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ABSTRACT 

 

Insights on Psittacine Nutrition through the Study of Free-living Chicks. 

(May 2012) 

Juan Cornejo, B.S., Universidad de Navarra 

Co-Chairs of Committee:  Dr. Donald J. Brightsmith 
     Dr. Christopher A. Bailey 

 

The Psittacidae is one of the most endangered families of birds in the 

world. Knowledge of its nutrition is important for understanding their survival and 

productivity in the wild, as well as for their adequate husbandry in captivity. 

Hand-rearing is a common practice for this group. However, research on their 

requirements is limited. Analysis of the crop content of chicks can provide new 

insights into psittacine nutrition, but it is limited by the small sizes of samples 

which can be obtained. We sampled the crops from free-living chicks of scarlet 

macaws and red-and-green macaws from southeastern Peru, Cuban parrots 

from the Bahamas, lilac-crowned parrots from northwestern Mexico, and thick-

billed parrots from northern Mexico. The predicted metabolizable energy, 

protein, fat, minerals, profile of essential amino acids and profile of fatty acids of 

the crop samples, as well as from 15 commercial hand-rearing formulas, were 

analyzed and contrasted. Near Infrared Spectroscopy was shown to be a valid 

technique for the nondestructive, low cost prediction of a variety of nutritional 

attributes of crop samples as small as 0.5 g dry weight, expanding the 

possibilities of wild animal nutrition research. The diets of the five studied 

species presented remarkable similarities and common patterns. The predicted 

dietary metabolizable energy and fat concentrations were particularly similar 

among species, the thick-billed parrot being the one with the most unique 

nutrient profile. The fatty acid profile of the crop contents differed markedly 

among genera, with the thick-billed parrot closer to the macaws than to the 
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parrots. In comparison with the crop samples, the hand feeding formulas 

presented lower fat, Mg, arginine, and valine concentrations. The wide variation 

in nutrients suggests that there is not yet a consensus among manufacturers 

concerning the correct nutrition for growing psittacines. It is suggested that a 

single formulation could be used to hand-rear macaws and parrots from half its 

nesting time to fledging, and further research should focus on their nutrition 

during the first half. Our results suggest that manufacturers should evaluate if 

increasing the concentrations of crude fat, Mg, arginine, and valine in 

commercial formulas enhances psittacine chick growth and health.  
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  CHAPTER I 

INTRODUCTION 

 

 

General background 

Macaws and other members of the Psittacidae family have been bred in 

captivity for more than 3000 years (1). In part due to their popularity as pets, 

they have become the most endangered order of birds in the world (over 25% of 

the species are listed as threatened and an additional 11% as near-threatened 

(2). Knowledge of nutrition is important for the adequate husbandry of the birds 

kept as pets, and for the efficient propagation of individuals kept in zoological 

collections for their ex situ conservation (3-6). It is also needed for 

understanding survival and productivity (6, 7), and it is therefore critical to 

implement adequate conservation strategies (3, 8, 9). There is an increasing 

volume of research on the nutritional requirements for growth and maintenance 

of psittacines (4, 10-22), but malnutrition is still one of the main issues in the 

care and propagation of this group (4, 5, 23-25) and providing nutritionally 

adequate diets must be a primary concern 

Most psittacines consume plant-based diets and are classified as 

herbivores (26). Studies of the diet of free ranging Neotropical psittacines are 

scarce (9, 27-34). While it is possible to identify the main food sources of adult 

parrots through field observations (9, 35), field conditions usually make it very 

difficult to determine the less common items in the diet (36). In addition, parrot’s 

extensive food manipulation and processing makes it challenging to quantify the 

exact proportion of each food type consumed (8, 15, 34). As a result it is not 

possible to determine nutritional content of wild adult diets. 

 

___________ 

This dissertation follows the style of The Journal of Nutrition. 
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Parrots feed their chicks an undigested regurgitate which the chicks hold 

in their crop before passing to the stomach for digestion. Analysis of these chick 

crop contents provides the opportunity to determine the composition of the chick 

diets as fed, unaffected by differential digestion (36-39). A variety of techniques 

exist to collect samples directly from the crops and stomachs of individual birds 

(36, 37). Unfortunately, the small size of the individual samples greatly limits the 

traditional wet lab analyses which can be done. Pooling samples of similar 

characteristics is often necessary to achieve the minimum sample sizes needed 

for analysis but this reduces statistical power needed to address ecological 

hypotheses (40, 41). Through crop sampling is also possible to directly 

determine each food type (32, 34, 35, 40) and the nutritional composition of the 

diet as a whole (40, 41).  

To date there are very few studies that have looked at the nutritional 

composition of free ranging parrot chicks diet (9, 40, 41). Research into the 

nutrition of parent-fed chicks has been published for only two species, the 

scarlet macaw (Ara macao) from southeastern Peru (40, 42), and the kakapo 

(Strigops habroptila) from New Zealand (41). Given the diversity of food habits 

and ecology among parrot species it is impossible to generalize from these 

scant observations to the nutritional requirements of the family.  

The overall goal of this dissertation is to use information from five species 

of free ranging (wild) psittacine chicks to provide novel information on psittacine 

nutrition which can be used to improve the hand-rearing of psittacines. 

 

Chick diet and hand feeding 

Hand rearing is a common practice for the propagation of psittacines, 

both for the pet market (43-45) and for conservation aviculture (46-50). Accurate 

information on the nutritional requirements of growing animals is essential for the 

formulation of captive rearing diets (51). However, research on the nutrition of 

growing psittacines is limited and the nutritional requirements for the growth of 
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psittacine chicks are not well understood (12, 22, 52-56). As a result, nutritional 

imbalances resulting in problems such as stunted development, rickets, and 

vitamin deficiencies (5, 13, 57, 58) have been common, and still occur for some 

species (4). Generally hand fed parrots grow slower than parent fed (56, 59, 60), 

and present a delayed fractional grow rate (% increase in body weight per day) 

(3, 61). In the absence of further research, or comprehensive data on the 

nutrient composition of the diets of wild psittacines, nutritional prescriptions for 

their maintenance and growth are generally extrapolated from dietary 

recommendations for poultry (62) and modified based on experience rather than 

on scientific study (4). However, psittacines are not closely related to poultry 

which have been artificially selected for multiple generations and differ both 

developmentally (63) and ecologically (64). Therefore, it is questionable if the 

available poultry data adequately model the dietary requirements of psittacine 

chicks.  

Hand feeding diets for psittacines were traditionally home-made recipes 

which required extensive preparation (3, 44, 45, 55, 58, 65) but now there is a 

wide array of commercially available products that require minimal preparation 

(4, 48). These products are intended to be used without supplementation and 

fulfill the nutritional requirements of most species. In a nutritional analysis of 11 

commercial hand feeding products Wolf and Kamphues (56) found great 

differences in the nutritional content, with an average ME concentration of 15.2 

MJ/kg DM (13.0-16.8), crude protein 14.4 g/MJ ME and crude fat 7.38 g/MJ ME. 

When compared with the nutritional requirements of budgerigars (Melopsittacus 

undulatus) and lovebirds (Agapornis sp.)(52), they found a number of formulas 

with insufficient concentrations of the sulphur amino acids methionine and 

cystine and others with apparently excessive calcium concentrations. 

 

 

 



4 

 

Diet texture 

Parrots feed their chicks a regurgitated coarse mix of foods. Preliminary 

data from 31 crop contents of scarlet macaws (Ara macao) chicks in Peru (40), 

age 28-60 days, found that the largest food particles averaged 9.0 x 4.5 mm, 

and there was little variation with chick age. Feeding whole grain to young 

chickens has been associated with a more muscular gizzard and less 

occurrence of proventricular hypertrophy (66, 67). Greater development of the 

gastrointestinal tract suggests that feed may be retained in the upper digestive 

tract for a longer period allowing for increased enzymatic digestion and digestive 

efficiency (66, 68, 69). Captive psittacines are usually hand fed diets of very 

small particle size (finely ground). When attempting to hand feed a coarse 

texture similar to the regurgitate fed by their parents (40), the mortality of newly 

hatched chicks increased and created problems with the food passage time in 

older chicks (58). The capacity of a formula to maintain the solids in suspension 

is another important factor because separation of ingredients at the mixing dish 

will result in nutritional inconsistencies of the formula. If this situation occurs in 

the chick’s crop, the solids will settle while the liquid is absorbed, making it more 

difficult to pass, and leading to dehydration and crop stasis.  

 

Nutritional requirements for growth  

Nutrients in the diet supply energy to fuel metabolism and the precursors 

for the synthesis of structural and functional macromolecules. The quantitative 

and qualitative aspects of nutrient requirements are well understood for 

commercial poultry species (62), but information about the requirements for wild 

avian species is very limited (6, 26).  

 

Energy 

The metabolizable energy (ME) is the amount of food energy that 

becomes available to the bird when nutrients such as amino acids, 
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carbohydrates and lipids, are oxidized during metabolism. Knowledge of energy 

requirements is very important because birds usually eat the quantity of food 

needed to satisfy their energy needs (4, 26). The amount of food required 

depends upon the density of metabolizable energy in the diet and its digestibility 

(26). Thus, when provided low energy density diets (e.g., high-fiber), animals 

increase the amount consumed but decrease total intake when given high 

energy diets (e.g., high-fat). Growing birds need energy for basal requirements, 

thermoregulation, physical activity, and growth. Kamphues and Wolf (70) 

measured the rate of protein and lipid gain in growing budgerigars (177 mg/d 

and 160 mg/d, respectively) and lovebirds (153 mg/d and 153 mg/d, 

respectively). Correcting these rates for the cost of deposition (52 kJ/g) gives the 

additional energy needed for growth at 17.5 kJ/g for budgerigars and 15.9 kJ/g 

for lovebirds. The relative amount of energy needed for growth is based upon 

the fractional growth rate (26). In altricial nestlings, the proportion of energy 

requirement partitioned to growth changes with age, being proportionally highest 

at the beginning when percent weight gain is the highest and thermoregulation 

and activity are minimal (26). Earle and Clarke (15) reported that the peak 

energy provisioned to parent fed budgerigar chicks was maximal about a week 

before fledging at 28 kJ/chick/day. Birds in the order Psittaciformes are among 

the slowest growing of altricial species but they also develop endothermy at an 

early age (71, 72). Thus, their energy requirements are likely to be more similar 

to precocial species than to highly altricial species like Passeriformes, which 

grow faster and thermoregulate later. The data suggest that this is the case, as 

the content of crops of free ranging kakapo (Strigops habroptila) chicks 

contained 7.7 MJ ME/kg (41), although optimal growth of chickens 0 to 12 weeks 

of age is achieved when offering a diet with 11.9 MJ ME/kg (62). However, 

according to Wolf and Kamphues (56) the energy density of hand rearing 

formulas for parrots varies widely (13.0-16.8 MJ ME/kg) and consistently 

exceeds estimated needs. 
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Protein and amino acids 

 Proteins are the primary constituents of animal tissues and are also 

important as enzymes, hormones, and membrane components (6). While crude 

protein is commonly reported in nutritional studies, its interpretation without 

considering the amino acid (AA) profile can be misleading, as birds don’t have a 

crude protein requirement per se (62). An essential level of protein must be 

included in the diet to meet nitrogen requirements of the animal, but the 

requirements depend on protein digestibility and the relative concentrations of 

the AA.  

In growing birds the main fate of the dietary protein is for tissue accretion 

and, in smaller proportion, for maintenance (26). The relative requirements for 

growth are highest at hatch and decrease over time, as the chicks’ fractional 

growth rate slows. The suggested requirements of crude protein for 0-12 weeks 

leghorn chickens in a corn-soybean meal diet (11.9 MJ ME/kg) is 16-18% DM 

(62). However, because of the higher fractional growth rate of psittacine birds 

(due to their altricial mode of development), an increase in the total amino acid 

requirements might be expected. A study of the crop content of free ranging 

kakapo chicks found 8.4% DM protein in crop samples (7.7 MJ ME/kg)(41) while 

scarlet macaws chicks in Peru had 23.5% DM protein in their crop contents (40).  

Traditionally the AA can be divided into essential amino acids (EAA), 

whose carbon skeletons cannot be synthesized at all by the body or are 

synthesized in insufficient quantities to meet cellular requirements, and non-

essential amino acids (NEAA) which can be synthesized de novo. Although all 

20 protein-forming α-amino acids are physiologically essential and should be 

considered when formulating diets (73-75), only 12 amino acids (arginine, 

isoleucine, leucine, lysine, methionine, phenylalanine, valine, tryptophan, 

threonine, glycine, histidine, and proline) are considered essential for birds (62, 

74, 76, 77). Amino acid requirements have been studied extensively in 

commercial fowl (62, 77, 78). However, psittacine AA requirements have 
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received limited attention, with most of the studies focused on adult maintenance 

requirements (15, 17, 19, 79). The AA dietary requirements depend on the 

concentrations of the EAAs relative to an animal's needs (80), and will be driven 

by the concentration of the limiting EAA. The AA balance needed for growth is a 

close reflection of the profile of AA incorporated into tissue protein (26). The 

amino acid composition of the tissues of budgerigars is very similar to that of 

chickens (81), so the balance of AA required may be similar among a broad 

range of avian taxa (4). Differences in the concentration and balance of AA 

among species would be driven by the different developmental patterns and 

fractional growth rates (26). Experiments with captive cockatiels have shown 

that optimum growth is achieved feeding a diet with 20% DM crude protein 

(1.0% methionine + cysteine, 1.5% lysine, 14.6 MJ ME/kg) (53). A diet with 

13.2% protein (0.65% lysine, 0.78% methionine + cysteine, 13.4 MJ ME/kg) 

supported maximal growth in growing budgerigar chicks (82). 

 

Fat and fatty acids 

Dietary lipids supply energy, essential fatty acids (FA), vitamin 

transportation, and pigments. Fatty acids have remarkably varied roles in animal 

physiology. Fatty acids can be saturated (SFA) if all the carbons of the tail are 

saturated with hydrogen atoms, or unsaturated if they contain one or more 

double bonds. Depending on the number of double bonds, FA can be 

monounsaturated (MUFAs), or polyunsaturated (PUFAs). Linoleic acid (C18:2 

n6) and α-linolenic acid (C18:3 n3) are considered essential nutrients because 

they have double bonds beyond carbon 9 and birds lack the desaturases 

needed to produce them. These two FA and their derivatives are referred to as 

the n-6 and n-3 families of FA. Arachidonic (C20:4 n6) and docosahexaonic acid 

(C22:6 n3) cannot be synthesized by carnivorous mammals or fish from linoleic 

and linolenic precursors, and it is unknown if birds have the capacity to 

synthesize them. (83).  
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Linoleic acid is the only essential FA for which dietary requirements have 

been demonstrated in poultry (1% DM [11.93 MJ ME/kg] for 0-12 weeks leghorn 

chickens) (62). The diet of the Hyacinth macaw (Anodorhynchus hyacinthinus) 

and the Lear’s macaw (A. leari) in Brazil contains predominantly SFA (3). A 

study of the crop content of free ranging kakapo (Strigops habroptila) chicks 

found 7.8% DM FA (41).  

 

Macro and micro minerals 

At least 13 minerals are required for the optimal health and productivity of 

birds (26). Minerals that serve structural or osmotic functions are required in 

relatively large amounts in the diet and are referred as the macrominerals: Ca, 

P, Na, K, Cl and Mg. Minerals that are required at relatively low dietary 

concentrations are referred as trace minerals: Cu, I, Fe, Mn, S, Se and Zn.  

Beyond calcium, the requirement of psittacine birds for other minerals is 

unknown (4). Calcium is a vital component of bone and body fluid, and is 

important for chick growth (13). The requirement of calcium for growth has been 

determined empirically for poultry; it decreases from 1.0% to 0.8% between 0 

and 8 weeks showing that the requirement is higher early in life when the growth 

rate is highest, and decreases in the adult bird. Previous research on scarlet 

macaws chicks crop content found 1.4% Ca DM (40). Phosphorus is an 

important constituent of bone, proteins, carbohydrates and lipid complexes (13). 

Evaluation of the Ca:P ratio in the diet is important as excess P can inhibit the 

uptake of calcium and result in bone growth abnormalities especially in growing 

animals (6, 62, 84). To a lesser extent surplus Ca reduces P uptake (6, 85). In 

leghorn chickens, the Ca to non-phytate P ratio increases from 2.2 to 2.7 

between 0 and 8 weeks (62), while in the scarlet macaw crops was found to be 

2.9 (40). The rate of skeletal growth of altricial hatchings is considerably faster 

than that of precocial birds, but the requirement for Ca has not been 

investigated. Presumably the combination of a faster growth rate and lower 

http://en.wikipedia.org/wiki/Anodorhynchus
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calcification of the skeleton at hatching cause altricial species to have greater 

requirements than precocial species (26).  

 

Study species and sites 

Five different Neotropical parrot species of three genera and from three 

countries were used in this study.  

 

Cuban parrot (Amazona leucocephala bahamensis) 

This subspecies breeds in the Caribbean pine forests of Abaco island 

[annual rainfall of 1,544 mm, monthly temperature means 21 – 27°C (86, 87)]. It 

is known to feed on 24 plant species (9, 88). During the breeding season their 

diet is predominately composed of Caribbean pine seeds and cones (Pinus 

caribaea), poisonwood fruits (Metopium toxiferum) and wild guava (Tetrazygia 

bicolor). According to extrapolations from observations of the feeding habits 

during the nesting season, the Cuban parrots feed their chicks a diet containing 

22.4% DM protein, 21.3% DM fat, and 10.1% DM ash (9). 

 

Thick-billed parrot (Rhynchopsitta pachyrhyncha) 

This species nests in the conifer forest of Sierra Madre Occidental of 

western Mexico above 2,000 m elevation [annual rainfall 400 to 1,100 mm (89)]. 

This species nests during the peak in production of pine-seeds (90). The 

quantitative analysis of 102 crops of 64 Thick-billed parrot nestlings in 35 nests 

(27) showed that the chicks were fed pine seeds (86% by weight), bark (9%), 

acorns (4%), insects (< 1%) and pine needles (< 1%).  

 

Lilac-crowned parrot (Amazona finschi) 

This species is endemic to the tropical dry deciduous and semi-deciduous 

forest of the Pacific coast of Mexico (91) [average annual precipitation 748 mm 

(92)]. This species feeds on more than 33 different plants during the year (7). 
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They exhibit high flexibility in their diet, being able to adjust for temporary 

variations in the food resources (93). Their diet is composed of 82% seed, 9% 

fruits, 7% insect larva, and 3% bromeliad stems (7).  

 

Scarlet macaw 

This species was studied at the Tambopata Research Center (TRC). TRC 

is located in the lowland forests of south-eastern Peru. The center lies at the 

boundary between tropical moist and subtropical wet forest at an elevation of 

250 m, and receives 3,200 mm of rain per year. This species feeds on 73 food 

species in the Amazonian rainforest of Peru (35, 94), 43 food species in tropical 

forest of Costa Rica (95) and 15 plant species during the breeding season in 

Belize (34). Crop samples from this species have been studied for nutritional 

content in Peru (40), and species composition in Belize (34). The samples 

contained a mixture of seeds, fruit, flowers, tree bark, insects, and in the case of 

Peru, soil from river edge “clay licks” (96, 97).  

 

Red-and-green macaw (Ara chloropterus): This species was studied at 

the Tambopata Research Center (TRC). TRC is located in the lowland forests of 

south-eastern Peru. In the Amazonian rainforest of Peru it is reported to feed on 

> 56 food species (35, 94) and use clay licks .  

 

Research objectives 

To provide novel information on psittacine nutrition and generate 

suggestions that help improve the hand rearing of this group. 

Specific objectives: 

 Assess the feasibility of NIRS as a technique for the non-destructive, low 

cost prediction of nutritional composition of very small samples of parrot 

crop contents. 
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 Document and compare the concentrations of predicted metabolizable 

energy, crude protein, amino acid profiles, crude fat, FA profiles, fiber, 

and minerals of the crop samples of chicks from five free-ranging 

Neotropical parrot species. 

 Document the nutritional content and physical characteristics of the main 

commercial parrot hand feeding products available in the U.S., and 

compare them with the crop samples of five free-ranging Neotropical 

parrot species. 
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CHAPTER II 

PREDICTION OF THE NUTRITIONAL COMPOSITION OF THE CROP 

CONTENTS OF FREE-LIVING SCARLET MACAW CHICKS BY NEAR-

INFRARED REFLECTANCE SPECTROSCOPY* 

 

 

Synopsis 

It is difficult to determine with accuracy the nutrition of bird diets through 

observation and analysis of dietary items. Collection of the ingested material 

from the birds provides an alternative but it is often limited by the small sizes of 

samples which can be obtained. We tested the efficacy of near infrared 

reflectance spectroscopy (NIRS) to assess the nutritional composition of very 

small samples of growing parrot crop content. We used 30 samples of the crop 

content of free-living scarlet macaw (Ara macao) chicks. Samples were scanned 

with a Near-infrared Reflectance Analyzer, and later analyzed by traditional wet 

lab methods for Crude Protein/N, Fat, Ash, Neutral Detergent Fiber, P, K, Ca, 

Mg, Cu, Zn, and S. A calibration model was developed using principal 

components analysis. Coefficients of determination in the calibration (R2) and 

standard errors of cross-validation (SECV) for most of the nutrients showed a 

good performance (average R2 of 0.91 ± 0.11 SD, n = 10) when excluding Zn 

(R2 of 0.15, SECV = 25.37). These results establish NIRS as a valid technique 

for the nondestructive, low cost prediction of a variety of nutritional attributes of 

avian crop contents as small as 0.5 g dry weight. The use of NIRS expands the 

possibilities of wild animal nutrition research. 

 

____________ 

*Reprinted with permission from “Prediction of the nutritional composition of the 
crop contents of free-living scarlet macaw chicks by Near-infrared Reflectance 
Spectroscopy” by Cornejo, J., Taylor, R., Sliffe, T., Bailey C. A., and Brightsmith, 
D. J. Wildlife Research, In press;39(3). Copyright 2012 by CSIRO PUBLISHING. 
http://www.publish.csiro.au/nid/144.htm 

http://www.publish.csiro.au/nid/144.htm
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Introduction 

Knowledge of avian nutrition, as a component of both their ecology and 

management, is central to understanding the survival and productivity of the wild 

populations (6), and has a direct applications in ex situ husbandry (98). Through 

foraging observations it is often possible to identify species’ main food sources, 

but it is difficult to determine the less common items in the diet and quantify the 

exact proportion of each food type consumed (8, 36). As a result, it is usually 

impossible to determine the nutritional content of diets through just observation 

and analysis of dietary items. However, a variety of techniques exist to collect 

samples directly from the crops and stomachs of individual birds (36, 37). 

Unfortunately, the small size of the individual samples greatly limits the 

traditional wet lab analyses which can be done. Pooling samples of similar 

characteristics is often necessary to achieve the minimum sample sizes needed 

for analysis but this reduces statistical power needed to address ecological 

hypotheses (40, 41). 

Despite the high percentage of psittacine taxa threatened (99) there is a 

dearth of studies regarding the nutrition of free ranging psittacines (4). This is in 

part because the bird’s extensive food manipulation and processing makes it 

very difficult to gather quantitative food intake data. Parrots feed their chicks 

undigested regurgitate, so tube sampling the crop provides the opportunity to 

determine the composition of the diet as fed and unaffected by differential 

digestion (37, 40). However, individual crop samples are usually less than 1.5 

grams dry weight while analyses such as proximal and mineral composition 

commonly require 2.5 grams of sample each. 

Near Infrared Reflectance Spectroscopy (NIRS) is an indirect method that 

estimates chemical composition by comparing spectra of samples with known 

composition to spectra of samples with unknown composition (100, 101). Near-

infrared radiation (750 - 2500 nm) is absorbed mainly by organic bonds (102). 

The frequencies which match the vibrational waves of these bonds are 
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absorbed, whereas other frequencies are reflected or transmitted resulting in 

NIR spectra which contain detail on the chemical composition of the material 

(100). The advantages of NIRS are that it is nondestructive, has high precision, 

produces no wastes, requires no costly reagents, needs minimal sample 

preparation and a requires very small sample size (103).  

NIRS is widely accepted for compositional and functional analyses in 

agriculture and manufacturing (104, 105). It is widely used to predict a variety of 

nutrients in leaves, grasses and grains (106, 107), including amino acids (108), 

tannins and alkaloids (109), and mineral elements (110, 111). It has been 

applied in the study of the foraging ecology and nutrition of several wild and 

domestic herbivorous mammals through the analysis of their diets, excreta and 

esophageal extrusa (112-114). In avian nutritional studies it only has been used 

to predict the nutritional composition of feeds and excreta (115-118). In this 

study we evaluated NIRS as a tool to assess the nutritional composition of small 

dietary samples collected from wild avian species using crop content samples 

from wild scarlet macaw chicks.  

 

Methods 

Sample description 

This study analyzed the crop contents samples from free-living scarlet 

macaw (Ara macao) chicks previously collected in Brightsmith, McDonald et al. 

(40). Samples were collected during the 2005 breeding season at the 

Tambopata Research Center in the lowland forests of southeastern Peru (13º 

07 S, 69º 36 W; 250 masl). Crop contents were sampled following Enkerlin-

Hoeflich et al. (37). In this technique, the bird is hand restrained, the crop is 

massaged, a flexible and lubricated plastic tube is inserted in to the crop through 

the esophagus, the crop contents pushed up in to the tube, and the tube 

removed. A total of 48 individual samples were obtained from 10 chicks found in 

seven nests (average dry weight per sample 1.5 ± 0.9 g). Due to the small 
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samples 13 of the samples were analyzed as independent samples, while the 

remaining 35 were grouped in 17 composite samples for analysis (average dry 

weight 2.5 ± 1.6 g). Composite samples were created by combining samples 

from chicks in the same nest collected on the same day or from chicks of similar 

age. During preprocess examination of the crop samples it was determined that 

they contained seeds, wood/bark, fruit pulp, insect larvae, and 19 % of them 

contained clay (40). All samples were placed in refrigeration at 4°C within 30 

minutes of collection. The samples were dried to a constant weight in an oven at 

approximately 55°C (105), ground to a fine powder (< 1 mm particle size), and 

stored in airtight containers until analysis.  

 

Standard nutritional analysis 

Proximate laboratory analyses were performed at the Palmer Research 

Center at the University of Alaska. Crude protein was calculated using the 

Dumas method (105) in a LECO CHN-1000 analyzer for carbon, hydrogen and 

nitrogen. Crude fat was calculated using the ether extraction method (119). 

Concentrations of Ca, K, P, Mg, Zn, Cu, and S, were determined by mass 

spectroscopy (102) after wet ashing (120). Neutral detergent fiber (NDF) was 

calculated by Van Soest’s detergent analysis system (121). Ash was calculated 

by heating the sample to 550 oC for 12 hrs. All results are presented on a dry 

matter basis (105).  

 

Collection of spectral data 

Each sample was scanned once with a Perten DA 7200 IR spectrometer 

(Perten Instruments AB, Sweden). A mirror module was used to accommodate 

the small sample. The window is made of sapphire, with a surface area of 25 

cm2, with a 256 pixel Indium-Gallium-Arsenide (InGaAs) detector operating in 

the wavelength range 900-1700 nm. The spectra were stored in optical 
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sensitivity units log (1/R), where R represents the percent of energy reflected 

(Figure1).  

 

Calibration set and model development 

The multi-variant chemometrics package ‘Unscrambler’ (CAMO Software 

Inc., Woodbridge, USA) was used to process the spectral data from the 

samples. An independent calibration model for each nutritional attribute was 

developed through Principal Component Analysis (PCA) (122, 123). To evaluate 

the predictive power of the chosen model we determined the coefficients of 

determination (R2) for each nutritional attribute, as a measure of the proportion 

of variability explained by the regression model. 

 

Validation set 

Due to the reduced sample size, for validation of the calibration accuracy 

we used the cross-validation method with samples from the initial data set (101), 

avoiding the need to set aside samples for a validation set. The pooled residuals 

of each prediction (standard error of cross-validation, SECV) were calculated to 

evaluate the precision of the chosen equations for each nutritional attribute.  

 

Results 

The NIRS equations for all nutrients except Zn showed strong predictive 

power. The R2 between the NIRS predictions and laboratory analyses were 

above 0.85 for all nutritional variables tested, except Cu (R2 = 0.63) and Zn (R2 = 

0.15) (Table 1).  
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Fig. 1. Near infrared reflectance spectra (950 - 1650 nm) of crop samples from free-

ranging scarlet macaws (Ara macao) in southeastern Peru. 

 

 

Discussion 

Our study found that NIRS accurately predicted the nutrient contents of 

the crop contents of scarlet macaw nestlings for 10 of 11 nutrients tested. These 

results mirror those achieved with commercial plant species such as rice (124) 

and oats (125), as well as wild plants consumed by mountain gorillas (Gorilla 

beringei) (113), African ungulates (126), and wombats (Lasiorhinus krefftii) 

(112).  

Minerals are usually not well predicted by NIRS, unless they are part of 

organic complexes or chelates, or if concentrations are correlated with other 
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constituents of the sample (109, 111). However, 6 of 7 minerals in our study 

showed good correlations, and only Zn showed less than 0.60 R2 suggesting 

that most of the minerals are bound organically.  
 

 

Table 1. Nutritional values and calibration equation performance for crop samples from 

free ranging scarlet macaw (Ara macao) chicks collected in southeastern Peru. NDF = 

Neutral detergent fiber. 

 

 

NDF     

%  

Ash  

%  

Fat     

%  

Prot.   

%  

P         

%  

K          

%  

Ca      

%  

Mg     

%  

Cu 

ppm  

Zn     

ppm  

S         

%  

Average  42.8  7.15 19.0  17.3  0.34  0.92 0.88 0.29  14.4  39.8 0.31  

SD 26.46 5.71 13.4 11.8 0.22 0.50 1.06 0.28 4.99 10.7 0.45 

R
2

  0.86  1.00  0.92  0.93  0.93  0.91  0.98  0.99  0.63  0.15  0.99  

SECV  10.5  0.35  3.99  3.28  0.06  0.15  0.13  0.02  3.81  25.4  0.03  

N  30  19  24  31  29  24  22  28  21  27  19  

 

 

Our results show NIRS is a valid technique for the nondestructive, low 

cost prediction of the nutritional composition of avian crop contents. NIRS can 

be used with samples as small as 0.5 g dry weight, expanding the possibilities of 

research in the nutrition of parrots and other animals where only small samples 

are available. In our research we are using NIRS to increase the amount of 

ecologically relevant information from our samples by 1) scanning individual 

small samples with NIRS (as small as 0.5 g), 2) combining samples with similar 

spectra into composite samples large enough for traditional laboratory analysis, 

3) scanning these composite samples with NIRS, and 4) conducting laboratory 

analyses on these composite samples. We can then use the lab analyses on the 

composite samples to create the NIRS calibration curves and predict the 

nutritional content of the individual small samples. In this way we can look at the 
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samples in individual scales, and test for nutritional differences among nest 

mates, habitats, times of day collected, chick age, etc. with much finer resolution 

than possible without the NIRS. Further studies should explore the possibilities 

of using NIRS to identify the actual ingredients consumed by the birds (114). 

Determining the key food resources on which avian species depend will help in 

understanding their ecology and developing better management and 

conservation strategies. 
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CHAPTER III 

PREDICTED METABOLIZABLE ENERGY DENSITY AND AMINO ACID 

PROFILE OF THE CROP CONTENTS OF FREE-LIVING SCARLET MACAW 

CHICKS (Ara macao)* 

 

 

Synopsis 

Hand-rearing of neonates is a common practice for the propagation of 

psittacines. However, nutritional requirements for their growth and development 

are not well understood and malnutrition is common. We analyzed the amino 

acid (AA) profile of the crop contents of 19 free-living scarlet macaw (Ara 

macao) chicks, 19 to 59 days old. Predicted metabolizable energy (PME) density 

was 16.9 MJ/kg DM, and true protein (total AA protein) 8.3 g/MJ PME. Crude 

protein (CP) was 10 g/MJ PME, lower than the requirements of 0 to 12 wk old 

leghorn chicks. The mean concentrations of leucine, isoleucine, threonine, 

lysine, and methionine on a PME basis were below the minimum requirements 

of 0 to 12 wk leghorn-type chicks. The calculated PME density of the samples 

did not vary with age. However there was a significant negative correlation 

between the average age of the chicks and the lysine concentration. We 

conclude that the lower CP and amino acid densities in parrot chick crop 

contents, compared with poultry, could result from a combination of: 1) 

differences in the essential amino acid composition of the body tissues, 2) 

adaptations which allow the birds to grow on low protein food sources, and 3) 

suboptimal nutrition of these free ranging chicks.  

 
 
____________ 
*Reprinted with permission from “Predicted metabolizable energy density and 
amino acid profile of the crop contents of free-living scarlet macaw chicks (Ara 
macao)” by Cornejo, J., Dierenfeld, E. S., Bailey, C. A., and Brightsmith D. J. 
Journal of Animal Physiology and Animal Nutrition. In press. Copyright 2011 by 
John Wiley & Sons, Inc. 
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Introduction 

Despite the increasing volume of research on the nutritional requirements 

of psittacines (4, 17, 54), malnutrition is still a major concerns for the care and 

propagation of this group (4, 24). Studies of the diet and nutrition of free ranging 

psittacines are scarce (8, 9, 34, 41, 127-130), in part because the bird’s 

extensive food manipulation and processing make it very difficult to gather 

quantitative food intake data.  

Hand rearing of neonates is a common practice for the propagation of 

psittacines, both for the pet industry (44) and for conservation aviculture (46, 48, 

50). However the nutritional requirements for the growth and development of 

neonates are not yet well understood (4, 54, 56, 79), and imbalances are still 

common (4). Only a few studies have looked at the nutritional content of diets 

consumed by parent-fed psittacines chicks (40, 41), and the diversity of food 

habits and ecology among psittacines makes it tenuous to extrapolate from 

these limited studies to requirements for the Family as a whole.  

In growing birds dietary protein is used for tissue accretion and 

maintenance. The amino acid (AA) balance needed for growth closely mirrors 

the AA composition in tissues (26). The tissue AA composition of different 

species is relatively similar, so the difference in AA requirements is mainly driven 

by the different fractional growth rates (26). Amino acid requirements have been 

studied extensively in commercial fowl (62, 77, 78). However, psittacines have 

received limited attention with most studies focused on adult maintenance 

requirements (15, 17, 19, 79) and only a few data available on growth 

requirements (4, 54, 56, 79). In the absence of controlled studies of 

requirements or comprehensive data on the diets of wild birds, nutritional 

prescriptions for psittacine growth and maintenance are generally extrapolated 

from dietary recommendations for poultry (4). However, psittacines are not 

closely related to poultry and differ both developmentally (63) and ecologically 
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(64), so it is questionable if the available data adequately model their dietary 

requirements.  

The metabolizable energy (ME) densities of diets are the primary factor 

which determines the amount of food an animal will consume (26). Expressing 

nutrient concentrations on a per energy basis allows for more meaningful 

comparison among diets even when the ingested amounts are not known (26). 

Brightsmith et al. (40) studied the nutritional content of 30 crop samples of 

scarlet macaw chicks 28 to 60 days post hatch at the same study site. Crude 

protein, crude fat and mineral concentrations were reported, but neither the AA 

profile or the ME were described. 

The present study provides the first estimates of the ME density and AA 

profile of free ranging Neotropical parrot chicks. The objectives are (1) to 

characterize the AA profile and ME concentration of the crop content of wild 

scarlet macaw (Ara macao) chicks, and (2) to compare the AA and ME levels of 

the crop contents with nutritional information from other psittacines and the 

domestic chicken.  

 

Methods 

Crop samples 

We collected crop contents from free-living scarlet macaw chicks 19 to 59 

days post hatch from Tambopata Research Center in the lowland forests of 

south-eastern Peru (13º 07 S, 69º 36 W; 250 m elevation). In this region, 

parrots and macaws consume a diverse mixture of seeds, fruit, flowers, tree 

bark and soil from river edge “clay licks” (96). Once every 7 to 10 days, crop 

contents were collected from chicks in nests of wild macaws following the 

procedures in Enkerlin-Hoeflich et al. (37). Samples were placed in refrigeration 

at 4°C within 30 minutes of collection. In the 2006 breeding season a total of 38 

samples were collected from 10 chicks (mean dry weight per sample 2.4 ± 2.3 

g). During the 2008 breeding season a total of 18 samples were obtained from 9 
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chicks (mean dry weight per sample 1.2 ± 1.1 g). All sampled chicks appeared in 

good health and fledged at appropriate ages for the species (61). Due to the 

small quantity of each sample, we pooled samples for analysis. For 2006 a total 

of 15 composite samples were created by combining samples from chicks in the 

same nest collected on the same day or from chicks of similar age. The 2008 

samples were scanned with a near infrared reflectance spectroscope (Perten DA 

7200 IR, Perten Instruments AB, Sweden, for more details see Cornejo et al. 

(131), and pooling was done according to the similarity of their spectra.  

 

Chemical analysis 

Samples were freeze-dried and ground. The crude nutrients were 

analyzed at the Palmer Research Center at the University of Alaska. N was 

determined by the Kjeldahl method, crude fat was calculated using the ether 

extraction method (119), NDF was calculated by Van Soest’s detergent analysis 

system (121), and ash by high temperature ashing (105). True protein was 

determined as the total AA concentration (132), and crude protein by multiplying 

total N by a 6.25 factor (133). Soluble carbohydrates were calculated by 

difference following the formula: % soluble carbohydrates = 100 – % crude 

protein – % crude fat – % ash – % NDF. True protein, crude protein (CP), and 

AA concentration are presented as g/MJ predicted metabolizable energy (PME) 

for comparison among diets and species. PME values of the crop contents of the 

scarlet macaws and the kakapos, as well as the diet of leghorn chickens, 

budgerigars (Melopsittacus undulatus) and lovebirds (Agapornis spp.) were 

calculated using the formula PME (kJ/100 g DM) = (18.4 x CP) + (36.4 x crude 

fat) + (16.7 x soluble carbohydrates) (21, 62). Average true and crude protein 

level are also presented as % DM. 

Macaws at the study site feed soil to their chicks (40) but the amount of 

soil varied among samples (40) and the soil may have led to inflated NDF values 

due to filtration issues (121). In order to calculate PME using the equation 
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above, we corrected the NDF values for each sample by subtracting the 

estimated amount of soil ash from the original NDF value. The percent soil ash 

in each sample was estimated as the total ash minus the average ash content 

from samples known to contain no soil (6.2 ± 1.4 %, N = 8). We took into 

consideration that the average ash content of 6.2% is similar to the average ash 

for natural foods consumed by scarlet macaws in Peru (5.7 ± 3.4 %, N = 17, 

Brightsmith, unpublished data).  

Complete AA analysis was performed in the Amino Acid Laboratory of the 

Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis. 

The majority of the essential AAs were analyzed using the Association of Official 

Analytical Chemists (AOAC) modified method 994.12 (105). Protein hydrolysate 

was prepared by treating 10-mg finely grinded sample with 2.0 ml of 6 N HCl in a 

10 ml evacuated ampule (Wheaton Prescored Gold-Brand, Fisher Scientific Cat 

No. 12-009-38) for 24 h at 110°C. After flash evaporation using nitrogen gas, the 

dried residue was dissolved in Biocrom loading buffer. Aliquots were analyzed 

by ion-exchange chromatography using an LKB Biochrom 30 automatic amino 

acid analyzer. Methionine (Met) and cystine (Cys) were analyzed separately 

(AOAC Method 994.12). After performing acid oxidation and subsequent 

hydrolysis with 6 N HCl, Cys and Met were determined by measuring cysteic 

acid and methionine sulfone using a Biochrom 30 amino acid analyzer. 

Tryptophan (Trp) was determined by AOAC method 988.15. After alkali (LiOH) 

hydrolysis, the quantification was performed using the Biochrom amino acid 

analyzer. As part of the QA/QC procedure, 1000 nmol/ml of norleucine was 

included in 6 N HCl as internal standard and casein powder of known AA value 

was used as reference sample to evaluate the hydrolysis and the 

chromatography procedures. To determine the reproducibility of the assay, four 

replicates were assayed using a casein control sample. On average, 99.2% of 

the sample was recovered, and the CV of the means was below 5% for most of 
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the AAs, except for serine (Ser) and Proline (Pro) (6%), Glycine (Gly) (8%), 

aspartic acid (Asp) (9%) and Cys (15%). 

 

Published requirements and crop content of other species 

For comparison with our results we compiled the published CP and AA 

requirements for optimal growth of leghorn chickens age 0 to 6 and 6 to 12 

weeks (62), broiler chicks 0 to 3 wk old (134, 135) and 3 to 8 wk old (136), and 

budgerigars and lovebirds estimated using the factorial method (56). We 

compared our average protein and AA concentrations from crop samples with 

the pooled crop contents of 15 free ranging kakapo (Strigops habroptila) chicks 

from 10 nests (age 10 to 43 days). The kakapos are phylogenetically far from 

the macaws (64) and very specialized herbivores, who feed their chicks almost 

exclusively rimu fruits (Dacrydium cupressinum), but it is the only other species 

of psittacine in which AA profile of the crop contents of parent-reared chicks 

have been published (41).  

 

Statistical analysis 

Mann-Whitney U tests were used to compare the levels of total protein 

and AAs in the scarlet macaw crop samples between years, and to compare the 

concentration of ash with the findings of a previous study. One-sample t-test was 

used to compare the crop nutrient levels with the published requirements for 

poultry and other psittacine species, and with the average levels found in the 

kakapo crop contents (41, 54, 56, 62). Linear correlation was used to determine 

the relation between the average age of the chicks in each sample with the 

concentration of PME, protein and AAs. Linear correlation was also used to look 

at the relation between the concentration of protein and of each AA. Statistical 

tests were conducted by using JMP software (version 8.02; SAS Institute Inc., 

Cary, NC) with α = 0.05. Data are presented as mean ± standard deviation 

(minimum – maximum). 
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Results 

Predicted metabolizable energy 

The scarlet macaw chick crop contents contained, on average, 16.3 ± 

4.3% DM (10.4-23.8) crude protein, 22.0± 5.6% DM crude fat, and 37.7± 17.3% 

DM soluble carbohydrates. The PME density was 16.9 ± 2.6 MJ/kg DM (10.2-

19.7). Energy density was not significantly different from commercial diets 

offered to leghorn chicks (p > 0.05) (62), nor the average of 11 parrot hand 

feeding formulas (16.2 MJ PME/kg, t = 2.60, df = 14, p < 0.05) (56), but was 

significantly higher than the 7.7 MJ PME/kg received by kakapo chicks (t = 5.56, 

df = 14, p < 0.001) (41). 

  

Crude and true protein 

 The mean true protein content, calculated as the sum of the AAs (105), 

was 13.6 ± 3.9% DM (7.5-20.6), and 8.3 ± 2.9 g/MJ PME (4.1-13.7, N = 15 

pooled samples) (Table 2), with no significant differences between years (U = 

10.0, p > 0.05). The CP content was 10.0 ± 3.5 g/MJ PME (5.8-16.9, N = 15 

pooled samples). The mean CP content, on a PME basis, was lower than the 

requirements of 0 to 6 wk old leghorn chicks (16.6 g/MJ PME; t = 7.33, df = 14, p 

< 0.001), and 6 to 12 wk old leghorn chicks (14.7 g/MJ PME; t = 5.23, df = 14, p 

< 0.001) (62). It was not different than the requirements of budgerigars (10.2 

g/MJ ME; t = 0.24, df = 14, p > 0.05) and lovebirds (9.5 g/MJ ME; t = 0.54, df = 

14, p > 0.05) (56), nor the concentration found in the crop of wild kakapo chicks 

(10.9 g/MJ PME, t = 1.01, df = 14, p > 0.05) (41). 

 

Amino acid profile 

The concentrations of the AAs in the crop contents of the scarlet macaws 

did not differ significantly between years except for Cys, which was 0.25 g/MJ 

PME in 2006 and 0.05 g/MJ PME in 2008 (U = 0.00, P < 0.01). As a result,  
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Table 2. Crude protein and amino acid composition in g/MJ PME of crop contents of free-living scarlet macaw chicks (Ara 

macao), crop contents of kakapo (Strigops habroptilus) chicks, and the nutritional requirements of budgerigars (Melopsittacus 

undulatus), lovebirds (Agapornis spp.), and leghorn chickens, (Gallus gallus). 

 
 

Scarlet macaw 1 

 

Kakapo 2 

 

Budgerigar3 

 

Lovebird 3 

 Leghorn chickens4 

Item      0-6 wk 6-12 wk 

 
 

g/MJ 

PME SD range  g/MJ PME  g/MJ ME  g/MJ ME  
g/MJ 

PME 

g/MJ 

PME 

Crude protein  9.99 3.49 5.81-16.9  10.9  10.2  9.48  16.6* 14.7* 
Arginine  0.88 0.32 0.43-1.49  1.30*  0.52#  0.46#  0.92 0.77 

Leucine  0.60 0.22 0.31-1.01  0.82*      1.01* 0.78* 
Valine  0.53 0.21 0.22-0.90  0.63*      0.57 0.48 

Phenylalanine  0.41 0.15 0.18-0.63  0.50*      0.54* 0.41 

Phe + Tyr  0.69 0.24 0.34-1.08  0.83      0.92 0.77 

Isoleucine  0.36 0.14 0.18-0.61  0.51*      0.55* 0.46* 
Threonine  0.36 0.14 0.17-0.61  0.38      0.63* 0.53* 
Lysine  0.36 0.15 0.20-0.72  0.61*  0.33  0.32  0.78* 0.55* 
Methionine  0.17 0.06 0.10-0.31  0.24*      0.28* 0.23* 
Met + Cys  0.396 0.14 0.21-0.72  0.51  0.50  0.37  0.57 0.48 
Tryptophan  0.08 0.04 0.03-0.14          

Proline  0.42 0.15 0.18-0.68  0.54*      0.16# 0.13#5 
Glycine  0.40 0.15 0.19-0.67  0.55*        
Histidine  0.23 0.08 0.12-0.36  0.38*      0.24 0.20 

Glutamic acid  1.32 0.48 0.65-2.24  1.81        
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Table 2. Continued 
 

 
 

Scarlet macaws 1 

 

Kakapo 2 

 

Budgerigar3 

 

Lovebird 3 

 Leghorn chickens4 

Item      0-6 wk 6-12 wk 

 
 

g/MJ 

PME 
SD range  

g/MJ 

PME 
 g/MJ ME  g/MJ ME  

g/MJ 

PME 

g/MJ 

PME 

Aspartic acid  0.73 0.35 0.39-1.33  1.23        
Alanine  0.47 0.17 0.24-0.82  0.58        
Serine  0.43 0.16 0.22-0.67  0.54        
Gly + Ser  0.83 0.30 0.41-1.34  1.09      0.65 0.53 
Tyrosine  0.28 0.09 0.16-0.48  0.33        
Cystine  0.216 0.11 0.04-0.42  0.26        
Hydroxyproline  0.02 0.03 0.00-0.10          
Citruline  0.02 0.02 0.00-0.07           

 

1 Chick crop contents, n = 15, 3-8 wk old, 16.87 ± 2.62 MJ PME/kg, total AA protein = 8.29 g/MJ PME 
2 (41) mean chick crop contents. 7.67 MJ PME/kg 
3 (56) minimum growing requirements. 16.22 MJ ME/kg 

4 (62) 11.93 MJ PME/kg 

5 (137) 
6 Significant differences between years (U = 0.00, p < 0.001). Cys average 2006 = 0.25 g/MJ PME, 2008 = 0.05 g/MJ PME 
*Values significantly higher than the scarlet macaw crops (p < 0.05) 
# Values significantly lower than the scarlet macaw crops (p < 0.05) 
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values for all AAs are combined across years for the remaining analyses. The 

AAs present in the highest concentrations were glutaminc acid (Glu 1.32 g per 

MJ ME), arginine (Arg 0.88 g), aspartic (Asp 0.73 g), and leucine (Leu 0.60 g) 

(Table 2). There was a strong positive correlation (p < 0.001) between the 

concentration of each essential amino acid (EAA) and the total protein content 

(as g per MJ PME). The mean concentrations of five EAAs were below the 

minimum requirements established for leghorn-type chicks aged 6 to 12 wk: Leu 

(76% of recommended), isoleucine (Ile 79%), threonine (Thr 69%), Lys (65%) 

and Met (75%). In addition phenylalanine was also below the minimum 

requirement for leghorn-type chickens 0 to 6 wk old (75%) (62) (Table 2). None 

of the EAAs were found in concentrations below the minimum requirements of 

budgerigars and lovebirds (56). The kakapo chick crops had higher 

concentrations of all the EAAs except for Thr (41).  

 

Age variations 

There was no significant correlation between the age of the chicks and 

the PME of the samples, the total protein content as percent DM or the protein in 

g/MJ PME (R < 0.24, p > 0.05, N = 12). However, a significant negative 

correlation was found between the age of the chicks and the concentration of 

Lys (R = 0.56, p = 0.005, N = 12) and Met (R = 0.34, p = 0.044, N = 12). 

 

Discussion 

The PME density of the regurgitate fed to the scarlet macaw chicks was 

equivalent to a starter poultry feed (62), and higher than the low quality food 

used by the kakapo to feed their chicks (41). The daily energy requirements of 

growing birds change as a function of weight gain rate and body composition 

(26, 138).As anticipated, the PME density of the diet fed to the scarlet macaw 

chicks did not change with age(139).  
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Our samples contained 16.3% CP on a DM basis. A previous study of 

scarlet macaw chick crop samples from the 2005 breeding season in the same 

study site found 23.5 ± 5.6% CP (DM basis) (40). We suspect that the difference 

was not due to annual variations in the composition of available food items, as 

the weather patterns did not differ greatly between years (Brightsmith, 

unpublished data). One possible explanation is that the samples from 2005 had 

lower clay content, which increased the relative concentration of CP on a DM 

basis. This is supported by the lower ash concentration (DM basis) of the 2005 

samples vs. 2006 and 2008 samples (11.7 ± 8.7%, Brightsmith, unpublished 

data, vs. 26.3 ± 18.9%, U = 5.84, p < 0.05, respectively). It was not possible to 

calculate PME of the diet in that original study however, so we can’t determine if 

there is also a difference on an energy density basis. 

The CP values found in the scarlet macaw crop samples were lower than 

expected based on the estimated requirements of leghorn chickens (62), but in 

line with the requirements estimated for cockatiels and lovebirds (56) and the 

concentrations found in kakapo chicks (41). We expected that macaw chick 

dietary protein levels would be higher than those of poultry due to their altricial 

development and higher growth rate (4). However, birds don’t have a CP 

requirement per se; instead the requirements depend on protein quality, i.e. the 

concentrations of EAAs and protein digestibility (26, 80). The complexity of the 

AAs interrelationships makes it difficult to define a protein requirement for any 

species, and the evaluations should be limited to comparing typical protein 

intake values among species (25). 

The wild diet seems to contain a moderate level of non-protein nitrogen, 

as indicated by the difference between the crude protein (10.0 g/MJ ME) and the 

total AA concentration (8.3 g/MJ ME). The CP estimation obtained by multiplying 

N by the widely used value of 6.25 (133) is 20% higher than the total AA 

concentration. If summed AA are an accurate reflection of CP, this suggests that 
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the appropriate N:protein conversion factor for true protein would be closer to 

5.20, in the range of the 5.18 to 5.46 as proposed for nuts and seeds (140).  

The concentrations of half of the EAA found didn’t fulfill the requirements 

of growing 6 week old leghorn chicks. Normally, the profile of EAAs required by 

birds corresponds to that found in the body tissues (141). The lower densities in 

the diet of the scarlet macaw compared with the requirements of poultry could 

be driven by differences in the EAAs composition of the body tissues compared 

with precocial birds (142, 143). However, the bodies of adult budgerigars and 

chickens have similar AA profiles (81), and there is no reason to believe that 

body of scarlet macaws should have a significantly different composition. 

Deviations from a one-to-one relationship between body and required dietary 

EAAs can be caused by (a) different turnover rates of individual tissue proteins 

(77), (b) different digestibilities and efficiencies of reutilization of the EAAs (144), 

or (c) alternative metabolic fates of different EAAs (145, 146). More studies of 

the AA metabolism of the scarlet macaw are needed to better understand the 

apparently low concentrations of EAAs in the diets found here. 

We found a 38% decrease in Lys from age 19 through 59 days post 

hatch. As the chick grows, protein gain as a percentage of total body weight gain 

decreases, as do the requirements for muscle accretion (62, 77, 136). Around 

the fourth week post hatch, when the chick starts to grow the flight feathers 

(147), the AA composition of the body protein changes, decreasing the relative 

concentration of total Lys and increasing Cys (138, 148). If this relationship 

holds for scarlet macaws as well, this mechanism could help explain the 

decrease in Lys found here. 

In summary, our research suggests that young scarlet macaws at our site 

are being fed a diet with a PME protein and EAA concentration similar to the 

requirements estimated for other psittacines, but lower than the requirements for 

poultry. Here we discuss two possible explanations for this finding. One 

possibility is that the birds evolved to raise chicks on low protein food sources. 
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Adaptations to low protein food sources include low endogenous protein losses 

and low protein maintenance requirements. In psittacines, these mechanism 

have been found in strict frugivores including Pesquet’s parrots (Psittrichas 

fulgidus) (17), rainbow lorikeets (Trichoglossus haematodus) (149), and 

kakapos. Adult kakapos are known to subsist during the nonbreeding period on 

a diet of 3.7% DM CP (150). They feed their chicks a diet almost exclusively of 

Dacrydium cupressinum fruit, which is relatively high in indigestible matter and 

low in CP (10.9 g/MJ PME, 8.4% DM) and other essential nutrients (Table 2) 

(41). Future research may look at the nitrogen balance of the scarlet macaws, to 

determine if their physiology is adapted to a low protein diet.  

A second possible explanation for the low protein and EAAs 

concentrations is that the chick diets we studied are not sufficient to promote 

optimal growth. Experiments with cockatiels have shown that optimum growth is 

achieved at 20% DM CP and 0.8% DM Lys. However it was not until diets were 

below 10% DM CP that permanent damage or mortality occurred (54). The 

macaw chicks at our site fledge successfully and the populations are apparently 

not decreasing (Brightsmith, unpublished data). However, chick growth rate 

does not reach the maximum possible for the species as evidenced by the 

higher growth rates found in other wild populations (93) and hand-raised birds 

(3, 61, 151). Previous work in this population suggested that the concentration of 

Na in the chicks’ diet may be deficient (40). Our current study suggests that 

several EAA may also be acting as growth-limiting factors, as has been 

proposed for other free-ranging parrots (71, 93, 152). As a result, the amino acid 

profiles presented here should be used with caution when formulating hand-

rearing diets for macaws and other psittacines. 
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CHAPTER IV 

FATTY ACID PROFILES OF CROP CONTENTS OF FREE-LIVING 

PSITTACINES AND IMPLICATIONS FOR HAND-FEEDING 

 

 

Synopsis 

Research on psittacine nutrition is limited and the chick’s requirements 

are poorly understood. Although crude fat is recognized as an important energy 

component in the formulation of parrot hand-rearing products, fatty acid (FA) 

profiles have received little attention. To better understand the natural nutrition of 

psittacines chicks, we analyzed the FA profiles of the crop contents of free-living 

scarlet macaws (Ara macao), red-and-green macaws (A. chloropterus),Cuban 

parrots (Amazona leucocephala bahamensis), lilac-crowned parrots (A. finschi), 

and thick-billed parrots (Rhynchopsitta pachyrhyncha). We also analyzed 15 

commercially available hand-feeding formulas for parrots. The total FA 

concentration of the crop samples ranged from 12 to 21% dry matter (DM), and 

in all cases, values were higher than the average in the hand-feeding formulas. 

The profiles of all crop samples and formulas were dominated by long-chain FA. 

For both crop samples and formulas the saturated fatty acids (SFA) were 

dominated by palmitic and stearic acid, the monounsaturated fatty acids (MUFA) 

by oleic acid, and the polyunsaturated fatty acids (PUFA) by linoleic acid. PUFA 

were largely dominated by the n6 family, both in the crop samples (7-108:1), and 

the formulas (15:1). Manufacturers should evaluate if the following profiles 

improves the performance of their formulas: at least 12% DM long-chain FA and 

~20-30% SFA for all species, with the diets for Ara spp. and Rynchopsitta sp. 

containing 10-25% MUFA and 55-70% PUFA, and the diets for Amazona spp. 

containing 25-40% MUFA, and ~40% PUFA.  
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Introduction 

The hand-rearing of psittacine chicks is commonly undertaken in the pet-

trade (65) and for conservation (46, 48). However, the nutritional requirements of 

psittacine chicks are poorly understood (4). Nutritional imbalances have been 

common, and stunted development, rickets, and vitamin deficiencies still occur 

for some species (4, 5). Hand-feeding diets have generally been extrapolated 

from dietary recommendations for poultry (62) and modified based on trial and 

error rather than on scientific study (4). 

In recent years there has been a considerable increase in research on the 

nutritional requirements of psittacines (4, 17, 54); however, the difficulty of 

gathering quantitative food intake data has prevented more studies of the 

nutrition of free ranging-psittacines, and most have focused on Austral-Asian 

species (8, 9, 34, 41, 127-130), The nutritional composition of the diets 

consumed by parent-fed scarlet macaws (Ara macao) from southeastern Peru 

has been the focus of previous studies (40, 42), but fatty acid (FA) profiles have 

not been reported. To our knowledge, only one previous study has detailed the 

FA profile of the diet consumed by a parent-fed psittacines chicks, the kakapo 

(Strigops habroptila) from New Zealand (41).  

Crude fat is recognized as an important energy component in the 

formulation of parrot hand-rearing products, yet FA profiles have received little 

study. FA are central constituents of dietary lipids as providers of energy, 

regulators of cell membrane integrity, and precursors of signaling molecules 

(153), however the individual FA requirements and the ideal FA profile are 

unknown not only for psittacines but for nearly all birds (4). In poultry nutrition, 

linoleic and α-linolenic acids are recognized as metabolically essential FA (EFA), 

serving as precursors of other (n-6) and (n-3) PUFA respectively (154). 

Deficiency of EFA in chicks causes retarded growth and reduces resistance to 

diseases (155). Some PUFA derived from the EFA are transformed into 

eicosanoids that play key roles in the development and immunological 
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responses of growing chicks (154). A diet high in (n-3) PUFA results in the 

reduction of the anti-oxidative status of broiler chickens (156). The intake ratio of 

(n-6) to (n-3) PUFA influences the types and amounts of eicosanoids produced 

in mammalian inflammatory and immune cells (157). A balanced intake of (n-6) 

and (n-3) PUFA is recommended for poultry in order to maintain the full 

spectrum of ecoisanoid effects in the body (62). Poultry growth requirements for 

linoleic acid are satisfied by feeding 1% dry matter (DM) (62), and excessive 

amounts may result in nutritional encephalomalacia (158). There is no known 

specific avian dietary requirement for α-linolenic acid (155), although high 

dietary intake has been suggested as a protective measure against the 

development of nutritional encephalomalacia in chickens (158) and 

atherosclerosis in parrots (159).  

To gain a better understanding of parrot chick nutrition, we determined 

the FA compositions of the crop contents from chicks of five free-living 

Neotropical psittacine species. We also determined the FA composition of 15 

commercial hand-feeding formulas. We compared FA concentrations for free-

living psittacines and hand-feeding formulas with regard to general profiles, 

chain length, degree of saturation, and balance between (n-6) and (n-3) FA. 

 

Methods 

Crop samples 

We collected crop contents from five species of free-living parrots: scarlet 

macaw (Ara macao) and red-and-green macaw (A. chloropterus) from the 

Tambopata Research Center in the lowland forests of southeastern Peru,Cuban 

parrot (Amazona leucocephala bahamensis) from the Abaco National Park on 

the Abaco Island of the Bahamas, lilac-crowned parrot (A. finschi) from the 

Chamela-Cuixmala Biosphere Reserve in northwest Mexico, and the thick-billed 

parrot (Rhynchopsitta pachyrhyncha) from the north of Mexico (Table 3). The 

scarlet macaw and the red-and-green macaw are reported to feed on 55 and 51 
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plant species respectively in the Amazonian rainforest of Peru (160), while the 

diet of the lilac-crowned parrot comprises 33 plant species in the tropical dry 

forest of Mexico (27). The breeding diet of both the Cuban parrot (J. Cornejo 

pers. obs.) and the thick-billed parrot (27) consists of 9 plant species.  

Samples were collected following the procedures in Enkerlin-Hoeflich et 

al. (37) and placed in refrigeration at 4°C within 30 minutes of collection, and 

frozen at -4°C until analysis. All sampled chicks appeared in good health and 

fledged at appropriate ages for the species (61, 93). Because of the small size of 

each sample, we pooled samples for analysis (Table 3). Composite samples 

were created by combining samples collected from chicks in the same nest on 

the same day or from chicks of the same species in the same season.  

 

Sample preparation and analysis 

Samples were freeze-dried and ground with a mortar and pestle to a fine 

powder. FA profiles were determined at the Comparative Animal Research 

Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas 

A&M University. The dried samples were extracted using a modification of the 

Folch method (105) and total lipid concentration determined gravimetrically 

(161). Total lipid FA methyl esters were prepared and then fractionated by thin-

layer chromatography on Silica Gel-G coated glass plates according to Bauer et 

al. (162). Samples were recovered using a 50:50 (v/v) mixture of hexane:dietyl 
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Table 3. Parrot crop samples used for this study. Scarlet macaw (Ara macao), red-and-green macaw (Ara 

chloropterus),Cuban parrot (Amazona leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), thick-billed parrot 

(Rhynchopsitta pachyrhyncha), kakapo (Strigops habroptila). 

Species Source 
Breeding 

season 

# 

chicks 

Average 

age in days 

(range) 

# 

nests 

# 

original 

samples 

Original 

samples mean 

dry weight in g 

(SD) 

# 

pooled 

samples 

Scarlet macaw Southeastern Peru 
2006 9 42 (26-59) 6 20 4.08 (2.10) 12 

2008 9 63 (20-86) 6 26 1.01 (0.76) 3 

Red-and-green macaw Southeastern Peru 
2009 1 64 (32-96) 1 10 1.76 (1.20) 3 

2011 4 46 (27-74) 2 14 1.63 (1.84) 4 

Cuban parrot 
Abaco Island, 

Bahamas 
2010 27 23 (14-37) 17 35 0.73 (0.45) 5 

Lilac-crowned parrot Western Mexico 2010 15 41 (27-60) 7 44 0.82 (0.46) 6 

Thick-billed parrot Northern Mexico 2010 13 55 (52-58) 8 13 0.70 (0.34) 2 
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ether, and FA profiles were determined using an OmegawaxTM 320 fused silica 

capillary as described previously (161). 

FA content is presented on a DM basis as well as on a metabolizable 

energy (ME) basis. Predicted metabolizable energy (PME) values of the crop 

contents were calculated using the formula PME (kJ/100 g DM) = (18.4 x crude 

protein) + (36.4 x crude fat) + (16.7 x soluble carbohydrates) (21, 62). The crude 

nutrients were analyzed at the Palmer Research Center at the University of 

Alaska. N was determined by the Kjeldahl method, crude fat was calculated 

using the ether extraction method (119), neutral detergent fiber (NDF) was 

calculated by Van Soest’s detergent analysis (121), and ash by high 

temperature incineration (105). Crude protein was determined by multiplying 

total N by a 6.25 factor (133). Soluble carbohydrates were calculated by 

difference following the formula: % soluble carbohydrates = 100 – % crude 

protein – % crude fat – % ash – % NDF. Total FA are presented as g/MJ 

predicted metabolizable energy for comparison among species.  

We compared the results with the FA profiles of 15 commercial parrot 

hand-feeding formulas from 10 different manufacturers (for more details on 

these formulas, see Chapter V of this dissertation), the previously reported 

composition of the crop of free-living kakapos chicks (41), the most common 

food items in the diet of the hyacinth macaw (Anodrorhynchus hyacinthinus) and 

the Lear’s macaw (Anodrorhynchus leari) (130), the commercial poultry food 

(163-165), and the most common oils used in animal food industry (166). 

 

Results 

Fatty acid profiles 

 The mean percent FA of the crop contents ranged from 15 to 32% DM (9 

to 15 g/MJ ME). In all cases, mean total FA of the five free-living Neotropical 

psittacines were higher that determined in the kakapo chicks’ diet (41), and in 

the average for hand-feeding formulas (Table 4). Highest concentrations of total 
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Table 4. Total fatty acid (FA) and crude fat content in crop contents from the five studied free-living psittacine species, the 

kakapo (41), 15 commercial hand-feeding formulas (Chapter V), and the preferred food of the free-ranging hyacinth macaw 

(130). Data expressed as average ± SD (range). Values in % of dry matter and in g/MJ metabolizable energy. Scarlet macaw 

(Ara macao), red-and-green macaw (Ara chloropterus),Cuban parrot (Amazona leucocephala bahamensis), lilac-crowned 

parrot (Amazona finschi), thick-billed parrot (Rhynchopsitta pachyrhyncha), kakapo (Strigops habroptila). 

 

Scarlet 

macaw          

(n = 14) 

Red-and-green 

macaw (n = 5) 

Cuban 

parrot (n = 5) 

Lilac-crowned 

amazon (n = 6) 

Thick-billed 

parrot (n = 2) 

Kakapo       

(n = 2) 

Commercial 

formulas      

(n = 15) 

Acuri and 

Bocaiuva 

Crude fat (%DM) 
21.6 ± 6.42 

(9.53-29.42) 

37.7 ± 10.4 

(24.1-36.8) 

30.5 ± 1.46 

(29.2-32.5) 

33.8 ± 8.9 

(22.5-47.5) 

41.4 ± 1.56 

(40.3-42.5) 

- 11.6 ± 4.61 

(7.34-23.6) 
 

Crude fat (g/MJ ME) 
12.4 ± 3.10 

(6.34-17.7) 

18.6 ± 4.06 

(13.0-23.8) 

15.9 ± 0.57 

(15.2-16.5) 

15.3 ± 2.86 

(11.5-19.4) 

18.6 ± 4.06 

(13.0-23.8) 

- 6.73 ± 2.10 

(4.55-11.5) 
 

Total FA (% DM) 
15.0 ± 5.17 

(7.30-24.7) 

30.9 ± 5.51 

(25.4-36.8) 

19.0 ± 2.74 

(16.0-21.0) 

24.8 ± 4.22 

(19.1-29.9) 

31.8 ± 0.56 

(31.2-32.3) 

7.81 ± 0.11 

(7.73-7.89) 

10.4 ± 4.05 

(5.90-22.0) 

(60.7-

66.4) 

Total FA (g/MJ ME) 
8.72 ± 3.07 

(5.87-15.8) 

15.3 ± 1.81 

(13.3-17.5) 

9.91 ± 1.40  

(8.29-11.3) 

11.3 ± 1.21 

(9.78-12.7) 

14.2 ± 0.24 

(14.1-14.4) 

10.2 ± 0.32 

(9.96-10.4) 

6.05 ± 1.92 

(3.62-10.7) 
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FA were presented by the thick-billed parrot, the lilac-crowned parrot, and the 

red-and-green macaw exceeding even the high-end of the range of total FA for 

the 15 formulas (Table 4). All but one formula were below the mean total FA 

concentrations found in the scarlet macaw and in the Cuban parrot. By 

comparison, the main food plants of the hyacinth macaw had total FA 

concentrations of 61-66% DM (130), far higher than that presented by the five 

free-ranging Neotropical psittacines analyzed or the hand-rearing formulas 

(Table 4).  

The profile of all crop samples was dominated by long-chain FA (14-22 

carbons, Table 5), with average long-chain FA values ranging from 96% total FA 

in the Cuban parrot to 99.9% in the red-and-green macaw. No short-chain FA 

(less than 6 carbons) were found in any of the crop samples. Medium-chain FA 

(6-12 carbons) and very-long-chain (> 22 carbons) FA were also largely absent 

from the crop samples (Table 5), the only exception being the Cuban parrot with 

4% very-long-chain of total FA in samples (Table 5). The hand-feeding formulas 

were also dominated by long-chain FA (> 81% FA, Table 5), did not contain 

short-chain FA, had very small amounts of very-long-chain FA (< 0.8%), and 

only three products contained medium–chain FA (10-18%). As for the other 

psittacine species analyzed, the main food plants of the hyacinth macaw (16) 

were predominantly long-chain FA (58-70%), though medium-chain FA occurred 

in a greater proportion (30-42%) than that found in the other free-living 

psittacines or in formulas (Table 5). 

Parrot crop samples differed in saturation profiles by species. Crop 

contents of the thick-billed parrot, red-and-green macaw, and scarlet macaw 

were dominated by PUFA with mean values of 58-68% PUFA (Table 6). By 

comparison, saturation profiles of crop contents of the lilac-crowned parrot were 

more equivalent, and in the Cuban parrot MUFA and PUFA were found in similar 

proportions of around 40% each (Table 6). Saturated FA SFA and MUFA were 

found in similar proportions within the crop samples of each psittacine species, 
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except in the red-and-green macaw where concentration of SFA was double 

MUFA, and in the Cuban parrot where SFA was half the concentration of MUFA 

(Table 6). By comparison, crop contents of the kakapo had higher mean and 

range values of SFA and MUFA concentrations, with far lower concentrations of 

PUFA (12) compared to the five Neotropical psittacines (Table 6). 

Crop samples fatty acid profiles of the scarlet macaw, the Cuban parrot 

and the lilac-crowned parrot were within the range of values for hand-rearing 

formulas (Figure 2). Hand-feeding formulas differed widely in saturation profiles, 

but none of the products analyzed displayed a profile as low in MUFA as that of 

the thick-billed parrot and the green-wing macaw (Figure 2). Compared with the 

five Neotropical psittacine species analyzed, the diet of kakapo chicks (41) 

presented a FA profile lower in PUFA and higher in SFA (Figure 2). The mean 

concentration of PUFA for the kakapo (41) was also much lower than that in any 

of the hand-feeding formulas (Figure 2). In general, most of the oils used in the 

food industry (166) had FA profiles much lower in PUFA than that for free-living 

psittacines or in hand-feeding formulas (Figure 2). Of these, only soy, corn and 

cotton seed presented profiles within the range of that for free-living psittacines 

and formulas (Figure 2). The main food plant species for the lear’s and hyacinth 

macaw (130) also had FA profiles with far lower concentrations of PUFA and 

higher concentrations of SFA than that for the other free-living psittacines and 

the formulas (Figure 2).  

 

Saturated fatty acids 

Palmitic (C16:0) and stearic acid (C18:0) dominated the SFA from all 

parrot species and from the hand-feeding formulas (Table 7). Palmitic acid was 

the most common SFA in scarlet macaws (52% SFA), red-and-green macaws 

(33%),Cuban parrot (52%), and in all the commercial formulas (41-79%) except 

one (29%; Table 7). Stearic acid dominated the SFA from lilac-crowned parrots 

(52%) and thick-billed parrot (69%; Table 7). 
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Table 5. Fatty acid (FA) profile, according to chain length, in crop contents from the five free-living psittacine species, the 

kakapo (41), 15 commercial hand-feeding formulas (Chapter V), and the preferred food of adult free-ranging hyacinth 

macaws (130). Profile data are presented as percentage of total fatty acid, mean ± standard deviation (minimum – maximum). 

Scarlet macaw (Ara macao), red-and-green macaw (Ara chloropterus), Abaco parrot (Amazona leucocephala bahamensis), 

lilac-crowned parrot (Amazona finschi), thick-billed parrot (Rhynchopsitta pachyrhyncha), kakapo (Strigops habroptila). No 

short-chain FA were found in any of the crop samples. 

 

Scarlet 

macaw          

(n = 15) 

Red-and-green 

macaw            

(n = 7) 

Cuban parrot       

(n = 5) 

Lilac-crowned 

amazon             

(n = 6) 

Thick-billed 

parrot           

(n = 2) 

Kakapo       

(n = 2) 

Commercial 

formulas             

(n = 15) 

Acuri and 

Bocaiuva 

Medium-

chain FA 

1.37 ± 2.00 

(0.00-5.64) 
0.00 ± 0.00 

0.13 ± 0.18 

(0.00-0.39) 

0.16 ± 0.15 

(0.00-0.39) 
0.00 ± 0.00 

5.76 ± 1.90 

(4.42-7.11) 

2.68 ± 5.78    

(0.00-18.3) 

(29.6-

42.4) 

Long-chain 

FA 

98.6 ± 1.99 

(94.4-100) 

99.9 ± 0.17 

(99.6-100) 

95.6 ± 1.60 

(93.6-97.6) 

 99.6 ± 0.20 

(99.4-99.9) 

99.8 ± 0.27 

(99.5-100) 

94.2 ± 1.86 

(92.9-95.5) 

97.0 ± 5.71    

(81.8-100)    

(57.6-

70.4) 

Very -long-

chain FA 

0.08 ± 0.08 

(0.00-0.23) 

0.08 ± 0.14 

(0.00-0.40) 

4.28 ± 1.69 

(2.12-5.95) 

0.21 ± 0.08 

(0.10-0.29) 

0.02 ± 0.04 

(0.00-0.07) 

0.03 ± 0.04 

(0.00-0.05) 

0.32 ± 01.8    

(0.00-0.81) 

(0.00-

0.00) 
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Table 6. Fatty acid profiles by degree of saturation of crop content samples from five free-living psittacine species, the kakapo 

(41), and the average of 15 commercial hand-feeding formulas (Chapter V). Data presented as percentage of total fatty acid, 

mean ± standard deviation (minimum – maximum). Scarlet macaw (Ara macao), red-and-green macaw (Ara chloropterus), 

Cuban parrot (Amazona leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), thick-billed parrot (Rhynchopsitta 

pachyrhyncha), kakapo (Strigops habroptila). 

 

 

Scarlet 

macaw          

(n = 15) 

Red-and-

green macaw 

(n = 7) 

Cuban 

parrot         

(n = 5) 

Lilac-crowned 

amazon (n = 6) 

Thick-billed 

parrot (n = 2) 

Kakapo        

(n = 2) 

Commercial 

formulas         

(n = 15) 

SFA 
21.1 ± 8.10 

(11.6-35.0) 

26.0 ± 7.03 

(13.3-36.5) 

20.2 ± 3.03 

(16.8-23.2) 

32.1 ± 9.22 

(21.6-43.5) 

17.8 ± 3.53 

(15.7-21.8) 

41.8 ± 1.10 

(41.1-42.6) 

21.5 ± 9.03 

(10.4-41.2) 

MUFA 
20.6 ± 3.35 

(14.2-27.3) 

15.2 ± 10.8 

(6.10-35.3) 

39.9 ± 5.88 

(30.4-45.9) 

27.3 ± 10.4 

(15.1-39.4) 

13.8 ± 2.58 

(11.0-16.1) 

35.3 ± 0.56 

(34.9-35.7) 

28.2 ± 9.22 

(19.9-50.8) 

PUFA 
58.3 ± 8.46 

(42.9-71.0) 

58.7 ± 13.3 

(28.2-68.3) 

38.6 ± 8.37 

(29.8-50.7) 

40.7 ± 9.22 

(22.6-49.3) 

 68.3 ± 1.64 

(66.7-70.0) 

22.9 ± 0.54 

(22.5-23.3) 

45.6 ± 10.7 

(31.6-68.9) 
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Fig. 2. Fatty acid profile of crop content samples of six psittacine species [this study and (41)], 15 commercial hand-feeding formulas, 11 different 

commercially available oils (166), the palm fruits that constitute the main foods of the hyacinth and Lear’s macaws (130), and the average of three 

maintenance poultry feeds (163-165). Data presented as percentage of total fatty acids. Scarlet macaw (Ara macao), red-and-green macaw (Ara 

chloropterus), Cuban parrot (Amazona leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), thick-billed parrot (Rhynchopsitta 

pachyrhyncha), kakapo (Strigops habroptila). 
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Table 7. Saturated fatty acid composition of crop content samples from the five studied free-living psittacine species, the 

kakapo (41), the average of 15 commercial hand-feeding formulas (Chapter V), and the preferred food of the free-ranging 

hyacinth macaw (130). Data presented as percentage of total fatty acid, mean ± standard deviation (minimum - maximum). 

Scarlet macaw (Ara macao), red-and-green macaw (Ara chloropterus), Cuban parrot (Amazona leucocephala bahamensis), 

lilac-crowned parrot (Amazona finschi), thick-billed parrot (Rhynchopsitta pachyrhyncha), kakapo (Strigops habroptila). 

 
Scarlet macaw          

(n =15) 

Red-and-green 

macaw (n = 7) 

Cuban parrot         

(n = 5) 

Lilac-crowned 

amazon (n = 6) 

Thick-billed 

parrot          

(n = 2) 

Kakapo          

(n = 2) 

Commercial 

formulas           

(n = 15) 

C8:0 
0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

2.93 ± 0.05   

(2.89-2.96) 

0.00 ± 0.00   

(0.00-0.00) 

C10:0 
0.02 ± 0.03 

(0.00-0.10) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.01 ± 0.01 

(0.00-0.04) 

0.00 ± 0.00   

(0.00-0.00) 

0.90 ± 0.41 

(0.61-1.19) 

0.07 ± 0.27  

(0.00-1.05) 

C12:0 
1.35 ± 1.99 

(0.00-5.64) 

0.00 ± 0.00   

(0.00-0.00) 

0.12 ± 0.18 

(0.00-0.38) 

0.16 ± 0.16 

(0.00-0.39) 

0.00 ± 0.00   

(0.00-0.00) 

1.94 ± 1.53 

(0.86-3.02) 

2.59 ± 5.63  

(0.00-18.15) 

C14:0 
4.16 ± 5.13 

(0.35-14.07) 

0.76 ± 0.50 

(0.00-1.45) 

0.88 ± 0.11 

(0.70-0.98) 

0.25 ± 0.14 

(0.13-0.52) 

0.02 ± 0.03 

(0.00-0.05) 

0.87 ± 0.01 

(0.86-0.88) 

1.37 ± 2.42  

(0.00-7.77) 

C15:0 
0.07 ± 0.17 

(0.00-0.56) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00 

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.04 ± 0.9    

(0.00-0.31) 
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Table 7. Continued. 
 

 
Scarlet macaw          

(n =15) 

Red-and-green 

macaw (n = 7) 

Cuban parrot 

(n = 5) 

Lilac-crowned 

amazon (n = 6) 

Thick-billed 

parrot (n = 2) 

Kakapo         

(n = 2) 

Commercial 

formulas         

(n = 15) 

C16:0 
11.1 ± 4.26 

(6.79-23.7) 

11.1 ± 8.84 

(5.42-32.2) 

10.4 ± 0.96 

(8.86-11.4) 

12.1 ± 1.31 

(9.92-13.8) 

3.98 ± 0.51 

(3.41-4.39) 

29.8 ± 0.43 

(29.5-30.1) 

12.8 ± 3.23 

(6.78-19.4) 

C17:0 
0.06 ± 0.04 

(0.00-0.09) 

0.04 ± 0.05 

(0.00-0.12) 

0.08 ± 0.09 

(0.00-0.21) 

0.10 ± 0.04 

(0.04-0.16) 

0.10 ± 0.09 

(0.00-0.18) 

0.38 ± 0.02 

(0.36-0.39) 

0.10 ± 0.18 

(0.00-0.65) 

C18:0 
2.58 ± 1.05 

(0.76-4.67) 

6.50 ± 3.90 

(1.63-13.25) 

5.23 ± 2.10 

(3.00-7.55) 

16.8 ± 10.1 

(4.63-30.6) 

11.6 ± 3.38 

(9.10-15.5) 

4.27 ± 0.18 

(4.14-4.40) 

3.90 ± 1.72 

(2.19-9.03) 

C20:0 
1.50 ± 1.21 

(0.37-4.00) 

7.31 ± 6.19 

(0.38-18.14) 

0.67 ± 0.29 

(0.36-1.08) 

2.03 ± 1.5   

(0.58-4.37) 

1.93 ± 0.23 

(1.72-2.18) 

0.51 ± 0.03 

(0.49-0.53) 

0.31 ± 0.09 

(0.18-0.50) 

C22:0 
0.22 ± 0.20 

(0.00-0.63) 

0.25 ± 0.17 

(0.00-0.44) 

2.37 ± 1.13 

(0.88-3.99) 

0.48 ± 0.38 

(0.14-1.19) 

0.10 ± 0.08 

(0.00-0.15) 

0.21 ± 0.15 

(0.10-0.31) 

0.12 ± 0.21 

(0.00-0.65) 

C24:0 
0.06 ± 0.07 

(0.00-0.23) 

0.06 ± 0.14 

(0.00-0.40) 

0.45 ± 0.19 

(0.23-0.70) 

0.21 ± 0.08 

(0.10-0.29) 

0.02 ± 0.04 

(0.00-0.07) 

0.03 ± 0.04 

(0.00-0.05) 

0.15 ± 0.20 

(0.00-0.80) 
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Table 8. Monounsaturated fatty acid composition of crop content samples from the five studied free-living psittacine species, 

the kakapo (41), and the average of 15 commercial hand-feeding formulas (Chapter V). Data presented as percentage of total 

fatty acid, mean ± standard deviation (minimum – maximum). Scarlet macaw (Ara macao), red-and-green macaw (Ara 

chloropterus), Cuban parrot (Amazona leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), thick-billed parrot 

(Rhynchopsitta pachyrhyncha), kakapo (Strigops habroptila). 

 

Scarlet 

macaw          

(n =15) 

Red-and-

green macaw 

(n = 7) 

Cuban parrot        

(n = 5) 

Lilac-crowned 

amazon (n = 

6) 

Thick-billed 

parrot (n = 2) 

Kakapo       

(n = 2) 

Commercial 

formulas (n = 15) 

C14:1n5 
0.01 ± 0.03 

(0.00-0.10) 

0.00 ± 0.00   

(0.00-0.00) 

0.09 ± 0.13 

(0.00-0.31) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.03 ± 0.10 

(0.00-0.39) 

C16:1 
0.26 ± 0.16 

(0.06-0.66) 

0.25 ± 0.30 

(0.09-0.98) 

0.69 ± 0.20 

(0.47-0.87) 

0.46 ± 0.21 

(0.26-0.83) 

 3.98 ± 0.51 

(3.41-4.39) 

0.33 ± 0.01 

(0.32-0.34) 

0.55 ± 0.55 

(0.00-1.94) 

C17:1 
0.01 ± 0.02 

(0.00-0.06) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

C18:1n9 
13.0 ± 5.23 

(6.09-25.8) 

9.74 ± 9.26 

(2.64-31.0) 

24.7 ± 2.23 

(23.0-28.5) 

19.1 ± 9.79 

(10.7-32.8) 

8.25 ± 1.31 

(7.07-9.67) 

34.7 ± 0.56 

(34.3-35.1) 

30.0 ± 9.09 

(19.2-49.7) 

C18:1n7 
1.84 ± 2.42 

(0.00-9.68) 

1.36 ±1.12 

(0.54-3.80) 

8.37 ± 3.76 

(3.93-11.54) 

7.20 ± 7.06 

(1.13-20.63) 

1.17 ± 0.58 

(0.53-1.66) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 
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Table 8. Continued. 
 

 

Scarlet 

macaw          

(n =15) 

Red-and-

green macaw 

(n = 7) 

Cuban parrot 

(n = 5) 

Lilac-crowned 

amazon        

(n = 6) 

Thick-billed 

parrot (n = 2) 

Kakapo       

(n = 2) 

Commercial 

formulas (n = 15) 

C20:1 
5.34 ± 3.70 

(1.04-12.8) 

3.85 ± 5.57 

(0.30-17.5) 

1.19 ± 0.57 

(0.60-1.92) 

0.49 ± 0.09 

(0.38-0.59) 

4.26 ± 0.90 

(3.28-5.06) 

0.00 ± 0.00   

(0.00-0.00) 

0.30 ± 0.16    

(0.13-0.65) 

C22:1 
0.14 ± 0.11 

(0.00-0.34) 

0.00 ± 0.00   

(0.00-0.00) 

1.04 ± 0.55 

(0.31-1.85) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.26 ± 0.01 

(0.25-0.27) 

0.17 ± 0.19    

(0.00-0.72) 

C24:1 
0.02 ± 0.04 

(0.00-0.10) 

0.00 ± 0.00   

(0.00-0.00) 

3.78 ± 1.51 

(1.87-5.39) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.16 ± 0.12   

(0.00-0.40) 
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Monounsaturated fatty acids 

MUFA were dominated by oleic acid (C18:1n9) in all species (54-70% MUFA), 

as well as in the all hand-feeding formulas (91-99%, Table 8). 

 

Polyunsaturated fatty acids 

Linoleic acid (LA, C18:2n6) was the most common EFA found in the crop 

samples (67-99%) as well as in the hand-feeding formulas (76-99%, Table 9) 

Gamma linolenic acid (GLA, 18:3n6) and decosahexaenoic acid (DHA, 22:6n3) 

were present in significant amounts only in the Cuban parrot samples, in which 

they were the second (18%) and third (5%) most common PUFA respectively 

(Table 9). The PUFA of all species were largely dominated by the (n-6) family, 

with an average (n-6):(n-3) ratio 36:1 (range: 7-108, Table 10). The commercial 

hand-feeding formulas had a ratio of 3-92:1 (Table 10).  

 

Discussion  

The FA profile of the crop content of free-living psittacine chicks differed 

markedly among genera, with the Rhynchopsitta sp. closer to the Ara spp. than 

to the Amazona spp.  

The wide variation in the FA profile of the analyzed hand-feeding formulas 

suggests that there is not yet a consensus among manufacturers concerning the 

correct lipid nutrition for growing psittacines. Supplementing the average hand-

feeding formula with soybean or cottonseed oil would create a FA profile more 

closely resembling that of the FA profile of the scarlet macaw. Likewise, 

supplementation with peanut butter can result in a diet more similar to that 

naturally fed to Cuban parrot chicks, and supplementing with coconut oil more 

similar to that of the lilac-crowned parrot. None of the commercial hand-feeding 

formulas had a FA profile similar to that found in the crops of the green-wing 

macaws or the thick-billed parrots. 
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Table 9. Polyunsaturated fatty acid composition of crop content samples from the five studied free-living psittacine species, 

the kakapo (41), and the average of 15 commercial hand-feeding formulas (Chapter V). Data presented as percentage of total 

fatty acid, mean ± standard deviation (minimum – maximum). Scarlet macaw (Ara macao), red-and-green macaw (Ara 

chloropterus), Cuban parrot (Amazona leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), thick-billed parrot 

(Rhynchopsitta pachyrhyncha), kakapo (Strigops habroptila). 

 

Scarlet 

macaw          

(n = 15) 

Red-and-green 

macaw (n = 7) 

Cuban parrot  

(n = 5) 

Lilac-crowned 

amazon        

(n = 6) 

Thick-billed 

parrot (n = 2) 

Kakapo       

(n = 2) 

Commercial 

formulas (n = 15) 

C18:2n6 

LA 

45.6 ± 13.6 

(22.8-64.9) 

56.0 ± 13.0 

(25.9-66.5) 

25.8 ± 7.81 

(16.5-36.5) 

31.9 ± 9.17 

(19.9-43.5) 

67.7 ± 1.53 

(66.2-69.3) 

6.93 ± 0.86 

(6.3-7.5) 

44.3 ± 9.87         

(29.0-68.2) 

C18:3 n6 

GLA 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

7.11 ± 3.81 

(2.92-12.3) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00         

(0.00-0.00 

C18:3n3 

ALA 

11.4 ± 9.38 

(1.52-37.4) 

2.24 ±1.55 

(0.85-4.79) 

0.88 ± 0.46 

(0.43-1.52) 

8.70 ± 6.55 

(2.03-18.7) 

0.65 ± 0.14 

(0.49-0.75) 

15.9 ± 1.40 

(15.0-16.9) 

5.03 ± 3.45         

(0.74-15.0) 

C20:2n6 

Eicosadienoic 

acid 

1.23 ± 0.75 

(0.18-2.40) 

0.00 ± 0.00   

(0.00-0.00) 

0.55 ± 0.25 

(0.30-0.93) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00 

0.03 ± 0.11         

(0.00-0.44) 

C20:3n6 

DGLA 

0.01 ± 0.02 

(0.00-0.08) 

0.00 ± 0.00   

(0.00-0.00) 

0.99 ± 0.57 

(0.38-1.85) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00 

0.00 ± 0.00         

(0.00-0.00 

C20:4n6 

AA 

0.01 ± 0.02 

(0.00-0.10) 

0.00 ± 0.00   

(0.00-0.00) 

0.80 ± 0.63 

(0.13-1.73) 

0.02 ± 0.04 

(0.00-0.10) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00 

0.08 ± 0.13         

(0.00-0.39) 
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Table 9. Continued. 
 

 
Scarlet macaw          

(n =15) 

Red-and-green 

macaw (n = 7) 

Cuban parrot     

(n = 5) 

Lilac-crowned 

amazon         

(n = 6) 

Thick-billed 

parrot (n = 2) 

Kakapo       

(n = 2) 

Commercial 

formulas (n = 15) 

C20:5 n3 

EPA 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00 

0.09 ± 0.31     

(0.00-1.21) 

C22:4n6 

Adrenic acid 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00 

0.01 ± 0.04 

(0.00-0.09) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00 

0.03 ± 0.07    

(0.00-0.24) 

C22:6n3 

DHA 

0.04 ± 0.06 

(0.00-0.19) 

0.00 ± 0.00   

(0.00-0.00) 

2.40 ± 1.52 

(0.66-4.41) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00) 

0.00 ± 0.00   

(0.00-0.00 

0.12 ± 0.24     

(0.00-0.78) 
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Table 10. n6 and n3 families of polyunsaturated fatty acids and their ratio in the crop content from the five studied free-living 

psittacine species, the kakapo (41), and the average of 15 commercial hand-feeding formulas (Chapter V). Data presented as 

percentage of total fatty acid, mean ± standard deviation (minimum – maximum). Scarlet macaw (Ara macao), red-and-green 

macaw (Ara chloropterus), Cuban parrot (Amazona leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), thick-

billed parrot (Rhynchopsitta pachyrhyncha), kakapo (Strigops habroptila). 

 
Scarlet macaw          

(n = 15) 

Red-and-green 

macaw (n = 7) 

Cuban parrot 

(n = 5) 

Lilac-crowned 

amazon (n = 6) 

Thick-billed 

parrot (n = 2) 

Kakapo       

(n = 2) 

Commercial 

formulas (n = 15) 

(n-6) 
46.9 ± 14.2 

(23.0-66.7) 

56.5 ± 12.4 

(27.3-66.5) 

35.3 ± 10.3 

(23.9-49.7) 

32.0 ± 9.12 

(20.0-43.5) 

67.7 ± 1.52 

(66.2-69.3) 

6.93 ± 0.86 

(6.32-7.54) 

44.4 ± 9.91   

(29.0-68.2) 

(n-3) 
11.5 ± 9.39 

(1.52-37.5) 

2.24 ± 1.55 

(0.85-4.79) 

3.28 ± 1.96 

(1.09-5.93) 

8.70 ± 6.44 

(2.03-18.72) 

0.65 ± 0.14 

(0.49-0.75) 

15.9 ± 1.40 

(15.0-17.0) 

5.24 ± 3.40   

(0.74-15.0) 

(n-6):(n-3) 
10.1 ± 12.6 

(0.66-43.9) 

35.2 ± 19.1 

(13.2-60.7) 

18.2 ± 17.4 

(4.04-45.4) 

7.05 ± 7.03 

(1.35-20.3) 

107.7 ± 23.6 

(92.1-134) 

0.44 ± 0.09 

(0.37-0.50) 

15.5 ± 22.3    

(3.10-92.4) 
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In the United States, poultry food is typically formulated with a commercial 

feed grade animal-vegetable blend of fat (Chapter V). This source of fat is 

dominated by MUFA (49%) and SFA (41%), with small amounts of PUFA (9%) 

(62). The (n-6):(n-3) ratio of three commercial poultry diets has been found to 

range from 5.9 to 6.5 (163-165).  

The kakapo feeds its chicks almost exclusively high lipid rimu fruits 

(Dacroydium cupressinum)(167). FA profile of two pooled samples from chicks 

(13 samples from 10 chicks 10-43 days old, on six nests) (41) presented 

important contrasts with the studied crop samples (Tables 4-10). The kakapo 

crop samples had a 7.8% FA in DM basis. The profile was dominated by SFA 

and MUFA (42 and 35% respectively), with higher values of SFA and lower 

PUFA than any of the other five species. Oleic acid comprised more than 98% of 

the total MUFA, and α-linolenic (ALA, C18:3n3) dominated the PUFA (70% total 

PUFA). Unlike the studied species, the PUFA were dominated by the (n-3) 

family [(n-6):(n-3) ratio 0.4:1]. 

The hyacinth macaw and the Lear’s macaw have both a specialized diet 

on the high-fat endocarp of palm fruits (> 60% DM) (3). The hyacinth macaw 

feeds almost exclusively on the fruits of the acuri (Scheelea phalerata) and the 

bocaiuva (Acrocomia aculeate), while the Lear’s macaw specializes on the fruit 

of the licuri (Syagrus coronata) (3). The FA profiles of all these fruits are 

dominated by SFA (more than 55%), and the PUFA levels are relatively low 

(less than 15%) (130). The acuri FA profile is dominated by medium-chain FA 

(130). These two parrot species are known for their dietary specialization, and 

the diversity of food habits and ecology among psittacines prevents the 

extrapolation to the rest of the family.  

When formulating diets it is not enough to provide a source of dietary fat 

in hand-feeding formulas, rather, the FA profile should also be considered. 

Unpublished experiments supplementing the hand-feeding diet of 10 parrot 

species from days 0 to 7 with a modified blend containing added (n-3) FA in the 
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form of algal-based DHA (Trevera®, Novus International, St. Charles, MO) 

resulted in a significantly greater immune response compared with the control 

birds, measured through a PHA skin test. 

Although it is not possible to determine the parrots’ nutrient requirements 

based solely on diets from free-living parrots, our data suggest that a single 

formulation may not be ideal for hand-rearing all parrot species, and the diet for 

Ara spp. and Rynchopsitta sp. should be different from the diet for Amazona 

spp. Experimental studies should evaluate if replicating the FA profile found in 

the wild diets improves the performance of their formulas. Suggested profiles 

are: at least 12% DM long-chain FA and ~20-30% SFA (61 < 16:0 + 18:0 < 90% 

SFA), with the diets for Ara spp. and Rynchopsitta sp. containing 10-25% MUFA 

(18:1n9 ~60% MUFA) and 55-70% PUFA (78 < 18:2n6 < 99% PUFA), and the 

diets for Amazona spp. containing 25-40% MUFA (62 < 18:1n9 < 70% MUFA), 

and ~40% PUFA (67 < 18:2n6 < 70% PUFA). The suggested importance of a 

low (n-6):(n-3) FA ratio in parrots’ diets (24, 159) is not supported by the analysis 

of the crop contents of free-living psittacine chicks, and deserves further 

investigation. 
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CHAPTER V 

NUTRITIONAL AND PHYSICAL CHARACTERISTICS OF COMMERCIAL 

HAND-FEEDING FORMULAS FOR PARROTS 

 

 

Synopsis 

Hand-rearing is a common practice for the propagation of psittacines, 

however, research on their nutrition is limited and the chicks’ requirements are 

not well understood. We analyzed the nutrient composition and physical 

characteristics of 15 commercially available parrot hand-feeding formulas. 

Formulas were compared with the average nutritional content of the crops of 

free-living scarlet macaw (Ara macao) chicks. When the formulas were prepared 

by diluting with warm water (1:5), two maintained less than 85% of solids in 

suspension after 5 min, and only 50% maintained more than 90% of solids in 

suspension after 15 min. On average the formulas had a similar predicted 

metabolizable energy density as wild macaw crop samples. The concentration of 

crude protein in all the formulas was higher than that of the crop sample 

average, while the crude fat in all formulas was lower than the average crop 

samples. More than 50% of the formulas had concentrations of K, Mg and Mn 

less than the crop sample average, and Ca and Na concentrations below the 

requirements established for 6-12 wk old leghorn chickens. For > 45% of the 

formulas the concentrations of arginine, leucine and methionine + cystine were 

below the requirements of 6-12 wk leghorns. When commercial formulas were 

prepared according to the manufacturer’s instructions, nutritional differences 

among them were greatly magnified. Overall, the inconsistency in the nutrient 

concentrations among the formulas suggests that there is no consensus among 

manufacturers of the correct nutrition for growing psittacines and the industry 

could benefit from continued research in this area. 
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Introduction 

Hand-rearing is a common practice for the propagation of psittacines, 

both for the pet market (65) and for conservation (46, 48). However, research on 

psittacine nutrition is limited and the requirements of growing chicks are not well 

understood (4). Nutritional recommendations for optimal growth are generally 

extrapolated from dietary requirements for domestic poultry (62) and modified 

empirically rather than based on scientific study (4). As a result, nutritional 

imbalances resulting in problems such as stunted development, rickets, and 

vitamin deficiencies are common (4, 5). Hand-feeding diets for psittacines were 

traditionally home-made recipes which required elaborate preparation (3, 44, 45, 

55, 58) but now there are a wide array of commercially available formulas that 

require minimal preparation. These formulas are intended to be used without 

supplementation and fulfill the nutritional requirements of most psittacine 

species. 

The main goal of hand-feeding is to provide the chick with the adequate 

nutrition that allows it to achieve optimum growth and development. Commercial 

hand feeding formulas are supplied as dry powder that is reconstituted with 

warm water and fed as a suspension. The capacity of any formula to maintain 

the solids in suspension is important in order to avoid the unintentional selection 

of ingredients from the mixing dish, and the consequent nutritional imbalance. 

Also it is critical to avoid the separation of the formula in the chick’s crop, as 

separation allows the liquid to be absorbed rapidly, which can increase solids 

passage time and lead to fermentation, crop impaction and associated health 

problems (168).The dilution factor of the formula as fed is important, as formulas 

need to have enough water to pass quickly through the digestive tract, yet have 

enough solids to provide adequate nutrient density. To investigate the current 

“state of the art” in growing parrot nutrition, we analyzed the physical 

characteristics and nutrient composition of 15 commercial hand-feeding formulas 

for parrots available in the USA and compared them with the nutritional 
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requirements of leghorn chickens and the composition of the crop contents of 

free-living scarlet macaws (Ara macao) in Peru.  

 

Methods 

We examined a total of 15 commercial parrot hand-feeding formulas from 

10 different manufacturers (Table 11), representing the main products available 

in the US market. Samples were purchased from local vendors and kept in 

closed containers and refrigerated at 4°C until analysis.  

The nutrient concentrations of the commercial formulas were compared 

with the nutrient densities from crop contents of free-living scarlet macaw chicks 

collected during the 2006 and 2008 breeding season at Tambopata Research 

Center in southeastern Peru. Crop contents were collected following Enkerlin-

Hoeflich et al. (37) from 20 free-living chicks from 14 nests. The average age of 

the chicks at sampling was 42 days (range 19–59). A total of 117 crop samples 

were collected, and pooled into 21 combined samples for analysis. Formulas 

were compared with the amino acid data of the same crop samples already 

published (42). Although the nutrition of wild birds may have deficiencies (93), 

the observed fractional growth rates of the scarlet macaw chicks at the 

Tambopata Research Center (61) are not below those of hand-reared chicks (3), 

which suggests that the nutrition provided by the parents is adequate for the 

chicks’ growth and development. Formulas were also compared with the 

nutritional requirements of growing leghorn chickens (62). 

The proximate (crude protein, crude fat, ash) and neutral detergent fiber 

(NDF) analyses were conducted at the Palmer Research Center, University of 

Alaska. Nitrogen was calculated using the Dumas method (105), crude fat using 

the ether extraction method, and concentrations of Ca, K, P, Mg, Fe, Na, Zn, Cu, 

and S determined by mass spectroscopy (102). Soluble carbohydrates were 

calculated by difference following the formula % soluble carbohydrates = 100 – 

% crude protein – % crude fat – % ash – % NDF. Complete amino acid (AA) 
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Table 11. Commercial parrot hand-feeding formulas analyzed and preparation dilutions recommended by the 

manufacturers. 

Manufacturer Product % solids 1 week % solids 6 weeks 

Hagen1 Tropican Breeding Mash B-2262 20 20 

Harrison's Birds Foods2 Neonate formula 33 - 

Harrison's Birds Foods2 Juvenile formula 33 33 

Kaytee3 Exact Hand-Feeding Formula - Macaw 27.5 30 

Kaytee3 Exact Hand-Feeding Baby Bird 27.5 30 

Lafeber Company4 Nutri-Start Baby Bird Formula 25 25 

Scenic Bird Food5 High Energy Hand-Feeding  25 25 

Mazuri6 Hi energy formula 5D1W 10 30 

Mazuri6 Hand-Feeding formula 5TMX 10 30 

Pretty bird7 Handrearing 19/15 20 30 

Pretty bird7 Handrearing 19/8 20 28 

Roudybush8 Formula 3/Optimum Handfeeding Diet 10 30 

Ziegler Bros.9 Hand-feeding formula 30 40 

ZuPreem10 Embrace Plus  25 33 

ZuPreem10 Embrace Hand-Feeding Formula  25 33 
 

1Mansfield, MA, 2 Delray Beach, FL, 3 Chilton, WI, 4Cornell, IL, 5 Plymouth, MN, 6 Saint Louis, MO, 7 Stacy, MN, 8 Woodland, CA, 9 

Gardners, PA, 10 Mission, KS 
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analysis was performed in the Amino Acid Laboratory at UC Davis using the 

modified AOAC methods 994.12 and 988.15, using an automatic amino acid 

analyzer [for more details refer to (42)]. True protein was calculated as the sum 

of the AAs. The predicted metabolic energy was calculated with the following 

formula: PME (KJ/100 g DM) = (18.4 x % crude protein) + (36.4 x % crude fat) + 

(16.7 x % soluble carbohydrates) (21, 62). 

The capacity of the commercial formulas to remain in suspension was 

assessed by preparing it with distilled water at 70oC in a 100 ml glass graduated 

cylinder, and according to each manufacturer recommended dilution for a 1 

week old chick. Measurements of the water/solid interface were taken at 5, 15 

and 30 min after preparation. The particle size distribution was assessed using a 

nest of three test sieves arranged in order of descending sieve mesh size (1.0 

mm, 0.5 mm and 0.25 mm). A 20 g dry sample was placed on the top sieve and 

the nest of sieves were manually shaken until the weight of material in the 

sieves stabilized (169). 

The volume of formula needed to fulfill the estimated daily energy 

requirements of chicks of different ages was calculated for each formula. We 

followed the manufacturer’s recommendations to determine the energy densities 

of the hand-feeding formulas prepared for hand-feeding scarlet macaws of 

seven days and six weeks of age (Table 11). The energy requirements of the 

chicks will depend of their basal metabolic rate, growth, activity, and 

thermoregulation needs (26). There is no model to predict the daily ME 

requirement of parrots, but based on the work with altricial species (170) we 

estimated that a 1 and a 6 weeks old scarlet macaw will need 2.5 and 2.0 times, 

respectively the ME requirements of an adult psittacine of the same weight; 86 

and 837 g body weight respectively (BW)(61). The adult psittacine ME was 

estimated with the formula ME = 0.647 x BW0.73 MJ/day (4). Resulting ME for 1 

week = 0.27 MJ/day, for 6 weeks = 1.14 MJ/day. 
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Results 

Physical characteristics  

When prepared according to the manufacturer’s directions for feeding one 

week old chicks, almost half of the formulas (seven out of 15) maintained 100% 

of solids in suspension after 30 minutes. Three formulas showed a 10% 

decrease in the maintained solids in suspension after 15 min and a 20% 

decrease after 30 min (Figure 3). On average 2.2 ± 0.4% of the particles were 

bigger than 1.0 mm, and 54 ± 10.7% were smaller than 0.25 mm.  
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Fig. 3. Percentage of solids in suspension of 15 commercial parrot hand-feeding 

formulas prepared according to the manufacturer’s directions for 1 wk old bird. 
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Nutritional characteristics 

Because of the quantitative and qualitative variability observed in the crop 

samples, we consider that the complete nutrition of the free-ranging chicks is not 

achieved at each feeding, but through multiple feeding episodes. For this 

reason, the crop samples average (and its 95% CI) was used for comparison 

with the formulas. 

The hand-feeding formulas had a similar energy density compared with 

the free-living macaw crop samples: only two of 15 formulas fell outside the 95% 

CI for the crop samples (Table 12, Figure 4). In the formulas, the main source of 

ME is carbohydrates (49.5 ± 8.7%), followed by crude protein (26.1 ± 4.4%) and 

crude fat (24.4 ±7.6%), while in the crop samples fat is the main ME source 

(47.0 ± 11.8%), followed by carbohydrates (34.9±16.1%) and crude protein 

(18.1± 5.2%, Table 12, Figure 4). The concentration of crude protein in all the 

formulas except one was above the 95% CI of the concentration found in the 

crop samples, while the crude fat in all formulas was lower than the 95% CI of 

the average crop samples (Table 12, Figure 4).  

The Ca level in13% of the products was below the 95% CI of the crop 

samples, and in 73% of the cases it was below the requirements for 6-12 wk old 

leghorn chickens (62). The Ca:P ratio in 93% of the formulas was below the 95% 

CI of the crop samples and the requirements of 6-12 wk old leghorn chickens 

(Table 12, Figure 5). The Na concentration in one of the formulas was below the 

95% CI of the crop samples, however, in 87% of the formulas it was below the 

requirement for 6-12 wk leghorn chickens (Table12, Figure 5). The K 

concentration in 73% of the formulas was below the 95% CI of the crop samples 

(Table 12, Figure 5). The Na:K ratio of one product was below the 95% CI of the 

crop samples, but 87% of the formulas had a ratio lower than the requirements 

of 6-12 wk old leghorn chickens (Table 12, Figure 5). All formulas had Mg and 

Mn concentrations below the 95% CI of the crop samples, and two of the 
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sampled formulas had a Mn level lower that the requirements of 6-12 wk old 

leghorn chickens (Table 12, Figures 5 and 6).  

g/MJ ME

0 5 10 15 20 25 30 35 40

ME (MJ/ kg DM)

Crude protein

NDF

Crude fat

Ash

Sol CHO

Formulas (n=15)

SCMA crops

 

Fig. 4. Proximate analysis of 15 commercial parrot hand-feeding formulas (box plots 

whiskers representing the 5th and 95th percentiles), compared with the average 

concentrations found in the crop content of free-living scarlet macaw (SCMA) (Ara 

macao) chicks from southeastern Peru (white dots, n = 21 composite samples). Sol 

CHO = soluble carbohydrates, NDF = neutral detergent fiber, ME = metabolic energy. 
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Table 12. Macronutrients and mineral analysis of 15 commercial parrot hand-feeding formulas and the crop of free-living 

scarlet macaw (Ara macao) chicks from southeastern Peru, compared with the nutritional requirements of growing leghorn 

chickens. CP = crude protein, CF = crude fat, Sol. CHO = soluble carbohydrates, NDF = neutral detergent fiber. 

   
Hand-feeding formulas                   

(n = 15) 

 
Scarlet macaw crop 

content (n = 21) 

 
Leghorn 

requirementsa 

Nutrient unit 
 

average SD min max CV 
 

average 
 

95% CI 
 

6-12 wk     

    

MEb MJ/kg DM  16.9 1.3 15.5 20.6 7.6  16.7  15.8 17.7  - 

CP g/MJ ME  14.2 2.4 10.0 18.8 16.9  9.8  8.3 11.3  14.7 

CF g/MJ ME  6.7 2.1 4.5 11.4 31.3  12.9  11.5 14.4  - 

Ash g/MJ ME  3.2 0.71 2.2 4.6 22.0  3.8  3.5 4.1  - 

Sol. CHOc g/MJ ME  29.6d 5.2 14.2 35.7 17.7  20.9  16.6 25.1  - 

NDFe g/MJ ME  5.6 2.3 1.6 9.1 40.6  13.2  16.6 28.4  - 

P g/MJ ME  0.36d 0.09 0.21 0.48 25.5  0.20  0.16 0.23  0.33 

K g/MJ ME  0.37 0.12 0.14 0.54 32.6  0.56  0.48 0.64  0.23 

Ca g/MJ ME  0.61 0.16 0.25 0.84 26.3  0.57  0.44 0.59  0.75 

Ca:P ratio  1.7 0.43 1.1 2.9 25.0  2.9  2.5 3.3  2.5 

Mg g/MJ ME  0.08 0.03 0.02 0.13 41.0  0.20  0.17 0.23  0.05 
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Table 12. Continued. 
 

   
Hand-feeding formulas                  

(n = 15) 

 
Scarlet macaw crop 

content (n = 21) 

 
Leghorn 

requirementsa 

Nutrient unit  average SD min max CV  average  95% CI  6-12 wk 

Na:K ratio  0.30d 0.26 0.03 0.92 85.2  0.07  0.03 0.12  0.5f 

Na mg/MJ ME  93.8d 55.2 8.1 198 58.8  39.2  20.2 58.2  140 

Cu mg/MJ ME  1.5d 2.3 0.24 9.7 151  0.80  0.73 0.86  0.37 

Zn mg/MJ ME  8.5d 6.0 2.0 22.8 70.6  3.7  3.0 4.3  3.3 

Mn mg/MJ ME  7.4 7.1 1.5 25.2 95.7  43.0  30.6 55.4  2.8 

Fe mg/MJ ME  10.1 7.5 1.1 23.6 74.2  -  - -  5.6 

S g/MJ ME  0.19 0.05 0.13 0.27 23.8  0.16  0.12 0.19  - 
 

a
: (62) 11.9 MJ/kg DM 

b
: ME = metabolic energy 

c
: CHO = carbohydrates 

d
: above the 95% CI of the scarlet macaw crop content 

e
: NDF = neutral detergent fiber 

f
: (171) 
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Fig. 5. Mineral concentrations of 15 commercial parrot hand-feeding formulas(box plots 

whiskers representing the 5th and 95th percentiles) compared with the average 

concentrations found in the crop content of free-living scarlet macaw (SCMA) (Ara 

macao) chicks from southeastern Peru (white dots, n = 21 composite samples), and the 

nutritional requirements for growing leghorn chickens [(62), black squares]. 
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Fig. 6. Mineral concentrations of 15 commercial parrot hand-feeding formulas(box plots 

whiskers representing the 5th and 95th percentiles) compared with the average 

concentrations found in the crop content of free-living scarlet macaw (SCMA) (Ara 

macao) chicks from southeastern Peru (white dots, n = 21 composite samples), and the 

nutritional requirements for growing leghorn chickens [(62), black squares]. 
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Table 13. Comparison of the true protein and essential amino acids profile in ME basis 

of 15 commercial parrot hand-feeding formulas, the crop content of 20 free-living scarlet 

macaw (Ara macao) chicks from southeastern Peru(42) (n = 15 composite samples), 

and the nutritional requirements of growing leghorn chickens. ME = metabolic energy, 

aver. = average. 

 

  
Hand-feeding formulas  

(n = 15) 
 

Scarlet macaw 

crop content 
 

Leghorn 

chickens a 

g/MJ ME  aver. SD min max  aver. 95% CI  6-12 wk 

True protein  12.9b 2.6 8.2 18.3  8.3 6.7 9.9  - 

Arginine  0.76 0.21 0.56 1.39  0.88 10.1 11.1  0.77 

Leucine  0.86 0.22 0.60 1.29  0.60 6.9 7.4  0.78 

Valine  0.56 0.11 0.34 0.72  0.53 5.9 6.6  0.48 

Phenylalanine  0.66 0.13 0.42 0.87  0.41 4.7 5.1  0.41 

Isoleucine  0.49 0.11 0.29 0.72  0.36 4.2 4.5  0.46 

Threonine  0.60 0.15 0.25 0.84  0.36 4.2 4.5  0.53 

Lysine  0.75 0.21 0.35 1.12  0.36 4.0 4.6  0.55 

Methionine  0.42 0.21 0.16 1.04  0.17 2.0 2.3  0.23 

Meth + Cys  0.52 0.23 0.27 1.19  0.39 0.9 1.1  0.48 

Tryptophan  0.17 0.05 0.10 0.25  0.08 4.8 5.2  0.13 

Proline  1.73 0.55 0.02 2.58  0.42 4.7 5.2  - 

Glycine  0.76 0.22 0.31 1.26  0.40 4.7 4.9  - 

Histidine  0.32 0.09 0.11 0.46  0.23 2.7 2.9  0.20 
a: (62) 
b: above the 95% CI of the scarlet macaw crop content 
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The arginine concentration in 40% and 67% of the formulas was below 

the 95% CI of the crop samples and the requirements of 6-12 week old leghorn 

chickens, respectively (Table 13, Figure 7). Almost half of the formulas had 

concentrations of leucine and methionine + cystine less than the requirements of 

6-12 week old leghorn chickens(Table 13, Figure 7). 

g/MJ ME

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Arginine

Leucine

Valine

Phenylalanine

Isoleucine

Threonine

Lysine

Methionine

Tryptophan

Proline

Glycine

Histidine

Formulas (n=15)

SCMA crops (n=15)

NRC 6-12 wks

 
Fig. 7. Comparison of the essential amino acids profile (in ME basis) of 15 commercial 

parrot hand-feeding formulas (box plots whiskers representing the 5th and 95th 

percentiles), the crop content of free-living scarlet macaw (SCMA) (Ara macao) chicks 

from southeastern Peru (42) (white dots, n = 15 composite samples), and the nutritional 

requirements for growing leghorn chickens (62) (black squares). 

 

 

Dilution effect 

The ME density of the powdered formulas as sold varied between 15.5 

and 20.6 MJ/kg DM (average = 16.9 MJ/kg, CV = 7.6%). When the formulas 
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were prepared according to the manufacturer’s instructions (Table 11) for a six 

week old chick, the variability in ME density increased by 2-fold (average = 4.96 

MJ/kg wet basis (WB), CV = 15.7%, range = 3.30-6.49 MJ/kg WB, Table 14). 

However, when the formulas were prepared for a one week old chick, the 

variability increased by 5-fold (average = 3.87 MJ/kg WB, CV = 37.1%, range = 

1.55-6.79 MJ/kg ME WB) (Table 14).  

 

 
Table 14. Average concentration of nutrients in the hand-feeding formula (wet basis) 

offered to scarlet macaw (Ara macao) chicks at one (86 g) and six weeks (837 g) of 

age, when following the manufacture’s preparation suggestions. Weight of chicks 

according to Vigo et al. (61). CV shown in brackets. Sol. CHO = soluble carbohydrates, 

NDF = neutral detergent fiber, ME = metabolic energy. 

Dilution ME MJ/kg 
Crude 

protein % 
NDF % 

Crude fat 

% 
Ash % 

Sol. CHO 

% 

1 wk 3.9 (37.1) 5.5(46.2) 2.1 (51.5) 2.7 (64.8) 1.2 (36.9) 11.2 (36.2) 

6 wk 5.0 (15.7) 6.9(19.9) 2.9 (38.5) 3.2 (35.4) 1.6 (27.3) 15.2 (17.6) 

       

 P % K % Ca % Mg %   

1 wk 0.13 (37.8) 0.14 (45.7) 0.23 (38.6) 0.03 (55.2)   

6 wk 0.18 (28.3) 0.19 (38.1) 0.30 (31.7) 0.04 (38.0)   

       

 Na ppm Cu ppm Zn ppm Mn ppm Fe ppm S % 

1 wk 369.1 (79.8) 6.0 (152.7) 34.1 (74.6) 
28.8 

(101.8) 
42.1 (84.5) 0.07 (36.3) 

6 wk 437.2 (62.1) 8.1 (150.8) 42.7 (71.9) 39.1 (97.4) 52.3 (79.8) 0.10 (27.7) 

 

 

Discussion 

In the wild, parrot chicks are fed a coarse textured regurgitate of 

undigested food items (seeds, fruit, flowers, tree bark and soil from river edge 

“clay licks”) (96, 97) by their parents (40). The largest food particles found in 
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crop samples of scarlet macaws (age 13-77 days) was 9.0 x 3.9 mm (40). 

Attempts to hand-feed such coarse textured diets increases passage time and 

the mortality of young chicks (58). It is not yet known why parent-fed coarse 

textured diets are so readily accepted by chicks, while hand-fed course textured 

diets are not. It has been suggested that the parents may add enzymes (172) or 

probiotics (173, 174) that aids in the chicks’ digestion. Alternatively, it could just 

be the gradual habituation of the chick’s digestive system which allows them to 

process these coarser parental diets.  

Most hand feeding formulas provide an energy density similar to that of 

the crop contents of the free-living scarlet macaws. However, the differences 

found in the proportions of fat, carbohydrates and protein could require dissimilar 

metabolic pathways, particularly at different stages of development. In some 

avian species, specific digestive enzymes become functional at different stages 

of growth (passeriformes (175), phoenicopteriformes (176) anseriformes (177), 

galliformes (178, 179), and there is increasing evidence that this could be the 

case in psittacines (172). The effectiveness of protease, carbohydrase, and 

lipase enzymes at different stages of growth may reflect adaptation to different 

primary diet ingredients (175, 180), and imply that optimal nutrition may be 

achieved by altering nutrient balance in hand-rearing diets correspondingly. 

Previous studies of crop samples of scarlet macaw chicks in southeastern 

Peru identified low concentrations of protein and several amino acids compared 

to the requirements of poultry of similar age (42) (Table 12). Experiments show 

that adult cockatiels (Nymphicus hollandicus) are able to up-regulate enzymes 

for amino acid catabolism as well as mechanisms for nitrogen excretion when 

fed high protein diets up to 48 g/MJ ME (19). Growing Australian parakeets 

(Melopsittacus undulatus) fed protein levels from 9.9 to 18.7 g/MJ ME were 

found to have no increase in either their growth or in the plasma uric acid (82). 

Experimental studies should evaluate if the higher protein values or imbalanced 
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amino acid ratios of some hand feeding formulas favor increased chick growth or 

cause damage through overloading the birds’ excretory systems. 

Low levels of arginine, leucine and methionine + cystine in most formulas 

could be acting as limiting factors for protein quality (74, 80) and thereby 

reducing overall growth and development. The low concentrations of some 

minerals, particularly those used as co-factors for enzymes (Mg, Mn), and/or 

those necessary for the maintenance of osmotic balance (Na, K), could slow the 

growth of parrot chicks and/or make them more susceptible to infections. If the 

mineral requirements of parrot chicks are similar to those of poultry, we would 

anticipate developmental problems when using some of the analyzed diets. 

Breeders and veterinarians should look for signs of deficiencies.  

It is a common practice to supplement hand-feeding formulas with high 

nutrient density products like peanut butter, cereal flour, or vegetable oil (45). 

However, even if supplementing the formulas with ingredients containing similar 

energy density and lower protein:fat ratios will result in a pattern of energy 

source more similar to the crop contents of the free-living scarlet macaws, such 

manipulation should be done with precaution as it will alter also the proportion of 

all other nutrients and further deficiencies may appear. 

The poor capacity of some of the formulas to maintain solids in 

suspension suggest that different density particles will settle out by weight, 

resulting in an altered nutrient composition. Moreover, when filled to capacity, 

crops usually take more than 30 minutes to empty (J. Cornejo pers. obs.), 

meaning that some formulas are at risk of separation while in the crop. 

Manufacturers should conduct additional research on this property of their 

formulas to help minimize digestion and nutritional inconsistency problems. 

Formula preparation is critical for correct nutrition when using hand 

feeding formulas. When too diluted, formulas will not provide the needed nutrient 

density. When too dense, formulas will cause dehydration and digestion 

problems like crop impaction. When preparing formulas according to the 
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manufacturer’s instructions, nutritional differences among formulas are greatly 

magnified, especially for young chicks. Depending on the product used, a seven 

day old scarlet macaw chick weighing 86 g (61), would need to consume 40 to 

174 ml of formula per day to fulfill its estimated energy needs (0.27 MJ/day). 

This is equivalent to 5 to 20 feedings daily (estimating a 10% BW crop capacity). 

At this age, most manufacturers and hand feeding recommendations call for 6-8 

feedings per day, suggesting that chicks would be underfed using 40% of the 

formulas analyzed here. For a 42 day old scarlet macaw chick [837 g, (61)], the 

daily amount of formula needed would be between 175 and 345 ml, equivalent 

to filling the crop two to four times a day (daily energy need: 1.14 MJ/day) which 

is similar to the 3-4 times per day suggested by practical hand feeding 

guidelines (58, 168).  

The different dilutions will also affect the total daily amount of each 

nutrient the birds are receiving. Wolf and Kamphues (56) estimated the protein 

requirement for growing budgerigars (Melopsittacus undulatus) to be 9.54 g/MJ 

ME, and of lovebirds (Agapornis sp.) 8.90 g/MJ ME. Assuming similar 

requirements, a seven day old scarlet macaw chick will need to be fed between 

2.4 and 2.6 g of protein a day, and a six week old chick between 10.1 and 10.9 g 

of protein a day. Depending on which hand-feeding product is used, a seven day 

old chick being fed eight times a day 10% of its body weight will receive between 

2 and 9 g/day (CV = 46%) of crude protein, and a six week old chick fed three 

times a day 10% of its body weight will be getting between 11 and 24 g/day (CV 

= 20%) of protein. If these requirements are correct, some products may be 

providing 2 to 3 times as much protein as required. The nutritional requirements 

of growing birds depends on their fractional growth rates which are highest 

during the first days after hatching and drop as the chicks age (26, 181). The 

use of overly diluted formulas likely underestimates the higher nutrient 

requirements during the first days of life. This could explain, in part, the delayed 
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development found in the first weeks of hand-fed compared to parent raised 

parrot chicks (3, 59, 61). 

Our findings suggest that manufacturers should investigate if increasing 

the concentrations of Na, K, Mg and Mn, as well as arginine, leucine and 

methionine + cystine would have a positive impact in the health and growth of 

parrot chicks. 

A single formulation may not be ideal for hand-rearing parrot chicks from 

hatching to weaning. Instead, a series of age-specific diets may be more 

appropriate, as proposed by (182). Alternatively, two products may suffice: a 

lower nutrient density formula for older chicks and a higher nutrient density 

product for younger chicks. The two could be mixed to match the requirements 

of chicks as they mature.  

The variation in nutrient densities of the formulas suggests that there is no 

consensus among manufacturers on the correct nutrition for growing psittacines. 

As a result, the industry as a whole could benefit from additional research. 
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CHAPTER VI 

NUTRITION OF FREE-LIVING NEOTROPICAL PARROTS CHICKS, AND 

IMPLICATIONS FOR HAND-FEEDING FORMULAS  

 

 

Synopsis 

The Psittacidae is one of the most endangered families of birds in the 

world. Knowledge of its nutrition is important for understanding their survival and 

productivity in the wild, as well as for their adequate husbandry in captivity. 

Hand-rearing is a common practice for this group, however research on their 

nutrition is limited. We analyzed the predicted metabolizable energy, protein, fat, 

minerals and profile of essential amino acids of the crop samples content from 

free-living chicks of scarlet macaw and red-and-green macaws form 

southeastern Peru, Cuban parrots in Bahamas, lilac-crowned parrots from 

northwestern Mexico, and thick-billed parrots from northern Mexico, as well as 

15 commercial hand-rearing formulas. Compared with the requirements of 6-12 

wk leghorn chickens, all free-ranging parrot diets contained lower Ca and Na 

concentrations. In comparison with the crop samples, the hand feeding formulas 

presented lower fat, Mg, and arginine concentrations, as well as much higher 

levels of Ca and Zn. The nutrition of the different parrots presented important 

similarities and common patterns. The predicted dietary metabolizable energy 

and fat concentrations were particularly similar among species. Wider variations 

were found in the concentrations of Na and Fe, as well as the amino acid 

Arginine. The thick-billed parrot stood out for its diet higher in crude protein and 

low Na; the Cuban parrot for its high Na content diet. Nonetheless, the different 

parrot species displayed a remarkably similar nutritional profile in crop contents, 

considering their differences in habitat and ecology. Our data suggest that a 

single formulation could be used to hand-rear Ara and Amazona spp. of the 

studied ages. Experimental studies should evaluate if increasing the 
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concentration of crude fat, Mg, arginine, and valine enhances psittacine chick 

growth and health. 

 

Introduction  

Macaws and other members of the Psittacidae family have been breed in 

captivity for more than 3000 years (1). In part due to their popularity as pets, 

they have become the most endangered order of birds in the world [over 25% of 

the species are listed as threatened and an additional 11% as near-threatened 

(2)]. Knowledge of nutrition is important for the adequate husbandry of the birds 

kept as pets, and for the efficient propagation of individuals kept in zoological 

collections for their ex situ conservation (3-6). It is also needed for 

understanding survival and productivity (6, 7), and it is therefore critical to 

implement adequate conservation strategies (3, 8, 9).Hand rearing is a common 

practice for the propagation of psittacines, both for the pet industry (44) and for 

conservation aviculture (46, 48, 50). However, the nutritional requirements for 

growth and development of this group are not well understood (4, 54, 56, 

79).Hand-feeding diets have generally been extrapolated from the nutritional 

requirements of growing poultry (62) and modified empirically rather than thru 

scientific study (4). Nutritional imbalances have been common, and stunting, 

rickets, and vitamin deficiencies still occur for some species (4, 5). Psittacines 

and poultry differ both developmentally (63) and ecologically (64), so it is 

questionable if the available poultry data adequately model growing psittacine 

dietary requirements. 

There are very few studies looking into the nutrition of free ranging 

psittacines (8, 9, 34, 41, 127-130), in part because the birds’ extensive food 

manipulation and processing behaviors make it very difficult to determine the 

ingested nutrition (36, 130). Research into the nutrition of parent-fed chicks has 

been published in only two species previously, the scarlet macaw (Ara macao) 

from south-eastern Peru (40, 42), and the kakapo (Strigops habroptila) from 
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New Zealand (41). The diversity of food habits and ecology among psittacines 

makes it tenuous to extrapolate the conclusions from these limited studies to the 

rest of the family. 

The present study provides novel information on the nutrition of free-living 

Neotropical psittacines during its nesting period, and provides useful data for 

improving the hand rearing of this group. The objectives are (1) to characterize 

and compare the predicted metabolizable energy (PME), protein, fat, mineral, 

and the amino acid (AA)composition of the crop content of free-living chicks of 

scarlet macaw (Ara macao), red-and-green macaw (Ara chloropterus), lilac-

crowned parrot (Amazona finschi), Cuban parrot (Amazona leucocephala 

bahamensis), and thick-billed parrot (Rhynchopsitta pachyrhyncha), and (2) to 

compare the nutritional profile of the crop contents of the studied species with 

commercial hand feeding formulas manufactured in the US, and with the 

requirements of growing 8-12 week old leghorn chickens.  

 

Methods 

Crop sample collection 

We collected crop contents from five species of free-living parrots: scarlet 

macaw and red-and-green macaw from the Tambopata Research Center in the 

Tambopata National Reserve in southeastern Peru (12°48’S; 69°18’W), Cuban 

parrot from Abaco National Park on Abaco Island, Bahamas (26°54’N; 77°25’W), 

lilac-crowned parrot from the Chamela-Cuixmala Biosphere Reserve (19°27’N; 

104°59’W) in northwestern Mexico, and thick-billed parrot from northern Mexico 

(29°11’N; 108°29’W) (Table 15).  

Observations of the feeding habits of the scarlet macaw and the red-and-

green macaw report that they feed on 55 and 51 plant species respectively, in 

the Amazonian rainforest of Peru. The diets are principally composed of seeds 

with lesser amounts of leaves, flowers, nectar, bark, and insects(160). The diet 

of the lilac-crowned parrot reportedly contains 33 plant species in the tropical dry 
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Table 15. Characteristics of the parrot crop samples include in this study. Scarlet macaw (Ara macao), red-and-green macaw 

(Ara chloropterus), Cuban parrot (Amazona leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), thick-billed 

parrot (Rhynchopsitta pachyrhyncha). 

Species Source 
Breeding 

season 

# 

chicks 

Average 

age in days 

(range) 

# 

nests 

# 

original 

samples 

Original 

samples mean 

dry weight in g 

(SD) 

# pooled 

samples 

without soil 

# pooled 

samples for 

amino acid 

analysis 

Cuban parrot Abaco Island, 

Bahamas 

2010 27 23 (14-37) 17 35 0.73 (0.45) 5 5 

Red-and-green macaw Southeastern Peru 2008 1 53 (20-86) 1 9 0.86 (1.84) 1 2 

Red-and-green macaw Southeastern Peru 2009 1 64 (32-96) 1 10 1.76 (1.20) 2 2 

Red-and-green macaw Southeastern Peru 2011 4 46 (27-74) 2 14 1.63 (1.84) 2 3 

Lilac-crowned parrot* Western Mexico 2010 15 41 (27-60) 7 44 0.82 (0.46) 6 5 

Scarlet macaw Southeastern Peru 2006 9 32 (13-59) 6 33 2.78 (2.48) 2 13 

Scarlet macaw Southeastern Peru 2008 10 57 (20-88) 6 68 1.07 (1.84) 5 2 

Scarlet macaw Southeastern Peru 2010 4 54 (25-80) 3 11 2.24 (1.93) 3 - 

Thick-billed parrot Northern Mexico 2010 13 55 (52-58) 8 13 0.70 (0.34) 2 2 
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forest of Mexico (82% seeds, 9% fruits, 7% insect larvae and 3% bromeliad 

stems, according to 132 feeding bout observations)(7). Cuban parrots are known 

to feed on 24 plant species (9, 27, 88). Although during the breeding season it 

has been observed to use predominately Caribbean pine seeds and cones 

(Pinus caribaea), poisonwood fruits (Metopium toxiferum) and wild guava 

(Tetrazygia bicolor). The thick-billed parrot are known to feed primarily on 

immature and mature pine seeds of various species, and to lesser extent on 

acorns (Quercus spp.), alligator juniper berries (Juniperus deppeana), bark, 

nectar from agave flowers, and insects (27, 89). The quantitative analysis of 102 

crops of 64 thick-billed parrot nestling in 35 nests analyzed in 1996-1997 

showed that the chicks were fed three or four species of pine seeds, bark, 

acorns, insects and pine needles. The pine seeds made 87% of the diet by 

weight (27). In addition, both macaws have been documented consuming clay 

from river edge “clay licks” and feeding it to the chicks (96).There are reports of 

the lilac-crowned parrot and the thick-billed parrots practicing geophagy outside 

the breeding season (183).  

Samples were collected from chicks’ crops following Enkerlin-Hoeflich et 

al. (37), placed in refrigeration at 4°C within 30 minutes of collection, and then 

frozen at -4°C until analysis. All sampled chicks appeared in good health and 

fledged at appropriate ages for the species (9, 27, 61, 93). Because of the small 

size of each crop sample collected from each bird, we pooled samples for 

analysis (Table 15). Composite samples were created by combining samples 

collected from chicks in the same nest on the same day or from chicks of the 

same age in the same season. Scarlet macaw 2008 samples were scanned with 

a near infrared reflectance spectroscope (Perten DA 7200 IR, Perten 

Instruments AB, Sweden, for more details see Cornejo et al. (131), and pooling 

was done according to the similarity of their spectra. 
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Chemical analysis 

Samples were freeze-dried and ground. The crude protein, crude fat, ash, 

neutral detergent fiber (NDF), and mineral analyses were conducted at the 

Palmer Research Center at the University of Alaska. Nitrogen was determined 

by the Kjeldahl method, crude fat was calculated using the ether extraction 

method (119), NDF was calculated by Van Soest’s detergent analysis system 

(121), and ash by high temperature ashing (105). Concentrations of Ca, K, P, 

Mg, Fe, Na, Zn, Cu, and S were determined by mass spectroscopy (102). Crude 

protein was calculated by multiplying total N by a 6.25 factor (133). Soluble 

carbohydrates were calculated by difference following the formula: % soluble 

carbohydrates = 100 – % crude protein – % crude fat – % ash – % NDF. 

Predicted metabolizable energy was calculated using the formula PME (kJ/100 g 

DM) = (18.4 x % CP) + (36.4 x % crude fat) + (16.7 x % soluble carbohydrates) 

(21, 62). 

The soil present in the Ara spp. samples led to inflated NDF values due to 

filtration issues (121) and prevented their use in the calculation of PME. 

Considering that scarlet macaw samples known to contain no soil had an ash 

content of 6.2 ± 1.4% DM [N = 8 (42)], and that ash for natural foods consumed 

by scarlet macaws in Peru is on average 5.7 ± 3.4% (N = 17, Brightsmith, 

unpublished data), we considered those samples from Ara spp. with an ash 

content > 9% DM (6.2 + 2 x SD) to contain clay, and therefore were excluded 

from the study. 

Complete AA analysis was performed in the Amino Acid Laboratory at UC 

Davis using the modified AOAC methods 994.12 and 988.15, using an automatic 

amino acid analyzer (for more details of the methods refer to (42). True protein 

was calculated as the sum of the AAs.  

Proximate analyses are presented as weight/MJ PME for comparison 

among species and with hand-feeding formulae. AA are presented as % of the 

true protein to compare among species and with the hand-feeding formulas, and 
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as g/MJ PME to compare with poultry requirements. Average values are 

presented as: X ± SD (min-max), and coefficient of variation (CV). The 

metabolizable energy density of diets is the primary factor which determines the 

amount of food an animal will consume (26). Expressing nutrient concentrations 

on a per energy basis allows for more meaningful comparison among diets even 

when the ingested amounts are not known (26). 

 

Published references 

The nutrient concentrations of the crop samples were compared with 

those of 15 commercial hand feeding formulas (Chapter V), and with the 

nutritional requirements of 6-12 wk leghorn chickens (62). The AA profile of the 

scarlet macaw samples were previously published on a PME basis (Chapter III); 

we used them as comparison after converting them to % of true protein. 

 

Total daily nutrient intake 

The energy requirements of the chicks will depend on their basal 

metabolic rate, growth, activity, and thermoregulation needs (26). There is no 

model to predict the daily metabolic energy needs of parrots, but based on the 

work with other altricial species (170) we estimated that the studied psittacine 

chick, 2/3 through its nesting period, will need 2 times the metabolizable energy 

requirements of an adult of the same weight [ME = 0.647 x BW0.73 MJ/day (4)]. 

We calculated the total daily intake for each nutrient dividing the daily energy 

requirements of each species by the energy density of each diet. Average body 

weight of the chicks of different species were obtained from: scarlet macaw (61), 

red-and-green macaw (Brightsmith, unpublished data), lilac-crowned parrot (93), 

Cuban parrot (Stahala, unpublished data), and thick-billed parrot (Cruz-Nieto, 

unpublished data) (Table 15). 
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Results 

Crop sample contents 

Fifty percent of the collected red-and-green macaw samples contained 

soil [42.7 ± 34.8 % DM (5.86-86.4)], as did 58% of the scarlet macaw samples 

[26.6 ± 15.6 % DM (4.20-53.5)], so were excluded from the study except for the 

AA analysis. None of the samples from other species contained any detectable 

amount of soil. The macaws’ crop samples contained more than 10 different 

plant species, but it was not possible to identify them. Nine different species of 

plant were identified in the crop of the Cuban parrot and eight in the lilac-

crowned parrot’s. All the thick-billed parrot crops contained pine seeds of two 

species, 71% contained bark, and 7% contained insect’s larva. Bark and insects 

were present also in the samples taken from all other species.  

 

Nutritional characteristics 

The mean PME ranged from 16.8 MJ/kg for the scarlet macaw to 22.5 

MJ/kg for the thick-billed parrot (CV = 11.3%) (Table 16, Figure 8). The PME of 

most the hand feeding formulas was below that of the parrot crop contents 

(15.2-20.4 MJ/kg). All species had a similar crude protein concentration, ranging 

from 11.5 to 14.5 g/MJ ME, except for the thick-billed parrot that had a higher 

concentration (17.8 g/MJ PME) (Table 16, Figure 9). Most of the hand-feeding 

formulas had crude protein concentrations greater than the average of the crop 

samples of all the species, except for the thick-billed parrot. Only the thick-billed 

crop samples had crude protein above the requirements for 6-12 wk old 

chickens. The mean concentration of crude fat of the crop contents was very 

similar, ranging from 15.3 to 18.5 g/MJ PME (Table 16, Figure 10). All the 

formulas had a crude fat concentration below the crop sample averages for all 

species. The proportions of fat, protein and ash + carbohydrates of the crop 

samples of Amazona spp. and Ara spp. occupy a similar and narrow nutritional 
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Table 16. Predicted metabolizable energy (PME) and proximate analysis of crop contents from the five studied free-living 

psittacine species compared with the analysis of 15 commercial hand-feeding formulas (Chapter V), and the nutritional 

requirements of 6-12 wk leghorn chicken (11.9 MJ/kg) (62). Data expressed as average ± SD (range). Species include: 

scarlet macaw (Ara macao), red-and-green macaw (Ara chloropterus), Cuban parrot (Amazona leucocephala bahamensis), 

lilac-crowned parrot (Amazona finschi), thick-billed parrot (Rhynchopsitta pachyrhyncha).  

 

 

Cuban 

parrot            

(n = 5) 

Red-and-

green 

macaw      

(n = 5) 

Lilac-

crowned 

parrot          

(n = 6) 

Scarlet 

macaw       

(n = 10) 

Thick-billed 

parrot        

(n = 2) 

Hand-

feeding      

formulas  

(n = 15) 

Leghorn 

chicken 6-

12 weeks 

ME (MJ/kg) 
19.2 ± 0.45 

(18.6-19.6) 

19.5 ± 1.36 

(18.4-21.8) 

21.7 ± 1.74 

(24.4-29.4) 

16.8 ± 3.38       

(10.2-22.0) 

22.5 ± 0.91 

(21.8-23.1) 
(15.2-20.4)  

Crude protein (g DM/MJ PME) 
13.1 ± 1.53 

(11.0-15.1) 

11.5 ± 1.59 

(9.38-13.7) 

12.4 ± 2.46 

(10.2-16.9) 

12.6 ± 2.83          

(9.00-18.0) 

17.8 ± 2.87    

(15.7-19.8) 
(10.2-18.9) 14.9 

Crude fat (g DM/MJ PME) 
15.9 ± 0.57 

(15.2-16.5) 

17.2 ± 2.87 

(12.1-21.0) 

15.4 ± 2.86 

(11.5-19.4) 

17.0 ± 3.67            

(12.1-22.1) 

18.5 ± 1.45 

(17.5-19.5) 
(4.55-11.5) - 

CHO (g DM/MJ PME) 
20.6 ± 1.67          

(19.4-23.4) 

19.2 ± 6.22       

(10.7-26.1) 

16.8 ± 4.90    

(9.7-23.2) 

29.0 ± 13.4          

(13.7-58.9) 

5.29 ± 2.64           

(3.42-7.15) 
(15.5-40.6) - 

Ash (g DM/MJ PME) 
2.58 ± 0.44  

(2.21-3.23) 

3.57 ± 0.39 

(3.15-4.17) 

1.80 ± 0.33 

(1.36-2.29) 

3.58 ± 1.28             

(1.48-5.10) 

3.02 ± 0.59 

(2.61-3.44) 
(2.03-5.11) - 
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Fig. 8. Predicted metabolizable energy (PME) in the crop samples from free-living 

chicks of five different parrot species and commercial parrot hand-feeding formulas 

(Chapter V). Box plots presenting mean (squares), median (horizontal line) and 5th and 

95th percentile (whiskers) of the data from scarlet macaw (Ara macao), red-and-green 

macaw (Ara chloropterus), Cuban parrot (Amazona leucocephala bahamensis), lilac-

crowned parrot (Amazona finschi), thick-billed parrot (Rhynchopsitta pachyrhyncha). 
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Fig. 9. Crude protein in the crop samples from free-living chicks of five different parrot 

species, commercial parrot hand-feeding formulas (Chapter V), and the requirements of 

6-12 wk leghorn chickens (62). Box plots presenting mean (squares), median 

(horizontal line) and 5th and 95th percentile (whiskers) of the data from scarlet macaw 

(Ara macao), red-and-green macaw (Ara chloropterus), Cuban parrot (Amazona 

leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), thick-billed parrot 

(Rhynchopsitta pachyrhyncha). 
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Fig. 10. Crude fat in the crop samples from free-living chicks of five different parrot 

species and commercial parrot hand-feeding formulas (Chapter V). Box plots presenting 

mean (squares), median (horizontal line) and 5th and 95th percentile (whiskers) of the 

data from scarlet macaw (Ara macao), red-and-green macaw (Ara chloropterus), Cuban 

parrot (Amazona leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), 

thick-billed parrot (Rhynchopsitta pachyrhyncha). 
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space, with the thick-billed parrot the species most different from the others 

(Figure 11). The hand-feeding formulas occupy, with only one exception, a wider 

but also well-defined nutritional space, which differs from the crop samples by 

having a lower proportion of fat and higher carbohydrate content. 

Mean Ca concentrations in the crop samples varied between 0.18 g/MJ 

PME for the lilac-crowned parrot and 0.56 g/MJ PME for the scarlet macaw 

(Table 17, Figure 12). Mean P ranged between 0.16 g/MJ PME for lilac-crowned 

parrot and 0.44 g/MJ PME for the thick-billed parrot (Table 17).The Ca:P ratio 

varied between 0.87 and 2.62; the Cuban parrot had the lowest concentration 

and both Ara spp. a ratio > 2.0 (Table 17, Figure 13). The Na concentration in 

the crop samples ranged widely between 3.91 mg/MJ PME for the thick-billed 

parrot and 72.8 mg/MJ PME for the Cuban parrot (Table 17, Figure 14). The K 

concentration had the smallest variation among species (0.34-0.47 g/MJ ME, CV 

= 15.2) (Table 17). The Na:K proportion ranged between 0.01 for the thick-billed 

parrot and 0.17for the Cuban parrot (Table 17). The Fe concentration of the Ara 

spp. crop contents was more than 10-fold higher than for the Amazona spp. and 

the thick-billed parrot (Table 17).The majority of hand feeding formulas had 

higher Ca and Na levels than the crop samples. The majority of hand feeding 

formulas also had higher P and Zn levels than any of the species’ crop samples, 

with the exception of the thick-billed parrot. The majority of hand-feeding 

products had lower concentrations of Mg that any of the studied species’ crop 

samples. Most of the hand-feeding formulas had a lower level of Fe than the 

crop samples, except for the lilac-crown parrot.  

The profile of essential amino acids (EAA) as % of true protein was 

dominated in all species by arginine (average 13.9% of true protein);especially in 

the thick-billed parrot and the Cuban parrot, where it was more than 3 times 

higher than any of the other essential amino acids (Table 18). Proline was the 

only AA found in all hand-feeding formulas at a higher concentration than in the 

crop samples. Most of the formulas had concentrations of arginine and valine 
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Fig. 11. Relative proportions of crude protein, fat and carbohydrates (CHO) + ash per 

unit of ME, of the crop samples from free-living chicks of five different parrot species 

(color dots), and 15 commercial parrot hand-feeding formulas (black dots)(Chapter V). 

Circled dots represent averages for each species: scarlet macaw (Ara macao, n = 10), 

red-and-green macaw (Ara chloropterus, n = 5), Cuban parrot (Amazona leucocephala 

bahamensis, n = 5), lilac-crowned parrot (Amazona finschi, n = 6), thick-billed parrot 

(Rhynchopsitta pachyrhyncha, n = 2).  
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Table 17. Macro and micro mineral analysis of crop contents from the five studied free-living psittacine species, from 15 

commercial hand-feeding formulas (Chapter V), and the requirements of 6-12 wk leghorn chickens (11.9 MJ/kg)(62). Data 

expressed as average ± SD (range). Species include scarlet macaw (Ara macao), red-and-green macaw (Ara chloropterus), 

Cuban parrot (Amazona leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), thick-billed parrot (Rhynchopsitta 

pachyrhyncha). 

 

Cuban 

parrot            

(n = 5) 

Red-and-green 

macaw 

Lilac-crowned 

parrot (n = 6) 
Scarlet macaw 

Thick-billed 

parrot (n = 2) 

Hand-feeding      

formulas        

(n = 15) 

Leghorn 

chickens 

6-12 wk 

Ca (g/MJ PME) 
0.24 ± 0.15 

(0.11-0.48) 

0.56 ± 0.18    

(0.31-0.82) n = 5 

0.18 ± 0.06 

(0.11-0.28) 

0.50 ± 0.31        

(0.12-1.13) n = 10 

0.43 ± 0.26 

(0.24-0.61) 
0.25-0.83 0.75 

P (g/MJ PME) 
0.26 ± 0.04 

(0.22-0.32) 

0.24 ± 0.02      

(0.21-0.26) n = 5 

0.16 ± 0.02 

(0.14-0.19) 

0.25 ± 0.09        

(0.13-0.40) n = 10 

0.44 ± 0.03 

(0.42-0.46) 
 0.21-0.47 0.33 

Ca:P 
0.87 ± 0.44 

(0.42-1.50) 

2.33 ± 1.30      

(0.71-4.34) n = 10 

1.12 ± 0.44 

(1.92-0.69) 

2.62± 1.02        

(0.38-4.19) n = 28 

0.95 ± 0.54 

(0.57-1.33) 
1.11-2.88 2.29 

Na (mg/MJ PME) 
72.8 ± 12.9   

(55.7-87.5) 

13.2 ± 7.18       

(6.32-22.3) n = 5 

15.4 ± 7.00 

(9.71-27.4) 

11.1 ± 14.8         

(0.84-48.4) n = 9 

3.91 ± 1.68 

(2.72-5.10) 
8.10-198 140 

K (g/MJ PME) 
0.44 ± 0.03 

(0.41-0.48) 

0.34 ± 0.07     

(0.25-0.44) n = 5 

0.35 ± 0.07 

(0.26-0.45) 

0.47 ± 0.11       

(0.38-0.65) n = 10 

0.37 ± 0.05 

(0.33-0.40) 
0.14-0.54 0.23 

Na:K 
0.17 ± 0.02 

(0.14-0.19) 

0.06 ± 0.04      

(0.01-0.17) n = 10 

0.04 ± 0.02 

(0.02-0.07) 

0.07 ± 0.10         

(0.003-0.45) n = 28 

0.010 ± 0.003 

(0.008-0.013) 
0.03-0.92 0.60 

Cu (mg/MJ PME) 
0.91 ± 0.16 

(0.70-1.15) 

0.69 ± 0.09     

(0.57-0.81) n = 5 

0.44 ± 0.07 

(0.36-0.56) 

0.80 ± 0.19        

(0.62-1.26) n = 10 

0.92 ± 0.02 

(0.91-0.93) 
0.24-9.67 0.37 
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Table 17. Continued. 
 

 

Cuban 

parrot            

(n = 5) 

Red-and-green 

macaw 

Lilac-crowned 

parrot (n = 6) 
Scarlet macaw 

Thick-billed 

parrot (n = 2) 

Hand-feeding      

formulas         

(n = 15) 

Leghorn 

chickens 

6-12 wk 

Zn (mg/MJ PME) 
4.09 ± 0.73 

(2.81-4.53) 

2.16 ± 0.34     

(1.70-2.51) n = 5 

1.71 ± 0.23 

(1.49-2.04) 

2.50 ± 0.59        

(1.67-3.49) n = 10 

5.09 ± 0.39 

(4.81-5.36) 
2.02-22.8 3.27 

Mg (g/MJ PME) 
0.15 ± 0.02 

(0.13-0.17) 

0.16 0.02       

(0.13-0.18) n  =5 

0.10 ± 0.01 

(0.08-0.12) 

0.17 ± 0.05       

(0.13-0.25) n = 10 

0.20 ± 0.001 

(0.20-0.20) 
0.02-0.13 0.05 

Fe (mg MJ PME) 
14.3 ± 8.38 

(5.62-24.8) 

48.8 ± 31.0      

(17.5-101) n = 5     

2.06 ± 0.54 

(2.01-2.43) 

28.8 ± 35.1            

(3.48-106.6) n = 10 

6.62 ± 0.20 

(6.48=6.79) 
1.13-23.8 5.60 
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Fig. 12. Calcium concentration in the crop samples from free-living chicks of five 

different parrot species, commercial parrot hand-feeding formulas (Chapter V), and the 

requirements of 6-12 wk leghorn chickens (62). Box plots presenting mean (squares), 

median (horizontal line) and 5th and 95th percentile (whiskers) of the data, from scarlet 

macaw (Ara macao), red-and-green macaw (Ara chloropterus), Cuban parrot (Amazona 

leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), thick-billed parrot 

(Rhynchopsitta pachyrhyncha). 
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Fig. 13. Calcium:Phosphorus ratio in the crop samples from free-living chicks of five 

different parrot species, commercial parrot hand-feeding formulas (Chapter V), and the 

requirements of 6-12 wk leghorn chickens (62). Box plots presenting mean (squares), 

median (horizontal line) and 5th and 95th percentile (whiskers) of the data, from scarlet 

macaw (Ara macao), red-and-green macaw (Ara chloropterus), Cuban parrot (Amazona 

leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), thick-billed parrot 

(Rhynchopsitta pachyrhyncha). 
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Fig. 14. Sodium concentration in the crop samples from free-living chicks of five 

different parrot species, commercial parrot hand-feeding formulas (Chapter V), and the 

requirements of 6-12 wk leghorn chickens (62). Box plots presenting mean (squares), 

median (horizontal line) and 5th and 95th percentile (whiskers) of the data from scarlet 

macaw (Ara macao), red-and-green macaw (Ara chloropterus), Cuban parrot (Amazona 

leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), thick-billed parrot 

(Rhynchopsitta pachyrhyncha). 
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Table 18. Essential amino acid concentration, as % of true protein, of the crop samples 

from free-living chick of five different parrot species (scarlet macaw (Ara macao), red-

and-green macaw (Ara chloropterus), Cuban parrot (Amazona leucocephala 

bahamensis), lilac-crowned parrot (Amazona finschi), thick-billed parrot (Rhynchopsitta 

pachyrhyncha), and comparison with the range found in commercial parrot hand-

feeding formulas (Chapter V). 

 

 Crop content of chicks of five parrot species 
 Hand-feeding  

formulas (n = 15) 

% true protein Average ± SD Range CV  Range 

Arginine 13.9 ± 4.80 9.37-20.6 34.6  0.87-3.19 

Leucine 6.93 ± 0.86 6.13-8.31 12.4  5.31-8.94 

Valine 5.33 ± 0.81 4.23-6.27 15.2  3.86-4.89 

Phenylalanine 4.66 ± 0.72 3.42-5.22 15.4  4.76-5.70 

Isoleucine 3.86 ± 0.76 2.90-4.47 19.6  3.29-4.46 

Threonine 3.72 ± 0.70 2.85-4.36 18.8  3.13-6.01 

Lysine 3.85 ± 1.12 2.12-5.19 29.1  4.29-7.13 

Methionine 1.80 ± 0.27 1.39-2.11 15.2  1.71-8.18 

Meth + Cys 3.85 ± 0.68 3.17-4.91 17.7  2.20-9.31 

Tryptophan 1.13 ± 0.48 0.56-1.89 42.8  0.82-1.79 

Proline 4.87 ± 0.36 4.53-5.41 7.38  0.21-21.3 

Glycine 4.32 ± 0.77 3.04-5.00 17.8  3.83-6.87 

Histidine 2.57 ± 0.30 2.05-2.81 11.6  0.87-3.19 
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lower than those found in the crop samples. Except for arginine, lysine and 

tryptophan, the intraspecific variation was small (CV < 20%). When comparing 

on a PME basis, most of the formulas match or exceed the concentrations of all 

essential AA found in the crops, except for arginine (Table 18). The 

requirements of 6-12 wk leghorn chickens fell below the concentrations found in 

several of the parrots’ crops, mainly arginine and proline, but also valine, 

phenylalanine, and histidine. 

 

Metabolic energy needs and total nutrient intake 

According to the energy content of their diets, at the average sampling 

age the different studied species will need to consume between 7.7 % (scarlet 

macaw) and 10 % (Cuban parrot) of its body weight in food daily (Table 19).  

 

Discussion 

The diets of the different parrots presented important similarities and 

common patterns. All studied species presented similar PME density, similar fat 

concentration, and a higher proportion of fat than crude protein. Crude fat was 

the nutrient with the smallest variation among the study species. The variations 

in crude protein were greater, but the AA profiles were remarkably similar.  

Preliminary data from the thick-billed parrot shows it has the most 

specialized diet, and the most unique nutrient profile of the studied species. It 

nests in temperate forest, in contrast with the tropical habitats of the Ara and 

Amazona spp. In growing birds, dietary protein is used for tissue accretion and 

maintenance, with the AA balance needed for growth closely mirroring the 

composition in tissues (26). The lower protein and EAA concentrations of the 
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Table 19. Sampled chick characteristics, predicted metabolizable energy (PME) needs, food energy density, and calculated 

daily food intake from scarlet macaw (Ara macao), red-and-green macaw (Ara chloropterus), Cuban parrot (Amazona 

leucocephala bahamensis), lilac-crowned parrot (Amazona finschi), thick-billed parrot (Rhynchopsitta pachyrhyncha) 

 

 

Average 

age 

(days) 

Nesting 

period 

Body 

weight 

(g) 

PME 

(MJ/day) 

Food 

energy 

density 

(MJ/kg) 

Daily intake to 

meet PME 

requirements (g) 

Daily 

intake 

as % 

BW 

Cuban parrot 23 60a 200a 0.40 19.2 20.8 10.4 

Red-and-green macaw 55 93b 1161b 1.44 19.5 74.0 6.37 

Lilac-crowned parrot 41 64c 306c 0.54 21.7 25.1 8.21 

Scarlet macaw 51 86d 996d 1.29 16.8 76.8 7.71 

Thick-billed parrot 55 62e 320e 0.56 22.5 25.0 7.82 

 
a (Stahala, unpublished data) 

b (Brightsmith, unpublished data) 

c (93) 

d (61) 

e (27) 
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thick-billed parrot may reflect a lower growth rate, or a higher thermoregulatory 

expenditure. 

Sodium (Na) is an essential nutrient for vertebrates, required for the 

regulation of blood pressure, the conduction of nerve impulses, and muscle 

contraction (184). It may also be needed for processing secondary plant 

compounds that serve as toxic deterrents to vertebrate herbivores (185). Its 

deficiency can result in dehydration, poor growth and weakness (6). Na is 

typically low in tropical soils (186), and it is not required by most plants, resulting 

in very low concentrations in most plants (6). Coastal areas are usually Na 

replete, while continental areas are usually Na depleted (6). The Cuban parrot 

crop Na concentration was 19 times that of the thick-billed parrot, but still fell 

below the requirement for 6-12 wk leghorn chickens (62), suggesting that the 

studied species are able to conserve Na better than poultry. 

The effectiveness of the different digestive enzymes may reflect 

adaptation to different primary diet ingredients (175, 180). Therefore, the 

differences in proportions of fat, carbohydrates and protein in the diet could 

require different metabolic pathways (187), which implies that appropriate 

nutrient balance in hand-rearing diets is necessary for optimal nutrition of the 

different species. 

The nutrition of wild birds may have deficiencies and limitations (188). 

However, the growth rate of nesting parrots can adapt to fluctuations in food 

resources (93, 152), and even in years of food shortage there is little variation in 

the fledging’s weight (93, 152). The observed fractional growth rates of the 

scarlet macaw chicks at the Tambopata Research Center (61) are not below 

those of hand-reared chicks (3), suggesting that the parents provided nutrition is 

adequate for the chicks’ growth and development. All the sample sites have 

been the focus of long term monitoring studies, with no evidence of severe 

nutritional deficiencies in the chicks or nutrition related population declines (27, 

61, 88, 189). 
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According to the contents of the crops, the diet of all studied psittacines 

contained concentrations of Ca, Na, threonine and lysine below the 

requirements of leghorn chickens of similar age. In addition, several diets were 

below the poultry requirements for P, Zn, Fe, and in all the EAA except for 

proline and arginine. According to these results, poultry do not provide the ideal 

model for psittacine nutrition, as was already suggested. Also one must consider 

that poultry not only are bred selectively to maximize growth, but also the 

requirements are set to obtain the maximal muscle deposition while minimizing 

food consumption (62).  

Our data suggest that a single formulation could be used to hand-rear Ara 

and Amazona spp. of the studied ages. Low levels of essential amino acids 

could be acting as limiting factors for protein quality (74, 80), thereby reducing 

overall growth and development. Experimental studies should evaluate if 

increasing the concentration of crude fat, Mg, arginine, and valine enhance 

psittacine chick growth and health.  
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

The research presented in this dissertation provides new insights on the 

diet and nutrition of Neotropical psittacines. This information helps us 

understand the feeding ecology of this group of birds, and is of direct application 

to the nutrition of birds in captivity. Natural diets do not always provide ideal 

nutrition, preventing the determination of the parrots’ nutrient requirements 

based solely on diets from free-living chicks, however the information generated 

provides a baseline for further research. 

 Chapter II showed that near-infrared (NIR) spectroscopy is a valid technique 

for the nondestructive, low cost prediction of the nutritional composition of 

avian crop contents. It expands the possibilities of research in the nutrition of 

parrots and other animals where only small samples are available.  

 Chapter III suggests that young scarlet macaws at Tambopata Research 

Center are being fed a diet with a predicted metabolic energy (PME), protein 

and essential amino acid concentration similar to the requirements estimated 

for other psittacines, but lower than the requirements for poultry. As 

anticipated, the PME density of the diet fed to the scarlet macaw chicks did 

not change within the age of the studied chicks. 

 Chapter IV showed that the fatty acid profile of the crop content of free-living 

psittacine chicks differed markedly among genera, with the Rhynchopsitta sp. 

closer to the Ara spp. than to the Amazona spp. Hand-feeding formulas 

differed widely in saturation profiles, and none them resembled the profile 

found in the thick-billed parrot or the red-and-green macaw.  

 Chapter V showed that the commercial hand-feeding formulas differed from 

each other in their physical and nutritional characteristics, showing the lack of 

consensus among manufacturers concerning the correct nutrition for growing 
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psittacines. Low levels in some formulas of nutrients such as crude fat, K, 

Mg, arginine, and leucine, could be limiting growth rates and increasing 

disease susceptibility. Manufacturers’ feeding recommendations likely 

underestimate the higher requirements of chicks during the first days of life.  

 Chapter VI showed that the diets of the five studied species presented 

remarkable and important similarities and common patterns, the thick-billed 

parrot being the one with the most unique nutrient profile. It confirmed that 

poultry do not provide the ideal model for psittacine nutrition, and suggested 

the evaluation of several changes in the formulation of hand-feeding diets for 

this group of birds. 

 

The similarity of nutritional profiles achieved by the different species is 

noteworthy, considering their diversity in habitats and food sources. The scarlet 

macaw samples displayed much higher variability in the concentrations of 

almost every nutrient compared with the other species, probably a reflection of a 

more generalist diet, and of the pooled samples (made by combining crop 

samples of similar NIR spectra). However, the average concentration of most 

nutrients was very similar to other species. This suggests that the adult birds 

apply selective feeding (190) to regulate the nutrition provided to their chicks, 

towards a determined nutritional target (191).  

Because of the intra-specific quantitative and qualitative variability in 

nutrient content observed in the crop samples, we consider that complete 

nutrition is not achieved in each meal, but is achieved through complimentary 

feeding events. In this way, the parents feed a mixture of foods in which 

nutrients deficient in one food are supplied by another. Dietary complementation 

allows an animal to consume a nutritionally balanced diet when no one food 

fulfills all its nutrient requirements or when supplies of an optimal food are 

inadequate (190). An example of apparent dietary complementation was found 

in the thick-billed parrot, which feeds its chicks with pine seeds and tree bark. 
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Analysis of the main pine seeds (Pinus arizonica) found in the crop of the thick-

billed parrots revealed that the crop contents had a concentration of Ca 30 times 

greater than the pine seeds alone, and a concentration of Na 5 times higher. 

Considering their specialized diet, it is reasonable to think that the bark is the 

main source of these minerals. Similar complementary feeding has been 

reported for the White-winged Crossbill, which occur in a similar habitat and 

share a diet based on pine seeds complemented with bark (192, 193). 

Therefore, we consider the best estimate of the complete nutrition to be the 

average of the crop samples for each species.  

The direct measurement of nutrition through the sampling and analysis of 

crop contents proved to be a valid method to determine the diet and nutritional 

intake of chicks of different genera. Through the sampling of the Cuban parrot 

crop contents it has been possible to determine the parents’ foraging habits and 

the diet provided to the chicks, with more accuracy and precision than through 

the direct observation of the parental feeding bouts (9). The extrapolations from 

observations of the feeding habits underestimated the protein fraction of the diet, 

and missed their preference for ripe over unripe fruits of the poison wood, as 

well as the ingestion of insect larva. 

Due to limitations of the sampling technique, the studied chicks were 

relatively old, and their nutrition does not necessarily represent that of chicks 

during the first weeks of age. However, current formulations may oversimplify 

chicks changing nutritional requirements during growth. Younger birds present a 

higher fractional growth rate, and therefore higher nutrient requirements. As a 

result, age related changes in parrot nutritional requirements deserve further 

research.  

Given the high concentrations of crude fat, Mg, arginine, and valine found 

in wild diets, future research should evaluate if increasing the concentration of 

these nutrients in hand-feeding formulas enhances psittacine chick growth and 

health.  
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Likewise, the presentation and delivery of the hand-feeding formulas 

should be considered further. Current hand-feeding practices are limited by the 

capacity of the chicks to digest the fine powder formulas, limiting the total daily 

nutrition provided, which could prevent the chicks from achieving their full growth 

potential. 

Because of its high fat concentration, a hand-feeding formula that 

replicates the nutrition of the free-living parrot chicks may not be best produced 

as a dry powder. Instead it may need to be manufactured in a concentrated wet 

basis to be diluted according to the chick’s age. Such a formula would need to 

be preserved under refrigeration or with high levels of antioxidants to minimize 

fat oxidation. Furthermore, by presenting it in two nutrient dilutions, a lower 

nutrient density formula for older chicks and a higher nutrient density product for 

younger chicks, these could be mixed to match the requirements of chicks as 

they mature. 
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