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ABSTRACT 

 

TOF-PET Imaging within the Framework of Sparse Reconstruction. (May 2012) 

Dapeng Lao, B.A., Tsinghua University 

Chair of Advisory Committee: Dr. Gamal Akabani 

 

 Recently, the limited-angle TOF-PET system has become an active topic mainly 

due to the considerable reduction of hardware cost and potential applicability for 

performing needle biopsy on patients while in the scanner.  However, this kind of 

measurement configurations oftentimes suffers from the deteriorated reconstructed 

images, because insufficient data are observed. The established theory of Compressed 

Sensing (CS) provides a potential framework for attacking this problem. CS claims that 

the imaged object can be faithfully recovered from highly underdetermined observations, 

provided that it can be sparse in some transformed domain.  

 In here a first attempt was made in applying the CS framework to TOF-PET 

imaging for two undersampling configurations. First, to deal with undersampling TOF-

PET imaging, an efficient sparsity-promoted algorithm was developed for combined 

regularizations of p-TV and l1-norm, where it was found that (a) it is capable of 

providing better reconstruction than the traditional EM algorithm, and (b) the 0.5-TV 

regularization was significantly superior to the regularizations of 0-TV and 1-TV, which 

are widely investigated in the open literature. Second, a general framework was 

proposed for sparsity-promoted ART, where accelerated techniques of multi-step and 
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order-set were simultaneously used. From the results, it was observed that the 

accelerated sparsity-promoted ART method was capable of providing better 

reconstruction than traditional ART. Finally, a relationship was established between the 

number of detectors (or the range of angle) and TOF time resolution, which provided an 

empirical guidance for designing novel low-cost TOF-PET systems while ensuring good 

reconstruction quality. 
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NOMENCLATURE 

 

PET Positron Emission Tomography  

TOF Time-of-Flight 

LOR Line of Response 

ART Algebraic Reconstruction Technique 

EM Expectation Maximization 
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f  Images to be Recovered 
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Φ   Sparse Transformed Basis 
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1. INTRODUCTION 

 

1.1  Introduction to Positron Emission Tomography (PET) 

 Positron Emission Tomography (PET) is an imaging modality where the 

distribution of the positron-emitting radionuclide inside the body can be imaged based 

on the detection of the photons emitted from positron annihilation [1]. In contrast to 

computed tomography (CT) and magnetic resonance imaging (MRI) that provide 

detailed anatomical or morphological information, PET shows great superiority in 

monitoring the functional metabolism in normal and neoplastic tissues [2]. This 

advantage of indicating metabolic changes in tumors enables their early detection, and 

has a direct impact on patient treatment and prognosis. Nowadays, PET functional 

imaging is widely used in clinically oncology, cardiology, and neurology for diagnosing, 

re-staging, and theragnostics [1, 2]. 

 Radiopharmaceuticals labeled with positron-emitting radionuclides are 

introduced into the body via intravenous injection. When the radionuclide decays, it 

emits a positron that will annihilate with an electron after traveling a very short distance. 

As a consequence, two 511 keV photons are produced traveling in nearly opposite 

directions. If these two photons are detected by a pair of detectors within a short timing 

window, a coincidence event is recorded that forms a line of response (LOR) [2, 3]. The 

choice of positron-emitting radionuclide is a key issue for PET imaging. The most 

widely used radiopharmaceutical is Fludeoxyglucose (18FDG) [4]. 

____________ 
This thesis follows the style of IEEE Transactions on Medical Imaging. 
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 A specific feature of current modern current PET systems is time-of-flight 

(TOF). The applicability of TOF information in PET imaging was initially realized by 

Brownell et al., for the purpose of whole-body imaging [5]. TOF is the difference 

between the arrival times at the detectors of two photons produced by a single 

annihilation event. It is possible to determine the precise location at which the positron 

annihilation occurred if the time resolution is high enough. The fundamental 

improvement rendered by TOF is an increase in signal-to-noise ratio (SNR); therefore, 

TOF can help improve the quality of reconstructed images [5]. The first generation of 

TOF-PET system was made in the 1980s. It brought resurgence of PET with the 

development of fast detector system. The current time resolution for TOF-PET is 

approximately 500 ps [6, 7].  

 In the past several decades, some important developments in PET imaging have 

been made resulting in high quality images, which promoted its application in clinical 

diagnosis. These major achievements can be summarized into the following aspects, in 

particular:  

(a) the extension from a 2-dimensional system with septa to a 3-dimensional one 

with larger axial field of view;  

(b) the development of fast scintillators and electronics which made TOF 

information available yielding a higher spatial resolution and better image 

reconstruction;  

(c) the transition from analytical filtered back-projection (FBP) reconstruction 

algorithms to fully 3D iterative algorithms with data corrections;  
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(d) the combination with CT that is capable of providing the fusion of functional 

and anatomical images for clinical review, and the CT can provide 

attenuation correction for PET; and  

(e) the newly emerging technology of integrating PET and MRI [6,8]. 

 Recently, the development of limited-angle TOF-PET system has been proposed 

for breast-dedicated imaging [9]. And it has become an active area of research due to its 

distinct advantages, in particular, the capacity of simultaneously performing a needle 

biopsy on patients while in the scanner, etc. More importantly, the limited-angle 

configuration can significantly reduce the cost of data sampling. However, this kind of 

PET system only can be applicable under the condition that TOF time resolution is high 

enough. However, artifacts will inevitably appear in the reconstructed images because of 

the incomplete coverage of the imaged object by a partial PET ring. From a 

mathematical point of view, this reconstruction scheme is a serious ill-posed inverse 

problem due to the deficient observations compared with unknowns. Working under the 

undersampling configurations, the traditional PET reconstruction algorithms usually fail 

to provide good reconstruction results.  

 Fortunately, the well-known compressed sampling (CS) developed by Candes et 

al. in 2005 shows that if a signal is itself sparse or has sparse representation in some 

transformed domain, it could faithfully be recovered from its undersampling 

measurements [10]. One fundamental ingredient of CS is the sparsity or inherent low-

dimensional structure of the signal. Actually, lots of natural signals are sparse or 

compressible. The use of the sparse property of the signal can be traced back to the work 
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of Logan in 1965 [11], Santosa and Symes in 1986 [12], and Donoho and Stark in 1989 

[13]. However, it is generally agreed that the foundation of today’s CS theory was laid 

by the three publications [10, 14, 15] in 2005.  Since the pioneer work conducted by 

Candes, Romberg and Tao [10, 14-16], there has been intensive research in the field of 

compressed sampling.  

 In the context of medical imaging, it is well known that a large number of 

medical images are shown to be piecewise constant, and they also have sparse 

representations in some transform domains such as discrete cosine transformation (DCT) 

and wavelet [17], or some trained over-complete dictionary [18-21]. Encouraged by 

these observations, it is expected that CS can be employed to improve the reconstruction 

of medical imaging, especially for the cases with deficient observation. Actually, since 

the invention of CS, the sparsity-promoted solution [10, 14] has been widely used in 

medical imaging, such as MRI [20-22], CT [23, 24], and PET [25-27].  

 More specifically, regarding the application of sparse reconstruction in PET 

imaging, research has been focused on the development of more efficient reconstruction 

algorithms [25-27]. To my best knowledge, the initial work within the context of the 

sparsity-promoted PET reconstruction can be traced to that made by Harmany et al [25] 

where photon-limited collections were modeled by a Poisson distribution and the choice 

of wavelet-based sparse transformation was discussed. Furthermore, to correct the 

estimation bias caused by the mandatory introduction of the sparsity-promoted term into 

the data fidelity, Wang and Qi proposed a two-step reconstruction strategy [26], where 

the sparsity-promoted algorithm was first implemented to determine the basis 
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components with significant coefficients, and then the final solution was calculated by 

solving the reduced-dimensional least-square problem. In [27], the authors briefly 

introduce the application of the first-order primal-dual algorithm to deal with real PET 

data. In summary, these studies showed that CS was capable of breaking the bottleneck 

of PET imaging with fewer observations than unknowns. 

 

1.2  Mathematical Model of PET Imaging 

 This subsection illustrates the model of PET imaging within the two-dimensional 

context, as shown in Figure 1-1. The relationship between the object of interest ),( yxf  

and PET observed data ),( sp θ  can be formally represented via the well-known Radon 

transformation [28], namely,   

                                      ∫∫ −−= dxdyxysyxfsp ))sincos((),(),( θθδθ .                        (1.1) 

Eq. (1.1) shows that the observed data can be understood as the integrals of the object 

along the lines-of-response (LOR) connecting the pairs of detectors. Conventionally, 

these collected data (i.e., projections) are stored in the form of a sinogram. 

 To facilitate the numerical implementation, Eq. (1.1) can be cast in the 

discretized form as: 

  = +y Af n , (1.2) 

where the vector MR∈y  denotes the observed data, N∈f R  represents the unknown 

object of interest, and the vector of n is used to take into consideration the noise, the 

discrete error, and other possible errors. The projection matrix A  characterizes the 
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whole imaging system and it represents the probability p(i,j) that an emission from j-th 

pixel is detected by i-th pair of detectors on PET ring [29]. 

 

 

Figure 1-1. Diagram describing the Radon transformation where the red line denotes the LOR (line of 
response) and the ROI (region of interest) is discretized into n×n pixels. 
 

 With the introduction of time-of-flight, a TOF-PET observation can be 

approximately represented by a convolution of the object f with a TOF kernel function h 

along the LOR, in particular [5, 30, 31],    

                               ( ) ∫ −+−= ∞
∞− dllthlslsftsy )()cossin,sincos(,, θθθθθ .                         (1.3) 

Here, the variables s and θ are the radial and angular coordinates, respectively, and l is 

the integration variable along the LOR, while t represents the TOF variable. The TOF 
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kernel h is often considered to be time-shift invariant and modeled as a Gaussian 

function with the variance σ2 related with the time resolution τ of the system through the 

equation σ = cτ / 2( ) / 2.35( )  [5, 30 ,31].  From Eq. (1.3) we can observe that if τ is very 

large, the TOF PET almost returns to a standard PET imaging; in contrast, if system 

works with ideally small τ, the TOF PET imaging can be obtained directly from the 

observed data that requires no reconstruction procedure. 

 

                  

Figure 1-2. Sketch map of TOF-PET imaging system where the red line denotes the LOR (line of 
response). The curve marked as kernel is the TOF Gaussian function and the ROI (region of interest) is 
discretized into n×n pixels. 
 

 Accordingly, Eq. (1.3) can also be casted into a series of compact forms, 
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                                        ( ) ( )
,

{ , 1 ,..., 1 , }
t t t

t T t T t T t T t
= =

= − Δ − − Δ − Δ Δ
y AH f A f

                            (1.4) 

where Δ t is known as TOF bin, and the number of time bins is (2T+1). A is the 

projection matrix of PET system defined previous [29]. In Eq. (1.4), the M-dimensional 

vector M
t R∈y represents the observed data y(s,θ,t) at time t. The term Htf accounts for 

the convolution of the Gaussian kernel and the object, where Ht is the Topletiz matrix 

generated by h. Note that without otherwise a specific claim, the notation of f is a N-

dimensional vector, stacked from the two-dimensional image f with size of n×n. 

 

1.3  Reconstruction Algorithms for PET Imaging 

 

1.3.1  Analytical algorithms 

 The aim of PET imaging is to recover f(x,y) from the available observation p(θ,s) 

through reconstruction algorithms. The estimation of f(x,y) can be directly achieved by 

implementing the inverse Radon transformation [28], which can be expressed by the 

following one-dimensional integral of the observed data p(θ,s) 

                                               ∫ +−=
π

θθθθ
0

)cossin,(),(ˆ dyxpyxf .                               (1.5) 

 The reconstruction through the above analytical solution is a popular approach 

due to its relatively low computational cost. However, this straightforward analytical 

approach seriously suffers from the degraded image quality. Actually, the estimation 

),(ˆ yxf BP  can be more exactly expressed by the convolution of the object f(x,y) with a 

kernel function R(x,y), in particular, 
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                                                    ),(),(),(ˆ yxRyxfyxf ⊗= ,                                         (1.6) 

where 221),( yxyxR +=  describes the PET system response. One method used to 

reduce the effect brought by R(x,y) is to incorporate a filter into the reconstruction 

process; consequently, the reconstruction approach becomes the well-known filtered 

back-projection (FBP) algorithm [32], which can be formally expressed as  

                                          { }{ }∫ −=
π

θθω
0

1
1 ),(),( dspyxf s FF ,                                        (1.7) 

where {}⋅F  and {}1− ⋅F  denote respectively the forward and inverse Fourier 

transformations with respect to the variable s and sω , where sω  is normally called a 

ramp filter. The FBP approach can be roughly considered to be the following four-step 

strategy: (a) calculating the Fourier transformation of ),( sp θ  with respect to s; (b) 

filtering { }),( sp θF via the ramp filter sω ; (c) computing the inverse Fourier 

transformation of { }),( sps θω F  with respect to sω ; and (d) carrying out the integral of 

{ }{ }),(1
1 sps θω FF −  with respect to the view angleθ .  

 Compared to the direct back-projection algorithm (i.e., inverse Radon 

transformation), it does not result in considerable extra computational cost, as the 

operations of forward and inverse Fourier transformation introduced in FBP can be 

efficiently implemented by the use of the well-known fast Fourier transformation (FFT) 

technique. In addition, it has been theoretically proved that the object ),( yxf  can be 

reconstructed perfectly when the sufficient noise-free data is available.  
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 Nevertheless, we would like to specifically emphasize that the FBP is noise 

sensitive, as the ramp filter of FBP will amplify the noise or error; consequently, it will 

substantially distort the reconstructed images. To attack this problem, the strategy used 

commonly is to incorporate a suitable window function (such as, cosine function, 

Hanning function, etc. [33, 34]) to suppress the noise.  

 Encouraged by the improvements on sensitivity and signal-to-noise ratio, PET 

data acquisition and reconstruction methods have been successfully transited from 2-

dimensional to 3-dimensional systems. However, regarding this transition, two major 

problems had to be overcome: (1) the spatially varying nature; and (2) the huge 

computation cost.  

 The spatially varying nature of the 3D data sets makes the reconstruction more 

challenging [35]. One popular approach to avoid the data variance is the 3-dimensional 

re-projection (3DRP) algorithm developed by Kinahan and Rogers [36]. The working 

principle of 3DRP is to conjecture the unmeasured data through forward projections, 

which are based on the initial estimates of every transverse slice obtained through the 2-

dimensional FBP reconstruction.  

 However, the 3DRP algorithm is much more time consuming than the 2-

dimensional slice-by-slice FBP algorithm due to the considerable amount of increasing 

LORs. To accelerate the 3DRP algorithm, a re-binning technique has been developed. 

The re-binning operation is to sort (rebin) the 3-dimensional observed data into many 

sets of 2-dimensional data prior to the implementation of the FBP algorithm. It can be 

considered as a pre-procedure to the reconstruction [37]. Three commonly used re-
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binning algorithms have been introduced, (1) the single-slice re-binning (SSRB) 

algorithm, (2) the multi-slice re-binning (MSRB) algorithm, and (3) the Fourier re-

binning (FORE) algorithm. Among these three, the SSRB algorithm is considered to be 

the simplest one; the MSRB algorithm is more accurate than the SSRB algorithm, but 

less stable in the presence of noise, and the FORE algorithm is considered to be the most 

accurate [38-40]. In summary, the family of FBP algorithms is computationally 

attractive in terms of practical consideration, and has played an important role in the 

clinic use. 

 

1.3.2  Iterative algorithms 

 Recalling Eq. (1.2), the basic purpose of reconstruction is to recover f from y 

given the knowledge of A. The iterative approach is well designed to address this kind of 

finite-dimensional inverse problem. Compared to analytical approaches, iterative 

approaches have two distinct advantages: (a) it is relatively easy to incorporate prior 

knowledge into the reconstruction; and (b) they are suitable for the undersampling 

imaging problem with some specific modifications.  

 To date, a large number of iterative algorithms have been developed, and they 

can be divided into two major groups: (a) the algebraic reconstruction algorithms, and 

(b) the statistical reconstruction algorithms. In here, a brief description of algebraic 

reconstruction algorithms is given followed by an extensive discussion of the statistical 

approaches using Expectation Maximization (EM). 
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1.3.2.1 Algebraic algorithms   

 In this subsection, the basic algebraic reconstruction technique (ART), which 

was widely used in the early stages of PET imaging, will be briefly discussed. Simply, 

the iterative formula of basic ART can be written as following [41]: 

                                              
( )

( ) ( )
2

2

, old
i inew old

i
i

−
= −

y a f
f f a

a
,                                        (1.8) 

where i = k mod M +1, ai is the i-th row of A, yi is the i-th element of y. There are 

several variants of ART, such as (a) simultaneous iterative reconstruction technique 

(SART), and (b) multiplicative simultaneous algebraic reconstruction technique 

(MART) [42]. As for these variants of ART, a more detailed description of these 

variants is given in [41, 42].  

 In the terminology of mathematics, ART also can be regarded as incremental 

gradient [43]. In the context of convex optimization, the solution to Eq. (1.2) is usually 

cast as 

                                             
   
f̂ = minx≥0 J (f ) = 1

2
Af − b

2

2⎧
⎨
⎩

⎫
⎬
⎭

.                                     (1.9) 

The iterative formula of the gradient-based approach to solving Eq. (1.9) at the k-th 

iteration is  

                                                      ( ) ( 1) ( 1)k k k
kλ

− −⇐ − ⋅f f d ,                                         (1.10) 

where ( 1) ( 1)( )k T k− −= −d A Af b  is the gradient of 
   
J (f ) = 1

2
Af − b

2

2
 with respect to ( 1)k−f

. The step size kλ  is determined through the standard linear search technique given as 
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2( 1)

2
2( 1)

2

k

k k
λ

−

−
=
d

Ad
.                                              (1.11) 

For the consideration of computation simplicity, kλ is usually approximated as 

2

2
1kλ = A . 

 Comparing Eq. (1.8) and Eq. (1.10), one can immediately see the difference 

between ART and the traditional steep descent method, in particular only one 

measurement is used each iteration in ART while all measurements are used in each 

iteration in the steep descent approach. Similar to the steep descent approach, ART often 

converges slowly for ill-conditional problems, especially for large-scale cases. To 

overcome this problem, some pre-conditioners, i.e. diagonal scaling matrices, Toeplitz 

matrices, etc. should be incorporated [45]. 

1.3.2.2  Statistical algorithms 

 This subsection introduces the statistical reconstruction algorithms, focusing on 

the best-known Expectation Maximization (EM) algorithm. The EM algorithm was 

developed by Dempster, Laird, and Rubin in 1977 [46], and gradually attracted great 

attention due to two distinct advantages over the analytical methods and algebraic 

iterative methods: (a) it is essentially based on the maximum likelihood or maximum a 

posterior (MAP), which is capable of offering unbiased, minimum variance estimates 

when sufficient measurements are available; (b) it remains a basis for some popular 

statistical reconstruction methods. The EM iteration is performed through alternations 

between an expectation (E) step and a maximization (M) step. More explicitly, the 
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expectation (E) step computes the expectation of the log-likelihood using the current 

estimate of the parameters, while the maximization (M) step computes the parameters 

maximizing the expected log-likelihood. These parameter-estimates are then used to 

determine the probability distribution of the latent variables for the next E-step.  

 We can consider the maximum likelihood estimator: 

                                                              ˆ argmax ( )= ff fL ,                                        (1.12) 

where 

                                                             ( ) log ( | )p=f y fL ,                                        (1.13) 

and recall the assumption made in PET imaging that the observed data y conditional on f 

obeys the Poisson distribution:   

                                  1 1

1

exp( ( , ) )( ( , ) )
( | )

( )!

i

n n
y

j jm
j j

i i

p i j f p i j f
p

y
= =

=

−
=

∑ ∑
∏y f ,                    (1.14) 

where fj is the j-th element of vector f, yi is the i-th element of observations. Normally, 

the E-step and M-step of EM algorithm can be expressed as 

 

  

E − step : zij =
yi p(i, j) f j

p(i, j) f j
j=1

n

∑  (1.15) 

and 

 

   

M − step : f j =
z(i, j)

i=1

m

∑

p(i, j)
i=1

m

∑
. (1.16) 
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 If the above two-step iterative operations are integrated, the iterative formula 

frequently used in PET imaging can be obtained as [47, 48] 

                                         

   

f j
new =

f j
old yi p(i, j) ( p(i, j) f j )

j=1

n

∑
i=1

m

∑

p(i, j)
i=1

m

∑
.                              (1.17) 

 As pointed out previously, EM approach can provide unbiased and minimum 

variance estimation. However, it is extremely sensitive to noise. Therefore, it is 

necessary to take some steps to address this problem. A mainstream strategy is the 

Bayesian/penalized method, which will be discussed as follows [49-52]. 

 Different from Eq. (1.12), which is based on maximum likelihood, the Bayesian 

strategy can be used to find the solution of maximum a posterior (MAP) problem. We 

consider the MAP estimator  

                                                          ˆ argmax ( )= ff fL ,                                            (1.18) 

where 

                                        ( ) log ( | ) log ( | ) log ( )p p p= ∝ +f f y y f fL .                       (1.19) 

In Eq. (1.18), the prior term of ( ) exp( ( ))p Vβ∝ −f f  has been taken into account, which 

renders the benefit that the reconstructed image quality may be greatly improved if 

proper prior is used. Several successful priors have been proposed by different 

researchers [52, 53]. 

 The update iterative formula turns to be 
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f j
new =

f j
old yi p(i, j) ( p(i, j) f j )

j=1

n

∑
i=1

m

∑

p(i, j)+ β ∂
∂ f j

V (f ) |
i=1

m

∑ f j
old

.                           (1.20) 

Comparing Eq. (1.17) and Eq. (1.20), we can readily observe that there is an extra term 

( )
j

V
f

β ∂
∂

f  resulting from the introduction of the prior ( )p f . Obviously, this term plays 

the role of a filter that suppresses noise, especially for the case where   
p(i, j)

j∑ → 0 .  

 Regarding the convergence of the EM algorithm, a strict theoretical analysis on 

stable convergence has been made. Normally, EM-based algorithms require 

approximately 20 to 50 iterations to reach an acceptable solution. Though capable of 

providing much more accurate reconstruction than the FBP algorithm, EM algorithms 

require the implementations of one forward projection and one back projection in each 

iteration; consequently, it is sometimes computational intractable for clinical use. To 

make the EM algorithms more practical, Hudson and Larkin [54] proposed in 1994 the 

order-set Expectation Maximization (OSEM) algorithm, which can efficiently reduce the 

computational cost.  

 Assuming that the observed data is grouped into n subsets prior to the 

reconstruction operation and ),...,2,1( niSi =  denote the ordered subsets of the observed 

data, the iterative formula of OS-EM is  

                                         

   

f j
new =

f j
old yt p(t, j) ( p(t, j) f j )

j=1

n

∑
t∈Si

∑
p(t, j)

t∈Si

∑                               (1.21) 
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for the observed data iSt∈ . Different from the standard EM algorithm, only one subset 

is used in the update formula for OSEM each iteration, using part of rows of the 

projection matrix. It is appropriate to point out that when the number of subsets equals 

one, it turns back to the standard EM algorithm. Many numerical simulations have 

shown that with suitable choice of n, the OSEM can provide a better convergence at the 

early stage of iteration than the standard EM algorithm. However, at the late stage of 

iteration, the use of order-set technique will result in oscillation. It should be very careful 

of selecting step size to ensure stable convergence [40, 54, 55]. 
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2. BASICS OF SPARSE RECONSTRUCTION 

 

2.1  Ill-posed Linear Problem and Its Regularization  

 Recalling that the PET imaging problem can be mathematically cast into the 

following linear equation, i.e.,  

                                                          =y Af                                                      (2.1) 

where M N×∈A R is the projection matrix, which relates the object denoted by N∈f R  

and the observed data denoted by M∈y R . Provided that A is well conditioned, which 

requires that the independent observations should be sufficient comparing to unknowns; 

thus, the solution to Eq. (2.1) can be straightforward achieved as 

                                                                1−=f A y .                                                       (2.2) 

 However, in the context of undersampling PET imaging, the problem (2.1) turns 

to be ill-posed. It is usually challenging due to the infinite number of non-meaningful 

solutions matching the data, especially for the case of noisy measurement. One popular 

method to obtain proper x is the regularization, whose basic idea is to incorporate prior 

information to narrow the feasible solution space. The best-known regularization 

strategy is the Tikhonov regularization, by which the solution with minimized squared 

Euclidean norm (l2-norm) is desirable [18]. Formally, the regularized version of Eq. 

(2.1) after using the Tikhonov regularization can be written as 

                                                      2

2
min . .s t =f f y Af .                                         (2.3) 
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 One important property of (2.3) is the convexity that ensures the uniqueness of 

the solution. The analytical solution to Eq. (2.3) can be obtained as 

                                                        ( ) 1T T−
=f A A A y .                                                (2.4) 

Due to the simplicity and non-iterative property of the solution (2.4), the l2-norm 

regularization has been widely used in various engineering fields. Nonetheless, the 

researchers have realized that the use of l2-norm regularization is problematic in many 

situations, for example, the object to be recovered is non-smooth or mathematically out 

of H2-space. Actually, this assumption of minimum energy for the solution is broken in 

many cases. It makes the use of l2-norm regularization often leading to results that 

cannot be accepted by the engineers or customers [18].  

         Great efforts have been made to find more suitable regularizations [44], among 

which the sparsity-promoted regularization has been extensively studied. The sparse 

reconstruction has become a well-established field with clear theoretical foundations and 

extensive applications. Within the framework of sparse reconstruction, a representative 

sparsity regularized form is  

                                               1 2
min . .s t ε− ≤θ AΦθ y ,                                    (2.5) 

where ε  relates to the noise level of the data, Φ  is the transformed domain in which the 

signal of interest   θ = Φ−1f
 
is sparse or compressible [10]. Note that equation (2.5) is 

convex and it can be addressed through well-established convex optimization 

algorithms. In the remainder of this chapter, some basic concepts of sparse signal will be 

briefly introduced at first. Then the restricted isometry property (RIP) and its resulting 
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theorem are introduced, which provide the guarantee for the accurate recovery of sparse 

signal through solving l1-norm regularized convex problem.  

 

2.2  Sparsity and lp-norm Measure 

 For convenience, some necessary concepts and notations are introduced at first. 

In discrete context, our signals or images can be viewed as vectors endowed in an N-

dimensional Euclidean space, denoted by NR . The lp-norms of vector x for [ )∞∈ ,1p are 

defined as [18, 56]

     

 

                                      [ )
1

1

1, .

max .

p pN

i
ip

i i

x px

x p
=

⎧⎛ ⎞⎪ ∈ ∞⎪⎜ ⎟⎜ ⎟= ⎨⎝ ⎠⎪
= ∞⎪⎩

∑
                                   (2.6) 

Furthermore, the definition of lp-norm has also been heuristically extended to the case of 

[0,1)p∈ . Specially point out that the lp-norms for [0,1)p∈  are just quasi-norms as they 

fail to satisfy the triangle inequality.  The pl -norms ( [ )∞∈ ,0p ) have notably different 

properties for different values of p. To illustrate this, the unit spheres induced by 

different norms in  2  are provided in Figure 2-1. 

  
              p = 0.5                               p = 1                                 p = 2                                   p = ∞  

Figure 2-1. Unit spheres induced by different norms in  2 . 
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 Mathematically, a signal f is considered as k-sparse when at most its k entries are 

nonzero or significant (
0
k≤f ).  For the signals that are not themselves sparse but 

admit sparse representations in some basis or dictionary Φ, they are still viewed as k-

sparse in case that the inequality k≤
0
c  holds after the transformation of =c Φf  [18, 

56]. The sparse signals can often be well approximated as a linear combination of just a 

few elements in Φ.  

 Lots of natural images and signals have sparse representations in some 

transformed domain. Taking the natural image shown by Figure 2-2(a) as an example, 

we can observe that only small fraction of its wavelet transformed coefficients are 

significant, while the others are very small that can be ignored, as illustrated in Figure 2-

2(b).  

 

    

                                      (a)                                                                                      (b) 

Figure 2-2. (a) A natural image and (b) its wavelet transformation coefficients 
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Hence, good approximations of this image can be obtained by keeping its few largest 

coefficients, as shown in Figure 2-3(a) and (b), where 1% and 5% its largest coefficients 

are used, respectively. 

 

      

                                      (a)                                                                                      (b) 

Figure 2-3. The approximations of Figure 2.2(a) by keeping (a) 1% and (b) 5% of its largest wavelet 
transformation coefficients 
 

2.3 Restricted Isometry Property and Its Implication in Sparse Reconstruction 

 Candes and Tao [10] introduced the restricted isometry property (RIP) 

conditional on matrices A and discussed the important role it plays in the recovery of 

sparse signal.  

 The definition of the RIP is given as follows [10].  A matrix A satisfies the 

restricted isometry property (RIP) of order k if there exists a constant ( )0,1kδ ∈ such that 

                                             ( ) ( )2 2 2

2 2 2
1 1k kδ δ− ≤ ≤ +f Af f                                     (2.7) 
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holds for all k-sparse f. 

 If a matrix A satisfies the RIP of order 2k, we can interpret Eq. (2.7) as saying 

that A approximately preserves the distance between any pair of k-sparse vectors. This 

will clearly have fundamental implications concerning robustness to noise. It is 

important to note that in the above definition of the RIP the bounds are assumed to be 

symmetric about 1 for notational convenience. More generally, arbitrary bounds can be 

considered [10] 

                                                 2 2 2

2 2 2
0 α β< ≤ ≤ < ∞f Af f ,                                    (2.8) 

where 0 α β< ≤ < ∞.  

 With RIP, the guarantee of perfectly reconstructing a sparse signal from 

undersampling noisy measurements is stated by the following theorem [56].  

 Suppose that A satisfies the RIP of order 2k with 2 2 1kδ < − and let y = Af + e

where 
2

ε≤e . When ( ) { }2
:B ε= ≤y z Az -y , the solution f̂ to the l1-minization 

optimization problem of Eq. (2.5) obeys 

 
   
f − f̂

2
≤ C0

σ k f( )
k

+C1ε  (2.9) 

where 

                                     
  

C0 = 2
1− 1− 2( )δ 2k

1− 1+ 2( )δ 2k

,  C0 =
4 1+δ 2k

1− 1+ 2( )δ 2k

.                        (2.10) 

 Finally, it is appropriate to say that due to well-behavioral convex property of 

problem (2.5), it can be easily solved through a large number of strategies well 
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developed in the field of convex optimization, such as, iterative shrinkage-thresholding 

approach [57-59], sparse Bayesian learning approach [60], iteratively reweighed 

approach [61，62], linear programming [63] and so on.  

 

2.4 Representative Sparse Reconstruction Algorithms 

 To date, many algorithms have been developed to achieve fast, accurate and 

stable reconstruction of sparse signals with underdetermining observations. In this 

subsection three representative sparsity-promoted algorithms are introduced, in 

particular, the iterative reweighting algorithm (IRA) [62], the iterative shrinkage-

thresholding algorithm (ISTA) [57, 58] and its accelerated version (Fast ISTA) [59, 64], 

and the primal-dual algorithm (PD) [44].  

 

2.4.1  Iterative reweighted algorithm 

 With sparsity-promoted regularization in terms of lp-norm (0 1p≤ ≤ ) used in the 

reconstruction, the optimization problem can be formulated as  

                                                   ( )2

2
argmin p

p
γ− +

f
Af y f ,                                     (2.11) 

where the first term represents the data fidelity and the second term is the sparse penalty. 

The contributions of these two terms are traded through the regularization factor γ, 

which should be carefully determined.  

 An important problem involved in this optimization problem is the non-

smoothness of p

p
f . To address this problem, we can equivalently express p

p
f

 
as [61] 
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2 2

0
1 1

2min
2

pN N
p p

i i ip
i i

p p
p

−
−

≥
= =

⎛ ⎞−= +⎜ ⎟⎜ ⎟⎝ ⎠
∑ ∑wf f w w .                          (2.12)

 

Then Eq. (2.11) can be reformulated into the following two-fold optimization problem,   

                   ( ) 2 2 2
, 0 2

1 1

2ˆ ˆ, : argmin
2 2

pN N
p

i i i
i i

p pλ
−

−
≥

= =

⎡ ⎤−= − + +⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑x wf w y Af f w w .          (2.13) 

 The procedure of minimizing Eq. (2.13) can be described as follows. With initial 

0w and 0f , one can go through the following recursion to find f and w: 

Step 1: Update ( )kf with fixed ( )kw  

 With    w
(k )  fixed,    f (k )  can be achieved through the following optimization 

problem:       

                                           
2( ) 2 ( )
2

1
argmin

2

N
k k

i i
i

pγ
=

= − +∑
f

f y Af f w .                          (2.14)
 

Readily the solution to (2.14) can be directly obtained to be  

                                               

( )

2 2

2

1( ) ( )

argmin
2

( ) 0

.

w

T

k T k T

p

p

p

γ

γ

γ
−

⎛ ⎞− + ⋅ ⋅⎜ ⎟⎝ ⎠
⇒ − + =

⇒ = +

f
Af y f

A y Af wf

f A A w A y

                              (2.15) 

Step 2: Update ( 1)k+w  with fixed ( )kf  

 With ( )kf  fixed, ( )kw  can be achieved through the following optimization 

problem:       

                              ( )2( 1) ( ) 2

0 1 1

2: argmin
2 2

pN N
k k p

i i i
i i

p p −
+ −

≥ = =

−= +∑ ∑
w

w f w w ,                        (2.16) 
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where the closed form solution for (2.16) is 
2( 1) ( ) pk k

i i

−+ =w f . Moreover, for the purpose 

of avoiding singularity of the term of 
2( ) pk

i

−
f , a slight modification on the solution to 

( 1)k
i

+w should be made as illustrated as  

                                                   ( )( )
2

2 2( 1) ( )
p

k k
i i ε

−−
+ = +w f ,                                         (2.17)

 

where 0>ε  is a small positive value.  

 By adaptively controlling the dynamic range of f through w during the iterations, 

the above algorithm can provide a superior solution. The complete procedure for the 

iterative reweighted algorithm is summarized in Table 2-1. 

 

Table 2-1. Procedure for the iterative reweighted algorithm 
 

Given: γ ; y  

Initialization: =w I ; =f 0   

for nk ,,3,2,1 =  

( ) 1( ) ( )k T k Tpγ
−

= +f A A w A y  

( )( )
2

2 2( 1) ( )
p

k k
i i ε

−−
+ = +w f

 

End 
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 The iterative reweighted algorithm belongs to the class of second-order 

optimization methods; consequently, it can provide more accurate reconstruction than 

the first-order algorithms, but at the cost of huge computation.  

 

2.4.2  Iterative shrinkage-thresholding algorithm  

 Among the family of sparsity-promoted algorithms, another popular approach is 

the iterative shrinkage-thresholding algorithm (ISTA) [57, 58], which has been widely 

investigated. Many improved versions have also been proposed, such as the FISTA 

proposed by A. Beck [59] and NESTA proposed by Stephen Becker [64]. For 

convenience, the objective function with l1-norm regularization considered by the 

iterative shrinkage-thresholding algorithm can be expressed as:  

                                                         
   
minf J (f )+ γ f

1{ } .                                         (2.18) 

Here,    J (f )  is a smooth convex function that represents the data fidelity. Regarding the 

fact that at any fixed point ( )kf  there is an upper bound of    J (f ) ,    J (f )  can be 

approximated as  

                           
    
J (f ) ≤J (f (k ) )+ ∇J f (k )( ),f − f (k ) + 1

2L
f − f (k )

2

2
,                    (2.19) 

where L is the Lipschtiz constant. Eq. (2.19) can be equivalently represented as 

          
    
f (k+1) = argmin

x
J (f (k ) )+ ∇J f (k )( ),f − f (k ) + 1

2L
f − f (k )

2

2
+ γ f

1

⎧
⎨
⎩

⎫
⎬
⎭

.         (2.20)
 

 Recalling that 
   
J f( ) = 1

2
Af − y

2

2  and ignoring the constant terms with respect 

to f, we have that 
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                                 ( )( 1) ( ) 1 ( ) 1 ( 1)( )k k T k kL L signγ+ − − += − − −f f A Af y f .                     (2.21) 

Readily, the update formula for f can be obtained through the shrinkage-thresholding 

operation as 

                            ( )( )( 1) ( ) 1 ( ) 1,k k T kSoftThreshold L Lγ+ − −= − −f f A Af y ,                  (2.22) 

where 

                                      
.

( , ) 0 .
.

x c x c
SoftThreshold x c x c

x c x c

− >⎧
⎪= ≤⎨
⎪ + < −⎩

                              (2.23) 

 In here, Table 2-2 provides the complete procedure for ISTA. 

 

Table 2-2. Procedure for the iterative shrinkage-thresholding algorithm 
 

Given: γ ; y ; )(kt  

Initialization: =f 0  

for nk ,,3,2,1 =  

( )( )( 1) ( ) 1 ( ) 1,k k T kSoftThreshold L Lγ+ − −= − −f f A Af y  

End 
 

 Regarding the convergence of ISTA, it is well known that ISTA has the 

computation complexity on the order of 1/k. With the practical use taken into 

consideration, great efforts have been made in improving ISTA to get lower computation 

complexity. Here, an accelerated version named as FISTA (fast ISTA) is introduced. It is 

claimed to be capable of reducing the computation complexity to the order of 1/k2 [59]. 
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The FISTA begins with the update of f using the operation of shrinkage-thresholding 

introduced previously: 

                            ( )( )( 1) ( ) 1 ( ) 1,k k T kSoftThreshold L Lγ+ − −= − −f z A Az y .                   (2.24) 

The major difference of the FISTA with the standard ISTA is illustrated by the following 

steps:  

                                                       
2
411 2

1
k

k

t
t

++
=+

,                                               (2.25) 

                                            ( 1) ( 1) ( 1) ( )

1

1( )( )k k k kk

k

t
t

+ + +

+

−= + −z f f f .                                 (2.26) 

It can be observed that a sequence of accelerate factor tk are involved in the iteration to 

make use of the value at the previous iteration. The complete procedure for FISTA is 

exhibited in Table 2-3. 

 
Table 2-3. Procedure for FISTA 

 
Given: γ ; L  

Initialization: = =z f 0 ; 11 =t  

for nk ,,3,2,1 =  

( )( )( 1) ( ) 1 ( ) 1,k k T kSoftThreshold L Lγ+ − −= − −f z A Az y  

2
411 2

1
k

k

t
t

++
=+

 

( 1) ( 1) ( 1) ( )

1

1( )( )k k k kk

k

t
t

+ + +

+

−= + −z f f f  

End 
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2.4.3 Primal-dual algorithm 

 Another popular first-order algorithm to solve problem (2.5) is the primal-dual 

approach. Repeatedly, the convex optimization problem to be addressed is  

                                                    1
min . .s t =f Af y.                                          (2.27) 

In the context of primal-dual, the above equation can be reformulated into 

                                                ( )1max min , − +λ f λ Af y f .                                    (2.28) 

Note that due to the non-smoothness of 
1
f , available expression for updating f is 

intractable. Therefore, the l1-norm term in Eq. (2.28) is reformulated into  

                           ( ) 2 1
1 1 1 1

1

1 1 1min
2 2 2

N

i
i

−

=

⎛ ⎞⎛ ⎞= + = + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑w w
f f f f f w .                 (2.29) 

Note that ( )1 1 1

1
2

= +f f f also can be expressed in other form, for example, 

( )1 1 1
1α α= + −f f f  where [ ]0,1α∈ . Now the resulting primal-dual objective 

function becomes 

     { } 2 1
1

1

1 1, , argmaxargminargmin ,
2 2

N

i
iλ

λ −

=

⎛ ⎞⎛ ⎞⎛ ⎞= − + + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
∑w

w f
f w λ Af y f f w .  (2.30) 

 The update formulas for f, λ and w are respectively shown as follows. 

Step 1: Update of f
 
 

                                     
2

1

1 1ˆ argmin ,
2 2

⎛ ⎞⎛ ⎞= − + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠w
f

f λ Af y f f                           (2.31) 

The closed-form solution to Eq. (2.31) can be straightforward derived as 

                                          ( )( 1) 12 ,0.5k TSoftThreshold+ −=f w A λ .                             (2.32) 
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Step 2: Update of w
 

 By ignoring the constant terms with respect to w, we can renew w through the 

following equation:  

                                 { } 2 1

1
, , argmin 1

N

i ii i
i

λ −

=

⎛ ⎞= + ⇒ =⎜ ⎟⎝ ⎠
∑w

w
f w f w w f .                      (2.33) 

Specifically, the l1-norm term in Eq. (2.27) is replaced by 
2

2 i

i iw ε
=

+∑w

f
f , where iw is 

determined by the value of if obtained through previous iteration, and ε is a small 

positive small real to void the singularity. 

Step 3: Update of λ  

 The λ is updated by ( )µ= − −λ λ Af y  where µ is a suitable step size. Finally, 

the complete procedure for the triple iteration approach is summarized in Table 2-4. 

 
Table 2-4. Procedure for the triple iteration algorithm 

 
Given: µ ; y  

Initialization: I=w ; =f 0 ; 1=λ  

for nk ,,2,1,0 =  

( )( 1) 12 ,0.5k TSoftThreshold+ −=f w A λ  

( 1) ( 1)1k k
ii i
+ +=w f  

( )( 1) ( ) ( 1) ( 1)k k k kµ+ + += − −λ λ Af y  

End 
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3. PROPOSED METHODOLOGY 

 

3.1  Improved ART Algorithm 

3.1.1  Order-set ART 

 It is well known that the order-set technique is an accelerated strategy widely 

used, for example, the order-set EM (OS-EM) algorithm in the realm of medical 

imaging. The order-set ART (OS-ART) algorithm developed in [65] is briefly discussed 

below. For convenience, the update formula for the standard ART is repeated here,  

                                                
( )

( ) ( )
2

2

, old
i inew old

i
i

−
= −

y a f
f f a

a
.                                     (3.1) 

Seen from the above equation, only one element of the observed data is used each 

iteration. With the order-set technique employed, the observed data are grouped into n 

subsets; consequently, the iteration formula of Eq. (3.1) turns to be  

                                 

    

f (new) = f (old ) −

a i⋅m+1

a i⋅m+2


a( i+1)⋅m

⎛

⎝

⎜
⎜
⎜
⎜
⎜
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⎟
⎟
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T
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⎛
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⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

−

a i⋅m+1
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
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⎛
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⎜
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where 1mod += nki  at the step k, and ( )nMm /int= . To point out specifically, it 

returns to be the standard ART algorithm when n = M; on the contrary, it becomes the 

traditional Newton-based algorithm if n is set to be 1. 
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 Note that the convergence rate of iterative algorithms using order-set technique is 

highly sensitive to the choice of n.  Therefore, it’s appealing to choose a suitable n to get 

optimal convergence in practice.  

 

3.1.2  Sparsity-promoted  order-set ART algorithm 

 Due to the lack of prior information used, ART usually performs poorly with 

deficient observation and suffers from the serious salt and pepper noise. To mitigate this 

problem, the ART+TV reconstruction method has been investigated by several authors 

[66-68]. This approach can be viewed as a sparsity-promoted ART algorithm.  

 In here, the more general framework of sparsity-promoted ART is built and its 

objective function can be formulated as 

                                       
1

min . . ( 1,2, )i is t i n= =Φf a f y L .                             (3.3) 

 The FISTA algorithm discussed in previous chapter is adopted to solve Eq. (3.3). 

The complete procedure of the proposed accelerated order-set ART algorithm is 

summarized in Table 3-1. Two distinct benefits are rendered by this proposed method, in 

particular: (a) the sparsity prior of the imaged object is readily incorporated; (b) the 

accelerated advantages of the order-set technique and multiple-step strategy used in 

FISTA are simultaneously taken. Consequently, the convergence of the proposed 

method can be greatly improved, which will be verified through the numerical 

simulations provided next chapter.   
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Table 3-1. Procedure for the proposed accelerated sparsity-promoted order-set ART algorithm 
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3.2  The Sparsity-promoted Reconstruction with Combined Regularizations of l1-

norm and p-TV 

 The TOF-PET imaging problem of Eq. (1.4) can be addressed through the 

following least square problem  



 

 

35 

35 

                                                             
2

2
ˆ argmin

T

t t
t T=−

= −∑ff y A f                                        (3.4) 

As pointed out previously, without the use of suitable prior information, almost all of 

methods fail to produce meaningful solution to Eq. (3.4) for undersampling TOF-PET 

imaging, especially for the case of noisy observations. To circumvent this problem, two 

regularizations of p-TV and l1-norm are incorporated into the above objective function; 

consequently,   

                              
2

1 22 1
ˆ argmin t t p TV

t
γ γ

−

⎧ ⎫= − + +⎨ ⎬
⎩ ⎭
∑

f
f A f y f Φf .                        (3.5) 

Here, the p-TV and l1-norm terms are used to take advantages of the correlated-structure 

sparse and piecewise-constant properties of the object f. Furthermore, for TOF-PET 

imaging, the use of p-TV regularization is more efficient to detect a “hot” region, 

implying a tumor, which manifests a sudden change boundary with respect to its 

surrounding normal tissue. In Eq. (3.5), p TV−
f  is defined as 

                                             ( ) ( )( )2 2 2

, ,
,

p
x y
i j i jp TV

i j
−

= Δ + Δ∑f f f                                (3.6) 

and  

                                             , 1, , , , 1 ,,x y
i j i j i j i j i j i j+ +Δ = − Δ = −f f f f f f                                 (3.7) 

where f in Eqs. (3.6) and (3.7) is the n×n matrix representing the discrectized object. The 

factors of 1γ  and 2γ  allow the trade-off between the observed data and the priors of f. 

The transformation domain Φ is specified as a discrete cosine transformation (DCT) 

here.  
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 It is noted that the objective function of Eq. (3.5) is analogous to the one 

proposed by Lustig et al. [22]. However, compared to [22] and other relevant works, this 

work presents two specific differences: (a) instead of implementing a conjugate gradient 

algorithm to the whole objective function, an alternative approach was provided to solve 

Eq. (3.5), i.e., separately dealing with p-TV regularization term with an iteratively 

reweighted method, while applying operation of shrinkage-thresholding on l1-norm 

constraint; (b) the generalized TV, i.e., p-TV, instead of standard TV regularization is 

adopted. As a matter of fact, -p TV
f  is a straightforward extension of the standard TV 

regularization, which was initially mentioned by Rodriguez and Wohlberg [69]. In [69], 

only the 1-TV and 2-TV are numerically studied for imaging painting and de-noising. In 

the subsequent section we discuss the performances of different p-TV adapted for our 

TOF-PET imaging problem, which show that the 0.5-TV is optimal.  

 To efficiently solve the Eq. (3.5), variable splitting technique is applied on the 

term of 2 1
γ Φf ; consequently, the Eq. (3.5) can be reformulated into a two-fold 

optimization problem, namely,  

                            
2 2

1 2 32 1 2,
min t t p TV

t
γ γ γ

−

⎧ ⎫− + + + −⎨ ⎬
⎩ ⎭
∑f d
A f y f d d Φf                    (3.8) 

Intuitively, the classical alternatively iterative strategy can be exploited to treat Eq. (3.8). 

The working procedure consists of alternation between performing the update of f using 

the current estimate for d, and computing d based on the update of f.  

 In summary, the updates for f and d at the nth iteration are made by solving the 

following two sub-optimization problems   
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22( ) ( 1)

1 32 2
argminn n

t t p TV
t

γ γ −
−

⎧ ⎫= − + + −⎨ ⎬
⎩ ⎭
∑

f
f A f y f d Φf             (3.9) 

and  

                                           { }2( ) ( )
2 31 2

argminn nγ γ= + −
d

d d d Φf                            (3.10) 

respectively.  

Step 1: Update of f  

 In this research the strategy of iteratively reweighted approach is used to solve 

Eq. (3.9). p TV−
f  can be alternatively expressed as 
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     (3.11)                                                                                         

where  

                                           
   
Dxf( )i, j

= Δ xfi, j , D yf( )
i, j
= Δ yfi, j                              (3.12) 

and 

                                  ( ) ( )( ) ( )( )( ) 12 2 21 1 1
, ,

p
n n nx y

i j i jdiag
−

− − −
⎛ ⎞
⎜ ⎟= Δ + Δ
⎜ ⎟⎝ ⎠

w f f                            (3.13) 

In order to avoid singularity of ( )( ) ( )( )( )2 21 1
, ,
n nx y
i j i j

− −Δ + Δf f , a small positive real ε is 

introduced to modify w, i.e., 
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                                ( ) ( )( ) ( )( )( ) 12 2 21 1 1
, ,

p
n n nx y

i j i jdiag ε
−

− − −
⎛ ⎞
⎜ ⎟= Δ + Δ +
⎜ ⎟⎝ ⎠

w f f                         (3.14) 

 Now, we can readily derive the iterative solution to Eq. (3.9) as 

                                
( ) ( )( )1 1

22 ( 1)
32 2

( )

22
1

argmin
n n

n
t t

n t

x y

γ

γ − −

−⎧ ⎫− + −⎪ ⎪
= ⎨ ⎬

⎪ ⎪+ +
⎩ ⎭

∑
f

w w

A f y d Φf
f

D f D f
                        (3.15) 

Explicitly, the closed-form estimation of )(nf can be achieved as 

                            

   

f (n) = ′AtAt
t
∑ + γ 1 ′Dxw n−1( )Dx + ′D yw n−1( )D y( ) + γ 3I

⎛
⎝⎜

⎞
⎠⎟

−1

× γ 3 ′Φ d(n−1) + ′Atyt
t
∑⎛

⎝⎜
⎞
⎠⎟

                 (3.16) 

 To avoid the overwhelming computation of calculating matrix inverse involved 

in Eq. (3.16), the classical preconditioned conjugate gradient (PCG) method was 

explored to solve Eq. (3.15) in this research. 

Step 2: Update of d  

 Through the standard implementation widely used in the literature of compressed 

sampling, the following shrinkage solution d(n) to problem (3.10) can be readily achieved 

as [59]  

                                           
{ }2( ) ( )

2 31 2

( ) 2

3

argmin

_ ,

n n

nSoft Thr

γ γ

γ
γ

= + −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

d
d d d Φf

Φf
                          (3.17) 

 The whole procedure for proposed algorithm for solving sparsity-promoted TOF-

PET reconstruction has been summarized in Table 3-2.  



 

 

39 

39 

 

Table 3-2. Procedure for the sparsity-promoted reconstruction with combined regularizations of l1-norm 
and p-TV 
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1n n= +  

End While 

 

 Furthermore, it is well known that to ensure meaningful solution we have to 

carefully choose regularization factor 1γ . Specifically, if 1γ is big, the resulting solution 

will seriously stray from the data fidelity; on the other hand, small 1γ will cause Eq. (9) 

highly ill-conditioned, and extremely slow convergence for PCG. The popular 
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continuation technique has been adopted to address this issue by initially setting a much 

larger 1γ  and gradually decreasing its value when the iteration is preceded [70]. 

Therefore, the optimized solution with previous value of 1γ  provides the warm start for 

the next iteration. In the proposed method, the continuation technique was adopted and 

empirically chosen as γ 1 ⇐ 0.8 ⋅γ 1 .   
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4. NUMERICAL SIMULATIONS AND DISCUSSIONS 

 

4.1  Setup of Numerical Simulation 

 In this section, numerical experiments were carried out to investigate the benefits 

brought by the sparsity-promoted method to the undersampling TOF-PET imaging. Two 

different undersampling measurement configurations are proposed. The first one is 

parallel to the current traditional PET system, except fewer detectors are sparsely and 

uniformly distributed over a complete PET ring, as sketched in Figure 4-1(b). The 

second one is the limited-angle PET system represented in [9], where the detectors are 

furnished with the density of 384/360o over two opposite partial PET rings, as shown in 

Figure 4-1(c). For convenience, the first undersampling configuration is referred as 

configuration A while the second one is called configuration B. In this work, the radius 

of PET ring is set to be 35cm, while the scale of ROI into which the phantom is 

embedded is 30 cm by 30 cm. In addition, the physical effects like scattering are not 

taken into consideration.  

 As shown in Figure 4-2(a), the phantom used in this research is the well-known 

Shepp-Logan phantom simulated using MATLAB tool (i.e., phantom). In the context of 

numerical implementation, this phantom is discretized into 128×128 pixels.  The 

horizontal and vertical profiles of this phantom are defined and provided in Figure 4-2(b) 

and Figure 4-2(c), respectively. 
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(a)                                                                  (b) 
 

 
 
                                                                     (c) 

Figure 4-1. Schematic diagrams of (a) traditional PET configuration where detectors are densely 
distributed in a complete ring, (b) where detectors are sparsely and uniformly distributed over a complete 
PET ring (Configuration A), and (c) where detectors are compactly distributed over two opposite partial 
rings (Configuration B). Compared with the traditional PET configuration, both configuration A and B are 
undersampling system and will bring incomplete observations. 
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                      (a)                                                    (b)                                                    (c) 
    

Figure 4-2. (a) Ground truth of 128 128×  Shepp–Logan phantom used in numerical simulations; (b)  
horizontal profile that corresponds to the slice indicated by horizontal dotted line in panel (a); (c) vertical 
profile which corresponds to the slice indicated by vertical dotted line in panel (a). 
 

 In here, RMSE (Root of Mean Square Error) and SSIM (Structural Similarity) 

[71] are used as criteria to assess the reconstruction quality, and their definitions are  

                                                           RMSE =
frec − ftrue
ftrue

                                           (4.1) 

and  

                                             SSIM =
2µrecµtrue + c1( ) 2σ cross + c2( )

µrec
2 + µtrue

2 + c1( ) σ rec
2 +σ true

2 + c2( ) ,                (4.2) 

respectively. Here, recµ and µtrue are the average of reconstructed image frec and true 

image ftrue, respectively; σ rec
2 and σ true

2  are the associated variances of them, σ cross is the 

covariance of frec and ftrue, c1 and c2 are two variables to stabilize the division with weak 

dominator.  

 Additionally, two criterions of the maximum iteration number and the minimum 

tolerance error are employed to stop the iterative procedure. The tolerance error is then 

defined as 
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2

2

t t rec
t

t
t

Err =
∑
∑
y - A f

y
.                                             (4.3)

 

 The remainder of this chapter is arranged as follows. First, the performance of 

the accelerated sparsity-promoted ART method proposed in section 3.1 was investigated; 

through the comparison with the traditional ART algorithm and the study on 

convergence. Second, a set of numerical experiments was carried out to find the optimal 

value of p for p-TV in the sparsity-promoted algorithm with combined regularizations of 

l1-norm and p-TV, which was proposed in section 3.2. Third, using the optimal p value, 

the superiority of this sparsity-promoted method in dealing with undersampling 

observation was demonstrated, through the comparison with traditional EM algorithm. 

Finally, based on the sparsity-promoted reconstruction with combined regularizations of 

l1-norm and p-TV, the reconstruction performances dependent on the time resolution τ , 

and the number of detectors N (or the range of angle ϕ ) were investigated in section 4.5 

and 4.6, respectively. 

 

4.2 Numerical Test 1: Investigation on the Accelerated Sparsity-promoted ART 

Algorithm  

 In this subsection, a set of numerical experiments under configuration A are 

carried out to examine the performance of the proposed sparse ART algorithm 

developed in section 3.1, in particular: (a) to investigate the benefits brought by the 

proposed accelerated sparsity-promoted algorithm through the comparisons with the 

traditional ART; (b) to study the improved convergence of the proposed method brought 
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by the use of the order-set technique and multi-step technique mentioned in FISTA. In 

this set of simulation, 190 detectors are used; the time resolution and TOF bin are set to 

be 500 ps and 67 ps, respectively.  

 The technique of order-set has been adopted and the sizes of sets are chosen to be 

1, 10, 100, 1000 and M, where M is the number of total measurements. In Figure 4-3, the 

TOF-PET images with different sizes of sets reconstructed by ART (Figure 4-3(a)) and 

the proposed accelerated sparsity-promoted ART (Figure 4-3(b)) are compared. Their 

associated profiles are also reported in red solids, and the truth profiles are represented in 

black solids for comparison. The RMSEs and (1-SSIM)s corresponding to Figure 4-3 are 

reported in Table 4-1.  

 From the above results, we can observe that the reconstruction quality is sensitive 

to the size of sets. Furthermore, with suitable sizes of sets, the proposed accelerated 

sparsity-promoted algorithm can provide better reconstruction results. For example, 

when the size is chosen as ‘100’, the RMSE and 1-SSIM are enhanced from 0.0735 and 

0.046 to 0.0316 and 0.0053 by the use of accelerated sparsity-promoted operation.  

Furthermore, the profiles of the images reconstructed through the proposed accelerated 

sparsity-promoted ART algorithm are much smoother than those obtained through the 

traditional ART algorithm. 
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(a) 

 

 

 
 (b) 

Figure 4-3. TOF-PET images and associated profiles obtained through (a) order-set ART and (b) 
accelerated order-set sparsity-promoted ART. The sizes of set are used as 1, 10, 100, 1000, M. 
 

Table 4-1. RMSEs and (1-SSIM)s that correspond to figure 4-3 
 

Size of sets 1 10 100 1000 M 
TOF 
ART 

RMSE 0.0982 0.0864 0.0735 0.1615 0.2739 
1-SSIM 0.0681 0.0469 0.0316 0.0652 0.1307 

TOF 
Acc-SART 

RMSE 0.2510 0.1361 0.046 0.0284 0.0231 
1-SSIM 0.0964 0.0283 0.0053 0.0029 0.0044 

 

Figure 4-4(a) reports the convergences of order-set ART with different sizes of sets. 

We can observe that suitable choices of the size of sets do greatly accelerate the 

convergence at the early stage of iteration. And ‘100’ shows to be the best one among 1, 

10, 100, 1000 and M.  As for the sparsity aided ART algorithms, the convergences of the 
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proposed order-set sparsity-promoted ART with and without the multiple-step 

accelerated strategy are compared in Figure 4-4(b).  

 

 
                                    (a)                                                                                 (b) 
 
Figure 4-4. Convergence curves of standard ART, OS-ART, and accelerated OS-ART algorithms, where 
the sizes of sets are chosen as 1, 10, 100, 1000 and M. 
 

 In this figure, the lines marked with the symbol ‘N’ correspond to the cases 

without multi-step accelerated strategy, while the lines with symbol ‘A’ correspond to 

the cases with multi-step strategy. Comparing Figure 4-4(b) with 4-4(a), we can observe 

that the converged values of objective function with sparsity-promoted constraint will be 

slightly larger than those without the use of sparsity penalty, which is resulted from the 

trade-off between the data fidelity and penalty, as shown in Eq. (3.3).  

 Furthermore, some important conclusions can be deducted through the above 

figures: (a) the order-set technique with suitable size of sets can provide improved 

convergence performance; (b) as pointed out in the literatures, the order-set technique 

can improve the convergence rate at the early stage of iteration, however, it usually 

cause the oscillation at the later stage especially for the cases of small size of sets; (c) the 
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use of multi-step accelerated technique can further improve the convergence of order-set 

sparsity-promoted ART within whole iteration process; and (d) the combination of the 

multiple-step technique and ‘1000’ as the size of sets provides the best convergence 

performance.    

 

4.3  Numerical Test 2: Investigation on p-TV Regularization 

 Regarding the approach of combined regularizations of p-TV and l1-norm 

proposed in section 3.2, it is well known that different choices of variable p involved in 

p-TV will produce different effects on the TOF-PET reconstruction. Roughly, the sparse 

solution can be promoted when 0 1p≤ ≤ , in contrast, no sparsity is enforced otherwise. 

Furthermore, it is well known that p = 0, p = 1 and p = 2 are three candidates most 

widely used in dealing with inverse problem. Specifically, p = 0 corresponds to the so-

called support detector [72]. It usually presents a computational challenge due to the 

intrinsic non-convexity; thus, when p = 1 it is known as the standard TV regularizer [73], 

and when p = 2 it is the known Tikhonov regularization. So far, it hasn’t been clear yet 

what the optimal value of p is for efficiently dealing with our problem. In this subsection, 

the aim is to find the optimal value of p for our undersampling TOF-PET reconstruction 

problem.  

 These numerical experiments are implemented under configuration A with 70 

detectors used, and the time resolution and TOF bin are set to be 500 ps and 67 ps, 

respectively. Figure 4-5 shows a series of reconstructed TOF-PET images corresponding 
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to p = 0, 0.5, 1, 1.5 and 2 and Figure 4-6 shows their associated convergences. Their 

corresponding RMSEs and (1-SSIM)s are also reported in Table 4-1. 

 

 

 

 
Figure 4-5. Reconstructed TOF-PET images and their associated horizontal profiles corresponding to 
different values of p = 0, 0.5, 1, 1.5 and 2 for p-TV. 
 

Table 4-2.  RMSEs and (1-SSIM)s that correspond to Figure 4-5 
 

P 0.0 0.5 1.0 1.5 2.0 
RMSE 0.1658 0.0001 0.1515 0.2094 0.2303 
1-SSIM 0.0209 5.72×10-6 0.0434 0.1490 0.2329 

 

 From Figure 4-6, we can observe that p = 0.5 is capable of achieving a solution 

that bests matches the observed data; consequently, it has the strongest capability of 

avoiding trapping in the local minimum. At the same time, Figure 4-7(a) and (b) give the 

dependences of RMSE and 1-SSIM on the values of p varying from 0 through 2 with 

interval of 0.1, which support the standpoint that p = 0.5 is the best candidate to achieve 

good reconstruction result for our problem. In summary, we can conclude that p = 0.5 

provides best TOF-PET reconstruction from Figure 4-5 through Figure 4-7. 

 



 

 

50 

50 

 
 
Figure 4-6. Convergence curves of the sparsity-promoted algorithm for different values of p = 0, 0.5, 1, 
1.5 and 2 for p-TV. 
 

            
                                     (a)                                                                                     (b) 
 
Figure 4-7. Reconstruction performances with the different choices of p value for p-TV under 
configuration A with 70 detectors. (a) RMSE versus p, and (b) 1-SSIM versus p. 
 

4.4  Numerical Test 3: Sparsity-promoted Algorithm with Combined 

Regularizations Versus EM Algorithm 

 In here a set of numerical simulations under configuration A are carried out to 

demonstrate the superiority of the proposed sparsity-promoted solver with combined 

regularizations of l1-norm and p-TV over the traditional EM algorithm, where the cases 
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with and without TOF information are considered.   

 The modality without TOF information is considered at first. The results are 

shown as follows. Figure 4-8(a) shows the images and their associated horizontal 

profiles obtained through the proposed sparsity-promoted algorithm under configuration 

A using 50, 70, 110, 190 and 270 detectors. For comparison, the corresponding results 

obtained through the traditional EM algorithm are reported in Figure 4-8(b). 

 

 

 
    
                                                                                         (a) 
 

  

 
 

                                                                                          (b) 
 
Figure 4-8. PET images reconstructed using (a) the proposed sparsity-promoted and (b) the traditional EM 
algorithms for different number of detectors used. The corresponding horizontal profiles are also 
illustrated via red solid line.  
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 A similar analysis on the modality with TOF information is also carried out, 

where the time resolution and TOF bin are set as 500 ps and 67 ps, respectively. The 

reconstructed images and their associated horizontal profiles through proposed sparsity-

promoted and EM algorithms are shown in Figure 4-9(a) and 4-9(b), respectively. The 

RMSEs and (1-SSIM)s corresponding to the reconstructed PET images in Figure 4-8 and 

Figure 4-9 are reported in Table 4-3. 

 

 

    
                                                                           (a) 
 

   
 

                                                                          (b) 
 
Figure 4-9. TOF-PET images reconstructed using (a) the proposed sparsity-promoted and (b) the 
traditional EM algorithms for different number of detectors used. The corresponding horizontal profiles 
are also illustrated via red solid line. 
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Table 4-3. RMSEs and (1-SSIM)s that correspond to Figure 4-8 and Figure 4-9 
 

Number of detector 50 70 110 190 270 
Non-TOF 

EM 
RMSE 0.4563 0.3994 0.2364 0.1797 0.0338 
1-SSIM 0.7547 0.3144 0.2142 0.1681 0.0470 

Non-TOF 
Sparse 

RMSE 0.3976 0.3126 4.44×10-4 1.92×10-4 1.8×10-4 
1-SSIM 0.1119 0.1251 6.08×10-6 5.40×10-6 5.33×10-6 

TOF 
EM 

RMSE 0.3095 0.2515 0.2156 0.2177 0.0320 
1-SSIM 0.2361 0.1706 0.1445 0.0914 0.0351 

TOF 
Sparse 

RMSE 0.2599 0.1046 3.24×10-4 1.79×10-4 1.66×10-4 
1-SSIM 0.0407 0.0024 5.54×10-6 5.33×10-6 5.31×10-6 

 

 From the above results, it can be easily verified that TOF information is useful by 

enhancing image quality. More importantly, the sparsity-promoted approach to PET 

imaging performs much better than the EM algorithm, in the sense of whether visual 

observation or RMSE and 1-SSIM. Specifically, for TOF-PET imaging the sparse solver 

can provide a visually acceptable solution when 70 detectors are used, in contrast, 190 

detectors are required by traditional EM algorithm. Even in the absence of TOF 

information, the sparsity-promoted approach can provide almost exact reconstruction 

with only 110 detectors; however, the reconstruction images gotten from EM algorithm 

suffer from serious salt and pepper noise, even with 270 detectors.  

 From Table 4-3, we can quantitatively observe the benefits that rendered by the 

sparsity prior and TOF information. Overall, the RMSE and 1-SSIM levels of the 

reconstructed images using the sparsity-promoted algorithm are much lower than those 

obtained using the EM algorithm. For instance, with 110 detectors used, RMSEs of 

images reconstructed by EM algorithm are 0.2156 and 0.2364 for the modalities with 

and without TOF information. However, they can be enhanced to 3.24×10-4 and 



 

 

54 

54 

4.44×10-4, respectively, with the sparsity-promoted algorithm implemented. For the 

cases of much fewer detectors, e.g., 50 detectors and 70 detectors, the sparsity-promoted 

algorithm still significantly outperforms EM algorithm.  

 Regarding their associated horizontal profiles shown in Figures 4-8(a), 4-9(a) and 

4-8(b), 4-9(b) corresponding to the reconstructed images from sparsity-promoted and 

EM algorithms, we can observe that the profiles obtained from the sparsity-promoted 

algorithm are more exact and smooth than those obtained from EM algorithm, and 

almost indistinguishable from the ground truth with more than 110 detectors used. 

Furthermore, it demonstrates the capability of the sparsity-promoted algorithm in 

reducing the artifacts produced in reconstruction process.  

 From the above results we can conclude that the combination of TOF 

information and sparsity-promoted algorithm is expected to bring a substantial 

improvement on the reconstruction quality. 

 

4.5  Numerical Test 4: Investigation on Undersampling Configuration A 

 Through a set of numerical experiments carried out under configuration A, the 

relationship between the RMSE and 1-SSIM of images reconstructed through sparsity-

promoted algorithm, the time resolution τ of TOF-PET system, and the numbers of 

detectors N will be studied. The basic purpose of this investigation is to find the 

sufficient condition of getting acceptable TOF-PET reconstructions with limited 

detectors used. It is appropriate to mention that the parameters of 1γ , 2γ and 3γ  in our 
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sparsity-promoted algorithm are empirically tuned and set to be 1×10-2, 1×10-4, and 

1×10-8, respectively.  

 Figure 4-10 shows the reconstructed results with different time resolutions of 100 

ps, 700 ps, 1300 ps, 1900 ps and 2500 ps where 70 detectors were used under 

configuration A. Their associated horizontal profiles are also provided in Figure 4-10. 

Their corresponding RMSEs and (1-SSIM)s are reported in Table 4-4. From Figure 4-10 

and Table 4-4 one can observe, as expected, that the reconstruction quality gets worse as 

the time resolution increases.  

 

 

 

 
 
Figure 4-10. TOF-PET images reconstructed through sparsity-promoted algorithm and their 
corresponding horizontal profiles for different TOF time resolutions under configuration A using 70 
detectors.  
 

Table 4-4.  RMSEs and (1-SSIM)s that correspond to Figure 4-10 
 

Time resolution (ps) 100 700 1300 1900 2500 
RMSE 1.99×10-4 0.1887 0.2263 0.2274 0.2422 
1-SSIM 5.04×10-6 0.0067 0.0148 0.0284 0.0463 
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 The generic dependences of RMSEs and (1-SSIM)s on the number of detectors N 

and the TOF time resolution τ  are shown in Figure 4-11(a) and (b), respectively, where 

x-axis denotes the time resolution τ  in ps while y-axis for number of detectors N. The 

TOF time resolution τ  ranges from 100 ps to 3000 ps, with interval of 100 ps, while N 

varies from 50 through 110 with interval of 10. 

 

 
                                           (a)                                                                                   (b) 
      
Figure 4-11. Contours of (a) RMSE and (b) 1-SSIM of TOF-PET reconstructed images as a function of 
numbers of detectors N and TOF resolution τ , for configuration A. The red solid lines represent the phase 
transition curves with a RMSE threshold of 0.1.  
 

 From Figure 4-11 we can easily observe that: (a) the more the detectors, the 

better the reconstruction, and (b) the higher the TOF time resolution, the better the 

reconstruction. More importantly, we can choose suitable critical values for RMSE and 

1-SSIM as a threshold according to the requirements of reconstruction quality; therefore, 

for each τ  there is a critical value Nc above which the reconstructed TOF-PET images 

can be considered acceptable. Appealingly, it is desirable to get the explicit dependence 

of Nc on τ  for given threshold values of RMSE or 1-SSIM. For instance, if the threshold 
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of RMSE is chosen as 0.1, after carrying out standard least square method ( )cN τ  can be 

derived as  

                                               1.5( ) 108 48exp( 0.016 )cN τ τ= − −                                   (4.4) 

 For convenience, this curve represented by Eq. (20) is referred as transition phase 

curve, which has been superposed in Figure 4-11(a) by red line. Through this curve, we 

can make the trade-off between the number of detectors used and time resolution of the 

system for the manufacture of PET systems. In addition, this curve is very close to that 

obtained by the similar analysis on 1-SSIM with the threshold of 0.004, as shown by red 

line in Figure 4-11(b).  

 

4.6  Numerical Test 5: Investigation on Undersampling Configuration B 

 With almost the same computational setup as those used in numerical test 4, the 

parallel numerical investigation under configuration B was conducted to explore the 

relationship between the reconstruction performance represented by RMSE and 1-SSIM, 

TOF time resolution t, and the range of angle ϕ .  Different from numerical test 4, 1γ , 2γ

and 3γ are set to be 1×10-3, 1×10-4, and 1×10-8, respectively.  

 Figure 4-12 shows the TOF-PET reconstructed images through sparsity-promoted 

algorithm with the range of angle fixed at 60o and corresponding horizontal profiles for 

TOF time resolutions of 100 ps, 700 ps, 1300 ps, 1900 ps and 2500 ps. Their associated 

RMSEs and (1-SSIM)s are also reported in Table 4-5. From Figure 4-12 and Table 4-5, 

we can get the following two conclusions: (a) for a fixed range of angle, the 

reconstruction quality gets worse as the time resolution increases, similar as the one 
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drawn in numerical test 4; (b) the reconstructions close to the upper and bottom edges of 

phantom are distorted, mainly resulting from deficient rays traveling through these two 

regions. 

 

 

 
 

 
Figure 4-12. TOF-PET images and their corresponding vertical profiles for different time resolutions, 
under configuration B with range of angle being 60o. 
  

Table 4-5. RMSEs and (1-SSIM)s that correspond to Figure 4-12 
 

Time resolution (ps) 100 700 1300 1900 2500 
RMSE 1.79×10-4 0.0763 0.0527 0.1832 0.2584 
1-SSIM 4.93×10-6 6.84×10-4 3.58×10-4 0.0082 0.0164 

  

 The relations between RMSEs and (1-SSIM)s of reconstructed images, the range 

of angle φ and the TOF resolution τ  have been illustrated in Figure 4-13(a) and (b), 

respectively. Here, the range of angle varies between 40o and 110o with interval of 10o. 

In Figure 4-13, the x-axis denotes the time resolution τ  in ps while the range of angle φ 

is for y-axis. From Figure 4-13, we notice that for each τ  there is a critical value cφ  
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above which the reconstructed TOF-PET images can be acceptable. Similarly, if the 

threshold of RMSE is specified as 0.05, the phase transition curve of ( )cφ τ can be fitted 

into 

                                                φc(τ ) = −510− 3284a tan(9τ + 300)                                 (4.5) 

Again this curve is close to that fitted for 1-SSIM with threshold of 0.0001. These curves 

have been superposed in Figure 4-13(a) and (b) by solid red line, respectively.  

  

 
                                       (a)                                                                                   (b) 
 
Figure 4-13. Contours of (a) RMSE and (b) 1-SSIM of TOF-PET reconstructed images as a function of 
the  range of angle φ, and the TOF resolution τ , for configuration B. The red solid lines represent the 
phase transition curves with a RMSE threshold of 0.05. 
  

 Finally it should be pointed out that besides the dependence on specific choice of 

thresholds involved in Eqs. (4.4) and (4.5) to meet the specific requirement on imaging 

quality, these phase transition curves are also highly dependent on the structural 

complexity (or information content) of the phantom used. In the context of CS, the 

“sparsity degree” can be used to measure it. Therefore, it is appealing and instructive to 

carry out the further analyses of ( )cN τ  and ( )cφ τ on more phantoms.  
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5. CONCLUSIONS 

 

 Owing to the considerations of reducing the cost of data sampling and improving 

the reconstruction quality, the benefits brought by sparsity-promoted reconstruction to 

two undersampling TOF-PET configurations were studied. The findings obtained in this 

research are summarized as follows;  

  (1) An efficient algorithm for the combined sparse regularizations to deal with 

TOF-PET imaging problem was developed, where the combined regularizations of p-TV 

and l1-norm were used to take advantage of the piecewise constant and structure-

correlated sparse properties of the images. Additionally, the l1-norm regularization was 

found to suppress the artifacts introduced by p-TV, while p-TV helped reduce the edge-

blurring affect brought by DCT used in l1-norm. The results showed that the proposed 

approach is superior to the traditional EM algorithm.  

  (2) It is well known that 0-TV and 1-TV have been widely used to promote the 

piece-wise constant of medical images. In here the p-TV was investigated with values of 

p varying from 0 to 2 with an interval of 0.1. The results showed that a p value of 0.5 

was optimal for our undersampling TOF-PET imaging problem.  

  (3) A general framework of sparsity-promoted ART was proposed and further 

improved by incorporating the accelerated techniques of multi-step and order-set. 

Simulation results showed that the proposed sparsity-promoted ART was capable of 

providing better reconstruction than the traditional ART algorithm. In addition, a super-

convergence performance was achieved.  
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  (4) The relationship between the reconstruction quality, number of detectors (or 

the range of angle) and TOF time resolution was built, which provides an empirical 

guide for designing novel low-cost TOF-PET systems while ensuring good 

reconstruction quality.  

  To summarize, the representative numerical experiments made in this research 

have shown that sparsity-promoted approaches can significantly improve the 

performance of the PET imaging, which demonstrated the promising applicability of 

undersampling TOF-PET imaging.   
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