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ABSTRACT

DSA Preconditioning for the SN Equations with Strictly Positive Spatial

Discretization. (May 2012)

Donald Eugene Bruss, B.S. Nuclear Engineering, Oregon State University

Co-Chairs of Advisory Committee: Dr. Jim E. Morel
Dr. Jean C. Ragusa

Preconditioners based upon sweeps and diffusion-synthetic acceleration (DSA)

have been constructed and applied to the zeroth and first spatial moments of the 1-

D transport equation using SN angular discretization and a strictly positive nonlinear

spatial closure (the CSZ method). The sweep preconditioner was applied using the

linear discontinuous Galerkin (LD) sweep operator and the nonlinear CSZ sweep

operator. DSA preconditioning was applied using the linear LD S2 equations and

the nonlinear CSZ S2 equations. These preconditioners were applied in conjunction

with a Jacobian-free Newton Krylov (JFNK) method utilizing Flexible GMRES.

The action of the Jacobian on the Krylov vector was difficult to evaluate numer-

ically with a finite difference approximation because the angular flux spanned many

orders of magnitude. The evaluation of the perturbed residual required constructing

the nonlinear CSZ operators based upon the angular flux plus some perturbation.

For cases in which the magnitude of the perturbation was comparable to the local

angular flux, these nonlinear operators were very sensitive to the perturbation and

were significantly different than the unperturbed operators. To resolve this short-

coming in the finite difference approximation, in these cases the residual evaluation

was performed using nonlinear operators “frozen” at the unperturbed local ψ. This

was a Newton method with a perturbation fixup. Alternatively, an entirely frozen

method always performed the Jacobian evaluation using the unperturbed nonlinear

operators. This frozen JFNK method was actually a Picard iteration scheme. The
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perturbed Newton’s method proved to be slightly less expensive than the Picard

iteration scheme.

The CSZ sweep preconditioner was significantly more effective than precondi-

tioning with the LD sweep. Furthermore, the LD sweep is always more expensive

to apply than the CSZ sweep. The CSZ sweep is superior to the LD sweep as a

preconditioner. The DSA preconditioners were applied in conjunction with the CSZ

sweep. The nonlinear CSZ DSA preconditioner did not form a more effective pre-

conditioner than the linear DSA preconditioner in this 1-D analysis. As it is very

difficult to construct a CSZ diffusion equation in more than one dimension, it will be

very beneficial if the results regarding the effectiveness of the LD DSA preconditioner

are applicable to multi-dimensional problems.
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NOMENCLATURE

LD Linear Discontinuous Galerkin

CSZ Consistent Set-to-Zero

DSA Diffusion Synthetic Acceleration
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SN Discrete Ordinates Method
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1. INTRODUCTION

A strictly positive spatial discretization for the SN neutron transport equations

was recently developed by Maginot, Morel, and Ragusa [1, 2]. Their Consistent

Set-to-Zero (CSZ) method exactly solves the zeroth and first moments of the trans-

port equations and reduces to the finite element linear discontinuous Galerkin (LD)

method when the LD solution yields a strictly positive solution. Maginot et al.

demonstrated that the CSZ method is a valuable alternative to existing strictly pos-

itive discretization schemes.

Previous research with the CSZ method was performed with a source iteration

solution algorithm. Such algorithms suffer from arbitrarily slow convergence in dif-

fusive problems, severely limiting their applicability. The purpose of this work is

to define preconditioning techniques that enable the CSZ equations to be efficiently

solved in diffusive problems.

1.1 Past Work

Non-physical solutions containing negative angular fluxes can be obtained in 1-D

problems containing optically thick cells and in multidimensional problems under a

wide variety of conditions. Maginot demonstrated that the CSZ method was com-

parable to other strictly positive techniques in certain problems and had several

advantageous characteristics not shared by alternative methods in other problems

[1,2]. These results suggest that the CSZ method is worth further investigation. An

acceleration method will be required to apply the CSZ method to diffuse problems.

Diffusion Synthetic Acceleration preconditioning was developed to overcome the

arbitrarily slow convergence of source iteration schemes in diffusive problems with a

This thesis follows the style of the Journal of Computational Physics.
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scattering ratio c close to one. By approximating the error after each source it-

eration with the diffusion equation, DSA can reduce the spectral radius ρ of any

problem from approximately the scattering ratio to ρ ≤ 0.2247c [3, 4]. The appli-

cation of DSA to source iteration algorithms allows these methods to be effectively

applied to diffusive problems.

Krylov methods can converge significantly more rapidly than source iteration

methods [3]. Source iteration schemes can be recast as a preconditioner and the

resultant system solved with a Krylov method such as GMRES. A source iteration

scheme utilizing DSA, recast as a preconditioner and solved with GMRES, should

converge rapidly for even highly diffusive problems.

Applying the strictly positive CSZ method to a problem creates a nonlinear sys-

tem that must be solved with a nonlinear solution technique. Maginot’s research

used a Newton iteration scheme inside of the source iteration scheme. Applying ac-

celeration to this method would require a nonlinear DSA scheme; such schemes can

be difficult to make robust. If instead the Newton iteration is outside the source

iteration, standard linear DSA can be applied to the method. The Newton Krylov

method preconditioned with DSA should converge significantly more rapidly than

fixed-point methods in highly diffusive problems.

The CSZ method with this solution algorithm requires storing the full angular

flux. Each Krylov vector will also be the length of the angular flux vector. The

storage costs associated with this method will be large, but it should converge sig-

nificantly more rapidly than a source iteration method.

1.2 New Research

The CSZ moment equations are reformulated as a preconditioned nonlinear sys-

tem to be solved with GMRES. The scalar flux solution calculated with the CSZ

method is compared to the scalar flux solution generated using the LD moment

equations for comparison. The scalar flux solutions of the CSZ and LD moment
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equations are expected to differ in optically thick regions. The cost associated with

solving the nonlinear system of CSZ equations and the cost associated with solving

the linear system of LD equations are compared to assess the relative cost of each

method.

Two preconditioning schemes are applied to accelerate convergence of the CSZ

method. Sweep preconditioning is first applied to the moment equations. DSA pre-

conditioning is then applied after preconditioning with the sweep. The combination

of these two methods should result in a very effective preconditioning scheme.

The CSZ moment equations are preconditioned with a sweep. The sweep precon-

ditioning can be performed using either the linear LD or nonlinear CSZ operators.

Because the CSZ operators are formed at each Newton step, preconditioning with

a linear sweep is no less expensive than preconditioning with the CSZ sweep. In

addition, the LD sweep is an approximation of the actual sweep and may be signif-

icantly less effective than preconditioning with the CSZ sweep. Nevertheless, it is

of theoretical interest to determine the effectivness of this approach. The LD sweep

preconditioner is therefore applied and compared to the CSZ sweep preconditioner.

DSA preconditioning is applied to the CSZ method to accelerate convergence in

diffusive problems. In slab geometry, the S2 transport equation is equivalent to the

diffusion equation, so S2 Synthetic Acceleration (S2SA) is equivalent to DSA. As the

S2 equations can be solved using the LD or CSZ operators, S2SA can be applied

using the LD or CSZ equations. These two methods are referred to as LD S2SA and

CSZ S2SA.

The equivalence between the S2SA and DSA equations in one dimension makes

DSA easy to implement in slab geometry. However, no such equivalence exists in

multi-dimensional problems. Although LD DSA preconditioning is possible in multi-

dimensional problems, the complexity of deriving the equivalent diffusion equation

using the CSZ operator makes CSZ DSA preconditioning problematic. CSZ DSA

preconditioning is therefore compared to LD DSA preconditioning in diffusive one
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dimensional problems to determine if the more complex CSZ DSA significantly out-

performs the simpler LD DSA.

The remainder of this Thesis is divided into five sections. The moment equations

and CSZ equations are derived in the first section. Source Iteration and Krylov

solution techniques are outlined in the second section. A description of the sweep and

DSA preconditioning strategies that are investigated is found in the third section.

Test problems and computation results comprise the fourth section, followed by

conclusions in the fifth section.
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2. THE TRANSPORT EQUATION

2.1 The Boltzmann Equation

The neutron transport equation is derived from the Boltzmann equation for rar-

efied gasses. It appears:

1

v

∂ψ

∂t
=

∫ ∞
0

∫
4π

σs

(
E ′ → E, ~Ω′ → ~Ω

)
ψ(~Ω′, E ′)dΩ′dE ′ − ~Ω · ~∇ψ − σtψ +Q (2.1)

where ψ is the time- and energy-dependent angular flux, v is the neutron velocity,

Q(~r, ~Ω, E, t) is the inhomogeneous source term, σs

(
E ′ → E, ~Ω′ → ~Ω

)
is the macro-

scopic differential scattering cross section at position ~r from energy E ′ to E and

direction ~Ω′ to ~Ω, and σt(~r, E) is the macroscopic cross section as a function of posi-

tion and energy. Considering only steady-state problems with a single energy group

in one-dimensional Cartesian coordinates with isotropic scattering cross sections and

an isotropic external source simplifies the transport equation to

µ
∂ψ(x, µ)

∂x
+ σt(x)ψ(x, µ) =

σs(x)

4π
φ(x) +

Q(x)

4π
, (2.2)

with directional cosine µ, and the angle-integrated scalar flux φ defined as

φ(x) = 2π

∫ +1

−1
ψ(x, µ)dµ. (2.3)

2.2 Discretization in Angle and Space

The Discrete Ordinates (or SN) approximation is used to discretize the transport

equation in angle. Gauss-Legendre quadrature sets of angle and weight restrict the

continuous angular flux to a finite number of directions. The angle-integrated scalar

flux, φ, is approximated by summing the N weight and angle pairs:

φ(x) ≈ 2π

∫ 1

−1
ψ(x, µ)∂µ =

N∑
d=1

wdψd(x). (2.4)

In slab geometry, the discrete ordinates form of the transport equation is a func-

tion of discrete direction d and position x. Assuming a source term S(x, µd) that
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contains both the inhomogeneous and scattering sources, the one-dimensional SN

transport equation is

µd
∂ψ(x, µd)

∂x
+ σt(x)ψ(x, µd) = S(x, µd). (2.5)

Spatial discretization of the problem is straightforward. The slab is divided into

cells with width hi, with the index i denoting the ith cell. The center of each cell

is located at xi, and the left and right edges of each cell are located at xi−1/2 and

xi+1/2, respectively. Material properties are constant within each cell but can vary

between cells. Thus the material properties carry index i, for the material property

in the ith cell.

2.3 The Spatial Moment Equations

The zeroth and first spatial moment equations are generated by multiplying the

transport equation (2.5) by a basis function and integrating the resultant equation

over the cell. The basis functions for the zeroth and first moment equations are

B0 = 1 (2.6a)

and

B1 =
1

hi
(x− xi) , (2.6b)

respectively. This yields the following respective equations:

µd
hi

(
ψd,i+1/2 − ψd,i−1/2

)
+ σt,iψA,d,i = SA,d,i, (2.7a)

3µd
hi

(
ψd,i+1/2 − 2ψA,d,i + ψd,i−1/2

)
+ σt,iψX,d,i = SX,d,i, (2.7b)

where the average angular flux ψA,d and the slope of the angular flux ψX,d in cell i

are respectively defined by:

ψA,d,i =
1

hi

∫ xi+1/2

xi−1/2

ψ(x, µd)dx, (2.8a)
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and

ψX,d,i =
6

(hi)2

∫ xi+1/2

xi−1/2

ψ(x, µd)(x− xi)dx. (2.8b)

For each cell i in each direction d, the two moment equations in (2.7) include

three unknowns: the outflow, ψd,i±1/2 (ψd,i+1/2 in positive directions and ψd,i−1/2 in

negative directions); the average angular flux ψA,d,i, and the slope of the angular

flux in each direction, ψX,d,i. A third equation is required to provide closure for this

set of equations. Most closures relate the outflow to the average flux and slope of

the flux within the cell. An infinite number of closures are possible, but the linear

discontinuous Galerkin closure is perhaps the most widely used. In the next section

we examine the LD scheme and Maginot’s CSZ scheme in detail.

2.3.1 Linear Discontinuous Method

The Linear Discontinuous Galerkin (LD) closure for the moment equations as-

sumes a linear flux distribution in every cell:

ψ(x)LD = aLD +
2

hi
(x− xi) bLD. (2.9a)

The value of the angular flux ψ at the interfaces between cells is defined in

the following manner. In the positive directions (µd > 0) Eq. (2.9a) applies for

x ∈
(
xi−1/2, xi+1/2

]
, and at the right face of the cell,

ψ(xi+1/2) = aLD + bLD. (2.9b)

The value of ψ at the left face of the cell is upwinded from the previous cell:

ψ(xi−1/2) = ψ(x(i−1)+1/2). (2.9c)

In the negative directions, (µd < 0), Eq. (2.9a) is valid for x ∈
[
xi−1/2, xi+1/2

)
, with

the value of ψ at the left face of the cell given by

ψ(xi−1/2) = aLD − bLD, (2.9d)
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and the value at the right face of the cell is again upwinded from the previous cell:

ψ(xi−1/2) = ψ(x(i+1)−1/2). (2.9e)

The LD closure thus defines the flux distribution across each cell x ∈
[
xi−1/2, xi+1/2

]
The definitions of ψA and ψX given in (2.8) yield

aLD = ψA (2.10a)

and

bLD = ψX . (2.10b)

The moment equations (2.7) can be written entirely in terms of aLD and bLD given

the definitions for ψA, ψX found in Eq. (2.10), the value of the angular flux on the

interfaces defined in Eq. (2.9) and the Gausian quadrature weight of each discreet

direction wd. The moment equations in the positive direction, then, are written:

µd
hi

(aLD,d,i + bLD,d,i) + σtaLD,d,i =
σs
2

N∑
d=1

(aLD,d,iwd) + qA,d,i + ψd,(i−1)+1/2 (2.11a)

3µd
hi

(−aLD,d,i + bLD,d,i) + σtbLD,d,i =
σs
2

N∑
d=1

(bLD,d,iwd) + qX,d,i + ψd,(i−1)+1/2 (2.11b)

The moment equations now include two unknown variables and two equations.

2.3.2 Consistent Set-to-Zero Method

The Consistent Set-to-Zero (or CSZ) method was recently developed by Maginot,

Morel, and Ragusa [1, 2]. The CSZ closure for the moment equations modifies the

linear discontinuous Galerkin closure in cases in which the LD closure yields negative

outflows or a negative flux within the cell. If the LD method yields a positive

solution at all points within a cell, the CSZ method is equivalent to the LD method

(ψcsz = ψLD) in that cell.

In cases in which the LD definition of ψ is negative at any point within the cell,

ψcsz is set to zero across the negative regions. Let the distribution of the angular
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flux within the cell is denoted ψ̃csz. The unknowns aLD and bLD in Eq. (2.9a) are

replaced with acsz and bcsz:

ψ̃csz(x) = acsz +
2

hi
(x− xi) bcsz. (2.12)

The CSZ angular flux, ψcsz, is defined as equal to ψ̃csz at all points where ψ̃csz is

positive and zero at all points where ψ̃csz is negative.

ψcsz(x) =

 ψ̃csz(x) if ψ̃csz(x) ≥ 0;

0 if ψ̃csz(x) < 0.
(2.13)

With these definitions, ψcsz is strictly positive across the cell.

The relationship between the linear distribution for the angular flux within the

cell, ψLD, and the CSZ distribution for ψ within the cell, ψCSZ , is illustrated in

Figure 2.1.

Q
Q
Q
Q
Q
Q

Q
Q

Q
Q

Q
Q
Q

Q
Q
Q

QQ
ψcsz

Q
Q

Q
Q

QQ
ψLD

xi−1/2 xi+1/2xi xz,i

ψLD = ψcsz

Fig. 2.1.: A graphical representation of ψLD and ψcsz in a cell.

The average flux ψA and the slope of the flux ψX are determined by multiplying

by the appropriate basis function and integrating across the portion of the cell where

ψ̃csz is positive. For example, in a cell in which ψcsz is positive on the left edge of the
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cell, equal to zero at some position xz,i, and negative on the right edge of the cell as

in Figure 2.1,

xz,d,i =
1

2

(
1− acsz,d,i

bcsz,d,i

)
, (2.14a)

ψA,d,i =
1

hi

∫ xz,d,i

xd,i−1/2

ψcsz,d,i(x)dx, (2.14b)

and

ψX,d,i =
6

(hi)2

∫ xz,d,i

xd,i−1/2

ψcsz,d,i(x)(x− xi)dx. (2.14c)

With these definitions for ψA and ψX , the CSZ definitions for the outflow, and

the incoming flux upwinded from the previous cell, the moment equations (2.7) can

be written entirely in terms of acsz and bcsz. Note that ψA and ψX are no longer

the primary unknowns in the CSZ method as they were in the LD method, where

aLD = ψA and bLD = ψX .

The CSZ formulation of the moment equations was shown by Maginot to eliminate

negativities in one- and two- dimensional problems with significantly less cost than

Exponential Discontinuous methods [1, 2]. Because the CSZ method defaults to

the LD method in cells that do not have negativities in the linear method, the

CSZ solution exactly matches the LD solution and LD solution cost in positive cells

and only becomes more expensive as the number of cell-direction cases that include

negativities increases.
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3. SOLUTION TECHNIQUES FOR THE TRANSPORT EQUATION

A variety of techniques exist for solving the transport equation. Linear problems

can be solved with a source iteration scheme or Krylov method. Nonlinear problems

are solved with Newton’s Method. The application of each of these schemes to the

transport problem is outlined.

3.1 Source Iteration

The LD moment equations (2.7) derived earlier can be written in operator form:

Lψ = SPψ + q. (3.1)

In this form, ψ is the angular flux, the operator L includes the streaming and inter-

action terms, the operator S contains the scattering terms, P is the angle integration

operator, and q is the inhomogeneous source term. The operator L, in the positive

directions (µd > 0) in one dimensional slab geometry is defined as

L =

 µd + σth µd

−3µd 3µd + σth

 . (3.2)

The operator S is a function of the macroscopic scattering cross section term, σs:

S =

 σs
2

σs
2

 . (3.3)

The operator P generates the average and slope of the scalar flux, φA and φX , from

the average and slope of the angular flux, ψA,d and ψX,d, by summing across the d

angular directions:

Pψ =

 ∑N
d=1wdψA,d∑N
d=1wdψX,d

 . (3.4)

Finally, the source term q is also a vector:

q =

 qA

qX

 . (3.5)
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A source iteration solution technique is natural to apply to the operator form of

the moment equations because each of the terms on the right side of the expression

is coupled in angle and the terms on the left side of the expression are uncoupled in

angle. In a source iteration solution technique, the scattering and distributed source

terms are lagged one iteration behind the transport term, as in Eq. (3.6):

Lψ(`+1) = SPψ(`) + q. (3.6)

If the initial guess for ψ is zero, then ψ`+1, solved for with the sweep in iteration `,

contains all of the particles that have undergone, at most, ` scattering collisions.

In optically thin problems or problems with a strong absorption cross section,

most particles undergo only a few collisions before being absorbed or leaking from the

problem. Source iteration techniques converge rapidly for these types of problems.

Particles in highly diffusive problems undergo a large number of collisions before

leaking or being absorbed. As the scattering ratio c, defined as the ratio of the

macroscopic scattering cross section to the macroscopic total cross section,

c =
σs
σt
, (3.7)

approaches unity, the number of source iterations required to converge in optically

thick systems can become arbitrarily large. It is therefore desirable to implement

an acceleration scheme that is both efficient and unconditionally convergent. An

efficient acceleration method converges with fewer total required computations than

the unaccelerated method.

3.1.1 Sweep Preconditioning

The L operator is block lower triangular in each direction. It is therefore simple to

precondition with L−1. This is called preconditioning with a sweep. After applying

sweep preconditioning, equation (3.1) becomes:

ψ = L−1 (SPψ + q) . (3.8)
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When applied in a fixed-point iterative method, sweep preconditioning very ef-

fectively attenuates error modes in φ with a rapid spatial dependence. Error modes

with a slow spatial dependence are not effectively managed with only sweep precon-

ditioning [3, 4]. These types of slowly varying error modes have eigenvalues close to

one in diffuse problems.

3.1.2 Diffusion Synthetic Acceleration Preconditioning

Diffusion Synthetic Acceleration (DSA) is a convergence acceleration scheme de-

veloped to compensate for the arbitrarily slow convergence of source iteration solution

techniques in diffusive problems. Recall that the transport equation, in terms of the

zeroth and first moment equations and in operator form, can be written as

Lψ = SPψ + q (3.9)

As the DSA method adds an additional step to the iterative solution process, the

‘old’ iterate is denoted with superscript (`), the ‘new’ iterate from the source iteration

step is denoted with (`+ 1/2), and the solution after the DSA step is denoted with

superscript (` + 1). With this notation, the source iteration form of the transport

equation appears very similar to the way it appeared in (3.6):

Lψ(`+1/2) = SPψ(`) + q (3.10)

Adding and subtracting SP (ψ(`+1/2)) to equation (3.10) and algebraic rearrangement

yields:

Lψ(`+1/2) = SP(ψ(`) + ψ(`+1/2) − ψ(`+1/2)) + q (3.11)

Subtracting equation (3.11) from (3.9), an equation for the exact error in iteration

(`+ 1/2), δψ(`+1/2) is obtained:

Lδψ(`+1/2) − SPδψ(`+1/2) = SP(ψ(`+1/2) − ψ(`)) (3.12)

Equation (3.12) exactly solves for the correction to ψ(`+1/2) to yield the exact

solution, but is no simpler to solve than the original transport problem (3.9). Instead
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of solving the transport equation to correct the solution ψ, a good approximation

is to substitute the diffusion equation for the transport equation in Eq. 3.12 [3, 4].

This yields

− d

dx

1

3σt

d

dx
δφ(`+1/2) + σaδφ

(`+1/2) = σs
[
φ(`+1/2) − φ(`)

]
. (3.13)

When applied to source iteration, DSA very effectively attenuates slowly varying

error modes [3, 4]. Pairing a sweep and DSA effectively attenuates both rapidly-

varying and slowly-varying error modes, and should therefore be a very effective

pairing of preconditioners. The cost of solving the S2 transport problem at each

Krylov step is offset by greatly reducing the number of Krylov iterations required to

solve the problem. Pairing DSA and sweep preconditioning should result in a very

effective preconditioning scheme.

3.1.3 Consistent DSA and S2 Synthetic Acceleration (S2SA)

DSA is generally not stable with optically thick cells with a scattering ratio

c ≈ 1 unless it is discretized in a manner consistent with the transport equation

[5]. Although not guaranteed to fail if inconsistently discretized, the diffusion and

transport equations generally must share the same discretization to obtain the fastest

accelerated convergence. For this reason, in one dimension S2 Synthetic Acceleration

(S2SA) is often used instead of DSA. Because the S2 and P1 equations are analytically

equivalent in one dimension, S2SA is equivalent to DSA [4]. This approach allows

the existing discretization to be applied to the S2 form of the SN problem, resulting

in identical spatial discretization. Although S2SA is somewhat more costly than

DSA, the consistent discretization problem is avoided, resulting in an unconditionally

convergent acceleration technique. In two- and three- dimensional problems, the

S2SA and DSA methods are not equivalent [4].

The boundary conditions associated with the diffusion equation differ from the

boundary conditions applied to S2 transport. The diffusion equation is solved by
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setting the φ to zero at an extrapolated distance from the problem boundary. The

S2 transport equations can be solved with vacuum boundary conditions, reflecting

boundary conditions, or with an incident flux at the problem surface. Therefore even

in one dimension S2SA is not exactly equivalent to solving the diffusion problem, but

S2SA is approximately equal to DSA in one dimension. S2SA and DSA will be used

synonymously throughout this paper.

3.1.4 Fourier Analysis of DSA

Fourier analysis is used to determine the spectral radius, ρ, of the source iteration

solution technique for a model infinite-medium problem. The spectral radius char-

acterizes the convergence rate of an iteration scheme, and is defined as the reduction

in error between consecutive iterations:

ρ = lim
`→∞

∥∥δψ(`+1)
∥∥

‖δψ(`)‖
. (3.14)

Optically thick problems solved with source iteration methods have a spectral radius

approximately equal to the scattering ratio c [3]. As the optical thickness of a

problem decreases, the leakage rate increases and the spectral radius decreases. The

application of DSA preconditioning to source iteration problems reduces the spectral

radius to ρ ≤ 0.2247c as the number of discrete angle directions N increases, an

improvement of at least a factor of four for sufficiently large N [4,5]. As DSA and

S2SA are algebraically equivalent in one dimension, S2SA converges with the same

spectral radius as DSA [4].

3.2 Krylov Methods

Krylov subspace methods are a class of iterative techniques for solving general lin-

ear systems. Effective source iteration methods can be used to define effective precon-

ditioners that are easily applied to a Krylov solution technique, making Krylov meth-
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ods a natural choice for accelerating source iteration problems. Numerous Krylov

methods have been developed, but the basic Krylov scheme is common to all of them

[6]. In general, Krylov methods can significantly accelerate the convergence of source

iteration schemes [3].

3.2.1 The Krylov Subspace Method

Krylov methods are used solve problems of the form

A~x = ~b, (3.15)

where A is an N ×N matrix, ~x is a vector with N elements, and ~b is a source vector

also of length N . The Krylov subspace of dimension m is denoted Km(A, b) and has

a basis made from the matrix A and the source vector ~b [3, 6]:

Km(A,~b) = span{~b,A~b,A2~b, ...,Am−1~b}. (3.16)

These basis vectors are labeled Krylov vectors. The solution to (3.15) is constructed

as a linear combination of the Krylov vectors. It is simple to prove that the solution

~x to (3.15) can be constructed as a linear combination of the Krylov vectors [3].

First, the minimum polynomial of A, Pd(A), is defined as

Pd(A) = a0 + a1A
1 + a2A

2 + ...+ adA
d = 0. (3.17)

Assuming that the matrix A is nonsingular, the polynomial can be scaled so that

a0 = 1. With further rearrangement,

I = −
(
a1I + a2A + ...+ adA

d−1)A. (3.18)

By multiplying from the right by A−1, equation (3.19) is formed,

A−1 = −
d−1∑
i=0

ai+1A
i, (3.19)
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and equation (3.15) is solved with this definition of A−1:

~x = −
d−1∑
i=0

ai+1A
i~b. (3.20)

It is clear that the solution to (3.15) is a linear combination of the Krylov vectors in

Kd(A,~b). The manner in which the polynomial Pd(A) is determined depends upon

the implementation of each particular Krylov scheme.

3.2.2 The Generalized Minimum Residual Method

The Generalized Minimum RESidual method, GMRES, was developed by Y. Saad

and M.H. Schultz in 1986 [7]. GMRES differs from the standard Krylov method de-

scribed previously in two main fashions. First, because the Krylov vectors are nearly

linearly dependent, GMRES uses the Arnoldi process to generate an orthogonal ba-

sis of the Krylov subspace [3, 7]. As the solution to equation (3.15) lies within the

Krylov subspace, it can obviously still be constructed by a linear combination of

these orthogonal basis functions.

The second notable characteristic about GMRES is that the polynomial Pd(A)

is determined by solving a least-squares problem for the residual [7]. The solution

for ~x is computed at each Krylov iteration m based upon the m basis functions that

define the Krylov subspace and the solution to the least-squares problem, Pd(A).

The residual,

f(~xm) = ~b−A~xm, (3.21)

is computed after each Krylov iteration until some (user-defined) convergence criteria

is fulfilled.

3.2.3 Flexible GMRES

Flexible GMRES, or FGMRES, was developed by Youcef Saad in 1993 [8]. Flexi-

ble GMRES was designed for use in conjunction with right preconditioning methods
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with the recognition that it is often beneficial to vary the preconditioner within the

Krylov iterations. This results in an iteration matrix that varies between Krylov

steps. This becomes necessary when the CSZ method is solved with a Jacobian-free

method, as is explained in the section on Jacobian-free Newton Krylov methods.

FGMRES retains the positive characteristics of GMRES, including the mini-

mization of the norm of the residual, and requires only a few extra computations per

Krylov step if right preconditioning is not applied [8]. However, the memory require-

ment doubles because each Krylov vector is stored in its original and preconditioned

state. A problem that is memory intensive to solve with GMRES requires twice as

much memory to solve with FGMRES.

3.2.4 Krylov Form of the Transport Problem

Problems that have been structured in a form suitable for solution with a source

iteration scheme can be easily reformatted for solution with a Krylov method. Recall

that the source iteration form of the moment equations appears

Lψ(`+1) = SPψ(`) + q (3.22)

The Krylov method drops the iteration indexing as used in equation (3.22), above.

The transport operator L is inverted and multiplied across the problem with a sweep.

After minor algebraic rearrangement, the problem is in the form of equation (3.15),

(
I− L−1SP

)
ψ = L−1q, (3.23)

and can be solved with the application of a Krylov method.

3.2.5 DSA Applied to the Krylov Method

Acceleration techniques applied to source iteration methods are also effective as

preconditioners for a Krylov solution technique. Diffusion Synthetic Acceleration can
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be applied to the Krylov form of the problem in the same manner as it was applied to

the source iteration problem. As when applying DSA to the source iteration problem,

the the S2 transport problem is used to approximate the difference between the exact

solution and the solution at the current iteration.

3.2.6 DSA Degradation over Material Discontinuities

Warsa, Wareing, and Morel showed that DSA applied to source iteration suffers

significant degradation when applied to multi-dimensional problems with strong ma-

terial discontinuities [9]. The degradation of the spectral radius occurs even when

fully consistent DSA is applied to the source iteration scheme and appears to be a

shortcoming of the DSA method itself. Therefore, acceleration of source iteration

problems with DSA is not guaranteed to be an efficient solution technique for all

problems.

The application of DSA to a Krylov solution scheme for problems with material

discontinuities avoids this degradation to a large extent. The source iteration scheme

with DSA applied was found to be of comparable efficiency to unaccelerated GMRES.

DSA preconditioning significantly improved the efficiency of GMRES, even when only

partially-consistent DSA was applied [9]. The authors also noted that because source

iteration methods can easily be replaced with a Krylov method, preconditioning a

Krylov method with partially-consistent DSA is a very attractive solution technique

for many transport problems that are not easily solved with source iteration.

3.3 Newton’s Method

Newton’s method is used to solve the nonlinear CSZ equations. At each Newton

step, a linear technique (like the preconditioned Krylov method previously discussed)

is employed to solve for the Newton step. The linear LD equations will be solved

exactly with this linear solve, so applying Newton’s method to a linear problem
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results in the correct solution after a single iteration. The nonlinear CSZ equations

will require multiple Newton iterations to converge.

Newton’s method solves for the roots of a problem. In order to transform the

moment equations into a problem in which the root is the angular flux that exactly

satisfies the equations, the moment equations are written residual form. This is a

trivial rearrangement of the equations that were to be solved with the Krylov method

(3.23), yielding

F (ψ) =
(
I− L−1SP

)
ψ − L−1q. (3.24)

When the moment equations are written in a residual format, as they are in (3.24),

Newton’s method searches for a solution ψ that has zero residual; this solution exactly

solves the transport equation across all directions in all cells.

Newton’s method is easily derived from a Taylor expansion of F (ψ) about the

current estimate of ψ, ψm (where m denotes the current Newton iteration for ψ):

F (ψm+1) = F (ψm) + F ′(ψm)(ψm+1 − ψm) + higher order terms. (3.25)

If enough terms are included, F (ψm+1) will equal zero, meaning that ψm+1 is the

exact solution to the nonlinear problem. Setting the value of the residual at the

m + 1 step equal to zero and neglecting the higher order terms, equation (3.24)

reduces to

0 = F (ψm) + F ′(ψm)(ψm+1 − ψm). (3.26)

The difference between the current estimate of the angular flux, ψm, and the next

Newton iterate, ψm+1, can also be written as the correction to the current iteration

δψm. Finally, the derivative of the residual equation in vector form is the Jacobian

with respect to the current guess for psi, J(ψm). With rearrangement, equation

(3.26) results in a Newton’s method formulation of our problem:

J(ψm)δψm = −F (ψm), (3.27a)
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ψm+1 = ψm + δψ. (3.27b)

Newton’s method requires an initial guess for the angular flux, ψ0. This initial

guess is typically a zero vector. From this initial guess, the problem is iterated until

a convergence criteria is met. The problem’s convergence after each Newton Step is

calculated by taking an L2 norm of the residual and dividing it by an L2 norm of

the solution vector ψ. This convergence is compared to the convergence criteria ε; if

the current Newton guess results in a relative residual smaller than the convergence

criteria,
‖F (ψm)‖2
‖ψm‖2

≤ ε, (3.28)

the solution is considered converged.

3.3.1 Jacobian-free Newton Krylov

Analytically determining the Jacobian matrix is costly in terms of both the num-

ber of computations carried out and amount of storage required. From the discussion

of Krylov methods and Equation (3.27), it is clear that GMRES does not actually

require the determination of the analytic Jacobian matrix. Instead, GMRES re-

quires the action of the Jacobian matrix on a vector to build a Krylov subspace. The

Jacobian matrix of a function F (u) is defined as

J =

 δF1

δu1

δF1

δu2

δF2

δu1

δF2

δu2

 . (3.29)

During the Krylov iterations the action of the Jacobian matrix upon the Krylov

vector v is determined:

Jv =

 v1
δF1

δu1
v2

δF1

δu2

v1
δF2

δu1
v2

δF2

δu2

 . (3.30)

The action of J on the vector v can be approximated by the definition of the deriva-

tive:

F (ψ + εv)− F (ψ)

ε
=

 F1(u1+εv1,u2+εv2)−F1(u1,u2)
ε

F2(u1+εv1,u2+εv2)−F2(u1,u2)
ε

 . (3.31)
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A Taylor expansion of F (u+εv) in equation (3.31), keeping only the first order terms,

appears:

F (ψ + εv)− F (ψ)

ε
≈

 F1(u1,u2)+εv1
δF1
δu1

+εv2
δF1
δu2
−F1(u1,u2)

ε

F2(u1,u2)+εv1
δF2
δu1

+εv2
δF2
δu2
−F2(u1,u2)

ε

 , (3.32)

which simplifies to  v1
δF1

δu1
+ v2

δF1

δu2

v1
δF2

δu1
+ v2

δF2

δu2

 = Jv. (3.33)

Equations (3.29) through (3.32) make it clear that Eq. (3.31) computes the action

of the Jacobian matrix J upon the Krylov vector v without constructing the Jacobian

matrix. The residual need only be evaluated at the unperturbed Newton guess ψ

once per Newton step, so Eq. (3.31) requires one residual evaluation at each Krylov

iteration. This is much preferable to calculating and storing the Jacobian matrix at

each Krylov iteration.

3.3.2 Magnitude of the Perturbation ε

The Jacobian-free evaluation of Jv can be sensitive to the magnitude of the scalar

perturbation ε. For very small perturbations compared to u and v, the derivative

calculation is lost amid round-off errors. For very large perturbations, however, the

local derivative is poorly approximated. D.A. Knoll and D.E. Keyes recommend

determining the perturbation ε at each Krylov Iteration with equation (3.34):

ε =

√
(1 + ‖u‖)εmachine

‖v‖
, (3.34)

where ‖u‖ is the L2 norm of the latest Newton guess for ψ, and ‖v‖ is the L2 norm

of the Krylov vector v [6].

Although this method for determining ε can be successful for some problems, it

is poorly suited for problems in which ψ spans many orders of magnitude. Equation

(3.31) for approximating of the action of the Jacobian upon the Krylov vector Jv
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is accurate for small perturbations. The value of ε determined with equation (3.34)

may be small compared to ψ in most cells, but comparable to or significantly larger

than ψ in strongly absorbing regions where ψ van be very small or zero. This

creates a problem with approximating the CSZ operators L(ψ) and P(ψ) in the

strongly absorbing regions, which are the regions that most require the use of the

CSZ method.

Recall that the operators L(ψ) and P(ψ) are constructed based upon the ratio

bCSZ
aCSZ

. If the perturbation εv is of similar magnitude (or larger) than the vector ψ, the

construction of L(ψ+ εv) and P(ψ+ εv) is determined by the Krylov vector instead

of ψ. The perturbed residual f(ψ + εv) is therefore significantly different than the

unperturbed residual f(ψ) and the Jacobian is poorly approximated in this region.

Although FGMRES allows for the use of a different preconditioner at each Krylov

iteration (which results in a changing iteration matrix, as is encountered in these

problems), FGMRES fails to converge for a variety of problems containing strongly

absorbing regions. Two solutions were investigated for this problem.

3.3.3 Newton’s Method with an ε Fixup

The value of ε is only similar in size to ψ in strongly absorbing regions. In these

regions, ψ can be orders of magnitude smaller than ε. This causes a problem in the

construction of the L(ψ + εv) and P(ψ + εv) operators. To address this issue, the

ratio R of the perturbation to ψ is computed for each entry in ψ:

Ri =
εvi
ψi
. (3.35)

A fixup tolerance ζfixup is chosen to be several orders of magnitude smaller than

one. In each case that the ratio Ri is larger than the fixup tolerance, the perturbation

used in the construction of the L(ψ + εv) and P(ψ + εv) operators is set to zero.

The construction and application of these CSZ operators is summarized in equations

(3.36):
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[L(ψi + εvi)] (ψi + εvi) ≈ [L(ψi + ciεvi)] (ψi + εvi), (3.36a)

where

ci =

 1 if εvi
ψi
< ζfixup;

0 if εvi
ψi
> ζfixup.

(3.36b)

This method requires the use of Flexible GMRES because the iteration matrix

changes at each Krylov iteration. Computational results generated with this method

are presented in the section titled “Newton’s Method compared to the Frozen Newton

Method.” The fixup applied in this method suggests a second method for construct-

ing the CSZ operators and approximating the numerical Jacobian.

3.3.4 Picard Iterations and a “Frozen” Newton Krylov Method

Instead of the conditional fixup applied in equations (3.36), one could also always

construct the CSZ operators using the unperturbed value of ψ. In this case, the

Jacobian is “Frozen” at the latest Newton iteration for ψ and does not change with

the Krylov vectors. This Frozen JFNK method appears

J(ψ(`))δψ = −f(ψ(`)), (3.37a)

ψ(`+1) = ψ(`) + δψ. (3.37b)

Although this resembles a Jacobian-free Newton Krylov method, by freezing the

Jacobian at the most recent Newton guess and solving the frozen system, this method

is more accurately described as a Picard Iteration scheme.

The Frozen JFNK method does not require FGMRES to converge the linear

solves. However, because FGMRES reduces to the standard (albeit slightly more

memory-intensive) GMRES algorithm if the iteration matrix is constant, FGMRES

is always applied.
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Computational results comparing the standard Newton method and the Frozen

Newton method are presented in the section titled “Newton’s Method compared to

the Frozen Newton Method.” Based upon these results, the Frozen Newton method

is used throughout this paper.
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4. PRECONDITIONING STRATEGIES DEFINED BY SOURCE ITERATION

SCHEMES

4.1 Different Strategies for Solving the Transport Problem

Multiple source iteration schemes can be constructed by varying the details of how

the sweep and DSA preconditioning are performed. Each of these source iteration

schemes is then reexpressed as a preconditioned system and solved with a Krylov

method. Sweep preconditioning is always applied. DSA preconditioning is optional,

but can only be applied to the problem after the sweep. Because both the sweep and

DSA preconditioning can be performed with either the LD or CSZ operator, several

different preconditioning strategies are investigated.

The frozen JFNK method uses the most recent Newton guess for ψ to construct

the CSZ equations. To clearly indicate this dependence, the CSZ operators are made

functions of ψ∗, the most recent Newton iteration for ψ. In contrast, the LD operators

are constant and are marked with “hat” notation. For example, the CSZ transport

operator is denoted L(ψ∗) and the LD transport operator is denoted L̂.

4.1.1 LD Solution

Sweeping the LD moment equations with the LD sweep yields the fully linear

LD solution of the moment equations. This solution can include negative outflows

and negative average angular fluxes. The LD solution is investigated to compare the

scalar flux solution to the scalar flux solution calculated with the CSZ methods. The

cost of the LD solution will reflect the cost of one Newton step; the CSZ methods

will require multiple Newton steps to converge, and will therefore be several times

more expensive than this method.

In operator form, the linear sweep appears

f(ψ) = ψ − L̂−1
(
σsP̂ψ +Q

)
. (4.1)
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Recall that L includes the streaming and interaction terms, σs is the macroscopic

scattering cross section, P generates the scalar flux φ from the angular flux ψ, and

Q is the inhomogeneous source term. The hat notation is used to denote the use of

the LD equations in the matrix L̂ and in the generation of the scalar flux from the

angular flux with the operator P̂.

4.1.2 Sweep Preconditioning the CSZ Equations

Nonlinear Sweep Applied to the Nonlinear Equations

The nonlinear CSZ sweep preconditioner is applied to the CSZ equations to gen-

erate a strictly positive angular flux solution. The sweeps are performed with the

nonlinear CSZ operator L(ψ∗), which is formed for each cell in each direction. Recall

that in cases in which the angular flux solutions are strictly positive, the nonlinear

transport operator L(ψ∗) is identically equal to the linear operator L̂. Applying the

nonlinear sweep to the nonlinear equation always yields the identity matrix. This

system is written

f(ψ) = ψ − [L(ψ∗)]−1 (σsP (ψ∗)ψ +Q) . (4.2)

Linear Sweep Applied to the Nonlinear Equations

It is possible to apply the linear LD sweep to the nonlinear CSZ equations. Solv-

ing the CSZ equations always results in a strictly positive solution; the choice of

preconditioner does not change this property. The nonlinear CSZ transport operator

L(ψ∗) is constructed in each each direction in each cell and applied to ψ. The sweep

is then performed with the linear transport operator L̂. This strategy is called the

linear sweep applied to the nonlinear equations and appears:

f(ψ) = L̂−1 (L(ψ∗)ψ − σSP (ψ∗)ψ +Q) . (4.3)
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Preconditioning with the LD sweep requires both the evaluation of L(ψ∗)ψ and

performing a sweep, making it computationally expensive. This method cannot be

less expensive than sweeping with the CSZ operator, and it may be significantly less

effective than the CSZ sweep, but it is of theoretical interest to assess the effectiveness

of the LD sweep.

LD sweep preconditioning and CSZ sweep preconditioning should be similarly

effective when applied to problems in which the transport operator is infrequently

or very slightly modified by the CSZ definitions. However, as L(ψ∗) and L̂ become

more dissimilar, L̂−1L(ψ∗) becomes less like the identity matrix I and the LD sweep

preconditioned method may require extra Krylov iterations to converge. Sweeping

with the CSZ operator avoids this shortfall, making the CSZ sweep a more robust

(and usually less expensive) preconditioner.

Notes on Sweep Preconditioning

The initial guess for ψ at the start of the first Newton step is always zero. There-

fore the CSZ equations will always reduce to the LD equations during the first Newton

step. After the first Newton step, the CSZ equations will continue to reduce to the

LD equations in cells and directions that do not contain negativities. It is possible for

a problem to have a strictly positive final solution but contain significant negativities

during the iterative process.

The choice of sweep preconditioner does not change the solution of the CSZ equa-

tions. Both the LD and CSZ sweep preconditioners will yield the same solution, but

the LD sweep preconditioner may require additional Krylov iterations to converge.

In addition to requiring at least as many Krylov iterations to converge as the CSZ

sweep preconditioner, the LD sweep preconditioner requires more multiplications per

iteration than the CSZ sweep preconditioner.
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4.2 DSA Preconditioning

DSA preconditioning can be applied to the Krylov iteration scheme after precon-

ditioning with a sweep. The LD or CSZ definitions for the angular flux can be applied

while performing the DSA preconditioning. DSA always solves the S2 problem for

the correction to the angular flux δψ. In operator form, the generation of the right

hand side of the S2 problem requires angle integration with the P operator followed

by the generation of the source term from δφ with the operator H. A sparse matrix

S2 is constructed containing the streaming and interaction terms for all directions in

all cells. The sparse S2 matrix is of rank (2×m), where m is the number of cells in

the problem. The S2 problem is of the same form as the SN problem,

S2δψ = HPδψ, (4.4)

but the S2 problem is of much smaller rank than the SN problem.

This problem is reexpressed as a preconditioned system in the same manner as

equation (3.22). MATLAB’s direct solver MLDIVIDE is used to invert the sparse

matrix S2 and solve for the S2SA correction to the SN problem. The correction to

the scalar flux calculated by solving the S2 problem is projected to N directions and

added to the vector ψ.

The DSA preconditioning step can be performed using the LD or CSZ equations,

leading to two different strategies for applying DSA preconditioning. The effec-

tiveness of each DSA preconditioner will be assessed to determine if the CSZ DSA

preconditioner is a significantly more effective preconditioner than LD DSA.

4.2.1 DSA Source Term

After performing the sweep in each Krylov iteration, a residual associated with

the angular flux δψ is passed to the DSA step. The source term for DSA is dependent

upon a residual associated with the scalar flux δφ. This angle-integrated residual is
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calculated from δψ with the operator P, but can be performed using the linear LD

definitions or the nonlinear CSZ definitions for ψ. The use of the LD definitions for

to calculate δφ from δψ is denoted P̂. The use of the CSZ definitions to calculate δφ

is denoted with the operator P(ψ∗).

The generation of δφ is an intermediate step between the sweep preconditioning

and DSA preconditioning in each Krylov iteration. The DSA source term is written

in terms of ψA and ψX , not acsz and bcsz. The ψ vector generated with the LD sweeps

is already in terms of ψA and ψX , but the CSZ sweep preconditioner generates a ψ

vector in terms of acsz and bcsz. The CSZ integrating operator P(ψ∗) will be called

to generate φA and φX when the CSZ sweep preconditioner is used. Equations (4.5,

4.6, 4.7, and 4.11) reflect this notation.

4.2.2 Linear (LD) DSA

The most straightforward method that can be used to apply DSA preconditioning

to the Krylov iterations is to apply fully linear (LD) S2SA. In this solution technique,

the LD definitions of ψ are used throughout the construction of the S2 matrix. It

is observed that the restriction from N to two angular directions strongly dampens

negativities in most cells, resulting in a positive S2 LD solution in those cell. Most

negativity-containing cells are only negative in the steepest angular directions and

yield strictly positive LD distributions when restricted to only two directions. Very

optically thick cells may contain LD negativities in a considerable number of angular

directions and can still result in negative solutions to the LD S2 problem.

The LD S2SA matrix is a sparse matrix labeled Ŝ2. This matrix is constructed

once and reused at each Krylov iteration. The S2 source term is calculated from the

SN vector ψ with the operator H. The S2 solution generated with DSA is projected

to N directions using the scalar flux φ and the current J with the operator T.
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Linear DSA can be applied after the linear or nonlinear sweep. When applied to

the linear equations preconditioned with the linear sweep to produce the LD solution

(4.1), the Krylov formulation of the transport problem with DSA appears:

f(ψ) =
(
I + TŜ2

−1
HσsP̂

) [
ψ − L̂−1

(
σsP̂ψ +Q

)]
. (4.5)

LD DSA can be applied to the CSZ equations after preconditioning with the LD

sweep or the CSZ sweep. The effectiveness of the LD sweep preconditioner when

paired with LD DSA preconditioning will be compared to the CSZ sweep precondi-

tioner with LD DSA preconditioning. The application of LD DSA preconditioning

in conjunction with the LD sweep preconditioner is written:

f(ψ) =
(
I + TŜ2

−1
HσsP̂)

) [
L̂−1 (L(ψ∗)ψ − σSP(ψ∗)ψ +Q)

]
, (4.6)

and the application of LD DSA and the CSZ sweep is written:

f(ψ) =
(
I + TŜ2

−1
HσsP(ψ∗)

) [
ψ − [L(ψ∗)]−1 (σsP(ψ∗)ψ +Q)

]
. (4.7)

The effectiveness of the LD sweep preconditioner will be assessed by comparing

the LD and CSZ sweep preconditioners without further preconditioning, and by

comparing both methods when coupled with LD DSA.

4.2.3 Nonlinear (CSZ) DSA

The S2SA equations can be formed using the nonlinear CSZ definitions of the

angular flux to solve for the correction to the angular flux in terms of δacsz and

δbcsz instead of δψA and δψX . The matrix Ŝ2, constructed once as the problem is

initialized, was constructed to apply to a vector containing δψA and δψX ; therefore,

after inverting Ŝ2 with MATLAB’s direct method MLDIVIDE, the vector δψ is in

terms of δψA and δψX . A coefficient matrix C(ψ∗) is introduced to perform the

action of the operator P (ψ∗) to the vector ψ:

ψA,X = C(ψ∗)ψacsz ,bcsz . (4.8)
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The nonlinear matrix C(ψ∗) is constructed at each Newton iteration based upon the

value of ψ at the current Newton iteration (ψ∗). The CSZ S2(ψ∗) matrix is then

generated from the LD S2 matrix:

S2(ψ∗) = Ŝ2C(ψ∗). (4.9)

This operation must be completed at each Newton iteration, making this method

more computationally expensive than LD DSA. However, both the matrix Ŝ2 and

C(ψ∗) are sparse matrices, and the number of inner Krylov iterations usually greatly

exceeds the number of outer Newton iterations.

The S2 problem is solved using the nonlinear S2(ψ∗) matrix,

S2(ψ∗)δψ = HσsP(ψ∗)δψ, (4.10)

and the solution δψ is projected from two to N directions and added to the original

vector ψ with the operator T .

Nonlinear CSZ DSA is applied to the moment equations preconditioned with the

CSZ sweeps. This preconditioned system appears as follows:

f(ψ) =
(
I + TS2(ψ∗)−1HσsP(ψ∗)

) [
ψ − [L(ψ∗)]−1 (σsP(ψ∗)ψ +Q)

]
. (4.11)

The effectiveness of CSZ DSA and LD DSA preconditioning, each applied in

conjunction with CSZ sweep preconditioning, will be assessed for a variety of prob-

lems. While the CSZ DSA preconditioner should be more effective than the LD DSA

preconditioner, it is desirable that both will form very effective preconditioners.

Although CSZ DSA should be more effective than LD DSA when applied to prob-

lems containing strong negativities, the difference between the two preconditioning

strategies may be relatively minor. The steepest angular directions are most likely to

contain negativities. Cells that contain negativities in the steeper angular directions

may not contain negativities when reduced to two angular directions. The restric-

tion from N to two angular directions may significantly reduce the cells containing

negativities. Because the CSZ equations reduce to the LD equations when the LD
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equations have strictly positive solutions, the LD and CSZ DSA methods may be

very similar.
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5. TEST PROBLEMS AND RESULTS

Test problems are presented to verify that the CSZ method and the various pre-

conditioners are functioning properly and to assess the relative effectiveness of the

preconditioning strategies. The results are presented in three parts. First, the so-

lution of the LD moment equations and the CSZ moment equations are compared

to illustrate the characteristics of the CSZ method. Second, the two sweep precon-

ditioning strategies are assessed to compare the effectiveness of the LD sweep and

the CSZ sweep. Finally, the two DSA preconditioning strategies are compared to

determine if CSZ DSA significantly outperforms LD DSA, or if the two strategies

are comparable.

5.1 The CSZ Method

Two simple problems are presented to illustrate the beneficial attributes of the

CSZ method. These problems compare the solution of the LD moment equations

(4.1) and the CSZ moment equations (4.2).

5.1.1 CSZ as a Strictly Positive Method

A simple problem is presented to highlight the strictly positive nature of the

CSZ method. The LD and CSZ methods are most clearly contrasted in optically

thick cells. A homogeneous slab of strongly absorbing material is divided into three

cells. The total slab width is 1cm, with σt = σa = 30.0cm−1, so that each cell has

an optical thickness of 10 mean free paths (MFPs). An isotropic flux normalized

to produce a unit current is incident upon the left face of the slab, and a vacuum

boundary condition is imposed on the right face of the slab. The scalar flux at the

midpoint of each cell as calculated with the LD and CSZ methods and S2 quadrature

is presented in Figure 5.1.
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Fig. 5.1.: Comparison of average scalar flux calculated with LD and CSZ across a

homogeneous absorber with optically thick cells.

Figure 5.1 clearly illustrates the strictly positive nature of the CSZ method.

Notice that the LD solution method generates a negative scalar flux solution in the

second cell and a positive solution in the third cell, while the CSZ method produces

a zero solution in the second and third cells. The LD solution includes a negativity

in the first cell resulting in a negative outflow. A negative outflow is equivalent to a

positive inflow, so in the first cell the LD value for φ is larger than the CSZ scalar

flux in the first cell. The negative inflow into the second cell results in a negative φ

in the second cell. The sign of the angular flux changes from negative to positive in

the second cell, yielding a positive outflow and a positive scalar flux in the third cell.
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The analytic solution for one dimensional pure absorbers is an exponential flux

shape within the slab. In these optically thick cells, the LD method yields a positive

average scalar flux but a negative outflow for positive incident radiation. Alterna-

tively, negative incoming radiation yields a negative average scalar flux but a positive

outflow. These oscillations are damped but nonphysical. The CSZ method generates

a positive average scalar flux in the first cell and a zero solution in the remaining

cells. This underestimates the exact solution by some amount in the second and

third cells. Neither the LD nor the CSZ method accurately reproduce the analytic

solution, but the CSZ method does eliminate non-physical attributes that can char-

acterize solutions generated with the LD method.

This problem highlights the difference between the LD and CSZ methods in

optically thick cells. Although mesh sizes should be chosen to avoid extremely thick

cells, even fine meshes can be very optically thick in the glancing or grazing directions.

The CSZ equations’ strictly positive nature is therefore most pronounced in the

glancing directions in absorbing media.

5.1.2 The CSZ Method in Strictly Positive Problems

The CSZ method reduces to the LD method at any Newton step in which the

LD solution is strictly positive. These problems are termed “strictly positive;” that

is, the LD solution contains no negativities and the CSZ equations reduce to the LD

equations. The reduction of the CSZ equations to the LD equations preserves many

of the positive attributes of the LD method that make it one of the most commonly

used spatial discretizations.

A strictly positive problem is presented to compare the LD and CSZ solution

methods. The problem consists of a homogeneous slab five centimeters in length,

divided into fifty cells, with a total absorption cross section σa = 1.00cm−1 and

scattering cross section σs = 0.99cm−1. Vacuum boundary conditions are imposed
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on the left and right face of the slab, and a distributed unit source is present (q =

0.10 neutron
cm3−s−biradian). S16 angular quadrature was used in the solution of the problem.

The scalar flux solution at the center of each cell is presented in Figure 5.2.

Fig. 5.2.: Average scalar flux in a homogeneous scatterer with a unit distributed

source, as calculated with the LD and CSZ equations.

The algorithm reports that the CSZ equations reduce to the LD equations in each

cell in each direction. The fully LD solution algorithm and both methods for sweeping

the CSZ equations converge to the same solution, within a Newton tolerance of 1E-

6, in a single Newton step requiring eleven Krylov iterations to reach a tolerance of

1E-8.
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The CSZ method requires several more computations in each cell in each direc-

tions than the LD method (the cost of constructing the L(ψ∗) matrix), but the CSZ

equations reduce to the LD equations in this problem. This means that the the CSZ

method is always at least slightly more expensive than the LD method, but that it

also preserves the positive features of the LD method in cells and directions that do

not contain negativities.

5.2 Sweep Preconditioning Strategies for the CSZ Equations

Two methods for applying sweep preconditioning to the CSZ equations are ex-

amined. Sweeping with the LD operator is always more expensive than sweeping

with the CSZ operator, and the effectiveness of the LD sweep may degrade in prob-

lems containing significant negativities. Nevertheless, it is interesting to assess the

effectiveness of the LD sweep as a preconditioner. Several problems are studied to

assess the relative effectiveness of the LD and CSZ sweep preconditioners.

5.2.1 Grazing Radiation Problem

A problem containing significant negativities is solved to compare the LD and

CSZ sweep preconditioners. The problem is solved with S16 quadrature, with inci-

dent radiation in the steepest positive direction on the left face of a slab. Vacuum

boundary conditions are imposed on the right face of the slab. The slab has a scat-

tering cross section σs = 9.999cm−1, an absorption cross section σt = 10.000cm−1,

a length of 5cm, and is divided into ten cells. Each cell has an optical thickness of

5.00mfp
cell

. The problem is repeated with a length of 10cm, which increases the optical

thickness of each cell to 10.0mfp
cell

.

The solution of the CSZ equations is independent of the preconditioners. The

CSZ scalar flux solution and the fully LD scalar flux solution are plotted together
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for the 5cm problem to compare the difference between the CSZ and LD solutions

in Figure 5.3.

Fig. 5.3.: Average scalar flux in a homogeneous scatterer with grazing incident

radiation.

The two sweep preconditioning strategies applied to the CSZ equations yield

solutions that match to the problem tolerance, as expected. The LD solution differs

from the CSZ solution by only approximately one percent in the first two cells and

a very small amount in the remaining eight cells. Starting with an initial guess of

zero, two Newton iterations were required for the problem to converge to a tolerance

of 1E-6. The total number of Krylov iterations required for each preconditioning
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strategy to converge is presented in Table 5.1 for a problem thickness of 5cm (as

plotted in Fig 5.3) and 10cm.

Table 5.1: A comparison of the number of Krylov iterations required for the grazing

radiation problem to converge with the two sweep preconditioning strategies.

Preconditioner
Iterations

10 MFP/cell 20 MFP/cell

Linear Solution 24 24

LD Sweep 114 85

CSZ Sweep 120 74

The LD sweep and the CSZ sweep preconditioned methods required a similar

number of iterations to converge for both slab thicknesses. The thicker slab required

slightly fewer Krylov iterations when preconditioned with the LD sweep precondi-

tioner, but the thinner problem required fewer iterations when preconditioned with

the CSZ sweep. For this problem, the difference between the LD and CSZ sweep

preconditioners was an order of magnitude smaller than the total number of Krylov

iterations required by either sweep-preconditioned method to converge.

The LD scalar flux solution is very similar to the CSZ scalar flux solution, but the

CSZ method requires significantly more iterations to converge than the LD method.

Recall that each of the preconditioning strategies is equivalent to a source iteration

scheme. Although the final solution is similar whether the LD moment equations

or CSZ moment equations are solved, the intermediate source iteration solutions are

quite different. The initial guess for the Newton step is a zero vector, so the CSZ

equations reduce to the LD equations. The vector ψ after one Newton iteration

includes a significant negativity in the direction of the incident radiation in the first

cell and minor negativities in several directions in the furthest right cell. The value
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for ψ after the second Newton iteration satisfies the convergence criteria and again

contains a significant negativity in the direction of the incident radiation in the first

cell and minor negativities in the final cell.

The numerical Jacobian was constructed for the method with LD sweep precon-

ditioning and for the method with CSZ sweep preconditioning at each Newton step.

The Eigenvalues associated with the Jacobian matrix were calculated with MAT-

LAB’s “eigs” function. The condition number, defined as the ratio of the largest

and smallest eigenvalues, are presented in Table 5.2 for each sweep preconditioned

method at each Newton step. Recall that at the first Newton step, the CSZ equations

reduce to the LD equations, so the sweep preconditioners are identical.

Table 5.2: The condition number at each Newton step for the two sweep precondi-

tioned methods.

Preconditioner
Condition Number

Step 1 Step 2 Step 3

LD Sweep 2.3728E3 2.3733E3 2.3734E3

CSZ Sweep 2.3728E3 2.3729E3 2.3729E3

There is not a significant difference in the condition numbers at each Newton

step between the two sweep preconditioners. The grazing radiation problem does not

suggest a significant difference between the two sweep preconditioning strategies.

5.2.2 A Reed-like Problem

A second problem is examined to compare the LD sweep preconditioner and the

CSZ sweep preconditioner. Reed’s problem is a five-region heterogeneous problem

containing strong absorbers, highly diffusive regions, distributed sources, and a vac-
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uum region [10]. The left face of the problem has an isotropic unit incident flux. A

vacuum boundary condition is applied to the problem’s right face. The cross sections

used originally by Reed were adjusted to increase the diffusivity of the problem, and

to increase the negativities in the strongly absorbing region. For this region, the

problem is referred to as a “Reed-like” problem.

Description of the Reed-like Problem

The Reed-like problem has a length of 8cm. The first region is a pure absorber

two centimeters in length, with σt = 50cm−1 and a distributed source of strength

Q = 50 neutrons
cm3−s−biradian . The second region is one centimeter in length, contains no

distributed source, and is a pure absorber with σt = 5cm−1. The third region

is two centimeters of vacuum. A fourth region one centimeter in length is highly

diffusive with σs = 19.99cm−1, σt = 20.00cm−1, Q = 0.10 neutrons
cm3−s−biradian . Finally,

the fifth region is two centimeters in length, highly diffusive (σs = 19.99cm−1, σt =

20.00cm−1), and contains no distributed source. The problem geometry is presented

graphically in Table 5.3, with the material properties in the top portion of the table

and the region lengths at the bottom of the table.

Table 5.3: Geometry of the Reed-like problem, where cross sections have units of

cm−1, distributed sources have units of particles / ( cm3-sec-biradian), and lengths

have units of cm.

σs = 0 σs = 0 σs = 0 σs = 19.99 σs = 19.99

σt = 50 σt = 5 σt = 0 σt = 20.00 σt = 20.00

Q = 50 Q = 0 Q = 0 Q = 0.1 Q = 0

L = 2 L = 1 L = 2 L = 1 L = 2
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The strongly absorbing region contains strong negativities requiring the CSZ

equations. The problem is split into 80 cells and solved with S16 quadrature. The

Krylov iterations are solved to a tolerance of 1E-8, and the Newton Iterations are

solved to a tolerance of 1E-6.

Solution of the Reed-like Problem

The scalar flux solution the Reed-like problem, solved with the CSZ equations,

is presented in Figure 5.4.

Fig. 5.4.: Scalar flux solution of a Reed-like problem.
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The Strongly Absorbing Region of the Reed-Like Problem

Unlike the grazing radiation problem, the LD and CSZ solutions of the Reed-like

problem differ significantly in the strongly absorbing region. The analytic solution in

the purely absorbing region is eaily determined. Radiation is incident on this region

on both the left and right face. In each direction, the analytic solution decreases

exponentialy with space,

ψd(x) = ψd(0)e
−x
µ
σt . (5.1)

The average angular flux in each cell i (with left and right boundary xi−1/2 and xi+1/2,

respectively) ψA,d,i, is determined by integrating the analytic angular flux across cell

i,

ψA,d,i =
1

h

∫ xi+1/2

xi−1/2

e
−x
µ
σt , (5.2)

for each of the N directions. The average scalar flux, φA, is determined by summing

the average angular fluxes and their corresponding weights.

The error analysis was conducted for meshes with 3, 5, 10, 15, 20, and 30 cells

in the strongly absorbing region. In each case, the boundary conditions were set

by the incoming radiation from the solution to the 80 cell Reed-like problem. The

analytic solution for the average scalar flux across the entire problem is plotted with

the average scalar flux in each cell as computed with the LD and CSZ equations.

These solutions are presented in Figure 5.5.

The error in the LD and CSZ scalar flux solutions is readily calculated by com-

paring the analytic and numerical solutions. The size of the cells in the strongly

absorbing region is adjusted while holding the incident radiation on the left and

right faces constant to compare the error in the LD and CSZ solutions for a variety

of cell thicknesses. The L2 norm of the relative error associated with the LD and

CSZ solutions is plotted for a variety of mesh sizes in Figure 5.6.

In the cases in which the absorbing region is divided into twenty or thirty cells, the

CSZ equations do not engage and the LD and CSZ solutions match. In the meshes
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(a) 3 Cells (b) 5 Cells

(c) 10 Cells (d) 15 Cells

(e) 20 Cells (f) 30 Cells

Fig. 5.5.: Relative error in the LD and CSZ numeric solutions of the purely absorbing

region of the Reed-like problem for different mesh sizes.
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Fig. 5.6.: L2 Norm of the relative error associated with the LD and CSZ solutions

to the Reed-like problem.

with fewer than twenty cells, the CSZ solution technique has a smaller relative error

than the LD solution. These results confirm that the CSZ solution is more accurate

than the LD solution, and that this effect is especially apparent in optically thick

cells in one dimension.

Comparing the LD and CSZ Sweep Preconditioners

The number of Krylov iterations required for the Reed-like problem to converge

with LD sweep preconditioning and CSZ sweep preconditioning are presented in

Table 5.4. The number of Krylov iterations required to generate the fully LD solution

is presented as well to assess the relative cost of the CSZ solution.

It is worth noting that the CSZ sweep preconditioner required one more Newton

step than the LD sweep preconditioned system, but required just more than half as

many Krylov iterations to converge. The linear problem required a single Newton
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Table 5.4: A comparison of the number of Krylov iterations required for a Reed-like

problem to converge with the two sweep preconditioning strategies.

Preconditioning Strategy Newton Steps Krylov Iterations

Linear Solution 1 46

LD Sweep 5 298

CSZ Sweep 6 161

step, as expected. The condition number at each Newton step for the two sweep

preconditioning methods is reported in Table 5.5.

Table 5.5: The condition number at each Newton step for the two sweep precondi-

tioned methods.

Preconditioner
Condition Number

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

LD Sweep 7.30E2 7.30E2 2.03E6 2.84E11 1.42E5 n/a

CSZ Sweep 7.30E2 7.30E2 7.30E2 7.30E2 7.30E2 7.30E2

The condition number associated with the CSZ sweep preconditioner is constant

across the Newton steps. The condition number associated with the LD sweep pre-

conditioner, however, does not remain constant, and becomes extremely large in the

fourth Newton step. The LD sweep preconditioner results in a very ill-conditioned

Jacobian matrix; it is not surprising that the LD sweep preconditioner required many

more iterations to converge than the method using the CSZ sweep preconditioner.
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The CSZ sweep preconditioner is much more effective than the LD sweep precon-

ditioner when applied to this Reed-like problem. This problem contains significantly

more negativities than the grazing radiation problem, and these negativities per-

sist into the final solution. The CSZ sweep clearly outperforms the LD sweep as a

preconditioner with this problem, as expected, and the investigation into the DSA

preconditioners will be performed using the CSZ sweep preconditioner.

5.3 The LD DSA Preconditioner

A test problem is presented to confirm that the LD DSA preconditioner is working

properly. Two different tests are run using the same problem geometry to test the

preconditioner in two different ways.

5.3.1 LD DSA in a Strictly Positive Problem

In one dimension, Diffusion Synthetic Acceleration is equivalent to solving the S2

problem, as discussed in the section introducing DSA. Therefore, applying DSA is

equivalent to solving the S2 problem at each Krylov iteration. Applying DSA to a

problem being solved with S2 quadrature results in convergence in a single Newton

iteration containing a single Krylov iteration, because the DSA step calculates the

exact correction to solve the problem. An addition Krylov iteration is required to

assess convergence, so LD DSA applied to the LD equations will converge after a

total of two Krylov iterations.

By choosing a test problem in which the LD equations are strictly positive at

each Newton iteration, the CSZ equations will always reduce to the LD equations.

Therefore, LD DSA applied to the CSZ equations in this problem will result in

convergence in two iterations. The CSZ DSA preconditioner also reduces to the

LD DSA preconditioner in a strictly positive problem. Therefore, the application of
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either LD or CSZ DSA to either the LD or CSZ equations will reduce to a fully LD

problem and converge in a single iteration.

A highly diffusive homogeneous problem with a distributed source is used to

confirm that the LD DSA preconditioner works correctly. The problem is ten cen-

timeters in length, divided into one hundred cells, with a unit distributed source,

a unit absorption cross section, and a scattering ratio of c = 0.999; this problem

was examined previously to compare the LD and CSZ sweep preconditioners. The

solution to this problem was presented in Figure 5.2. S2 quadrature is used to test

the DSA preconditioner.

The number of Krylov iterations required to converge to a Krylov tolerance of

1E-8 and a Newton tolerance of 1E-6 is presented in Table 5.6. Three different

combinations of the LD equations, the LD sweep, and the CSZ sweep are presented

to confirm that the CSZ equations reduce to the LD equations and the CSZ sweep

reduces to the LD sweep in strictly positive problems. Recall that the CSZ sweep

should not be applied to the LD equations, that combination is therefore excluded

in Table 5.6.

Table 5.6: The number of Krylov iterations required for the highly diffuse problem

to converge with S2 quadrature with DSA preconditioning.

Equations LD Sweep CSZ Sweep

LD Equations 12 n/a

CSZ Equations 12 12

The CSZ DSA preconditioner similarly reduces to the LD DSA preconditioner

in strictly positive problems. Table 5.7 presents the number of Krylov iterations

required for the problem to converge to the same tolerances as Table 5.6 when solved

with the LD equations, the LD sweep preconditioner, and LD DSA and for the CSZ
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equations preconditioned with the CSZ sweep and both LD and CSZ DSA. As in

Table 5.6, CSZ preconditioners are not applied to the LD equations, so only the LD

DSA preconditioner is applied to the LD equations.

Table 5.7: The number of Krylov iterations required for the highly diffuse problem

to converge with S2 quadrature with DSA preconditioning.

Equations LD DSA CSZ DSA

LD Eqs & LD Sweep 2 n/a

CSZ Eqs & CSZ Sweep 2 2

The scalar flux solution calculated with the LD and CSZ equations are identical,

further confirming that the CSZ equations are properly reducing to the LD equations

in strictly positive problems. Because the methods require the same number of

iterations to converge, Tables 5.6 and 5.7 confirm that the CSZ DSA preconditioner

reduces to the LD DSA preconditioner in strictly positive problems. Finally, because

each problem converged with only a single Krylov iteration with DSA applied, this

result suggest that the LD DSA preconditioner is working correctly.

5.3.2 The Diffusion Limit

The diffusion limit of the highly diffuse problem is examined to verify that the

LD DSA preconditioner is functioning properly. As a problem becomes more and

more diffuse, the number of Krylov iterations required to converge should increase

when only sweep preconditioning is applied. DSA preconditioning, however, is most

effective in highly diffuse problems; therefore, the number of Krylov iterations re-

quired to converge should decrease with increasing problem diffusivity when DSA

preconditioning is applied.
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In slab geometry, is is simple to test the thick diffusion limit of a problem. Recall

the form of the diffusion equation:

− d

dx

1

3σt

d

dx
φ(x) + σaφ(x) = Q(x). (5.3)

Multiplying the diffusion equation by a constant ε does not change the solution of

the diffusion equation,

φ− 2LD
∂φ

∂x
= 0, (5.4)

with the diffusion length LD defined

LD =

(
1

3σtσa

)1/2

. (5.5)

The boundary conditions applied to the diffusion equation on domain [0, L] are

in terms of an extrapolated length L̃:

φ(−L̃) = φ(L+ L̃) = 0. (5.6)

In this analysis, vacuum boundary conditions are applied instead of the value of φ

at an extrapolated boundary condition.

If the cross sections in the diffusion equation are scaled with ε as follows,

σt =
σt
ε
, (5.7a)

σa = εσa, (5.7b)

σs =
σt
ε
− εσa, (5.7c)

and the distributed source q is scaled to make the relative magnitude of the solution

independent of the scaling ε,

q = εq, (5.7d)

it is clear that the diffusion equation is invariant with respect to ε. This is the scaling

used in the asymptotic analysis of the diffusion limit.

The diffusion length is invariant with respect to ε. A problem thickness can be

described in terms of the number of diffusion lengths LD it contains. The optical
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thickness in mean free paths is defined by the total cross section σt and the problem

thickness in centimeters, presented here as Lcm for clarity. With the total cross

section modified by ε, the problem thickness in mean free paths is given by:

LMFP =
σt
ε
Lcm (5.8)

Thus it is possible to maintain a constant thickness in terms of the diffusion length

but vary the optical thickness of a problem. As ε becomes very small, the absorption

cross section becomes very small, the scattering cross section becomes very large,

and the the cells become very optically thick. These conditions make the diffusion

equation a valid approximation for the transport equation. In fact, an analysis of

the transport equation with these scaled cross sections proves that for ε << 1, the

transport equation reduces to the diffusion equation [3].

The effectiveness of the LD DSA scheme can be analyzed as a function of the

optical thickness of the problem. The highly diffusive problem presented earlier (Fig-

ure 5.2) will be reconsidered for this analysis. Because this problem does not retain

its strictly positive nature for all optical thicknesses, only the LD equations precon-

ditioned with the LD sweep are examined so that only the effect of the LD DSA

is considered. The material is a homogeneous, highly diffusive slab five centimeters

in length, divided into fifty cells, with a distributed source and vacuum boundary

conditions. The invariant problem thickness is 10.0 diffusion lengths, and the thick-

ness in terms of mean free paths given by Eq. (5.8). S16 quadrature was used in

the solution of this problem. The average scalar flux in the center of each cell is

presented in Figure 5.7.

The shape of the scalar flux solutions in Figure 5.7 indicate that as the optical

thickness per cell increases, the solution converges to the solution of the diffusion

problem. Table 5.8 presents the number of Krylov iterations required to converge

for varying problem thicknesses in terms of mean free paths per cell.

As the optical thickness per cell increases, the sweep preconditioning strategy

requires additional iterations to converge. The number of Krylov iterations required
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Fig. 5.7.: Average scalar flux in the diffusion limit.

Table 5.8: A comparison of the number of Krylov iterations required to converge

with different combinations of sweep and DSA preconditioners.

0.10 MFP
cell

1.00 MFP
cell

10.0 MFP
cell

100. MFP
cell

1− c 3.330E-3 3.330E-5 3.330E-7 3.330E-9

Sweep Preconditioning 11 30 71 98

DSA Preconditioning 8 7 5 4

with DSA preconditioning decreases as the optical thickness per cell increases, as
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the diffusion approximation becomes increasingly accurate. This analysis further

suggests that the DSA preconditioning appears to be working correctly.

5.3.3 Spectral Radius Investigation

As discussed in the section about Fourier Analysis of DSA, the spectral radii of

source iteration schemes and of source iteration schemes preconditioned with DSA

are well known. The preconditioned methods examined in this work are each based

upon a source iteration scheme. Returning each preconditioned method to a source

iteration form allows a comparison of the spectral radius of each preconditioned

method and the expected value for that method.

The spectral radius ρ of the sweep preconditioning strategy is approximately

equal to the scattering ratio c. The application of DSA preconditioning reduces the

spectral radius to ρ ≤ 0.2247c in an infinite model problem, as discussed previously

in the section titled Fourier Analysis of DSA. The spectral radius of each of the

sweep and DSA preconditioning strategies are easily calculated with equation 3.14,

repeated here for simplicity:

ρ = lim

∥∥δψ(`+1)
∥∥

‖δψ(`−1)‖
(5.9)

Equation (5.9) requires the change between successive iterations in a source iteration

method.

The relationship between the spectral radius of the sweep and DSA precondi-

tioning methods and the optical thickness of a problem can be analyzed with the

diffusion limit. For simplicity, the single region highly diffusive problem described in

the previous section is used to determine the spectral radius of each method. The

LD equations with LD DSA preconditioning and S8 angular quadrature were used

for this analysis.

Because DSA is a very effective preconditioner for highly diffusive problems, the

spectral radius analysis is performed with an initial (non-zero) guess for ψ and zero
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source terms. The solution is zero. A random initial guess for ψ ensures that all

of the error modes are present in the calculation. Iterations can continue until ψ is

almost arbitrarily small to ensure that enough iterations are performed to measure

the spectral radius.

Table 5.9 compares the scattering ratio c and the spectral radius of the different

preconditioning strategies as a function of the optical thickness of the problem. The

problem is held at a constant thickness of ten diffusion lengths. These results were

generated by reformatting the Krylov preconditioners as source iteration methods as

discussed above.

Table 5.9: The spectral radius ρ of the LD Sweep and LD DSA preconditioners as

a function of problem thickness.

0.10 MFP
cell

1.00 MFP
cell

10.0 MFP
cell

100. MFP
cell

1− c 3.330E-3 3.330E-5 3.330E-7 3.330E-9

ρSweep 0.92476 0.99873 0.99993 0.99998

ρDSA 0.21603 0.21234 0.14456 0.12792

As the optical thickness of the problem increases, the spectral radius of the LD

sweep preconditioned source iteration scheme approaches the scattering ratio. The

spectral radius of the DSA-preconditioned scheme approaches ρ ≈ 0.2247c for high

SN order. This analysis suggests that the LD DSA operator is working correctly.

5.4 LD DSA Applied to the LD and CSZ Sweep

The LD DSA preconditioner can be paired with either the LD sweep precondi-

tioner or the CSZ sweep preconditioner. While the CSZ sweep preconditioner greatly

outperformed the LD sweep preconditioner for some problems, it may be interest-
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ing to see if the application of LD DSA to the two different sweep preconditioners

produces very different results.

Because the two sweep preconditioners were comparable when applied to the

grazing radiation problem, the Reed-like problem is examined. The total number of

Krylov iterations required to converge with just the LD sweep preconditioner, the

LD sweep preconditioner with LD DSA, just the CSZ sweep preconditioner, and the

CSZ sweep preconditioner with LD DSA are reported in Table 5.10. By reporting

all four of these values, the effectiveness of LD DSA can be assessed with both sweep

preconditioners as well as the relative effectiveness of both sweep preconditioning

strategies.

Table 5.10: The number of Krylov iterations required for the Reed-like problem to

converge with LD and CSZ sweep preconditioning and LD DSA preconditioning.

Preconditioner Sweep Only Sweep and LD DSA

LD Sweep 298 141

CSZ Sweep 161 22

The application of LD DSA to the CSZ sweep is highly effective. Applying

LD DSA preconditioning in conjunction with the LD sweep reduced the number of

Krylov iterations required by a factor of two, but the CSZ sweep required roughly

this many iterations to converge without DSA preconditioning. Applying DSA pre-

conditioning to the CSZ sweep reduced the required number of iterations by a factor

of more than seven. The CSZ sweep preconditioner clearly outperforms the LD sweep

preconditioner for this problem.

The eigenvalues of the Jacobian matrix corresponding to each method are cal-

cualted by forming the numerical Jacobian at each Newton step. Recall that an

effective source iteration scheme has eigenvalues close to zero. Because of the form
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of the preconditioned solution schemes, these eigenvalues are the eigenvalues of the

identity matrix minus the Jacobian matrix; ie, one minus the eigenvalues. Therefore,

an effective Krylov scheme will have eigenvalues close to one, and eigenvalues close

to zero are detrimental to the method.

The eigenvalues of the LD sweep preconditioned system and the LD sweep with

LD DSA preconditioning are plotted on the real and imaginary axis for each Newton

step in Figure 5.8.

The eigenvalues are scattered along the real axis after preconditioning with the

LD sweep. Many of the eigenvalues appear to be close to zero, and none of them

are close to one. In the first Newton step, the LD DSA preconditioner effectively

moves all of the eigenvalues away from zero and towards one. However, the LD

DSA preconditioner is much less effective in each of the remaining Newton steps; the

smallest eigenvalue remains very close to zero. It is not surprising that the LD DSA

preconditioner is very effective in the first Newton step, because the CSZ equations

reduce to the LD equations in the first Newton step.

The condition numbers of the LD sweep and the LD sweep paired with LD DSA

at each Newton step are presented in Table 5.11.

Table 5.11: The condition number at each Newton step for the two LD sweep and

LD sweep plus LD DSA preconditioning strategies.

Preconditioner
Condition Number

Step 1 Step 2 Step 3 Step 4 Step 5

LD Sweep 7.30E2 7.30E2 2.03E6 2.84E11 1.42E5

LD Sweep and LD DSA 1.24E0 2.02E2 9.99E3 7.65E5 3.65E9

Although LD DSA preconditioning did reduce the total number of Krylov it-

erations required for the system to converge when the LD sweep preconditioner is
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(a) Newton Step 1 (b) Newton Step 2

(c) Newton Step 3 (d) Newton Step 4

(e) Newton Step 5

Fig. 5.8.: Eigenspectrum of the LD sweep preconditioned Reed-like problem at each

Newton step. Note the change in the scale of the axis for the fourth and fifth Newton

steps.
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applied, it is clear from the eigenspectra and the condition numbers that LD DSA

preconditioning is not a very effective preconditioner when paired with the LD sweep

preconditioner. LD DSA preconditioning should move the eigenvalues away from zero

towards one, but one eigenvalue is remaining very close to zero. LD DSA precondi-

tioning does not compensate for the LD sweep preconditioner’s poor performance,

and the CSZ sweep is a much more effective preconditioner.

As determined before, the CSZ sweep is strictly superior to the LD sweep. The

CSZ sweep is less expensive than the LD sweep, requires fewer iterations to converge

when only sweep preconditioning is applied, and DSA preconditioning is much more

effective with the CSZ sweep than the LD sweep. Only the CSZ sweep will be

considered for the remainder of the test problems.

5.5 Comparing the LD and CSZ DSA Preconditioners

The sweep preconditioners and the LD DSA preconditioner have been demon-

strated to work properly for a variety of simple test problems. The CSZ sweep

preconditioning significantly outperformed the LD sweep preconditioner, so the CSZ

sweep preconditioner will be used to compare the LD and DSA preconditioners. Two

test problems were designed to contain significant negativities and highly diffuse re-

gions. The LD and CSZ DSA preconditioners can be compared to determine if the

more difficult to implement CSZ DSA preconditioner significantly outperforms the

simpler LD DSA preconditioner.

5.5.1 Metrics for Comparing the DSA Preconditioning Strategies

The primary metric by which the different preconditioning methods can be com-

pared is the number of Krylov iterations required for the problem to converge to a

Krylov tolerance of 1E-8 and a Newton tolerance of 1E-6. The computations asso-

ciated with each Newton step are almost negligible compared to the computations
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associated with each Krylov iteration. Therefore, the number of Krylov iterations

required by each method forms the primary basis for comparing the methods.

The number of computations required per Krylov iteration varies between each

preconditioning scheme. Because of this, the CPU time required for the problem

to converge is considered in addition to the number of Krylov iterations. This will

provide an estimate of the total cost of each method, although it has several inherent

disadvantages. First, because this code is not optimized, these results will be only

approximate. Second, because this project was written in MATLAB instead of C++

or FORTRAN, it is impossible to neglect background operations inherent to MAT-

LAB. Finally, the amount of time required to converge varies between successive

iterations.

Each preconditioned system is solved a large number of times to reduce the

variance in the timing results. MATLAB loads the problem during the first iteration,

so the first few iterations are discarded. The average time required to solve the

problem and a standard deviation of that time are calculated over two hundred

active iterations. These calculations were performed on the Texas A&M Nuclear

Engineering cluster “Grove.” An idle compute node was tasked with the timing

analysis and remained otherwise unoccupied for the duration of the timing analysis

to reduce or eliminate interference between tasks. Although the timing metric is

not exact, it will be useful to determine if any of the preconditioning strategies are

significantly more expensive than the competing strategies.

Finally, the eigenspectra and condition numbers of the two preconditioned sys-

tems may suggest which DSA preconditioner is more effective. If one DSA pre-

conditioning strategy more effectively clusters the eigenvalues about one, it may be

reflected in the number of Krylov iterations required for the problem to converge.

The eigenspectra and condition number, the number of Krylov iterations required

to converge, and the CPU time required to solve the problem are each related mea-

sures of the effectiveness of the preconditioning strategy. These three measures will
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determine if the CSZ DSA preconditioner is significantly more effective than the LD

DSA preconditioner.

5.5.2 Grazing Radiation

The grazing radiation problem examined previously is well suited for comparing

the two DSA preconditioning strategies. The steep angle of the incident radiation

on the left face causes a significant negativity in the first cell. The problem is highly

diffusive, with a scattering ratio c = 0.999, making DSA preconditioning necessary.

The problem is five centimeters in length, σs = 9.999cm−1, σt = 10.000cm−1, has

a vacuum boundary condition on the right face, and is divided into ten cells, each

with a thickness of ten mean free paths. Sixteen angular directions are used in this

solution. The solution to the grazing radiation problem was presented as Figure 5.3.

Table 5.12 compares the number of Krylov iterations required for the LD DSA

and CSZ DSA preconditioned strategies to converge to a Newton tolerance of 1E-6

and a Krylov tolerance of 1E-8. Table 5.13 compares the CPU time required for each

combination of preconditioning strategies to converge to the same tolerance.

Table 5.12: Number of Krylov iterations required to solve the grazing radiation

problem.

Preconditioner Krylov Iterations

Sweep Only 74

LD DSA 21

CSZ DSA 21
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Table 5.13: CPU time required for each preconditioning strategy to solve the grazing

radiation problem. Times are presented in seconds plus or minus one standard

deviation.

Preconditioner CPU time (s)

Sweep Only 0.5209 ± 0.0064

LD DSA 0.2065 ± 0.0054

CSZ DSA 0.2074 ± 0.0072

The standard deviation (in seconds) associated with each method is reported

alongside the time required to solve the preconditioned system. The standard devi-

ations are on the order of five percent of the average time.

The eigenspectra of the preconditioned systems are plotted at each Newton step

in Figure 5.9.

Finally, the condition number of the iteration matrix is reported in Table 5.14.

Table 5.14: The condition number at each Newton step for the two LD sweep and

LD sweep plus LD DSA preconditioning strategies.

Preconditioner
Condition Number

Step 1 Step 2 Step 3

Sweep Only 2.37E3 2.37E3 2.37E3

LD DSA 1.18 1.21 1.21

CSZ DSA 1.18 1.21 1.21
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(a) Newton Step 1 (b) Newton Step 2

(c) Newton Step 3

Fig. 5.9.: Eigenspectrum of the preconditioned grazing radiation problem at each

Newton step.
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The application of LD DSA preconditioning significantly reduces the number of

Krylov iterations and CPU time required for the problem to converge. The number

of iterations required to converge was reduced by a factor of more than three, and

the CPU time required was reduced by a factor greater than two. As demonstrated

previously, LD DSA preconditioning significantly reduces the cost of solving the CSZ

equations in diffuse problems.

CSZ DSA preconditioning achieved performance almost exactly equivalent to pre-

conditioning with LD DSA. The difference in CPU time required between the two

methods is smaller than the standard deviation in the data, and both methods re-

quired the same number of Krylov iterations to converge. The eigenspectra produced

with both DSA preconditioning strategies is nearly identical, and the condition num-

bers are the same. CSZ DSA preconditioning is not more beneficial than LD DSA

preconditioning in this problem.

5.5.3 Reed-like Problem

The Reed-like problem introduced previously was designed to include severe neg-

ativities and highly diffusive regions. The problem geometry was presented in Table

5.3, and the scalar flux solution was presented in Figure 5.4. Strong negativities are

encountered in the highly absorbing regions on the left of the problem, and DSA

acceleration is beneficial because of the highly diffusive regions on the right of the

problem.

The algorithm reports that the CSZ equations do not reduce to the LD equa-

tions in roughly one to two percent of the total cell and direction cases in both the

sweep preconditioning step and the CSZ DSA preconditioning step in all but the

first Newton step; recall that the CSZ equations reduce to the LD equations in the

first Newton step because the initial guess for ψ is zero. In each of the remaining

Newton steps, the CSZ equations do not reduce to the LD equations in cells near

the boundaries of the strongly absorbing region.
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The number of iterations required for the two DSA preconditioning strategies

to converge is presented in Table 5.15. The results calculated using the only sweep

preconditioning and not DSA preconditioning are presented as well to assess the

effectivness of the DSA preconditioners.

Table 5.15: Number of Krylov iterations required for the DSA preconditioning

strategies to solve the Reed-like problem.

Preconditioner Krylov Iterations

Sweep Only 161

LD DSA 22

CSZ DSA 22

The CPU time required for the two DSA preconditioning strategies to converge is

presented in Table 5.16. Notice that as in the grazing problem timing results (Table

5.13), the standard deviation is on the order of one to two percent of the average

time required for each method to converge.

Table 5.16: CPU time required for each combination of preconditioning strategies

to solve the Reed-like problem. Times are presented in seconds plus or minus one

standard deviation.

Preconditioner CPU Time (s)

Sweep Only 9.2618 ± 0.0475

LD DSA 3.1570 ± 0.0173

CSZ DSA 3.1769 ± 0.0174
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The eigenspectra at each Newton step are plotted in Figure 5.10.

The condition number at each Newton step is reported in Table 5.17.

Table 5.17: The condition number of the Reed-like problem at each Newton step for

the CSZ sweep and the CSZ sweep paired with the LD or CSZ DSA preconditioner.

Preconditioner
Condition Number

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Sweep only 730 730 730 730 730 730

LD DSA 1.24 1.24 1.24 1.24 1.24 1.24

CSZ DSA 1.24 1.24 1.24 1.24 1.24 1.24

The application of the CSZ sweep and the LD or CSZ DSA preconditioners to

the CSZ equations produced similar trends to those observed in the grazing radiation

problem. As before, both DSA preconditioners required the same number of Krylov

iterations to converge. The difference in the CPU time required for the two DSA

preconditioning methods to converge was similar in magnitude to the standard de-

viation in the timing data. The eigenspectra and condition numbers generated with

both DSA preconditioning strategies are extremely close.

Pairing DSA preconditioning with the sweep preconditioner reduced the number

of iterations required by more than a factor of seven, and the CPU time required to

converge was reduced by almost a factor of three. DSA preconditioning is very ben-

eficial for problems with highly diffusive regions, but CSZ DSA does not outperform

LD DSA even in problems containing strong negativities.
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(a) Newton Step 1 (b) Newton Step 2

(c) Newton Step 3 (d) Newton Step 4

(e) Newton Step 5 (f) Newton Step 6

Fig. 5.10.: Eigenspectrum of the preconditioned Reed-like problem at each Newton

step. The spectrum after only the CSZ sweep is bound between 1.371E-3 and 1.0000;

after applying either form of DSA, the spectrum is bound between 0.8045 and 1.0000.
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5.6 Comparing the LD and CSZ Methods

Finally, it is interesting to compare the total cost assosiated with solving the

Reed-like problem with both the LD and CSZ equations to assess the relative cost

of the CSZ method. LD DSA is applied to both methods. Table 5.18 compares the

number of Newton and Krylov iterations required for to solve the Reed-like problem

to a Newton tolerance of 1E-6 and a Krylov tolerance of 1E-8.

Table 5.18: Number of Newton and Krylov iterations requred to solve the Reed-like

problem with the LD and CSZ methods, to Newton tolerance of 1E-6 and a Krylov

tolerance of 1E-8.

Method Newton Iterations Krylov Iterations

LD (with LD DSA) 1 7

CSZ (with LD DSA) 6 22

Table 5.19 presents the same data for a Newton tolerance of 1E-12 and a Krylov

tolerance of 1E-14 to determine if tightening the convergence tolerance yields a sim-

ilar result.

Table 5.19: Number of Newton and Krylov iterations requred to solve the Reed-like

problem with the LD and CSZ methods, to Newton tolerance of 1E-12 and a Krylov

tolerance of 1E-14.

Method Newton Iterations Krylov Iterations

LD (with LD DSA) 2 12

CSZ (with LD DSA) 7 71
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The CSZ method is always more expensive than the LD method for problems

in which the LD solution yields negativities. The LD method is a linear problem

and converges (to a tolerance of at least 1E-6) in a single Newton step. This greatly

reduces the number of Krylov iterations needed to solve the LD problem, and this

is reflected in Tables 5.18 and 5.19. The CSZ method is always several times more

expensive than the LD solution. Maginot examined the cost of the CSZ method and

determined it to be comparable to other nonlinear methods for generating strictly

positive solutions to the transport equation [1, 2].

5.7 Comparing Newton’s Method and the Frozen Newton’s Method

The Reed-like problem is used to compare the Frozen JFNK method used thus

far in the test problems to the true JFNK method outlined in the section titled

“Newton’s Method with an ε Fixup.” The CSZ equations preconditioned with LD

DSA were chosen for this analysis based upon the results comparing the LD and

DSA preconditioners. Table 5.20 reports the number of Newton and Krylov iterations

required for the Frozen JFNK and the true Newton methods to converge to a Newton

tolerance of 1E-6 and a Krylov tolerance of 1E-8. The Newton method is examined for

various fixup tolerances, ζfixup. Fixup tolerances larger than 1E-2 caused FGMRES

to stagnate and are not included.

These computations were repeated for a Newton tolerance of 1E-12 and a Krylov

tolerance of 1E-14. These results are reported in Table 5.21.

The number of entries in the Krylov vector that required fixup when constructing

the CSZ operators varied from about half the entries for the fixup tolerance of 1E-5

to about 11% of the entries for a fixup tolerance of 1E-3. In all cases, the final Krylov

step required no fixup at all, as is expected.

These results suggest that applying the Jacobian-free Newton’s method with the

epsilon fixup yields slightly better results than the Frozen Jacobian-free Newton

method. However, the reduction in cost is not very significant. For this reason, the
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Table 5.20: Number of Newton and Krylov iterations requred for the Frozen JFNK

and Newton JFNK method to converge to a Newton tolerance of 1E-6 and a Krylov

tolerance of 1E-8.

Method Newton Iterations Krylov Iterations

Frozen JFNK 6 22

JFNK, ζfixup = 1E-5 6 22

JFNK, ζfixup = 1E-4 6 22

JFNK, ζfixup = 1E-3 5 24

Table 5.21: Number of Newton and Krylov iterations requred for the Frozen JFNK

and Newton JFNK method to converge to a Newton tolerance of 1E-12 and a Krylov

tolerance of 1E-14.

Method Newton Iterations Krylov Iterations

Frozen JFNK 7 71

JFNK, ζfixup = 1E-5 7 58

JFNK, ζfixup = 1E-4 7 58

JFNK, ζfixup = 1E-3 6 65

frozen JFNK method was used to generate results for this paper, and is suggested

for use with the CSZ operators.
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6. CONCLUSIONS

The application of two preconditioning techniques to the Consistent Set-to-Zero

SN spatial discretization developed by Maginot, Morel, and Ragusa was investigated.

The CSZ equations were first reformulated to be solved with a sweep-preconditioned

Krylov method. Diffusion Synthetic Acceleration was then applied as a precondi-

tioner for the Krylov system. Both the Krylov solver FGMRES and DSA precondi-

tioning were demonstrated to be compatible with the CSZ equations.

The CSZ equations can be effectively reexpressed as a preconditioned system

and solved with a Krylov method. Krylov methods generally converge significantly

faster than source iteration methods. Source iteration can be reexpressed as a sweep

preconditioner relatively easily. Effective iteration techniques recast as precondition-

ers are generally effective in a Krylov solve. These attributes make Krylov schemes

straightforward to implement in applications built around a source iteration method.

Two different sweep preconditioning strategies were investigated. While precon-

ditioning the CSZ equations with an LD sweep is possible, it appears that a CSZ

sweep is a much more effective preconditioner. LD sweep preconditioning was demon-

strated to be significantly less effective than the CSZ sweep preconditioner for some

problems, as expected when the methods were formulated. The most complicated

problems demonstrated the largest difference between the methods, suggesting that

the CSZ sweep preconditioner should be chosen for any further research.

Diffusion Synthetic Acceleration preconditioning using the LD S2SA equations

(LD DSA) significantly accelerated the solution of the CSZ equations. Optically thick

model problems required between two and seven times fewer iterations to converge

with the application of LD DSA preconditioning in addition to sweep preconditioning.

LD DSA preconditioning paired with CSZ sweep preconditioning was significantly

more effective than LD DSA preconditioning paired with LD sweep preconditioning.
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This further suggests that the CSZ sweep preconditioner is superior to the LD sweep

preconditioner for the CSZ equations.

Preconditioning with the CSZ S2SA equations (CSZ DSA) was not more effective

than preconditioning with LD DSA. Both DSA preconditioners significantly reduced

the cost associated with solving problems containing strongly absorbing regions and

highly diffusive regions. The CSZ DSA preconditioner was not significantly more

effective than the LD DSA preconditioner for those problems.

In one dimension, the restriction from N angular directions to S2 quadrature

suppresses LD negativities because these negativities generally occur only in the

steepest angular directions. For this reason the CSZ DSA preconditioner reduces

to the LD DSA preconditioner in all but a few cases even in problems containing

strongly absorbing regions. Several test problems were designed to have significant

LD negativities in the DSA step. CSZ DSA was not significantly more effective than

LD DSA even in these problems.

It would be very beneficial if this result regarding the comparable performance

of the LD and CSZ DSA preconditioners in slab geometry applies to diffusion pre-

conditioning in multiple spatial dimensions. In slab geometry, the S2 equations are

equivalent to the diffusion equation, making CSZ diffusion straightforward to derive.

However, no simple analogous relationship exists in multiple spatial dimensions. This

makes DSA more difficult to apply, making CSZ DSA preconditioning very difficult

to apply.

The numerical approximation of the Jacobian of this system can be difficult

because ψ spans many orders of magnitude. The frozen Jacobian-free Newton Krylov

method was found to be much simpler and only slightly more expensive than a

true Jacobian-free Newton Krylov method. Future researchers should consider the

difficulties that can arise in computing a numerical approximation of the Jacobian

with the CSZ operators and be aware of the two approaches for resolving this issue

outlined in this paper.
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The Consistent Set-to-Zero SN spatial discretization appears to be well suited to

problems that contain both strongly absorbing and highly diffusive regions. These

types of problems can contain significant negativities and benefit greatly from DSA

preconditioning. The CSZ sweep preconditioner paired with the LD DSA precondi-

tioner demonstrated significant acceleration in these types of problems and should

be considered for further research in multiple dimensions.
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