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ABSTRACT 

A Nonlinear Transient Approach for Morton Synchronous Rotordynamic Instability and 

Catcher Bearing Life Predictions. (May 2012) 

Jung Gu Lee, 

 B.S.; M.S., Soongsil University, South Korea 

Chair of Advisory Committee: Dr. Alan B. Palazzolo 

 

    This dissertation deals with three research topics; i) the catcher bearings life 

prediction method, ii) the Morton effect, and iii) the two dimensional modified Reynolds 

equation.  

Firstly, catcher bearings (CB) are an essential component for rotating machine with 

active magnetic bearings (AMBs) suspensions. The CB's role is to protect the magnetic 

bearing and other close clearance component in the event of an AMB failure. The 

contact load, the Hertzian stress, and the sub/surface shear stress between rotor, races, 

and balls are calculated, using a nonlinear ball bearing model with thermal growth, 

during the rotor drop event. Fatigue life of the CB in terms of the number of drop 

occurrences prior to failure is calculated by applying the Rainflow Counting Algorithm 

to the sub/surface shear stress-time history. Numerical simulations including high 

fidelity bearing models and a Timoshenko beam finite element rotor model show that 

CB life is dramatically reduced when high-speed backward whirl occurs.  

Secondly, the theoretical models and simulation results about the synchronous 

thermal instability phenomenon known as Morton Effect is presented in this dissertation. 
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A transient analysis of the rotor supported by tilting pad journal bearing is performed to 

obtain asymmetric temperature distribution of the journal by solving variable viscosity 

Reynolds equation, energy equation, heat conduction equation, and equations of motion 

for rotor. The tilting pad bearing is fully nonlinear model. In addition, thermal mode 

approach and staggered integration scheme are utilized in order to reduce computation 

time. The simulation results indicate that the temperature of the journal varies 

sinusoidally along the circumferential direction and linearly across the diameter, and the 

vibration envelope increased and decreased, which considers as a limit cycle that is 

stable oscillation of the envelope of the amplitude of synchronous vibration.  

Thirdly, the Reynolds equation plays an important role to predict pressure 

distribution in the fluid film for the fluid film bearing analysis. One of the assumptions 

on the Reynolds equation is that the viscosity is independent of pressure. This 

assumption is still valid for most fluid film bearing applications, in which the maximum 

pressure is less than 1 GPa. In elastohydrodynamic lubrication (EHL) which the 

lubricant is subjected to extremely high pressure, however, the pressure independent 

viscosity assumption should be reconsidered. With considering pressure-dependent 

viscosity, the 2D modified Reynolds equation is derived in this study. The solutions of 

2D modified Reynolds equation is compared with that of the classical Reynolds equation 

for the plain journal bearing and ball bearing cases. The pressure distribution obtained 

from modified equation is slightly higher pressures than the classical Reynolds 

equations.        
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CHAPTER I 

 INTRODUCTION 

  

1.1 Overview 

A variety of bearings such as conventional rolling element bearings, fluid film 

bearings, and magnetic bearings are used in rotating machinery to support the rotating 

element, provide damping and control the locations of critical speed. The conventional 

rolling element bearings have some advantages in terms of maintenance and cost 

compared with fluid film bearings and magnetic bearings. However, the damping of the 

conventional rolling bearings is very low which limits their ability to suppress resonance 

and maintain vibration stability. In contrast, fluid film bearings provide a relative higher 

damping and lower sound level. Due to cross coupled stiffness force, however, 

instability phenomenon may occur in plain journal bearing, lemon type bearing, fixed 

bearing applications. Tilt pad journal bearings, which belong to the fluid film bearing 

family, are used in rotating machinery to prevent instability since they provide nearly 

zero cross coupled stiffness as compared to other types of fluid film bearings. The 

rolling element bearings and fluid film bearings are required in some lubrication 

systems, however, the lubricant necessarily generates power loss. Using electromagnetic 

forces provides levitation of the shaft in high rotating speed without any use of 

lubrication systems or mechanical power loss. Nowadays active magnetic bearings 

______________ 
This dissertation follows the style and format of the ASME Journal of Tribology. 
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 (AMB) can be applied for various products such as (i) machine tools to be operated at 

high speed, (ii) vacuum applications and pumps, (iii) flywheel system, and (iv) turbo-

machinery.   

 A rolling-element auxiliary or catcher bearing (CB) is necessary to protect MB 

stators and stationary components along shaft in the event of AMB failure or high 

transient loads. Under normal operation of MBs, the rotor maintains a positive clearance 

with CBs, which is less than a clearance with MBs. If the AMB failure occurs, the rotor 

touches down onto inner race of CBs, and the impact force increases bearing load while 

the friction force sharply accelerates the inner race speed generating heat loss at the 

mechanical contacts. The high impact force, internal loads and high temperature 

significantly reduce the fatigue life of CBs. A rotor drop model and nonlinear ball 

bearing model including thermal effect are developed in order to calculate the fatigue 

life of CBs in terms of the number of drop events, The Rainflow counting algorithm 

used in random load circumstance to predict fatigue life is applied to CB model. It is 

important to note that there has been no credible approach for predicting catcher bearing 

life until the present. 

The rotordynamics literature has many papers on non-synchronous instability due 

to forces described by cross coupled dynamic coefficients. Recently another type of 

instability phenomenon was reported in rotor bearing systems with a large overhung 

mass. According to the limited references, this instability, which is known as the Morton 

effect, is due to an asymmetric temperature distribution around the circumference of the 

journal (length of shaft within the bearing). The Morton Effect occurs when the journal 
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is executing a synchronous orbit around its steady state equilibrium position (operating 

point). This orbit causes one portion of the journal surface to become a "hot spot", while 

a diametrically opposite section of the journal surface to become a "cold spot". This 

temperature difference leads to a temperature gradient developed across the journal. , 

Thermal bending will occur if the temperature gradient and the magnitude of the 

unbalance which already exists in the system are adequate. Under these conditions the 

bent shaft may cause an increase in imbalance and ensuing vibration, which may cause 

an increase in the lubricant temperature. The increased temperature gradient will then 

initiate more thermal bending. These actions describe a positive feedback mechanism 

which will drive the system unstable. In order to simulate the Morton Effect, a 

generalized Reynolds equation considering temperature-dependent viscosity, a 2-D 

energy equation, a heat conduction equation, and the mechanical equations of motion of 

the vibrating rotor are solved using the FEM. The solution of Reynolds provides 

pressures in the fluid film, and fluid velocities for inserting into the energy equation, 

which in turn provides the temperature and viscosity distribution throughout fluid film. 

Utilizing the temperature distribution in the fluid film, the temperature distribution of the 

journal is calculated and the bend angle and thermal imbalance induced by the thermal 

gradient of the journal are determined. The developed code for the Morton Effect 

provides the journal across-the-diameter temperature difference and orbit size versus 

time.  

The basic equation for fluid motion in the fluid film bearing is known as the 

Reynolds equation. This equation was first derived in a remarkable paper by Reynolds. 
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The classical Reynolds equation is derived by combining the fluid dynamics momentum 

and continuity equations. The following assumptions are imposed: 

 

 a. Body, forces and fluid inertia are negligible 

 b. Pressure distribution through the thickness is constant 

 c. Curvatures of the two surfaces are large compared to the film thickness 

 d. Newtonian fluid 

 e. No slip boundary condition at the solid fluid interface 

 f. Flow is laminar. 

 g. Mass density is independent of pressure and temperature. 

 

The assumption that the viscosity is constant is accurate only at low pressures. In 

elastohydrodynamic lubrication (EHL) cases which are subjected to extremely high 

pressures, this assumption no longer holds. It is necessary to modify Reynolds equation 

with considering pressure-dependent viscosity to predict more accurate fluid velocities, 

forces and pressures in the EHL fluid film.  

 

1.2 Literature Review 

1.2.1 Fatigue Life Prediction of an AMB Catcher Bearing 
 

Active magnetic bearings (AMBs) are increasingly being used in industrial 

machines such as compressor, turbines, and generators since they cause only minor 

friction losses, are lubrication free, and can be operated adaptively to optimize 
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machinery reliability and performance. Although advanced control algorithms provide 

high AMB reliability, CBs are still needed for power failure and bearing overload events 

[1-3].  

Some publications provide simulation results for rotordynamic system response 

following a drop event onto catcher bearings. Most researchers, like Ishii and Kirk [4], 

have modeled the CB as a linear spring, damper and have sought to optimize the CB 

performance based on that model. Fumagalli et al. [5] and Fumagalli [6] studied the 

effect of air gap, friction coefficient, and CB damping on the impact dynamics and also 

conducted rotor drop tests. Cole et al. [7] studied the effects of bearing width, and inner 

race speed on the rotordynamic response. Sun et al.[8, 9] proposed a nonlinear ball 

bearing model with thermal growth, providing a more accurate component model for the 

CB. Although not directly addressing catcher bearings, Taktak [10] et al. determined that 

the friction coefficient decreases as the sliding interface temperature increases and that 

the shear stress due to sliding also decreased. Although not directly addressing catcher 

bearings, Böhmer et al.[11] conducted experiments to determine the influence of heat 

generation in the contact zone and found that: i) heat generated in the contact zone 

increased contact pressure, the size of contact zone, and the amount of sliding , and ii) 

fatigue strength for rolling contact fatigue decreased as the temperature increases. Some 

standards, such as API[12] specify an acceptable minimum number of drop occurrences, 

yet there is very few publications that address life prediction of CB's, in terms of the 

number of drop occurrences before failure. API specifies that “The auxiliary bearing 

system shall be designed to survive at least two de-levitations from maximum continuous 
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speed to zero speed with the normal aerodynamic braking and nominal process induced 

thrust load.” Sun[13] determines the fatigue life of ball bearing - catcher bearings, 

however a Lundberg-Palmgren formula is employed, which is strictly valid only for 

steady continuous loading, whereas a CB drop event is not steady and may involve 

erratic transient motion and forces. In comparison, the rainflow approach presented here 

is valid for random loading and includes effects of shear stress due to rub between the 

rotor and inner race, which is neglected in [13].  

 

1.2.2  Accurate Prediction of the Morton Effect 

 A vibration induced hot spot in radial fluid film bearings can cause synchronous 

(same frequency as shaft spin frequency) continually increasing vibrations that result in 

a limit cycle. The phenomenon is known as the Morton effect. Theoretical investigations 

by Keogh and Morton[14] and experimental study[15] by deJongh and Morton indicate 

that rotors supported by fluid film bearings exhibit a nonuniform temperature 

distribution around the bearing journal circumference. This thermal effect results in rotor 

bending, which can, in combination with an overhung mass such as couplings and 

overhung impellers, significantly increase rotor unbalance and thus synchronous rotor 

vibration. Under certain conditions, it can lead to synchronous rotor instability. Many 

researchers have studied the Morton Effect since Keogh and Morton first found the 

mechanism of synchronous instability due to thermal gradient across the journal 

diameter. Gomiciaga and Keogh [16] theoretically calculated the thermal gradient of a 

journal in a plain journal bearing using CFD technique for a given forward or backward 
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whirl orbit. They found that the temperature difference across the journal diameter 

depends on the static eccentricity and orbit size, and that there is the phase lag between 

the high spot (outermost point on the journal surface) and the hot spot in a range of 

approximately 0 deg to 60 deg. Larsson[17-18] performed a stability analysis of the rotor 

system supported by tilting pad bearing with considering asymmetric heating in the 

journal in frequency domain by using Nyquist stability criterion of transfer function, 

which is related between asymmetric journal temperature and vibration responses. He 

calculated the temperature distribution of the journal using the published fluid film 

temperature distribution, whose assumptions were; i) infinite bearing width, ii) no 

cavitation in the fluid film, and iii) no heat transfer through pads or journal. Balbahadur 

and Kirk [19-20] proposed theoretical models for simulating the Morton Effect. Their 

approach is to simultaneously simulate the isoviscous Reynolds equation, a highly 

simplified energy equation, which includes heat transfer throughout the shaft and the 

bearing, and the rotordynamic (shaft) equations. Their use of a simpler model yields 

computation time that is relatively short. However, their approaches ignore the phase lag 

between the high spot and the hot spot, and assume that these spots are coincident. Their 

instability criterions based on instability threshold unbalance values that were obtained 

by comparing their simulation results with available experimental results, instead of 

using a frequency or time domain. Murphy and Lorenz’s approach [21] assumes that the 

shaft surface temperatures equals the lubricant's mid-film temperature, and may be 

reliably calculated by treating the vibrating journal orbit as a sequence of steady state 

operating points, for the purpose of obtaining the fluid film temperature. Their approach 
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does not solve the transient energy and shaft heat conduction equations and assumes the 

hot spot and high spot are coincident and that the journal's cross diameter temperature 

difference is proportional to the orbit size. Reference [16] indicates that linear 

relationship between temperature difference and orbit size may not be a very accurate 

assumption. The relationship between orbit size and temperature difference is in general 

nonlinear.   

 

1.2.3  A 2D  Reynolds Equation Including Pressure-Dependent Viscosity  

 The basic equation of fluid-film lubrication, the Reynolds equation, can be derived 

from the reduced form of the Navier-Stokes and continuity equations. This equation was 

first derived in a remarkable paper by Reynolds [22]. The Reynolds equations 

assumptions include: i) the fluid is a Newtonian fluid, ii) the inertia and body force terms 

are negligible compared with the pressure and viscous terms, iii) there is a negligible 

variation of pressure across the fluid, and iv) the viscosity is constant. However, 

numerous experimental results showed that viscosity depends on the temperature and 

pressure[23-29]. Barus[30] proposed the isothermal-viscosity-pressure dependence of 

lubricant by introducing pressure-viscosity coefficient which depends only on 

temperature, but not on pressure. Barus’ formula is extensively used, it is not generally 

applicable and is valid as a reasonable approximation only in a moderate-pressure range. 

Roelands[31]  proposed a general temperature-pressure-dependent viscosity equation. 

However, it is valid for moderate temperature range. Even though it is assumed that 

viscosity does not depends on the temperature and pressure, the solution of Reynolds 
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equation provides a pretty accurate pressure distribution. In elastohydrodynamic 

lubrication, EHL, in which the fluid film is subjected to extremely high pressure, the 

assumption that the viscosity is independent of the pressure no longer holds. Pressure 

dependence of viscosity is very significant and the viscosity can increase by several 

orders of magnitude due to pressure increase. Rajagopal and Szeri[32] derived a 1-D 

pressure-dependent Reynolds equation and compared its solutions with that of classical 

Reynolds equation. The 1D modified Reynolds equation results in slightly higher 

pressures, but at significantly higher viscosities, than the classical Reynolds equations. 

  

1.3 Contributions 

    This presented research contains the following unique contributions; 

(1) A stress based methodology to predict the number of catcher bearing drop 

occurrences to failure 

(2) A computationally efficient, transient, numerical integration based approach for 

determining synchronous limit cycles that results from synchronous whirl 

induced asymmetric heating, a.k.a. the Morton effect. 

(3) Algorithm for 2D Reynold's equation solution of pressures in a journal bearing, 

including effects of pressure-dependent viscosity. 
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CHAPTER II 

CATCHER BEARING LIFE PREDICTION USING A RAINFLOW 

COUNTING APPROACH  

 

2.1 Overview  

The conventional bearing life prediction method based on the LP formula is not 

valid for random load case such as rotor drop cases. To accurately predict fatigue life of 

the CB, a rainflow counting approach is applied in this chapter.  

In the section 2.2, thermal growth during rotor drop event is considered using heat 

transfer network, and nonlinear ball bearing model is utilized to calculate the Hertzian 

contact force and stress for an each ball. In addition, Timoshenko beam model is used 

for FE rotor model, and rotor drop model is presented in this chapter. 

Fatigue damage models are described in the section 2.3.  The mathematical models 

for sub/surface shear stress and load and shear stress distribution are introduced. The 

fatigue life prediction method is developed based on Miner’s rule, Rainflow counting 

method, and S-N curve for AISI 51200, which is the most commonly used in the rolling 

bearing elements.  

Using the developed model, a variety of numerical simulation are conducted to 

investigate the effects of CB fatigue life such as support effect, friction coefficient, air 

gap between rotor and inner race,  initial rotor drop speed, and side loads from the MBs . 

The simulation results are listed in the section 2.4. 
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2.2 Simulation Models 

2.2.1 Thermal Ball Bearing Model 

The rolling element bearing has a variety of heat sources, however, two major ones 

are considered during the rotor drop event: the rotor/inner race friction due to 

mechanical rub and the bearing drag torque. Power loss due to mechanical rub between 

rotor and inner race is expressed as  

r t relH F V= ⋅                         (2.1) 

where tF  is tangential force action and relV  is the tangential relative velocity between the 

inner race and the rotor at the contact interface. The bearing drag torque which depends 

on bearing type, external load, lubricant and operating speed is calculated by an 

empirical formula [33]. A bearing thermal model is developed assuming a uniform, 

radial direction heat flux, similar to Jorgensen and Shin [34]. Figure 2.1 shows the 

thermal nodes in the bearing components and equivalent heat transfer network. Thermal 

resistances corresponding for each component are defined in Table 2.1 [8].  

The power conservation equation has the following form at each temperature node: 

 p i o
dTmC q q
dt

= −                   (2.2) 

where the parameter m is a lumped thermal mass, pC is the specific heat, and iq  and oq  

are the heat flux in and out of the system. The thermal system temperatures are 

calculated, then the free thermal expansions of the outer race, inner race and ball are 

obtained from:  
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 outer race: [ ](1 )
(2 ) (2 )

3
e e e

e Le e h h h e
e h

r
T r r T r r

r r
ξ ν

ε
+

= Δ + + Δ +
+

      (2.3) 

 inner race: [ ](1 )
3

i
i i i s Lir T T

ξ
ε ν= + Δ + Δ             (2.4) 

  ball: b b b br Tε ξ= Δ                    (2.5) 

where ξ , ν , and r are the thermal expansion coefficient, the Poisson’s ratio, and radius 

of the respective bearing components, respectively. Subscript b, e, h, i, and s represent 

ball, outer race, housing, inner race, and shaft, respectively. The contact load due to 

thermal expansion is expressed by  

1.5
T HF k ε=                      (2.6) 

where k is the Hertzian contact stiffness, ( )cosb i eε ε ε ε α= + − , and α is the contact 

angle between the ball and the inner race. A modified Palmgren formula including the 

effect of the thermal load is given by [35] as 

1( )l ex t mT f F F d= +                    (2.7) 

where 1f  is a factor depending upon bearing geometry and relative bearing load, exF is 

the external force acting on the bearing, and md is the mean of the inner and outer 

diameters.  
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2.2.2 Nonlinear Ball Bearing Model 

The nonlinear ball bearing model excludes tilt deflections and is similar to that in 

[8]. Bearing components deflect in the x, y, and z direction shown in Figure 2.2 in 

response to the external force {F}. The r-z plane passes through the center of a ball at an 

angle φ referenced to the x axis. The inner race cross section at a ball location is loaded 

by the contact force vector {Q} at the groove center p, which has a displacement vector 

{u}, where{ } { }T
r zQ Q Q=  and { } { }T

r zu u u= . The vectors for different reference 

points are related by a transformation matrix [T]: 

{ } [ ]{ }u T X= ,{ } [ ]{ }Q T f=                  (2.8) 

where  

cos sin 0
0 0 1

T
φ φ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  { } [ ]Tx x y z=           (2.9) 

and the vector {f } represents an equivalent force vector at the reference coordinate. The 

dynamic equations of motion for the inner race are given by 

1

{ } { } { }
n

T
i j j

j

m X F T Q
=

= +∑               (2.10) 

where n is the number of balls and im  is the mass of inner race. The contact force vector 

{Q} contributed by a ball is expressed as 

cos
{ }

sin
i ir

i iz

QQ
Q

QQ
α
α

−⎧ ⎫⎧ ⎫
= =⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭                

(2.11) 

where iQ  is a contact force component and α is the contact angle between a ball and the 

inner race. Let the vector {v} be the displacement of a ball center. Then the equations of 
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Fig. 2.1  Thermal Node and Heat Transfer Network 
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Table 2.1 Thermal Resistance [8] 

Ball/Lubricant Inner Race/Shaft 

2(2 )
b

Li
l i i b

rR
k rW nrπ π

=
−

 ln( / )
2

i s
i

i i

r rR
k Wπ

=  

2(2 )
b

Le
l e e b

rR
k r W nrπ π

=
−

 1
sr

s i

R
k Wπ

=  

1
b

b

R
n kπ

=  2 2

1s
sa

s s s s

LR
k r h rπ π

= +  

Housing Outer Race 
ln( / ) 1
2 2

h o
hr

h h h h h

r rR
k L r h Lπ π

= +  

ln( / )
2

o e
e

e e

r rR
k Wπ

=  
2 2 2 2

1
2 ( ) ( )

h
ha

h h o h h o

LR
k r r h r rπ π

= +
− −

 

 

 

 

    

                                (a)                                                          (b) 

Fig. 2.2  Bearing Geometry 
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motion for an individual ball including centrifugal force cF  becomes  

cos cos
sin sin

i i e e cr
b

i i e ez

Q Q Fv
m

Q Qv
α α
α α
− +⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦            
(2.12) 

where the subscripts i, e represents the inner and outer races, respectively and bm  is the 

mass of a ball. The outer race is inserted into the bearing housing which is supported by 

stiffness sK and damping sC and is constrained along the axial direction as shown in 

Figure 2.3. The equations of motion for the combined outer race and housing become 

[ ]

[ ]

1

1

cos cos
( )

cos sin

n

e e jj
je e e

e h s sn
e e e

e e jj
j

Q
x x x

m m C K
y y y

Q

α φ

α φ

=

=

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥+ = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

∑

∑
      (2.13)

 

where em  and hm  are the masses of the outer race and the housing, and ex  and ey  are the 

displacements of housing.  Let rw  and ru be the displacements of the outer and inner 

race groove centers ( q and p respectively) in the radial direction, and then the 

displacements of the inner race groove center p and the ball center are geometrically 

related as shown in Figure 2.4. The lengths oil , oel  represent the distance between the ball 

center and the groove centers under no external force, and the lengths il , el  the distances 

under external forces. Using the geometric relation between the displacements of the 

groove centers and ball center, the following equations are obtained: 

sintan
cos
oi o z z

i
oi o r i r

l u v
l u v

αα
α ε

+ −
=

+ + −
               (2.14) 

sintan
cos

oe o z
e

oe o r e r

l v
l v w

αα
α ε

+
=

+ − −
               (2.15) 
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2 2( cos ) ( sin )i b oi o r i r oi o z zl l u v l u vε α ε α= + + + − + + −      (2.16) 

2 2( sin ) ( sin )e b oe o r e r oe o zl l v w l vε α ε α= + + − − + +        (2.17) 

where the ε  terms indicate the thermal expansions as defined in Eqs. (2.3)-(5). The 

relative deflections δ at the contacts are then  

i i oil lδ = −                      (2.18) 

e e oel lδ = −                          (2.19) 

 

 

 

 

Fig. 2.3  Shaft and Catcher Bearing Model 
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The point contact forces are obtained from the modified Hertzian formula [8] 

3/2 3( 1)
2i i i iQ k δ βδ= +                    (2.20) 

3/2 3( 1)
2e e e eQ k δ βδ= +                   (2.21) 

where β  is linearly related to the coefficient of restitution of materials engaged in 

contact and ranges from 0.08 to 0.32 s/m for steel bronze[8]. The corresponding 

Hertzian point contact stress on the surface and at the center of the elliptical contact area 

is  

,
max

, ,

3
2

i e

i e i e

Q
a b

σ
π

= −                  (2.22) 

 

 

Fig. 2.4  Displacements of the Ball, Inner Race, and Outer race 
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2.2.3 Flexible Rotor Model 

The flexible rotor is modeled with Timoshenko beam elements including shear 

deformation. The equation of motion for a flexible rotor bearing system can be written 

as: 

[ ] [ ] [ ] [ ]M q C G q K q F+ +Ω + =              (2.23) 

where M is the mass matrix, C is the damping matrix, G is the gyroscopic matrix, and K 

is the shaft stiffness matrix [36]. The vector q contains the nodal degrees of freedom, F 

is the load vector including the imbalance force and the nonlinear catcher bearing forces, 

and Ω is the angular velocity of the rotor. Each beam node has four degrees of freedom, 

two translations and two rotations. Equation (2.23) is written in modal coordinates as: 

[ ] [ ] [ ] [ ]T T T TM p C G p K p FΦ Φ +Φ +Ω Φ +Φ Φ =Φ     (2.24) 

where Ф is the modal matrix of the undamped, normal modes for the rotor and p is a 

vector of modal coordinates.  

 

2.2.4 Rotor Drop Simulation Model 

Figure 2.3 shows the rotor drop and deep groove ball bearing, catcher bearing 

model. The frame of reference O(X,Y) is fixed to the stationary machinery frame. The 

geometric centers of the rotor and bearing inner race are rO  and bO  , respectively. 

( , )r rx y is the location of rO and ( , )b bx y  is the location of bO  in the fixed frame of 

reference. The contact angle between the rotor and CB is 

1tan r b

r b

y y
x x

γ − ⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

                  (2.25) 
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The contact force coefficient cK  which depends on the material property and geometry 

of the rotor and inner race is a factor in the nonlinear modified Hertzian contact force 

between the rotor and inner race. Palmgren[37] introduced the contact force coefficient 

for line contact  

12 210/9
1 2

1 2

4(1 ) 4(1 )0.39
cK

l E E
ν ν

−
⎡ ⎤⎛ ⎞− −

= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

           (2.26) 

The normal force at the contact point between the spinning rotor and inner race is:  

31
2

0

n
c r r

n

r r

K e c
F

e c

δ βδ⎧ ⎛ ⎞+ >⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪ ≤⎩

              (2.27) 

where n is 10/9 for line contact and re  is the distance between the rotor and inner race 

and is defined as follow 

2 2( ) ( )r r i r ie x x y y= − + −                (2.28) 

For sliding contact between the rotor and inner race, the friction force (tangential force) 

is calculated by multiplying the friction coefficient by the normal force. 

t d nF Fμ=                      (2.29) 

where dμ  is the kinetic coefficient of friction. The tangential velocities of the inner race 

and rotor at the contact point are calculated in order to identify rolling and sliding 

conditions  

sin cosr r r r rV R X Yθ γ γ= − −              (2.30) 

sin cosi i i i iV R X Yθ γ γ= − +                  (2.31) 
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A rolling condition is applied when the tangential velocity of the rotor is the same as that 

of inner race. This means that there is no slip at the contact point, and the friction force 

tF  is a static frictional force, which satisfies 

t s nF Fμ≤                        (2.32) 

where sμ  is the static friction coefficient. The sign of the slip force is determined by the 

sign of the relative velocity, i.e.  

s ( )t r i d nF i g n V V Fμ= −                 (2.33) 

The tangential friction forces for a rolling contact condition are obtained from the rotor 

and inner race, angular equilibrium equations by solving the following equations for the 

tF   

1 2( )p r t t rI F F Rθ = − + ⋅                 (2.34) 

1 1 1 1 1pb i t b dI F R Tθ = −                   (2.35) 

2 2 2 2 2pb i t b dI F R Tθ = −                  (2.36) 

where bpp II , are the polar moments of inertia of the rotor and inner race, respectively. 

The subscripts 1 and 2 indicate catcher bearings 1 and 2.  
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2.3 Fatigue Damage  

2.3.1 Shear Stress Acting on the Catcher Bearing 

The failure of rolling bearings in surface fatigue caused by the concentrated contact 

force applied perpendicular to the surface, initiates at a location below the stressed 

surface. To determine the magnitude of the subsurface shear stress, Palmgren and 

Lundberg showed that the amplitude of the subsurface shear stress is related to the 

Hertzian stress and ellipse ratio. The detailed derivation is explained in Ref.[33]. The 

subsurface shear stress 0τ  is calculated from   

max

(2 1)2
( 1)

o t
t t

τ
σ

−
=

+
                   (2.37) 

where t is an auxiliary parameter determined by elliptic contact region as shown Figure 

2.5, and maxσ  is defined in (2.22). 

2( 1)(2 1)b t t
a
= − −                    (2.38) 

The semimajor a and semiminor b axes of the projected elliptical area are calculated by 

Hertzian contact theory [33]. 

Harris [33] shows that the surface shear stress is very small compared with the 

normal stress in most rolling bearing applications, however, surface shear stress is very 

important for predicting fatigue life of a rolling element bearing. The surface shear stress 

is given by [33] as   

surfaceτ μ σ=                    (2.39) 

where µ is the friction coefficient between ball and races and σ  is the normal stress. The 
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friction coefficient is typically from 0 to 0.3. In this paper, the friction coefficient 

between the ball and races is set equal to 0.2 [33].   
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Fig. 2.5  Sub-surface Shear Stress Ratio 0 max/τ σ  vs. Ellipse Axis Ratio [33] 
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Fig. 2.6  Load Distribution in the Inner Race 

 

2.3.2  Load and Stress Distribution in the Races 

The load distribution along the inner race varies with contact point between the 

rotor and inner race as illustrated in Figure 2.6. For the case that the radial rotor contact 

external force acts on the inner race of the bearing, an equivalent load distribution is 

expressed by  

( ) ( ) exF k Fθ θ=                   (2.40) 

where ( )k θ  is the load distribution factor defined by [38] 
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( )

( )

3/2

0
3/2

* * *

0

1 1 0.5 1 cos
( )

1 1 0.5 1 cos cos
2

e

k
z e d

θ

θ

θ
δ

θ

θ θ θ
π δ−

⎛ ⎞⎛ ⎞
− + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

⎛ ⎞⎛ ⎞
− + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫
       (2.41) 

where z, and e are the number of balls and internal radial clearance of the bearing. The 

term 0δ is the relative displacement of the ball and race centers due to maxσ  as defined by 

Eq. (2.22). The load distribution factor is affected by the relative internal radial clearance

0/e δ , however, the internal radial clearance is set to zero, which is a good 

approximation when the bearing is subjected to a radial load. Under the assumption that 

e=0 the equivalent radial load is distributed from –pi/2 to pi/2, referenced to the contact 

point as shown in Figure 2.6. The sub-surface and surface shear stress are calculated at 

any point along the race utilizing the equivalent radial load distribution and Eq. (2.37) 

and Eq. (2.39).  

 

2.3.3 Rainflow Cycle Counting Method 

Parts of the CB are subjected to time varying stresses during the rotor drop 

occurrences. The Rainflow Cycle Counting Method [39], which was proposed by 

Dowling and Socie in 1982, is employed to predict the fatigue life of the CB which 

results from these stresses. The Rainflow method is used to identify stress cycles, that is, 

the stress range and mean stress for each cycle. Appendix A shows the procedure for the 

cycle counting method. Cumulative damage D and number of cycles N to failure are 
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determined using a histogram of cycle ranges and Miner’s rule. Miner’s rule is expressed 

as follows. Failure is expected to occur if 

31 2

1 2 3

... 1i

i i

n nn nD
N N N N

= + + + = ≥∑              (2.42) 

where in  is the number of applied cycles and iN  is the number of cycles to failure at a 

certain stress amplitude iτ , respectively. In this study, the critical cumulative damage 

value of D is chosen to be 1 in Eq.(2.42) and the fatigue life is expressed as; 

1
/i i

i

Life
n N

=
∑

                   (2.43) 

 

2.3.4  The S-N Curve  

N.Raje and F.Sadeghi[40] showed that rolling fatigue is similar to torsional fatigue 

by applying the S-N curve for torsional fatigue to calculate bearing fatigue life. The S-N 

curve including thermal effects shown in Figure 2.7 is represented by  

2
B

f
eff

aN
τ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

                    (2.44)  

where   

                        1 2
ˆ ˆ2 a C T C= − +                   (2.45)

normalfrictioneff τττ +=                (2.46)  

and 1 2
ˆ ˆ,C C  are constants and B is positive and is the slope of the torsional S-N curve. 

These parameters are listed in Table 2.2 for bearing steel AISI-52100. From reference 

[33], normalτ and frictionτ correspond with oτ  in Eq. (2.37) and surfaceτ  in Eq. (2.39).  
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          Fig. 2.7  The S-N Curve [40]   

 
 
 

Table 2.2 S-N Curve Parameters for AISI-52100 

B 10.10 

1
ˆ ( / )C GPa C°  0.01 

2
ˆ ( )C GPa  5.20 

Temperature 
 ( o C ) 25 80 150 200 

a ( GPa) 2.47 2.20 1.84 1.60 
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Table 2.3 Example Rotor and Bearing data   

Rotor Bearing 
Mass of the Rotor 97.3 kg Bore Diameter 80.0 mm 

Polar Moment of Inertia 0.39 2mkg  Outer Diameter 125.0 mm
Transverse Moment of Inertia 2.82 2mkg  Bearing Width 22.0 mm 

Air Gap 300 µm Pitch Diameter 110.0 mm

Inner Diameter of Sleeve 60.6 mm Ball Diameter 19.05 mm
Number of Balls 10 

 

 

 
(a) 

 

 
                                                                              (b)  

Fig. 2.8 Rotor Model; (a) Dimensions Diagram (in mm) and (b) Finite Element 

Model for Example System [41] 
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2.4 Simulation Results and Discussion  

The example system consists of two CBs, and a horizontal rotor, which is depicted 

along with its FEM model in Figure 2.8. The FEM rotor has 11 elements. The rotor and 

bearing specifications are listed in Table 2.3. The model also includes flexible damped 

supports for the catcher bearings, which is typical for industrial applications. The 

stiffness and damping of these supports are 50,000,000 N/m and 5000 Ns/m, respectively. 

Transient responses are obtained by utilizing Newmark Beta based numerical 

integration, with a time step of 1e-4s. The following parameters are varied to investigate 

their effect on fatigue life: (a) bearing support stiffness and damping, (b) friction 

coefficient, (c) side load due to an applied magnetic bearing, (d) air gap, and (e) rotor 

speed. The simulation cases are summarized in the Table 2.4. The duration of the 

numerical integration is determined by how long reverse whirl is sustained, and a 1 

second duration is adequate for a reverse whirl free drop event. 

The contact point locations and load levels between the rotor, races, and balls 

randomly change after the rotor drop. Therefore the fatigue life varies around the 

circumferences of the races. Although there exists an infinite number of possible contact 

points along the race the model evaluates life at a finite number of points. A total of n 

equally spaced "test" points are located along the circumference of the inner race as 

shown in Figure 2.6. Note that the stresses and damage at any test point may be affected 

by a rotor/race contact force at some other location due to the effective load effect as 

illustrated in Figure 2.6 and described in Eqs (2.39)-(40). The life is evaluated at each of 

the test points utilizing the rainflow counting method and Miner’s rule. 
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A study was conducted to determine an appropriate number of test points. For this 

case the rotor speed=20,000 rpm, 0.3sμ = , 0.3dμ =  air gap=0.3 mm and there is no 

side load. This case is included solely to illustrate the general response features and not 

for life evaluation, so its simulation duration is only 1 second. Figure 2.9 shows an orbit 

plot and shear stress distribution with the number of test points n=100. The red solid 

circle indicates the unloaded clearance circle. The shear stress time history at a test point 

and shear stress distribution at an instant in time are shown in the Figure 2.9 (c) and (d), 

respectively. The number of cycles at each stress level, and each test point, are counted 

using the Rainflow counting algorithm. The fatigue life at each test point is then 

calculated from Eq. (2.43). The fatigue life is selected as that of the test point that has the 

maximum damage. The simulation results indicates that the damage and the fatigue life 

vary between test points, and the bearing life approaches a constant value as the number 

of test point increases as shown in Figure 2.10. All of the following results were obtained 

utilizing 100 test points. Backward whirl motion occurs during rotor drop, induces high 

contact forces between the rotor and inner race, and may causes significant damage to 

the catcher bearing until the backward whirl motion diminishes. For the nominal case, 

the backward whirl motion diminishes after about 12s. Figure 2.10 (c) indicates that the 

number of drop occurrence to failure sharply reduces while backward whirl motion is 

occurring.     
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Table 2.4 Simulation Cases 

 
Nominal 

Case 

Case #

1 

Case  

#2 

Case 

 #3 

Case  

#4 

Case  

#5 

Case  

#6 

Support Stiffness  

(N/m) 
5e7 10e7 5e7 5e7 5e7 5e7 5e7 

Support Damping 

 (N·s/m) 
5,000 5,000 10,000 5,000 5,000 5,000 5,000 

Sliding Friction 

 Coefficient 
0.3 0.3 0.3 0.1 0.3 0.3 0.3 

Kinetic Friction  

Coefficient 
0.4 0.4 0.4 0.2 0.4 0.4 0.4 

Air Gap  

(mm) 
0.3 0.3 0.3 0.3 0.5 0.3 0.3 

Side Load 

 (N) 
0 0 0 0 0 500 0 

Rotor Speed  

(rpm) 
20,000 20,000 20,000 20,000 20,000 20,000 10,000

Initial  

Temperature 

( o C ) 

30 
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(a) 

               
 (b) 

 
Fig. 2.9  Simulation Results of Nominal Case; (a) Orbit Plot, 

(b) Shear Stress Distribution, (c)  Shear Stress vs Time, 

(d) Shear Stress vs Angle (e) Temperature vs Time, and  (f) Rainflow Histogram 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10-3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x 10-3

y(m)

z(
m

)



 33

       
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time(s)

S
he

ar
 S

tre
ss

(M
P

a)

  
     (c) 

 
0 1 2 3 4 5 6

0

500

1000

1500

2000

2500

3000

3500

4000

Angle(Rad)

S
he

ar
 S

tre
ss

(M
P

a)

   
   (d) 

 
Fig. 2.9  Continued 
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Fig. 2.9  Continued 
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(b) 

 
Fig. 2.10  Cumulative Damage; (a) Damage vs Test Point Location for a Single       

Rotor Drop Event, (b) No. of Drop Occurrences to Failure vs the Number of Test P

oints, and  (c) No. of Drop Occurrences to Failure vs Time 
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(c) 

Fig. 2.10  Continued 
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2.4.1 Support Effects 

Comparisons of Figure 2.11 (a) vs. (b), Figure 2.12(a) vs (b) and Figure 2.13 (a) 

vs. (b) result in the following conclusions for the case of doubling the support stiffness. 

Figure 2.14 shows the Rainflow histogram of effective shear stresses defined by Eq. 

(2.46). Although the orbits are similar exhibiting a strong backward whirl motion, the 

cycles of peak stress amplitudes (>1.6GPa) are seen to significantly increase as shown in 

Figure 2.13's Rainflow Histogram, and the life prediction decreases from 4 for the 

nominal case to 2 for the higher stiffness case as shown in Table 2.5. In addition, the 

duration of backward whirl motion for the high stiffness case decreases by 66%. The 

reason is that the inner race speed is quickly decreased due to higher drag force induced 

by thermal load defined in Eq (2.9). 

Comparisons of Figure 2.11 (a) vs. (c), Figure 2.12(a) vs (c) and Figure 2.13 (a) vs. 

(c) result in the following conclusions for the case of doubling the support damping. The 

orbits show a much weaker backward whirl motion which totally diminishes, the cycles 

of peak stress amplitudes (>1.0GPa) are seen to significantly decrease as shown in 

Figure 2.13's Rainflow Histogram, and the life prediction increases from 4 for the 

nominal case to 340 for the higher damping case as shown in Table 2.5.    

 

2.4.2  Journal - Inner Race Contact Friction Effect 

Table 2.4 - Case 3 considers a drop in static friction by a factor of 3 and in kinetic 

friction by a factor of 2. This causes the inner race to accelerate much slower as shown 

in Figure 2.14. Comparisons of Figure 2.11 (a) vs. (d), Figure 2.12(a) vs (d) and Figure 
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2.13 (a) vs. (d) result in the following conclusions for the case of reduced friction. The 

orbits show an elimination of backward whirl, the cycles of peak stress amplitudes 

(>1.0GPa) are negligible as shown in Figure 2.13's Rainflow Histogram, and the life 

prediction increases from 4 for the nominal case to 82,000 for the reduced friction case 

as shown in Table 2.5.  

 

 

Table 2.5 Life Prediction Summary  

 
Nominal

Case 

Case 

#1 

Case

 #2 

Case 

 #3 

Case 

 #4 

Case  

#5 

Case

 #6 

Temperature of Inner Race 

 ( o C ) 
131 197 49 43 164 45 56 

Temperature of Outer Race 

 ( o C ) 
130 196 44 33 163 37 52 

No. of Drop  

Occurrences to Failure 
4 2 340 82,000 2 8,200 30 

Time to Backward Whirl  

Motion Cessation (sec) 
12 8 1 1 9 1 4 
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2.4.3 Catcher Bearing Air Gap Size Effect 

Comparisons of Figure 2.11 (a) vs. (e), Figure 2.12 (a) vs (e) and Figure 2.13 (a) 

vs. (e) result in the following conclusions for the case of increasing the air gap by 66%. 

The orbits show a strong backward whirl motion and a large increase in peak motion, the

 cycles of peak stress amplitudes above 1.5GPa slightly increase as shown in Figure 2.13

's Rain-flow Histogram, and the life prediction decreases from 4 for the nominal case to 

2 for the larger clearance case as shown in Table 2.5. Like case (a), the duration of back

ward whirl motion decreases by 75% due to higher thermal load.   

 

2.4.4  Applied Side Load Effect  

Comparisons of Figure 2.11 (a) vs. (f), Figure 2.12(a) vs (f) and Figure 2.13 (a) vs. 

(f) result in the following conclusions for the case of applying a 500N side load at each 

magnetic bearing. This type of event may occur e.g. during controller tuning if control is 

accidentally lost due to instability at high speed, so that magnetic bearing power is still 

available to apply the side loads for mitigating the vibrations of the rotor on the catcher 

bearings. The orbits show an elimination of backward whirl, the peak contact force 

decreases by a factor of 6, the cycles of peak stress amplitudes (>1.0GPa) are negligible 

as shown in Figure 2.13's Rainflow Histogram, and the life prediction increases from 4 

for the nominal case to 8200 for the applied side load case as shown in Table 2.5. 
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  (a) Nominal case                  (b) Case #1   

 

     
                           (c) Case #2                    (d) Case #3 

 

     
                      (e) Case #4              (f) Case #5 

Fig. 2.11  Orbit Plot for Each Simulation Cases   
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   (g) Case #6 

Fig. 2.11  Continued  
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(a) Nominal case                       (b) Case #1 
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 (c) Case #2                                  (d) Case #3                
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                       (e) Case #4                              (f) Case #5                                       

 

Fig. 2.12 Contact Force vs Time      

 

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5
x 104

Time (s)

C
on

ta
ct

 fo
rc

e 
(N

)

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3
x 104

Time (s)

C
on

ta
ct

 fo
rc

e 
(N

)

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3
x 104

Time (s)

C
on

ta
ct

 fo
rc

e 
(N

)



 43

 
 (g) Case #6 

Fig. 2.12 Continued      
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  (a) Nominal case                                (b) Case #1     

                             

     
 (c) Case #2                                     (d) Case #3     

 

  
(f) Case #5                                     (g) Case #6 

 

Fig. 2.13 Shear Stress Amplitude Rainflow Histogram 
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                               (e) Case #4                                 

Fig. 2.13 Continued 
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(a) 

 
(b) 

Fig. 2.14  Angular Velocities of Inner Race and Rotor: (a) 0.3sμ = , 0.4dμ = , 

 (b) 0.1sμ = , 0.2dμ =   
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2.4.5  Rotor Drop Speed (rpm) Effect 

Comparisons of Figure 2.11 (a) vs. (g), Figure 2.12(a) vs (g) and Figure 2.13 (a) 

vs. (g) result in the following conclusions for the case of decreasing the drop speed by 

50%. The orbits show a weak backward whirl motion, the peak contact force decreases 

by 40%, the cycles of stress amplitudes through the whole range significantly decrease 

as shown in Figure 2.13's Rainflow Histogram, and the life prediction increases from 4 

for the nominal case to 30 for the lower speed case as shown in Table 2.5. The 8X 

significant increase in the no. of drop occurrence to failure by is due to the shorter 

duration of backward whirl motion and lower temperature increase in the CB. As the 

rotor speed increases, the temperature sharply heats up and life of CB decreased shown 

in Figure 2.15. 

 

Fig. 2.15 Number of Drop Occurrence to Failure and Peak Temperature 

vs Rotor Speed  
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CHAPTER III 

THE MORTON EFFECT 

 

3.1 Overview 

The synchronous thermal instability known as to Morton Effect which is due to 

asymmetric temperature distribution of journal is presented in this chapter.   

In the section 3.2, the mathematical model for tilting pad journal bearing is 

presented, and governing equation for pressure, generalized Reynolds equation for 

pressure, is used. To verify the developed model, the synchronous dynamic coefficients 

are compared with references.   

In the section 3.3 thru 3.6, the energy equation is introduced to calculate 

temperature distribution in the fluid film. For countering and minimizing the numerical 

oscillations and for insuring a converged solution void of numerical oscillations, the 

upwind scheme is employed. The temperature distribution in the fluid film from the 

developed models is compared with the references. The heat conduction equation of the 

journal is presented in the section 3.4. The flexible FE rotor model including imbalance 

due to asymmetric temperature distribution of the journal is described in the section 3.5.  

In order to reduce the computation time, the thermal mode approach and staggering 

method is proposed in the section 3.6. 

In the last section 3.7, the generalized Reynolds, energy, EOM of rotor, and heat 

conduction equation are simultaneously solved for the Morton Effect. The simulation 

results for plain and tilting pad journal bearing cases are compared with references. 
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3.2 Theoretical Model 

3.2.1 Tilting Pad Journal Bearing  

The tilting pad in shown in Figure 3.1 consists of five pads. Unlike the plain 

journal bearing geometry, the tilt pad journal bearing has two clearances; the bearing 

clearance bC  and the pad clearance pC  defined as 

b b j

p p j

C R R

C R R

= −

= −                        
(3.1) 

 

 

 

Fig. 3.1 Schematic of a Five Tilt Pad Bearing 
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Another parameter that is typical to tilt pad journal bearings and lobed bearings is the 

bearing preload bm . This preload can be adjusted to achieve the required dynamic and 

static equilibrium characteristics. This preload can also be varied from one pad to 

another. The bearing preload is given as a function of the two clearances 

1 b
b

p

C
m

C
= −

                      
(3.2) 

Another parameter that can be adjusted to alter the bearing dynamic and static 

equilibrium characteristics is the pad offset. The pad offset is simply the location of the 

pivot with respect to the leading edge of the pad. For example, the offset is 0.5 if the 

pivot is at the center of the pad. Some researcher considered the pivot flexibility, but, in 

current research the pivot is assumed to be rigid. 
 

 The film thickness expression has to take into account the pad rotation, preload, 

and pivot offset. The fluid film thickness expression for the tilt pad bearing is expressed 

by 

cos sin ( )cos( ) sin( )p p b p j ph C x y C C Rθ θ θ θ δ θ θ= − − − − − − −     (3.3) 

Theta determines the location of the particular discretized element in the circumferential 

direction. A transient term in the Reynolds equation is the temporal derivative of the 

fluid  film thickness given by 

cos sin sin( )j p
dh x y R
dt

θ θ δ θ θ= − − − −
          

(3.4) 
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3.2.2 Generalized Variable Viscosity Reynolds Equation 

The governing equation for the fluid film to obtain pressures is the Reynolds 

equation. Since viscosity is a function of temperature, Reynolds equation has to be 

modified to accommodate this. While deriving the Reynolds equation the following 

assumptions are made  

 

 a. Body, forces and fluid inertia are negligible 

 b. Pressure distribution through the thickness is constant 

 c. Curvatures of the two surfaces are large compared to the film thickness 

 d. Newtonian fluid 

 e. No slip boundary condition at the solid fluid interface 

 f. Flow is laminar. 

 g. Mass density is independent of pressure and temperature. 

 

The Reynolds equation is obtained from the 2D momentum equation and the continuity 

equations, which give pressure and velocity distribution. Integration of the momentum 

equation provides the velocity distribution in terms of pressure gradients and substitution 

of this velocity profile into the flow rate continuity equation, will give the Reynolds 

equation. The generalized variable viscosity Reynolds equation is expressed by  
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1 2 1 2 1

0
1

0 0 0

0

0 0
2

0

( ) ( ) ( ) ( ) 0

1
1

1

1

h

h z h z

h
o

h z

h

dhC p C U U h U
dt

d
C d dz d dz

d

d dz
C

d

ζ ζ
μζ ζ ζ

μ μ
ζ

μ

ζ
μ

ζ
μ

∇ • ∇ + ∇ ⋅ − + ∇ ⋅ + =

= −

=

∫
∫ ∫ ∫ ∫

∫

∫ ∫

∫

      (3.5) 

The equations shown above work for a case where the upper and lower plates both are 

moving with respect to each other. For fluid film bearing, usually the upper plate 

represents the rotating shaft, while the lower plate represents the stationary bearing 

housing. Using these boundary conditions for the fluid film bearings, the variable 

viscosity Reynolds equation will reduce to 

1 2( ) ( ) ( ) 0dhC p C U
dt

∇• ∇ + ∇ ⋅ + =
               

(3.6) 

The variable viscosity Reynolds equation is used to solve for pressures when a 

thermohydrodynamic problem is considered. For a thermohydrodynamic problem 

viscosity is a function of temperature. For isoviscous problems, viscosity is constant 

throughout the fluid film, in which case the variable viscosity Reynolds equation 

becomes 

3 3

12 12
h p h p hU

x x z z xμ μ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠            
(3.7) 

Using the FEM method, we solved the variable viscosity Reynolds equations. 

Three node simplex triangular elements are used to discretize the fluid film. The 
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reference [42] clearly illustrated the derivation of the finite element formulation. The 

problem boundary is comprised of two regions, first, region over which pressure is 

prescribed and second, region over which flow/flux is prescribed. Only half the bearing 

length needs to be discretized because of symmetry of the bearing. At the centerline, no 

flux/flow condition is imposed. The Reynolds boundary condition for zero pressure in 

the cavitated region and zero normal, pressure gradient along the cavitation boundary is 

imposed on the numerical solution.   

Reynolds equation is solved on each pad separately and simultaneously and later 

sum up. The force in the pad coordinate system can be evaluated as;  

2

1

2

0

sin
2 ( , )

cos

L
r

t

F
P Z dZ d

F
θ

θ

θ
θ θ

θ
⎧ ⎫ ⎡ ⎤

=⎨ ⎬ ⎢ ⎥
⎣ ⎦⎩ ⎭

∫ ∫             (3.8) 

Subscripts r and t indicate the radial and tangential force acting on the pad respectively. 

θ  is the circumferential coordinate on that particular pad. Similarly the sum of the 

moments on each pad about the pivot is evaluated;  

2

1

2

0

sin
2 ( , )

cos

L

jM r P Z R dZ d
θ

θ

θ
θ θ

θ
⎡ ⎤

= × ⎢ ⎥
⎣ ⎦

∫ ∫           (3.9) 

where r is the distance between the location of θ  and the pivot. The moments are 

needed for updating the pad tilt angles.   

 

3.2.3 Determination of Linearized Dynamic Coefficients 

For a given static load from weight, gear forces, hydraulic load, etc. the static 

equilibrium position is determined in order to provide a point about which the linearized 
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dynamic coefficients are next calculated. The requirement at the static equilibrium 

position is that, the resultant forces in the global coordinate directions should vanish. 

This can be shown as; 

sin
cos

x X

y Y

f F W
f F W

α
α

= −
= −                   

(3.10) 

A vector can be expanded using Taylor series in the following way; 

2
2

2( ) ( )New Cur Cur New Cur Cur New Cur
F FF F X X X X X X
X X
∂ ∂

= + − + −
∂ ∂      

(3.11) 

The equations can be iteratively solved to find the updated journal positions until the 

equilibrium is achieved. This iterative scheme is also called 2D Newton Raphson 

scheme. The equations for the 2D Newton Raphson  technique are 

,
, ,

,
, ,

( ) ( ) 0

( ) ( ) 0

cur Cur
cur Cur cur Cur

cur Cur
cur Cur cur Cur

X X
New Cur New Cur X X Y

X Y X Y

Y Y
New Cur New Cur Y X Y

X Y X Y

f fX X Y Y f
X Y

f fX X Y Y f
X X

∂ ∂
− + − + =

∂ ∂

∂ ∂
− + − + =

∂ ∂     

(3.12) 

Given an initial guess, the simultaneous equations shown above are solved for the next 

equilibrium location. The partial derivatives are obtained by perturbing the journal 

location at the current equilibrium guess by a finite value data, in X and Y directions, 

and evaluating forces. In general, the finite perturbed values for displacement and tilt 

angle are selected by  

0.01
0.01

b

allow

X Y C
δ δ

Δ = Δ = ×

Δ = ×
                    (3.13) 

where allowδ is the allowable range of angles for each pad those do not cause an 
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interference between pad and journal. These partial derivatives in Eq.(3.12) are written 

by 

,

,

,

,

( , ) ( , )
2

( , ) ( , )
2

( , ) ( , )
2

( , ) ( ,

cur cur

cur cur

cur cur

cur cur

X cur cur X cur curX

X Y

X cur cur X cur curX

X Y

Y cur cur Y cur curY

X Y

Y cur cur Y cur curY

X Y

F X X Y F X X Yf
X X

F X Y Y F X Y Yf
Y Y

F X X Y F X X Yf
X X

F X Y Y F X Y Yf
X

+ Δ − −Δ∂
=

∂ Δ

+ Δ − −Δ∂
=

∂ Δ

+ Δ − −Δ∂
=

∂ Δ

+ Δ − + Δ∂
=

∂
)

2 YΔ

       (3.14) 

The pad angles are adjusted to make the pad moments all zero at each iterative X and Y 

position. This may be accomplished in one of the following ways 

(a)  Determine the allowable range of angles for each pad those do not cause an 

interference between pad and journal. Increment the pad angle in fixed steps 

through this range seeking the angle that causes the moment to have a zero 

crossing. Repeat this for all pad angles. 

(b)  Same as (a) but utilized interval halving for angle search 

(c)  Same as (a) but utilized Newton Raphson for the angle search 

The stiffness are defined by: 

( ) ( )( ) ( ) ( ) ( ), ,
2 2 2j

X j X jX X X X
XX XY X

j

F FF X F X F Y F YK K K
X Y δ

δ δ
δ

+Δ − −Δ+Δ − −Δ +Δ − −Δ
= − = − = −

Δ Δ Δ

( ) ( )( ) ( ) ( ) ( ), ,
2 2 2j

Y j Y jY Y X X
YX YY Y

j

F FF X F X F Y F YK K K
X Y δ

δ δ
δ

+Δ − −Δ+Δ − −Δ +Δ − −Δ
= − = − = −

Δ Δ Δ

( ) ( ) ( ) ( ) ( ) ( )
, ,

2 2 2j j j j

j j j j Y j Y j
X Y

j

M X M X M Y M Y F F
K K K

X Yδ δ δ δ

δ δ
δ

+Δ − −Δ +Δ − −Δ +Δ − −Δ
= − = − = −

Δ Δ Δ

                           

(3.15) 
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The damping is computed in the same manner with the delta terms replaced by delta-

dots (perturbation velocities). The finite perturbed velocities are selected by  

0.01

0.01
b

allow

X Y Cϖ

δ ϖ δ

Δ = Δ = × ×

Δ = × ×
                  (3.16) 

where ϖ  is a spin speed (rad/s). 

The damping is defined by 

( ) ( )( ) ( ) ( ) ( ), ,
2 2 2j

X j X jX X X X
XX XY X

j

F FF X F X F Y F YC C C
X Y δ

δ δ
δ

+Δ − −Δ+Δ − −Δ +Δ − −Δ
= − = − = −

Δ Δ Δ

( ) ( )( ) ( ) ( ) ( ), ,
2 2 2j

Y j Y jY Y X X
YX YY Y

j

F FF X F X F Y F YC C C
X Y δ

δ δ
δ

+Δ − −Δ+Δ − −Δ +Δ − −Δ
= − = − = −

Δ Δ Δ

( ) ( ) ( ) ( ) ( ) ( )
, ,

2 2 2j j j j

j j j j Y j Y j
X Y

j

M X M X M Y M Y F F
C C C

X Yδ δ δ δ

δ δ
δ

+Δ − −Δ +Δ − −Δ +Δ − −Δ
= − = − = −

Δ Δ Δ

                           

(3.17) 

These stiffness and damping are non-frequency reduced values. These linearized 

dynamic coefficients in matrix are written by 

,JJ JP JJ JP

PJ PP PJ PP

K K C C
K C

K K C C
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦              

(3.18) 

The calculated stiffness and damping are non-dimensional values defined by 

dim
p

non

C
K K

W
=  , dim

p
non

C
C C

W
ω

=  
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3.2.4 Synchronously Reduced Dynamics Coefficients 

API standard defined the linear dynamic coefficients as the synchronously reduced 

dynamic coefficients. This is the type of tilting pad journal bearing coefficient required 

in the unbalance response and stability analyses required by API 617. The synchronously 

reduced dynamic coefficients are defined by 

* 1

* 1

1 ( )

1 ( )

JJ JJ JP PP PJ

JJ JJ JP PP PJ

C imag Z Z Z Z

K real Z Z Z Z

ν

ν

−

−

= ⋅ −

= ⋅ −
             

(3.19) 

where 

2

JJ JJ JJ

JP JP JP

PJ PJ PJ

PP PP PP PP

Z i C K
Z i C K
Z i C K

Z i C K M

ν
ν
ν

ν ν

= +

= +

= +

= + −

 

where ν is the spin speed for synchronously reduced coefficients.  

 

3.2.5 Verification 

The present model is compared with reference[43]. Figure 3.2 shows the 5 pad tilt 

pad bearing and its geometry. According to pressure distribution shown in Figure 3.3, the 

pad 1,2 are unloaded. The obtained results are listed in Table 3.1 and 3.2. As seen from 

the results shown in the tables, a very good agreement was obtained. This confirms the 

validity of the current approach.   
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Fig. 3.2 Five Tilt Pad Bearing Geometry 

 

 

 

 

Fig. 3.3 Pressure Distribution at EP  
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Table 3.1 Full (non-dimensional) Dynamic Coefficients; (a) Stiffness and (b) 

Damping 

(a) 

 

 

    (b) 
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Table 3.2 Synchronously, Non-dimensional) Reduced Dynamic Coefficients; (a) 

Stiffness and (b) Damping 

(a) 

 

(b) 
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3.3 Calculation of Lubricant Temperature in the Bearing’s Oil Film 

3.3.1 Energy Equation 

The temperature distribution in the fluid film is governed by the energy equation. 

The solution of the energy equation requires pressure distribution, velocity distribution, 

and viscosity distribution. The Reynolds equation and the energy equation are coupled 

via the viscosity distribution. When the problem is solved for constant viscosity, the 

energy equation need not be solved, and the Reynolds equation and the energy equation 

are both uncoupled. The updated viscosity distribution is used in solving the Reynolds 

equation.  

For a laminar, incompressible, Newtonian fluid, the energy equation is given by  

2 22 2

2 2p
T T T T T u wc u v k
t x y y yx y

ρ μ
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = + + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂∂ ∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦     
(3.20) 

Viscosity has a strong dependence on temperature and a weak dependence on pressure. 

Viscosity is assumed to follow an exponential relationship given by 

0( )
0

T Te βμ μ − −=                      (3.21) 

The finite element method FEM method is utilized for solving energy equation. 

Four node isoparametric elements are used for discretizing the problem domain. The 

derivation of the “weak” form of this problem, and full finite element formulation is 

illustrated in reference [42]. The following boundary conditions are applied for all the 

cases except for the Morton effect simulation: 

 

 (a) The mixing temperature theory [44] is used for the supply temperature. 
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 (b) The shaft temperature is assumed not to vary circumferentially.  

         The shaft   temperature  is given as a constant at the shaft fluid film interface. 

 (c) The bearing is assumed to be insulated. This is a good valid assumption as the     

   solution obtained using this boundary condition will always give a temperature field 

   which is hotter than when there is heat transfer to surroundings. This will give a    

   conservative solution.  

(d) For the cavitation region, the dissipation term in the energy equation is set to zero.  

In  addition, when cavitation occurs, the film thermal conductivity is replaced with  

air thermal conductivity.  

 

3.3.2 Upwind Scheme [45] 

The finite element formulation yields the set of algebraic equations for nodal 

temperatures; 

[ ]{ } { }T TB T F=                  (3.22) 

This set of equations can be solved using any unsymmetric banded solver. Matrix Bt 

contains the coefficients obtained from the convection and conduction terms, while 

vector T contains the temperatures, and the vector { }TF  contains the coefficients of the 

dissipative term and boundary conditions. 

The presence of first order derivatives in the energy equation causes the solution to 

oscillate about its exact value. Whenever these first order derivatives increase in 

magnitude, the numerical oscillations in solution increase resulting in erroneous results. 

For countering and minimizing the numerical oscillations and for insuring a converged 
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solution void of numerical oscillations, the classical Galerkin scheme is modified by 

employing upwind techniques. In these techniques isoparametric shape functions are 

retained, but, the weight functions are modified depending on the magnitude and 

direction of the local flow parameter, the Peclet number. The modified weight function 

can be represented as; 

( , ) ( , ) ( , )W N Fη ζ η ζ α η ζ= +             (3.23) 

N is the shape function for isoparametric element, while alpha is a variable function of 

the magnitude and direction of flow, and the local Peclet number, and varies from 

0(classical Galerkin scheme) to 1(full upwinding), and F is the polynomial upwinding 

function whose order can be varied.  

The one dimensional isoparametric shape function are given by 

1
1( ) (1 )
2

N ζ ζ= −  

2
1( ) (1 )
2

N ζ ζ= +  

3
1( ) (1 )
2

N ζ ζ= +  

4
1( ) (1 )
2

N ζ ζ= −
                            

(3.24) 

The natural coordinate direction is shown in the Figure 3.4 for a typical 4 node 

isoparametric element. The one dimensional shape functions for the other coordinates 

are also similar, and denote by N. The shape function for a four node bilinear 

isoparametric element then becomes; 
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( , ) ( ) ( )i i iN N Nη ζ η ζ=                 (3.25) 

The corresponding one dimensional weight function in η and ς coordinate directions are 

given by 

3( ) ( ) (1 )(1 )
4
3( ) ( ) (1 )(1 )
4

i i ij

i i ij

W N

W N

η η α η η

ζ ζ β ζ ζ

= + − +

= + − +
          

(3.26) 

α and β are upwinding parameters dependent on the local velocity magnitude and 

direction on the side i-j of the element. These parameters are functions of local velocity, 

element size, and thermal conductivity. The local Peclet number can be defined as 

iju h
Pe

k
=

                      
(3.27) 

In the above equation, h is the element size in the direction of interest, k is the thermal 

conductivity, and ijU is the velocity of the side i-j of the element under consideration. 

This velocity is given by 

1 ( )
2ij i j iju u u l= + ⋅

                
(3.28) 

In the above equation iu  and ju  represent the velocity vectors at the nodes i and j, and 

the directional unit vector is given by ijl for the side i-j. The 2 dimensional weight 

functions then, can be represented as; 

( , ) ( ) ( )i i iW W Wη ζ η ζ=                (3.29) 

The value of alpha and beta can be varied manually from 0 to 1 or an optimum value can 

be found depending on the local Peclet number as follows; 



 65

2(coth( ))
2ij ij

Pe
Pe

α β= = −
             

(3.30) 

To check the validity of including upwinding in the energy equation finite formulation, 

simple 2D problem is solved. Its problem domain and boundary conditions are shown in 

Figure 3.5.The results shown in Figure 3.6 show a minimization in the numerical 

oscillations with the inclusion of upwinding.  

\  

Fig. 3.4     Four Node Isoparametric Element in Natural Coordinate Domain 

 

 

Fig. 3.5 Model Verification for Steady State Energy Equation, 2D Problem Domain 

and Boundary Condition 
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Fig. 3.6 Model Verification for Steady State Energy Equation; Results for U=95, 

with and without Upwinding 
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3.3.3 Verification 

The developed model compared with reference [46]. Figure 3.7 shows the 4 pad 

tilt pad bearing and its geometry. As mentioned earlier, to solve Energy equation, 

pressure distribution determined. Figure 3.8 shows the pressure distribution for each pad.  

Figure 3.9 shows the film thickness (unit: 510 m− ) and temperature ( oC )  distribution. The 

film thickness of pad #1,2 is greater than that of pad #3,4. As the film thickness 

decreases, the temperature in the lubricant also increases. Comparison is made between 

current simulation results and reference [46].  

 

 

 

Fig. 3.7 Four Tilt Pad Bearing Geometry  
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Fig. 3.8 Pressure Distribution at Each Pad 
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(a) Pad #1 

 

(b) Pad #2 

Fig. 3.9 Temperature Distribution at Each Pad 
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(c) Pad #3 

 

 

(d) Pad #4 

Fig. 3.9 Continued 
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Fig. 3.10 Temperature Distribution Comparison 
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The temperature distribution at pad #3 shown in Figure 3.10 is compared with 

reference[46]. In the current research, there is no heat transfer through pad, but, in 

reference[46] heat transfer between lubricant and pad or surroundings is considered. Due 

to such boundary condition, the temperature distribution is slightly different from results 

from reference[46]. Figure 3.11 presents both theoretical and experimental temperature 

variation. The big difference is that the current model did not consider elastic 

deformation of pad. But, the theoretical temperature profile is similar to experiment.    

 

 

 

Fig. 3.11 Temperature Distribution; Theory and Experiment 
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3.4  Heat Conduction Equation  

The journal temperature distribution is calculated by solving the transient heat 

conduction given by 

 
2 2

2 2

T T c T
k tx y
ρ∂ ∂ ∂

+ =
∂∂ ∂

                (3.31) 

It is assumed that there is no axial thermal gradient. The finite element method FEM 

method is utilized for solving heat conduction equation. Four node isoparametric 

elements are used for discretizing the problem domain. For the boundary conditions, 

temperature and flux continuity boundary conditions are assigned to the interface 

between journal and lubricant.  

JL
L s

y r y r

TT
k k

x x= =

∂∂
=

∂ ∂
               (3.32) 

L sy r y r
T T

= =
=                     (3.33) 

 

3.5 Flexible Rotor Model with Thermal Unbalance 

The asymmetric heat caused shaft bent at bearing as shown in Figure 3.12. The 

bow angle is calculated by  

 
2 /2

2

0 0 /2

( ) ( , , , )
r L

i
x y

L

t i T r z t r e dzd dr
I

π
φξβ β β φ φ

−

= + = ∫ ∫ ∫       (3.34) 

where ξ  and I are thermal expansion coefficient and the second moment of area of the 

journal, respectively.  

The flexible rotor is modeled by Timoshenko beam elements considering shear 
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deformation. The equation of motion for flexible rotor bearing system can be written as:  

( )R R R R im BM q C G q K q F F+ +Ω + = +            (3.35) 

where MR , CR , GR and KR are the rotor mass, damping, gyroscopic and stiffness 

matrices, respectively. Fim is the external force vector due to imbalance. FB is the 

nonlinear bearing force. For a bent rotor, the total deflection of the rotor can be 

expressed by  

e tq q q= +                       (3.36) 

where qe and qt are deflection due to imbalance and thermal bow, respectively. 

Substitution Eq (3.36) into Eq (2.31) yields  

( ) ( )( )R e t R R e t R e im BM q q C G q q K q F F+ + +Ω + + = +           (3.37) 

This can also be written as  

( ) ( )R e R R e R e im B R t R R tM q C G q K q F F M q C G q+ +Ω + = + − − +Ω    (3.38) 

If the damping of rotor is negligible, the Eq (3.38) becomes  

R e R e R e im B R tM q G q K q F F M q+Ω + = + −            (3.39) 

The last term of the right hand side indicates the equivalent imbalance force due to 

thermal imbalance at the overhung mass. The equivalent thermal imbalance force, which 

is similar to initial mechanical imbalance, is written by  

2 cos( )t
x d dF m e tω ω ϕ= +                    (3.40) 

2 sin( )t
y d dF m e tω ω ϕ= +                    (3.41) 

where de  and φ are defined by 
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2 2
d d y xe L β β= +                   (3.42) 

1tan y

x

β
ϕ

β
− ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                   (3.43) 

Ld is distance between bearing and overhung mass.   

 

 

Fig. 3.12 Thermally Induced Bend in a Rotor with an Overhung Mass 
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3.6. Thermal Mode Analysis Combined Staggered Integration Scheme 

3.6.1 Thermal Mode Analysis [47] 

In thermal problems, as in structural mechanics, a time-varying solution may be 

obtained by the modal method. If material properties are not temperature-dependent, and 

the solution is dominated by a few of the lowest eigenmodes and is needed over a long 

time span, then the modal method is favored. This greatly reduces the computation time 

without sacrificing significant accuracy. 

The equations to be solved have the form 

[ ] [ ]C T K T F+ =                    (3.44) 

The procedure is very similar to that used for structural dynamics. It is outlined as 

follows. One first considers the eigenproblem 

( )[ ] [ ] 0K C Tλ− =                   (3.45) 

If each eigenvector {T} is normalized with respect to [C], that is, if { } [ ]{ } 1TT C T = , then 

[ ] [ ][ ] [ ]T C Iφ φ =                   (3.46) 

[ ] [ ][ ] [ ]T Kφ φ λ=                   (3.47) 

where [ϕ] is the modal matrix; that is, a matrix whose columns are normalized 

eigenvectors{T}, [I] is a unit matrix, and [λ] is the diagonal eigenvalue matrix. Nodal 

temperatures are transformed to generalized temperatures {Z} by 

[ ]{ }T Zφ=                         (3.48) 

where the Z in {Z} state the proportion of each eigenvector in the transformation. Using 

this modal approach, we obtained uncoupled equations. 
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{ } [ ]{ } [ ]TZ Z Fλ φ+ =                 (3.49) 

To verify the thermal mode approach, a simple heat conduction problem is solved 

as shown in Figure 3.13. Temperature distribution from the thermal mode approach is 

similar to solutions of original equations. As mode number used in the simulation 

increases, the simulation time significantly increases shown in Figure 3.14.   

 

 
                                (a)                                                          (b)     

                    
 (c)                                                               (d) 

Fig. 3.13  Verification of Thermal Mode Approach; (a) Computation Domain, (b) 

Boundary Condition, (c) Transient Results, and (d) Steady State Solution 
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Fig. 3.14 Computation Time vs Mode Number 
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approach reduces computation time a little bit. In order to significantly reduce 

computation time, staggering method is applied to simulation. A staggered integration  

shown in Figure 3.17 scheme is proposed to greatly increase the computational 

efficiency without losing the accuracy of solutions for a dynamic model, which has local 

nonlinearities and two types of solutions with different time constants. Staggered 

integration scheme whose cycle is 100 revolutions consists of two stages. At the first 

stage (1) which is from 1 to 10 revolutions, the Reynolds, energy, heat conduction, and 

EOM for rotor are solved. At the ninth revolutions, the temperature and viscosity data 

saved and applied is to the next stage. The second stage (2) is from 11 to 100 

revolutions, the heat conduction equation is only solved. After the completion of second 

stage, the bow angle is calculated and is used as thermal imbalance defined by Eqs 

(3.40)-(41). This process can be used alternately several times to obtain extended 

simulation results. 
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Fig. 3.15 Flowchart for Calculating Temperature Difference of Journal for a Given 

Orbit 



 81

                   

Fig. 3.16 Flowchart for Full Time Transient Analysis 
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Fig. 3.17 Staggered Integration Scheme. 
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3.7 Simulation Results and Discussions 

3.7.1 Verification for Morton Effect Model  

Plain journal bearing: In order to verify current approach, the temperature 

difference of journal for plain journal bearing is compared with reference [16]. The plain 

journal bearing has two circular two-inlet and the simulation parameters are listed in 

Table 3.3. The static eccentricity ratio ( 0ε ) and attitude angle ( 0ψ ) are 0.7 and 38º. The 

spin speed is 10,000 rpm (1047 rad/s). Figure 3.18 shows the comparison between 

reference and current approach. As the forward whirl radius ratio increases, the 

temperature difference also increases. But the relationship between whirl radius ratio and 

temperature difference is not linear. The temperature difference resulted from current 

approach is slightly higher than that of reference. This is due to 1) insulation boundary 

condition at the bearing side, 2) ignoring axial thermal gradient. The temperature 

distribution of journal surface is sinusoidal, and phage lag is identical to reference. The 

pure sinusoidal temperature on the surface of journal indicated that temperature across 

journal varies linearly.  

Tilting pad journal bearing: The open literature does not provide any results for 

predicted or measured temperature difference across the journal, for tilting pad bearings. 

The available data in the references shows only the unstable spin speed due to thermal 

gradient on the journal to demonstrate the journal asymmetric heating for titling pad 

journal application, four pad titling pad journal bearing is considered and the geometric 

and material data shown in Table 3.4 corresponds to the experimental bearing of Fillon 

et al. [46]. 
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Table 3.3 Simulation Parameters 
 

 Journal Lubricant Air   
Mass Density 

( 3/kg m ) 7850 850 1.2 
Viscosity 
 ( Pa s ) 0.0183 

Thermal Conductivity 
( /W mK ) 

50 0.15 0.025 
Viscosity  

Exponent ( 1 / K ) 
0.0295 

Specific Heat Capacity 
( /J kgK ) 460  2000  1000 

Inlet  
Temperature ( oC ) 

50 

Radius ( m )  0.1    
Supply 

 Pressure ( MPa ) 
1.2, 1.5 

Length ( m ) 0.45   
Bearing  

Clearance ( mμ ) 72.6 

 

 
(a) 

Fig. 3.18 Journal Surface Temperature Comparison; (a) ∆T (pk-pk) vs fε , 

 (b) Temperature Distribution on the Journal Surface at z/L=0  and (c) Reference 

Results 
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(b) 

 

 
(c) 

Fig. 3.18 Continued  
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First, consider a given circular (elliptic) orbit, which produces the journal 

temperature distribution shown in Figure 3.19. As the number of revolutions increases, 

the temperature in the shaft approaches steady value. As we expected, there is a thermal 

gradient along the circumferential direction. We observed in simulation results that 

temperature across journal varies linearly shown in Figure 3.20 and that as the radius of 

orbit increases, the temperature difference also increases but it is not linearly 

proportional to the orbit size shown in Figure 3.21. Figure 3.22 shows the temperature 

distribution of journal for some forward whirl cases.  

 

Table 3.4 Bearing Geometry and Lubricant Properties 

Parameter Value Parameter Value
Pad Parameters Lubricant Parameters 

Journal Radius ( m ) 0.0498 Supply Pressure ( MPa ) 0.5 
Axial Pad Length ( m ) 0.7 Supply Temperature ( oC ) 40 

Pad Thickness ( m ) 0.02 Viscosity ( cP ) 27.7 
Radial Pad Clearance ( mμ ) 68 Viscosity Exponent (1/o C ) 0.034 
Angular Dimension of Pad 

(deg) 
75 Lubricant Density ( 3/kg m ) 860 

Pivot Angles of Pads (deg) 
45, 135, 225, 

315 
Specific Heat Capacity 

( /J kgK ) 2000 

Preload Factor 0.68 
 

Offset 0.5 
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(a) 

Fig. 3.19 Temperature Distribution vs Theta vs Revolutions; Forward Whirl 

Radius ratio (a) 0.05, (b) 0.15 after 100 Revolutions.    
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(b) 

Fig. 3.19 Continued 
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                             (1)                                                             (2) 

   

                          (3)                                                           (4) 

Fig. 3.20 Temperature Variation across Journal 



 90

 

 

Fig. 3.21 Temperature Difference vs Forward Whirl Radius Ratio 

 

 

(a)                                               (b) 

Fig. 3.22 Temperature Distribution of the Journal; Forward Whirl Radius Ratio (a) 
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The temperature difference, moments, and phase lag between high spot and hot spot 

summarized in Table 3.5 depending on forward whirl radius ratio. According to Keogh 

and Morton [14], the phase lag is caused by convective heat transfer within lubricant 

film. As the orbit size increase, the phase lag approaches to certain values.  

An elliptic orbit can be decomposed forward circular orbit and backward circular 

orbit. We expected that temperature difference for elliptic orbit case is equal to sum of 

the temperature difference for each forward and backward. However, simulation results 

shown in the Figure 3.23 and Table 3.6 indicate that the temperature difference for 

elliptic orbit cannot be represented by the sum of temperature difference of forward and 

backward whirl. It means that in general the moments due to the thermal imbalance for 

elliptic motion may not equal the sum of moments from forward and backward whirl 

motion.  

 

Table 3.5 Simulation Results; Temperature Difference, Phase Lag, and Moments 

for Steady State 

Forward Whirl 

Radius Ratio 
0.05 0.1 0.15 0.2 

Temperature 

Difference ( oC ) 
0.4 0.7 0.85 0.95 

Phase Lag 90 60 30 30 

Mx (Nm) 0 62 93 104 

My(Nm) 43 45 0 0 



 92

 

Fig. 3.23 Temperature Distribution for Elliptic Motion and 

Forward(0.1)+Backward(0.05) 
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To verify the staggering method, the full simulation results are compared to results 

from staggering method. The comparison shown in the Figure 3.24 and Figure 3.25 

shows that there is small error, less than 1%. In addition, the computation time 

significantly reduced from 6 hr to 1hr for 100 rev.  

 

Table 3.6 Temperature difference and Moments after 200 rev 

Whirl 
type 

Forward(0.1)  
+ Backward(0.05) Elliptic 

Temperature 
Difference ( oC ) 0.5 0.4 

Moment, 
Mx(Nm) 33 25 

Moment, 
My(Nm) 42 35 
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Fig. 3.24 Comparison between Staggering Method and Full Simulation 
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(a) 

Fig. 3.25 Temperature Distribution (a) Full simulation (b) Staggering Method 
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(b) 

Fig. 3.25 Continued   
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The synchronous stabilty of the rotor-bearing system is checked by comparing the 

using the developed code with the results of de Jongh and van der Hoeven[48]. 

According to their experiment, during operation, these compressors exhibited large 

vibration levels above 7,200 rpm and the machines had to be shut down. The rotor 

bearing system consists of large overhung mass and two tilt pad jorunal bearing. The 

FEM model are given in Figure 3.26. The bearing data at the non-drive end (NDE) near 

the overhung mass is listed in Table 3.7 and Figure 3.27 shows the experiment results of 

de Jongh. The Morton effect simulation is only applied on the bearing near the overhung 

mass.   

 

 

DE: Drive end, NDE: Non-drive end 

Fig. 3.26 FEM Rotor Model 
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Table 3.7 Input Parameters  

Parameter Value Parameter Value
Pad parameters Lubricant Parameters 

Axial Pad Length ( m ) 0.0508 Supply Pressure ( MPa ) 0.132 
Pad Thickness ( m ) 0.0127 Supply Temperature ( oC ) 50 

Radial Pad Clearance  
( mμ ) 178 Viscosity ( cP ) 20.3 

Angular Dimension of Pad 
(deg) 

56 
Viscosity Exponent 

(1/ oC ) 
0.031 

Pivot Angles of Pads (deg) 
54, 126, 198, 270, 

342 
Lubricant Density ( 3/kg m ) 860 

Preload Factor 0.5 
Specific Heat Capacity 

( /J kgK ) 2000 

Offset 0.5 

 

Journal/Bearing Parameters 
Radius of Journal ( m ) 0.0508 

Bearing Load ( N ) 2180 
Overhang Mass ( kg ) 113 
Overhang Distance  

( m ) 
0.27 

Initial Mechanical 
Unbalance 
 ( kg mm⋅ ) 

0.27 

 

 

The spin speeds are selected as 7200, 8000, and 8500 rpm. First, we simulated the 

transient analysis without considering asymmetric heating on the shaft. For three spin 

rpm, there is no large vibration level increase. However, with considering asymmetric 

heating the simulation results shown in Figure 3.28 and Figure 3.29 indicates the large 
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vibration level change above 7200 rpm. The vibration level of simulation results is less 

than that of experiment by 20%. However, the simulation results clearly show that the 

increasing vibration level due to asymmetric heating of journal. In addition, it is worth to 

note that the orbit starts to increase until it reaches its maximum value, and then the orbit 

begins to decreases by the certain level which is greater than the orbit without including 

asymmetric heating. During the simulation, the orbit oscillates between maximum and 

minimum level. The gradually increasing temperature difference of journal leads to big 

vibration, which in turn changes the bearing oil temperature, which affects the 

temperature distribution of journal. This chain of events shown in Figure 3.30 is a limit 

cycle which is stable oscillation of the envelope of the amplitude of synchronous 

vibration.  

 

 

Fig. 3.27 Test Results by de Jongh et al. 

   

  



 100

 

(a) 

 
(b) 

Fig. 3.28  Morton Effect Simulation Results; (a) 7200, (b) 8000, and (c) 8500 rpm 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
-5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
x 10

-5

X (m)

Y
 (m

)

 

 

No temperature gradient
temperature gradient

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
-5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
x 10

-5

X (m)

Y
 (m

)

 

 
No temperature gradient
temperature gradient



 101

  

(c) 

Fig. 3.28  Continued 
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(a) 

 

(b) 

Fig. 3.29  Temperature Difference vs Revolutions; (a) 7200, (b) 8000 rpm, and (c) 

8500 rpm 
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(c) 

Fig. 3.29  Continued 
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(a) 

 
(b) 

Fig. 3.30 Limit Cycle at 8000 rpm; (a) Maximum Magnitude of X, (b) Maximum 

Magnitude of Y, and (c) Orbit Plot 
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(c) 

Fig. 3.30 Continued 

 

In order to reduce the synchronous instability, some methods such as redesign 

bearing or shaft and change viscosity properties are suggested. In current study, the two 

methods are adapted to mitigate the Morton effect; i) reduce bearing clearance and ii) 

change lubrication viscosity. Figure 3.31 shows the effect of these methods. Even though 

the reducing bearing clearance induces the higher viscous shear stress and larger 

temperature difference, the increasing stiffness and damping result in a machine less 

sensitive to overhung imbalance. However, the effect of reducing bearing clearance is 

not significant in this case. Another method, the change of lubricant, the lower viscosity 

reduces the lower viscous shear, and thus less asymmetric heating. Therefore, the 

vibration level is decreased by about 50%.  
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(a) 

Fig. 3.31 the Methods to Mitigate the Morton Effect; (a) Reducing the Bearing 

Clearance and (b) Lower Viscosity Lubricant 
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(b) 

Fig. 3.31 Continued   
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CHAPTER IV 

PRESSURE-DEPENDENT VISCOSITY REYNOLDS EQUATION 

 

4.1 Overview 

The Reynolds equation is the governing equation for fluid film motion in the fluid 

bearing applications. In the derivation, there are some assumptions; ; i) fluid is 

Newtonian fluid, ii) inertia and body force terms are negligible compared with the 

pressure and viscous terms, iii) there is a negligible variation of pressure across the fluid, 

and iv) viscosity is constant.  However, in the EHL problem which occurred in rolling 

bearing element, the assumption that viscosity is constant is not valid.  

In this chapter, the 2D modified pressure-dependent Reynolds equation for 

incompressible and isothermal liquid is derived. Even though the lubricant subjected to 

high pressure should no longer be considered incompressible, it is assumed that the 

density effect is much smaller than the viscosity effect. Furthermore, for the simplicity, it 

is assumed that the angular deformation of lubricant is negligible in the fluid film. After 

having described the new mathematical formulation for Reynolds equation, the effects of 

pressure-viscosity are studied in some cases-rigid rigid ball bearing and elastic ball 

bearing. Finally, the pressure distributions obtained from 2D modified Reynolds 

equation are compared with those of the classical Reynolds equation.  

 

4.2 Derivation of Modified Reynolds Equation 

The classical Reynolds equation represented by equation (4.1) is derived under 
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assumptions that i) fluid is Newtonian fluid, ii) inertia and body force terms are 

negligible compared with the pressure and viscous terms, iii) there is a negligible 

variation of pressure across the fluid, and iv) viscosity is constant.  

3 3 ( )
12 12 3 2x
h p h p h h p U hQ

x x y y x x x x
α

μ μ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

        (4.1) 

In order to consider pressure dependent viscosity effect, the Cauchy stress T is employed 

as a start point. For the incompressible fluid, if the Cauchy stress T  is linear in stretching 

tensor D , the stress is expressed by [32] 

2 ( )T pI p Dμ= − +                   (4.2) 

where p  is pressure acting on the fluid and ( )pμ  is a pressure-dependent viscosity. The 

stretching tensor D is defined by 

1 1
2 2

1 1
2 2

1 1
2 2

u v u w v
x x y x z

v u v w uD
x y y y z

w u w u w
x z y z z

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎢ ⎥= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞⎢ ⎥+ +⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

          (4.3) 

where u, v, and w are velocity of fluid along the x, y, and z direction.  

For the classical Reynolds equation, the viscosity term in Eq. (4.2) is considered as 

constant. As the procedure for deriving the classical Reynolds equation, on substituting 

the stress term given by Eq.(4.2) into the balance of linear momentum written by eq. 

(4.4) 

vT b
t

ρ ρ ∂∇ + =
∂

i                    (4.4) 
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we obtain 

( ) 2 [ ( )] vpI p v D grad p b
t

μ μ ρ ρ ∂−∇ + Δ + + =
∂

i             (4.5) 

where b  denotes the specific body force. By assumption that the body force can be 

neglected and restricting our attention to steady state flows of incompressible fluid, Eq. 

(4.5) becomes  

( ) 2 [ ( )]pI p v D grad pμ μ∇ = Δ +i             (4.6) 

Other expressions of Eq. (4.6) are as follows 

2 2 2

2 2 2( ) 2p u u u u v u w vp
x x y z x x x y y x z z

μ μ μμ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

   (4.7) 

2 2 2

2 2 2( ) 2p v v v v v u w vp
y x y z y x x y x y z z

μ μ μμ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
   (4.8) 

2 2 2

2 2 2( ) 2p w w w w w u w vp
z x y z z z x z x y z y

μ μ μμ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + + + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

   (4.9) 

It is assumed that a variation of pressure across the fluid film is negligible and the fluid 

film is thin. Eqs (4.6)~(8) become 

2

2( ) 2 ' 'p u p u v u pp
x z x x x y y

μ μ μ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
          (4.10) 

 
2

2( ) 2 ' 'p v p v v u pp
y z y x x y x

μ μ μ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
        (4.11) 

The third term of right hand side in Eqs. (4.10) and (4.11) represents the angular 

deformation of fluid. By assumption that angular deformation is negligible, Eqs (4.10) 

and (4.11) yields 
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2

2( ) 2 'p u p up
x z x x

μ μ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
               (4.12) 

2

2( ) 2 'p v p vp
y z y x

μ μ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
               (4.13) 

Since the pressures has been assumed to be a function of x and y only, these equations 

can be integrated directly to give expressions for the velocity.  

2

1 2
1 1 2 '

2
u p zu c z c
x x

μ
μ

∂ ∂⎛ ⎞= − + +⎜ ⎟∂ ∂⎝ ⎠
             (4.14) 

2

1 2
1 1 2 '

2
v p zv c z c
y y

μ
μ
⎛ ⎞∂ ∂

= − + +⎜ ⎟∂ ∂⎝ ⎠
             (4.15) 

If we assume zero slip at the fluid-solid interface, the boundary values for velocity are as 

follows 

0, , 0, 0
, , 0, 0

b

a

at z u u v w
at z h u u v w

= = = =

= = = =
               (4.16) 

The subscripts a and b refer to conditions on the upper and lower surfaces, respectively. 

With the boundary values given in Eq. (4.16), the velocity components can be written as  

2

1 2
1 1 2 '

2
u p zu c z c
x x

μ
μ

∂ ∂⎛ ⎞= − + +⎜ ⎟∂ ∂⎝ ⎠
             (4.17) 

2

1 2
1 1 2 '

2
v p zv c z c
y y

μ
μ
⎛ ⎞∂ ∂

= − + +⎜ ⎟∂ ∂⎝ ⎠
             (4.18) 

where  

( )1
1 1 2 '

2a b
h u pC u u

h x x
μ

μ
∂ ∂⎛ ⎞= − − −⎜ ⎟∂ ∂⎝ ⎠

             (4.19) 

2 bC u=                         (4.20) 
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3 1 2 '
2
h v pC

y y
μ

μ
⎛ ⎞∂ ∂

= − −⎜ ⎟∂ ∂⎝ ⎠
                   (4.21) 

4 0C =                         (4.22) 

The modified Reynolds equation is formed by introducing velocity components 

expressions into the continuity equation written by  

0
0

h u v w dz
t x y z
ρ ρ ρ ρ⎡ ⎤∂ ∂ ∂ ∂
+ + + =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

∫              (4.23) 

Using Leibniz’s integration formula, the continuity equation becomes  

0yx MMh
t x y
ρ ∂∂∂
+ + =

∂ ∂ ∂
                (4.24) 

where  

0

h

xM udzρ= ∫                   (4.25) 

0

h

yM vdzρ= ∫                   (4.26) 

Substituting Eqs. (4.17)~(18) into Eqs. (4.25)~(26) yields 

( )
3

0

' ( )
12 2

h

x a b
h p h u pM u u z z h dz

x x x
μρ

μ μ
⎡ ⎤∂ ∂ ∂

= − + + − −⎢ ⎥∂ ∂ ∂⎣ ⎦
∫         (4.27) 

3

0

' ( )
12

h

x
h p v pM z z h dz

y y y
μρ

μ μ
⎡ ⎤∂ ∂ ∂

= − − −⎢ ⎥∂ ∂ ∂⎣ ⎦
∫            (4.28) 

Plugging Eqs.(4.27)~(28) into continuity equation yields 

 

3 3

0 0

' '( ) ( )
12 12

h hh u p h v pz h z dz z h z dz
x x x y y y

h hu
x t

ρ μ ρ μρ ρ
μ μ μ μ

ρ ρ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
− − + − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∂ ∂
= +

∂ ∂

∫ ∫
  (4.29) 
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This is a modified Reynolds equation with considering pressure-dependent viscosity. If 

the viscosity is constant and fluid is incompressible for steady state flow, Eq. (4.29) 

becomes the classical Reynolds equation expressed by eq (4.1). As mentioned earlier, we 

only considers in the steady state flow for incompressible fluid. Therefore, modified 

Reynolds equation becomes 

 
3 3

0 0

' '( ) ( )
12 12

h hh u p h v p hz h z dz z h z dz u
x x x y y y x

μ μ
μ μ μ μ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
− − + − − =⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫   

 (4.30) 

For further simplifying Eq (4.30) and easy access by numerical methods, we define flow 

rate along the x-z and y-z plane. 

x avg avgQ b h u= × ×                    (4.31) 

y avg avgQ a h v= × ×                    (4.32) 

where a and b are the contact length in the x-z and y-z plane for point contact. 

By substituting /avu x∂ ∂ , /avv y∂ ∂  for /u x∂ ∂ , /v y∂ ∂ , the second and fourth term of 

left hand side of Eq. (4.30) become 

2

0
( )

6
h

x
u hz h z dz Q
x x

∂ ∂
− =

∂ ∂∫                  (4.33) 

2

0
( )

6
h

y
v hz h z dz Q
y y
∂ ∂

− =
∂ ∂∫                  (4.34) 

The pressure-dependent viscosity proposed by Barus is written by 

 0
peαμ μ=                       (4.35) 

The yQ can be negligible in laminar flow and substituting eq (4.33) ~ (35) into eq (4.30) 
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and yields 

3 3 2 ( )
12 12 6 x
h p h p h p hQ u

x x y y x x x x
α

μ μ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
      (4.36) 

In EHL contact problems, the number of parameters can be significantly reduced. 

The dimensionless equation used in this study are mainly based on the Hertzian dry 

contact parameters, for Hertzian theory gives the pressure profile, the geometry of the 

contact region, and the elastic deformation of the contacting bodies in the case of a 

loaded contact between parabolically shaped elastic solids. 

The dimensionless variables are as followings 

xX
b

= , 
yY
a

= , 
0

ηη
η

= , 2
xRH h

b
= , 

max

pP
p

= , 0
'

x

U u
E R
η

= , / 2x avgQ b H U= × ×    (4.37) 

After substitution of these variables in Eq. (4.36), the modified Reynolds equation 

becomes 

2

2 x
P P H P HQ

X X Y k Y X X X X
εε ς

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
        (4.38) 

where ε and ς  as dimensionless parameters are defined as 

3 3
max

' 312 x

b H p
E R U

ε
η

=                     (4.39) 

2
max

23 x

b p
R U
ας =                       (4.40) 

If the pressure gradient along the Y direction can be negligible, the modified Reynolds 

equation is same as Rajagopal’s derivation [32]. 
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4.3 Numerical Solutions 

The effect of the extra term appearing in the modified Reynolds equation in the 

case of point contact is investigated. In practical cases, the high pressure induced the 

elastic deformation, but to illustrate the effect of new term, we first consider the rigid 

body point contact case. And then we also investigate the elastic point contact.  

 

4.3.1 Rigid Ellipsoidal Solids 

Film thickness; The dimensionless film thickness between two rigid ellipsoidal 

solids can be written as 

2 2
2

0 2 2 a

X YH H k
α

= + +                 (4.41) 

where the elliptic ratio k and aα  are defined as 

ak
b

=  y
a

x

R
R

α =                    (4.42) 

The unknowns are 0H , Pressure P, and cavitation boundary. To consider cavitation 

boundary condition, Reynolds boundary condition is used; when the negative pressure 

occurs, the negative value set to zero. In addition, at the inlet, the inlet pressure is taken 

as zero to give fully flooded conditions. To solve EHL point contact problem, FEM and 

relaxation method are utilized. The Hertzian pressure distribution is used as the initial 

pressure distribution. In the rigid body case, the uniform mesh scheme is applied to 

computational domain. The number of element is 900.  

Discretized Force Balance Equation: The force balance equation ensures that the 
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integral over the pressure in the contact region balances the external applied load. Since 

the lubricant film carries the entire contact load exerted on the contacting bodies, the 

integral over the pressure in the film is equal to the applied load. The force balance 

equation reads 

pdxdy F=∫ ∫                      (4.43) 

The force balance equation is used to determine the value of the offset film thickness, 0H . 

The dimensionless force balance equation is written by 

2
3

PdXdY π=∫ ∫                     (4.44) 

In the discrete form, the left hand side of Eq. (4.44) can be written as 

9
( ) ( ) ( )

1 1 1

N N
e e e

j j
e e j

PdXdY P dXdY C P
= = =Ω Ω

= =∑ ∑∑∫ ∫           (4.45) 

where  

( )e
j jC dXdYφ

Ω

= ∫                    (4.46) 

The computational domain is selected as 2.5 1.2X− ≤ ≤  and 2.0 2.0Y− ≤ ≤ . 

In this case, starvation or vortex could be avoided. Due to the symmetry of the domain in 

Y direction, only positive half of 0.0 2.0Y≤ ≤ is taken into account in the 

computation. In addition, the Reynolds boundary condition is applied when the 

cavitation occurs near the outlet region. Figure 4.1 shows that the modified Reynolds 

equation yields higher pressure than the original Reynolds equation.   
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(a) 

 
(b) 

Fig. 4.1.  Pressure Distribution for Rigid Body Case; (a) Original Reynolds 

Equation (ORE), (b) Modified Reynolds Equation (MRE), and (c) Comparison 

between ORE and MRE 
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(c) 

Fig. 4.1.  Continued 

 

4.3.2 Elastic Ellipsoidal Solids 

In the point contact EHL problems, two ellipsoidal solids subjected to a pressure 

induces deformation of elastic solids. To calculate the elastic deformation due to 

pressure, Boussinesq’s equation is used [49] and the following discretization is based on 

Hou et al.’s approach [50]. The resulting elastic deformation can be calculated by the 

following equation 
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2 2
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π
−
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− + −

∫ ∫           (4.47) 

In an element domain consists of nine-node element, the dimensionless equation of 

elastic deformation for the deformation at the node (u,v) by the pressure profile on the 
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element can be expressed as 

2 29 9
( ) ( ) ( ) ( )

2 3 2 32 2
1 1

( , )3 3( , )
' '( ) ( )

je e e ex x
j j j j

j j
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ab E ab EX Y

φ
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= =
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where 

3 3
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Because the shape function 2 2
1 2 3 4 5( )( )j j j j j

j b X b X b Y b Y bφ = + + + + , ( )e
jd  can be expressed 

as 

( )
1 1 1 3 3 1 3 3 1( , ) ( , ) ( , ) ( , ) ( , )e j
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The analytic expression of 1 ( , )g X Y  is given as 
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here 

2 2t X Y= +                        (4.53) 



 120

ln( ) 0
0 0

X t if X t
L

if X t
⎧ + + ≠

= ⎨
+ =⎩

                 (4.54) 

For the entire contact region consisting of N elements, the deformation at node (u,v) 

produced by all global nodal pressure can be written as follows 

2 9
( ) ( )

2 3
1 1

3( , )
'

N
e ex

j j
e j

FRu v d P
ab E

δ
π = =

= ∑∑                (4.55) 

It defines here load parameter, W and material parameter, G of conventional EHL 

analysis 

2' x

FW
E R

=  'G Eα=                   (4.56) 

In this case, the non-uniform mesh scheme is applied to computational domain for 

obtaining an accurate pressure distribution near the outlet region. The number of element 

is 900. The computation domain and the boundary condition are same as in rigid body 

cases.  

Load applied to the rolling element bearings depends on the operating conditions. 

The rolling bearing element manufacturers recommend the maximum applied load by 

introducing load rating – static load rating and dynamic load rating. The static load 

rating is the maximum radial or thrust load a bearing can endure without excessive 

permanent deformation. Maximum deformation of rolling element or race that does not 

significantly degrade bearing performance is 0.0001 times the diameter of rolling 

element bearings. The dynamic load rating is the load at which 90% of a group of 

bearings can survive 1 million inner-race revolutions. The fatigue life of rolling elements 

is evaluated based on these load ratings. The Hertzian contact stress corresponding to 
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maximum load is around 4 GPa. In general rolling bearing applications, the Hertzian 

stress ranges from 0.5 GPa to 2 GPa for longer lifespan of rolling elements bearings. 

Thus, in this paper, moderate operating condition where the maximum Hertzian contact 

stress is around 1 GPa is under consideration. Table 4.1 shows the values used in 

numerical simulation. 

Figure 4.2 shows the 3-D pressure distribution for heavy load case. Figure 4.3 

shows the pressure distribution and film thickness at Y=0 for heavy load case. The first 

peak pressure of modified Reynolds equation is similar to that of original Reynolds 

equation, but slightly moved to outlet region. The second peak pressure which called 

‘pressure spike’ increased by 10%, while the minimum film thickness slightly increased 

for the modified Reynolds equation. For the moderate load case, the second pressure 

peak increased by 6%, but the minimum film thickness is close to that of the original 

Reynolds equation shown in Figure 4.4. When the applied load is light, the pressure 

distribution and film thickness for modified Reynolds equation are same as those of 

original Reynolds equation shown in Figure 4.5.   

 

Table 4.1  Simulation Parameters 

 Value  Value 
( )xR m  0.01114 11(10 )U −  1.0 
( )yR m  0.01582 G  4522 

2
0 ( / )Ns mη  0.01326 6(10 )W −  

( ); 
Maximum 
Hertizan 
Pressure 

Light 0.54 ( 0.57 GPa) 
8(1/ , 10 )Paα −×  2.05 Moderate 1.83 ( 0.86 GPa) 

'( )E GPa  2.2 Heavy 3.66 (1.10 GPa) 
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(a) 

 
(b) 

Fig. 4.2  Normalized Pressure Distribution; (a) Original Reynolds Equation(ORE) 

and (b) Modified Reynolds Equation(MRE) 
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(a) 

 
(b) 

Fig 4.3  Simulation Results for Heavy Load: (a) Pressure Distribution and (b) Film 
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(a) 

 
(b) 

Fig. 4.4  Simulation Results for Moderate Load: (a) Pressure Distribution and (b) 

Film Thickness 
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(a) 

 
(b) 

Fig. 4.5  Simulation Results for Light Load: (a) Pressure Distribution and (b) Film 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

 In this dissertation, the three research topics are considered, ;) catcher bearing 

fatigue life prediction, ii) the Morton effect, and iii) the two dimensional modified 

Reynolds equation.  

Firstly, for the life prediction of the catcher bearing, it was employed a high 

fidelity, thermal-structural, fully nonlinear ball bearing, and flexible finite element shaft 

model, and rainflow counting approach to evaluate the life of catcher bearings in terms 

of number of drop occurrences to failure. It was found that decreasing rotor-inner race 

contact friction, reducing catcher bearing air gap, applying a constant side load after a 

drop event, reducing support stiffness and increasing support damping, and reducing 

speed (rpm) all increase the life of an AMB catcher bearing. The life prediction involved 

determining contact load, Hertzian stresses, subshear stress, surface shear stress, and 

thermal growths. In addition, simulation results indicated that forward whirl can occur 

for a rotor with large imbalance.  

Secondly, a method for calculating the temperature difference (peak to peak) in the 

plain or tilting pad journal bearing for a given orbit was suggested. For plain journal 

bearing case, the prediction of temperature difference was similar to published data. 

Journal of tilting pad bearing is also experienced asymmetric thermal heating, which 

induced the thermal bow. The differential increased with orbit size for two cases. 

However, the relationship between orbit size and differential was nonlinear as orbit size 

increases. Furthermore, simulation results indicate that the non-uniform temperature 
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distribution of journal can be removed by i) small amplitude orbit, ii) small eccentricity. 

In addition, the theoretical model including FE rotor model and nonlinear bearing model 

showed the synchronous thermal instability due to asymmetric journal heating known as 

Morton Effect. The simulation result of current approach agreed well with the published 

data. Although there was a small temperature difference, this differential caused to 

significant thermal bow and induced instability phenomenon under some conditions. To 

reduce the Morton synchronously instability, reducing bearing clearances and lower 

viscosity lubricant were utilized to simulation model. The simulation results show the 

reduced orbit resulted from two suggested methods.  

Finally, the classical Reynolds equation derived under the assumption of a constant 

viscosity is not valid for Elastohydrodynamics problem occurred in rolling element 

bearings. In order to consider the variation of viscosity with pressure, the modified 

Reynolds equation was derived. The modified Reynolds equation contains an extra terms 

which takes into account pressure dependent viscosity. For the three load cases-heavy, 

moderate, and light, the pressure distribution and film thickness were obtained. The 

numerical solutions showed that the pressure dependent viscosity characteristic of 

lubricant yielded slightly higher pressure than the original Reynolds equation, and the 

peak pressure gets higher as the applied load increases. 

The expected future works can be addressed as follows: 

(a) Conduct rotor drop test and correlate test data with simulation results 

(b) Develop a similar fatigue life prediction method for roller and plain sleeve catcher 

bearings 
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(c) Conduct the Morton Effect instability test 

(d) Apply the modified Reynolds equation to prediction of ball bearing stiffness and 

damping.   
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APPENDIX A  

RAINFLOW CYCLE COUNTING METHOD  

 

   
Fig. A.1 Stress vs Time 

 
 

The rainflow cycle counting is explained according to the ASTM E-1049 Standard 

Practices for Cycle Counting in Fatigue Analysis. Rules for the rainflow counting 

method are given as follows; 

Let X denotes range under consideration; Y, previous range adjacent to X; and S, 

starting point in the stress history 

 

a. Read next peak or trough. If out of data, go to step f.  

b. If there are less than three points, go to step a. Form ranges X and Y using the 

three most recent peaks and trough that have not been discarded.  

c. Compare the absolute values of ranges X and Y 

i. If X<Y, go to step a. 

ii. If X>Y, go to step d. 
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d. If range Y contains the starting point S, go to step e; otherwise, count range Y 

as one cycle; discard the peak and trough of Y and go to step b. 

e. Count range Y as one-half cycle; discard the first point in range Y; move the 

starting point to the second point in range Y and go to b. 

f. Count each range that has not been previously counted as one-half cycle. 

 

The number of cycles corresponding to stress range illustrated in Figure A.1 is 

summarized in Table A.1.    

 

Table A.1  Stress Cycle Count   

Stress range Cycle counts Events 

10 0  

9 0.5 D-G 

8 1 C-D, G-H

7 0  

6 0.5 H-I 

5 0  

4 1.5 B-C, E-F 

3 0.5 A-B 

2 0  

1 0  

 
  



 137

APPENDIX B 

FINITE ELEMENT FORMULATION OF REYNOLDS EQUATION 

This appendix deals with the derivation of finite element equations for the variable 

viscosity Reynolds equation. The governing equation and the boundary conditions are

1 2 1 2 1( ) ( ) ( ) ( ) 0dhC p C U U h U
dt

∇• ∇ + ∇ ⋅ − + ∇ ⋅ + =           (B.1) 

Subject to the boundary conditions;  

*

*

p

q

P P on

P q on

= Γ

= Γ
                    (B.2)

 
 

 

 

 

Fig. B.1  FEM Mesh Covering Lubricant Domain Ω  
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The problem domain with boundaries marked is shown in Fig. B.1. The boundary 

comprises of two regions, on the first region pΓ pressure is prescribed, and on the second 

region qΓ , flow rate is prescribed. The regions are such that they do not overlap 

p qΓ ∩ Γ = ∅  and p qΓ ∪ Γ = Γ . The functional for variable viscosity Reynolds equation 

with the boundary conditions mentioned above is obtained using variational principles 

and is given by (Huebner, 1981) 

1 2
1
2 q

p
hJ C P P C U P P d Pq nd
tΩ Γ

∂⎡ ⎤= − ∇ ∇ + ∇ + Ω + Γ⎢ ⎥∂⎣ ⎦∫ ∫i i i     (B.3)
 
 

The problem is to find a function P which minimizes the functional shown above. By 

utilizing the maxima and minima principles, the first derivative of the functional with 

respect to the function itself should vanish at the minimum. This is shown as; 

0pJ
P

∂
=

∂
                    (B.4)

 
 

The finite element method used while discretizing the problem domain, is the Galerkin 

method. The approximated function apP  is expressed in terms of vectors of shape 

functions and nodal values of approximated function as shown below; 

apP N P= i                       (B.5)  

In the above equation, vector N is the shape function vector and the vector P is the nodal 

pressure vector. The final global finite element matrices can then be expressed in the 

following way; 

[ ]{ } { }f fK P F=                      (B.6)  

where 
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1

2 2

[ ]

{ }

{ }

{ }
q

j ji i
f

i i
x y

i

i

N NN NK C d
x x y y

N NB C U d C U d
x y

hS N d
t

L qN d

Ω

Ω Ω

Ω

Γ

∂ ∂⎛ ⎞∂ ∂
= − + Ω⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂ ∂
= Ω+ Ω

∂ ∂
∂

= − Ω
∂

= − Γ

∫

∫ ∫

∫
∫

             (B.7) 

The above equations are in the final global form. The problem domain needs to be 

discretized into finite element as shown in Fig. B.1. Discretization of the domain implies 

the domain Ω  is now represented by ( )e iΩ∑ , where i=1, eln  and eΩ  is the domain of 

discretized finite element, and eln  is the total number of finite elements. The global 

matrix [ ]fK  and the force vector { }fF  are given by; 

 1

1

[ ] [ ]

{ } { }

el

el

n
e

f f
i
n

e
f f

i

K K

F F

=

=

=

=

∑

∑
                      (B.8) 

In the above equations, superscript e implies that these matrices and vectors have been 

evaluated on the elemental domain. In the chapter 3, the simplex triangular element 

consists of linear shape functions shown in Fig B.2 are used, while the nine node 

isoparametric element  is used in the chapter 4.  
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Fig. B.2  Linear Interpolation of Pressure in a 3 Node Simplex Element 

 

 i) The discretization of the Reynolds equation using the simplex triangular elements 

The shape functions for a simplex triangular element are given by (Segerlind, 1976) 

( )1 , 1, 2,3
2

e e e
i i i ieN a b c i

A
⎛ ⎞= + + =⎜ ⎟
⎝ ⎠

              (B.9)  

where 

[ ]2 3 3 2 1 3 3 1 1 2 2 1
1 ( ) ( ) ( )
2

eA x y x y x y x y x y x y= − − − + −         (B.10) 

P e1

P e3

P e2

( )yxP ,  

x

y

( )yx ee 3,3  

( )yx ee 2,2  ( )yx ee 1,1  
1 

3 

2 
Ωe  e
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1 2 3 2 3 3 2 3 1 1 3 1 2 2 1

1 2 3 2 3 3 1 1 2

1 2 3 3 2 1 3 2 1

a a a x y x y x y x y x y x y
b b b y y y y y y
c c c x x x x x x

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

       (B.11) 

The area and line integrals for these shape functions are performed using the following 

exact expressions 

1 2 3

1 2 1 21 2

31 2

! ! !2
( 2)!

! !
( 1)!

0

c

e

A

side

side

N N N dA A

N N dL L

N dL

α β γ

α β

γ

α β γ
α β γ
α β

α β−−

−

=
+ + +

=
+ +

=

∫

∫

∫

             (B.12) 

where ! denotes a factorial and 1 2L −  is the length of the element side from nodes 1 to 2. 

Substituting the shape functions into Eq (B.7), applying the exact integration equations 

given above, the final elemental matrices and vectors are given by 

1
1

2
2 2

[ ] ( )
4

{ } ( )
2

{ }
3

{ }
2

1
q

e

j ji i
f i j i j e

i i
x y x i y i

e

i

i j
i

i i ee

N NN N CK C d b b c c
x x y y A

N N CB C U d C U d U b U c
x y

h A hS N d
t t

L
L qN d q

C C d
A

ρ

Ω

Ω Ω

Ω

−

Γ

Ω

∂ ∂⎛ ⎞∂ ∂
= − + Ω = − +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂ ∂
= Ω+ Ω = +

∂ ∂

∂ ∂
= − Ω = −

∂ ∂

= − Γ = −

= Ω

∫

∫ ∫

∫

∫

∫

     (B.13) 

The coefficients defined in Eq.(B.13) are integrated over the elements and divided by 

their areas, to get an average.  
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ii) The discretization of the Reynolds equation using the nine none isoparametric 

elements 

The field pressure at a point inside an element is also interpolated by using the same 

geometry interpolation function jφ  

9
( ) ( )

1

e e
j j

j
P Pφ

=

=∑                     (B.14)  

where ( )e
jP  is the nodal pressure at ( , )j jX Y  of the element. Furthermore, the Galerkin 

weighting approach is implemented. That is, the nodal weight functions jw  are chosen 

exactly as the geometry shape function jφ . Hence 

{ }Tw φ=                    (B.15) 

Evaluation of Eq. at each node of every element with its corresponding weight function 

results in nine independent equations for each element. 

1 2[ ] j j j ji i i i
f

N NN NK C d d
x x y y x x y y

φ φφ φεε
κΩ Ω

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= − + Ω= + Ω⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫   (B.16) 

2 2{ } i i i
x y

N Nf C U d C U d H d q nd
x y X

φ
Ω Ω Ω Γ

∂ ∂ ∂
= Ω + Ω = Ω + Γ

∂ ∂ ∂∫ ∫ ∫ ∫ i        (B.17)  

where ε and κ are defined in the chapter 4.  

The shape functions used in the chapter 4 are given by: 
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2 2
1

2 2
2

2 2
3

2 2
4

2 2
5

2 2
6

2 2
7

2 2
8

2 2
9

1 ( )( )
4
1 (1 )( )
2
1 ( )( )
2
1 ( )(1 )
2
(1 )(1 )
1 ( )(1 )
2
1 ( )( )
4
1 (1 )( )
2
1 ( )( )
4

x x y y

x y y

x x y y

x x y

x y

x x y

x x y y

x y y

x x y y

φ

φ

φ

φ

φ

φ

φ

φ

φ

= − −

= − −

= + −

= − −

= − −

= + −

= − +

= − +

= + +                (B.18) 

The coordinate transformations from the physical coordinate to the natural coordinate 

are considered. Since 
9

1
( , )i i

i
X x y Xφ

=

= ∑  and 
9

1
( , )i i

i
Y x y Yφ

=

= ∑ , the mapping from global 

to local coordinates is expressed as  

i i iX Y
x X x Y x
φ φ φ∂ ∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂ ∂
               (B.19) 

i i iX Y
y X y Y y
φ φ φ∂ ∂ ∂∂ ∂

= +
∂ ∂ ∂ ∂ ∂

                (B.20) 

That is 

[ ]

i i i

i i i

X Y
x x x X XJ

X Y
y yy Y Y

φ φ φ

φ φ φ

∂ ∂ ∂⎧ ⎫ ⎡ ⎤ ∂ ∂⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪ ⎪ ⎪∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪∂ ∂⎢ ⎥= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂ ∂⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎢ ⎥ ⎪ ⎪ ⎪ ⎪∂ ∂∂⎪ ⎪ ∂ ∂⎩ ⎭ ⎩ ⎭⎣ ⎦⎩ ⎭

           (B.21)

 

 

where [J] is the Jacobian matrix.  
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Thus 

1[ ]

ii

ii

xX J

yY

φφ

φφ
−

∂⎧ ⎫∂⎧ ⎫
⎪ ⎪⎪ ⎪ ∂⎪ ⎪ ⎪ ⎪∂ =⎨ ⎬ ⎨ ⎬∂∂⎪ ⎪ ⎪ ⎪

⎪ ⎪ ∂⎪ ⎪∂⎩ ⎭ ⎩ ⎭

                  (B.22) 

 

Also 

det[ ]dXdY J dxdy=                       (B.23) 

For the numerical integration scheme, some variables are defined by 

9

1
( , ) ( , )i i

i

H x y x y Hφ
=

= ∑                     (B.23)  

 
9

1
( , ) ( , )i i

i

x y x yη φ η
=

= ∑                     (B.24)  

Then  

39
( )

3
1
9

( )

1

e
i i

i

e
i i

i

H
H

φ
ε λ λ

η φη

=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠= =
∑

∑
                     (B.25) 

where 
3

max
' 312 x

b P
E R u

λ =  

For a function ( , )g x y , the numerical integration reads 

1 1 1

1 1 1
1 1 1

( , ) ( , ) ( , )
G G GN M N

J J I J J I
J I J

g x y dxdy g x y w dx g x y w w
− − −

= = =

⎡ ⎤
≈ =⎢ ⎥

⎣ ⎦
∑ ∑∑∫ ∫ ∫       (B.26) 

where GM  and GN  are the number of quadrature points in x  and y  directions, ( ),I Jx y  
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are Gauss points, Iw  and Jw  are corresponding Gauss weights listed in Table B.1.The 

global fluidity matrix and the force vectors are assembled according to the nodal 

connectivity of the finite element mesh. The system of global equations gives a 

symmetric banded matrix. This symmetric banded matrix can be reduced and solved 

with a symmetric banded solver to increase efficiency. The solution of these global 

system of linear equations gives a solution vector contacting the nodal pressures. 

 

Table B.1 Gauss Quadrature Points and Weight Factors 

Gauss point 
( , )I Jx y  

Gauss Weights 
Iw  

Gauss Weights 
Jw  

( )1/ 2 1/ 2(3 / 5) (3 / 5)− − 0.555555555 0.555555555 

( )1/20 (3 / 5)−  0.888888889 0.555555555 

( )1/ 2 1/ 2(3 / 5) (3 / 5)−  0.555555555 0.555555555 

( )1/ 2(3 / 5) 0−  0.555555555 0.888888889 

( )0 0  0.888888889 0.888888889 

( )1/2(3 / 5) 0  0.555555555 0.888888889 

( )1/ 2 1/ 2(3 / 5) (3 / 5)−  0.555555555 0.555555555 

( )1/ 20 (3 / 5)  0.888888889 0.555555555 

( )1/2 1/2(3 / 5) (3 / 5)  0.555555555 0.555555555 

  



 146

APPENDIX C 

FINITE ELEMENT FORMULATION OF ENERGY EQUATION  

The solution of Reynolds equation gives pressure distribution throughout the fluid 

film. This pressure distribution is used in evaluating the velocity profile in the fluid film. 

The solution of energy equation requires the velocity profile. The problem domain for 

energy equation with different boundaries is shown in Figure C.1 as seen from the figure, 

the boundary is comprised of three different regions. The first region is the region over 

which temperature is prescribed TΓ , the second region is the part of the boundary over 

which heat flux is prescribed fΓ , and the third region is the one over which convection 

is prescribed hΓ .  

 

Fig. C.1 FEM Mesh Covering Lubricant Domain Ω  
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The governing equation is given by; 

p
Tc u T k T
t

ρ ∂⎛ ⎞+ ∇ = ∇ ∇ +Φ⎜ ⎟∂⎝ ⎠
i i

                
(C.1) 

Subject to the following boundary conditions; 

*

*

( )

T

f

T

T T on

q q on

q h T T on∞

= Γ

= Γ

= − − Γ

                  (C.2) 

Galerkin method is used to find the weighted residual equation for the solution of energy 

equation. On applying, the weighted residual to the governing equation gives 

0p
Tc u T Q k T Wd
t

ρ
Ω

⎛ ∂ ⎞⎛ ⎞+ ∇ − − ∇ ∇ Ω =⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠
∫ i i          (C.3)  

Where W is the weight function. Applying Gauss theorem and applying the boundary 

condition, Eq (C.1)  becomes;  

( ) ( )* 0
T f h h

p p
Tc Wd c u TWd QWd k T Wd
t

kTW nd q W nd hT Wd hTWd

ρ ρ
Ω Ω Ω Ω

∞Γ Γ Γ Γ

∂
Ω+ ∇ Ω− Ω+ ∇ ∇ Ω

∂
− Γ+ Γ− Γ+ Γ =

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

i i

i i
     (C.4) 

The solution to the Eq (C.4) is interpolated over an element using the shape functions as 

follows 

T N T= i                         (C.5)  

In the above equation the vector N contains the shape functions and the vector T

contains the nodal values of temperatures on that particular element. Substituting the 

interpolated temperature into Eq (C.4), and factoring out T; 
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{ } ( ) { }
( ) ( )

h

f T h

p j j p j j j jc WN d T c Wu N k W N d hWN d T

QWd qW d k T nWd hT Wd

ρ ρ
Ω Ω Γ

∞Ω Γ Γ Γ

⎡ ⎤⎡ ⎤Ω + ∇ + ∇ ∇ Ω+ Γ⎢ ⎥⎣ ⎦ ⎣ ⎦

= Ω+ Γ+ ∇ Γ+ Γ

∫ ∫ ∫
∫ ∫ ∫ ∫

i i

i
  (C.6) 

The weight functions are selected such that their values on the boundary TΓ  vanish. 

Hence, from the above equation, the following integration on the temperature prescribed 

boundary vanishes; 

( ) 0
T

k T nWd
Γ

∇ Γ =∫ i                    (C.7) 

The system of equations can be represented as matrices and vectors in the following way;

( )

[ ]

[ ]

[ ]

[ ]

{ }

{ }

{ }

h

h

f

m p i j

v p i j

c i j

h i j

Q i

h i

f i

K c W N d

K c W u N d

K k W N d

K hW N d d

F QW d

F hT W d

F qW d

ρ

ρ
Ω

Ω

Ω

Γ

Ω

∞Γ

Γ

= Ω

= ∇ Ω

= ∇ ∇ Ω

= Γ Ω

= Ω

= Γ

= Γ

∫
∫
∫
∫
∫
∫
∫

i

i

                  (C.8)

 

 

Discretization of the problem is done with 4 node isoparametric elements and quadratic 

Petrov-Galerkin technique for steady state problems and cubic Petrov-Galerkin 

technique for transient problems. On elemental basis each of the vectors and matrix are 

expressed as; 
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( )

[ ]

[ ]

[ ]

[ ]

{ }

{ }

{ }

e

e

h

e

e
h

e
f

e e e e
m p i j

e e e e
v p i j

e e e e
c i j

e e e e
h i j

ee e
Q i

e e e
h i

ee e
f i

K c W N d

K c W u N d

K k W N d

K hW N d d

F QW d

F hT W d

F qW d

ρ

ρ
Ω

Ω

Ω

Γ

Ω

∞Γ

Γ

= Ω

= ∇ Ω

= ∇ ∇ Ω

= Γ Ω

= Ω

= Γ

= Γ

∫
∫
∫
∫

∫
∫

∫

i

i

               (C.9)

 

 

Classical Galerkin sometimes called the Bubanov-Galerkin method employs the 

shape functions as the weight functions. But, it has been shown that when the 

magnitudes of the first order derivative terms increases, the solutions give numerical 

problems. To counter this problem, the weight functions have to be modified as 

explained in Chpater 4. If over an element, the nodal values and the nodal coordinates 

are interpolated using the same shape functions, it is called an isoparametric element. To 

perform integration on the isoparametric elements, the physical coordinate have to be 

mapped onto the natural coordinates. The shape functions of the isoparametric element 

are 

1

2

3

4

1 (1 )(1 )
4
1 (1 )(1 )
4
1 (1 )(1 )
4
1 (1 )(1 )
4

N

N

N

N

η ζ

η ζ

η ζ

η ζ

= − −

= + −

= + +

= + −

                   (C.10) 
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After the mapping, integration is performed on the natural coordinate domain using 

Gauss-Quadrature numerical integration method explained in Appendix B. The Gauss 

quadrature points and the corresponding weight factors is shown in Table C.1. The 

Gauss quadrature then can be applied on an elemental basis, and the elemental values of 

the matrices and vectors can be represented as; 

2 2

1 1
2 2

1 1
2 2

1 1
2 2

1 1
2 2

1 1
2 2

1 1
2 2

1 1

[ ]

[ ]

[ ]

[ ]

{ }

{ }

{ }

e e e
m p i j k l

l k

e e e
v p i j k l

l k

e e e
c i j k l

l k

e e e
h i j k l

l k

e e
Q i k l

l k

e e
h i k l

l k

e e
f i k l

l k

K c W N Jw w

K c W u N Jw w

K k W N Jw w

K hW N Jw w

F QW Jw w

F hT W Jw w

F qW Jw w

ρ

ρ

= =

= =

= =

= =

= =

∞
= =

= =

=

= ∇

= ∇ ∇

=

=

=

=

∑∑

∑∑

∑∑

∑∑

∑∑

∑∑

∑∑

i

i

           (C.11) 

 

where J is the Jacobian matrix. 

The shape functions and weight functions are evaluated at each Gauss point. These 

element matrices and vectors are now assembled together in a global form following the 

element and nodal connectivity. The global form of the set of equations is 

[ ]{ } [ ]{ } { }m T TK T K T F+ =               (C.12)  

Where  

1
[ ] [ ]

eln
e

m m
e

K K
=

=∑                    (C.13) 
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{ }
1

[ ] [ ] [ ] [ ]
eln

e e e
T v c h

e
K K K K

=

= + +∑                (C.14)  

 { }
1

[ ] { } { } { }
eln

e e e
T Q h f

e
F F F F

=

= + +∑                (C.15)
 
 

The mass or distribution matrix [ ]mK  is symmetric and banded but it should be noted 

that matrix [ ]TK  is an asymmetric banded matrix. 

 

Table C.1 Gauss Quadrature Points and Weight Factors 

Gauss point 
( , )I Jx y  

Gauss Weights 
Iw  

Gauss Weights 
Jw  

( )0.57735 0.57735− − 1.00000 1.00000 

( )0.57735 0.57735−  1.00000 1.00000 

( )0.57735 0.57735−  1.00000 1.00000 

( )0.57735 0.57735  1.00000 1.00000 
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APPENDIX D 

DEFORMATION KERNEL  

Substitution of 2 2
1 2 3 4 5( )( )j j j j j

j b X b X b Y b Y bφ = + + + +  into Eq. (4.47) gives 

3 3

1 1

3 3

1 1

3 3

1 1

3 3

1 1

2 2
( ) 1 2 3 4 5

1/22 2
1

2 2
4 5

1 1/22 2
1

2
4 5

1 2 1/22 2
1

2
4 5

1 3 1/22 2
1

( )( )

( )

( )

( )

j j j j jY Xe
j Y X

j jY Xj

Y X

j jY Xj j

Y X

j jY Xj j

Y X

b X b X b Y b Y bd dXdY
X Y

X Y b Y bb dXdY
X Y

X Y b Y bb b dXdY
X Y

Y b Y bb b d
X Y

+ + + +
=

⎡ ⎤+⎣ ⎦
+ +

=
⎡ ⎤+⎣ ⎦

+ +
+

⎡ ⎤+⎣ ⎦
+ +

+
⎡ ⎤+⎣ ⎦

∫ ∫

∫ ∫

∫ ∫

∫ ∫

1 1 2 2 3 3( )j j j

XdY

b d b d b d= + +

 

From Calculus, 

( )
2 2

2 2 2 2

2 2
ln

2 2
q q adq a q q a q

a q
= + − + +

+
∫  

2 2

2 2

q dq a q
a q

= +
+

∫  

( )2 2

2 2

1 lndq q a q
a q

= + +
+

∫  

id  becomes 
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( )
( ) ( ) ( )( )

( ) ( ) ( )

3 3 3

1 1 1

3 3 3

1 1 1

3 3 3

1 1 1

3 3 3

1 1 1

2
1 4 5

4 3
4 5

2
2 4 5

2
3 4 5

2
1 ln ln ln
2

ln ln ln

Y Y Yj j

Y Y Y

Y Y Yj j

Y Y Y

Y Y Yj j

Y Y Y

Y Y Yj j

Y Y Y

Xd Y tdY b YtdY b tdY

Y X t dY b Y X t dY b X t dY

d Y tdY b YtdY b tdY

d Y X t dY b Y X t dY b X t dY

= + +

− + + + + +

= + +

= + + + + +

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 

Since 

( ) ( ) ( ) ( )

( ) ( )

2

3

2 3 2 4

2 2
2 2

3
2 3 3

4
3

1 1 ln( )
2 2
1
3

1 1 1 ln( )
4 8 8

ln( ) ln( ) ln( )

1ln( ) ln ln ln
2 2 2 4

1 1 1ln( ) ln ln
3 6 6 9

ln( )

tdY Yt X Y t

YtdY t

Y tdY Yt X Yt X Y t

X t dY X Y t Y X t Y

X Xt YY X t dY X t X t X X t Xt X t

YY X t dY X t XYt X Y t Y

YY X t dY

= + +

=

= − − +

+ = + + + −

+ = + + + + − − + − +

+ = + + − + −

+ =

∫

∫

∫
∫

∫

∫

∫ ( )

( )

2 2 4

5 2
4 3 5 5

1 2 1ln
4 4 3 3 16

3 3 1ln( ) ln ln( )
5 20 40 40 25

XX t Y X t Y

Y XY tY X t dY X t X Yt X Y t Y

⎛ ⎞+ + − −⎜ ⎟
⎝ ⎠

+ = + + − + + −∫

 

Thus 
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( )

( )

( ) ( )

3 2 4 3 2
1 4 5

2
5 3 5 5

4 2 2 4
4

3 3 3
5

2

1 1 1ln( ) ln( )
8 2 2 6 4

1 3 3 1ln ln( )
10 4 8 8 5

1 1 2 1ln
8 3 3 4
1 1 1 1ln ln
6 2 2 3

1
4

j j

j

j

X Xd Yt X Yt X Y t b Xt b Yt X Y t

XY tY X t X Yt X Y t Y

b Y X t X Y X t Y

b Y X t XYt X Y t Y

d Yt

⎡ ⎤ ⎡ ⎤= − − + + + + +⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤

− + + − + + −⎢ ⎥
⎣ ⎦
⎡ ⎤⎛ ⎞− + + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤− + + − + −⎢ ⎥⎣ ⎦

=

( ) ( )

( ) ( ) ( ) ( )

3 2 4 3 2
4 5

3 3 3
3

2 2
2 2

4

5

1 1 1ln( ) ln( )
2 2 3

1 1 1 1ln ln
3 2 2 3

1 ln ln ln
2 2 2 4

ln( ) ln( )

j j

j

j

X Yt X Y t b t b Yt X Y t

d Y X t XYt X Y t Y

X Xt Yb X t X t X X t Xt X t

b X Y t Y X t Y

⎡ ⎤ ⎡ ⎤− − + + + + +⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤= + + − + −⎢ ⎥⎣ ⎦
⎡ ⎤

+ + + + + − − + − +⎢ ⎥
⎣ ⎦
⎡ ⎤+ + + + −⎣ ⎦

 

Now 

( )
1 1 3 3 1 1 1 1 1 3 1 3 1

1 2 2 3 3 2 1 1 2 1 3 2 3 1

1 3 3 3 3 3 1 1 3 1 3 3 3 1

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

e j
j

j j

j j

d u v b d X Y d X Y d X Y d X Y

b b d X Y d X Y d X Y d X Y

b b d X Y d X Y d X Y d X Y

⎡ ⎤= + − −⎣ ⎦
⎡ ⎤+ + − −⎣ ⎦
⎡ ⎤+ + − −⎣ ⎦

 

Define 

1 1 2 2 3 3( , ) j jg X Y d b d b d= + +  

After manipulation, 1 ( , )g X Y  finally becomes Eq. (4.46). 
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APPENDIX E 

USER INTERFACES 

E. 1 The Journal Temperature Calculation 

 User Interfaces: Input  

The following figure shows the input parameters that used in the developed codes.  

 
 

a. Bearing Geometry 

 
 

b. Journal Properties 
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c. Lubricant Properties 

 
 

d. Orbit 

 

 
 

e. Static Eccentricity  
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 User Interfaces: Output  
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E.2 The Morton Effect 

 User Interfaces : Input Parameters 

The following figures show the input parameters that used in the codes.  

 

 
a. FE rotor model 

 

 

 

 
         b. Bearing model                                       c. Operation condition & Results 
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a. FE rotor model 
 
• Shaft Properties 

  
• FE rotor data 

 
• Bearing Nodes 

 
b. Bearing model 

• Bearing properties for NDE side 

 
 

• Bearing dynamic properties for DE side 
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c. Operation condition 

 
 

 User Interfaces: Output 

The orbit plot is provided as the results of Morton effect simulation as 

following.  
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