.726 1761.1015 * 

[Rep(Year)]† 4 105.7142   209.647  115.6400  

Genotype 109 94.8260 *** 199.819 *** 136.5066 *** 

       Parents 37 137.3446 *** 291.157 *** 202.2335 *** 

       Parents vs F1s 1 671.4745 *** 1341.892 *** 1015.4936 *** 

       F1s 71 64.5466 *** 136.135 *** 89.8745 *** 

          Line 35 80.2717 * 169.631* 126.4068 ** 

          Tester 1 272.7402 * 633.647 * 327.5176 * 

          [Line*Tester] 35 42.8731 * 88.424 * 46.5524 * 

Genotype*Year 109 30.9806 62.979 33.5286 

      Parent*Year 37 23.7535 48.756 28.3914 

      Parent vs F1s*Year 1 23.8869 47.107 48.2519 

      F1s*Year 71 34.8468 * 70.614 * 35.9983 

          Line*Year 35 40.5422 * 81.489 * 43.1519 * 

          Tester*Year 1 19.7215 40.189 14.4381 

          Line*Tester*Year 35 29.5836 60.609 29.4608 

Error 436 26.1246 52.862 27.7024 

*, **, *** significant at P < 0.05, 0.01, and 0.001, respectively. 

† Brackets indicate an error term. 
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Since there was a significant Line x Year interaction term for the X values, the 

means of lines were reported separately by year, while the tester X values were 

combined over years (Table 6). A 7215 (South Africa) had the numerically highest X 

mean as compared to all the cultivars in both 2010 and 2011. In 2010, A 7215 differed 

significantly compared to the eight other South African cultivars and was not different 

than A-637-33 (South Africa) (p < 0.05).  Tejas (US) exhibited the highest X average of 

the US cultivars and, was significantly different than two other US cultivars. PAN 575 

(West Africa) was statistically equal to or higher than three other West African cultivars.  

Among the Chinese cultivars, Lintsing Sze Tze 4B exhibited a numerically high X color 

value that was not different than eight other Chinese cultivars (p < 0.05).  None of the 

cultivars from China, South Africa, West Africa or the US that had the numerically 

highest X color values for their respective region were different from one another (p < 

0.05).   

In 2011, A 7215 (South Africa) had a numerically high X value that was equal to 

or higher than five other South African cultivars (p < 0.05) (Table 6).   Del Cerro (US) 

had the highest X mean of the US cultivars, and it differed significantly than Deltapine 

491.  F 280 (West Africa) had the numerically highest X value of the West African 

cultivars, differing significantly from two other West African cultivars. Nanging #12 of 

the Chinese cultivars exhibited a numerically high X value and, it was not significantly 

different than three other Chinese cultivars in 2011.  All of the cultivars from China, 

South Africa, West Africa or the US that had the numerically highest X color values for 

their respective regions, in 2011, were not different from one another (p < 0.05).  
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Table 6. Average tristimulus X color values of 38 upland parental genotypes grown 

under irrigated field culture near College Station, TX in 2010 and 2011. 
  Year 

Lines Region 2010 2011 

    

A 7215 South Africa 63.07 a† 62.96 a 

Tejas US 62.83 ab 62.27 a-h 

PAN 575 West Africa 62.76 a-c 62.77 ab 

Lintsing Sze Tze 4B China 62.46 a-d 61.21 i-l 

A-637-33 South Africa 62.37 a-e 62.68 a-c 

Del Cerro US 62.34 a-e 62.40 a-f 

Tamcot 22 US 62.31 a-e 61.68 d-l 

F 280 West Africa 62.25 a-f 62.99 a 

China 632 China 62.18 a-f 62.10 a-i 

Acala 1517-99 US 62.13 a-f 62.29 a-h 

Sabie South Africa 62.05 b-g 62.02 b-i 

Zhong Mian Suo 9 Hao China 62.04 b-g 60.76 l 

Chung Mein-Jue #7 China 61.99 b-g 62.27 a-h 

Reba W 296 West Africa 61.93 b-g 61.98 b-j 

Marico (Smooth) South Africa 61.91 b-g 62.52 a-d 

Jiangsu #3 China 61.83 b-h 60.97 k-l 

Shan 5245 China 61.81 b-h 61.40 g-l 

Phytogen 72 US 61.80 b-h 61.45 f-l 

BPA 68  CB 4030 South Africa 61.78 c-h 62.08 b-i 

Allen 333 West Africa 61.76 c-h 61.82 c-k 

ST 474 US 61.64 d-h 61.73 d-l 

UK 64 South Africa 61.55 d-h 61.35 h-l 

Small Leaf China 61.49 d-h 60.93 kl 

Lishan Big Boll China 61.46 d-h 62.36 a-f 

Funtua FT-5 West Africa 61.43 d-h 62.32 a-g 

Albacala 7 South Africa 61.43 d-h 62.49 a-e 

Deltapine 491 US 61.42 d-h 61.01 j-l 

Nanging #12 China 61.40 d-h 62.83 ab 

BJA 592 West Africa 61.37 d-h 62.31 a-g 

Komati South Africa 61.37 d-h 62.39 a-f 

ALA 70-11 South Africa 61.28 e-h 60.91 kl 

Kang Bin Chang Mienne China 61.25 f-h 61.24 i-l 

Limpopo South Africa 61.17 f-h 62.26 a-h 

Pengze China 61.17 f-h 61.75 c-l 

Allen 333-61  CB 4027 West Africa 61.02 gh 62.33 a-g 

Duck Shelter China 60.63 h 61.55 e-l 

    

Tester    

Tamcot CAMD-E US 62.03 a 

TAM B182-33 ELS US 61.73 b 

† Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD 
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The genetic variability that exists for enhanced X color values is not limited to a 

particular geographic region.  Instead, this variability exists in specific cultivars unique 

to each region. 

 The two testers differed from each other for X as well (p < 0.05).  The difference 

between Tamcot CAMD-E and TAM B182-33 ELS was only 0.30 units, so this 

difference, although significant, may not be of biological importance.  

There was a significant F1 x year interaction term for the X values, so the means 

of the F1s were separated by year (Table 7). PAN 575 (West Africa), A 7215 (South 

Africa) crossed with TAM B182-33 ELS and Tamcot 22 crossed with Tamcot CAMD-E 

resulted in the highest X values among hybrid means for 2010.  In 2011, A 7215 and 

Nanging #12 (China) crossed with Tamcot CAMD-E exhibited the numerically highest 

X values among all the hybrid combinations.    
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Table 7. Average tristimulus X color values of F1s of 36 upland lines and 2 upland 

testers grown under irrigated field culture near College Station, TX in 2010 and 2011. 

Lines Region TAM B182-33 ELS Tamcot CAMDE 

  Year Year 

  2010 2011 2010 2011 
      

PAN 575 West Africa 63.93 a†  63.03 a-d 61.60 c-n 62.51 b-m  

A 7215 South Africa 63.29 ab 61.73 d-w 62.86 a-d 64.18 a 

Tejas US 62.92 a-c 62.40 b-n 62.74 a-e 62.14 b-t 

A-637-33 South Africa 62.69 a-f 62.91 b-e 62.05 a-n 62.45 b-n 

Lintsing Sze Tze 4B China 62.68 a-g 61.26 i-w 62.23 b-k 61.15 l-w 

Acala 1517-99 US 62.66 a-g 62.03 d-e 61.60 c-n 62.56 b-l 

Del Cerro US 62.56 a-h 62.61 b-i 62.12 b-m 62.19b-t 

Sabie South Africa 62.41 b-i 61.94 d-v 61.68 c-n 62.11 c-t 

China 632 China 62.19 b-k 61.71 d-w 62.16 b-l 62.49 b-m 

Funtua FT-5 West Africa 62.10 b-n 62.29 b-q 60.77 k-o 62.34 b-p 

Zhong Mian Suo 9 Hao China 61.99 b-n 60.33 w 62.08 b-m 61.20 k-w 

BPA 68  CB 4030 South Africa 61.94 b-n 61.91 d-v 61.63 c-n 62.24 b-s 

ST 474 US 61.91 b-n 60.89 r-w 61.37 d-n 62.57 b-k 

UK 64 South Africa 61.89 b-n 60.81 t-w 61.20 f-n 61.89 d-v 

Phytogen 72 US 61.78 c-n 61.24 j-w 61.83 c-n 61.67 e-w 

Jiangsu #3 China 61.72 c-n 60.88 r-w 61.93 b-n 61.05 m-w 

Shan 5245 China 61.63 c-n 61.71 e-w 61.99 b-n 61.10 n-w 

Allen 333 West Africa 61.60 c-n 61.38 h-w 61.93 b-n 62.25 b-r 

F 280 West Africa 61.54 c-n 62.68 b-h 62.96 a-c 63.31 a-c 

BJA 592 West Africa 61.50 c-n 62.72 b-g 61.24 e-n 61.89 d-v 

Marico (Smooth) South Africa 61.46 c-n 62.14 b-t 62.37 b-j 62.90 b-d 

Deltapine 491 US 61.45 c-n 61.32 i-w 61.38 d-n 60.70 u-w 

Pengze China 61.43 d-n 61.83 d-v 60.90 i-o 61.67 e-w 

Chung Mein-Jue #7 China 61.34 e-n 61.86 d-v 62.64 a-h 62.67 b-g 

Tamcot 22 US 61.34 d-n 61.81 d-v 63.29 ab 61.56 g-w 

Limpopo South Africa 61.29 e-n 62.41 b-o 61.05 i-o 62.12 c-u 

Reba W 296 West Africa 61.20 f-n 62.27 b-r 62.66 a-g 61.68 e-w 

Kang Bin Chang Mienne China 61.18 f-n 60.92 q-w 61.33 e-n 61.56 f-w 

Komati South Africa 61.17 f-n 62.09 c-u 61.56 c-n 62.69 b-h 

Small Leaf China 61.13 h-n 60.84 s-w 61.84 c-n 61.03 p-w 

Allen 333-61  CB 4027 West Africa 60.90 i-o 61.75 d-w 61.14 g-n 62.90 b-e 

Lishan Big Boll China 60.82 j-o 61.87 d-v 62.10 b-m 62.85 b-f 

Nanging #12 China 60.59 m-o 62.26 b-r 62.22 b-k 63.41 ab 

Albacala 7 South Africa 60.47 l-o 62.39 b-n 62.40 b-j 62.58 b-j 

ALA 70-11 South Africa 60.46 n-o 60.56 vw 62.10 b-m 61.26 j-w 

Duck Shelter China 59.33 o 61.00 p-w 61.94 b-n 62.10 c-u 

† Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 
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Table 8. Average tristimulus Y color values of 38 upland parental genotypes grown 

under irrigated field culture near College Station, TX in 2010 and 2011. 
  Year 

Lines Region 2010 2011 

A 7215 South Africa 66.67 a† 66.56 a 

Tejas US 66.47 ab 65.77 a-g 

PAN 575 West Africa 66.38 a-c  66.36 ab  

A-637-33 South Africa 65.99 a-d  66.26 a-c 

Lintsing Sze Tze 4B China 65.95 a-e 64.58 h-k 

Del Cerro US 65.93 a-e 65.92 a-f 

Tamcot 22 US 65.87 a-e 65.13 d-k 

F 280 West Africa 65.81 a-f 66.57 a 

Acala 1517-99 US 65.72 a-g 65.80 a-g 

China 632 China 65.68 a-g 65.57 b-h 

Sabie South Africa 65.59 a-h 65.49 b-h 

Zhong Mian Suo 9 Hao China 65.57 b-h 64.13 k 

Chung Mein-Jue #7 China 65.51 b-h 65.76 a-g 

Marico (Smooth) South Africa 65.48 b-h 66.07 a-d 

Reba W 296 West Africa 65.47 b-h 65.44 b-i 

Phytogen 72 US 65.32 d-i 64.88 f-k 

Allen 333 West Africa 65.30 c-i 65.28 c-j 

BPA 68  CB 4030 South Africa 65.30 c-i 65.56 b-h 

Jiangsu #3 China 65.30 d-i 64.32 i-k 

Shan 5245 China 65.30 d-i 64.81 g-k 

ST 474 US 65.15 d-i 65.20 d-k 

UK 64 South Africa 65.04 d-i 64.78 g-k 

Lishan Big Boll China 64.95 d-i 65.85 a-f 

Albacala 7 South Africa 64.94 d-i 66.01 a-e 

Small Leaf China 64.94 d-i 64.32 jk 

Deltapine 491 US 64.91 d-i 64.40 i-k 

Funtua FT-5 West Africa 64.90 d-i 65.84 a-g 

BJA 592 West Africa 64.89 d-i 65.85 a-f 

Komati South Africa 64.89 d-i 65.94 a-f 

Nanging #12 China 64.88 d-i 66.36 ab 

ALA 70-11 South Africa 64.80 e-i 64.28 jk 

Kang Bin Chang Mienne China 64.67 f-i 64.66 h-k 

Pengze China 64.64 g-i 65.20 d-k 

Limpopo South Africa 64.63 g-i 65.78 a-g 

Allen 333-61  CB 4027 West Africa 64.46 hi 65.82 a-g 

Duck Shelter China 64.08 i 65.01 e-k 

    

Tester    

Tamcot CAMD-E US 65.55 a  

TAM B182-33 ELS US 65.20 b 

† Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 
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Lines did not respond the same across years for Y as indicated by a significant 

Line x Year interaction, so Line means are reported separately for each year (Table 8).  

A 7215 (South Africa) had the numerically highest Y color value during 2010, and it 

differed significantly from seven other South African cultivars.  Tejas (US) had the 

highest mean for Y among the US cultivars included in this study during 2010, which 

was equal to or higher than three other US cultivars (p < 0.05).  PAN 575 (West Africa) 

had the numerically highest mean among the West African cultivars during 2010, which 

was significantly higher than three of the remaining six West African cultivars.  Lintsing 

Sze Tze 4B (China) had the highest Y color value of the Chinese cultivars during 2010, 

and it was equal to or higher than eight other Chinese cultivars (p < 0.05).  None of the 

cultivars that exhibited the numerically highest Y values for their respective regions 

differed significantly from one another in 2010. 

 In 2011, A 7215 (South Africa), once again, had the highest Y mean of the South 

African cultivars, which was equal to or higher than five other South African cultivars (p 

< 0.05) (Table 8).  Del Cerro (US) had the highest mean of the US cultivars in 2011, and 

differed significantly from Deltapine 491 (p < 0.05). F 280 (West Africa) exhibited the 

highest average value for Y among the West African cultivars, differing significantly 

than two of the remaining West African cultivars.    Nanging #12 (China) had the highest 

mean for Y of the Chinese cultivars in 2011.  Nanging #12 also significantly differed 

from eight other Chinese cultivars.  In 2011, none of the cultivars that had the highest Y 

color values for their respective regions differed significantly from one another.  As with 

the tristimulus X color value, the genetic variability for the Y color value is not superior 
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in several cutlivars from any particular region.  Instead, the genetics for improved Y 

color values can be found in a few cultivars from each region. 

The testers differed significantly for Y also, although more similar in absolute 

values than some of the lines (Table 8).  The difference between Tamcot CAMD-E and 

TAM B182-33 ELS is only 0.35, which is probably not of any significant biological 

importance. 

 A significant F1 x Year interaction was found for the Y color value, so the F1 

means must be reported separately by year (Table 9).  In 2010, PAN 575 (West 

Africa)/TAM B182-33 ELS, Tamcot 22 (US)/Tamcot CAMD-E and A 7215 (South 

Africa)/TAM B182-33 ELS had the highest means for Y as compared with all other 

hybrids.  In constrast, A7215 (South Africa)/Tamcot CAMD-E, Nanging #12 

(China)/Tamcot CAMD-E and F 280 (West Africa)/Tamcot CAMD-E had the highest  

means for Y as compared to the other hybrid combinations in 2011.  It may be possible 

to develop cultivars with enhanced Y color values from some of these specific hybrid 

combinations. 
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Table 9. Average tristimulus Y color values of F1s of 36 upland lines and 2 upland 

testers grown under irrigated field culture near College Station, TX in 2010 and 2011. 

Lines Region TAM B182-33 ELS Tamcot CAMDE 
  Year Year 

  2010 2011 2010 2011 

PAN 575 West Africa 67.62 a† 66.63 b-d 65.14 c-n 66.08 b-k 

A 7215 South Africa 66.91 ab 65.20 e-u 66.43 a-e 67.92 a 

Tejas US 66.55 a-d 65.91 b-n 66.39 a-f 65.63 b-r 

A-637-33 South Africa 66.33 a-g 66.51 b-e 65.66 b-m 66.01 b-l 

Acala 1517-99 US 66.28 a-g 65.52 d-s 65.17 c-n 66.08 b-k 

Lintsing Sze Tze 4B China 66.21 a-i 64.63 j-u 65.69 b-l 64.53 k-u 

Del Cerro US 66.14 a-i 66.13 b-i 65.71 b-l 65.70 b-r 

Sabie South Africa 65.99 b-j 65.37 d-t 65.19 c-n 65.61 b-s 

China 632 China 65.70 b-k 65.14 e-u 65.67 b-l 66.01 b-l 

Funtua FT-5 West Africa 65.60 b-n 65.81 b-o 64.21 k-o 65.87 b-o 

Zhong Mian Suo 9 Hao  China 65.51 b-n 63.65 u 65.62 b-n 64.62 j-u 

BPA 68  CB 4030 South Africa 65.44 b-n 65.35 d-t 65.16 c-n 65.76 b-p 

ST 474 US 65.42 c-n 64.28 p-u 64.88 e-n 66.12 b-j 

UK 64 South Africa 65.41 c-n 64.17 r-u 64.66 h-n 65.38 d-t 

Phytogen 72 US 65.28 c-n 64.64 j-u 65.36 c-n 65.13 e-u 

Jiangsu #3 China 65.19 c-n 64.20 q-u 65.41 b-n 64.44 l-u 

Allen 333 West Africa 65.10 c-n 64.79 h-u 65.51 b-n 65.76 b-p 

Shan 5245 China 65.10 c-n 65.14 e-u 65.50 b-n 64.47 m-u 

F 280 West Africa 65.01 d-n 66.21 b-h 66.61 a-c 66.93 a-c 

BJA 592 West Africa 64.99 d-n 66.31 b-g 64.80 e-n 65.38 d-t 

Marico (Smooth) South Africa 64.98 d-n 65.65 b-r 65.99 b-j 66.50 b-e 

Deltapine 491 US 64.94 e-n 64.74 i-u 64.89 e-n 64.07 s-u 

Pengze China 64.90 e-n 65.27 d-t 64.37 j-o 65.13 e-u 

Chung Mein-Jue #7 China 64.82 f-n 65.32 d-t 66.20 a-i 66.19 b-i 

Tamcot 22 US 64.81 f-n 65.25 d-u 66.94 ab 65.02 g-u 

Limpopo South Africa 64.78 g-n 65.98 b-m 64.48 j-o 65.59 c-s 

Reba W 296 West Africa 64.67 h-n 65.75 b-p 66.27 a-h 65.12 e-u 

Komati South Africa 64.66 h-n 65.58 c-s 65.11 c-n 66.29 b-g 

Kang Bin Chang Mienne China 64.61 i-n 64.29 p-u 64.74 g-n 65.03 f-u 

Small Leaf China 64.54 j-o 64.19 q-u 65.33 c-n 64.45 n-u 

Allen 333-61  CB 4027 West Africa 64.28 k-o 65.16 e-u 64.65 h-n 66.48 b-f 

Lishan Big Boll China 64.24 k-o 65.31 d-t 65.65 b-l 66.38 b-g 

Nanging #12 China 63.95 1-o 65.72 b-q 65.81 b-k 66.99 ab 

Albacala 7 South Africa 63.93 m-o 65.90 b-n 65.96 b-j 66.12 b-j 

ALA 70-11 South Africa 63.93 m-o 63.90 tu 65.66 b-l 64.66 j-u 

Duck Shelter China 62.66 o 64.38 o-u 65.50 b-n 65.64 b-r 

† Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 
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 The Line x Year interaction for the Z color value was significant, so the line 

means were reported here separately by year (Table 10).  In 2010, A 7215 (South Africa) 

had the numerically highest mean for Z as compared to the other South African cultivars, 

and it differed significantly than eight of the other South African cultivars.  Tejas (US) 

had the highest mean for Z in relation to the US cultivars, and it was equal to or higher 

than two other US cultivars (p < 0.05).  PAN 575 (West Africa) had the highest mean as 

compared to the other West African cultivars, which differed significantly than four 

other West African cultivars.  Lintsing Sze Tze 4B (China) had the highest mean in 2010 

of the Chinese cultivars, differing significantly than five other Chinese cultivars.   In 

2010, none of the cultivars that exhibited numerically higher Z color values for their 

respective regions were significantly different from each other. 

 In 2011, A 7215 (South Africa), once again, had the numerically highest mean 

for Z color value, and it differed significantly from five other South African cultivars 

(Table 10).  Del Cerro (US) had the highest mean of the US cultivars, which differed 

significantly from Deltapine 491.  F 280 (West Africa) had the highest mean as 

compared to the other West African cultivars, and it differed significantly than three 

other West African cultivars.  Nanging #12 (China) had the numerically highest Z color 

value of the Chinese cultivars, and it was equal to or higher than three other Chinese 

cultivars (p < 0.05).  In 2011, A 7215 differed from Del Cerro (p < 0.05), suggesting that 

the cultivars from the US have slightly inferior Z color values as opposed to South 

Africa. 
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Table 10. Average tristimulus Z color values of 38 upland parental genotypes grown 

under irrigated field culture near College Station, TX in 2010 and 2011. 
  Year 

Lines Region 2010 2011 

A 7215 South Africa 61.82 a† 62.07 a 

Tejas US 61.37 ab 60.97 b-g 

A-637-33 South Africa 61.36 a-c 61.68 a-c 

PAN 575 West Africa 61.35 a-d 61.66 a-c 

Lintsing Sze Tze 4B China 60.91 a-e 59.77 g-k 

Tamcot 22 US 60.72 a-e 60.42 d-j 

Del Cerro US 60.69 a-e 61.07 b-f 

BPA 68  CB 4030 South Africa 60.53 b-f 61.08 b-f 

F 280 West Africa 60.51 b-f 61.88 ab 

Marico (Smooth) South Africa 60.51 b-f 61.60 a-c 

Chung Mein-Jue #7 China 60.32 b-g 61.13 a-d 

Acala 1517-99 US 60.19 c-h 60.87 b-h 

Sabie South Africa 60.19 c-h 60.69 c-i 

Reba W 296 West Africa 60.19 c-h 60.64 c-i 

China 632 China 60.13 e-h 60.59 c-i 

Allen 333 West Africa 60.01 e-i 60.31 d-k 

Shan 5245 China 60.01 e-i 59.95 f-k 

Zhong Mian Suo 9 Hao China 60.00 e-i 59.13 k 

Albacala 7 South Africa 59.84 e-i 61.54 a-c 

Lishan Big Boll China 59.80 e-i 60.84 b-h 

BJA 592 West Africa 59.79 e-i 61.08 a-e 

UK 64 South Africa 59.74 e-i 59.98 d-k 

Phytogen 72 US 59.70 e-i 60.10 d-k 

ST 474 US 59.66 e-i 60.24 d-k 

Jiangsu #3 China 59.65 e-i 59.23 jk 

Deltapine 491 US 59.63 e-i 59.51 i-k 

ALA 70-11 South Africa 59.42 f-i 59.22 jk 

Funtua FT-5 West Africa 59.36 f-i 61.04 b-f 

Limpopo South Africa 59.33 f-i 61.08 b-f 

Komati South Africa 59.27 f-i 61.09 a-f 

Small Leaf China 59.23 g-i 59.26 jk 

Pengze China 59.22 g-i 60.38 d-k 

Nanging #12 China 59.17 g-i 61.57 a-c 

Kang Bin Chang Mienne China 59.04 g-i 59.78 h-k 

Duck Shelter China 58.85 h-i 59.96 e-k 

Allen 333-61  CB 4027 West Africa 58.81 i 60.69 c-h 

    

Tester    

Tamcot CAMD-E US 60.50 a 

TAM B182-33 ELS US 60.12 b 

† Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 
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Table 11. Average tristimulus Z color values of F1s of 36 upland lines and 2 upland 

testers grown under irrigated field culture near College Station, TX in 2010 and 2011. 
Lines Region TAM B182-33 ELS Tamcot CAMDE 

PAN 575 West Africa 62.39 ab† 60.62 e-q 

A-637-33 South Africa 61.88 a-d 61.16 c-j 

Tejas US 61.43 b-f 60.91 c-n 

A 7215 South Africa 61.38 b-g 62.51 a 

Del Cerro US 61.00 c-l 60.75 e-p 

BPA 68  CB 4030 South Africa 60.78 d-p 60.83 c-o 

Acala 1517-99 US 60.65 e-q 60.41 e-t 

BJA 592 West Africa 60.63 e-q 60.24 h-t 

Marico (Smooth) South Africa 60.59 e-q 61.52 a-e 

Funtua FT-5 West Africa 60.57 e-s 59.84 m-v 

Sabie South Africa 60.52 e-s 60.36 f-t 

F 280 West Africa 60.51 e-s 61.88 a-c 

Lintsing Sze Tze 4B China 60.50 e-s 60.18 h-u 

Limpopo South Africa 60.45 e-t 59.96 j-v 

Albacala 7 South Africa 60.25 f-t 61.12 c-j 

Reba W 296 West Africa 60.24 h-t 60.59 e-r 

Chung Mein-Jue #7 China 60.14 h-u 61.30 c-h 

Shan 5245 China 60.09 j-v 59.87 l-v 

Tamcot 22 US 60.06 i-v 61.09 c-k 

China 632 China 60.02 i-v 60.71 e-q 

Pengze China 59.99 j-v 59.61 o-v 

Komati South Africa 59.88 k-v 60.47 e-s 

Deltapine 491 US 59.78 m-v 59.36 r-w 

Allen 333 West Africa 59.74 n-v 60.58 e-r 

UK 64 South Africa 59.68 o-v 60.04 j-v 

Phytogen 72 US 59.67 o-v 60.12 i-u 

Lishan Big Boll China 59.67 o-v 60.97 c-m 

ST 474 US 59.63 p-w 60.27 g-t 

Nanging #12 China 59.55 p-w 61.19 c-i 

Zhong Mian Suo 9 Hao China 59.31 s-w 59.81 m-v 

Jiangsu #3 China 59.24 t-w 59.64 o-v 

Allen 333-61  CB 4027 West Africa 59.23 t-w 60.27 f-t 

Kang Bin Chang Mienne China 59.01 u-w 59.82 m-v 

Small Leaf China 58.97 u-w 59.53 q-w 

ALA 70-11 South Africa 58.78 vw 59.85 m-v 

Duck Shelter China 58.26 w 60.55 e-r 

† Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 
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The two testers differed significantly for the Z color value from both combined 

years (Table 10).  The difference between Tamcot CAMD-E and TAM B182-33 ELS 

was only 0.37, which probably does not have a significant impact from a biological 

standpoint. 

 F1s responded the same in both years, so the corresponding Z means were 

combined across years (Table 11).  A 7215 (South Africa)/Tamcot CAMD-E  resulted in 

the numerically highest Z mean as compared to all other hybrid combinations during the 

two years of this experiment.  PAN575 (West Africa)/TAM B182-33 ELS also had a 

higher Z color value compared to most of the other hybrid combinations.  For the most 

part, the Tamcot CAMD-E hybrids resulted in improved Z color values than the hybrids 

produced with TAM B182-33 ELS. 

Combining Ability Estimates for XYZ Color System 

 For X, most of the SCA estimates were not significantly different from zero, 

indicating that most of the lines in combination with the two testers did not sufficiently 

enhance or diminish the X color value in the progeny (Table 12).  However, the specific 

combination of PAN 575 (West Africa) with TAM B182-33 ELS exhibited a significant 

and positive SCA of 0.861. This result suggests that specific combinations of parents 

could be found that produce progeny with enhanced X color values and tentatively 

whiter fibers. Conversely, PAN 575 (West Africa) with Tamcot CAMD-E resulted in a 

significant and negative SCA of -0.861.   
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Table 12. Tristimulus X color value estimates of specific combining ability (SCA) 

effects of 36 upland lines and 2 testers grown under irrigated field culture near College 

Station, TX in 2010 and 2011. 
Line Geographic Area TAM B182-33 ELS Tamcot CAMD-E 

China 632 China -0.040 0.040 

Chung Mein-Jue #7 China -0.378 0.378 

Duck Shelter China -0.779 0.779 

Jiangsu #3 China 0.054 -0.054 

Kang Bin Chang Mienne China -0.047 0.047 

Lintsing Sze Tze 4B China 0.291 -0.291 

Lishan Big Boll China -0.416 0.416 

Nanging #12 China -0.545 0.545 

Pengze China 0.320 -0.320 

Shan 5245 China 0.214 -0.214 

Small Leaf China -0.076 0.076 

Zhong Mian Suo 9 Hao China -0.091 0.091 

Allen 333 West Africa -0.150 0.150 

Allen 333-61  CB 4027 West Africa -0.198 0.198 

BJA 592 West Africa 0.421 -0.421 

F 280 West Africa -0.361 0.361 

Funtua FT-5 West Africa 0.468 -0.468 

PAN 575 West Africa 0.861* -0.861* 

Reba W 296 West Africa -0.068 0.068 

A 7215 South Africa -0.355 0.355 

A-637-33 South Africa 0.426 -0.426 

ALA 70-11 South Africa -0.433 0.433 

Albacala 7 South Africa -0.380 0.380 

BPA 68  CB 4030 South Africa 0.146 -0.146 

Komati South Africa -0.097 0.097 

Limpopo South Africa 0.283 -0.283 

Marico (Smooth) South Africa -0.268 0.268 

Sabie South Africa 0.290 -0.290 

UK 64 South Africa 0.053 -0.053 

Acala 1517-99 US 0.284 -0.284 

Del Cerro US 0.365 -0.365 

Deltapine 491 US 0.324 -0.324 

Phytogen 72 US 0.033 -0.033 

ST 474 US -0.136 0.136 

Tamcot 22 US -0.274 0.274 

Tejas US 0.260 -0.260 

 Std. error 0.393 0.393 

* Significant at 95% confidence interval (2xStd. error). 
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As with X, most of the SCA estimates for Y were not significantly different from 

zero (Table 13). Two lines, Duck Shelter (China) and PAN 575 (West Africa) resulted in 

significant SCA values.  Duck Shelter combined positively with Tamcot CAMD-E and 

negatively with TAM B182-33 ELS with SCA values for Y of 0.852 and -0.852, 

respectively.  The specific combinations of PAN 575/ TAM B182-33 ELS exhibited a 

positive and significant SCA of 0.931, suggesting that this combination would produce 

progeny from which selections could be made for improved Y color values. Conversely, 

PAN 575 /Tamcot CAMD-E exhibited a negative and significant SCA of -0.931, and 

this hybrid combination would potentially produce progeny with fibers that have inferior 

Y values. 

A similar trend was observed for the combining ability estimates of the Z color 

value (Table 14).  Most of the SCA estimates were not significantly different from zero, 

with the exceptions of Duck Shelter and PAN 575.  Duck Shelter combined positively 

with Tamcot CAMD-E and negatively with TAM B182-33 ELS with SCA values of 

0.957 and -0.957, respectively.  PAN 575 combined positively with TAM B182-33 ELS 

and combined negatively with Tamcot CAMD-E with SCA values of 1.074 and -1.074, 

respectively.  These SCA values suggest that Duck Shelter combined with Tamcot 

CAMD-E could enhance the tristimulus Y and Z color values in their F1 progenies.  On 

the other hand, these results indicate that PAN 575 when combined with TAM B182-33 

ELS will improve all the tristimulus values (X, Y and Z) in their F1 progenies. 

 

 



 

 

51 

5
1
 

Table 13. Tristimulus Y color value estimates of specific combining ability (SCA) 

effects of 36 upland lines and 2 testers grown under irrigated field culture near College 

Station, TX in 2010 and 2011. 
Line Geographic Area TAM B182-33 ELS Tamcot CAMD-E 

China 632 China -0.039 0.039 

Chung Mein-Jue #7 China -0.391 0.391 

Duck Shelter China -0.852* 0.852* 

Jiangsu #3 China 0.058 -0.058 

Kang Bin Chang Mienne China -0.044 0.044 

Lintsing Sze Tze 4B China 0.326 -0.326 

Lishan Big Boll China -0.449 0.449 

Nanging #12 China -0.607 0.607 

Pengze China 0.342 -0.342 

Shan 5245 China 0.240 -0.240 

Small Leaf China -0.090 0.090 

Zhong Mian Suo 9 Hao China -0.098 0.098 

Allen 333 West Africa -0.171 0.171 

Allen 333-61  CB 4027 West Africa -0.248 0.248 

BJA 592 West Africa 0.455 -0.455 

F 280 West Africa -0.405 0.405 

Funtua FT-5 West Africa 0.506 -0.506 

PAN 575 West Africa 0.931* -0.931* 

Reba W 296 West Africa -0.066 0.066 

A 7215 South Africa -0.388 0.388 

A-637-33 South Africa 0.467 -0.467 

ALA 70-11 South Africa -0.452 0.452 

Albacala 7 South Africa -0.391 0.391 

BPA 68  CB 4030 South Africa 0.142 -0.142 

Komati South Africa -0.116 0.116 

Limpopo South Africa 0.345 -0.345 

Marico (Smooth) South Africa -0.289 0.289 

Sabie South Africa 0.313 -0.313 

UK 64 South Africa 0.059 -0.059 

Acala 1517-99 US 0.310 -0.310 

Del Cerro US 0.387 -0.387 

Deltapine 491 US 0.352 -0.352 

Phytogen 72 US 0.031 -0.031 

ST 474 US -0.152 0.152 

Tamcot 22 US -0.302 0.302 

Tejas US 0.283 -0.283 

 Std. error 0.424 0.424 

* Significant at 95% confidence interval (2xStd. error). 
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Table 14. Tristimulus Z color value estimates of specific combining ability (SCA) 

effects of 36 upland lines and 2 testers grown under irrigated field culture near College 

Station, TX in 2010 and 2011. 
Line Geographic Area TAM B182-33 ELS Tamcot CAMD-E 

China 632 China -0.157 0.157 

Chung Mein-Jue #7 China -0.393 0.393 

Duck Shelter China -0.957* 0.957* 

Jiangsu #3 China -0.014 0.014 

Kang Bin Chang Mienne China -0.218 0.218 

Lintsing Sze Tze 4B China 0.345 -0.345 

Lishan Big Boll China -0.464 0.464 

Nanging #12 China -0.630 0.630 

Pengze China 0.374 -0.374 

Shan 5245 China 0.295 -0.295 

Small Leaf China -0.094 0.094 

Zhong Mian Suo 9 Hao China -0.064 0.064 

Allen 333 West Africa -0.232 0.232 

Allen 333-61  CB 4027 West Africa -0.334 0.334 

BJA 592 West Africa 0.383 -0.383 

F 280 West Africa -0.501 0.501 

Funtua FT-5 West Africa 0.550 -0.550 

PAN 575 West Africa 1.074* -1.074* 

Reba W 296 West Africa 0.013 -0.013 

A 7215 South Africa -0.378 0.378 

A-637-33 South Africa 0.547 -0.547 

ALA 70-11 South Africa -0.348 0.348 

Albacala 7 South Africa -0.249 0.249 

BPA 68  CB 4030 South Africa 0.165 -0.165 

Komati South Africa -0.108 0.108 

Limpopo South Africa 0.433 -0.432 

Marico (Smooth) South Africa -0.276 0.276 

Sabie South Africa 0.271 -0.271 

UK 64 South Africa 0.003 -0.003 

Acala 1517-99 US 0.306 -0.306 

Del Cerro US 0.309 -0.309 

Deltapine 491 US 0.397 -0.396 

Phytogen 72 US -0.037 0.037 

ST 474 US -0.133 0.133 

Tamcot 22 US -0.327 0.327 

Tejas US 0.450 -0.450 

 Std. error 0.461 0.461 

* Significant at 95% confidence interval (2xStd. error). 
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L*a*b* Color System 

 The L* and b* data sets failed to meet the underlying assumptions of 

homogeneity and normality for ANOVA.  A data transformation (arc sine for L* and 

inverse for b*) was applied to both data sets.  Arc sine is the most appropriate data 

transformation for L*, since reflectance is measured as a percentage.  While these 

transformations did not result in significant p-values for both the Bartlett and Shapiro-

Wilks tests for homogeneity and normality, they resulted in higher p-values than any 

other transformations attempted (square root, 2
nd

 power, and logarithmic 

transformations).  The a* data set met the underlying assumptions of homogeneity and 

normality for ANOVA, resulting in non-significant p-values for both the Bartlett and 

Shapiro-Wilks tests. 

All genotypes differed significantly (p < 0.001) for the L*, a* and b* values 

(Table 15).  Specifically, the Parent, F1, and Parents vs. F1s sources of variation were all 

significant at p < 0.001 for the L*, a* and b* values (except Parents vs. F1s for a* that 

differed by p < 0.05).  The ANOVA table did not reveal any significant Genotype x Year 

interactions, except for Line x Year for L* and Parents vs F1s x Year (p < 0.05) for b*.   

The results from both years were combined for further analysis, but separation of line 

means by year for L* was necessary because of the significant Line x Year interaction 

term.  The Line x Tester interaction term was significant (p < 0.05) for L*, but was not 

significant for both a* and b*.  Therefore, the SCAs of the F1s will be discussed for L*, 

since the 36 lines combined differently with the 2 testers for both years of the field 
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experiment. The GCAs of the lines and testers for a* and b* will be discussed, since the 

lines combined similarly with both testers over both years of the field experiment.  

Lines varied (p < 0.05) for L*, and lines also varied for a* and b* (p < 0.001) 

(Table 15). The two testers were significantly different for both L* and a*, p < 0.01 and 

p < 0.001, respectively, but not for b*.  Due to the significance of Parents, Parents vs. 

F1s and F1s, it is logical to conclude that there is genetic variation for L*, a* and b* 

among the 36 lines and 2 testers used in this experiment.  This genetic variation could be 

sufficient for breeders to select for whiter fibers using this color identification system.  

For L* most of the variation within this parental set was found in the testers, while for 

b* most of the variation was in the lines relative to the testers.  For the a* value both the 

lines and testers seem to demonstrate equal amounts of variation based on significance 

levels revealed by the ANOVA. 
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Table 15. Mean squares for CIE (International Commission on Illumination) L*a*b* 

values for 38 world upland cultivars and their F1 progeny grown under irrigated field 

culture near College Station, TX in 2010 and 2011. 

Source df L*
 

a* b* 

Year 1 0.4747 1.6474 ** 4.9529 *** 

[Rep(Year)]† 4 0.3667  0.0528  0.0415  

Genotype 109 0.3689 *** 0.0671 *** 0.0561 *** 

       Parents 37 0.5425 *** 0.1160 *** 0.0893 *** 

       Parents vs F1s 1 2.7711 *** 0.0654 * 0.3838 *** 

       F1s 71 0.2445 *** 0.0416 *** 0.0342 *** 

          Line 35 0.3026 * 0.0546 *** 0.0605 *** 

          Tester 1 1.2055 ** 0.5047 *** 0.0130 

          [Line*Tester] 35 0.1590 * 0.0154 0.0085 

Genotype*Year 109 0.1186 0.0130 0.0087 

      Parent*Year 37 0.0971 0.0156 0.0085 

      Parent vs F1s*Year 1 0.0990 0.0001 0.0487 * 

      F1s*Year 71 0.1301 0.0118 0.0083 

          Line*Year 35 0.1543 * 0.0132 0.0121 

          Tester*Year 1 0.0559 0.0031 0.0020 

          Line*Tester*Year 35 0.1080 0.0108 0.0046 

Error 436 0.1002 0.0121 0.0090 

*, **, *** significant at P < 0.05, 0.01, and 0.001, respectively. 

† Brackets indicate an error term. 
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Table 16. Average CIE
†
 L*, reflectance, of 38 upland parental genotypes grown under 

irrigated field culture near College Station, TX in 2010 and 2011. 
  Year 

Lines Region 2010 2011 

A 7215 South Africa 85.33 a‡ 85.27 a 

Tejas US 85.23 ab 84.87 a-f 

PAN 575 West Africa 85.18 ab 85.17 ab 

A-637-33 South Africa 84.99 a-c 85.12 a-c 

Lintsing Sze Tze 4B China 84.97 a-d 84.26 g-j 

Del Cerro US 84.95 a-d 84.95 a-e 

Tamcot 22 US 84.92 a-d 84.55 d-j 

F 280 West Africa 84.89 a-e 85.29 a 

Acala 1517-99 US 84.84 a-f 84.89 a-f 

China 632 China 84.83 a-f 84.77 a-g 

Sabie South Africa 84.78 a-g 84.73 b-g 

Zhong Mian Suo 9 Hao China 84.77 a-g 84.03 j 

Chung Mein-Jue #7 China 84.74 a-g 84.87 a-f 

Marico (Smooth) South Africa 84.72 b-g 85.03 a-d 

Reba W 296 West Africa 84.72 b-g 84.71 b-h 

Phytogen 72 US 84.64 b-g 84.42 e-j 

BPA 68  CB 4030 South Africa 84.64 b-g 84.77 a-g 

Allen 333 West Africa 84.64 b-g 84.62 c-i 

Jiangsu #3 China 84.63 b-g 84.13 i-j 

Shan 5245 China 84.63 b-g 84.37 f-j 

ST 474 US 84.55 c-h 84.58 d-j 

UK 64 South Africa 84.50 c-h 84.36 f-j 

Lishan Big Boll China 84.45 c-h 84.91 a-e 

Small Leaf China 84.45 c-h 84.13 i-j 

Albacala 7 South Africa 84.44 c-h 84.99 a-d 

Deltapine 491 US 84.43 c-h 84.17 h-j 

Funtua FT-5 West Africa 84.43 c-h 84.91 a-f 

BJA 592 West Africa 84.42 c-h 84.91 a-e 

Komati South Africa 84.42 c-h 84.95 a-e 

Nanging #12 China 84.42 c-h 85.18 ab 

ALA 70-11 South Africa 84.37 d-h 84.11 i-j 

Kang Bin Chang Mienne China 84.31 e-h 84.30 g-j 

Pengze China 84.29 e-h 84.58 d-i 

Limpopo South Africa 84.29 f-h 84.88 a-f 

Allen 333-61  CB 4027 West Africa 84.20 gh 84.90 a-f 

Duck Shelter  China 83.99 h 84.49 d-j 

    

Tester    

Tamcot CAMD-E US 84.76 a 

TAM B182-33 ELS US 84.58 b 

† CIE, International Commission on Illumination. 

‡ Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 
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There was a significant Line x Year interaction for L* in this experiment, so the 

means were reported separately by year (Table 16).  A higher L* value indicates a 

brighter reflectance for the specific cultivar, but the L* value cannot exceed 100. In 

2010, A 7215 (South Africa) had the highest  mean value for L* among the cultivars 

from South African, and it differed significantly from seven of the  ten South African 

cultivars included in this study.  Tejas (US) had the numerically highest mean for L* of 

the US cultivars and differed significantly from two of the seven US cultivars.  PAN 575 

(West Africa) had the highest mean for L* in relation to the West African cultivars, and 

it was equal to or higher than three of the West African cultivars (p < 0.05).  Lintsing 

Sze Tze 4B had the highest mean for L* of the Chinese cultivars, differing from three of 

the Chinese cultivars (p < 0.05).  The cultivars that exhibited the highest L* value among 

the cultivars of their respective regions did not significantly differ from one another in 

2010.  

 In 2011, A 7215, once again, had the numerically highest value for L* among the 

South African cultivars, higher (p < 0.05) than three of the remaining South African 

cultivars (Table 16).  Del Cerro (US) had the highest mean for L* of the US cultivars, 

and it differed significantly from Deltapine 491.  F 280 (West Africa) had the highest 

mean for L* of the West African cultivars, and it was equal to or higher than four of the 

other West African cultivars (p < 0.05).  Nanging #12 (China) had the highest mean for 

L* of the Chinese cultivars in 2011, differing from eight of the Chinese cultivars (p < 

0.05).  Similar to the trend in 2010, in 2011 none of the cultivars that exhibited the 
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highest L* values from their respective regions were significantly different from each 

other.   

 The two testers significantly differed from each other for L* although the 

difference appears to be small, less than 0.2 (Table 16). This difference may not be 

biologically meaningful. 

 There was no significant F1 x Year interaction for L*, so the means were 

combined across both years of the experiment (Table 17).  A 7215 (South 

Africa)/Tamcot CAMD-E and PAN 575 (West Africa)/TAM B182-33 ELS 

demonstrated the two highest hybrid combination means for L* as compared to all the 

other hybrid combinations.  These results indicate that progeny with improved L* 

(reflectance) may be selected from these two hybrid combinations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

59 

5
9
 

Table 17. Average CIE
†
 L*, reflectance, of F1s of 36 upland lines and 2 upland testers 

grown under irrigated field culture near College Station, TX in 2010 and 2011. 
Lines Region TAM B182-33 ELS Tamcot CAMDE 

PAN 575 West Africa 85.56 ab‡ 84.79 d-q 

A-637-33 South Africa 85.21 a-d 84.91 c-o 

Tejas US 85.11 a-f 85.00 c-k 

Del Cerro US 85.06 a-h 84.84 c-p 

A 7215 South Africa 85.01 b-i 85.58 a 

Acala 1517-99 US 84.94 c-m 84.79 d-q 

Funtua FT-5 West Africa 84.84 c-p 84.50 h-t 

Sabie South Africa 84.83 c-q 84.68 d-t 

BJA 592 West Africa 84.81 d-q 84.52 g-t 

F 280 West Africa 84.79 d-q 85.38 a-c 

China 632 China 84.69 d-t 84.91 c-n 

Lintsing Sze Tze 4B China 84.69 d-t 84.53 g-t 

BPA 68  CB 4030 South Africa 84.69 d-t 84.72 d-t 

Limpopo South Africa 84.67 d-t 84.50 h-t 

Marico (Smooth) South Africa 84.64 d-t 85.11 a-e 

Reba W 296 West Africa 84.59 e-t 84.84 c-q 

Shan 5245 China 84.54 g-t 84.47 i-u 

Komati South Africa 84.54 f-t 84.84 c-p 

Pengze China 84.53 g-t 84.35 n-u 

Chung Mein-Jue #7 China 84.52 h-t 85.09 a-g 

Tamcot 22 US 84.49 i-u 84.98 c-l 

Phytogen 72 US 84.45 i-u 84.60 e-t 

Allen 333 West Africa 84.45 i-u 84.80 d-q 

Albacala 7 South Africa 84.42 k-u 85.01 b-j 

ST 474 US 84.40 m-u 84.73 d-s 

Nanging #12 China 84.40 m-u 85.20 a-d 

Deltapine 491 US 84.39 m-u 84.21 r-v 

UK 64 South Africa 84.37 m-u 84.49 i-u 

Lishan Big Boll China 84.36 n-u 85.00 b-k 

Allen 333-61  CB 4027 West Africa 84.33 o-u 84.76 d-r 

Jiangsu #3 China 84.32 p-u 84.44 j-u 

Zhong Mian Suo 9 Hao China 84.26 q-v 84.54 e-t 

Kang Bin Chang Mienne China 84.19 s-v 84.42 l-u 

Small Leaf China 84.15 t-v 84.42 l-u 

ALA 70-11 South Africa 83.92 uv 84.57 e-t 

Duck Shelter China 83.71 v 84.77 d-r 

† CIE, International Commission on Illumination. 

‡ Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 
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Table 18. Average CIE
†
 a*, redness/greenness, of 38 upland parental genotypes and their 

F1s grown under irrigated field culture near College Station, TX in 2010 and 2011. 
Lines Region Parent 

Mean 

TAM B182-33 

ELS 

Tamcot 

CAMDE 

Lintsing Sze Tze 4B China -0.48 a‡ -0.49 a-d -0.48 a-c 

Jiangsu #3 China -0.49 ab -0.46 ab -0.52 a-g 

Kang Bin Chang Mienne China -0.51 a-c -0.49 a-e -0.53 a-i 

Small Leaf China -0.52 a-d -0.46 ab -0.57 b-q 

Shan 5245 China -0.52 a-e -0.52 a-g -0.53 d-h 

China 632 China -0.57 a-f -0.54 a-i -0.60 c-s 

Zhong Mian Suo 9 Hao China -0.57 b-f -0.53 a-i -0.61 e-u 

Allen 333-61  CB 4027 West Africa -0.57 b-f -0.45 a -0.69 q-z 

UK 64 South Africa -0.58 c-f -0.55 a-l -0.61 d-u 

Deltapine 491 US -0.58 c-f -0.57 a-p -0.59 c-r 

Pengze China -0.58 c-f -0.56 a-n -0.61 d-u 

Phytogen 72 US -0.59 c-f -0.54 a-j -0.63 g-u 

ALA 70-11 South Africa -0.59 c-f -0.57 a-p -0.62 g-u 

Lishan Big Boll China -0.59 c-f -0.54 a-i -0.65 h-x 

Nanging #12 China -0.60 d-g -0.50 a-f -0.70 r-z 

Chung Mein-Jue #7 China -0.60 d-h -0.59 c-r -0.62 g-u 

Funtua FT-5 West Africa -0.61 e-i -0.60 d-t -0.61 f-u 

Reba W 296 West Africa -0.61 f-j -0.59 c-r -0.63 g-v 

Limpopo South Africa -0.61 f-k -0.68 n-z -0.55 a-k 

Sabie South Africa -0.61 f-k -0.59 c-r -0.63 g-v 

ST 474 US -0.61 f-k -0.56 a-o -0.66 k-z 

Tamcot 22 US -0.61 f-k -0.55 a-m -0.68 n-z 

BPA 68  CB 4030 South Africa -0.62 f-k -0.56 a-n -0.68 n-z 

Duck Shelter China -0.62 f-k -0.52 a-g -0.72 t-z 

Allen 333 West Africa -0.63 f-k -0.57 a-p -0.69 q-z 

Albacala 7 South Africa -0.65 f-l -0.64 g-w -0.66 j-z 

Del Cerro US -0.68 g-m -0.65 i-y -0.71 s-z 

F 280 West Africa -0.68 h-m -0.60 d-s -0.77 z 

Tejas US -0.68 h-m -0.67 l-z -0.70 r-z 

Acala 1517-99 US -0.69 i-m -0.68 o-z -0.70 r-z 

Komati South Africa -0.69 j-m -0.63 g-v -0.75 w-z 

A 7215 South Africa -0.69 j-m -0.63 g-v -0.76 w-z 

BJA 592 West Africa -0.69 k-m -0.68 p-z -0.71 r-z 

Marico (Smooth) South Africa -0.72 lm -0.67 m-z -0.76 x-z 

PAN 575 West Africa -0.74 m -0.75 v-z -0.73 u-z 

A-637-33 South Africa -0.76 m -0.77 yz -0.76 w-z 

Tester     

TAM B182-33 ELS US -0.58 a   

Tamcot CAMD-E US -0.65 b   

† CIE, International Commission on Illumination. 

‡ Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 
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No significant year interaction terms for a* existed, so all of the means for the 

lines, testers and F1s were combined over the two years of the experiment (Table 18).  

All of the means for lines, testers and F1s were negative, indicating that the cottons had a 

distinctive greenness. UK 64 (South Africa) had the mean for a* closest to zero of the 

South African cultivars, and it was equal to or higher than five other South African 

cultivars (p < 0.05).  Deltapine 491 (US) had the mean for a* closest to zero of the US 

cultivars, and it differed significantly from three of the US cultivars.  Allen 333-61 CB 

4027 (West Africa) had the mean closest to zero for a* in relation to the other West 

African cultivars, differing significantly than three other West African cultivars.  

Lintsing Sze Tze 4B (China) had the mean closest to zero for a* as compared to the 

other Chinese cultivars, and it differed significantly from six of the other Chinese 

cultivars.  Lintsing Sze Tze 4B was significantly different than the other three cultivars 

that had the a* means closest to zero for their respective geographic regions. 

Some cultivars such as A 7215 (South Africa), Tejas (US), PAN 575 (West 

Africa) and A-637-33 (South Africa) demonstrate higher means for L* and b*, but 

exhibit lower means for a*.  So these lines have improved reflectance and whiteness as 

related to yellowness/blueness, but have decreased whiteness as related to 

redness/greenness.  Most of the Chinese cultivars had a* means closer to zero, while 

several African cultivars had more negative a* values, indicating greener cottons.  

Perhaps it would be beneficial to use some of these Chinese cultivars to breed for 

enhanced a*.  In particular, Lintsing Sze Tze 4B (China) is always found within the top 

third of the means for L*, a* and b*.   
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The two testers differed for a*, but that difference is only 0.07, which is probably 

not biologically important. The superior hybrid combinations for a* are Allen 333-61 

CB 4027 (West Africa)/TAM B182-33 ELS, Jiangsu #3 (China)/TAM B182-33 ELS and 

Small Leaf (China)/TAM B182-33 ELS because they were closest to a white color.  It 

may be possible to select progeny with enhanced whiteness on the redness/greenness 

scale from some of these specific combinations although it would be difficult to 

maximize a* without adversely affecting L* and b*. 

 There were no significant year interaction terms for b*, so all of the means were 

reported herein as combined across two years of the experiment (Table 19).  A lower b* 

value is preferred because it is closer to a value of zero, which is completely white in 

relation to yellowness/blueness.  A-637-33 (South Africa) had the lowest mean for b* of 

the South African cultivars, and it differed significantly from five of the other South 

African cultivars.  Tejas (US) had the lowest mean for b* as compared to the other US 

cultivars and, it was equal to or lower than one other US cultivar (p < 0.05).  PAN 575 

(West Africa) had the lowest mean for b* of the West African cultivars, differing 

significantly than three other West African cultivars.  Chung Mein-Jue #7 (China) had 

the lowest mean for b* from the Chinese cultivars, and it differed from seven of the 

other Chinese cultivars (p < 0.05).  A-637-33 (South Africa) differed significantly as 

compared to the other three cultivars that had the lowest b* means for their respective 

geographic regions.  The two testers did not significantly differ from each other for b*. 
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Table 19. Average CIE
†
 b*, yellowness/blueness, of 38 upland parental genotypes and 

their F1s grown under irrigated field culture near College Station, TX in 2010 and 2011. 
Lines Region Parent 

Mean 

TAM B182-33 

ELS 

Tamcot 

CAMDE 

A-637-33 South Africa 8.93 a‡ 8.86 a 8.99 a-e 

BPA 68  CB 4030 South Africa 8.96 ab 8.95 ab  8.97 ab 

A 7215 South Africa 8.98 ab 8.99 a-d 8.97 a-c 

Marico (Smooth) South Africa 9.04 a-c 9.05 a-h 9.03 a-g 

Albacala 7 South Africa 9.11 a-d 9.01 a-f 9.22 b-l 

PAN 575 West Africa 9.16 b-e 9.02 a-g 9.29 f-p 

Chung Mein-Jue #7 China 9.22 c-f 9.24 b-m 9.19 b-j 

Tejas US 9.24 c-g 9.10 a-i 9.38 i-r 

Tamcot 22 US 9.24 c-h 9.28 e-o 9.19 b-k 

Lintsing Sze Tze 4B China 9.24 d-i 9.23 b-m 9.25 c-m 

BJA 592 West Africa 9.24 d-i 9.31 g-o 9.17 b-j 

F 280 West Africa 9.28 d-j 9.39 i-s 9.17 b-j 

Limpopo South Africa 9.30 d-k 9.23 b-l 9.37 i-r 

Del Cerro US 9.34 e-l 9.41 j-s 9.26 c-m 

Reba W 296 West Africa 9.34 e-l 9.29 d-n 9.39 j-s 

UK 64 South Africa 9.36 e-m 9.42 j-t 9.29 f-p 

Lishan Big Boll China 9.37 f-m 9.41 j-t 9.33 h-o 

Shan 5245 China 9.38 f-m 9.34 h-q 9.42 j-t 

Sabie South Africa 9.39 f-m 9.43 j-t 9.34 i-q 

Deltapine 491 US 9.40 f-m 9.37 i-r 9.43 j-t 

Pengze China 9.42 f-m 9.40 j-s 9.44 j-t 

Allen 333 West Africa 9.42 g-m 9.50 l-u 9.35 i-r 

Duck Shelter China 9.45 i-n 9.59 o-u 9.32 h-o 

Funtua FT-5 West Africa 9.46 h-n 9.42 j-t 9.49 k-u 

Phytogen 72 US 9.49 j-n 9.57 n-u 9.42 j-s 

Acala 1517-99 US 9.50 k-n 9.51 l-u 9.49 k-u 

ST 474 US 9.50 k-n 9.51 l-u 9.50 l-u 

Komati South Africa 9.52 k-n 9.53 m-u 9.51 k-u 

ALA 70-11 South Africa 9.52 k-n 9.46 j-u 9.59 q-u 

Nanging #12 China 9.53 l-n 9.58 n-u 9.47 j-u 

China 632 China 9.54 l-n 9.66 r-u 9.41 j-s 

Kang Bin Chang Mienne China 9.56 l-n 9.73 ut 9.38 i-r 

Zhong Mian Suo 9 Hao China 9.58 mn 9.56 n-u 9.59 n-u 

Jiangsu #3 China 9.66 n 9.74 ut 9.58 n-u 

Allen 333-61  CB 4027 West Africa 9.66 n 9.77 u 9.56 n-u 

Small Leaf China 9.67 n 9.69 s-u 9.64 q-u 

Tester     

Tamcot CAMD-E US 9.34 a   

TAM B182-33 ELS US 9.38 a   

† CIE, International Commission on Illumination. 

‡ Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 
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A-637-33 (South Africa)/TAM B182-33 ELS and BPA 68 CB 4030 crossed with 

both testers resulted in the lowest mean values for b* as compared to the other hybrid 

combinations.  Following with the trend revealed in a*, several of the African cultivars 

demonstrated superior means for b*, while many of the Chinese cultivars demonstrated 

inferior means for b*.  It seems that it is difficult to maintain superior means for L* and 

b*, while enhancing a* in progeny.  Perhaps hybrid combinations between the Chinese 

cultivars superior for a* and the African cultivars superior for L* and b* would result in 

progeny that could be selected for enhanced L*, a* and b* to maximize fiber whiteness. 

 From these data, it would seem that the use of the CIE L*a*b* color system 

would be more helpful for cotton breeding purposes as opposed to the tristimulus XYZ 

color system.  The CIE L*a*b* system revealed the trend that as L* and b* improve, a* 

worsens, which is important information when trying to breed cultivars that maximize 

these three aspects of cotton whiteness.  The tristimulus XYZ color system did not reveal 

such a trend.  Despite the clear genetic variation that exists between the lines and testers 

for all the values associated with cotton whiteness, there does not seem to be enough 

variation to warrant the economic burdens of a cotton breeding program devoted entirely 

to fiber whiteness.  If a less time-consuming method of phenotyping the cultivars 

according to one of these color systems could be found, then perhaps, a breeding 

program for fiber whiteness would be economically viable. 
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Table 20. CIE
†
 L*, reflectance, estimates of specific combining ability (SCA) effects of 

36 upland lines and 2 testers grown under irrigated field culture near College Station, TX 

in 2010 and 2011. 
Line Geographic Area TAM B182-33 ELS Tamcot CAMD-E 

China 632 China -0.021 0.021 

Chung Mein-Jue #7 China -0.200 0.200 

Duck Shelter China -0.442* 0.442* 

Jiangsu #3 China 0.032 -0.032 

Kang Bin Chang Mienne China -0.024 0.024 

Lintsing Sze Tze 4B China 0.167 -0.167 

Lishan Big Boll China -0.230 0.230 

Nanging #12 China -0.310 0.310 

Pengze China 0.178 -0.178 

Shan 5245 China 0.124 -0.124 

Small Leaf China -0.046 0.046 

Zhong Mian Suo 9 Hao China -0.051 0.051 

Allen 333 West Africa -0.086 0.086 

Allen 333-61  CB 4027 West Africa -0.126 0.126 

BJA 592 West Africa 0.235 -0.235 

F 280 West Africa -0.206 0.206 

Funtua FT-5 West Africa 0.261 -0.261 

PAN 575 West Africa 0.474* -0.474* 

Reba W 296 West Africa -0.032 0.032 

A 7215 South Africa -0.196 0.196 

A-637-33 South Africa 0.239 -0.239 

ALA 70-11 South Africa -0.236 0.236 

Albacala 7 South Africa -0.205 0.205 

BPA 68  CB 4030 South Africa 0.074 -0.074 

Komati South Africa -0.060 0.060 

Limpopo South Africa 0.178 -0.177 

Marico (Smooth) South Africa -0.147 0.147 

Sabie South Africa 0.162 -0.162 

UK 64 South Africa 0.029 -0.029 

Acala 1517-99 US 0.162 -0.162 

Del Cerro US 0.196 -0.196 

Deltapine 491 US 0.182 -0.182 

Phytogen 72 US 0.014 -0.014 

ST 474 US -0.078 0.078 

Tamcot 22 US -0.156 0.156 

Tejas US 0.145 -0.145 

 Std. error 0.219 0.219 

* Significant at 95% confidence interval (2xStd. error). 

† CIE, International Commission on Illumination. 
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Table 21. CIE
†
 a*, redness/greenness, estimates of general combining ability (GCA) 

effects of 38 upland parental genotypes grown under irrigated field culture near College 

Station, TX in 2010 and 2011. 
Lines Geographic area GCA 

China 632 China 0.049 

Chung Mein-Jue #7 China 0.014 

Duck Shelter China -0.003 

Jiangsu #3 China 0.124** 

Kang Bin Chang Mienne China 0.104** 

Lintsing Sze Tze 4B China 0.133** 

Lishan Big Boll China 0.023 

Nanging #12 China 0.018 

Pengze China 0.033 

Shan 5245 China 0.092* 

Small Leaf China 0.096** 

Zhong Mian Suo 9 Hao China 0.044 

Allen 333 West Africa -0.013 

Allen 333-61  CB 4027 West Africa 0.044 

BJA 592 West Africa -0.079* 

F 280 West Africa -0.068* 

Funtua FT-5 West Africa 0.010 

PAN 575 West Africa -0.122** 

Reba W 296 West Africa 0.006 

A 7215 South Africa -0.078* 

A-637-33 South Africa -0.146** 

ALA 70-11 South Africa 0.023 

Albacala 7 South Africa -0.032 

BPA 68  CB 4030 South Africa -0.001 

Komati South Africa -0.076* 

Limpopo South Africa 0.004 

Marico (Smooth) South Africa -0.103** 

Sabie South Africa 0.004 

UK 64 South Africa 0.036 

Acala 1517-99 US -0.074* 

Del Cerro US -0.064* 

Deltapine 491 US 0.036 

Phytogen 72 US 0.030 

ST 474 US 0.004 

Tamcot 22 US 0.002 

Tejas US -0.069* 

 Std. error 0.032 

Tester   

TAM B182-33 ELS US 0.034** 

Tamcot CAMD-E US -0.034** 

 Std. error 0.007 

* Significant at 95% confidence interval (2xStd. error). 

** Significant at 99% confidence interval (3xStd. error). 

† CIE, International Commission on Illumination. 
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Table 22. CIE
†
 b*, yellowness/blueness, estimates of general combining ability (GCA) 

effects of 38 upland parental genotypes grown under irrigated field culture near College 

Station, TX in 2010 and 2011. 
Lines Geographic area GCA 

China 632 China 0.177* 

Chung Mein-Jue #7 China -0.145 

Duck Shelter China 0.093 

Jiangsu #3 China 0.297** 

Kang Bin Chang Mienne China 0.195* 

Lintsing Sze Tze 4B China -0.119 

Lishan Big Boll China 0.011 

Nanging #12 China 0.166* 

Pengze China 0.057 

Shan 5245 China 0.017 

Small Leaf China 0.308** 

Zhong Mian Suo 9 Hao China 0.216* 

Allen 333 West Africa 0.061 

Allen 333-61  CB 4027 West Africa 0.302** 

BJA 592 West Africa -0.118 

F 280 West Africa -0.079 

Funtua FT-5 West Africa 0.096 

PAN 575 West Africa -0.203* 

Reba W 296 West Africa -0.022 

A 7215 South Africa -0.380** 

A-637-33 South Africa -0.432** 

ALA 70-11 South Africa 0.163* 

Albacala 7 South Africa -0.247** 

BPA 68  CB 4030 South Africa -0.399** 

Komati South Africa 0.157* 

Limpopo South Africa -0.057 

Marico (Smooth) South Africa -0.319** 

Sabie South Africa 0.028 

UK 64 South Africa -0.003 

Acala 1517-99 US 0.138 

Del Cerro US -0.025 

Deltapine 491 US 0.038 

Phytogen 72 US 0.133 

ST 474 US 0.143 

Tamcot 22 US -0.124 

Tejas US -0.123 

 Std. error 0.078 

Tester   

TAM B182-33 ELS US 0.017 

Tamcot CAMD-E US -0.017 

 Std. error 0.018 

* Significant at 95% confidence interval (2xStd. error). 

** Significant at 99% confidence interval (3xStd. error). 

† CIE, International Commission on Illumination. 
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Combining Ability Estimates for L*a*b* Color System 

Most of the SCAs for L* were not significantly different from zero, indicating 

that lines and testers did not combine differently for this component of color L* 

 (Table 20).  However, Duck Shelter from China combined specifically with Tamcot 

CAMD-E, producing higher (p < 0.05) than average L* F1 values at 0.442 units and with 

TAM B182-33 ELS to produce hybrids with lower than expected L* values. PAN 575 

from West Africa also combined with the two testers to produce F1 L* values different 

than the average of all F1s.  PAN 575 / TAM B182-33 ELS expressed a L* value 0.474 

units higher than all F1 combinations and 0.474 units lower when PAN 575 was crossed 

with Tamcot CAMD-E.   

 Unlike with the SCA values for L*, there were several GCA values for a* that 

were significantly different from zero (Table 21).  Five of the Chinese cultivars 

exhibited significant positive GCAs for a*, which indicate that they on average improve 

the a*, and thus whiteness, in their respective F1 progenies.  Three of the West African 

cultivars, four of the South African cultivars and three of the US cultivars exhibited 

significant negative GCAs for a*, which indicate that they on average decreased 

whiteness, as indicated by  a*, in their respective F1 progenies.  

 While a positive GCA value is preferred for a*, a negative GCA value for b* 

would be preferred among this set of lines and testers because their b* values were 

above zero, a value that denotes a whiter color (Table 22).  Six of the Chinese cultivars 

exhibited significant positive GCAs for b*, which demonstrate that, on average, they 

decreased whiteness, as indicated by the b* value in their respective F1 progenies.  Two 
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of the West African cultivars and seven of the South African cultivars exhibited 

significant negative GCAs for b*, which indicates that they, on average, increased 

whiteness as indicated by the b* values in their respective F1 progenies.  None of the US 

cultivars demonstrated a GCA value for b* that was different than zero, suggesting that 

none of the US lines when crossed with the two US testers would  improve b*, thus 

whiteness, in a pedigree breeding program. 

Maturity Measurements 

 

 The MR data set failed to meet the underlying assumptions of homogeneity and 

normality required for ANOVA.  Therefore the data were transformed by arc sine 

because MR is a ratio.  Even though this transformation did not result in non-significant 

p-values for the Bartlett and Shapiro-Wilks tests for homogeneity and normality, it 

resulted in a higher p-value than any other transformation attempted (square root, 2
nd

 

power, inverse and logarithmic transformations).   

 The RbWth and Mic data sets also did not meet the underlying assumptions of 

homogeneity and normality for ANOVA.  Despite various data transformations 

attempted (square root, 2
nd

 power, inverse, logarithmic and arc sine), non-significant p-

values for Bartlett and Shapiro-Wilks tests of homogeneity and normality were not 

obtained.  Therefore, the ANOVA was performed on the untransformed data sets for 

both RbWth and Mic. 

Parents, F1s, and parents vs. F1s significantly differed (p < 0.001) for MR, 

RbWth and Mic, except for parents vs. F1s for Mic which did not differ significantly 

(Table 23).  The ANOVA table revealed significant Genotype x Year interactions for 
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MR (p < 0.01), RbWth (p < 0.05) and Mic (p < 0.001).  Since these maturity 

measurements are so dependent upon the environmental growing conditions, it is 

unsurprising that there are significant Genotype x Year interactions.  The Line x Tester 

interaction term was significant p < 0.001 for RbWth, but was not significant for both 

MR and Mic.  Therefore, the SCAs of the F1s will be discussed herein for RbWth, since 

the 36 lines combined differently with the two testers for both years of the field 

experiment and thus it is not appropriate to report GCAs of the lines and parents based 

upon the ANOVA.  The GCAs of the lines and testers for MR and Mic will be discussed 

herein, since the 36 lines combined with the testers in relatively the same order for both 

years of testing.   

Line and tester were both significant for MR, RbWth and Mic at p < 0.001 (Table 

23).  Due to the significance of Parents, Parents vs. F1s and F1s, it is logical to conclude 

that there is genetic variation for MR, RbWth and Mic among the 36 lines and two 

testers used in this experiment.  It is also clear from the ANOVA and the numerous 

significant Genotype x Year interactions, that significant environmental variation was 

not successfully partitioned out for MR, RbWth, and Mic. 
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Table 23. Mean squares for Cottonscope
®
 MR

†
, RbWth and Mic values for 38 world 

upland cultivars and their F1 progeny grown under irrigated field culture near College 

Station, TX in 2010 and 2011. 

Source df MR
 

RbWth Mic 

   ---- μm ----  

Year 1 52.9244 ** 4.2456* 118.7200*** 

[Rep(Year)]‡ 4 1.9628  0.2106 1.1702 

Genotype 109 2.3970 *** 1.8299*** 0.6460*** 

       Parents 37 3.3178 *** 2.6635*** 1.1730*** 

       Parents vs F1s 1 20.5381 *** 19.8521*** 0.3817 

       F1s 71 1.6617 *** 1.1417*** 0.3751*** 

          Line 35 1.9570 *** 1.0734*** 0.5925*** 

          Tester 1 39.4613 *** 38.6613*** 1.7334*** 

          [Line*Tester] 35 0.2864 0.1380*** 0.1188 

Genotype*Year 109 0.2918 ** 0.0899* 0.2123*** 

      Parent*Year 37 0.2356 0.0934 0.2255*** 

      Parent vs F1s*Year 1 0.0003 0.0072 0.0168 

      F1s*Year 71 0.3251 ** 0.0893* 0.2081*** 

          Line*Year 35 0.3622 ** 0.0975* 0.2565*** 

          Tester*Year 1 0.3637 0.4266* 0.0676 

          Line*Tester*Year 35 0.2869 0.0714 0.1637* 

Error 436 0.2080 0.0661 0.1049 

*, **, *** significant at P < 0.05, 0.01, and 0.001, respectively. 

† MR, maturity ratio; RbWth, ribbon width; Mic, micronaire. 

‡ Brackets indicate an error term. 
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Table 24. Average Cottonscope
® 

MR
†
 of 38 upland parental genotypes grown under 

irrigated field culture near College Station, TX in 2010 and 2011. 
  Year 

Lines Region 2010 2011 

Allen 333-61  CB 4027 West Africa 1.03 a‡ 1.02 b-h 

UK 64 South Africa 1.02 ab 1.06 ab 

Phytogen 72 US 1.00 a-c 1.07 a 

PAN 575 West Africa 0.99 a-d 1.05 a-c 

Acala 1517-99 US 0.98 b-e 1.01 b-j 

ALA 70-11 South Africa 0.98 b-f 1.03 a-f 

Allen 333 West Africa 0.97 b-g 1.01 c-k 

A-637-33 South Africa 0.97 b-g 1.00 c-l 

Albacala 7 South Africa 0.97 b-g 1.04 a-d 

BJA 592 West Africa 0.97 b-g 0.97 i-p 

Del Cerro US 0.97 b-h 1.04 a-d 

BPA 68  CB 4030 South Africa 0.95 c-i 1.04 a-e 

Reba W 296 West Africa 0.95 d-i 1.03 a-g 

Tamcot 22 US 0.95 d-j 0.98 g-n 

Limpopo South Africa 0.94 d-j 0.98 g-o 

A 7215 South Africa 0.94 d-k 1.04 a-e 

Shan 5245 China 0.94 e-k 0.99 e-n 

Duck Shelter China 0.93 f-k 0.99 d-n 

Deltapine 491 US 0.93 f-k 1.01 b-j 

Funtua FT-5 West Africa 0.93 f-k 0.96 j-p 

Nanging #12 China 0.93 f-k 0.93 o-r 

Kang Bin Chang Mienne China 0.93 g-l 0.97 i-p 

Pengze China 0.93 g-l 0.95 l-q 

ST 474 US 0.93 g-l 0.95 m-r 

F 280 West Africa 0.92 h-m 0.96 k-q 

Marico (Smooth) South Africa 0.91 i-m 0.98 h-p 

Chung Mein-Jue #7 China 0.91 i-m 0.98 g-o 

Tejas US 0.91 i-m 0.99 d-n 

Komati South Africa 0.90 j-n 0.94 n-r 

China 632 China 0.90 k-n 1.02 b-i 

Jiangsu #3 China 0.89 k-n 0.96 j-p 

Sabie South Africa 0.89 k-n 0.91 q-r 

Small Leaf China 0.88 l-n 1.00 d-m 

Lishan Big Boll China 0.87 nm 0.90 r 

Zhong Mian Suo 9 Hao China 0.86 n 0.99 f-n 

Lintsing Sze Tze 4B China 0.80 o 0.93 p-r 

    

Tester    

TAM B182-33 ELS US 0.99 a 

Tamcot CAMD-E US 0.93 b 

† MR, Maturity Ratio. 

‡ Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 
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Since the lines did not respond the same to years, for MR, line means must be 

reported separately by year (Table 24).  In 2010, UK 64 (South Africa) had the highest 

mean MR of the South African cultivars, and it differed significantly than six of the 

other South African cultivars.  Phytogen 72 (US) had the highest mean MR of the US 

cultivars in 2010, differing from four other US cultivars (p < 0.05).  Allen 333-61 CB 

4027 (West Africa) had the highest mean MR in relation to the West African cultivars in 

2010, and it was equal to or higher than one of the seven West African cultivars (p < 

0.05).  Shan 5245 (China) had the highest mean MR as compared with the other Chinese 

cultivars in 2010, differing significantly than four other Chinese cultivars.  In 2010, Shan 

5245 differed significantly than the other three cultivars that had the highest MR for 

their respective geographic regions.  

 In 2011, Phytogen 72 and UK 64 (South Africa) were both superior in MR as to 

their respective geographic groupings as in the previous year (Table 24).  PAN 575 

(West Africa) and China 632 (China) demonstrated larger MR than Allen 333-61 CB 

4027 and Shan 5245 in 2011. On average, the Chinese cultivars exhibited a lower MR, 

while the African cultivars had a higher MR.  The two testers differed significantly for 

MR during the two years of the experiment. 
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Table 25. Average Cottonscope
®
  MR

†
 of F1s of 36 upland lines and 2 upland testers 

grown under irrigated field culture near College Station, TX in 2010 and 2011. 
Lines Region TAM B182-33 ELS Tamcot CAMDE 

  Year Year 

  2010 2011 2010 2011 

Allen 333-61  CB 4027 West Africa 1.08 a‡ 1.07 a-f 0.99 c-i 0.97 j-r 

UK 64 South Africa 1.06 ab 1.10 a 0.97 d-l 1.01 c-p 

Del Cerro US 1.05 a-c 1.07 a-f 0.88 o-u 1.01 d-p 

PAN 575 West Africa 1.05 a-c 1.08 a-d 0.92 i-r 1.02 b-n 

Phytogen 72 US 1.03 a-d 1.10 a 0.97 d-l 1.05 a-i 

Allen 333 West Africa 1.02 a-e 1.05 a-i 0.93 h-r 0.97 k-t 

Albacala 7 South Africa 1.01 a-f 1.07 a-g 0.93 h-r 1.02 b-o 

Acala 1517-99 US 1.00 b-g 1.02 b-n 0.97 d-l 1.00 e-p 

A-637-33 South Africa 0.99 b-h 1.00 g-p 0.94 f-p 1.01 d-p 

BPA 68  CB 4030 South Africa 0.99 c-i 1.08 a-c 0.92 i-r 0.99 h-q 

BJA 592 West Africa 0.99 c-j 0.98 i-q 0.95 e-o 0.96 l-u 

Nanging #12 China 0.98 c-j 0.96 k-t 0.87 q-v 0.90 s-w 

ALA 70-11 South Africa 0.98d-k 1.06 a-h 0.98 d-k 1.01 d-p 

Duck Shelter China 0.98 d-k 1.03 a-k 0.89 o-u 0.95 n-v 

Kang Bin Chang Mienne China 0.97 d-k 0.98 i-q 0.88 p-u 0.95 m-v 

Limpopo South Africa 0.97 d-l 0.97 j-r 0.92 i-r 0.99 h-q 

Shan 5245 China 0.96 e-m 1.03 a-k 0.91 k-s 0.94 p-v 

F 280 West Africa 0.96 e-n 1.02 b-m 0.88 p-u 0.89 u-w 

Reba W 296 West Africa 0.96 e-n 1.07 a-e 0.95 e-p 0.99 i-q 

China 632 China 0.95 e-p 1.04 a-j 0.84 t-v 0.99 h-q 

Deltapine 491 US 0.95 e-p 1.06 a-h 0.91 k-s 0.96 l-u 

Tamcot 22 US 0.95 e-p 1.00 g-p 0.95 f-p 0.97 j-s 

Pengze China 0.95 f-p 0.95 n-v 0.91 k-t 0.96 l-v 

Funtua FT-5 West Africa 0.94 f-p 0.98 i-q 0.91 k-s 0.95 o-v 

ST 474 US 0.94 g-q 1.00 e-p 0.91 k-s 0.90 t-w 

Lishan Big Boll China 0.94 g-q 0.95 p-v 0.81 vw 0.86 w 

Marico (Smooth) South Africa 0.94 g-q 1.03 b-l 0.89 m-u 0.93 q-w 

Jiangsu #3 China 0.93 g-r 1.00 e-p 0.85 s-v 0.92 q-w 

Chung Mein-Jue #7 China 0.93 g-r 1.00 f-p 0.89 n-u 0.96 k-t 

Tejas US 0.93 h-r 1.04 a-j 0.89 o-u 0.95 p-v 

Sabie South Africa 0.92 j-s 0.97 k-t 0.87 r-v 0.86 w 

A 7215 South Africa 0.91 k-t 1.09 ab 0.97 d-l 0.99 i-q 

Small Leaf China 0.91 k-t 1.04 a-i 0.85 s-v 0.95 o-v 

Zhong Mian Suo 9 Hao China 0.90 l-t 1.03 b-l 0.81 vw 0.95 p-v 

Komati South Africa 0.88 o-u 0.99 i-q 0.92 i-r 0.90 r-w 

Lintsing Sze Tze 4B China 0.77 w 0.97 j-r 0.83 u-w 0.89 wv 

† MR, Maturity Ratio 

‡ Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 
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A MR of 0.8 and below indicates that the fibers are immature.  Only Lintsing Sze 

Tze 4B (China) in 2010 exhibited a MR of 0.80.  Most of the lines and testers for both 

years have MR values between 0.8 and 1.0, which are considered to be mature fibers.  A 

few lines, particularly ones from African, had MR values that were above 1.0, indicating 

that those fibers were very mature.  In 2011, there were more lines with MR above 1.0, 

which is not surprising due to the extremely different weather conditions for both 

growing years. 

 There was a significant F1 x Year interaction for MR, so the MR means for the F1 

progenies were reported separately by years (Table 25).  Allen 333-61 CB 4027 (West 

Africa), UK 64 (South Africa), Del Cerro (US), PAN 575 (West Africa) and Phytogen 

72 (US) all had superior hybrid combinations for MR with TAM B182-33 ELS for both 

2010 and 2011.  Typically the hybrid combinations with TAM B182-33 ELS had higher 

MR as compared to the hybrid combinations with Tamcot CAMD-E. 

There were significant Line x Year and Tester x Year interaction terms for 

RbWth, so the means were all reported as separated by year (Table 26).  Overall, the 

Chinese cultivars tended to have larger RbWth, indicating that their fibers were probably 

coarser or had larger fiber diameters.  Conversely, the African cultivars tended to have 

smaller RbWth, indicating that their fibers were probably finer and had smaller fiber 

diameters.  The genetic variability that exists for RbWth seems to be partitioned via 

different geographic regions in the various lines over the two years of the experiment.  

The two testers differed significantly for both years of the experiment. 
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Table 26. Average Cottonscope
®
 RbWth

†
 of 38 upland parental genotypes grown under 

irrigated field culture near College Station, TX in 2010 and 2011. 
  Year 

Lines Region 2010 2011 

  ---- μm ---- ---- μm ---- 

Lintsing Sze Tze 4B China 15.28 a‡ 15.42 a-c 

Zhong Mian Suo 9 Hao China 15.24 ab 15.13 d-h 

Small Leaf China 15.21 ab 15.36 a-d 

ST 474 US 15.21 ab 15.40 a-c 

Sabie South Africa 15.19 a-c 15.44 ab 

Komati South Africa 15.17 a-c 15.13 d-h 

Tejas US 15.15 a-d 15.26 a-e 

Lishan Big Boll China 15.06 a-e 15.46 a 

Pengze China 15.05 a-e 15.47 a 

Jiangsu #3 China 15.05 a-e 15.33 a-d 

Kang Bin Chang Mienne China 15.01 a-f 15.26 a-e 

F 280 West Africa 15.01 a-f 15.17 c-h 

Reba W 296 West Africa 14.99 a-g 14.71 l-o 

Chung Mein-Jue #7 China 14.97 b-h 15.06 e-j 

Duck Shelter China 14.95 b-h 15.16 c-h 

China 632 China 14.95 b-h 14.79 j-n 

Funtua FT-5 West Africa 14.91 c-i 15.16 c-h 

Marico (Smooth) South Africa 14.87 d-j 14.94 g-l 

Tamcot 22 US 14.86 d-j 15.25 a-f 

Nanging #12 China 14.85 e-j 15.12 d-i 

Deltapine 491 US 14.82 e-j 14.90 h-l 

Shan 5245 China 14.80 e-j 15.19 b-f 

ALA 70-11 South Africa 14.72 f-k 14.86 i-m 

BJA 592 West Africa 14.69 g-k 15.24 a-f 

BPA 68  CB 4030 South Africa 14.68 g-l 14.70 l-o 

Allen 333 West Africa 14.68 h-l 14.99 f-k 

Limpopo South Africa 14.63 i-m 14.78 k-n 

A-637-33 South Africa 14.59 j-n 14.69 l-o 

Albacala 7 South Africa 14.59 j-n 14.45 op 

Phytogen 72 US 14.46 k-n 14.62 m-p 

A 7215 South Africa 14.38 l-n 14.39 p 

Allen 333-61  CB 4027 West Africa 14.38 mn 14.79 j-n 

Del Cerro US 14.38 mn 14.47 op 

Acala 1517-99 US 14.38 mn 14.71 l-o 

UK 64 South Africa 14.34 mn 14.54 n-p 

PAN 575 West Africa 14.30 n 14.40 p 

    

Tester    

Tamcot CAMD-E US 15.10 a 15.32 a 

TAM B182-33 ELS US 14.56 b 14.66 b 

† RbWth, Ribbon-Width. 

‡ Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 
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Table 27. Average Cottonscope
®
 RbWth

†
 of F1s of 36 upland lines and 2 upland testers 

grown under irrigated field culture near College Station, TX in 2010 and 2011. 
Lines Region TAM B182-33 ELS Tamcot CAMDE 

  Year Year 

  2010 2011 2010 2011 

  ---- μm ---- ---- μm ---- ---- μm --- ---- μm ---- 

Lintsing Sze Tze 4B China 15.28 a-g ‡ 14.94 n-w 15.27 a-g 15.91 a 

Komati South Africa 15.06 c-n 14.68 t-cc 15.28 a-g 15.57 a-g 

Zhong Mian Suo 9 

Hao China 

15.00 e-o 14.69 t-cc 15.48 a-c 15.57 a-g 

Pengze China 14.99 e-q 15.37 d-k 15.10 c-l 15.57 a-g 

Sabie South Africa 14.95 f-q 14.96 m-v 15.44 a-d 15.92 a 

Tejas US 14.91 f-r 14.76 q-bb 15.40 a-e 15.76 a-c 

Reba W 296 West Africa 14.90 g-s 14.28 dd-ii 15.08 c-n 15.14 h-q 

ST 474 US 14.89 g-s 15.12 i-r 15.53 ab 15.69 a-f 

Tamcot 22 US 14.84 h-u 15.12 i-r 14.88 g-t 15.39 c-k 

Small Leaf China 14.83 h-u 14.89 p-y 15.60 a 15.82 ab 

Jiangsu #3 China 14.76 j-v 14.95 m-w 15.33 a-f 15.72 a-d 

Kang Bin Chang 

Mienne China 

14.76 j-v 15.02 k-t 15.27 a-g 15.51 b-h 

Chung Mein-Jue #7 China 14.68 l-w 14.79 q-bb 15.27 a-g 15.33 e-m 

Duck Shelter China 14.68 l-w 14.84 p-aa 15.23 a-h 15.48 b-i 

Marico (Smooth) South Africa 14.66 n-w 14.57 w-ff 15.08 c-m 15.32 f-n 

Lishan Big Boll China 14.63 o-w 15.08 j-s 15.48 a-c 15.85 ab 

F 280 West Africa 14.62 o-w 14.62 u-dd 15.39 a-e 15.71 a-e 

China 632 China 14.61 o-w 14.60 v-ee 15.29 a-g 14.99 l-u 

BJA 592 West Africa 14.61 p-w 15.06 j-t 14.77 j-v 15.42 c-j 

Funtua FT-5 West Africa 14.60 p-w 14.94 m-w 15.21 a-i 15.38 c-k 

Deltapine 491 US 14.57 q-w 14.44 bb-hh 15.08 c-n 15.35 d-l 

Nanging #12 China 14.57 q-w 14.82 p-bb 15.13 b-k 15.42 c-j 

ALA 70-11 South Africa 14.51 r-w 14.53 y-ff 14.92 f-r 15.18 h-p 

Limpopo South Africa 14.48 s-x 14.79 q-bb 14.79 i-u 14.78 q-bb 

Shan 5245 China 14.46 t-y 14.80 q-bb 15.15 b-j 15.58 a-g 

BPA 68  CB 4030 South Africa 14.44 u-y 14.28 dd-ii 14.93 f-r 15.13 h-q 

A-637-33 South Africa 14.36 v-z 14.49 aa-gg 14.83 h-u 14.88 p-y 

Allen 333 West Africa 14.33 w-z 14.69 s-cc 15.04 d-o 15.28 g-o 

A 7215 South Africa 14.30 w-aa 14.23 ee-ii 14.47 s-x 14.54 x-ff 

Albacala 7 South Africa 14.29 w-aa 14.19 ff-ii 14.88 g-t 14.70 s-bb 

Phytogen 72 US 14.06 x-bb 14.31 cc-ii 14.87 g-t 14.93 o-w 

Acala 1517-99 US 14.04 y-bb 14.50 z-gg 14.72 k-w 14.92 o-x 

UK 64 South Africa 14.01 z-bb 14.12 gg-ii 14.67 m-w 14.97 m-v 

Allen 333-61  CB 

4027 West Africa 

13.90 aa-bb 14.27 dd-ii 14.86 g-t 15.32 f-n 

Del Cerro US 13.83 bb 14.05 ii 14.93 f-r 14.88 p-z 

PAN 575 West Africa 13.78 bb 14.06 hh-ii 14.81 h-u 14.74 r-bb 

† RbWth, Ribbon-Width. 

‡ Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD.  
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There was a significant F1 x Year interaction for RbWth, so the means reported 

were separated by year (Table 27). On average, the lines combined with Tamcot CAMD-

E resulted in hybrid combinations that had increased RbWth, which indicates that the 

fibers were coarser (larger diameter) as compared to the hybrids formed with TAM 

B182-33 ELS.  In 2010, the hybrid combination with the largest RbWth mean was Small 

Leaf (China)/Tamcot CAMD-E. In 2010, the hybrid combination with the smallest 

RbWth mean was PAN 575 (West Africa)/TAM B182-33 ELS.  In 2011, the hybrid 

combination with the largest RbWth mean was Lintsing Sze Tze 4B (China)/Tamcot 

CAMD-E.  In 2011, the hybrid combination with the smallest RbWth mean was Del 

Cerro (US)/TAM B182-33 ELS. 

Until the advent of the Cottonscope
®
, it was impossible to accurately measure 

RbWth.  Therefore, there is no definitive range associated with this important fiber 

quality measurement, such as there is for Mic.  RbWth can neither be maximized nor 

minimized in cotton fibers because of the inherent physical properties of the fibers. A 

larger RbWth value is not preferable because it could indicate a larger fiber diameter.  If 

fibers exhibit larger fiber diameters, then fewer fibers will be in a yarn cross-section and 

there will be less friction to hold the yarn together.  Larger diameter fibers can also lead 

to more ends down in spinning.  A smaller RbWth is preferred, but the RbWth should 

not be too small because that could indicate too small a fiber diameter.  Smaller diameter 

fibers are individually weaker, which could increase SFC and fiber breakage during 

spinning.  Evidently, more research involving the use of the Cottonscope
® 

to investigate 
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the effects of RbWth on yarn quality is essential to developing an acceptable range of 

RbWth for cotton fibers. 

There was a significant Line x Year interaction for Mic, so the line means were 

reported as separated by year (Table 28).  In 2010, all of the line Mic values were within 

the acceptable Mic range of 3.5 to 4.9, with the exception of Lintsing Sze Tze 4B 

(China), which had a mean Mic of only 3.17.  However, in 2011 only 17 of the 36 lines 

had Mic within the acceptable range, while the majority of lines had higher Mic values.  

During the growing season in 2011, there were drought conditions in the fields, so the 

cotton plants experienced both heat and water stress.  It is possible that the Mic values 

were increased due the unfavorable environmental conditions during that growing 

season. The two testers differed significantly for the two years of the experiment and 

they both had Mic values within the acceptable range. 
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Table 28. Average Cottonscope
®
 Mic† of 38 upland parental genotypes grown under 

irrigated field culture near College Station, TX in 2010 and 2011. 
  Year 

Lines Region 2010 2011 

Allen 333-61  CB 4027 West Africa 4.55 a‡ 4.98 c-g 

Reba W 296 West Africa 4.49 ab 4.96 c-g 

ST 474 US 4.46 a-c 5.03 b-f 

ALA 70-11 South Africa 4.40 a-d 5.24 a-c 

Phytogen 72 US 4.33 a-e 5.34 ab 

UK 64 South Africa 4.32 a-e 5.03 b-f 

BJA 592 West Africa 4.30 a-f 5.06 b-f 

Pengze China 4.29 a-g 5.17 b-d 

Allen 333 West Africa 4.28 a-g 5.10 b-e 

Tamcot 22 US 4.25 a-h 5.22 a-d 

Kang Bin Chang Mienne China 4.25 a-h 5.04 b-f 

Duck Shelter China 4.20 a-h 5.18 b-d 

Tejas US 4.18 a-i 5.33 ab 

A-637-33 South Africa 4.17 a-i 4.67 g-k 

Komati South Africa 4.15 b-i 4.59 i-k 

Albacala 7 South Africa 4.13 b-j 4.76 f-k 

F 280 West Africa 4.13 b-k 4.76 f-k 

Funtua FT-5 West Africa 4.11 c-k 4.90 d-i 

BPA 68  CB 4030 South Africa 4.10 c-k 5.06 b-f 

Sabie South Africa 4.09 c-k 4.60 h-k 

Shan 5245 China 4.07 d-l 5.19 a-d 

Acala 1517-99 US 4.04 d-l 4.78 e-k 

Deltapine 491 US 4.04 d-l 5.01 b-f 

Nanging #12 China 4.02 e-l 4.46 k 

Chung Mein-Jue #7 China 3.99 e-l 4.93 c-h 

Small Leaf China 3.97 e-l  5.51 a 

Limpopo South Africa 3.94 f-m 4.55 jk 

PAN 575 West Africa 3.93 f-m 4.75 f-k 

Marico (Smooth) South Africa 3.91 g-m 4.68 g-k 

Jiangsu #3 China 3.90 h-m 5.08 b-f 

Del Cerro US 3.83 i-m 4.75 f-k 

China 632 China 3.77 j-m 4.95 c-g 

Zhong Mian Suo 9 Hao China 3.76 k-m 5.07 b-f 

Lishan Big Boll China 3.69 l-m 4.49 jk 

A 7215 South Africa 3.59 m 4.61 h-k 

Lintsing Sze Tze 4B China 3.17 n 4.80 e-j 

    

Tester    

Tamcot CAMD-E US 4.57 a 

TAM B182-33 ELS US 4.44 b 

† Mic, Micronaire. 

‡ Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 



 

 

81 

8
1
 

 There was a significant F1 x Year interaction for Mic, so the F1 Mic means were 

reported as separated by year (Table 29).  In 2010, all the F1 progenies had Mic values 

within the acceptable range except for the following hybrid combinations: A 7215 

(South Africa)/TAM B182-33 ELS and Lintsing Sze Tze 4B (China)/TAM B182-33 

ELS.  In 2011, a similar trend was seen in the F1s as in the lines because 18 of the hybrid 

combinations with TAM B182-33 ELS as a tester and 23 of the hybrid combinations 

with Tamcot CAMD-E as a tester resulted in Mic values that were outside of the 

acceptable Mic range for upland cotton.  In general, the hybrid combinations with 

Tamcot CAMD-E resulted in higher Mic values than the hybrid combinations with TAM 

B182-33 ELS.  From these data, it is easy to conclude that Mic is a trait that is highly 

variable and environmentally influenced. 
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Table 29. Average Cottonscope
®
 Mic

†
 of F1s of 36 upland lines and 2 upland testers 

grown under irrigated field culture near College Station, TX in 2010 and 2011. 
Lines Region TAM B182-33 ELS Tamcot CAMDE 

  Year Year 

  2010 2011 2010 2011 

Reba W 296 West Africa 4.45 a-f‡ 4.85 g-s 4.53 a-d 5.08 b-m 

Kang Bin Chang Mienne China 4.44 a-g 4.87 g-s 4.05 c-p 5.21 a-g 

Pengze China 4.40 a-h 4.99 d-o 4.17 b-o 5.35 a-f 

BJA 592 West Africa 4.38 a-i 4.93 f-r 4.21 a-n 5.18 a-h 

Allen 333-61  CB 4027 West Africa 4.36 a-j 4.79 g-t 4.74 a 5.16 a-i 

Duck Shelter China 4.34 a-k 5.22 a-g 4.07 c-p 5.14 a-j 

UK 64 South Africa 4.32 a-l 4.93 f-r 4.31 a-l 5.13 a-j 

Allen 333 West Africa 4.29 a-m 5.13 a-j 4.26 a-m 5.06 b-n 

Nanging #12 China 4.28 a-m 4.43 s-u 3.77 m-r 4.48 q-u 

Tamcot 22 US 4.23 a-n 5.20 a-g 4.26 a-m 5.24 a-g 

Albacala 7 South Africa 4.20 b-o 4.66 k-u 4.07 c-p 4.85 g-s 

ST 474 US 4.19 b-o 5.23 a-g 4.74 a 4.83 g-s 

ALA 70-11 South Africa 4.14 c-p 5.08 b-m 4.67 ab 5.41 a-e 

A-637-33 South Africa 4.13 c-p 4.33 tu 4.22 a-n 5.02 b-n 

BPA 68  CB 4030 South Africa 4.13 c-p 4.93 f-r 4.07 c-p 5.19 a-g 

Phytogen 72 US 4.12 c-p 5.18 a-h 4.54 a-c 5.49 ab 

Sabie South Africa 4.07 c-p 4.61 m-u 4.12 c-p 4.60 n-u 

Tejas US 4.07 c-p 5.19 a-g 4.28 a-m 5.47 a-c 

F 280 West Africa 4.06 c-p 4.79 g-t 4.20 b-o 4.72 h-u 

Jiangsu #3 China 4.03 c-q 5.00 c-o 3.77 m-r 5.15 a-i 

Zhong Mian Suo 9 Hao China 4.00 e-r 4.93 f-r 3.52 q-s 5.21 a-g 

Del Cerro US 3.98 e-r 4.51 p-u 3.67 o-s 4.99 d-o 

Limpopo South Africa 3.96 f-r 4.47 r-u 3.92 g-r 4.63 l-u 

China 632 China 3.93 f-r 4.92 f-r 3.61 p-s 4.98 d-o 

Deltapine 491 US 3.90 h-r 4.93 f-r 4.17 b-o 5.10 b-k 

Lishan Big Boll China 3.89 h-r 4.54 o-u 3.49 rs 4.44 s-u 

PAN 575 West Africa 3.89 h-r 4.61 m-u 3.97 e-r 4.89 f-s 

Funtua FT-5 West Africa 3.88 h-r 4.81 g-s 4.34 a-k 4.99 d-o 

Marico (Smooth) South Africa 3.86 i-r 4.72 h-u 3.97 e-r 4.64 k-u 

Shan 5245 China 3.86 i-r 5.19 a-g 4.27 a-m 5.20 a-g 

Chung Mein-Jue #7 China 3.83 j-r 4.77 g-t 4.15 b-o 5.08 b-l 

Small Leaf China 3.82 k-r 5.45 a-d  4.12 c-p 5.57 a 

Komati South Africa 3.81 l-r 4.49 q-u 4.49 a-e 4.70 i-u 

Acala 1517-99 US 3.73 n-r 4.59 n-u 4.35 a-j 4.97 e-p 

A 7215 South Africa 3.17 st 4.94 f-q 4.01 d-r 4.28 u 

Lintsing Sze Tze 4B China 2.83 t 4.68 j-u 3.51 q-s 4.92 f-r 

† Mic, Micronaire. 

‡ Means within a column followed by the same letter are not different at p = 0.05 

according to Fisher’s protected LSD. 
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Combining Ability Estimates for MR, RbWth and Mic 

There were several GCA values among these lines for MR that were significantly 

different from zero (Table 30).  Five of the Chinese cultivars exhibited negative GCA 

values that were significantly different from zero for MR, which indicate that they on 

average decreased the MR in their respective F1 progenies.  Three of the West African 

cultivars exhibited significant positive GCA values for MR.  Four of the South African 

cultivars had positive GCA values that were significantly different from zero and two of 

the South African cultivars had negative GCA values different from zero. Three of the 

US cultivars exhibited significant positive GCAs for MR, which indicated that they on 

average improved the MR in their respective F1 progenies. 

Most of the SCAs for RbWth were not significantly different from zero, 

indicating that most of the lines in this study did not combine with either tester 

differently for RbWth (Table 31).  Three lines, Pengze (China), Limpopo (South Africa) 

and Tamcot 22 (US) combined with TAM B182-33 ELS for RbWth significantly higher 

than the average of all lines and negative and significantly with Tamcot CAMD-E.  

These findings suggest that these specific combinations could possibly be used in a 

breeding program to improve RbWth, but it would be difficult since RbWth should not 

be maximized or minimized. 

Five of the Chinese cultivars had GCA values for Mic significantly different 

from zero: three of them negative and two positive (Table 32).  Two of the West African 

cultivars have positive GCAs that were significantly different than zero.  Five of the 

South African cultivars had GCA estimates that differed significantly from zero: three of 
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them were negative and two of them were positive.  Five of the US cultivars had GCA 

estimates that were significantly different from zero: one of these estimates was negative 

and the other four were positive.  As compared to the combining ability estimates for 

degree of whiteness, there is more potential for genetic improvement from these 

genotypes in terms of MR, RbWth and Mic.  

MR should be increased so that it is ideally over 1.0 because those fibers are very 

mature and will result in a higher quality yarn.  In these germplasm from different 

geographic regions, there exists sufficient genetic variability to potentially increase MR.  

RbWth should neither be maximized nor minimized in order to maintain fibers of 

sufficient quality for textile manufacturing.  However, Mic is never maximized or 

minimized, but should always held to be within a range identified as most desirable for 

most spinning and weaving operations. The environmental variation had such an impact 

on RbWth and Mic in this experiment that it would not be prudent to base a cotton 

breeding program solely on these two parameters. 
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Table 30. Cottonscope
® 

MR
†
 estimates of general combining ability (GCA) effects of 38 

upland parental genotypes grown under irrigated field culture near College Station, TX 

in 2010 and 2011. 
Lines Geographic area GCA 

China 632 China -0.008 

Chung Mein-Jue #7 China -0.018 

Duck Shelter China -0.001 

Jiangsu #3 China -0.036** 

Kang Bin Chang Mienne China -0.016 

Lintsing Sze Tze 4B China -0.098** 

Lishan Big Boll China -0.075** 

Nanging #12 China -0.033* 

Pengze China -0.023 

Shan 5245 China 0.000 

Small Leaf China -0.025 

Zhong Mian Suo 9 Hao China -0.042** 

Allen 333 West Africa 0.025 

Allen 333-61  CB 4027 West Africa 0.064** 

BJA 592 West Africa 0.007 

F 280 West Africa -0.025 

Funtua FT-5 West Africa -0.016 

PAN 575 West Africa 0.054** 

Reba W 296 West Africa 0.027* 

A 7215 South Africa 0.025 

A-637-33 South Africa 0.023 

ALA 70-11 South Africa 0.042** 

Albacala 7 South Africa 0.042** 

BPA 68  CB 4030 South Africa 0.033* 

Komati South Africa -0.040** 

Limpopo South Africa 0.000 < 

Marico (Smooth) South Africa -0.018 

Sabie South Africa -0.061** 

UK 64 South Africa 0.073** 

Acala 1517-99 US 0.035* 

Del Cerro US 0.040** 

Deltapine 491 US 0.007 

Phytogen 72 US 0.074** 

ST 474 US -0.025 

Tamcot 22 US 0.002 

Tejas US -0.014 

 Std. error 0.013 

Tester   

TAM B182-33 ELS US 0.030** 

Tamcot CAMD-E US -0.030** 

 Std. error 0.003 

* Significant at 95% confidence interval (2xStd. error). 

** Significant at 99% confidence interval (3xStd. error). 

† MR, Maturity Ratio. 
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Table 31. Cottonscope
® 

RbWth
†
 estimates of specific combining ability (SCA) effects of 

36 upland lines and 2 testers grown under irrigated field culture near College Station, TX 

in 2010 and 2011. 
Line Geographic Area TAM B182-33 ELS Tamcot CAMD-E 

China 632 China 0.033 -0.033 

Chung Mein-Jue #7 China 0.020 -0.020 

Duck Shelter China 0.002 -0.002 

Jiangsu #3 China -0.037 0.037 

Kang Bin Chang Mienne China 0.048 -0.048 

Lintsing Sze Tze 4B China 0.058 -0.058 

Lishan Big Boll China -0.105 0.105 

Nanging #12 China 0.011 -0.011 

Pengze China 0.223* -0.223* 

Shan 5245 China -0.069 0.069 

Small Leaf China -0.125 0.125 

Zhong Mian Suo 9 Hao China -0.040 0.040 

Allen 333 West Africa -0.025 0.025 

Allen 333-61  CB 4027 West Africa -0.203 0.203 

BJA 592 West Africa 0.170 -0.170 

F 280 West Africa -0.163 0.163 

Funtua FT-5 West Africa 0.037 -0.037 

PAN 575 West Africa -0.129 0.129 

Reba W 296 West Africa 0.037 -0.037 

A 7215 South Africa 0.177 -0.177 

A-637-33 South Africa 0.083 -0.083 

ALA 70-11 South Africa 0.032 -0.032 

Albacala 7 South Africa 0.025 -0.025 

BPA 68  CB 4030 South Africa -0.040 0.040 

Komati South Africa 0.021 -0.021 

Limpopo South Africa 0.220* -0.220* 

Marico (Smooth) South Africa 0.005 -0.005 

Sabie South Africa -0.061 0.061 

UK 64 South Africa -0.078 0.078 

Acala 1517-99 US 0.023 -0.023 

Del Cerro US -0.183 0.183 

Deltapine 491 US -0.053 0.053 

Phytogen 72 US -0.059 0.059 

ST 474 US -0.007 0.007 

Tamcot 22 US 0.219* -0.219* 

Tejas US -0.072 0.072 

 Std. error 0.105 0.105 

* Significant at 95% confidence interval (2xStd. error). 

† RbWth, Ribbon Width. 
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Table 32. Cottonscope
®
 Mic

†
 estimates of general combining ability (GCA) effects of 38 

upland parental genotypes grown under irrigated field culture near College Station, TX 

in 2010 and 2011. 
Lines Geographic area GCA 

China 632 China -0.15 

Chung Mein-Jue #7 China -0.05 

Duck Shelter China 0.18 

Jiangsu #3 China -0.02 

Kang Bin Chang Mienne China 0.14 

Lintsing Sze Tze 4B China -0.52** 

Lishan Big Boll China -0.41** 

Nanging #12 China -0.27* 

Pengze China 0.22* 

Shan 5245 China 0.12 

Small Leaf China 0.23* 

Zhong Mian Suo 9 Hao China -0.09 

Allen 333 West Africa 0.18 

Allen 333-61  CB 4027 West Africa 0.26* 

BJA 592 West Africa 0.17 

F 280 West Africa -0.06 

Funtua FT-5 West Africa < 0.00 

PAN 575 West Africa -0.16 

Reba W 296 West Africa 0.22* 

A 7215 South Africa -0.41** 

A-637-33 South Africa -0.08 

ALA 70-11 South Africa 0.32** 

Albacala 7 South Africa -0.06 

BPA 68  CB 4030 South Africa 0.07 

Komati South Africa -0.13 

Limpopo South Africa -0.26* 

Marico (Smooth) South Africa -0.21* 

Sabie South Africa -0.16 

UK 64 South Africa 0.17 

Acala 1517-99 US -0.10 

Del Cerro US -0.22* 

Deltapine 491 US 0.02 

Phytogen 72 US 0.33** 

ST 474 US 0.24* 

Tamcot 22 US 0.23* 

Tejas US 0.25* 

 Std. error 0.09 

Tester   

TAM B182-33 ELS US -0.06* 

Tamcot CAMD-E US 0.06* 

 Std. error 0.02 

* Significant at 95% confidence interval (2xStd. error). 

** Significant at 99% confidence interval (3xStd. error). 

† Mic, Micronaire. 
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CHAPTER IV 

CONCLUSIONS 

 Data reported herein support that genetic variation for degree of fiber whiteness, 

MR, RbWth and Mic exist in the distinct pools of germplasm from the various 

geographic areas included in this study.  While specific data from this study only applies 

to these lines and two testers,  the significant combining ability estimates for cultivars 

from all geographic regions indicated that the genetic potential to enhance degree of 

fiber whiteness and maturity exists in a few cultivars from each geographic area and do 

not reside specifically in a given region.   

A 7215 (South Africa), Tejas (US), PAN 575 (West Africa), Lintsing Sze Tze 4B 

(China) F 280 (West Africa) and Nanging #12 (China) and their F1 progenies all 

demonstrated superior whiteness characteristics.  PAN 575 is of particular interest 

because its combining ability estimates for the degree of whiteness variables (X, Y, Z, 

L*, a* and b*) were significantly different from zero.   

Despite the evident genetic variation from this study for the degree of fiber 

whiteness, the difficulties in the phenotypic screening of this trait and its importance 

relative to other fiber traits are problematic.  At this time, it is not advisable to begin a 

cotton breeding program based upon degree of fiber whiteness.  It is not economically 

viable because more research is needed, so that adequate consideration is given to this 

particular fiber trait.  However, it is advisable that the cotton color grading system 

should be switched to a more internationally recognized color grading system such as 

XYZ or CIE L*a*b* because of the increased ease of use. 
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Allen 333-61 CB 4027 (West Africa), Phytogen 72 (US), UK 64 (South Africa) 

and Lintsing Sze Tze 4B (China) and their F1 progenies had enhanced maturity 

characteristics, particularly very high MR values, indicating that their fibers are more 

mature than some of the other cultivars. A cotton breeding program based upon MR 

measured by the Cottonscope
®
 would be economically feasible due to rapid phenotyping 

and the clear genetic variation inherent in these germplasm pools.
 
Despite the extensive 

variation that exists in the RbWth and Mic values from the germplasm in this study, it 

would be ill-advised to breed cotton germplasm for either RbWth or Mic.  The 

environmental influence and fluctuation between environments of both RbWth and Mic, 

as well as confounding effects of both fiber fineness and maturity make them ill-suited 

to developing superior germplasm lines for maturity.  Additionally, RbWth and Mic are 

traits that simply can not be minimized or maximized with any degree of accuracy.  
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