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ABSTRACT

Spectral/hp Finite Element Models

for Fluids and Structures. (May 2012)

Gregory Steven Payette, B.S., University of Idaho;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. J. N. Reddy

We consider the application of high-order spectral/hp finite element technology

to the numerical solution of boundary-value problems arising in the fields of fluid

and solid mechanics. For many problems in these areas, high-order finite element

procedures offer many theoretical and practical computational advantages over the

low-order finite element technologies that have come to dominate much of the aca-

demic research and commercial software of the last several decades. Most notably, we

may avoid various forms of locking which, without suitable stabilization, often plague

low-order least-squares finite element models of incompressible viscous fluids as well

as weak-form Galerkin finite element models of elastic and inelastic structures.

The research documented in this dissertation includes applications of spectral/hp

finite element technology to an analysis of the roles played by the linearization and

minimization operators in least-squares finite element models of nonlinear boundary-

value problems, a novel least-squares finite element model of the incompressible

Navier-Stokes equations with improved local mass conservation, weak-form Galerkin

finite element models of viscoelastic beams and a high-order seven parameter contin-

uum shell element for the numerical simulation of the fully geometrically nonlinear

mechanical response of isotropic, laminated composite and functionally graded elastic

shell structures. In addition, we also present a simple and efficient sparse global finite

element coefficient matrix assembly operator that may be readily parallelized for use
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on shared memory systems. We demonstrate, through the numerical simulation of

carefully chosen benchmark problems, that the finite element formulations proposed

in this study are efficient, reliable and insensitive to all forms of numerical locking

and element geometric distortions.
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CHAPTER I

INTRODUCTION

A. Background

In the numerical simulation of a wide range of physical phenomena (mathematically

described in terms of boundary or initial boundary-value problems), the finite element

method has emerged as one of the most powerful tools for obtaining accurate, efficient

and stable approximate solutions. Since the publication of the groundbreaking work

of Turner et al. [1], the scientific literature and, much more importantly, practical

engineering software based on the finite element method have grown at a remarkable

pace, spanning many fields of engineering and applied science. At present, the finite

element method is widely recognized as the premier computational procedure for the

numerical simulation of solid mechanics problems. Outside the realm of the mechanics

of solids, however, the method has yet to receive such a level of acceptance and

prominence. This is especially noteworthy in computational fluid dynamics (CFD),

a field that is presently dominated by low-order finite difference and finite volume

technologies.

The genesis of most finite element models is the weak-form Galerkin formula-

tion. It is now well-known that the success of finite element procedures, based on the

Galerkin formulation, in obtaining favorable numerical solutions of boundary-value

problems is closely tied to the degree to which the weak formulation coincides with

an unconstrained minimization problem [2]. More generally, whenever any weak for-

mulation (based on the Galerkin, Petrov-Galerkin, weighted residual, or least-squares

methods, among others) is equivalent to the problem of minimizing an unconstrained

The journal model is IEEE Transactions on Automatic Control.
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convex quadratic functional, the finite element model inherits the following highly

desirable mathematical properties:

1. The numerical solution becomes an orthogonal projection of the exact solution

onto the trial space of a given conforming finite element discretization. As a

result, the numerical solution represents the “best approximation” of the exact

solution in the trial space (as measured by a well defined energy norm).

2. No highly restrictive compatibility requirements (such as the discrete inf-sup

condition) ever arise that must be additionally satisfied by the discrete con-

forming function spaces of the various dependent variables.

3. The resulting linear algebraic system of global finite element equations are al-

ways symmetric and positive-definite (a property that may be exploited by both

direct as well as iterative solvers).

This ideal setting for finite element approximation, stemming from the unconstrained

minimization of a convex quadratic functional, is sometimes termed a variational

setting.

In retrospect, it is now clear that the finite element method emerged in perhaps

the most favorable of settings; i.e., the analysis of linear elastic structural compo-

nents. The method initially arose as a direct extension of the classical Ritz method

[3], wherein the numerical solution is sought via a direct and discrete minimization

of the total potential energy functional. The combination of the method’s successful

application to problems in linear elasticity along with its versatility in handling irreg-

ular domains and complex boundary conditions led researchers to extend the finite

element method, in the context of the weak-form Galerkin procedure, to boundary-

value problems whose weak formulations cannot be construed as global minimizers.
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For many such problems it was soon discovered that many of the most attractive

features of the finite element method exhibited in the solution of solid mechanics

problems, were no longer present.

In recent years, there has been a large body of work attempting to recover some

of the attractive features of the ideal variational setting for problems whose Galerkin

based weak formulations are either estranged or completely divorced from any notion

of unconstrained functional minimization. Many of the advocated procedures may be

viewed as stabilized Galerkin formulations and include methods such as the SUPG

[4, 5], penalty [6, 7] and Galerkin least-squares [8], among others. Unfortunately, the

success of these methods is often intertwined with ad-hoc parameters that require

mesh and/or solution dependent fine-tuning. Furthermore, it is worth noting that

although the various stabilized Galerkin formulations can often sidestep the discrete

inf-sup condition, they cannot generally inherit the best approximation property nor

produce symmetric positive-definite coefficient matrices for the case when the gov-

erning equations contain non-self-adjoint operators.

In addition to the stabilized Galerkin formulations, there has also been renewed

interest over the past two decades in developing finite element models for problems

outside the realm of solid mechanics that recover most, if not all, of the attrac-

tive features of the ideal variational setting. One such formulation is based on the

least-squares method and allows for a finite element model to be developed for any

boundary-value problem in a setting of unconstrained functional minimization (see

for example Refs. [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]). The least-squares method

is based on the notion of residual minimization, wherein a least-squares functional is

constructed from the sum of the squares of the norms of the partial differential equa-

tion residuals (where the norms of standard Sobolev spaces are typically employed).

Such functionals are purely mathematical in nature and do not have the meaning of
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energy of a system. The weak form is obtained via a direct minimization of the least-

squares functional. The finite element model is then obtained in the usual way, and

inherits the desirable properties discussed previously for the ideal variational setting.

B. Motivation for the present study

In previous work concerned with developing effective finite element models for struc-

tures and fluids, predominantly low-order polynomial finite element procedures have

been adopted, primarily through the use of the weak-form Galerkin formulation. As

discussed previously, the Galerkin procedure is typically sufficient to achieve a favor-

able setting for the numerical simulation of deformable solids. For viscous fluids on

the other hand, we find the least-squares method to be better suited for attaining a

reliable computational environment for finite element approximations. Throughout

this work, we further advocate the use of high-order polynomial approximations to

improve the discrete setting for various formulations for fluids and structures.

To motivate the need for polynomial refinement (or p-refinement), we recall

that although unconstrained minimization principles offer a highly attractive setting

for finite element approximation, adequate solution convergence properties under h-

refinement alone cannot always be realized. We recall that for weak forms resulting

from the unconstrained minimization of a quadratic functional, error estimates of the

following type can often be established for a given conforming finite element approx-

imation [19]

||u− uhp||Ω,s ≤ Chp+1−s, s = 0, 1 (1.1)

In the above expression u is the analytical solution, uhp is the finite element solution

and C is a constant. The quantity || · ||Ω,s is the norm associated with the Sobolev

space Hs(Ω) and Ω is the domain on which the problem is posed (see Chapter II
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for details). The quantity h is a measure of the average element size in Ω̄ and the

symbol p is the polynomial order of the finite element approximation within a given

element. Under ideal conditions the constant C will depend on u, Ω and the material

properties of the given boundary-value problem; and is therefore, independent of h.

Unfortunately, h-refinement alone does not always constitute an effective means

of improving the finite element solution. For example, in the finite element approxi-

mation of the mechanical response of structural components (such as beams, plates

and shells) the constant C becomes adversely large in the limit as the thickness tends

to zero. Furthermore, equal low-order interpolation of the dependent variables in-

evitably leads to various forms of numerical locking that cannot be directly overcome

without the use of severe mesh refinement. To overcome such deficiencies, most re-

searchers employ stabilized low-order finite element technology using either: (a) a

displacement-based formulation with selective reduced integration or (b) a mixed

variational formulation based on the Hu-Washizu principle (e.g., the assumed strain

and enhanced strain procedures). It is worth noting that low-order stabilization pro-

cedures often necessitate additional ad-hoc fixes such as hour-glass control.

Another important example where h-refinement yields a non-optimal computa-

tional procedure arises in least-squares finite element models of the Navier-Stokes

equations governing flows of incompressible fluids. Out of practicality, the majority

of such finite element models are constructed from least-squares functionals whose en-

ergy norms are not Hs(Ω)-norm equivalent (i.e., are non-Hs(Ω)-coercive). For these

finite element models, the constant C either depends on the mesh parameter h and/or

little may be inferred directly from Eq. (1.1). To improve the performance of low-

order least-squares finite element formulations, ad-hoc reduced integration and/or

collocation procedures have often been adopted.

The present study is motivated by the observation that many of the deficiencies



6

encountered in finite element models constructed from unconstrained minimization

principles may be largely circumvented or avoided entirely whenever a sufficiently

adequate polynomial order p is employed in constructing the finite element approx-

imation uhp within each element. In particular, whenever an appropriate level of

p-refinement is utilized, efficient finite element procedures are obtained which do not

require any of the sophisticated ad-hoc tricks that are so often required to improve the

numerical solutions associated with low-order finite element formulations. As a result,

we are free in the numerical implementation to employ full integration and allow the

high-order finite element function spaces to naturally avoid any inconsistencies found

in low-order approximations that otherwise result in locking.

C. Scope of the research

The research began at Texas A&M University in the Fall of 2007 and is largely con-

cerned with developing efficient finite element models for fluids and structures based

on high-order spectral/hp finite element technology. The research encompasses an

analysis of the least-squares method as applied in the finite element solution of nonlin-

ear boundary-value problems [20], a novel least-squares formulation of the steady and

non-stationary incompressible Navier-Stokes equations with enhanced local mass con-

servation and weak-form Galerkin finite element models of viscoelastic beams based

on the Euler-Bernoulli, Timoshenko and third-order Reddy beam theories [21]. In

addition, we also present a general shell element for the numerical simulation of the

finite deformation of isotropic, laminated composite and functionally graded elastic

shell structures. Our aim throughout this research has been to apply novel math-

ematical models and numerical solution strategies to a variety of problem sets in

continuum mechanics, wherein the additional benefits obtained from employing high-
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order spectral/hp finite element technology are substantial.

The dissertation is organized as follows. In Chapter II we present an overview of

the steps involved in developing and arriving at finite element models using high-order

spectral/hp finite element technology. We also document highly practical strategies,

developed during the course of the present research, for implementing high-order finite

element procedures in parallel computing environments using the OpenMP paradigm.

Of significant importance is a discussion on a simple and efficient shared memory

based sparse global coefficient matrix assembly operator (an algorithm which has

been implemented numerically in C++ and successfully utilized on practical finite

element problems containing as many as half a million degrees of freedom).

Chapters III and IV are concerned with least-squares finite element models of

nonlinear boundary-value problems with specific applications to viscous incompress-

ible fluid flows. In Chapter III we provide a critical examination of the consequences

associated with exchanging the order of application of the minimization and lineariza-

tion operators in least-squares finite element formulations of nonlinear boundary-

values problems. In our analysis, we consider the abstract setting for an L2-norm

least-squares formulation of an abstract nonlinear boundary-value problem. We fur-

ther provide a thorough discussion of possible forms taken by the linearized least-

squares weak formulation, when linearization is either performed before or after min-

imization of the least-squares functional in the context of both the Picard and Newton

linearization procedures. We show both mathematically and also by way of numeri-

cal experiments that although the least-squares principle suggests that minimization

ought to be performed prior to linearization, such an approach is often impractical

and not necessary. In Chapter IV we present a novel least-squares finite element for-

mulation for both the steady and non-stationary incompressible Navier-Stokes equa-

tions based on the standard velocity-pressure-vorticity first-order system, but with
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enhanced element-level mass conservation. The proposed formulation comes with

little additional computational cost (as compared to the standard velocity-pressure-

vorticity least-squares formulation) and does not compromise the unconstrained min-

imization setting that is so attractive in least-squares finite element models. We

showcase the performance of the proposed least-squares formulation (in improving

local mass conservation) through the numerical simulation of a variety of important

steady-state and non-stationary fluid flow problems.

In Chapters V and VI we consider applications of spectral/hp finite element

technology to problems in solid mechanics, namely, viscoelastic beams and elastic

shells. In Chapter V, we present efficient finite element models for initially straight

viscoelastic beam structures subjected to loading conditions that induce large dis-

placements, moderate rotations and small strains. The finite element models are

constructed using the kinematic assumptions of the Euler-Bernoulli, Timoshenko and

third-order Reddy beam theories. The viscoelastic constitutive equations are effi-

ciently discretized in time using the trapezoidal rule in conjunction with a two-point

recurrence formula. The resulting finite element models are shown to be void of both

membrane and shear locking. In Chapter VI we propose a general high-order contin-

uum shell finite element for use in the analysis of the fully geometrically nonlinear

mechanical response of thin and thick isotropic, laminated composite and functionally

graded elastic shell structures. The shell formulation is based on a 7-parameter expan-

sion of the displacement field; thereby allowing for the use of fully three-dimensional

constitutive equations while avoiding the need for a rotation tensor in the kinematical

description. The shell element is shown, through the numerical simulation of carefully

chosen benchmark problems, to be insensitive to all forms of numerical locking and

severe geometric distortions. Finally, in Chapter VII we provide concluding remarks

and offer suggestions for future research directions.
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CHAPTER II

NUMERICAL IMPLEMENTATION OF HIGH-ORDER

SPECTRAL/HP FINITE ELEMENT PROCEDURES

In this chapter, we present a general overview of fundamental steps involved in de-

veloping and arriving at finite element models of boundary-value problems using

high-order spectral/hp finite element technology. We also document highly practi-

cal strategies, many of which were developed during the course of this study, for

implementing high-order finite element procedures for moderately large sparse finite

element systems on shared-memory based parallel computing architectures.

The chapter is organized as follows. We begin by providing an overview of some

of the basic notation and standard terminology that is employed throughout this

dissertation. We then review the standard one-dimensional C0 spectral nodal basis

functions that we utilize to develop high-order finite element interpolation functions

for multi-dimensional spectral/hp finite elements. Since high-order finite element

procedures necessitate high-order quadrature rules, we also review basic formulas

needed to determine the points and weights of the Gauss-Legendre quadrature rule

(for the general case where an arbitrary number of quadrature points are desired).

We also discuss in this chapter efficient algorithms for implementing high-order

finite element technology in parallel on shared-memory systems. Most notably, we

present a global finite element assembly operator that may be readily parallelized

using the OpenMP paradigm. The set of algorithms constituting the global assembly

operator were developed during the course of the present research and have been suc-

cessfully implemented using the C++ programming language. The assembly operator

efficiently constructs a sparse representation of the global finite element coefficient

matrix using a compressed row (or compressed column) storage format. As a result,
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the operator is applicable to finite element equations consisting of well over 100,000

degrees of freedom and may be used in conjunction with any number of modern sparse

equation solver libraries (e.g., UMFPACK, PARDISO, MUMPS, etc.). We improve

system memory requirements in the numerical implementation of high-order spec-

tral/hp finite element technology by adopting element-level static condensation [22],

wherein the interior degrees of freedom of each element are implicitly eliminated prior

to invoking the global assembly operator. Finally, we showcase the performance of

the high-order finite element procedures discussed throughout this chapter through

the numerical simulation of an example problem possessing roughly half a million

total degrees of freedom.

A. The abstract finite element problem

1. Notation

Before beginning our discussion on high-order spectral/hp finite element procedures

and their efficient numerical implementation, we find it prudent to introduce some

standard notation that will be used throughout this dissertation. We assume that Ω

is an open bounded subset of Rnd, where nd denotes the number of spatial dimensions.

The boundary of Ω is denoted by Γ = ∂Ω = Ω̄−Ω, where Ω̄ represents the closure of Ω.

A typical point belonging to Ω̄ is denoted as x. We employ the customary designations

for the Sobolev spaces Hs(Ω) and Hs(Γ) where s > 0 [23]. The corresponding norms

are given as || · ||Ω,s and || · ||Γ,s. Likewise the inner products associated with these

spaces are denoted as ( · , · )Ω,s and ( · , · )Γ,s respectively. The product spaces

Hs(Ω) = [Hs(Ω)]nd are constructed in the usual way.

Throughout this study we favor the so-called “Gibbs notation” for tensor analysis

as opposed to the “Ricci notation” which is popular in the continuum mechanics
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community. As a result, the tensor product of vectors u and v is given as uv as

opposed to u ⊗ v. Likewise, the gradient of vector u is represented with respect

to an orthogonal Cartesian coordinate system as ∇u = (∂uj/∂xi)êiêj rather than

∇u = (∂ui/∂xj)êi ⊗ êj. The former expression follows naturally whenever ∇ is

defined as a vector differential operator of the form ∇ ≡ êi∂/∂xi.

2. Weak formulations

The classical form of a typical boundary or initial boundary-value problem is not well

suited for numerical approximation via the finite element method. Instead, a given

boundary or initial boundary-value problem must be first recast into the form of a

generalized variational boundary-value problem, also know as a weak formulation,

prior to numerical discretization using the finite element method. In the present

work we construct weak formulations of various boundary and initial value problems

based upon the classical weak-form Galerkin formulation as well as through the use

of least-squares variational principles. Weak formulations typically involve integral

statements over Ω and Γ that are in a generalized sense equivalent to the original set

of partial differential equations and natural boundary conditions. In general, a weak

formulation (based on either the weak-form Galerkin or least-squares models) of a

general boundary-value problem may be stated as follows: find u ∈ V such that

B(w,u) = F(w) ∀ w ∈ W (2.1)

where B(w,u) is a bilinear form, F(w) is a linear form and V and W are function

spaces (e.g., appropriate subsets of the Sobolev space H1(Ω)). The quantity u repre-

sents the set of dependent variables (associated with the variational boundary-value

problem) and w represents the corresponding weighting or test function. Unlike clas-

sical solutions that are defined unambiguously point-wise, weak solutions exist with
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respect to test functions and are therefore understood in the context of distributions.

As a result, the weak solution (and its derivatives) is typically defined unambiguously

in Ω up to a set of measure zero. We note that Eq. (2.1) is not limited to the analysis

of linear problems only, but is also applicable to nonlinear generalized boundary-value

problems that have been linearized in the context of an appropriate iterative solu-

tion procedure (e.g., a fixed point iteration scheme such as the methods of Picard or

Newton).

3. High-order spectral/hp finite element models

We now proceed to describe the high-order spectral/hp finite element technology

that is employed throughout the present research. To this end we note that the finite

element model associated with Eq. (2.1) is obtained by restricting the solution space

to a finite dimensional sub-space Vhp of the infinite dimensional function space V and

the weighting function to a finite dimensional sub-space Whp ⊂ W . As a result, in

the discrete case we seek to find uhp ∈ Vhp such that

B(whp,uhp) = F(whp) ∀ whp ∈ Whp (2.2)

We assume that the domain Ω̄ ⊂ Rnd is discretized into a set of NE non-overlapping

sub-domains Ω̄e, called finite elements, such that Ω̄ ≈ Ω̄hp =
∪NE

e=1 Ω̄
e. The geometry

of each element is characterized using the standard isoparametric bijective mapping

from the master element Ω̂e to the physical element Ω̄e. In the present study we

restrict the classes of elements considered to lines in R1, four sided quadrilaterals in

R2 and six faced bricks in R3 (although numerical results are presented for nd = 1

and 2 only). As a result we can simply define the geometry of the master element

as Ω̂e = [−1,+1]nd. The natural coordinates associated with Ω̂e (when nd = 3) are

defined as ξ = (ξ1, ξ2, ξ3) = (ξ, η, ζ) (and may be truncated appropriately whenever
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nd < 3). We note in passing that the continuum shell element presented in Chapter

VI is obtained by mapping the master element Ω̂e = [−1,+1]2 onto a two-dimensional

manifold Ω̄e constituting the approximate mid-surface of the eth element. As a result,

the finite element approximation of the shell mid-plane will generally consist of a

curved two-dimensional surface imbedded in three-dimensional space.

In this work we employ a family of finite elements constructed using high polyno-

mial order interpolation functions. The quantity h in the definition of the sub-spaces

Vhp and Whp represents the average size of all the elements in a given finite element

discretization. Likewise, the symbol p denotes the polynomial degree (or p-level) of

the finite element interpolation functions associated with each element in the model.

As a result, the discrete solution may be refined by either increasing the number

of elements (i.e., reducing h) in Ω̄hp (h-refinement), increasing the polynomial order

of the approximate solution within each element Ω̄e (p-refinement) or through an

appropriate and systematic combination of both h-refinement and p-refinement.

Within a typical finite element Ω̄e, the set of dependent variables u is approxi-

mated using the following general interpolation formula

u(x) ≈ uhp(x) =
n∑

i=1

∆e
iψi(ξ) in Ω̂e (2.3)

where ψi(ξ) are the nd-dimensional Lagrange interpolation functions, ∆e
i is an array

containing the value of uhp(x) at the location of the ith node in Ω̄e and n = (p+1)nd is

the number of nodes in Ω̄e. The above definition is unambiguous due to the employ-

ment of the standard isoparametric mapping Ω̂e � Ω̄e (used in the characterization

of the geometry of each element). Note that {∆e
i}ni=1 constitutes a set of n arrays for

the eth element, where the size of each array is equal to the total number of variables

comprising u. In the current research, all interpolants appearing in Eq. (2.3) are of

polynomial order p, and are hence non-hierarchal.
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There are a variety of ways in which high-order nd-dimensional interpolation

functions may be formulated. For our analysis we construct these polynomial func-

tions from tensor products of the one-dimensional C0 spectral nodal interpolation

functions

φj(ξ) =
(ξ − 1)(ξ + 1)L′

p(ξ)

p(p+ 1)Lp(ξj)(ξ − ξj)
in [−1,+1] (2.4)

where Lp(ξ) is the Legendre polynomial of order p and L′
p(ξ) represents the deriva-

tive of Lp(ξ) with respect to ξ. The quantities ξj represent the locations of the nodes

associated with the one-dimensional interpolants (with respect to the natural coordi-

nate ξ). The one-dimensional nodal points are defined as the roots of the following

expression

(ξ − 1)(ξ + 1)L′
p(ξ) = 0 in [−1,+1] (2.5)

The nodal points {ξj}p+1
j=1 found in solving Eq. (2.5) are known as the Gauss-Lobatto-

Legendre (GLL) points. Whenever p ≤ 2, the GLL points are equally spaced within

the standard interval [−1,+1]. When p > 2 the GLL points are distributed unequally

with discernable bias given to the end points of the interval. The bias associated with

the spacing of the GLL points increases with p. In Figure 1 we plot the high-order

interpolation functions {φj}p+1
j=1 generated for the case where p = 6. In this figure we

show the interpolation functions associated with both an equal as well as a GLL spac-

ing of the nodal points in the standard bi-unit interval. The interpolation functions

constructed using equal nodal spacing clear exhibit oscillations (often termed the

Runge effect) near the end points of the standard interval. These oscillations become

more pronounced as the p-level is increased. The spectral interpolation functions,

on the other hand are free of the Runge effect. Finite element coefficient matrices

constructed using spectral interpolation functions are as a result better conditioned

than matrices formulated using elements with equally spaced nodes.
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(a)
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j

ϕ

ξ
-1 -0.5 0 0.5 1

0

1

 
j

ϕ

ξ
-1 -0.5 0 0.5 1

-1

0

1

Fig. 1. High polynomial order one-dimensional C0 Lagrange interpolation functions.

Cases shown are for p = 6 with: (a) equal spacing of the element nodes and

(b) unequal nodal spacing associated with GLL points.

It is worthwhile to note that the spectral nodal basis functions {φj}p+1
j=1 may

be viewed as standard Lagrange interpolation functions, with the locations of the

unequally spaced nodal points given in terms of the roots of Eq. (2.5). As a result,

it is possible to write the spectral interpolants of order p using the following classical

formula for Lagrange polynomials

φj(ξ) =

p+1∏
i=1,i,j

ξ − ξi
ξj − ξi

(2.6)

Although less elegant than Eq. (2.4), the above expression is better suited for numer-

ical implementation in a general purpose finite element program. Furthermore, the

above equation may also be easily utilized to produce a simple formula for calculating

derivatives of the one-dimensional spectral interpolation functions.
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In order to generate the spectral-interpolation functions, it is necessary to be able

to evaluate high-order Legendre polynomials of arbitrary orders. For completeness

we recall that the lowest order Legendre polynomials are of the form L0(ξ) = 1 and

L1(ξ) = ξ. All subsequent Legendre polynomials may be determined through the use

of the following well-known three-point recurrence formula

Lp+1(ξ) = [(2p+ 1)ξLp(ξ)− pLp−1(ξ)] /(p+ 1) (2.7)

We also have the following useful expression for calculating the first derivative of the

Legendre polynomials

(ξ − 1)(ξ + 1)

p
L′

p(ξ) = ξLp(ξ)− Lp−1(ξ) (2.8)

The multi-dimensional high-order interpolation functions ψi(ξ) may be con-

structed by taking simple tensor products of the one-dimensional spectral inter-

polants. For example, in two-dimensions, the high-order interpolation functions may

be defined as

ψi(ξ, η) = φj(ξ)φk(η) in Ω̂e = [−1,+1]2 (2.9)

where i = j + (k − 1)(p + 1) and j, k = 1, . . . , p + 1. A variety of high-order two-

dimensional master elements are depicted in Figure 2. In this study we restrict our

analysis to problems that may be solved using either one or two-dimensional master

elements. For the sake of completeness, however, we note in passing that in three-

dimensions, the high-order interpolants can be expressed as

ψi(ξ, η, ζ) = φj(ξ)φk(η)φl(ζ) in Ω̂e = [−1,+1]3 (2.10)

where i = j + [k − 1 + (l − 1)(p+ 1)](p+ 1) and j, k, l = 1, . . . , p+ 1.

Finite elements whose interpolation functions are constructed in terms of tensor
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products of φj(ξ) are commonly referred to as spectral elements in the literature [22].

Such elements are merely standard high-order Lagrange type finite elements, where

the locations of the unequally spaced nodes in Ω̂e are taken as tensor products of the

roots of Eq. (2.5).

1 2

3 4

1 3

7 9

1 5 1 9

21 25

2

4 65

8

2 3 4

6 107 8 9

11 1512 13 14

16 2017 18 19

22 23 24

3 5 7

19

37

55

73 8175 77 79

27

45

63

41

(a) (b)

(c) (d)

η

ξ

η

ξ

ξ

ξ

η

η

Fig. 2. Examples of various high polynomial order spectral/hp quadrilateral master

elements Ω̂e: (a) a 4 noded element, p = 1 (b) a 9 noded element, p = 2 (c) a

25 noded element, p = 4 and (d) an 81 noded element, p = 8.

The finite element method naturally leads to a set of linear algebraic equations

for each element associated with a given finite element discretization. Substitution

of Eq. (2.3) as well as an appropriate discrete test function whp into Eq. (2.2) yields
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the following set of equations for the eth element of the finite element model

[Ke]{∆e} = {F e} (2.11)

In the above expression [Ke] is the element coefficient matrix, {∆e} is a vector con-

taining the essential variables associated with each node of the element and {F e} is

the element force vector. The element coefficient matrix and force vector are obtained

respectively by restricting evaluation of the bilinear form B(whp,uhp) and linear form

F(whp) to the domain Ω̄e.

In this work we utilize the standard Gauss-Legendre quadrature rules in the

numerical integration of all terms appearing in the element coefficient matrix and force

vector. Unless explicitly stated otherwise, we employ full integration of all integrals

and do not resort to selective under-integration of any terms in the coefficient matrix

or force vector. Numerical results are typically obtained using a quadrature rule

of at least NGP = p + 1, where NGP represents the number of quadrature points

in the direction of a given natural coordinate associated with Ω̂e. Since high-order

methods require the use of high-order quadrature rules, we note that the Gauss-

Legendre quadrature points are obtained as the roots of the Legendre polynomial

of order NGP. The Gauss-Legendre quadrature weights may be obtained from the

following expression

wi =
2

(1− ξ2i )L
′
NGP(ξi)

2 (2.12)

where {ξi}NGP
i=1 are the quadrature points (which are distinct from and should not be

confused with the GLL points). The Gauss-Legendre quadrature points and weights

as well as the GLL points may be accurately determined within a user pre-defined

numerical tolerance through the use of a symbolic algebra package such as Maple.

The set of equations for a given finite element discretization is obtained by com-
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bining the equations associated with each element into the following global system of

linear algebraic equations

[K]{∆} = {F} (2.13)

where

[K] =

NE

A
e=1

[Ke], {F} =

NE

A
e=1

{F e} (2.14)

In the above expressions, A is a symbolic representation of the global finite element

assembly operator. Efficient, shared-memory based parallel algorithms for the global

assembly operator A will be discussed in the subsequent section for the case where

the global coefficient matrix [K] is sparse (i.e., populated primarily by zeros).

For additional details on the computer implementation of the finite element

method, including descriptions of the bijective isoparametric mapping Ω̂e � Ω̄e and

the global assembly operator A (for full and banded matrices), we refer to the books

of Reddy [24] and Bathe [25]. For further details on construction of the spectral

interpolation functions, we refer to the book by Karniadakis and Sherwin [22].

B. Shared-memory based parallel implementation of high-order finite element pro-

cedures

Having established the general high-order finite element technology that will be used

throughout this work, we turn our attention to efficient numerical implementation

strategies that may be adopted in a general finite element framework. In particu-

lar we will focus our discussion on numerical implementation techniques that may

be readily incorporated in a parallel computing environment based on the OpenMP

paradigm. OpenMP is an Application Programming Interface (API) that supports

multithreading on computer architectures that admit shared-memory multiprocess-

ing. This form of parallelization may be employed on a standard desktop (possessing
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multiple cores) or on a single node of a supercomputer. Unlike the more general Mes-

sage Passing Interface (MPI), the use of OpenMP is restricted to programs involving

tasks that may be accomplished by a set of processors which all have access to the

same pool of shared memory.

The purpose of the current discussion is to present simple strategies, developed

mostly during the course of this research, for adapting serial finite element code for

efficient parallel execution on shared-memory systems. Paramount to this process is

the ability to assemble the global sparse coefficient matrix in a manner that is fast,

memory efficient and in a form that is appropriate for linkage with modern sparse

solver libraries. We will illustrate what we feel are the key concepts in the context of a

one-dimensional steady-state heat transfer problem. Although deceptively simple, the

fundamental ideas for parallelization introduced through this problem may be readily

utilized in the analysis of a much larger class of problems posed in multiple dimensions

and solved using high-order finite element technology. The scope of our discussion will

be limited to presenting key concepts, and we will therefore refrain from reviewing

the various OpenMP pre-compiler directives that are specific to a given programming

language. We close this section by commenting on general element-level operations,

such as static condensation, that may be readily adopted to enhance the performance

of high-order finite element procedures.

1. A one-dimensional example problem

a. Problem description

In this example (adapted from Reddy [24]), we consider the one-dimensional steady-

state transfer of heat through a wall composed of three separate constituents. The

governing equation for the temperature field T (x) (based on Fourier’s law of heat
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conduction) may be expressed as

− d

dx

(
k
dT

dx

)
= 0 in Ω = (0, L) (2.15)

where k is the thermal conductivity and L = 8.5 cm is the length of the domain. The

boundary conditions for the problem are defined as

T (0) = T0, −kdT
dx

∣∣∣∣
x=L

= β[T (L)− T∞] (2.16)

where β is the convective heat transfer coefficient and T∞ is the far-field temperature

of the air on the right hand side of the domain. An illustration of the simple heat

transfer problem is provided in Figure 3 (a). This figure also provides numerical

values used for the problem including the lengths hi and thermal conductivities ki of

each composite layer.

x

1 2 3 4

(1) (3) (2)

(a)

(b)

h1 h3 h2

Material 1, k1

Material 3, k3

Material 2, k2

T∞ = 50°C

Surface area,

A = 1 m2

T0 = 200°C

k1 = 70 W/(m⋅°C)

k2 = 20 W/(m⋅°C)

k3 = 40 W/(m⋅°C)

h1 = 2.0 cm

h2 = 4.0 cm

h3 = 2.5 cm

β = 10 W/(m2⋅°C)

Fig. 3. A one-dimensional heat transfer problem: (a) problem description and (b) finite

element discretization of Ω̄ using three linear finite elements.
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b. Variational form of the problem

The variational form of the above boundary-value problem, based on the weak-form

Galerkin formulation, may be stated as follows: find T ∈ V such that

B(w, T ) = F(w) ∀ w ∈ W (2.17)

where the bilinear form B(w, T ) and linear functional F(w) are given as

B(w, T ) =
∫
Ω

k
dw

dx

dT

dx
dx+ βw(L)T (L) (2.18a)

F(w) = βT∞w(L) (2.18b)

The function spaces V and W associated with the weak-form Galerkin formulation of

the problem are of the form

V :=
{
T : T ∈ H1(Ω), T (0) = T0

}
(2.19a)

W :=
{
w : w ∈ H1(Ω), w(0) = 0

}
(2.19b)

c. Discrete element-level finite element equations

We represent the computational domain using a finite element mesh consisting of

three linear elements (i.e., p = 1) as shown in Figure 3 (b). The nodes are numbered

consecutively from left to right. For reasons which will become apparent later, we

choose to number the elements in a less structured fashion. The element connectivity

array denoted by ECON for the problem is of the form

ECON =

1 3 2

2 4 3


T

(2.20)
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The finite element coefficient matrices and force vectors may be determined using the

following formulas

[Ke] =
ke
he

 1 −1

−1 1

+ β

0 0

0 αe

 , {F e} = βT∞

 0

αe

 (2.21)

where α1 = α3 = 0 and α2 = 1. As a result, the finite element matrices and vectors

for each element may be expressed as

[K1] =

 3,500 −3,500

−3,500 3,500

 , {F 1} =

0

0

 (2.22a)

[K2] =

 500 −500

−500 510

 , {F 2} =

 0

500

 (2.22b)

[K3] =

 1,600 −1,600

−1,600 1,600

 , {F 3} =

0

0

 (2.22c)

d. Element-level specification of essential boundary conditions

At this point it is customary to construct the finite element equations for the system

using the global finite element assembly operator A. Following global assembly, it

is conventional to then modify the system of equations to account for the essential

boundary condition associated with node 1. For large sparse systems of finite element

equations, however, we find that such an approach is not attractive as it requires

searches and sorts that can greatly reduce performance. An alternative procedure

that is computationally efficient is to apply the essential boundary conditions at the

element level, prior to global assembly. Such an approach yields the following modified
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coefficient matrix and force vector for element 1

[K1] =

3,500 0

0 3,500

 , {F 1} =

700,000

700,000

 (2.23)

Note that the essential boundary condition (for local node 1 of element 1) has been

applied in a manner that both preserves symmetry and conditioning of the element

coefficient matrix. We refer to Reddy [24] for details on maintaining symmetry when

applying essential boundary conditions.

Application of the essential boundary conditions at the element level may be

facilitated in a general finite element program, through the creation of the following

one-dimensional arrays during the pre-processing stage of the finite element simulation

BC p = (1, 2, 2, 2), BC n = (1), BC v = (200) (2.24)

BC p may be viewed as an array of integers used in accessing the components of

arrays BC n and BC v. In general, the size of BC p is NE + 1. Likewise, the integer

array BC n and double array BC v are each of length BC p(NE+ 1)− 1 (which is the

total number of element-level essential boundary conditions). The arrays BC n and

BC v contain the local node numbers and numerical values of the essential boundary

conditions. By local node numbers, we mean the node numbering associated with

the master element Ω̂e (i.e., i = 1, . . . , (p + 1)nd), as opposed to the global node

numbering associated with the physical element Ω̄e. The BC p, BC n and BC v arrays

are used as follows: provided that BC p(e+1)−BC p(e) > 0, the local node numbers

associated with the element-level boundary conditions for element e are stored in

BC n(BC p(e), . . . ,BC p(e+1)−1). Likewise, the corresponding numerical values are

stored in BC v(BC p(e), . . . ,BC p(e+ 1)− 1).

In the present example problem the BC p, BC n and BC v arrays are somewhat
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trivial as there is only one element-level essential boundary condition. Had we re-

placed the convection boundary condition on the right hand side of the domain with

the strong boundary condition T (L) = T∞, then the element-level essential boundary

condition arrays would have been of the form

BC p = (1, 2, 3, 3), BC n = (1, 2), BC v = (200, 50) (2.25)

In general, the BC p, BC n and BC v arrays may be constructed for any finite

element discretization based solely on NE, p, ECON and the global essential boundary

condition data. Application of essential boundary conditions at the element level for

multi-dimensional problems involving multiple degrees of freedom per node is achieved

in a manner that is largely analogous to the procedures outlined in the present one-

dimensional case study. The major difference encountered in higher dimensions is the

need to sometimes apply the same boundary condition multiple times (since a given

boundary node will often be shared by neighboring elements).

e. Sparse construction of global coefficient matrix

Prior to global assembly, the element-level equations for a particular finite element

are completely independent of the equations associated with any other element. As a

result, the element-level operations of constructing and applying boundary conditions

to [Ke] and {F e}, may be readily performed in a parallel computing environment.

Parallel construction of the global finite element system from the element-level equa-

tions in a manner that is both fast and memory efficient is a far less trivial task. The

purpose of this section, therefore, is to present strategies developed during the course

of this research for efficient construction of the global sparse system of equations in

a manner that can be readily accomplished in parallel. To motivate our discussion,

we present in BOX 1 an overview of the primary steps involved in our parallel shared-
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BOX 1. Processing stage of a low-order finite element simulation.

1. Loop over all finite elements: e = 1,NE (parallel)

◦ Build element coefficient matrix [Ke] and force vector {F e}

◦ Apply essential boundary conditions to [Ke] and {F e}

◦ Add components of [Ke] into the global sparse coefficient matrix

[K]

◦ Add components of {F e} into the global force vector {F}

2. Sort global sparse coefficient matrix [K] into compressed row (or

compressed column) form (parallel)

◦ Sort column (or row) indices of each row (or column) of [K] in

non-decreasing order

◦ Sum repeated entries of [K] to enforce compatibility of primary

variables

◦ Remove “numerical” zeros from sparse matrix [K]

3. Solve global system of equations using an appropriate linear solver

library (parallel)

memory based implementation of the general processing stage of a given finite element

simulation. These procedures will be expanded upon for efficient use with high-order

finite elements in Section B-2. The steps outlined in BOX 1 are applicable to any
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finite element program regardless of whether the model problem is linear, nonlinear,

quasi-static or transient. Since we have previously addressed building [Ke] and {F e},

we will focus the remainder of our discussion on parallel construction of the global

system of sparse finite element equations.

In the current example, the full system of equations may be obtained by combin-

ing Eqs. (2.23), (2.22b) and (2.22c) into the following set of linear algebraic equations

3,500† 0† 0 0

0† 5,100†∗ −1,600∗ 0

0 −1,600∗ 2,100♢∗ −500♢

0 0 −500♢ 510♢





∆1

∆2

∆3

∆4


=



700,000†

700,000†∗

0♢∗

500♢


(2.26)

Since all boundary conditions have been applied at the element level, the above system

constitutes the final set of finite element equations for our simple example problem.

The symbols †, ♢ and ∗, corresponding with e = 1, 2 and 3 respectively, are included

to illustrate which finite elements contribute to which coefficients of the global set of

equations. Invoking the linear solver yields

∆1 = 200.00◦C, ∆2 = 199.58◦C, ∆3 = 198.67◦C, ∆4 = 195.76◦C (2.27)

For very large problems it is impractical to construct the coefficient matrix [K]

in the form given in Eq. (2.26). Throughout this work we employ a compressed

row (or compressed column) representation of [K]. This sparse storage format is

closely related to storage by indices, whose data structure consists of ne (number of

equations), nnz (number of non-zero entries in [K]) and the following arrays

k i = (1, 2, 2, 3, 3, 3, 4, 4) (2.28a)

k j = (1, 2, 3, 2, 3, 4, 3, 4) (2.28b)
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k v = (3500, 5100,−1600,−1600, 2100,−500,−500, 510) (2.28c)

The integer arrays k i and k j contain the row and column addresses of the non-zero

entries in [K] respectively. The double precision real array k v contains the values of

[K] as accessed by k i and k j. All three arrays are of size nnz. Note that the arrays

are sorted by row and then column in ascending order. As a result, it is possible to

abandon k i in favor of the following integer array

k p = (1, 2, 4, 7, 9) (2.29)

which is of size ne + 1. As a result, the column indices of entries in row i are stored

in k j(k p(i), . . . , k p(i + 1) − 1). The corresponding numerical values are stored in

k v(k p(i), . . . , k p(i + 1) − 1). The data structure associated with the compressed

row form of [K] therefore consists of ne, k p, k j and k v. The compressed row (or

the very similar compressed column) representation of [K] is the sparse form of the

global coefficient matrix typically required by modern linear solver libraries (e.g.,

UMFPACK, PARDISO, MUMPS, etc.).

Efficient construction of the compressed row form of [K] for an arbitrary finite

element discretization is a non-trivial task. We now proceed to describe a set of simple

procedures for constructing [K] that may be readily accomplished in parallel using

the OpenMP paradigm. To simplify our discussion, we will present the key ideas in

terms of the storage by indices data structure. First, it is important to note that nnz

is not generally known prior to global assembly. However, if size([Ke]) = nke× nke

(where nke is the number of equations for a given element), then nnz may be bounded

from above as nnz ≤ NE × nke2. We therefore initialize k i, k j and k v to be of size
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nnzmax = NE× nke2 which for the current example problem yields

k i = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (2.30a)

k j = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (2.30b)

k v = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (2.30c)

Our next objective is to populate the entries in the above arrays with the com-

ponents Ke
ij of the element-level coefficient matrices. To avoid race conditions in the

parallel implementation of the algorithm, we will initially assign each component Ke
ij

to a unique location in the sparse coefficient matrix. Such an assignment may be

accomplished through the introduction of a unique integer k ∈ [1, . . . ,NE×nke2] ⊂ N

associated with each component Ke
ij that may be determined from the following for-

mula

k = pnt((e− 1)nke+ i) + j − 1 (2.31)

where pnt is a one-dimensional array of size NE × nke constructed during the pre-

processing stage of the analysis. In the current example problem we define pnt as

pnt = (1†, 3†, 7♢, 11♢, 5∗, 9∗) (2.32)

We therefore have the following formulas for constructing k i, k j and k v

k i(k) = ECON(e, i), k j(k) = ECON(e, j) k v(k) = Ke
ij (2.33)

which as applied to the current problem yields

k i = (1†, 1†, 2†, 2†, 2∗, 2∗, 3♢, 3♢, 3∗, 3∗, 4♢, 4♢) (2.34a)

k j = (1†, 2†, 1†, 2†, 2∗, 3∗, 3♢, 4♢, 2∗, 3∗, 3♢, 4♢) (2.34b)
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k v = (3500†, 0†, 0†, 3500†, 1600∗,−1600∗, 500♢,−500♢,−1600∗, 1600∗, (2.34c)

− 500♢, 510♢)

The symbols †, ♢ and ∗ are again included in the above expressions to more readily

identify to the reader, which finite elements are associated with which coefficients

of pnt, k i, k j and k v for the present example problem. It should be apparent

that the operations described in Eq. (2.33) may be readily accomplished in parallel.

Furthermore, it should also be noted that the elements of the pnt array have been

specifically defined in the pre-processing stage of the analysis such that the entries

appearing in k i are naturally sorted in non-decreasing order. The meaning of the pnt

array should be clear: it is used to contiguously place the ith row of [Ke] into k i, k j

and k v, starting at location pnt((e− 1)nke+ i).

To obtain the sparse coefficient matrix in the form of the storage by indices data

structure, we sort into non-decreasing order the columns associated with each given

row, enforce compatibility of the primary variables and then remove any “numeri-

cally” zero entries. Sorting the columns of a given row may be readily facilitated via

a robust sorting algorithm such as quicksort. Once sorted, compatibility of the pri-

mary variables may be achieved by summing the coefficient matrix values associated

with any duplicate sets of indices (e.g., see the underlined terms appearing above

in k i, k j and k v). Finally, any entries in k v that are considered “numerically”

zero (i.e., whose magnitudes are less than a prescribed tolerance TOL) may then be

removed from the coefficient matrix. Carrying out each of these operations results in

k i = (1, 2, 2, 3, 3, 3, 4, 4, 0, 0, 0, 0) (2.35a)

k j = (1, 2, 3, 2, 3, 4, 3, 4, 0, 0, 0, 0) (2.35b)

k v = (3500, 5100,−1600,−1600, 2100,−500,−500, 510, 0, 0, 0, 0) (2.35c)
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It is important to note that the sorting and compatibility enforcement operations may

be performed over each row via parallel processing. The final operation of removing

zeros, on the other hand is inherently serial, yet requires relatively little computational

expense (i.e., O(nnzmax)). As a result, the overwhelming majority of computations

needed to: (a) build the element-level equations and (b) construct the global finite

element coefficient matrix, may be performed in a parallel computing environment.

It should be readily apparent that once truncated to size nnz = 8, the k i, k j and k v

arrays correspond identically with those given in Eq. (2.28).

It should be noted that up until now, we have devoted our attention to the

construction of the sparse form of [K] and have said nothing regarding the global

assembly of {F}. It turns out that even when the global system of finite element

equations is large, the global force vector {F} may be adequately stored using a

simple one-dimensional array. As a result, global construction of {F} is completely

straightforward in the serial case and by comparison requires only a modicum of

additional programming logic to achieve an efficient parallel implementation.

The algorithms described above for construction of the sparse form of [K] using

the storage by indices data structure are efficient and easy to parallelize on shared

memory systems using the OpenMP paradigm. With relatively modest modifications,

the procedures may be adapted to directly construct the compressed row form of

the sparse coefficient matrix without ever explicitly forming k i. Furthermore, the

strategies can also be further generalized to capitalize on any symmetry in the global

system of equations. The main critique of the overall algorithm is that it in general

requires a somewhat greater amount of memory to construct the sparse form of the

global coefficient matrix than is actually needed to store the sparse form of [K]. In

practice, however, we find that this need for extra memory does not constitute a

computationally onerous requirement and is hence of little practical concern.
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2. Additional element-level operations

The procedures outlined in the previous section have been presented in the context

of the finite element analysis of a simple one-dimensional boundary-value problem

using standard low-order finite element technology. These procedures may be readily

adapted for use in the finite element analysis of multi-dimensional boundary-value

problems using both low and high-order finite element discretizations. Efficient nu-

merical implementation of high-order finite element technology, however, requires the

deployment of a few additional procedures that are not necessarily required in low-

order finite element formulations. The purpose of the current discussion, therefore, is

to review what we feel are the most crucial element-level operations that may be used

to substantially improve the competitiveness of high-order finite element formulations.

In general, the element-level equations associated with the eth finite element in a

typical finite element discretization are given in terms of Eq. (2.11). During numerical

construction, however, it is typical to partition the element-level equations for a given

element into the following equivalent form
[K11] · · · [K1n]

...
. . .

...

[Kn1] · · · [Knn]



{∆(1)}
...

{∆(n)}

 =


{F (1)}
...

{F (n)}

 (2.36)

where n is the number of dependent variables constituting u. We note that the

element-level equations have been partitioned with respect to the {∆(j)} arrays, where

each array represents a column vector containing the values of the jth component of

uhp as evaluated at the element nodes. The components of each {∆(j)} array are

related to ∆e
i (defined in Eq. (2.3)) by the formula ∆e

i = {∆(1)
i · · ·∆(n)

i }T.

For general nd -dimensional finite element problems, it is typically possible to
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express the components of each element sub-coefficient matrix [Kαβ] as

Kαβ
ij =

∫
Ω̄e

nd∑
l=0

nd∑
m=0

Cαβ
lm (x,uhp(x))S lm

ij (x)dΩ̄e

=

∫
Ω̂e

nd∑
l=0

nd∑
m=0

Cαβ
lm (x(ξ),uhp(x(ξ)))S lm

ij (x(ξ))J(ξ)dΩ̂e

(2.37)

where J(ξ) is the Jacobian of the isoparametric coordinate transformation for the

element (i.e., the determinant of the Jacobian matrix) and i, j = 1, . . . , (p + 1)nd. A

similar expression may also be produced for determining the coefficients Fα
i of the

force vector. The quantities S lm
ij represent products of the interpolation functions

(and their spatial derivatives) of the form

S00
ij = ψiψj, S0m

ij = ψi
∂ψj

∂xm
, S l0

ij =
∂ψi

∂xl
ψj, S lm

ij =
∂ψi

∂xl

∂ψj

∂xm
(2.38)

where l,m = 1, . . . , nd and xm are the components of x as expressed with respect

to some fixed Cartesian coordinate system (i.e., x = xmêm). The spatial derivatives

of the interpolation functions are of course evaluated in terms of the natural coor-

dinates ξ using the components of the inverse Jacobian matrix associated with the

isoparametric mapping from Ω̂e to Ω̄e. Note that S lm
ij possesses the following sym-

metry S lm
ij = Sml

ji . The coefficients Cαβ
lm may be constant, spatially varying and/or

dependent on the components of the dependent variable uhp(x). It is our observation

that the coefficients Cαβ
lm can, in general, become quite involved; this is especially true

in shell finite element formulations as well as for least-squares based finite element

models. We recall that, throughout this work, Gauss-Legendre quadrature rules are

employed exclusively in evaluation of the element-level coefficient matrices and force

vectors. To achieve an attractive level of performance in the numerical integration of

the element-level partitioned coefficient matrices, we find it imperative to:

1. Decompose each partitioned coefficient matrix into the form given in Eq. (2.37).
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2. At a given quadrature point explicitly evaluate the components of Cαβ
lm , prior to

looping over i and j in the numerical evaluation of Kαβ
ij .

Similar observations can also be made regarding construction of Fα
i .

A major disadvantage of high-order finite elements is that the connectivity be-

tween the degrees of freedom of a given element and also between neighboring ele-

ments increases with p. To emphasize the implications of this increased connectivity,

we consider the following scenario: suppose region Ω̄ is discretized using two distinct

finite element meshes; in the first case a standard low-order finite element discretiza-

tion is employed and in the second we utilized a high-order finite element mesh,

where p > 1. Assuming that both meshes have the same total number of nodes, the

global coefficient matrix associated with the latter discretization will always be more

dense than the coefficient matrix for the former. This is a direct consequence of the

large element-level coefficient matrices that are naturally generated when high-order

finite elements are employed. High-order discretizations, however, typically require

far fewer total degrees of freedoms (as compared with low-order discretizations) to

obtain reliable numerical solutions. Even with this advantage, however, a high-order

discretization will inevitably require more computer memory resources to store the

global coefficient matrix.

The onerous memory requirements associated with high-order finite element

models may be reduced through the use of element-level static condensation [22, 24].

As we will demonstrate, static condensation reduces global memory requirements and

allows for significant parallelization in the global solution procedure. In an effort to

present the key ideas, we rearrange the element-level equations for the eth element



35

into the following form[KBB] [KBI ]

[KIB] [KII ]


{∆(B)}

{∆(I)}

 =

{F (B)}

{F (I)}

 (2.39)

In the above expression we have partitioned the element-level system of equations

with respect to the element boundary degrees of freedom {∆(B)} and the element

interior degrees of freedom {∆(I)}. Since the interior degrees of freedom for element

e do not contribute to the element-level equations of any other element, it is possible

to implicitly remove them from Eq. (2.39). This process yields the following condensed

set of equations for the element boundary degrees of freedom

[K̄e]{∆(B)} = {F̄ e} (2.40)

where the effective element coefficient matrix [K̄e] and force vector {F̄ e} are of the

form

[K̄e] = [KBB]− [KBI ][KII ]−1[KIB] (2.41a)

{F̄ e} = {F (B)} − [KBI ][KII ]−1{F (I)} (2.41b)

It is important to note that [KII ]−1 need not be evaluated explicitly. Instead, the op-

erations [KII ]−1[KIB] and [KII ]−1{F (I)} may be performed via Gaussian elimination

with partial pivoting using the standard LAPACK subroutine dgesv.

It is now possible to formulate the global system of finite element equations in

terms of the element boundary degrees of freedom only. This system necessitates

only a fraction of the memory required to compute the full system of finite element

equations (formulated in terms of all degrees of freedom). Once the element boundary

degrees of freedom have been determined by the global solver, the interior degrees

of freedom may be obtained by solving the following set of equations for each finite
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BOX 2. Processing stage of a high-order finite element simulation.

1. Loop over all finite elements: e = 1,NE (parallel)

◦ Build element coefficient matrix [Ke] and force vector {F e}

◦ Apply essential boundary conditions to [Ke] and {F e}

◦ Perform static condensation to construct [K̄e] and {F̄ e}

◦ Add components of [K̄e] into the global sparse coefficient matrix

[K]

◦ Add components of {F̄ e} into the global force vector {F}

2. Sort global sparse coefficient matrix [K] into compressed row (or

compressed column) form (parallel)

◦ Sort column (or row) indices of each row (or column) of [K] in

non-decreasing order

◦ Sum repeated entries of [K] to enforce compatibility of primary

variables

◦ Remove “numerical” zeros from sparse matrix [K]

3. Solve global system of equations for all element boundary degrees of

freedom using an appropriate linear solver library (parallel)

4. Loop over all finite elements: e = 1,NE (parallel)

◦ Solve Eq. (2.42) for interior degrees of freedom {∆(I)}
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element

[KII ]{∆(I)} = {F (I)} − [KIB]{∆(B)} (2.42)

The finite element solution procedure for high-order finite element discretizations,

given in BOX 2, is obtained by augmenting the steps presented in BOX 1 to also

include element-level static condensation.

At this point we find it prudent to note that whenever element-level static con-

densation is adopted, nnzmax (used to allocate memory for constructing the sparse

global coefficient matrix) may be determined using the following formula

nnzmax = NE{n[(p+ 1)nd − (p− 1)nd]}2 (2.43)

where we recall that NE is the number of elements and n is the number of degrees

of freedom per node. We can likewise show that for an equivalent low-order mesh

(possessing the same total number of nodes and the p-level taken as 1) the quantity

nnzmax is of the form

nnzmax = NE(2ndn)2pnd (2.44)

where NE and p are the number of elements and p-level of the original high-order dis-

cretization (as opposed to the equivalent low-order mesh). When nd = 2, it turns out

that nnzmax = 16×NE(p n)2 for both low and high-order finite element discretizations

(provided of course that element-level static condensation is adopted). As a result,

system memory requirements associated with constructing the global sparse coeffi-

cient matrix are equivalent in both cases. This highly desirable result is especially

attractive in the high-order shell finite element formulation discussed in Chapter VI.

A typical two-dimensional high-order spectral/hp finite element mesh is shown in

Figure 4. In this figure we show both the full finite element mesh (where all nodes are

depicted) and also the statically condensed mesh (where only the element boundary



38

(a)

(b)

0 20 40 60 80 100

0

10

20

0 20 40 60 80 100

0

10

20

Fig. 4. A high-order spectral/hp finite element discretization of a two-dimensional re-

gion. Case shown is for p = 4: (a) finite element mesh showing the elements and

nodes and (b) finite element mesh showing the elements and element boundary

nodes.

nodes are shown). It is worth noting that the computer implementation of element-

level static condensation in high-order finite element models requires either: (a) the

user to carefully number the global nodes such that the element-boundary nodes are

numbered first or (b) the computer program to automatically re-number the global

nodes associated with the statically condensed mesh. In this work we have adopted

the latter approach, as it is far less restrictive on the program user. Either way, it is

important to note that it is still necessary for the computer program to generate a data

structure for the element connectivity array associated with the statically condensed

finite element mesh. For additional details on static condensation as applied to high-

order finite element models, we refer to the book by Karniadakis and Sherwin [22]

and the journal paper by Couzy and Deville [26].
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C. Numerical example: a verification benchmark

We now wish to numerically demonstrate the performance of the shared-memory

based parallelization strategies advocated in the previous section. As an example

problem, we consider the steady low Reynolds number two-dimensional flow of a

viscous incompressible fluid past a circular cylinder. The computational domain Ω̄

on which the problem is posed is defined as the set difference between the closed

rectangular region [−25, 25] × [−15, 15] and an open unit-diameter circular cylinder

centered about the origin. The fluid along the top, bottom and left hand sides of

the domain is traveling with a unit horizontal velocity. A no slip condition is taken

along the circular cylinder and an appropriate outflow boundary condition is utilized

along the right hand side of the domain (see Chapters III and IV for details). The

Reynolds number for the flow is taken to be 40.

For the finite element discretization, we use 1,920 quadrilateral elements, as

shown in Figure 5, and employ an eighth-order polynomial expansion within each

element; this amounts to 123,904 total nodal points in the finite element mesh. The

finite element formulation of the problem is obtained through the use of least-squares

based finite element technology as applied to the first-order vorticity form of the

Navier-Stokes equations. The finite element discretization, therefore, contains a total

of 495,616 degrees of freedom; and as a result, is suitable for showcasing the perfor-

mance of the algorithms used in our numerical implementation. The discretization,

however, is far more dense than is actually required to obtain a reliable numerical

solution.

For the numerical implementation, we utilize the C++ programming language

and IBM’s AIX v11.1 compiler. Efficient parallelization is achieved by combin-
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Fig. 5. Finite element mesh used in the solution of steady fluid flow past a circular

cylinder: (a) full view of the finite element mesh and (b) close up view of the

finite element mesh in the vicinity of the cylinder.
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ing the algorithms described earlier in this chapter with appropriate placements of

pre-compiler directives prior to parallelizable for loops using the C/C++ specific

OpenMP syntax #pragma omp parallel for. The current test problem has been

solved using the computational resources available at the Texas A&M Supercomput-

ing Facility at Texas A&M University. The simulations were run on the Hydra super-

computer, an IBM Cluster-1600, that is made up of IBM’s 1.9 GHz RISC Power5+

processors. Each node is a symmetric multi-processor (SMP) system with 16 proces-

sors and 25 GB of usable shared memory.
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Fig. 6. Vorticity field ω for the steady flow of a viscous incompressible fluid past a

circular cylinder at Re = 40.

The non-dimensionalized vorticity field ω in the vicinity of the cylinder for the

test problem, as obtained in parallel using 16 processors, is shown in Figure 6. In

Figure 7 we provide a comparison of the theoretical performance with the actually

observed speedups for steps 1, 2 and 4 of BOX 2 (i.e., the general processing stage

of the finite element simulation). Near ideal performance is achieved for steps 1 and

4; however, the speedup observed for step 2 is clearly not optimal. Since the number

of operations associated with this step is far less than the number of computations
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Fig. 7. Parallel performance observed in the finite element solution of the low Reynolds

number flow of a viscous incompressible fluid past a circular cylinder.

needed to carry out steps 1 and 4 (see Table I for a comparison of wall clock times),

the cumulative parallel performance is actually quite competitive (e.g., 94.7% of ideal

performance is achieved with 8 threads and 84.8% of ideal performance is obtained

using 16 threads). We note in passing that the results presented in Figure 7 and

Table I have been averaged over the 6 nonlinear solution iterations required to satisfy

a nonlinear convergence criteria of 10−6.

For the current example, step 3 of BOX 2 was performed using the external

UMFPACK library [27, 28, 29, 30] (a set of routines for solving sparse unsymmetric

linear systems directly using the multifrontal method). Due to element-level static

condensation, only 119,296 equations needed to actually be solved at the global level

(24.07% of the original system of 495,616 equations). This translated into tremendous
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Table I. Elapsed wall clock time for various steps of the finite element processing stage

of a given nonlinear iteration for steady flow past a cylinder (np is the number

of processors or threads).

Elapsed wall clock time (in seconds)

Processing procedure(s) np = 1 np = 2 np = 4 np = 8 np = 16

BOX 2: step 1 52.31 26.47 13.11 6.58 3.50
BOX 2: step 2 4.14 2.40 1.52 1.10 0.90
BOX 2: step 4 40.00 20.43 10.05 5.06 2.71
BOX 2: steps 1, 2 and 4 96.45 49.30 24.68 12.74 7.11

memory savings in both the construction and direct factorization of [K]; in this exam-

ple less than 2.5 GB of RAM was actually required during the entire solution process.

Of course, even less memory would have been necessary had an appropriate iterative

solver, such as the preconditioned conjugate gradient method, been employed. The

present case study clearly demonstrates that the high-order finite element procedures

and algorithms discussed in this chapter may be readily utilized to efficiently solve

non-trivial finite element problems on shared-memory systems.
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CHAPTER III

LEAST-SQUARES FINITE ELEMENT FORMULATIONS FOR

NONLINEAR BOUNDARY-VALUE PROBLEMS: AN ANALYSIS OF

THE MINIMIZATION AND LINEARIZATION OPERATIONS∗

In this chapter we consider application of spectral/hp finite element procedures to

the solution of nonlinear systems of partial differential equations using least-squares

variational principles. The chapter is motivated in part by the considerable attention

the least-squares method has received in recent years, particularly as applied in the

numerical solution of the Navier-Stokes equations governing flows of viscous incom-

pressible fluids. Although we will discuss these equations in particular, our ultimate

objective is to provide a more general discussion of least-squares variational principles

as applied to nonlinear boundary-value problems. More specifically, we will discuss

the specific roles played by the minimization and linearization operators in nonlinear

least-squares finite element models and demonstrate in what manner the numerical

solution is affected by exchanging the application order of these operations.

The chapter is organized as follows. We begin by providing a brief overview of the

least-squares method, with an emphasis on L2-norm based least-squares formulations

that are practical for numerical implementation. We then consider the abstract setting

for an L2-norm based least-squares formulation of an abstract first-order nonlinear

boundary-value problem. The least-squares weak formulation is developed for this

abstract system via direct minimization of the least-squares functional through the aid

of the Gâteaux derivative. We provide a thorough discussion of possible forms taken

∗The numerical results reported in this chapter appear in the article “On the roles
of minimization and linearization in least-squares finite element models of nonlinear
boundary-value problems” by G. S. Payette and J. N. Reddy, J. Comp. Phys., vol. 230,
pp. 3589–3613, 2011. Copyright (2011) Elsevier Science.
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by the linearized weak formulation, when linearization is either performed before or

after minimization of the least-squares functional in the context of both the Picard and

Newton linearization schemes. We show that although the underlying least-squares

principle suggests that minimization ought to be performed prior to linearization,

such an approach is often impractical and not necessary. Finally, we underscore

the differences between the various linearization schemes adopted in the abstract

formulation, by numerically solving several nonlinear two-dimensional verification

benchmark boundary-value problems using least-squares finite element models. As a

first example we solve a nonlinear form of the Poisson equation. We also present three

numerical solutions of the incompressible Navier-Stokes equations, including steady

flow past a circular cylinder, flow over a backward facing step and lid-driven cavity

flow. For each benchmark, we provide a detailed assessment of the performance of

each least-squares finite element formulation.

A. An overview of the least-squares method

It is well known that the success of weak-form Galerkin finite element models in

obtaining favorable numerical solutions to partial differential equations is intimately

connected with the notion of global minimization of unconstrained quadratic func-

tionals [2]. When the Galerkin based weak formulation of a set of partial differen-

tial equations can be obtained equivalently through the minimization of a quadratic

functional, the finite element solution becomes an orthogonal projection of the exact

solution onto the trial space associated with the finite element discretization. The

resulting numerical solution represents the best possible approximation of the exact

solution in the trial space as measured with respect to the energy norm of the func-

tional. When the energy norm ∥u∥E can be shown to be equivalent to a more standard
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norm associated with an appropriate Hilbert space (e.g., the H1(Ω) norm), optimal

convergence rates of the finite element solution can be established. Such a setting,

often referred to as a variational setting, is ideal for finite element approximation and

is exemplified by the case of linear elasticity [3].

Unfortunately, finite element models based on the weak-form Galerkin procedure

often depart from the ideal variational setting; this is especially the case for many

problems arising outside the realm of solid mechanics. For example, application of the

Galerkin method to the Stokes equations results in a constrained variational problem,

whose discrete solution must satisfy restrictive compatibility conditions [31]. The

weak-form Galerkin finite element model of the Navier-Stokes equations on the other

hand is completely divorced from any minimization principles and further inherits

the discrete inf-sup condition of the Stokes problem [32]. Numerical solutions are

far from optimal as characterized by the need for severe mesh refinement in order to

suppress spurious oscillations of the solution. A considerable amount of research in

recent years has been devoted to modifications of the weak-form Galerkin approach in

the hope of obtaining a more favorable setting for the numerical solution. Stabilized

finite element formulations such as the penalty [6, 7], SUPG [4, 5] and Galerkin least-

squares [8] have been proposed and extensively researched. These schemes have yet

to gain wide acceptance, due in part to the associated temporal and mesh dependent

ad-hoc parameters that must be fine tuned in each formulation.

Finite element models based on least-squares variational principles often offer

an appealing alternative to the more popular weak-form Galerkin approach. This

is especially relevant in the analysis of partial differential equations containing non-

self-adjoint operators, as is found in the Navier-Stokes equations. Although not as

popular as weak-form Galerkin formulations, least-squares models of partial differen-

tial equations have been an active field of research since at least the early 1970’s [33].
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In 1976, Eason [34] compiled an extensive review containing well over 200 references

to least-squares methods as applied to the solution of partial differential equations.

Since the publication of this review article, least-squares finite element models have

continued to receive substantial attention and discussion in the literature.

Least-squares variational formulations allow us to define an unconstrained convex

least-squares functional J (u) in terms of the sum of the squares of the norms of

the partial differential equation residuals [35]; where standard inner product based

Sobolev norms are typically employed (e.g., norms associated with L2(Ω) or H
k(Ω),

where k ∈ N). If the governing equations (augmented by the appropriate boundary

conditions) are well posed, it can be readily shown that the exact solution coincides

with the minimizer of the least-squares functional. As a result, in the least-squares

method the weak formulation is obtained via direct minimization of J (u). The

concept of minimization of the partial differential equation residuals is, therefore, at

the heart of the least-squares formulation. For the case of linear partial differential

equations, it is always possible to associate with the least-squares functional a well

defined energy norm ∥u∥E. If it can be shown that the energy norm induced by the

least-squares functional is equivalent to an appropriate standard norm, such as the

H1(Ω) norm, optimal convergence rates can be established for the least-squares finite

element model. Under such conditions the least-squares finite element formulation

constitutes an ideal variational setting, regardless of whether or not such a setting is

achieved by the associated weak-form Galerkin finite element formulation [2].

To maintain practicality in the numerical implementation, it becomes computa-

tionally advantageous to construct the least-squares functional in terms of the sum

of the squares of the L2(Ω) norms of the first-order form of the partial differential

equation residuals. Regrettably, it is not always possible to establish a priori norm

equivalence (or H1(Ω)-coercivity) of the resulting least-squares formulation. As iden-
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tified by Bochev [36] using Agmon, Douglis, Nirenberg (ADN) elliptic theory [37],

it is typically possible to construct a least-squares functional that is H1(Ω)-coercive

[2, 38, 39, 40]. Unfortunately, the optimal choice of norms can: (a) depend on the

nature of the boundary conditions of a given problem and (b) result in an unattractive

computational implementation. It is important to note that departure from the ideal

variational setting (i.e., using a least-squares functional that is non-H1(Ω)-coercive)

does not typically result in disastrous consequences for least-squares finite element

models. Even when a given formulation is non-H1(Ω)-coercive, the least-squares finite

element model always: (a) possesses the best approximation property with respect

to a well-defined norm (i.e., the energy norm ∥u∥E) and (b) avoids restrictive com-

patibility requirements on the finite element function spaces (i.e., the discrete inf-sup

condition never arises). That the least-squares method is always based on a mini-

mization principle ensures a robust setting that is often lacking in Galerkin based

weak formulations. It is well known, however, that non-H1(Ω)-coercive low-order

finite element implementations are often prone to locking whenever full numerical

integration techniques are employed in evaluating the coefficient matrices. In the

context of the Navier-Stokes equations, it has been shown that such issues may be

largely avoided through the use of collocation or selective reduced integration strate-

gies [9, 10, 11, 12, 13, 14]. On the other hand, the combination of high-order fi-

nite element technology with least-squares variational principles has also shown great

promise in recent years. In particular, building off of the earlier work of Jiang and

Sonnad [41] and Bell and Surana [42, 43], Proot and Gerritsma [44, 45, 46, 47] and

Pontaza and Reddy [15, 16, 17, 18] demonstrated numerically that hp-least-squares

finite element models are capable of yielding highly accurate results even when the

least-squares functional cannot be shown to be H1(Ω)-coercive a priori.

Least-squares finite element models offer several additional attractive features as
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compared with weak-form Galerkin formulations. In the case of linear analysis, the

least-squares formulation always admits a symmetric positive-definite (SPD) coeffi-

cient matrix, regardless of whether or not such symmetry is manifest in the governing

partial differential equations. As a result, extremely robust direct as well as iterative

solution algorithms (such as the preconditioned conjugate gradient method) can be

employed in the solution process [48, 49] and only half of the global coefficient matrix

need be stored in memory. This is not the case when the weak-form Galerkin scheme

is applied to non-self-adjoint systems of equations [50]. As mentioned previously, the

least-squares formulation does not suffer from the restrictive inf-sup condition. This

is highly desirable in the numerical discretization of fluid mechanics problems, as it

allows the velocity and pressure to be approximated using the same bases of interpola-

tion [35]. Finally, least-squares formulations are also free from the need for numerical

dissipation through the use of upwind techniques. As a result, ad-hoc stabilization is

not needed in the analysis of convection dominated problems [35].

Least-squares formulations are certainly not without their own deficiencies. Most

problems in physics possess at the very minimum second order spatial differential op-

erators. Since no weakening of these operators is typically possible through the em-

ployment of Green’s identities (as can be readily accomplished in weak-form Galerkin

formulations), least-squares models typically require higher regularity of the approx-

imate solution within each element. Higher regularity requirements negatively affect

the condition number of the coefficient matrix and also the continuity requirement of

the solution across element boundaries. High regularity requirements may be avoided

by constructing the least-squares finite element model in terms of an equivalent lower-

order system by the introduction of additional independent auxiliary variables [35].

The resulting mixed formulation permits the use of standard Lagrange interpolation

functions and also improves the conditioning of the global coefficient matrix [48].
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However, such benefits are gained at the expense of an increase in size of the global

system of equations. It can be argued that such a formulation is at least somewhat use-

ful, however, as the auxiliary variables often represent important physical quantities

of interest (e.g., the heat flux, vorticity, stress, etc.). Other drawbacks to least-squares

formulations, in the context of fluid mechanics, include lack of local mass conservation

and poor coupling between the velocity and pressure in transient problems. Least-

squares formulations seeking to address these issues have been adopted by Chang and

Nelson [51], Pontaza [52], Prabhakar and Reddy [53, 54, 55] and Prabhakar et al. [56].

Additionally, in Chapter IV we propose a least-squares finite element model of the

incompressible Navier-Stokes equations with improved local mass conservation.

B. The minimization and linearization procedures

As stated previously, the fundamental principle for the least-squares method, as ap-

plied to a given boundary-value problem, is that the function minimizing the least-

squares functional coincides with the exact solution. The necessary condition for min-

imization naturally requires the first variation of the least-squares functional to be

identically zero; carrying out this procedure produces the weak form of the governing

equations. In the least-squares literature it is common to refer to the resulting weak

formulation as the Euler (or Euler-Lagrange) equation of the least-squares variational

boundary-value problem (see for example Bochev [2]). The Euler equation resulting

from invoking the necessary condition forms the basis of the least-squares finite ele-

ment model. As noted previously, the least-squares variational principle associated

with linear systems of partial differential equations always produces a symmetric bi-

linear form and as a result, a symmetric system of finite element equations. This is

a highly attractive property of the least-squares method. When the governing equa-
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tions are nonlinear, however, symmetry of the nonlinear Euler equation is not always

guaranteed.

Paramount to the solution of a system of nonlinear algebraic equations (as arise

in the finite element approximation of a nonlinear boundary-value problem) is the

need for linearization. In the context of an iterative solution procedure, the role of

linearization is to facilitate the solution to the original nonlinear equations through

the successive solution of an appropriate linearized form of the equations [50]. In

this work we consider the two most common iterative solution procedures, namely

the methods of Picard and Newton. The Picard scheme enjoys a large radius of

convergence accompanied by a slow convergence rate. Conversely, Newton’s method

offers a quadratic rate of convergence when the assumed solution is near the true

solution point. However, this method possesses a much smaller radius of convergence

than what is generally exhibited when the Picard scheme is employed.

In practice, it is possible to adopt one of two approaches when constructing least-

squares finite element models of nonlinear boundary-value problems. In the first

approach, linearization of the nonlinear partial differential equations is performed

prior to minimization of the least-squares functional. A major motivation for this

approach is the desire to maintain symmetry and positive-definiteness in the result-

ing finite element coefficient matrix. As pointed out by Jiang, such a framework also

yields “minimization problems of quadratic functionals which have been well studied”

[35]. Whenever this approach is adopted, we say that the least-squares finite element

model is constructed via linearization before minimization. In general, however, the

discrete minimizer resulting from this approach will be associated with the linearized

governing equations (as opposed to the actual set of PDEs). In the second approach,

we instead construct the least-squares functional from the original set of nonlinear

partial differential equations [42, 43] and then require the first variation of this true
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least-squares functional to be identically zero. The motivation for this approach has

to do with the least-squares principle itself. Since the least-squares method is in-

dependent of both the discretization procedure and the iterative nonlinear solution

scheme, it is easy to see that this second approach is mathematically consistent with

the underlying least-squares variational principle. When this procedure is chosen, we

say that the finite element model is formulated through linearization after minimiza-

tion. The drawback to this approach, however, is that the resulting linearized system

will in general be non-symmetric and non-positive definite.

It is worthwhile to note that in the context of finite element models based on

weak-form Galerkin formulations, there is no distinction between linearization of the

governing partial differential equations before or after creation of the weak form. In

essence, both approaches are equivalent, owing to the fact that the Galerkin procedure

constitutes a linear operation which acts on the nonlinear set of governing equations.

For the case of least-squares finite element formulations on the other hand, lineariza-

tion before minimization is clearly not equivalent to linearization after minimization

[20]. Throughout the remainder of this chapter, we highlight the differences between

these two approaches and discuss in what context the numerical solution is affected by

interchanging the application order of the minimization and linearization operations.

C. Abstract least-squares formulations of nonlinear boundary-value problems

In this section we present the steps involved in developing and arriving at weak for-

mulations, based on the least-squares method, for nonlinear boundary-value problems

that can be readily utilized to construct least-squares finite element models. To in-

sure a general treatment of the subject, we present the fundamental concepts and

procedures in the context of an abstract boundary-value problem. The least-squares
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functional for this general problem is defined in terms of the sum of the squares of the

L2 norms of the abstract equation residuals. The Euler equation associated with the

problem is then developed through an appropriate minimization of the least-squares

functional with respect to the solution variable(s). We provide a thorough discus-

sion of possible forms taken by the linearized Euler equation, when linearization is

performed before or after minimization of the functional in the context of both the

Picard and Newton linearization schemes. We also present a simple mathematical

analysis of Newton’s method as applied to least-squares formulations (both before

and after minimization).

1. The abstract nonlinear boundary-value problem

We recall from notation introduced in Chapter II that Ω and Γ represent, respectively,

the domain and boundary upon which a typical boundary-value problem may be

posed. In addition, we follow the customary procedure of partitioning the boundary

Γ into Dirichlet ΓD and Neumann ΓN parts, such that Γ = ΓD
∪
ΓN and ΓD

∩
ΓN = ∅.

We consider the following abstract boundary-value problem

L(u) = f in Ω (3.1a)

u = up on ΓD (3.1b)

g(u) = h on ΓN (3.1c)

where L is a nonlinear first-order spatial partial differential operator, u is the depen-

dent variable, f is the forcing function and up is the prescribed essential boundary

condition. The flux or Neumann boundary condition for the problem is expressed in

terms of the operator g and the prescribed function h. The boundary conditions are

of course understood in the sense of traces [23, 57]. We assume that the function g is
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linear in u and that the problem is well-posed.

2. The L2 least-squares functional and associated minimization principle

At the center of the least-squares method and the resulting least-squares finite element

model is the least-squares functional. In keeping with our desire to maintain an

appropriate level of practicality in the numerical implementation, we construct the

least-squares functional in terms of the sum of the squares of the L2 norms of the

abstract equation residuals

J (u; f ,h) =
1

2

(
∥L(u)− f∥2Ω,0 + ∥g(u)− h∥2ΓN,0

)
(3.2)

It is important to note that the least-squares functional has been defined such that the

Neumann boundary condition is enforced weakly as a consequence of the minimization

procedure. Hence, in the numerical implementation there will be no need to constrain

the finite element function spaces to satisfy the natural boundary conditions.

The abstract minimization principle associated with the least-squares method

may be stated as follows: find u ∈ V such that

J (u; f ,h) 6 J (ũ; f ,h) for all ũ ∈ V (3.3)

The function space V associated with the least-squares problem is defined as

V =
{
u : u ∈ H1(Ω), u = up on ΓD

}
(3.4)

The necessary condition for minimization requires that the first variation of J (u; f ,h)

be identically zero. The minimization procedure may be readily facilitated through

the use of the Gâteaux derivative [23]. We recall that the Gâteaux derivative (or
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Gâteaux variation) of a general functional Π(u) in the direction of δu is defined as

δΠ(u, δu) =
d

dε
Π(u+ εδu)

∣∣∣
ε=0

= DΠ(u)[δu] = ∇Π(u) · δu (3.5)

where the symbolic derivative (or gradient) operator ∇ acts with respect to the de-

pendent variable u. With the above formula in mind, the first variation of J (u; f ,h),

denote by G(u, δu), can be expressed as

G(u, δu) = δJ (u, δu; f ,h) =
d

dε
J (u+ εδu; f ,h)

∣∣∣
ε=0

= (δL(u, δu),L(u)− f)Ω,0 + (g(δu), g(u)− h)ΓN,0

= (∇L(u) · δu,L(u)− f)Ω,0 + (g(δu), g(u)− h)ΓN,0 = 0

(3.6)

where δu ∈ W is an admissible variation of u. The linear vector space of kinematically

admissible variations W is of the form

W =
{
δu : δu ∈ H1(Ω), δu = 0 on ΓD

}
(3.7)

The Euler equation associated with the abstract least-squares problem is to find u ∈ V

such that Eq. (3.6) holds for all δu ∈ W .

When the governing equations for the physical system are linear, Eq. (3.6) can

be expressed conveniently as

B(δu,u) = F(δu) (3.8)

where the bilinear form B(δu,u) and linear form F(δu) are given as

B(δu,u) = (L(δu),L(u))Ω,0 + (g(δu), g(u))ΓN,0 (3.9a)

F(δu) = (L(δu), f)Ω,0 + (g(δu),h)ΓN,0 (3.9b)

We can associate with the least-squares based weak formulation a well defined energy
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norm ∥u∥E of the form

∥u∥E =
√
J (u;0,0) (3.10)

If it can be shown that ∥u∥E is equivalent to the norm of a standard Sobolev space

X (e.g., X = H1(Ω)) in the sense that c1∥u∥2X ≤ ∥u∥2E ≤ c2∥u∥2X for all u ∈

V where c1 and c2 are positive constants, then we say that J (u; f ,h) is X -norm

equivalent or X -coercive. Under such conditions the least-squares method constitutes

an ideal variational setting, and in particular optimal convergence rates under h-

refinement may be established for a conforming finite element discretization [19].

Unfortunately, L2-norm based least-squares functionals will not generally be X -norm

equivalent. However, as demonstrated by Pontaza [58], such functionals can still

recover an optimal variational setting for least-squares finite element models whenever

an appropriate level of p-refinement is employed (where p ≥ 4 is typically sufficient).

Clearly, in the linear case the bilinear form B(δu,u) is symmetric irrespective of

the particular form of L. When the differential operator L is nonlinear, however, this

is no longer the case. In the following sections we discuss procedures for linearizing the

least-squares based weak formulation, both before and after functional minimization.

3. Linearization before minimization

Eq. (3.6) constitutes the proper setting for the least-squares variational formulation.

However, in general, this approach yields a non-symmetric coefficient matrix for non-

linear problems. As a result, many authors choose to create a linearized version

of L prior to construction and minimization of the least-squares functional. Two

approaches are commonly advocated, namely the Picard method of successive substi-

tution and the Newton scheme. In both approaches we replace the nonlinear operator
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L with the linearized operator LLin defined as

L(u) � LLin(u;u0) = L̃(u;u0) + L̂(u0) (3.11)

In the above expression u0 represents a characteristic state about which the solution

is linearized. In the discrete numerical implementation u0 is taken either as a guess or

as a known quantity from the immediate previous iteration. The linearized operator

LLin is decomposed into the sum of L̃, which is linear in u, and L̂ which depends on

u0 only.

In the Picard scheme LLin(u;u0) is replaced with LPic(u;u0), denoting a Picard

linearization of L. An important artifact of the Picard scheme is that LPic does not

necessarily represent a unique linearization of L, since a nonlinear operator can be

linearized in more than one way. In Newton’s method, the operator LLin(u;u0) is

replaced with the Newton operator LNew(u;u0) defined as

LNew(u;u0) = L(u0) +∇L(u0) · (u− u0) (3.12)

where the gradient operator ∇ now acts with respect to u0. The abstract least-

squares functional J (u; f ,h) given in Eq. (3.2) is therefore replaced by the following

approximation

JLin(u;u0, f̃ ,h) =
1

2

(
∥L̃(u;u0)− f̃∥2Ω,0 + ∥g(u)− h∥2ΓN,0

)
(3.13)

where f̃ = f − L̂(u0). The above expression has been defined in terms of the oper-

ators L̃ and L̂ appearing in Eq. (3.11), and is thus applicable for use in the context

of both the Picard and Newton methods. The Euler equation corresponding with

minimization of JLin can be expressed as

GLin(u, δu;u0) = (L̃(δu;u0), L̃(u;u0)− f̃)Ω,0 + (g(δu), g(u)− h)ΓN,0 (3.14)
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The above expression can be written equivalently as

B(δu,u) = F(δu) (3.15)

where the bilinear form B(δu,u) and linear form F(δu) are given as

B(δu,u) = (L̃(δu;u0), L̃(u;u0))Ω,0 + (g(δu), g(u))ΓN,0 (3.16a)

F(δu) = (L̃(δu;u0), f − L̂(u0))Ω,0 + (g(δu),h)ΓN,0 (3.16b)

The above forms apply to both the Picard and Newton linearization schemes. How-

ever, for the Newton scheme, the bilinear and linear forms can be reduced to

B(δu,u) = (∇L(u0) · δu,∇L(u0) · u)Ω,0 + (g(δu), g(u))ΓN,0 (3.17a)

F(δu) = (∇L(u0) · δu, f − L(u0) +∇L(u0) · u0)Ω,0 + (g(δu),h)ΓN,0 (3.17b)

Clearly the bilinear form is symmetric and positive-definite regardless of which lin-

earization scheme is employed. As a result fast and robust solution procedures may

be employed in the actual finite element implementation (such as sparse forms of ei-

ther the Cholesky decomposition or the preconditioned conjugate gradient method).

We also note that when linearization is performed prior to minimization, we are able

to associate with the linearized least-squares functional the following energy norm

∥u∥E =
√
JLin(u;u0,0,0) (3.18)

4. Linearization after minimization

We now consider the case where construction and minimization of the least-squares

functional is performed without first linearizing the governing partial differential equa-

tions. As a result, we work directly in terms of the true least-squares functional

J (u; f,h) and the nonlinear Euler equation G(u, δu) resulting from appropriate func-
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tional minimization (see Eqs. (3.2) and (3.6)). An interesting implication of working

in this setting is that we can no longer define an energy norm associated with the

least-squares functional. We note that the Euler equation given by Eq. (3.6) is non-

linear in u. This expression can be solved through the use of an appropriate iterative

solution scheme, where linearization is fundamental to the iterative procedure. In the

case of the Picard method, the Euler equation can be linearized as

GPic(u, δu) ≡ (P(δu;u0),LPic(u;u0)− f)Ω,0 + (g (δu) , g(u)− h)ΓN,0 (3.19)

where P(δu;u0) represents a Picard linearization of ∇L (u) · δu. It is imperative

to note that the Gâteaux variation and Picard linearization do not commute when

applied to L(u). As a result, linearization prior to minimization is clearly not equiv-

alent to linearization after minimization when the Picard scheme is employed. We

note that it is always possible to decompose P(δu;u0) into the following sum

P(δu;u0) = L̃(δu;u0) + LAdd(δu;u0) (3.20)

The quantity LAdd(δu;u0) represents an additional term present in the Picard lin-

earization of ∇L(u) · δu that is not accounted for when linearization is performed

prior to minimization. The Picard linearization of the nonlinear Euler equation can

therefore be expressed as

GPic(u, δu) = (L̃(δu;u0),LPic(u;u0)− f)Ω,0 + (g(δu), g(u)− h)ΓN,0

+ (LAdd(δu;u0),LPic(u;u0)− f)Ω,0

(3.21)

The underlined term in the above expression is not present when linearization is

performed prior to minimization. The linearized Euler equation can also be written

as

B(δu,u) + B̃(δu,u) = F(δu) (3.22)
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where B(δu,u) is a bilinear form, B̃(δu,u) is a mixed form (i.e., it contains both

bilinear and linear forms) and F(δu) is a linear form. These quantities are defined as

B(δu,u) = (L̃(δu;u0), L̃(u;u0))Ω,0 + (g(δu), g(u))ΓN,0 (3.23a)

B̃(δu,u) = (L Add(δu;u0),LPic(u;u0)− f)Ω,0 (3.23b)

F(δu) = −(L̃(δu;u0), L̂(u0)− f)Ω,0 + (g(δu),h)ΓN,0 (3.23c)

We have employed the decomposition of LPic defined in Eq. (3.11) in arriving at the

above expressions for B(δu,u) and F(δu).

It should be clear that the Picard linearization of the nonlinear Euler equation

differs from Eq. (3.15) only on account of B̃(δu,u). It readily follows that this mixed

form is identically zero, for all δu ∈ W , whenever the true solution for u is inserted

into Eq. (3.22) (assuming of course that u0 → u). In the finite element implemen-

tation, however, we replace u and δu with their discrete counterparts uhp ∈ Vhp and

δuhp ∈ Whp, and as a result B̃(δuhp,uhp) , 0. Consequently, the finite element so-

lution obtained using Eq. (3.15) will not exactly coincide with the numerical results

procured via Eq. (3.22). Clearly, application of Picard’s linearization scheme prior to

minimization induces error in the numerical solution (as compared to the case where

minimization is performed first). We do expect, however, that under proper mesh

refinement, the error induced by neglecting the discrete mixed term will diminish. A

major shortcoming of applying the Picard method after minimization is that we can

no longer guarantee symmetry of the resulting bilinear form.

Eq. (3.6) can also be linearized using Newton’s method. In this case G(u, δu) is

replaced with

GNew(∆u, δu;u0) ≡ G(u0, δu) +DG(u0, δu)[∆u] (3.24)
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where ∆u = u− u0 and DG(u0, δu)[∆u] is the tangent operator defined as

DG(u0, δu)[∆u] = ∇G(u0, δu) ·∆u

= (∇L(u0) · δu,∇L(u0) ·∆u)Ω,0 + (g(δu), g(∆u))ΓN,0

+ (∇(∇L(u0) · δu) ·∆u,L(u0)− f)Ω,0

(3.25)

Since δu remains constant during the increment ∆u, it follows that

∇(∇L(u0) · δu) ·∆u = (∇∇L(u0) · δu) ·∆u = (∇∇L(u0) ·∆u) · δu (3.26)

The above implies that the tangent operator is symmetric. As a result, the expression

GNew(∆u, δu;u0) = 0 can be written in the usual manner

B(δu,u) = F(δu) (3.27)

where the bilinear form B(δu,u) and linear form F(δu) are given as

B(δu,u) = (∇L(u0) · δu,∇L(u0) · u)Ω,0 + (g(δu), g(u))ΓN,0 (3.28a)

+ ((∇∇L(u0) · δu) · u,L(u0)− f)Ω,0

F(δu) = (∇L(u0) · δu, f − L(u0) +∇L(u0) · u0)Ω,0 + (g(δu),h)ΓN,0 (3.28b)

+ ((∇∇L(u0) · δu) · u0,L(u0)− f)Ω,0

It is interesting to note that symmetry in the bilinear form is guaranteed when lin-

earization is performed subsequent to minimization, if the linearization is employed

in the framework of an iterative Newton solution procedure. As a result, the coef-

ficient matrix of the finite element model will always be symmetric, even when the

first variation of J (u; f ,h) is not.

When the underlined terms in the above expression are neglected, the scheme

is equivalent to performing linearization prior to minimization. Justification for such
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omission can be seen by rewriting the linearized equations above as

B̃(δu,u) + B̂(δu,u) = F̃(δu) (3.29)

where B̃(δu,u) is a bilinear form, B̂(δu,u) is a mixed form and F̃(δu) is a linear

form. We define these quantities as

B̃(δu,u) = (∇L(u0) · δu,∇L(u0) · u)Ω,0 + (g(δu), g(u))ΓN,0 (3.30a)

B̂(δu,u) = ((∇∇L(u0) · δu) · (u− u0),L(u0)− f)Ω,0 (3.30b)

F̃(δu) = (∇L(u0) · δu, f − L(u0) +∇L(u0) · u0)Ω,0 + (g(δu),h)ΓN,0 (3.30c)

We can clearly see that as u0 → u, the mixed form B̂(δu,u) goes to zero. The

same is also true in the discrete case (i.e., B̂(δuhp,uhp) → 0 as u0 → uhp). We

therefore conclude that application of Newton’s method prior to minimization of the

least-squares functional is equivalent to modifying the search direction of the Newton

scheme as applied after minimization. As a result, we expect both schemes to yield

the same solution, provided that the initial guess is such that convergence is possible.

5. A simple analysis of Newton’s method

In this section we seek to gain a deeper understanding of the iterative solution pro-

cess associated with application of Newton’s method in least-squares formulations

(both before and after minimization of the least-squares functional). To simplify the

mathematical analysis, we consider application of the least-squares principle to the

problem of finding the simple root of a nonlinear differentiable function f(x) defined

on the interval I = [a, b]. To this end we define the true least-squares functional as

J (x) =
1

2
f(x)2 (3.31)
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In the least-squares formulation of the problem we seek to find α ∈ I such that

J (α) 6 J (x) for all x ∈ I. Invoking the minimization principle yields the nonlinear

Euler equation which may be expressed as

G(x, δx) = f ′(x)f(x)δx (3.32)

where f ′(x) is the derivative of f with respect to x. Linearization of the Euler equation

using Newton’s method yields

B(δx, x) = F(δx) (3.33)

where the bilinear form B(δx, x) and linear form F(δx) are given as

B(δx, x) = [f ′(x0)
2 + f ′′(x0)f(x0)]xδx (3.34a)

F(δx) = [f ′(x0)(−f(x0) + f ′(x0)x0) + f ′′(x0)f(x0)x0]δx (3.34b)

The underlined terms are absent in the event that Newton’s method is applied prior

to minimization of J (x). Solving the above expression for x yields

x = x0 −
f ′(x0)f(x0)

f ′(x0)2 + γf ′′(x0)f(x0)
(3.35)

where γ = 1.0.

It is interesting to note that application of Newton’s method to the true least-

squares problem is equivalent to applying Newton’s method in the solution of h(x) =

g(x)f(x) = 0 where g(x) = f ′(x). It can be easily shown, however, that when

the least-squares functional is defined in terms of a Newton linearization of f(x),

the least-squares problem is completely equivalent to simply finding the solution of

f(x) = 0 using Newton’s method. Clearly, the convergence properties associated with

each Newton linearization scheme will be distinct. It has been shown by Gerlach
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[59] that it is possible to define g (x) such that application of Newton’s method

to h(x) = g(x)f(x) = 0 will possess superior convergence properties than a direct

application of Newton’s procedure to f(x) = 0. In such formulations, g(x) is typically

defined such that h′′(x) (or even higher derivatives of h(x)) goes to zero in the vicinity

of α. For example if g(x) is defined as g(x) = 1/
√
|f ′(x)|, Newton’s procedure

produces an algorithm with a cubic convergence rate (also known as Halley’s method

[59]). Such a procedure may be obtained by artificially setting γ to −1/2 in Eq. (3.35).

Since Eq. (3.35) is neither Newton’s procedure nor Halley’s method (as applied in

the solution of f(x) = 0) it is only reasonable to be cautious when applying this

iterative scheme to the solution of nonlinear equations. Clearly, linearization after

minimization will tend to increase the nonlinearity of the resulting Euler equation.

It therefore seems plausible to assume that such an increase may tend to negatively

affect the radius of convergence of the iterative solution procedure.

Although a rigorous mathematical analysis on the convergence behavior of the

two Newton formulations is beyond the scope of this dissertation, we offer the follow-

ing by way of simple analysis: We invoke Taylor’s theorem, which may be applied in

the exact evaluation of a differentiable function h(x) at its root α in the vicinity of a

characteristic state xn as

h(α) = 0 = h(xn) + h′(xn)(α− xn) +
h′′(ξ)

2
(α− xn)

2 (3.36)

where ξ is between α and xn. Combing the above expression with Newton’s scheme

(i.e., xn+1 = xn − h(xn)/h
′(xn)) and taking the absolute value yields

|α− xn+1| =
|h′′(ξ)|
2|h′(xn)|

(α− xn)
2 (3.37)

The above expression is typically utilized to prove the quadratic convergence rate

of Newton’s method as applied in the solution of h(x) = 0. If we apply the above
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expression in the evaluation of h(x) = f(x) and h(x) = f ′(x)f(x), we obtain

|α− x̄n+1| = C̄(ξ̄, xn)(α− xn)
2 (3.38a)

|α− x̃n+1| = C̃(ξ̃, xn)(α− xn)
2 (3.38b)

where C̄(ξ̄, xn) and C̃(ξ̃, xn) are of the form

C̄(ξ̄, xn) =
|f ′′(ξ̄)|
2|f ′(xn)|

(3.39a)

C̃(ξ̃, xn) =
|3f ′(ξ̃)f ′′(ξ̃) + f ′′′(ξ̃)f(ξ̃)|
2|f ′(xn)2 + f ′′(xn)f(xn)|

(3.39b)

It is important to note that the above equations have been defined such that the

characteristic state xn is the same in both expressions. The updated quantities x̄n+1

and x̃n+1 will of course be distinct. In general it is difficult to assess how C̄(ξ̄, xn)

compares with C̃(ξ̃, xn). We consider two limit cases. In the case that (f ′′(ξ̄) → 0

and f ′′(ξ̃) → 0), C̄(ξ̄, xn) also tends to zero while the value of C̃(ξ̃, xn) depends on

|f ′′′(ξ̃)f(ξ̃)|/(2|f ′(xn)
2 + f ′′(xn)f(xn)|). Also, in the limit as |α − xn| → 0, it is ob-

vious that C̃ → 3C̄. In both of these limit cases, linearization prior to minimization

appears to produce slightly superior convergence properties than does linearization af-

ter minimization of J (x) (although both schemes have quadratic convergence rates).

However, general convergence behavior cannot be obtained through a simple extrap-

olation of these limit cases.

The above discussion has been restricted to the problem of finding the simple

root of a nonlinear differentiable function of a single variable. Clearly, blind ex-

trapolation of the characteristics observed in this simple problem to more general

classes of problems involving the least-squares method is tenuous. However, the qual-

ities observed in this simple problem are consistent with our numerical findings in

the least-squares finite element analysis of nonlinear boundary-value problems. As
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demonstrated numerically in Section E, application of Newton’s method (after lin-

earization) typically results in a solution procedure possessing: (a) a small radius of

convergence (as compared with Newton’s method applied prior to minimization) and

(b) a rate of convergence similar to Newton’s procedure (as applied before minimiza-

tion), assuming of course that solution convergence is possible.

6. General remarks on abstract least-squares problem

At this point, it is worthwhile to summarize some of the more pertinent qualities

associated with the abstract least-squares formulation. In particular, the following

observations and conclusions can be drawn:

1. The roles of functional minimization and nonlinear operator linearization have

distinct and separate purposes. In general, these operations do not commute.

2. Minimization of the least-squares functional is the fundamental variational prin-

ciple upon which the least-squares finite element model is predicated. The prin-

ciple is independent of the iterative nonlinear solution procedure and the dis-

cretization scheme, and as a result should be applied to the true least-squares

functional constructed from the governing equations associated with a given

physical system. If the model problem is nonlinear, the least-squares functional

should be constructed and minimized without first introducing any lineariz-

ing assumptions. In the continuous setting, the minimizer of the least-squares

functional coincides with the true solution of the governing partial differential

equations.

3. Linearization is merely a means of facilitating the solution of the nonlinear Euler

equation, and may be employed in conjunction with an appropriate iterative

solution scheme (e.g., the methods of Picard or Newton).
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4. In general, when the nonlinear operator is linearized prior to construction of the

least-squares functional, the discrete minimizer is associated with the linearized

least-squares functional as opposed to the proper or true least-squares functional

(constructed in terms of the nonlinear operator). Hence, minimization of the

linearized least-squares functional is not equivalent to minimization of the true

least-squares functional.

5. It is often computationally advantageous to linearize the partial differential

equations prior to construction and minimization of the least-squares functional.

The coefficient matrix components are simpler to formulate and faster to com-

pute when linearization is applied prior to minimization. The Picard scheme

produces the simplest form for the coefficient matrix and its use is especially

convenient when complicated constitutive models are involved. The Newton

scheme, on the other hand yields a slightly more complicated expression for the

coefficient matrix. However, both methods as applied prior to minimization

guarantee symmetry and positive-definiteness of the resulting global coefficient

matrix. Due in part to the formulative and computational simplicity, performing

linearization prior to minimization is the preferred approach of most researchers.

6. In the discrete setting, application of the Picard method prior to minimization

introduces error into the resulting Euler equation (as compared to performing

linearization after invoking the minimization principle). This error is propor-

tional to how well the least-squares variational boundary-value problem is sat-

isfied by the finite element approximation of the weak solution. We expect that

the magnitude and effect of this error to diminish when proper mesh refine-

ment is employed. This expectation is indeed realized in the numerical results

presented later in this chapter.
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7. The Euler equation resulting from minimization of the true least-squares func-

tional is in general non-symmetric in its bilinear form. A Picard linearization

of this expression will also, in general, yield a non-symmetric bilinear form.

Applying the Newton scheme in the solution of the nonlinear Euler equation

always yields a symmetric bilinear form, regardless of the form taken by L. The

resulting bilinear form, however, will not necessarily be positive-definite.

8. The Newton scheme can be interpreted geometrically as a numerical solution

procedure for a nonlinear set of equations that relies on the concept of a search

direction (given by the tangent operator). The abstract formulation reveals that

linearization using Newton’s method prior to minimization introduces an error

in the search direction of the scheme, as compared with application of Newton’s

approach after minimization of the least-squares functional. We expect, how-

ever, that both Newton schemes will yield identical discrete numerical results,

assuming of course that the characteristic states are initially chosen such that

solution convergence is possible. Hence, exchanging the order of application

of the minimization and Newton linearization operations has no effect on the

converged numerical results (i.e., the discrete minimizers coincide). As we will

demonstrate numerically, however, the order of application of these operators

significantly affects the radii and rates of convergence of a given numerical im-

plementation. Bell and Surana [42, 43] correctly recognized that the expression

in the tangent operator, given in Eq. (3.26), for the Newton case (after mini-

mization) may be neglected without affecting the final state of the converged

solution. Such omission is equivalent to linearizing the governing equations

using Newton’s method prior to minimization.
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D. Numerical implementation of the least-squares method

The procedures outlined in Chapter II may be used to produce the least-squares

finite element model of a given nonlinear first-order system of partial differential

equations. This is accomplished by replacing the function spaces V and W with

the finite dimensional sub-spaces Vhp ⊂ V and Whp ⊂ W associated with a given

high-order spectral/hp finite element discretization. This naturally leads to a set of

nonlinear algebraic equations that can be expressed as

[K({∆}(k−1))]{∆}(k) = {F}(k) (3.40)

where the index k denotes the iteration number of the nonlinear iterative solution pro-

cedure. The coefficient matrix [K({∆}(k−1))] and force vector {F}(k) are constructed

from the bilinear and linear forms respectively of the given least-squares based weak

formulation. We adopt the Gauss-Legendre quadrature rules (see Chapter II) in the

numerical evaluation of all integrals appearing in the finite element equations. For

nonlinear least-squares based finite element implementations, the order of the quadra-

ture rule plays a critical role on the reliability of the resulting numerical solution. For

a fine discretization, it is our experience that a quadrature rule of NGP = p + 1

is typically sufficient to produce dependable numerical results. For coarse meshes,

however, it is typically expedient to employ higher order quadrature formulas (e.g.,

p + 1 < NGP ≤ p + 5) to insure that the integrity of the numerical solution is not

polluted by errors associated with the numerical integration scheme.

It is important to note that direct application of nonlinear least-squares finite

element models with linearization performed after minimization, often yield iterative

solution schemes that diverge. To restore convergence for these cases, we employ a

relaxation scheme in the numerical solution. To this end we call {∆}(∗) the solution



70

calculated at the kth iteration, and let {∆}(k−1) denote the solution known from the

previous iteration (i.e., iteration k − 1). We define the modified current solution

{∆}(k) as

{∆}(k) = ω({∆}(∗) − {∆}(k−1)) + {∆}(k−1) (3.41)

where ω ∈ R+ is the relaxation parameter. We note that when ω = 1.0, {∆}(k) =

{∆}(∗). We postulate the following simple expression for the relaxation parameter

ω(ε) = 1− (1− ω0)(2− ε)ε (3.42)

where ω0 is a constant specified by the user and ε represents the error in the iterative

solution

ε =
∥{∆}(∗) − {∆}(k−1)∥

∥{∆}(∗)∥
(3.43)

In the above expression ∥ · ∥ is the Euclidean norm. Eq. (3.42) has been specifically

designed such that ω → 1.0 as ε→ 0.

It is important to be able to estimate how well the numerical solution approxi-

mates the exact solution for a particular problem. When the exact solution is known,

the following expression represents an appropriate error measure of the numerical

solution

Eu = ∥u− uhp∥Ω,0/∥u∥Ω,0 (3.44)

where u and uhp represent respectively, the exact and finite element solution for a

given dependent variable. When the exact solution is unavailable we utilize an a

posteriori evaluation of the least-squares functional J (uhp; f ,h) as an estimate for

the error in the finite element solution. We note that this approach represents a

global error estimate of the sum of all solution variables. Alternatively, J (uhp; f ,h)

may also be evaluated for each element separately as a means of identifying regions

where mesh refinement may be necessary.
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E. Numerical examples: verification benchmarks

In what follows, we apply the preceding abstract formulations to the numerical solu-

tion of several nonlinear boundary-value problems using least-squares finite element

models. It is our intent to illustrate through these numerical experiments, various

artifacts associated with how the numerical solution is affected by exchanging the

order of application of the minimization and linearization operators. To this end we

first consider the numerical solution of a two-dimensional nonlinear Poisson equation.

We then present numerical solutions of the stationary incompressible form of the

Navier-Stokes equations including flow past a circular cylinder, flow over a backward

facing step and lid-driven cavity flow.

1. A nonlinear Poisson equation

We consider the solution of a nonlinear Poisson equation, governing the diffusion of

heat or chemical species. The problem may be formally stated as follows: find u(x)

such that

−∇ · (k∇u) = f in Ω (3.45a)

u = up on ΓD (3.45b)

−n̂ · k∇u = qp on ΓN (3.45c)

where n̂ is the outward unit normal and k is a nonlinear function of u given by the

following formula

k = k0 + kuu > 0 (3.46)

where k0 and ku are constants. We assume the boundary conditions and data are given

such that the problem is well-posed. Direct application of the least-squares method

to this boundary-value problem is certainly possible. However, this will require a high
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degree of regularity in the finite element solution such as u ∈ H2(Ω). To maintain

practicality in the numerical implementation, we recast the above problem into an

equivalent first-order form. The problem can be stated as follows: find u and q such

that

∇ · q− f = 0 in Ω (3.47a)

q+ k∇u = 0 in Ω (3.47b)

∇× q = 0 in Ω (3.47c)

u = up on ΓD (3.47d)

n̂ · q = qp on ΓN (3.47e)

where q is a flux quantity (e.g., in the context of the heat equation, q is the heat

flux). The first-order system in Eq. (3.47) involves physical variables, although one

may select an alternative set of first-order equations that may not be physical.

We define the true least-squares functional for the nonlinear Poisson equation as

J (u,q; f) =
1

2

∫
Ω

{(∇ · q− f)2 + [q+ (k0 + kuu)∇u]2 + (∇× q)2}dΩ (3.48)

The Neumann boundary condition may also be included, if needed, in the definition

of the least-squares functional. It is also possible to construct a linearized form of

the above expression by performing linearization of the nonlinear parts of the Poisson

equation prior to construction of the least-squares functional. In the Picard approach

we replace u∇u with u0∇u. Likewise, in Newton’s scheme, u∇u0 + u0∇u− u0∇u0 is

used in substitution of the nonlinear term. The linearized Euler equation (or weak

formulation) resulting from invoking the minimization principle for the nonlinear

Poisson equation may be stated as follows: find u ∈ V such that

B(δu,u) = F(δu) for all δu ∈ W (3.49)
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where u = (u,q) and δu = (δu, δq) are ordered pairs, introduced to simplify the

discussion. Likewise, V and W are appropriate function spaces (see for example Eqs.

(3.4) and (3.7)). In the case of Picard linearization, the bilinear form B(δu,u) and

linear form F(δu) are given as

B(δu,u) =
∫
Ω

{
[δq+ (k0 + kuu0)∇δu] · [q+ (k0 + kuu0)∇u] (3.50a)

+ (∇ · δq)(∇ · q) + (∇× δq) · (∇× q)

+ kuδu∇u0 · [q+ (k0 + kuu0)∇u]
}
dΩ

F(δu) =

∫
Ω

f(∇ · δq)dΩ (3.50b)

Likewise, for the case of Newton linearization the bilinear and linear forms can be

expressed as

B(δu,u) =
∫
Ω

{
[δq+ (k0 + kuu0)∇δu+ kuδu∇u0] · [q+ (k0 + kuu0)∇u (3.51a)

+ kuu∇u0] + (∇ · δq)(∇ · q) + (∇× δq) · (∇× q)

+ ku(δu∇u+ u∇δu) · [q0 + (k0 + kuu0)∇u0]
}
dΩ

F(δu) =

∫
Ω

{
f(∇ · δq) + (kuu0∇u0) · [δq+ (k0 + kuu0)∇δu+ kuδu∇u0] (3.51b)

+ ku(δu∇u0 + u0∇δu) · [q0 + (k0 + kuu0)∇u0]
}
dΩ

The underlined terms above are present when linearization is performed after min-

imization. The above expressions are consistent with our findings for the abstract

problem. In particular, the converged solutions for both Newton schemes should co-

incide, while the Picard linearization (before minimization) introduces error in the

discrete setting that is proportional to how well the governing equations are satisfied

by the numerical solution.
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a. A manufactured solution

To demonstrate convergence properties of the various least-squares formulations for

the nonlinear Poisson equation, we seek to compare numerical results with an ap-

propriate analytic solution. Since obtaining exact solutions of nonlinear equations is

often a formidable task, we resort to the method of manufactured solutions. In this

approach we postulate a solution to the partial differential equation, and then find a

forcing function f that makes the solution exact. Ideally we would like to come up

with a solution that is infinitely differentiable, to insure that the numerical solution

cannot be trivially satisfied by the finite element basis functions.

We consider the domain for the problem to be given as Ω̄ = [0,
√

7π/2]× [0, 1].

The closed form analytic solution chosen for the problem is of the form

u(x, y) = [ex cos(x2) + π2x] sin(πy) (3.52)

The equation parameters for k are taken as k0 = 1 and ku = 100. We note that

the proposed solution does not satisfy the Poisson equation when f = 0. To make

the solution exact we specify f such that Eq. (3.45a) is satisfied. This choice for

f is sometimes termed the consistent forcing function. The expression is somewhat

complicated but can be easily determined using a symbolic algebra software package

such as Maple or Mathematica.

In the numerical implementation of the problem, the boundary conditions are

applied by specifying the exact solution for u along the whole boundary (i.e., Γ = ΓD

and ΓN = ∅). The following values are utilized as initial guesses at the beginning of

the iterative nonlinear solution procedure: u = 15 and qx = qy = 0 in Ω. The finite

element model consists of a uniform 6 × 2 mesh of rectangular elements. The mesh

is refined by systematically increasing the p-level of the finite element approximation



75

functions. Nonlinear convergence is declared once ε < 10−6. An example mesh and

accompanying finite element solution of the Poisson equation is given in Figure 8.

(a)

(b) 0 0.5 1 1.5 2 2.5 3
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24
20
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4
0

Fig. 8. Nonlinear Poisson equation: (a) 6×2 finite element mesh and (b) finite element

solution for u at p = 11.

The solution error Eu associated with uhp is evaluated using the pseudo-metric

given in Eq. (3.44). As expected, exponential decay of Eu is observed under p-

refinement as can be seen in Figure 9; this is true of all four least-squares based

formulations. It is worth noting that all formulations with the exception of the Pi-

card method (with linearization performed prior to minimization) yield equivalent

values for Eu for a given p-level. We also, see that this Picard scheme also yields the

largest value of Eu. Clearly, the error inherent in the Picard scheme (before minimiza-

tion) does not prevent solution convergence under mesh refinement. It does, however,

prevent this scheme from being as competitive with the other least-squares finite ele-

ment formulations. In addition, we see that application of Newton’s method (before

minimization) yields identical numerical results as compared with the two schemes
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where linearization is performed subsequent to minimization. These conclusions are

consistent with our findings from the abstract least-squares problem.

E
u

Polynomial order, p
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Picard, before minimization

Newton, before minimization

Picard, after minimization

Newton, after minimization

Fig. 9. Convergence of uhp as measured by Eu for various least-squares formulations of

the nonlinear Poisson equation (uniform 6× 2 mesh with p-refinement).

In Figure 10 we also plot the solution for u along the horizontal centerline (i.e.,

y = 0.5) of the domain for p = 2 and p = 6. We compare the results obtained

from the finite element solutions (i.e., the Newton (before minimization) and Picard

(before minimization)) with the exact solution. We clearly see that for p = 2, the

Newton (before minimization) scheme produces more accurate results for u than the

Picard (before minimization) formulation. As the mesh is refined, however, the Picard

method also produces acceptable results. On the finer mesh, where p = 6, we see that

the results of both schemes are nearly identical. We have chosen to not to include

results for the Newton (after minimization) formulation in this plot as the numerical
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Fig. 10. Analytic and least-squares finite element solutions for u of the nonlinear Pois-

son equation along the horizontal mid-line of the domain: (a) p = 2 and

(b) p = 6.
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values are equivalent to those obtained by the Newton (before minimization) scheme.

Table II. Manufactured solution of a nonlinear Poisson equation: Number of iterations

required to satisfy the nonlinear solution convergence criterion for various

least-squares finite element implementations (termination criteria ε = 10−6).

Number of nonlinear iterations

Least-squares formulation ω0 p = 2 p = 4 p = 6 p = 8

Picard (before) 0.50 207 28 44 112
Newton (before) 1.00 9 6 6 6
Newton (before) 0.50 8 7 7 7
Picard (after) 0.50 56 37 33 41
Newton (after) 0.50 7 7 7 7
Newton (mixed) 0.75 6 6 6 7

Finally, we also evaluate the nonlinear iterative solution convergence behavior

of each least-squares finite element model. In all simulations, the nonlinear equa-

tions have been solved without the use of load stepping. The numbers of nonlinear

iterations required to satisfy the convergence criterion at various p-levels are listed

in Table II. Relaxation was employed in many of the finite element simulations.

For both Picard formulations, the application of relaxation resulted in significant re-

ductions in the required number of iterations. However, even with relaxation, these

schemes always required a large number of iterations for convergence. In the case

of the Newton linearization (performed after minimization), complete solution di-

vergence was observed whenever relaxation was not employed. On the other hand,

the Newton formulation (with linearization applied prior to minimization) performed

well with or without relaxation. We also considered a mixed Newton formulation,

where 5 Newton (before minimization) iterations were employed prior to the use of

Newton (after minimization) iterations. This mixed formulation performed slightly

better than the Newton (after minimization) formulation in several cases. Overall we
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find that all Newton schemes (when relaxation is employed) offer similar convergence

properties. Clearly the Newton scheme before minimization possesses a much larger

radius of convergence as compared with the Newton scheme after minimization.

2. The incompressible Navier-Stokes equations

We next turn our attention to the incompressible form of the stationary Navier-Stokes

equations, which constitutes a very popular application for least-squares variational

principles. The classical problem for the non-dimensional form of the incompressible

Navier-Stokes equations can be stated as follows: find the velocity vector v(x) and

pressure p(x) such that

v · ∇v = −∇p+ 1

Re
∇ · (∇v +∇vT) + b in Ω (3.53a)

∇ · v = 0 in Ω (3.53b)

v = vp on ΓD (3.53c)

n̂ · σ = tp on ΓN (3.53d)

where Re is the Reynolds number, b is the body force, σ is the Cauchy stress tensor

and n̂ is the outward unit normal. The Cauchy stress is given in terms of the following

constitutive equation

σ = −pI+ 1

Re
(∇v +∇vT) (3.54)

Note that in this dissertation we have employed a typical abuse of notation by allowing

p to represent both the p-level of the finite element solution as well as the pressure

field in the Navier-Stokes equations.

There are many first-order formulations of the Navier-Stokes equations that

have been presented in the literature [2, 35] that can be used to construct finite

element models of least-squares type. One of the most popular schemes is the
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velocity-pressure-vorticity (v, p, ω) formulation. In this formulation the vorticity vec-

tor ω = ∇× v is introduced, along with the vector identity

∇× (∇× v) = −∇2v +∇(∇ · v) (3.55)

As a result, we are able to restate the original problem in terms of the following

equivalent first-order system: find the velocity v(x), pressure p(x) and vorticity ω(x)

such that

v · ∇v +∇p+ 1

Re
∇× ω = b in Ω (3.56a)

ω −∇× v = 0 in Ω (3.56b)

∇ · v = 0 in Ω (3.56c)

v = vp on Γv (3.56d)

ω = ωp on Γω (3.56e)

n̂ · σ̃ = t̃p on ΓN (3.56f)

where ΓD has been partitioned such that ΓD = Γv

∪
Γω and Γv

∩
Γω = ∅. We note

that the incompressibility constraint has been imposed in the construction of the

momentum equation. The pseudo-traction boundary condition t̃p is given in terms

of the pseudo-stress tensor σ̃ defined as

σ̃ = −pI+ 1

Re
∇v (3.57)

For three-dimensional analysis it is helpful to augment the above equations by the

compatibility condition ∇ · ω = 0.

We associate with the stationary first-order form of the incompressible Navier-
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Stokes equations the following true least-squares functional

J (v, p, ω;b, t̃p) =
1

2

(
∥v · ∇v +∇p+ 1

Re
∇× ω − b∥2Ω,0 + ∥∇ · v∥2Ω,0

+ ∥ω −∇× v∥2Ω,0

) (3.58)

The outflow boundary condition may also be directly accounted for in the definition

of the least-squares functional (see Chapter IV for details). Linearized versions of the

least-squares functional may be obtained by replacing the nonlinear convective term

with following Picard or Newton approximations

v · ∇v|Pic = v0 · ∇v (3.59a)

v · ∇v|New = v · ∇v0 + v0 · ∇v − v0 · ∇v0 (3.59b)

The linearized least-squares based weak formulation resulting from invoking the min-

imization principle may be stated as follows: find u ∈ V such that for all δu ∈ W the

following expression holds

B(δu,u) = F(δu) (3.60)

where u = (v, p, ω), δu = (δv, δp, δω) and V and W are appropriate function spaces.

When the Picard linearization scheme is employed, the bilinear form B(δu,u) and

linear functional F(δu) are given as

B(δu,u) =
∫
Ω

[(
v0 · ∇δv +∇δp+ 1

Re
∇× δω

)
·
(
v0 · ∇v +∇p (3.61a)

+
1

Re
∇× ω

)
+ (∇ · δv)(∇ · v) + (δω −∇× δv) · (ω −∇× v)

+ (δv · ∇v0) · (v · ∇v0)

]
dΩ

F(δu) =

∫
Ω

[(
v0 · ∇δv +∇δp+ 1

Re
∇× δω

)
· b− (δv · ∇v0)· (3.61b)(

∇p0 +
1

Re
∇× ω0 − b

)]
dΩ
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When Newton’s method is applied, the bilinear form and linear form are

B(δu,u) =
∫
Ω

[(
δv · ∇v0 + v0 · ∇δv +∇δp+ 1

Re
∇× δω

)
· (3.62a)(

v · ∇v0 + v0 · ∇v +∇p+ 1

Re
∇× ω

)
+ (∇ · δv)(∇ · v)

+ (δω −∇× δv) · (ω −∇× v) + (δv · ∇v + v · ∇δv)·(
v0 · ∇v0 +∇p0 +

1

Re
∇× ω0 − b

)]
dΩ

F(δu) =

∫
Ω

[(
δv · ∇v0 + v0 · ∇δv +∇δp+ 1

Re
∇× ω̃

)
· (b+ v0 · ∇v0) (3.62b)

+ (δv · ∇v0 + v0 · ∇δv) ·
(
v0 · ∇v0 +∇p0 +

1

Re
∇× ω0 − b

)]
dΩ

The terms underlined above appear when minimization is performed prior to lin-

earization.

a. Low Reynolds number flow past a circular cylinder

In this example we consider flow past a circular cylinder, a problem that has been

studied extensively by way of experiment [60, 61, 62] and is a standard benchmark

for numerical computation [63, 64, 65]. It is well-known from both experimentation

[62] and numerical modeling [66, 67] that for moderately low Reynolds numbers (5 <

Re < 46.1) the flow is spatially stationary and characterized by two symmetric regions

of circulation directly downwind of the cylinder. The size of the standing vortices in

the wake region is proportional to the Reynolds number.

Ideally we would like to model the flow in a manner such that end effects (due

to truncation of the problem to a geometrically finite computational domain) do not

corrupt the integrity of the numerical solution. To this end we take Ω̄ to be the set

difference between the rectangular region [−25, 25] × [−15, 15] and an open circu-

lar region with unit diameter centered about the origin. The computational domain
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Fig. 11. Finite element discretization of the computational domain Ω̄ for the analysis

of steady flow past a circular cylinder: (a) view of the complete mesh and

(b) close up view of mesh near the cylinder.



84

Ω̄hp � Ω̄ consists of 240 non-uniform finite elements, with 15 element layers in the

radial direction and 16 along the circumference of the cylinder as shown in Figure 11.

The smallest elements are placed in the vicinity of the cylinder to ensure adequate

numerical resolution in the anticipated wake region. The mesh geometry is charac-

terized using an isoparametric formulation which, when combined with high-order

finite element technology, allows for a highly accurate approximation of the cylinder

surface. As in the Poisson benchmark problem, we refine the mesh by systematically

increasing the p-level of the finite element approximation functions. We consider the

cases where p = 2, 4, 6 and 8; which amounts to 3,968, 15,616, 34,944 and 61,952

total degrees of freedom for each corresponding finite element discretization. The

boundary conditions coincide with those used in the parallel performance benchmark

problem given in Chapter II Section C where the Reynolds number is taken to be

40. The outflow boundary condition is enforced weakly through the least-squares

functional (see Chapter IV) with tp taken as zero along the right hand side of Ω̄.

Nonlinear convergence is declared for a given numerical simulation once the relative

error in the solution is less than 10−6.

Since this problem does not admit an analytic solution, we obtain a reasonable

a posteriori estimate for the error via a numerical evaluation of J during the post-

processing stage of the analysis. Exponential decay of the least-squares functional,

shown in Figure 12, is clearly visible as the polynomial order of the numerical solution

is increased. As expected, each least-squares formulation produces identical converged

results (for a given p-level) with the exception of the Picard scheme (applied prior to

minimization). The value of J for this scheme is only slightly greater than the values

determined by the other three formulations.

Figure 13 shows the numerically determined pressure coefficients along the sur-

face of the cylinder. When the mesh is coarse (p = 2), linearization before minimiza-
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Fig. 12. Convergence of the least-squares finite element solutions under p-refinement

as measured in terms of the least-squares functional J for steady flow past a

circular cylinder at Re = 40.

tion using Picard’s method yields substantially different results than does Newton’s

method (where by Newton’s method we mean either Newton scheme, as they both

yield identical results). Neither solution at this p-level, however, constitutes an appro-

priate converged solution for the problem. We see that as the p-level is increased to

4, the Picard (before minimization) and Newton schemes begin to coincide. Finally,

at p = 6 we observe virtually no difference between the results of either scheme. The

computed values at this p-level and higher were found to be in excellent agreement

with the empirical work conducted by Grove et al. [61]. In Figure 14 we also show the

pressure field and velocity component vy in the vicinity of the cylinder for the Newton

solution at p = 8. Streamlines are also shown highlighting the size of the circulation
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Fig. 13. A comparison of the numerically computed pressure coefficient Cp along the

surface of the cylinder at Re = 40 with the experimental data obtained by

Grove et al. [61]: (a) non-converged numerical solutions and (b) fully-con-

verged numerical solutions.
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Fig. 14. Steady flow past a circular cylinder at Re = 40: (a) pressure field and stream-

lines and (b) velocity component vy and streamlines.

regions. Our numerical calculations predict the wake region to extend 4.50 cylinder

radii downstream of the cylinder, which is in excellent agreement with the numerical

results reported by Kawaguti and Jain [63].

Table III. Steady flow past a circular cylinder: Number of iterations required to satisfy

the nonlinear solution convergence criterion for various least-squares finite

element implementations (termination criteria ε = 10−6).

Number of nonlinear iterations

Least-squares formulation ω0 p = 2 p = 4 p = 6 p = 8

Picard (before) 1.0 11 15 15 15
Newton (before) 1.0 10 9 7 6
Picard (after) 0.5 39 161 179 –
Newton (mixed) 1.0 7 7 7 7

A word on the nonlinear iterative convergence behavior of each finite element

scheme is also in order. In each formulation we solved the equations without the em-

ployment of load steps. A summary of the total number of iterations needed to achieve
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the desired termination criteria is summarized in Table III. When linearization was

performed prior to minimization, solution convergence was possible without the need

for relaxation. For the case of the Picard linearization after minimization, however,

convergence was extremely slow and could not be achieved without relaxation. Due

to such poor rates of convergence, a solution at p = 8 was not attempted. Using the

Newton linearization scheme after minimization produced divergent results, with or

without solution relaxation. We therefore considered a mixed Newton scheme where

3 Newton (before minimization) iterations were used prior to subsequent Newton

(after minimization) iterations. This method produced very good results in terms

of minimizing the total number of iterations required for convergence. For low p-

levels this approach slightly outperformed the Newton (before minimization) scheme.

Overall, the Newton (before minimization and mixed) schemes exhibited much better

convergence rates than the Picard formulations.

b. Steady flow over a backward facing step

In this example we consider the flow of a viscous incompressible fluid over a back-

ward facing step. This problem was studied by way of experiment and also numerical

simulation by Armaly et al. [68]. Laminar, transition and turbulent flows were em-

pirically assessed for 70 < Re < 8,000, and numerically simulated for steady-state

cases up to a Reynolds number of 1,250. In our numerical study, we evaluate the

stationary solution of the two-dimensional problem at Re = 800, using the simplified

step configuration proposed in the benchmark solution of Gartling [69].

The computational domain for the problem is given as Ω̄ = [0, 30] × [−0.5, 0.5]

as shown in Figure 15. The fluid enters the domain on the left hand side of Ω̄ on

0 ≤ y ≤ 0.5. The velocity vector at the inlet is assumed to be horizontal with the

x -component given by the parabolic expression v̄x = 24y(0.5 − y). The components
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Fig. 15. Geometry and boundary conditions for steady flow of an incompressible vis-

cous fluid over a backward facing step at Re = 800.

of the velocity are taken to be zero along all solid surfaces in accordance with the

non-slip condition. The outflow boundary condition is enforced weakly by taking

tp = 0 in the least-squares functional.

0 5 10 15 20 25 30

−1

0

1

Fig. 16. Finite element mesh for analysis of stationary incompressible viscous flow over

a backward facing step.

We discretize the computational domain into a set of 40 rectangular finite ele-

ments, with 20 elements along the channel length and 2 along the channel height as

shown in Figure 16. The majority of the elements are positioned within 15 units of

the channel inlet to insure proper resolution of all variables within the flow separa-

tion regions anticipated downstream of the step. We once again refine the discrete

solution by systematically increasing the number of nodes in each finite element. We

arrive at the numerical solution at Re = 800, by solving a series of problems at inter-

mediate Reynolds numbers. We begin by solving the problem at Re = 100 followed

by Re = 200 and so on until we reach Re = 800. For each intermediate problem, we
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Fig. 17. Steady flow of an incompressible viscous fluid over a backward facing step

at Re = 800: (a) velocity vector field at finite element nodes, (b) velocity

component vx, (c) velocity component vy, (d) pressure field and (e) finite

element mesh directly behind step.

utilize the converged solution from the previous problem in the series as the initial

guess. As an initial guess for the problem where Re = 100, we assume all variables

to be zero. Nonlinear convergence is declared for each problem when the Euclidean

norm of the difference between the nonlinear solution increments is less than 10−4.

In Figure 17 we show the least-squares finite element solution of the problem as

determined using a polynomial of order 10 within each element. The velocity vectors

are depicted along with contour plots of the velocity components and pressure field.
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Fig. 18. Comparison of numerically computed velocity components for the steady flow

of a viscous fluid over a backward facing step at Re = 800 with the published

results of Gartling [69, 7]: (a) horizontal velocity profile at x = 7, (b) ver-

tical velocity profile at x = 7, (c) horizontal velocity profile at x = 15 and

(d) vertical velocity profile at at x = 15.
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The flow is characterized by a large recirculation zone directly behind the step on

the low side of the channel that extends roughly 6.1 units beyond the step. A second

region of flow separation and recirculation is also present on the top side of the channel

that develops around 4.9 units downstream of the step and extends to approximately

x = 10.5.

Polynomial order, p

J
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10
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Picard, before minimization

Newton, before minimization

Fig. 19. Convergence of the least-squares finite element solutions under p-refinement

as measured in terms of the least-squares functional J for steady flow past a

backward facing step at Re = 800.

In Figure 18 we compare our numerical solutions for the components of the

velocity vector along x = 7 and x = 15 with the results reported by Gartling [69],

where a weak-form Galerkin finite element model was employed. The converged

results for the Picard (linearization before minimization) and Newton schemes are in

excellent agreement with the published data. As expected, the Picard and Newton
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formulations yield dissimilar results when the finite element mesh is too coarse to allow

for convergence. It is interesting to note, however, that the Picard scheme offers a

somewhat better approximation of the velocity components on the coarse mesh than

does Newton’s method at x = 7 and x = 15. The reason for this phenomenon is

unclear; however, as anticipated from the abstract problem, both schemes converge

to the same solution under proper mesh refinement.

Table IV. Steady flow over backward facing step: Number of iterations required to

satisfy the nonlinear solution convergence criterion for various least-squares

finite element implementations, where p = 6 (termination criteria ε = 10−4).

Number of nonlinear iterations

Renolds number Picard (before) Newton (before) Picard (after) Newton (mixed)

100 13 6 81 6
200 20 4 313 4
300 28 5 616 5
400 39 6 774 6
500 53 7 641 8
600 63 8 501 7
700 69 11 405 8
800 74 15 380 10

In Figure 19 we plot the value of the least-squares functional for the Picard

(before minimization) and Newton (before minimization) schemes as a function of

the p-level. Although J is always greater for the Picard scheme as compared with

Newton’s method, the actual numerical values are nearly identical. A summary of

the total number of iterations required to reach the desired termination criteria at

each Reynolds number is summarized in Table IV for p = 6. The Picard and Newton

finite element solutions (where linearization was performed prior to minimization)

were obtained without the use of relaxation. For the Picard (after minimization)

formulation, a relaxation parameter of ω0 = 0.5 was utilized. Even with the aid of
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relaxation, however, the scheme still suffered from a severely poor rate of convergence.

We were unable to obtain a converged solution for the Newton (after minimization)

formulation, with or without relaxation. As in the previous example, we once again in-

troduced a mixed Newton formulation in an attempt to recover a convergent solution.

In the mixed approach, we utilized the Newton (before minimization) formulation in

the iterative solution scheme until ε was less than 0.05, at which point we switched

to the Newton (after minimization) formulation. Solution relaxation was found to

be unnecessary in the mixed approach. On average the mixed formulation performed

comparably to the Newton (before minimization) scheme and in some cases superior

at this p-level. However, at higher p-levels we find little difference between the con-

vergence behaviors of these Newton formulations (especially at Re = 700, 800). As

expected, the Newton schemes require far fewer iterations than their Picard counter-

parts.

c. Lid-driven cavity flow

As a final verification benchmark, we consider the classical two-dimensional lid-driven

cavity flow problem. The computational domain is taken as the unit square given as

Ω̄ = [0, 1]×[0, 1] and the boundary conditions are specified in terms of the components

of the velocity vector and the pressure at a single point. On the bottom and left and

right sides of the cavity the components of the velocity are taken to be zero. Along

the top surface a horizontal velocity profile is specified using the following expression

vx(x) =

 tanh(50x) 0 6 x 6 0.5

− tanh[50(x− 1)] 0.5 < x 6 1.0
(3.63)

The above boundary condition essentially prescribes vx as unity along the majority

of the top surface of the cavity with a smooth and abrupt transition to vx = 0 at the
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corners. The boundary condition is applied in this way to avoid singularities in the

solution in the vicinity of the upper corners [55]. High-order methods are sensitive

to such singularities, and the above boundary condition insures, in this sense, a well

posed problem. The pressure is taken to be zero at the single point (x, y) = (0.5, 0).

In our analysis, we consider the steady-state solution of the problem at a Reynolds

number of 3,200. We compare our numerical solutions with the tabulated finite

difference results reported by Ghia et al. [70], who used vx = 1 at all points of the lid

except at x = 0 and x = 1, where they used vx = 0.
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Fig. 20. Finite element mesh for the lid-driven cavity flow problem.

The domain is discretized into a non-uniform set of 144 rectangular finite ele-

ments as shown in Figure 20. The mesh is graded such that smaller elements are

placed near the boundaries to insure proper resolution of the numerical solution in

the regions of the boundary layers and anticipated vortices. As in previous examples,

the mesh is refined by increasing the p-level of the solution within each finite element.
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Fig. 21. Two-dimensional lid-driven cavity flow at Re = 3,200: (a) velocity component

vx, (b) velocity component vy, (c) pressure field and (d) streamline patterns

in cavity highlighting standing vortices.
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Fig. 22. Comparison of numerically computed velocity components along vertical and

horizontal mid-lines of lid-driven cavity with published results of Ghia et

al. [70] at Re = 3,200: (a) non-converged numerical solutions for horizontal

velocity vx profiles along vertical centerline, (b) converged numerical solutions

for horizontal velocity vx profiles along vertical centerline, (c) non-converged

numerical solutions for vertical velocity vy profiles along horizontal centerline

and (d) converged numerical solutions for vertical velocity vy profiles along

horizontal centerline.
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We utilize polynomials of orders 4, 5, 6, 7, 8 and 9 in our analysis which correspond

with 9,604, 14,884, 21,316, 28,900, 37,636 and 47,524 total degrees of freedom. As

in the previous example, the desired solution at Re = 3,200 is obtained by solving

a series of problems at intermediate Reynolds numbers. In this case we solve a se-

ries of seven problems beginning with the first problem posed with Re = 457.14 and

culminating with the final desired solution at Re = 3,200. Nonlinear convergence is

considered to be achieved in each problem once the Euclidean norm of the difference

between the nonlinear iterative solution increments is less than 10−4. Due to poor

convergence properties, a numerical solution using the Picard scheme (as applied after

minimization) was not attempted.

The velocity components, pressure field and streamlines are shown in Figure 21

for the numerical solution obtained using Newton’s method (before minimization) at

p = 9. The flow is characterized by a large region of rotation that is just off-set from

the geometric center of the cavity. Secondary vortices are also present in the regions

near the bottom (left and right) and top left corners of the domain. The streamline

patterns match well with the published results of Ghia et al. [70].

In Figure 22 we compare our least-squares finite element solutions along the

vertical and horizontal mid-planes of the cavity with the tabulated results of Ghia et

al. [70]. We once again find that when the mesh is too coarse to yield a convergent

solution, the numerical results differ for the Picard (linearization before minimization)

and Newton schemes. However, as expected both schemes yield identical results when

the mesh is properly refined. As in the previous example, we are surprised to find that

the Picard scheme offers a slightly better approximation of the velocity components

on the coarse mesh along the mid-lines of the cavity.

The value of the least-squares functional as a function of the p-level exhibits

characteristics similar to those discussed in previous examples. In particular, the
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value of J in both Newton schemes is always slightly less than (although nearly iden-

tical to) the value as determined using the Picard (before minimization) method. We

were once again able to obtain convergent solutions using the Picard and Newton

schemes (with linearization performed before minimization) without the need for so-

lution relaxation. Solution convergence could not be achieved for the Newton (after

minimization) scheme with or without relaxation. As a result, we again utilized a

mixed Newton scheme, where Newton (before minimization) iterations where per-

formed until the relative error ε was less than 0.01 at which point we switched to

the Newton (after minimization) scheme. The total number of iterations required for

solution convergence at a p-level of 6 is summarized for each scheme in Table V.

Table V. Two dimensional cavity driven flow: Number of iterations required to satisfy

the nonlinear solution convergence criterion for various least-squares finite

element implementations, where p = 6 (termination criteria ε = 10−4).

Number of nonlinear iterations

Reynolds number Picard (before) Newton (before) Newton (mixed)

457.14 12 7 7
914.29 12 5 5
1371.43 12 4 4
1828.57 14 4 4
2285.71 17 4 4
2742.86 20 4 4
3200.00 23 3 3
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CHAPTER IV

A LEAST-SQUARES FINITE ELEMENT FORMULATION

FOR VISCOUS INCOMPRESSIBLE FLUID FLOWS WITH

ENHANCED ELEMENT-LEVEL MASS CONSERVATION

Tremendous progress has been achieved over the last few decades in the field of compu-

tational fluid dynamics. The advent of the digital computer and in particular parallel

processing has made it possible to numerically simulate complex flow patterns that

just a few years ago could only have been investigated using experimental procedures

and dimensional analysis. Much of the success and breakthroughs in the numerical

simulation of the Navier-Stokes equations for incompressible fluids have come in the

context of low-order finite difference and finite volume technologies. Although the

finite element method has become the dominate method of choice in the numerical

analysis of solids, it has yet to receive such widespread acceptance when applied to

fluid flow problems. It is well known, however, that finite element procedures offer

many advantages over finite difference and finite volume methods. In particular, the

finite element method can naturally deal with complex regions, complicated boundary

conditions and possesses a rich mathematical foundation. As a result, there has been

a renewed interest in recent years in developing efficient and accurate finite element

models of the incompressible Navier-Stokes equations.

The majority of finite element models for fluids are based on the weak-form

Galerkin procedure. It is well-known, however, that application of this method can

lead to a non-optimal setting for a given finite element discretization [2, 50]. As

discussed in Chapter III, application of the weak-form Galerkin method to the in-

compressible Navier-Stokes equations expressed in terms of the velocities and pressure

results in a finite element model that must satisfy the restrictive discrete inf-sup or
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LBB condition [31]; this effectively precludes the use of equal interpolation of the

velocity and pressure fields in the numerical implementation. Even when the LBB

condition is satisfied, the finite element solution may still be plagued by spurious

oscillations in convection dominated problems. Stabilized weak-form Galerkin finite

element formulations such as the SUPG [4, 5], penalty [6, 7] and Galerkin least-

squares [8] have received considerable attention over the last few decades and have

greatly improved the discrete setting for the finite element solution. Unfortunately,

the success of these methods is often intertwined with ad-hoc parameters that must

be fine tuned for a given flow problem.

Least-squares finite element models for the numerical simulation of viscous in-

compressible fluid flows have received substantial attention in the academic literature

in recent years and offer an appealing alternative to the more popular weak-form

Galerkin procedure. The least-squares formulation allows for the construction of fi-

nite element models for fluids that possess many of the attractive qualities associated

with the well-known Ritz method [3]; for example global minimization, best approx-

imation with respect to a well-defined norm and symmetric positive-definiteness of

the resulting finite element coefficient matrix [2]. We refer to Chapter III for a de-

tailed discussion on both the least-squares method and advantages it holds over the

traditional weak-form Galerkin procedure.

It is well-known, however, that least-squares finite element models of both the

steady and non-stationary form of the incompressible Navier-Stokes can be plagued by

poor local (or element-level) mass conservation [71]. This is especially true whenever

low-order elements are employed in a given finite element discretization. The discrete

violation of the requirement that the velocity be a solenoidal vector is often attributed

to the fact that, in least-squares formulations, local satisfaction of the governing PDEs

is sacrificed in favor of global minimization of the governing equation residuals [51]. In
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transient flow problems, lack of velocity-pressure coupling [52] has also been identified

as a source for poor local mass conservation. We must emphasize that the violation is

not merely numerical noise and, depending on the nature of the domain and boundary

conditions, can actually be quite substantial [51].

Several techniques have been proposed to improve local mass conservation in

least-squares finite element models. For example Deang and Gunzburger [71] advo-

cated weighting the continuity equation residual in the definition of the least-squares

functional, where the chosen weight may be either uniform across the whole prob-

lem domain or distinct for each element [72]. Chang and Nelson [51], on the other

hand, combined the least-squares method with Lagrange multipliers to exactly en-

force element-level mass conservation. In this approach the continuity equation is

treated as an additional constraint for each element that is enforced in the discrete

setting through a set of NE Lagrange multipliers. Although successful [51, 73], this

approach comes at the expense of increasing the system size of the finite element equa-

tions and compromising the unconstrained minimization setting that is so attractive

for least-squares finite element models [74]. Recently Heys et al. [75] demonstrated

improved mass balance using a least-squares functional based on a novel first-order

reformulation of the incompressible Navier-Stokes equations. It is worth noting that

increasing the p-level also tends to improves mass conservation [17].

For non-stationary flows, lack of strong velocity-pressure coupling can also com-

promise local mass conservation and further lead to total instability in space-time

decoupled finite element simulations [17]. Pontaza showed that the employment of a

regularized form of the continuity equation in least-squares formulations can greatly

enhance velocity-pressure coupling and as a direct consequence local mass conser-

vation [52]. Similar approaches have also been advocated in the iterative penalty

formulations of Prabhakar and Reddy [53, 54, 55] and Prabhakar et al. [56]. For a
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more mathematical analysis of such optimization methods as applied to the Stokes

problem, we refer to the work of Bochev and Gunzburger [76].

The purpose of this chapter is to present a novel least-squares finite element

model for both the steady and non-stationary incompressible Navier-Stokes equa-

tions based on the standard velocity-pressure-vorticity first-order system, but with

enhanced element-level mass conservation. The proposed formulation may be viewed

as a direct extension of the work of Chang and Nelson [51] and also Pontaza [52].

For the steady flow case, we recast the constrained minimization problem of Chang

and Nelson [51] into an unconstrained minimization problem through the use of the

penalty method. This approach is quite natural, as the traditional least-squares

method is itself in a sense a multi-equation penalty formulation (where penalization

is applied to all of the partial differential equation residuals). For non-stationary

flows, a penalty formulation is proposed that enhances local mass conservation while

improving velocity-pressure coupling and overall numerical stability.

A. The non-stationary incompressible Navier-Stokes equations

We consider the non-stationary incompressible flow of a viscous fluid as described by

the Navier-Stokes equations. The problem may be stated in non-dimensional form as

follows: find the velocity v(x, t) and pressure p(x, t) such that

∂v

∂t
+ v · ∇v +∇p− 1

Re
∇ · (∇v +∇vT) = b in Ω× (0, τ ] (4.1a)

∇ · v = 0 in Ω× (0, τ ] (4.1b)

v(x, 0) = v̄(x) in Ω (4.1c)

v = vp(x, t) on ΓD × (0, τ ] (4.1d)

n̂ · σ = tp(x, t) on ΓN × (0, τ ] (4.1e)
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where τ ∈ R+ is the time parameter, Re is the Reynolds number, b is the body force,

σ is the stress tensor (see Eq. (3.54)) and n̂ is the outward unit normal vector to

the boundary. In addition, v̄(x) is the initial velocity profile in Ω, vp(x, t) is the

prescribed velocity on ΓD and tp(x, t) is the traction specified on ΓN. We assume

that ∇· v̄ = 0 in Ω and that the problem is well posed. Whenever ΓN = ∅ we further

prescribe the pressure at a single point in Ω̄.

1. The velocity-pressure-vorticity first-order system

As discussed in Chapter III, the Navier-Stokes equations as expressed in terms of

the primitive variables v(x, t) and p(x, t) are poorly suited for direct implementation

in a least-squares finite element formulation. To allow for the use of practical C0

basis functions in the numerical implementation we introduce the vorticity vector

ω = ∇ × v, which allows us to recast the Navier-Stokes equations in terms of the

following equivalent first-order system problem statement: find the velocity v(x, t),

pressure p(x, t) and vorticity ω(x, t) such that

∂v

∂t
+ v · ∇v +∇p+ 1

Re
∇× ω = b in Ω× (0, τ ] (4.2a)

∇ · v = 0 in Ω× (0, τ ] (4.2b)

ω −∇× v = 0 in Ω× (0, τ ] (4.2c)

v(x, 0) = v̄(x) in Ω (4.2d)

v = vp(x, t) on Γv × (0, τ ] (4.2e)

ω = ωp(x, t) on Γω × (0, τ ] (4.2f)

n̂ · σ̃ = t̃p(x, t) on ΓN × (0, τ ] (4.2g)

In the above expressions ωp(x, t) is the prescribed vorticity on Γω, σ̃ = −pI+1/Re∇v

is the pseudo stress tensor and t̃p(x, t) is the pseudo traction vector specified on ΓN.
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The Dirichlet part of the boundary has been partitioned such that ΓD = Γv

∪
Γω and

Γv

∩
Γω = ∅. The expression∇(∇·v) has been eliminated from the momentum equa-

tion on account of the solenoidal nature of the velocity field; as a result the outflow

condition given in Eq. (4.2g) is preferred over Eq. (4.1e) [77]. For three-dimensional

problems it is helpful to augment the first-order system with the seemingly redundant

compatibility condition ∇ · ω = 0 in Ω× (0, τ ] [35].

2. Temporal discretization

In this work we employ a space-time decoupled finite element approximation of the

dependent variables. At each time step we approximate the time derivative of the

velocity field using the backwards difference formula of order n (or BDFn)

∂vs+1

∂t
�

1

∆ts+1

(
γn0v

s+1 −
∑n−1

q=0
βn
q v

s−q
)

(4.3)

where ∆ts+1 = ts+1 − ts is the time increment and γn0 and βn
q are the temporal

integration parameters. It is well-known that the backward difference formulas are

particularly useful in the numerical solutions of stiff partial differential equations

and differential-algebraic equations (DAEs). The backward difference formulas are

especially valuable in achieving numerical stability and typically provide sufficient

numerical dissipation of spurious high-frequency modes [78]. In this chapter we adopt

the BDF1 and BDF2 formulas. Since the BDF2 time integrator is non-self-starting,

we employ the BDF1 formula in the first few time steps.

3. The standard L2-norm based least-squares formulation

The standard least-squares functional associated with the first-order vorticity form of

the Navier-Stokes equations is constructed in terms of the sum of the squares of the

L2 norms of the partial differential equation residuals. In the space-time decoupled
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formulation, we define the least-squares functional associated with the current time

step t = ts+1 as

J∆t(v, p, ω; b̃, t̃
p) =

1

2

(
α∥λn0v + v · ∇v0 + v0 · ∇v +∇p+ 1

Re
∇× ω − b̃∥2Ω,0

+ ∥∇ · v∥2Ω,0 + ∥ω −∇× v∥2Ω,0 + ∥n · σ̃ − t̃p∥2ΓN,0

) (4.4)

where the quantities λn0 and b̃ are defined as

λn0 = γn0 /∆t, b̃ = b+ v0 · ∇v0 +
1

∆t

∑n−1

q=0
βn
q v

s−q (4.5)

All quantities appearing in the definition of J∆t are evaluated at the current time

step t = ts+1 unless explicitly noted otherwise. Newton’s method has been employed

in linearizing the momentum equation prior to minimization [20]. The weighting

parameter α is taken as α = (∆t)2 to insure the discrete minimization problem is not

extraneously dominated by the momentum equation residual in the limit as ∆t→ 0.

The least-squares based weak formulation resulting from minimization of J∆t

may be stated as follows: find u ∈ V such that

B∆t(δu,u) = F∆t(δu) for all δu ∈ W (4.6)

where u = (v, p, ω), δu = (δv, δp, δω) and V and W are appropriate function spaces

(see for example Eqs. (3.4) and (3.7)). The bilinear form B∆t(δu,u) and linear func-

tional F∆t(δu) are given as

B∆t(δu,u) =

∫
Ω

[
α

(
λn0δv + δv · ∇v0 + v0 · ∇δv +∇δp+ 1

Re
∇× δω

)
· (4.7a)(

λn0v + v · ∇v0 + v0 · ∇v +∇p+ 1

Re
∇× ω

)
+ (∇ · δv)(∇ · v) + (δω −∇× δv) · (ω −∇× v)

]
dΩ

+

∫
ΓN

(
− δpn̂+

1

Re
n̂ · ∇δv

)
·
(
− pn̂+

1

Re
n̂ · ∇v

)
dΓN
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F∆t(δu) =

∫
Ω

α

(
λn0δv + δv · ∇v0 + v0 · ∇δv +∇δp+ 1

Re
∇× δω

)
· b̃dΩ (4.7b)

+

∫
ΓN

(
− δpn̂+

1

Re
n̂ · ∇δv

)
· t̃pdΓN

The least-squares finite element model associated with the above standard (v, p, ω)-

space-time decoupled least-squares functional J∆t often suffers from poor local mass

conservation and can lead to an ill-behaved response (most notability in the pressure)

as we march in time; this is especially true when ∆t is small and α is taken as unity.

4. A modified L2-norm based least-squares formulation with improved

element-level mass conservation

The purpose of this section is to present a modified least-squares formulation that

both enhances local mass conservation and improves velocity-pressure coupling. To

this end we first recall that in traditional Galerkin based weak formulations, the

pressure may be clearly identified as a Lagrange multiplier whose role is to enforce the

divergence free constraint on the velocity field. In least-squares formulations, however,

the pressure no longer possesses this well-defined role. In an effort to improve the

function of the pressure in enforcing the continuity equation, Pontaza [52] proposed a

penalized least-squares finite element model based on the following regularized form

of the divergence free condition for the velocity

∇ · v = −ϵ∆p in Ω× (0, τ ] (4.8)

where ϵ is a small parameter, ∆p = pk+1 − pk and the index k ∈ N pertains to

the iterative penalization of the divergence free constraint. The incompressibility

constraint is recovered in either the limit as ϵ→ 0 or k → ∞ (assuming of course that

the sequence {∆p}∞k=0 is Cauchy). In practice the regularization may be adopted in

conjunction with the iterative Newton solution procedure. Pontaza [52] demonstrated
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numerically that using Eq. (4.8) in place of Eq. (4.2b) in the construction of J∆t results

in a significant improvement in the evolution of p for non-stationary flows.

With the regularized continuity equation in mind, we propose a novel uncon-

strained least-squares formulation that both enhances element-level mass conserva-

tion for steady flows and improves the temporal evolution of the pressure for non-

stationary flows. The basic idea is to add directly to J∆t a penalized sum of the

squares of the appropriately normalized element-level integrals of Eq. (4.8). To make

the concept clear, we consider the integral of Eq. (4.8) over an arbitrary, possibly

time dependent, region P(t)

Q̂P(t) =

∮
∂P(t)

n̂ · vdΓP(t) +

∫
P(t)

ϵ∆pdP(t) (4.9)

When the second term on the right hand side is neglected, the quantity Q̂P(t) may

be clearly identified in the discrete setting as the volumetric flow rate imbalance

associated with region P(t). Replacing P(t) with Ωe in the above equation allows us to

obtain the following expression for the eth element of the finite element discretization

Q̂e(t) =

∮
Γe

n̂ · vdΓe +

∫
Ωe

ϵ∆pdΩe (4.10)

We find it is useful to normalize the above expression as Qe(t) = Q̂e(t)/µ(Ωe) where

µ(Ωe) denotes the Lebesgue measure or nd -dimensional volume of Ωe. As a result,

Qe(t) represents (when ϵ = 0) the volumetric flow rate imbalance per nd -dimensional

volume of Ωe.

We are now in a position to define the following modified space-time decoupled

L2-norm least-squares functional for the first-order vorticity form of the incompress-

ible Navier-Stokes equations

J ⋆
∆t(v, p, ω; b̃, t̃

p) = J∆t(v, p, ω; b̃, t̃
p) +

γ

2

NE∑
e=1

(Qe)2 (4.11)
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where γ is a global weight or penalty parameter. The modified least-squares based

weak formulation resulting from minimization of J ⋆
∆t may be stated as follows: find

u ∈ V such that

B⋆
∆t(δu,u) = F⋆

∆t(δu) for all δu ∈ W (4.12)

where the bilinear form B⋆
∆t(δu,u) and linear form F⋆

∆t(δu) may be expressed as

B⋆
∆t(δu,u) = B∆t(δu,u) + γ

NE∑
e=1

(∮
Γe

n̂ · δvdΓe +

∫
Ωe

ϵδpdΩe

)
× (4.13a)(∮

Γe

n̂ · vdΓe +

∫
Ωe

ϵpdΩe

)
/µ(Ωe)2

F⋆
∆t(δu) = F∆t(δu) + γ

NE∑
e=1

(∮
Γe

n̂ · δvdΓe +

∫
Ωe

ϵδpdΩe

)
× (4.13b)∫

Ωe

ϵp0dΩ
e/µ(Ωe)2

Unlike J∆t, the modified least-squares functional J ⋆
∆t clearly includes both element-

level mass conservation as well as velocity-pressure coupling. Working in terms of J ⋆
∆t

leads to an unconstrained minimization problem that may be viewed as an attrac-

tive alternative to the Lagrange multiplier based least-squares model of the Stokes

equations proposed by Chang and Nelson [51]. For stationary flows, we find that it

is sufficient to take ϵ = 0.

B. Numerical examples: verification benchmarks

In this section we present numerical results obtained using the proposed least-squares

formulation. The problems have been selected to assess the capabilities of the for-

mulation to: (a) generally improve element-level mass conservation and (b) enhance

velocity-pressure coupling and overall numerical stability in non-stationary flows.
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1. Stationary flow

In what follows, we test the performance of the proposed least-squares formulation

to improve mass conservation for problems involving steady fluid flows. We utilize

the stationary least-squares functionals J and J ⋆, obtained by setting α = 1 and

γn0 = βn
q = 0 (where q = 0, . . . , n− 1) in the definitions of J∆t and J ⋆

∆t respectively.

a. Kovasznay flow

In this first example, we numerically examine a well-known incompressible fluid flow

problem possessing an analytic solution. The solution is due to Kovasznay [79] and

is posed on a two dimensional square region defined as Ω̄ = [−0.5, 1.5] × [−0.5, 1.5].

The proposed solution is of the form

vx = 1− eλx cos(2πy), vx =
λ

2π
eλx sin(2πy), p = pref −

1

2
e2λx (4.14)

where the parameter λ is given as λ = Re/2−[(Re/2)2+(2π)2]1/2 and pref is a reference

pressure (which in the current study is taken to be zero).

We discretize the domain Ω̄ into 8 non-uniform rectangular finite elements as

depicted in Figure 23 (a). Figure 23 (b) shows the numerically computed horizontal

velocity component vx. The boundary conditions for the problem are applied by

specifying the exact solution for the velocity vector v along the entire boundary

through an employment of Eq. (4.14). We specify no boundary conditions for the

vorticity and only prescribe the pressure at the single point x = (−0.5, 0). In this

study the mesh is refined by systematically increasing the p-level of the finite element

approximation within each element. Nonlinear convergence for a given numerical

simulation is declared once the relative Euclidean norm of the solution residuals,

∥∆k − ∆k−1∥/∥∆k∥, is less than 10−6. All reported numerical results have been
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Fig. 23. Kovasznay flow: (a) spectral/hp finite element discretization of domain Ω̄ and

(b) numerical solution of horizontal velocity field vx for Re = 40.

obtained for a Reynolds number of 40.

In Table VI we report the decay of the L2(Ω)-norm error measures for the ve-

locity, pressure and vorticity fields under p-refinement, where the penalty parameter

γ is varied from 0 to 100. We also show the decay of the unmodified least-squares

functional J . We observe exponential decay in the error measures for all variables as

the p-level is increased. This observation is true for all values of γ considered. Figure

24 shows the evolution of the error measures under p-refinement for the case where

γ = 100. Clearly, the inclusion of element-level mass conservation in the definition of

J ⋆ does not pollute the integrity of the finite element solution.

Figure 25 shows the decay of the normalized volumetric flow rate imbalanceQe for

element 1 under p-refinement for γ = 0, 1, 10 and 100, where Ω̄1 = [−0.5, 0]×[−0.5, 0].

The normalized volumetric flow rate imbalance Qe associated with each element in

Ω̄hp for p-levels 3 and 7 is also provided in Figure 26. Although p-refinement clearly

improves local mass conservation, significant additional enhancement may be obtained
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through constructing the least-squares finite element model using the modified least-

squares functional J ⋆ as opposed to the standard least-squares functional J .

polynomial order, p
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Fig. 24. Convergence of numerically computed velocity, pressure and vorticity under

p-refinement to the analytic solution of Kovasznay for γ = 100. The decay of

the square root of the unmodified least-squares functional J is also shown.
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Fig. 25. Decay of normalized volumetric flow rate imbalance Qe under p-refinement

for various values of γ for Kovasznay flow. Results are for element 1, where

Ω̄1 = [−0.5, 0]× [−0.5, 0].
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Fig. 26. Normalized volumetric flow rate imbalance Qe for each finite element in Ω̄hp

for Kovasznay flow. Results are for various polynomial orders and values of

γ: (a) p-level = 3 and γ = 0, (b) p-level = 3 and γ = 100, (c) p-level = 7 and

γ = 0 and (d) p-level = 7 and γ = 100.
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b. Flow in a 1× 2 rectangular cavity at Re = 1,500

In this next example, we test the modified least-squares finite element formulation

on a problem posed at an elevated Reynolds number. To this end we consider a two-

dimensional lid-driven cavity flow problem as posed on a rectangular domain with an

aspect ratio of 2, where Ω̄ = [0, 1]× [0, 2]. As in the previous example, the boundary

conditions are specified in terms of the velocity vector and the pressure at a single

point only. Along the bottom and left and right sides of the cavity, the velocity is

taken to be zero in accordance with the no slip condition. It is common practice

in the literature to prescribe a unit value for the horizontal velocity component vx

along the entire top surface of the cavity. In the context of high-order finite elements,

however, such a boundary condition produces undesirable singularities in the vicinity

of the upper cavity corners. In an effort to avoid an ill-posed discrete problem, the

horizontal velocity profile is instead prescribed in terms of the following expression

vpx(x) =

 tanh(50x) 0 6 x 6 0.5

− tanh[50(x− 1)] 0.5 < x 6 1.0
(4.15)

which allows for a smooth transition from 1.0 to zero in the neighborhoods of the

corners as can be seen in Figure 27. The pressure is taken to be zero at x = (0.5, 0).

The Reynolds number for the problem is taken to be 1,500.

The finite element mesh consists of a 12 × 24 discretization of 288 elements

as shown in Figure 28 (a). The mesh is graded so as to adequately resolve the

anticipated boundary layers and regions of circulation near the cavity walls. Nonlinear

convergence of the iterative solution procedure is declared once the relative norm of

the solution residuals, ∥∆k−∆k−1∥/∥∆k∥, is less than 10−6. We employ a continuation

approach, wherein we arrive at the solution at Re = 1,500 by solving a series of

problems posed at intermediate Reynolds numbers. We begin by solving the problem
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Fig. 27. Specified horizontal velocity profile vx along the top surface of the 2-D lid–

driven cavity flow problem with aspect ratio of 2.

at Re = 300 followed by Re = 600 and so on until we reach Re = 1,500. For each

problem, the converged solution taken from the immediate previous problem in the

series is used as the initial guess. The problem is solved using the modified least-

squares finite element formulation taking γ as 0, 0.1, 1.0 and 10.0.

Figure 28 (b) shows the vorticity field and streamlines for the problem. The flow

is characterized by two large regions of circulation, with smaller vortex regions also

present in the vicinity of the bottom as well as the upper left hand corners of the

domain. In Figure 28 (c) we show the horizontal velocity component vx along the

vertical centerline of the domain as determined using a p-level of 9 and γ = 10.0. The

streamlines and horizontal velocity component vx along the vertical centerline are

visually in excellent agreement with the results reported by Gupta and Kalita [80].
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Fig. 28. 2-D lid-driven cavity flow with aspect ratio of 2 at Re = 1,500. Numerical

results obtained for p-level of 9: (a) finite element mesh, (b) vorticity field

and streamlines and (c) horizontal velocity component vx along vertical cavity

centerline.

In Figure 29 we show the decay of the normalized volumetric flow rate imbalance

Qe for element 107, where the geometric centroid of the element is located at x =

(0.3103, 0.8053). In this figure, both the p-level and the penalty parameter γ are

varied. We also provide in Figure 30 an illustration of the normalized volumetric flow

rate imbalance Qe for all elements in the discretization at p-levels 5 and 7 for various

values for the penalty parameter γ. Clearly, both the polynomial order as well as the

value of γ are significant factors in improving element-level mass conservation for this

problem. It is interesting to note that substantial improvement in element-level mass

conservation is obtained even for the case where γ = 1.0.
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Fig. 29. Decay of normalized volumetric flow rate imbalance Qe under p-refinement

for various values of γ for 2-D lid-driven flow in a rectangular cavity.

Results shown are for element 107 with geometric centroid located at

x = (0.3103, 0.8053).
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Fig. 30. Normalized volumetric flow rate imbalanceQe for each finite element in Ω̄hp for

2-D lid-driven flow in a rectangular cavity. Results are for various polynomial

orders and values of γ: (a) p-level = 5 and γ = 0, (b) p-level = 5 and γ = 1.0,

(c) p-level = 5 and γ = 10.0, (d) p-level = 7 and γ = 0, (e) p-level = 7 and

γ = 1.0 and (f) p-level = 7 and γ = 10.0.



121

c. Flow past a large cylinder in a narrow channel at Re = 40

As a final steady flow example, we consider a problem constituting a much more

rigorous test for mass conservation, namely flow past a circular cylinder in a narrow

channel. In this problem (which is similar to the test problem used by Chang and

Nelson [51]) we take for the domain Ω̄, the set difference between the closed rectan-

gular region [−5, 10]× [−1, 1] and an open circular region with unit diameter centered

about the origin. Along the inflow part of the boundary (i.e., the left hand side of

the domain) we prescribe a parabolic horizontal velocity profile vpx(y) = 3
2
(1 − y2),

which is consistent with Poiseuille flow. The pseudo-traction is taken to be zero on

the right hand side of the domain and a no-slip condition is utilized on all other parts

of the boundary. The Reynolds number, based on the diameter of the cylinder and

the average horizontal velocity at the inlet is taken to be 40.

The finite element mesh utilized in our numerical investigation is shown in Figure

31 (a). The problem is solved by varying the p-level incrementally from 2 to 7. At

each p-level we further investigate the influence of the penalty parameter on improving

mass conservation by solving the problem for γ = 0, 1, 10 and 100. We adopt the

same nonlinear convergence criteria for the iterative solution procedure that was used

in the two previous stationary benchmark problems. The horizontal velocity profile in

the domain is shown in Figure 31 (b). The element-level normalized volumetric flow

rate imbalance Qe for each element in the discretization are shown in Figure 31 (c)–

(f) for p-levels 2 and 3, where γ is taken as either 0 or 100. In Figure 32 we show

the horizontal velocity profile along the gap between the cylinder and the top of the

channel at x = 0. The so-called “exact” solution in this figure is the finite element

solution obtained using a p-level of 7 and γ = 0. Figure 33 shows the observed

volumetric flow rate imbalance for element 115 of the finite element model, where
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Fig. 31. Finite element mesh, horizontal velocity component vx and normalized volu-

metric flow rate imbalance Qe for each finite element in Ω̄hp for steady flow

past a large circular cylinder in a narrow channel at Re = 40: (a) finite ele-

ment mesh, (b) horizontal velocity component vx, (c) Q
e for p-level = 2 and

γ = 0, (d) Qe for p-level = 2 and γ = 100, (e) Qe for p-level = 3 and γ = 0

and (f) Qe for p-level = 3 and γ = 100.
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both the p-level and penalty parameter γ are varied. The normalized volumetric flow

rate past the crown of the cylinder for the various finite element discretizations is

summarized in Table VII. Clearly, mass conservation is improved by constructing the

finite element model in terms of the modified least-squares functional J ⋆.

vx
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Fig. 32. Horizontal velocity vx(0, y) profiles along the gap between the top of the cir-

cular cylinder and the channel wall at x = 0 for flow past a large cylinder in

a narrow channel.
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Fig. 33. Decay of normalized volumetric flow rate imbalance Qe under p-refinement for

various values of γ for flow past a large cylinder in a narrow channel. Results

shown are for element 115 with geometric centroid located at x = (−0.8365, 0).

Table VII. Normalized volumetric flow rate past the crown (x = 0, y) of the large

circular cylinder.

Normalized volumetric flow rate
p-level γ = 0 γ = 1 γ = 10 γ = 100

2 0.34870 0.53887 0.81899 0.97124
3 0.65973 0.81925 0.95983 0.99538
4 0.95250 0.98485 0.99767 0.99975
5 0.99335 0.99951 0.99971 0.99997
6 0.99828 0.99951 0.99993 0.99999
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2. Transient flow

In this section we assess the performance of the proposed least-squares formulation to

improve mass conservation, velocity-pressure coupling and overall numerical stability

in the numerical simulation of non-stationary fluid flows. Unless otherwise stated, we

take α = (∆t)2 in the definition of J ⋆
∆t for each numerical simulation.

a. Flow past a circular cylinder at Re = 100

As an inaugural non-stationary example we consider the standard flow past a circular

cylinder problem, where the Reynolds number is taken as 100. For the computational

domain Ω, we take the set difference between the open square region (−15.5, 25.5)×

(−20.5, 20.5) and a closed unit-diameter circle that is centered about the origin. The

spatial discretizations Ω̄hp that are employed in the finite element simulations are

shown in Figure 34. The top mesh contains 2,004 quadratic elements (i.e., the p-level

is 2). Likewise, the bottom mesh contains 501 elements, where the p-level is taken as

4. Each discretization contains 8,216 nodes and 32,864 total degrees of freedom.

All flow fields are initially taken to be zero. The horizontal velocity component

vx is then gradually increased in time along the left, top and bottom sides of Ω̄hp in

accordance with the formula vpx(t) = v∞tanh(t); the free-stream velocity v∞ is taken

to be 1.0. A no-slip boundary condition is used along the circular cylinder and the

outflow boundary condition (along the right hand side of the domain) is enforced

weakly by taking the pseudo-traction t̃p as zero in the definition of J ⋆
∆t. We employ

the BDF2 time integrator with a uniform time step size of ∆t = 0.1 sec. Since the

BDF2 integration formula is non-self-starting, we utilize the BDF1 formula for the

first 10 time steps. A total of 3,000 time steps are employed in each transient finite

element simulation. A nonlinear convergence criteria of ε = 10−6, defined in terms
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Fig. 34. Spectral/hp finite element discretizations used to numerically simulate the un-

steady viscous flow of an incompressible fluid past a circular cylinder: (a) com-

putational domain Ω̄hp for a p-level of 2, (b) close-up view of Ω̄hp in the vicinity

of the cylinder for a p-level of 2, (c) computational domain Ω̄hp for a p-level

of 4 and (d) close-up view of Ω̄hp in the vicinity of the cylinder for a p-level

of 4.
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of the relative Euclidean norm of the residuals in the nodal velocities between two

successive iterations, is adopted at each time step. This typically requires only 2 or

3 nonlinear iterations. The linearized algebraic equations are constructed and solved

using the sparse finite element equation solution procedures outlined in Chapter II; the

UMFPACK direct solver library [27, 28, 29, 30] is utilized in the numerical solution of

the global sparse set of finite element equations. We solve for the temporal evolution

of the fluid using the modified least-squares functional J ⋆
∆t for the cases where γ is

either 0 or 100. Although all results reported below have been obtained by taking ϵ as

zero, we note in passing that we have also obtained reliable solutions using ϵ = 0.005

and 0.01. The additional velocity-pressure coupling associated with a non-zero value

for ϵ, however, typically demands a greater number of nonlinear iterations to meet

the nonlinear convergence criterion of ε = 10−6.

In Figure 35 we show the time history of the velocity components, vorticity and

pressure at the spatial point (x, y) = (1, 0) as computed using the finite element mesh

shown in Figure 34 (c) with γ taken as 100. The dimensional pressure field shown

in Figure 35 (d) has been obtained by scaling the non-dimensional pressure field by

a factor of 100. The virtually stationary flow pattern that forms during the early

stages of the simulation becomes noticeably unstable between 150 and 175 sec. The

instability eventually results in a well-defined periodic swirling of vortices that are

shed in the wake region immediately downwind of the cylinder. This oscillatory be-

havior is commonly referred to as the von Kármán vortex street. We measure the

non-dimensional period to be T = 6.035; this translates into a non-dimensional shed-

ding frequency (or Strouhal number) of St = 0.1657. This is in very close agreement

with St = 0.1653 reported by Pontaza and Reddy [17] using a space-time coupled

spectral/hp least-squares finite element simulation.

Instantaneous contours of the velocity components vx and vy along with the
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Fig. 35. Time history of the flow fields behind the circular cylinder at (x, y) = (1, 0)

as determined using a p-level of 4 in the spatial discretization: (a) horizontal

velocity component vx, (b) vertical velocity component vy, (c) vorticity ω and

(d) pressure field p.



129

pressure field p in the wake region are depicted in Figure 36 at t = 280 sec. We

also provide in Figure 37 snapshots of the vorticity field ω during the course of a

single shedding cycle. Both figures have been generated using the numerical results

obtained using a p-level of 4 and γ = 100. We see that within a given period T two

eddies are shed from the cylinder into the wake region, one originating from the top

and the other from the bottom of the cylinder. The former eddy spins clockwise while

the latter rotates in the counterclockwise direction. The outflow boundary condition,

imposed weakly through the least-squares functional J ⋆
∆t, clearly allows the fluid to

leave the computational domain in a physically reasonable manner.

In an effort to showcase the performance of the modified least-squares formula-

tion in improving local mass conservation, we present in Figure 38 the normalized

volumetric flow rate imbalance Qe for the finite elements in a neighborhood of the

wake region behind the circular cylinder. The reported results are for the numerical

solution obtained at t = 260 sec. using the spatial discretization shown in Figure

34 (c). We see that element-level mass conservation is clearly improved by taking γ

as 100 as opposed to 0 in the modified least-squares formulation. The improvement is

particularly noticeable for the smaller elements in Ω̄hp that are closest to the cylinder.

To assess general mass conservation for the fluid flowing past the circular cylinder,

we post-compute the absolute value of the volumetric flow rate

Q(t) =

∣∣∣∣∮
Γs

n̂ · vhp(t)dΓ
s

∣∣∣∣ (4.16)

across the closed surface Γs = ∂Ωs, where Ωs = (−1.5, 1.5)2. We numerically evaluate

Q at each time step using the Gauss-Legendre quadrature rule. In Figure 39 we trace

the time history of Q for both spatial discretizations where γ is again taken as either

0 or 100. For both spatial discretizations we observe significant improvement in mass

conservation across Γs when γ is taken as 100.
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Fig. 36. Instantaneous contours for flow past a circular cylinder at t = 280 sec., where

the finite element mesh associated with a p-level of 4 has been utilized: (a) hor-

izontal velocity component vx, (b) vertical velocity component vy and (c) pres-

sure field p.
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Fig. 37. Time history of vorticity contours behind the circular cylinder at five suc-

cessive discrete instances in time. The finite element mesh associated with

a p-level of 4 has been employed: (a) t = 280.0 sec., (b) t = 281.2 sec.,

(c) t = 282.4 sec., (d) t = 283.6 sec. and (e) t = 284.8 sec.
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Fig. 38. Normalized volumetric flow rate imbalance Qe for the finite elements in the

vicinity of the wake region behind the circular cylinder. The results shown

are a snapshot taken at t = 260 sec. using a p-level of 4 in the spatial dis-

cretization: (a) γ = 0 and (b) γ = 100.
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Fig. 39. Time history of the volumetric flow rate Q past the closed surface Γs, where

Γs = ∂Ωs is the boundary associated with the region Ωs = (−1.5, 1.5)2. The re-

ported results are obtained using the spectral/hp spatial discretizations shown

in Figure 34 where: (a) the p-level is 2 and (b) the p-level is 4.
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b. Flow past a large cylinder in a narrow channel at Re = 100

In this next example we revisit the obstructed channel flow problem introduced pre-

viously as a steady flow benchmark. To obtain a non-stationary problem, we raise

the Reynolds number from 40 to 100 and vertically translate the circular cylinder

0.01 spatial units upward. The channel is again taken to be 15 units in length and

2 in height, with the center of the cylinder placed 5 units from the inlet side of the

domain. The finite element mesh is nearly identical to the one employed in the sta-

tionary flow problem (see Figure 31 (a)). A close up view of the mesh (in the vicinity

of the cylinder) used in the current study is shown in Figure 40.
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-0.5
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s
Ω

d

s
Ω

Fig. 40. Close-up view of the finite element mesh used to simulate unsteady flow

through a channel with a circular obstruction. The shaded regions Ω̄s
u and Ω̄s

d

are control volumes used in the post-processing stage to assess the severity of

mass conservation violation for a given finite element simulation.

All flow fields are taken initially to be zero. For the inflow boundary condi-

tion, taken along the left hand side of the computational domain, we specify a time

dependent parabolic horizontal velocity profile vpx(y, t) =
3
2
(1− y2)tanh(t). The pre-

scribed outflow and no slip boundary conditions are the same as those described for
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Fig. 41. Time history of the vertical velocity component vy downstream from the cir-

cular cylinder at (x, y) = (2, 0) as determined using a p-level of 6 in the spatial

discretization. The time step is ∆t = 0.02, γ = 100 and ϵ = 0.005.

the steady-state version of the problem. As in the previous non-stationary example,

we again employ the BDF2 time integrator (where the BDF1 integrator is utilized for

the first 10 time steps). We solve the problem over a total time interval of 100 sec.

The nonlinear convergence criteria, defined in terms of the relative Euclidean norm

of the residuals in the nodal velocities between two successive iterations, is taken as

ε = 10−4 at each time step. The UMFPACK direct solver library is again utilized in

the solution of the sparse global system of finite element equations. The problem is

solved using the modified least-squares functional J ⋆
∆t for all possible combinations

of the following parameters: γ = 0 and 100, ϵ = 0 and 0.005, p-level = 4 and 6 and

∆t = 0.05. To verify that the numerical solutions are indeed sufficiently resolved in

time, we also solved the problem using a time increment of ∆t = 0.02 for the case

where the p-level is 6, γ = 100 and ϵ = 0.005.

The time history of the vertical velocity component vy at the spatial point

(x, y) = (2, 0) is shown in Figure 41. The non-symmetric domain allows the in-

stability in the flow to propagate quickly such that a well-defined periodic response

is reached at around 50 sec. into the simulation. From Figure 41 we measure the
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non-dimensional period for a typical vortex shedding cycle to be T = 1.93 which cor-

responds with a non-dimensional shedding frequency of St = 0.5181. The presence of

the channel clearly results in a much shorter shedding cycle than what was observed

in the previously presented external flow past a cylinder problem.
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Fig. 42. Instantaneous contours for flow in a channel past a circular cylinder at t = 75.5

sec., where the finite element mesh associated with a p-level of 6 has been uti-

lized: (a) pressure field p, (b) vertical velocity component vy and (c) vorticity

ω. The results shown are for the case where ∆t = 0.05, γ = 100 and ϵ = 0.005.

Contours of the instantaneous pressure p, velocity component vy and vorticity
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ω in the wake region are shown in Figure 42 at t = 75.5 sec. for a p-level of 6. The

swirling of vortices that develops in the wake region clearly becomes suppressed (due

to the channel walls) as the fluid travels further downstream past the cylinder. In

Figure 43 we present a snapshot of the normalized volumetric flow rate imbalance

Qe for all elements in the computational discretization Ω̄hp at t = 75.5 sec., using a

p-level of 4. We take ϵ = 0 in the post-processing of Qe for each element. In Figure 44

we trace the time histories of the volumetric flow rate Q (obtained using Eq. (4.16))

through the closed boundaries of the upstream and downstream control regions Ω̄s
u

and Ω̄s
d shown in Figure 40, again using a spatial discretization with a p-level of 4.

Noticeable improvement in mass conservation is observed for each element Ω̄e in Ω̄hp

and also for the control regions for the case where γ = 100.
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Fig. 43. Normalized volumetric flow rate imbalance Qe for each finite element in Ω̄hp

for flow in a channel past a circular cylinder at t = 75.5 sec. The results

shown have been obtained using a time increment of ∆t = 0.05 sec.: (a) the

p-level is 4 and γ = 0 and (b) the p-level is 4, γ = 100 and ϵ = 0.005.
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Fig. 44. Time histories of the volumetric flow rate Q past: (a) the closed surface Γs
u

and (b) the closed surface Γs
d. The surfaces Γs

u = ∂Ωs
u and Γs

d = ∂Ωs
d are the

boundaries of the upstream and downstream control volumes shown in Figure

40. The results are for the case where the p-level is 4 and ∆t = 0.05.

Time histories of the volumetric flow rate Q past the crown of the cylinder are

plotted in Figure 45 for different values of γ and ϵ at p-levels 4 and 6. The results

shown have been normalized by the long term prescribed inlet volumetric flow rate.

Similar results were observed at the domain exit and also at x = 1.0. In the upper two

plots (where the p-level is 4 and 6 respectively) we observe excellent mass conservation

when γ = 100 for both values chosen for ϵ.

In an effort to demonstrate that the proposed formulation improves velocity-
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Fig. 45. Time histories of the normalized volumetric flow rate Q past the crown

(x = 0, y) of the large circular cylinder. All results have been obtained using

a time increment of ∆t = 0.05 sec.: (a) the p-level is 4 and α = (∆t)2, (b) the

p-level is 6 and α = (∆t)2 (c) the p-level is 6 and α = 1.0 and (d) the p-level

is 6 and α = 1.0.
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pressure coupling and overall numerical stability in the simulation of transient flows,

we show in the lower two plots of Figure 45 the normalized volumetric flow rates

past the crown of the cylinder using a non-scaled version of J ⋆
∆t (i.e., taking α = 1)

for a p-level of 6. For the standard least-squares formulation, obtained by setting

γ = 0, we observe spurious oscillations in all fields, which eventually leads to total

instability of the finite element solution procedure; this simulation was, therefore,

manually terminated at t = 20 sec. The cases where γ = 100 yield reliable results for

all fields; furthermore, excellent mass conservation is observed despite the fact that

we have employed no scaling of the momentum equation residual in the definition of

the least-squares functional. When γ = 100 and ϵ = 0.005 we observe “exact” mass

conservation up to 3 decimal places for all time. For the current example problem it is

clear that the modified least-squares formulation has the ability to: (a) improve mass

conservation and (b) enhance numerical stability in the simulation of non-stationary

flows.



141

CHAPTER V

VISCOELASTIC BEAMS∗

In this chapter we develop and numerically implement high-order finite element mod-

els for the quasi-static and fully transient mechanical response of initially straight

viscoelastic beams subjected to loads that induce large displacements, moderate ro-

tations and small strains. Beams are among the most commonly employed structural

members and are encountered in virtually all systems of structural design. The kine-

matic assumptions upon which theories for beams are based are, to a large extent,

independent of the actual constitutive makeup of a given beam structure. Closure of

most analytic or numerical models for beams, however, is most often achieved through

the additional assumption of elastic material response. The usefulness of the mod-

els resulting from this additional conjecture cannot be overstated; this is especially

true in the analysis of metallic and ceramic based structural components. There are

many engineering materials, however, that cannot be adequately modeled using the

classical elasticity assumption. One such category, which constitutes the focus of this

chapter, is the set of viscoelastic solid materials (we will restrict our attention to

linear viscoelastic solids). Prominent examples that often fall into this category of

materials include metals at elevated temperatures, polymers, rubbers and concrete.

These materials are often highly favored for use in structural components, due to their

natural ability to dampen out structural vibrations. Robust, efficient finite element

technology for the analysis of viscoelastic beams, is therefore of particular importance.

The theoretical foundations of viscoelasticity are well established. We refer to

∗Part of the numerical results reported in this chapter appear in the article “Non-
linear quasi-static finite element formulations for viscoelastic Euler-Bernoulli and
Timoshenko beams” by G. S. Payette and J. N. Reddy, Comm. Numer. Meth. Eng.,
vol. 26, pp. 1736–1755, 2010. Copyright (2009) John Wiley & Sons, Ltd.
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the standard texts of Flügge [81], Christensen [82], Findley [83] and Reddy [84] for an

overview on the theory of viscoelastic material behavior, as well as the classical analyt-

ical solution techniques that may be used to solve simple viscoelastic boundary-value

problems. For example, in Flügge [81], the Laplace transform procedure is employed

to obtain exact expressions for the transverse deflection of viscoelastic beams. An-

other important analytical solution method, discussed by Christensen and Findley et

al. [82, 83], is the correspondence principle which under certain loading conditions

allows linear elasticity solutions to be converted into viscoelasticity solutions through

the use of integral transformations. Analytical solutions based on the Laplace trans-

form method or correspondence principle, however, are typically limited to very simple

geometric configurations, boundary conditions and material models.

Numerical methods provide a powerful framework for obtaining approximate so-

lutions to viscoelasticity problems. The finite element method, in particular, has

been employed with great success in the analysis of viscoelastic bodies by many re-

searchers. Of paramount importance, in the formulation of a numerical procedure

for solving viscoelastic boundary-value problems, is the ability to efficiently integrate

the viscoelastic constitutive equations in time. Keeping this in mind, Taylor et al.

[85] employed the finite element method in conjunction with a two-point recurrence

relation to solve viscoelasticity problems such that solution data from only the im-

mediate previous time step (as opposed to the entire deformation history) is needed

in determining a body’s configuration at the current time step. Similarly, Oden and

Armstrong [86] presented a finite element framework for thermoviscoelasticity and

conducted numerical experiments involving thick-walled cylinders subjected to time-

dependent boundary conditions. In their work, they extended the applicability of

recurrence-based temporal integration formulas to also include nonlinear boundary-

value problems. Additional general finite element formulations for viscoelastic con-
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tinua can be found in Refs. [87, 88, 89, 90].

Although three-dimensional finite element formulations are applicable to con-

tinua in general, it is often computationally advantageous to specialize these models

to structural elements such as beams, plates and shells. When appropriately em-

ployed, finite element formulations for structures can offer the prospect of highly

accurate numerical solutions, often at a mere fraction of the computational expense

needed to conduct a fully three-dimensional simulation. A variety of beam theory

based finite element models have been presented in the literature for the analysis

of viscoelastic structures. The majority of these formulations employ some form of

either the Euler-Bernoulli or Timoshenko beam theories and are mostly restricted

to small strain analysis. The formulations differ in how the convolution form of the

viscoelastic constitutive equations are temporally discretized. A popular approach

adopted by many researchers is to employ the Laplace transform method directly

in the construction of the finite element equations [91, 92, 93]. In this approach,

quantities associated with the time domain, including the convolution integral, are

transformed into variables associated with the s coordinate of the Laplace space. A

successful numerical simulation therefore requires an efficient and accurate inversion

of the solution in s space back to the time domain. Many of the key ideas are pre-

sented in work of Aköz and Kadioglu [92], wherein a Timoshenko beam element is

developed using mixed variational principles. In their work, the finite element model

requires numerical inversion from the Laplace-Carson domain back to the time do-

main. Temel et al. [93] utilized the Durbin’s inverse Laplace transform method in an

analysis of cylindrical helical rods (based on the Timoshenko beam hypotheses).

Additional numerical formulations for viscoelastic beams have been constructed

using the Fourier transform method [94], the anelastic displacement (ADN) proce-

dure [95, 96], the Golla-Hughes-McTavish (GHM) method [97, 98, 99, 100] and the
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trapezoidal rule [101]. It can be shown that when the relaxation moduli are given in

the form of Prony series, the convolution form of the linear viscoelastic constitutive

equations may be equivalently expressed as a set of ordinary differential equations

(in terms of a collection of internal strain variables). Numerical discretization proce-

dures exploiting this ODE form of the viscoelastic constitutive equations have been

successfully adopted in the works of Johnson et al. [102] and Austin and Inman [103].

It is worth noting that finite element models for sandwich beams (based on the Euler-

Bernoulli and Timoshenko beam hypotheses) have also been developed by Galucio et

al. [104] using fractional derivative viscoelastic constitutive models.

The viscoelastic beam finite element formulations described above are restricted

to a class of problems involving infinitesimal strains and small deflections. As a

direct consequence, these models lack the ability to account for various geometrically

nonlinear effects that can become significant whenever the externally applied loads are

sufficiently large. The objective of the present chapter, therefore, is to develop a family

of efficient locking-free nonlinear finite element models based on the Euler-Bernoulli

(EBT), Timoshenko (TBT) and Reddy third-order (RBT) beam theories that can be

readily applied to the analysis of quasi-static and fully transient viscoelastic beam

structures.

The chapter is organized as follows. We first review the kinematic assumptions

that form the basis for each of the three beam theories considered in the present study.

An effective strain tensor (a simplification of the Green-Lagrange strain) is then in-

troduced along with the assumed linear viscoelastic constitutive model. The finite

element formulation for each beam theory is then derived from the principle of virtual

displacements, or equivalently through the use of the weak-form Galerkin procedure.

In the fully discretized finite element models, the convolution integrals (emanating

from the viscoelastic constitutive equations) are temporally approximated using the
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trapezoidal rule in conjunction with a two-point recurrence formula. We conclude the

chapter by presenting numerical results for quasi-static and fully transient verification

benchmark problems. We shown that all forms of locking may be avoided through

the use of either: (a) low-order finite elements with selective employment of full and

reduced numerical integration strategies or (b) fully integrated finite elements con-

structed from high-order polynomial interpolation functions of both Lagrange and

Hermite type.

A. Kinematics of deformation

There are a variety of beam theories that have been successfully employed in the me-

chanical analysis of structural elements [105]. Such theories are typically formulated

in terms of truncated Taylor series expansions of the components of the displacement

field; where the expansions are taken with respect to the thickness coordinate. Before

presenting the resulting simplified displacement fields for the beam theories consid-

ered in this work, we first introduce some notation that is somewhat unique to the

current chapter. We let B ⊂ R3, an open and bounded set, denote the material or

reference configuration occupied by the beam at t = 0. The material configuration

may be expressed as B = Ω × A, where Ω = (0, L) and L is the initial length of

the beam. In addition the quantity A represents the undeformed cross-sectional area

of the beam. A typical material point belonging to B is denoted as X = (X,Y, Z).

Likewise the spatial or current configuration of the beam at time t is denoted by Bt

and an associated point is given as x = (x, y, z). The motion of the beam is a one

parameter family of configurations (where the time t is the parameter) that may be

expressed in terms of the standard bijective mapping χ : B × R → Bt. As a result,

the location of point X at time t is given as x = χ(X, t). The displacement may be
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expressed in the usual manner as u(X, t) = χ(X, t)−X.

1. The displacement fields for the EBT, TBT and RBT

The most simple and commonly used beam theory is the Euler-Bernoulli beam theory

(EBT), which is based on the displacement field

u(X,Z, t) = u0(X, t)− Z
∂w0

∂X
(5.1a)

w(X,Z, t) = w0(X, t) (5.1b)

where the X coordinate is taken along the beam length, the Z coordinate along

the thickness direction of the beam, u0 is the axial displacement of a point on the

mid-plane (X, 0, 0) of the beam and w0 represents the transverse deflection of the

mid-plane. The Euler-Bernoulli displacement field implies that straight lines orthog-

onal to the mid-surface before deformation remain so after deformation. The major

deficiency associated with the EBT is failure to account for deformations associated

with shearing.

A slightly more complicated theory is the Timoshenko beam theory (TBT) and

is based on the displacement field

u(X,Z, t) = u0(X, t) + Zϕx(X, t) (5.2a)

w(X,Z, t) = w0(X, t) (5.2b)

When the deformation is small the parameter ϕx(X, t) may be interpreted as the

rotation of the transverse normal about the Y axis. The Timoshenko beam theory

relaxes the normality assumption of the Euler Bernoulli theory and admits a constant

state of shear strain across a given cross section. Since the actual shear strain for a

beam is at least quadratic, the TBT necessitates the use of shear correction coefficients
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in order to accurately predict the transverse displacements of thick beams.

The final beam theory considered in this chapter is the third-order Reddy beam

theory (RBT). In the RBT, the displacement field (for a beam with a rectangular

cross section) takes the following form

u(X, Y, Z, t) = u0(X, t) + Zϕx(X, t)− Z3c1

(
ϕx(X, t) +

∂w0

∂X

)
(5.3a)

w(X, Y, Z, t) = w0(X, t) (5.3b)
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Fig. 46. Deformation of a beam structure according to the Euler-Bernoulli, Timo-

shenko and third-order Reddy beam theories (adapted from Reddy [106]).

In the above expression c1 = 4/(3h2), where h is the height of the beam and b is the
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beam width. The displacement field of the Reddy beam theory suggests that a straight

line perpendicular to the undeformed mid-plane becomes a cubic curve following

deformation. As a result, the Reddy beam theory provides a more realistic prediction

(as compared with the EBT and TBT) of the shear strain along the cross-section of

a beam and as a result circumvents the need for shear correction factors. Figure 46

shows the kinematics of deformation of a transverse normal for a beam structure as

predicted by each beam theory. It is important to note that the displacement field

of Reddy’s third-order beam theory contains the other two lower-order beam theories

as special cases. The TBT is recovered by setting c1 = 0 and the EBT is obtained by

replacing ϕx with −∂w0/∂X. Since the lower-order theories are in this sense contained

within the RBT, we will restrict the scope of our remaining discussion to developing

a finite element model for viscoelastic beams based on the third-order Reddy beam

theory only. Numerical results, however, will be presented using all three beam

theories. For details specific to the Euler-Bernoulli and Timoshenko beam theories,

we refer to the article by Payette and Reddy [21].

2. The effective strain tensor for the simplified theory

In the mechanical analysis of deformable solids, it is imperative to employ stress and

strain measures that are consistent with the deformations realized (see [50, 107]).

When the deformations of the body are large, there are a variety of strain measures

that may be employed. In our formulation we employ a total Lagrangian description of

the deformation (more precisely, we employ a simplified description that includes only

some of the nonlinearities present in the Lagrangian formulation). In the Lagrangian

description, the Green-Lagrange strain tensor E constitutes an appropriate measure

of the strain at a point in the body. For the present analysis the non-zero Cartesian
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components of E may be expressed as

EXX =
∂u

∂X
+

1

2

[(
∂u

∂X

)2

+

(
∂w

∂X

)2]
(5.4a)

EXZ =
1

2

(
∂u

∂Z
+
∂w

∂X
+
∂u

∂X

∂u

∂Z

)
(5.4b)

EZZ =
1

2

(
∂u

∂Z

)2

(5.4c)

In the present formulation we wish to develop a finite element framework that

is applicable under loading conditions that produce large transverse displacements,

moderate rotations (10-15◦) and small strains [106]. Under such conditions it is

possible to neglect the underlined terms in the above definition of the Green-Lagrange

strain tensor. Consequently, we employ a reduced form of the Green-Lagrange strain

tensor, denoted by ε, whose non-zero components may be expressed as

εxx =
∂u0
∂x

+
1

2

(
∂w0

∂x

)2

+ z
∂ϕx

∂x
− z3c1

(
∂ϕx

∂x
+
∂2w0

∂x2

)
(5.5a)

γxz = 2εxz =
(
1− c2z

2
)(

ϕx +
∂w0

∂x

)
(5.5b)

where c2 = 3c1. The strain components associated with the linearized strain tensor

ε are commonly called the von Kármán strain components. This simplified strain

tensor will be used in both the viscoelastic constitutive equations and the virtual work

statement. For a comparison of numerical results obtained using the above simplified

theory with the full nonlinear theory for elastic structures, we refer to the work of

Başar et al. [108]. It is important to note that the material coordinates appearing

in the definition of the reduced strain components and throughout the remainder of

this chapter are denoted as (x, y, z) as a reminder that the present formulation is

applicable to small strains and moderate rotations, and is therefore a linearization of

the more general finite deformation theory.
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3. Linear viscoelastic constitutive equations

For linear viscoelastic materials, the constitutive equations relating the components

of the second Piola-Kirchhoff stress tensor S to the Green-Lagrange strain E may be

expressed in terms of the following set of integral equations

S(t) = �(0) : E(t) +

∫ t

0

�̇(t− s) : E(s)ds (5.6)

where �̇(t − s) ≡ d�(t − s)/d(t − s) and �(t) is the fourth-order viscoelasticity

relaxation tensor. Note that throughout this chapter, a dot appearing above a given

variable always denotes differentiation with respect to the inclosed arguments (e.g.,

ḟ(t) = df(t)/dt and ḟ(t− s) = df(t− s)/d(t− s)). Replacing E with ε yields

σxx(x, t) = E(0)εxx(x, t) +

∫ t

0

Ė(t− s)εxx(x, s)ds (5.7a)

σxz(x, t) = G(0)γxz(x, t) +

∫ t

0

Ġ(t− s)γxz(x, s)ds (5.7b)

where σxx and σxz are the nonzero components of second Piola-Kirchhoff stress tensor

used in the present simplified formulation. The quantities E(t) and G(t) are the

relaxation moduli. The specific forms of E(t) and G(t) will depend upon the material

model employed. For the present analysis we assume that these relaxation functions

can be expanded as Prony series of order NPS as

E(t) = E0 +
NPS∑
l=1

Ēl(t), G(t) = G0 +
NPS∑
l=1

Ḡl(t) (5.8)

where Ēl(t) and Ḡl(t) have been defined as (following the generalized Maxwell model)

Ēl(t) = Ele
−t/τEl , Ḡl(t) = Gle

−t/τGl (5.9)

The Prony series representation of the viscoelastic relaxation moduli will prove critical

in the implementation of efficient temporal numerical integration algorithms of the
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viscoelastic constitutive equations.

B. The weak-form Galerkin finite element model

1. The Galerkin based weak formulation

The weak-form Galerkin finite element model of the third-order Reddy beam theory

may be developed by applying the principle of virtual work to a typical beam as viewed

in the reference configuration. The dynamic form of the virtual work statement may

therefore be expressed as

G(δu,u) = −δK(δu,u) + δW I(δu,u) + δWE(δu,u)

=

∫
B

(
δu · ρ0ü+ δE : S− δu · ρ0b

)
dV −

∫
Γσ

δu · t0dS

�
∫ L

0

∫
A

(
δu · ρ0ü+ δε : σ − δu · ρ0b

)
dAdx−

∫
Γσ

δu · t0dS ≡ 0

(5.10)

where δK is the virtual kinetic energy, δW I is the internal virtual work and δWE is

the external virtual work. The additional quantities ρ0, b and t0 are the density,

body force and traction vector, respectively. The above expression constitutes the

weak form of the classical Euler-Lagrange equations of motion of a continuous body.

Since the generalized displacements (u0, w0, ϕx) depend only on x and t, it is

possible to pre-integrate the virtual work statement over A. As a result, the compu-

tational domain for the problem reduces to the material line Ω̄ = [0, L] taken along

(x, y = 0, z = 0). The finite element discretization is therefore obtained by parti-

tioning this material line into a set of NE finite elements, as described in Chapter

II, where the domain of the eth element may be expressed as Ω̄e = [xea, x
e
b]. The re-

sulting variational problem associated with the weak formulation of the Reddy beam

equations may therefore be expressed as follows: find (u0, w0, ϕx) ∈ V = Q× X × Y

such that for all (δu0, δw0, δϕx) ∈ W = Q̃ × X̃ × Ỹ the following expressions hold
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within each element:

0 =

∫ xb

xa

(
I0δu0ü0 +

∂δu0
∂x

Nxx − δu0f

)
dx− δu0(xa)Q1 − δu0(xb)Q5 (5.11a)

0 =

∫ xb

xa

[
I0δw0ẅ0 +

∂δw0

∂x

(
c21I6

∂ẅ0

∂x
− J4ϕ̈x

)
+
∂δw0

∂x

(
∂w0

∂x
Nxx +Qx (5.11b)

− c2Rx

)
−∂

2δw0

∂x2
c1Pxx − δw0q

]
dx−Q2δw0(xa)−Q6δw0(xb)

− Q3

(
−∂δw0

∂x

)∣∣∣∣
x=xa

−Q7

(
−∂δw0

∂x

)∣∣∣∣
x=xb

0 =

∫ xb

xa

[
δϕx

(
−J4

∂ẅ0

∂x
+K2ϕ̈x

)
+ δϕx(Qx − c2Rx) (5.11c)

+
∂δϕx

∂x
(Mxx − c1Pxx)

]
dx−Q4δϕx(xa)−Q8δϕx(xb)

The function spaces comprising the product spaces V and W are defined as

Q :=
{
u0 : u0 ∈ H1(Ω)× C2(I), u0 = up0 onΓu

}
(5.12a)

X :=
{
w0 : w0 ∈ H2(Ω)× C2(I), w0 = wp

0 onΓw, −∂xw0 = φp
0 onΓφ

}
(5.12b)

Y :=
{
ϕx : ϕx ∈ H1(Ω)× C2(I), ϕx = ϕp

x onΓϕ

}
(5.12c)

Q̃ :=
{
δu0 : δu0 ∈ H1(Ω)× C(I), δu0 = 0 onΓu

}
(5.12d)

X̃ :=
{
δw0 : δw0 ∈ H2(Ω)× C(I), δw0 = 0 onΓw,−∂xδw0 = 0 onΓφ

}
(5.12e)

Ỹ :=
{
δϕx : δϕx ∈ H1(Ω)× C(I), δϕx = 0 onΓϕ

}
(5.12f)

where Hm(Ω) is the Sobolev space of order m, I = [0, τ ] is the time interval (where

τ > 0) and ∂x( ) ≡ ∂( )/∂x. The quantities Γu, Γw, Γφ and Γϕ each represent a set of

points along Ω̄ where u0, w0, −∂xw0 and ϕx are specified respectively. For the sake

of brevity we have omitted the superscript e from quantities appearing in Eq. (5.11)

and throughout the remainder of this work (e.g., xa and xb). The quantities f and q

appearing above are the distributed axial and transverse loads respectively. We have
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also introduced the following constants

Ii = ρ0Di = ρ0

∫
A

zidA, J4 = c1(I4 − c1I6), K2 = I2 − 2c1I4 + c21I6 (5.13)

The internal stress resultants Nxx, Mxx, Pxx, Qx and Rx are defined as
Nxx

Mxx

Pxx

 =

∫
A


1

z

z3

σxxdA,

Qx

Rx

 =

∫
A

 1

z2

σxzdA (5.14)

and can be expressed in terms of the generalized displacements (u0, w0, ϕx) through

the use of the viscoelastic constitutive equations. The quantities Nxx, Mxx and Qx

are the internal axial force, bending moment and shear force. In addition, Pxx and Rx

are higher order stress resultants that arise in the third-order beam theory due to the

cubic expansion of the axial displacement field. The quantities Qj (where j=1,. . . ,8)

are the externally applied generalized nodal forces.

2. The semi-discrete finite element equations

In this section we develop the semi-discrete finite element equations associated with

the third-order Reddy beam theory. Within a typical finite element the general-

ized displacements (u0, w0, ϕx) may be adequately approximated using the following

interpolation formulas

u0(x, t) �
n∑

j=1

∆
(1)
j (t)ψ

(1)
j (x) (5.15a)

w0(x, t) �
2n∑
j=1

∆
(2)
j (t)ψ

(2)
j (x) (5.15b)

ϕx(x, t) �
n∑

j=1

∆
(3)
j (t)ψ

(1)
j (x) (5.15c)
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where a space-time decoupled formulation has been adopted and n represents the

number of nodes per element. Since the weak formulation requires w0, ∂w0/∂x and

∂2w0/∂x
2 to all belong to L2(Ω)×C2(I), the discrete setting naturally dictates that

ψ
(2)
j be at the very minimum C1(Ω̄) functions. As a result, ψ

(1)
j are standard (n−1)th-

order Lagrange interpolation functions (see Chapter II), while ψ
(2)
j are (2n − 1)th-

order Hermite interpolation functions. Inserting the above approximations into Eq.

(5.11) results in the semi-discrete finite element equations for the RBT which may be

expressed at the current time t as

[M e]{∆̈e}+ [Ke]{∆e}+
∫ t

0

{Λe(t, s)}ds = {F e} (5.16)

The element-level equations may be partitioned into the following equivalent set of

expressions

[Mαβ]{∆̈(β)}+ [Kαβ]{∆(β)}+
∫ t

0

{Λ(α)(t, s)}ds = {F (α)} (5.17)

where α and β range from 1 to 3 and Einstein’s summation convention is implied

over β. The components of the partitioned coefficient matrices and vectors may be

expressed as

M11
ij =

∫ xb

xa

I0ψ
(1)
i ψ

(1)
j dx (5.18a)

M12
ij =M21

ji = 0 (5.18b)

M13
ij =M31

ji = 0 (5.18c)

M22
ij =

∫ xb

xa

(
I0ψ

(2)
i ψ

(2)
j + c21I6

dψ
(2)
i

dx

dψ
(2)
j

dx

)
dx (5.18d)

M23
ij =M32

ji = −
∫ xb

xa

J4
dψ

(2)
i

dx
ψ

(1)
j dx (5.18e)

M33
ij =

∫ xb

xa

K2ψ
(1)
i ψ

(1)
j dx (5.18f)
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K11
ij =

∫ xb

xa

E(0)D0
dψ

(1)
i

dx

dψ
(1)
j

dx
dx (5.19a)

K12
ij =

1

2
K21

ji =
1

2

∫ xb

xa

(
E(0)D0

∂w0(x, t)

∂x

)
dψ

(1)
i

dx

dψ
(2)
j

dx
dx (5.19b)

K13
ij = K31

ji = 0 (5.19c)

K22
ij =

∫ xb

xa

[
1

2
E(0)D0

(
∂w0(x, t)

∂x

)2
dψ

(2)
i

dx

dψ
(2)
j

dx
+G(0)Âs

dψ
(2)
i

dx

dψ
(2)
j

dx
(5.19d)

+ E(0)c21D6
d2ψ

(2)
i

dx2
d2ψ

(2)
j

dx2

]
dx

K23
ij = K32

ji =

∫ xb

xa

(
G(0)Âs

dψ
(2)
i

dx
ψ

(1)
j − E(0)L4

d2ψ
(2)
i

dx2
dψ

(1)
j

dx

)
dx (5.19e)

K33
ij =

∫ xb

xa

(
E(0)M2

dψ
(1)
i

dx

dψ
(1)
j

dx
+G(0)Âsψ

(1)
i ψ

(1)
j

)
dx (5.19f)

Λ1
i (t, s) =

∫ xb

xa

Ė(t− s)D0
dψ

(1)
i

dx

[
∂u0(x, s)

∂x
+

1

2

(
∂w0(x, s)

∂x

)2]
dx (5.20a)

Λ2
i (t, s) =

∫ xb

xa

{
Ė(t− s)D0

∂w0(x, t)

∂x

dψ
(2)
i

dx

[
∂u0(x, s)

∂x
+

1

2

(
∂w0(x, s)

∂x

)2]
(5.20b)

+ Ė(t− s)
d2ψ

(2)
i

dx2

(
c21D6

∂2w0(x, s)

∂x2
− L4

∂ϕx(x, s)

∂x

)
+ Ġ(t− s)Âs

dψ
(2)
i

dx

(
∂w0(x, s)

∂x
+ ϕx(x, s)

)}
dx

Λ3
i (t, s) =

∫ xb

xa

[
Ė(t− s)

dψ
(1)
i

dx

(
M2

∂ϕx(x, s)

∂x
− L4

∂2w0(x, s)

∂x2

)
(5.20c)

+ Ġ(t− s)Âsψ
(1)
i

(
∂w0(x, s)

∂x
+ ϕx(x, s)

)]
dx

F 1
i =

∫ xb

xa

ψ
(1)
i fdx+ ψ

(1)
i (xa)Q1 + ψ

(1)
i (xb)Q5 (5.21a)
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F 2
i =

∫ xb

xa

ψ
(2)
i qdx+Q2ψ

(2)
i (xa) +Q6ψ

(2)
i (xb) +Q3

(
−dψ

(2)
i

dx

)∣∣∣∣
x=xa

(5.21b)

+Q7

(
−dψ

(2)
i

dx

)∣∣∣∣
x=xb

F 3
i = Q4ψ

(1)
i (xa) +Q8ψ

(1)
i (xb) (5.21c)

In the above equations we have made extensive use of the following constants

Âs = D0 − 2D2c2 +D4c
2
2 (5.22a)

L4 = c1(D4 −D6c1) (5.22b)

M2 = D2 − 2D4c1 +D6c
2
1 (5.22c)

3. The fully-discrete finite element equations

In this section we develop the fully discretized finite element equations for the Reddy

beam theory. We begin by partitioning the time interval I = [0, τ ] into a set of N non-

overlapping subintervals such that I =
∪N

k=1 Ik, where Ik = [tk, tk+1] and tk < tk+1

for all Ik ⊂ I. The solution may then be obtained incrementally by solving an

initial value problem within each subinterval Ik, where we assume that the solution

is known at t = tk. Within each subregion it is therefore necessary to introduce

approximations for both the temporal derivatives of the generalized displacements

(resulting from the inertia terms) as well as the convolution integrals (resulting from

the viscoelastic constitutive model of the material). The temporal derivatives of the

generalized displacements may be adequately approximated through the use of the

Newmark scheme [109] or one of its variants [110]. Since temporal integration of

the inertia terms is relatively straightforward, we restrict the current discussion to

discretization of the quasi-static form of the semi-discrete finite element equations

only.
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In the present work, we approximate the convolution integrals present in the

semi-discrete form of the finite element equations using the trapezoidal rule within

each time subinterval. It is important to note, however, that a naive application of the

trapezoidal rule (or any other approximation scheme for that matter) in the numerical

integration of the convolution terms will result in a computationally unattractive

solution procedure requiring storage of the generalized displacements for the entire

deformation history. When N is large, the computational time expended at a given

time step can become dominated by the task of evaluating the convolution integrals.

Of course the storage required will also negatively affect the amount of memory

needed in a given simulation. Since the viscoelastic relaxation moduli are expressed

in terms of Prony series, it is possible to develop an efficient recurrence based temporal

integration algorithm that requires only the storage of the generalized displacements

and a set of internal variables evaluated at the Gauss points, both from the immediate

previous time step only.

We assume, without loss of generality, that the quasi-static semi-discrete finite

element equations have been successfully integrated temporally up until t = tk. Our

goal, therefore, is to numerically integrate the finite element equations over the subin-

terval Ik to obtain the solution for the generalized displacements at t = tk+1. Before

proceeding we must emphasize that all subsequent discussions regarding efficient re-

currence based temporal integration strategies rely on the following multiplicative

decompositions of the Prony series terms appearing in the definition of the relaxation

moduli [111]

˙̄El(tk+1 − s) = e−∆tk+1/τ
E
l ˙̄El(tk − s), ˙̄Gl(tk+1 − s) = e−∆tk+1/τ

G
l ˙̄Gl(tk − s) (5.23)

where ∆tk+1 = tk+1 − tk is the time step associated with subinterval Ik. With

the above formulas in mind, we note that the components of Λα
i (tk+1, s) may be
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conveniently expressed as

Λα
i (tk+1, s) =

nα∑
j=1

jΛ̄α
i (tk+1, s) (5.24)

where n1 = 1, n2 = 3 and n3 = 2. The components jΛ̄α
i (tk+1, s) can be decomposed

multiplicatively using the following general formula

jΛ̄α
i (tk+1, s) =

NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk+1)

j
lβ

α(∆tk+1)
j
lmκ

α(tk, s)Wm (5.25)

In the above expression we have employed the Gauss-Legendre quadrature rule in

evaluation of all spatial integrals (resulting in summation over m). The quantity Wm

represents themth quadrature weight associated with the Gauss-Legendre quadrature

rule. Summation over l is due to the Prony series representation of the relaxation

moduli. The multiplicative decomposition of each jΛ̄α
i (tk+1, s) is essential for the

recurrence based integration strategy. The components of j
mχ

α
i (tk+1) are used to

store the discrete finite element test functions as well as any nonlinear quantities

associated with the first variation of the simplified Green-Lagrange strain tensor. In

the present formulation the components of j
mχ

α
i (tk+1) are defined as

1
mχ

1
i (tk+1) =

dψ
(1)
i (xm)

dx
(5.26a)

1
mχ

2
i (tk+1) =

∂w0(xm, tk+1)

∂x

dψ
(2)
i (xm)

dx
(5.26b)

2
mχ

2
i (tk+1) =

d2ψ
(2)
i (xm)

dx2
(5.26c)

3
mχ

2
i (tk+1) =

dψ
(2)
i (xm)

dx
(5.26d)

1
mχ

3
i (tk+1) =

1
mχ

1
i (tk+1) (5.26e)

2
mχ

3
i (tk+1) = ψ

(1)
i (xm) (5.26f)

In the above expression, xm represents the value of x as evaluated at the mth quadra-
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ture point of a given finite element. The isoparametric mapping Ω̂e � Ω̄e used to

characterize the geometry of each element allows for simple evaluation of such expres-

sions. The components of j
lβ

α(∆tk+1) are defined as

1
l β

1(∆tk+1) =
1
l β

2(∆tk+1) =
2
l β

2(∆tk+1) =
1
l β

3(∆tk+1) = e−∆tk+1/τ
E
l

3
l β

2(∆tk+1) =
2
l β

3(∆tk+1) = e−∆tk+1/τ
G
l

(5.27)

Likewise, the components of j
lmκ

α(tk, s) may be determined using the following for-

mulas

1
lmκ

1(tk, s) =
˙̄El(tk − s)D0

[
∂u0(xm, s)

∂x
+

1

2

(
∂w0(xm, s)

∂x

)2]
(5.28a)

1
lmκ

2(tk, s) =
1
lmκ

1(tk, s) (5.28b)

2
lmκ

2(tk, s) =
˙̄El(tk − s)

(
c21D6

∂2w0(xm, s)

∂x2
− L4

∂ϕx(xm, s)

∂x

)
(5.28c)

3
lmκ

2(tk, s) =
˙̄Gl(tk − s)Âs

(
∂w0(xm, s)

∂x
+ ϕx(xm, s)

)
(5.28d)

1
lmκ

3(tk, s) =
˙̄El(tk − s)

(
M2

∂ϕx(xm, s)

∂x
− L4

∂2w0(xm, s)

∂x2

)
(5.28e)

2
lmκ

3(tk, s) =
3
lmκ

2(tk, s) (5.28f)

It is important to note that the components of j
lmκ

α(tk, s) have been defined such that

the following multiplicative recurrence formulas hold

j
lmκ

α(tk+1, s) =
j
lβ

α(∆tk+1)
j
lmκ

α(tk, s) (5.29)

The above expressions are admissible on account of the assumption that the relaxation

parameters are expressed in terms of Prony series.

We assume that at t = tk the components of the following expression are known∫ tk

0

jΛ̄α
i (tk, s)ds =

NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk)

j
lmX

α(tk)Wm (5.30)
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where j
lmX

α(tk) is a set of history variables (stored at the quadrature points of each

element) that are of the form

j
lmX

α(tk) =

∫ tk

0

j
lmκ

α(tk, s)ds (5.31)

We note that j
lmX

α(0) = 0. At t = tk the above history variables are known and there

is no need to explicitly evaluate the expression appearing on the right hand side of

Eq. (5.31). At the subsequent time step t = tk+1 Eq. (5.30) may be written as∫ tk+1

0

jΛ̄α
i (tk+1, s)ds =

∫ tk

0

jΛ̄α
i (tk+1, s)ds+

∫ tk+1

tk

jΛ̄α
i (tk+1, s)ds

=
NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk+1)

j
lβ

α(∆tk+1)
j
lmX

α(tk)Wm

+

∫ tk+1

tk

jΛ̄α
i (tk+1, s)ds

(5.32)

It is important to note that we have expressed the first integral on the right hand

side of the above equation in terms of j
lmX

α(tk) (which is known from the previous

time step). To integrate the remaining expression over the subinterval Ik we employ

the trapezoidal rule which may be expressed as∫ tk+1

tk

jΛ̄α
i (tk+1, s)ds �

∆tk+1

2

[
jΛ̄α

i (tk+1, tk) +
jΛ̄α

i (tk+1, tk+1)
]

=
∆tk+1

2

NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk+1)

j
lβ

α(∆tk+1)
[
j
lmκ

α(tk, tk)

+ j
lmκ

α(tk, tk+1)
]
Wm

(5.33)

As a result, Eq. (5.32) can be written in the following simplified form∫ tk+1

0

jΛ̄α
i (tk+1, s)ds =

NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk+1)

j
lmX

α(tk+1)Wm (5.34)
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where

j
lmX

α(tk+1) =
∆tk+1

2
j
lβ

α(∆tk+1)
[
j
lmκ

α(tk, tk) +
j
lmκ

α(tk, tk+1)
]

+ j
lβ

α(∆tk+1)
j
lmX

α (tk)

(5.35)

As a result, in Eq. (5.34) we have developed a general expression for integrating the

viscoelastic terms up to any discrete instance in time. The expression relies on a recur-

rence relationship defined in terms of the set of history variables j
lmX

α(tk+1). These

variables must be stored in memory at the immediate previous time step and may

be updated to the subsequent time step in accordance with the procedure outlined in

Eq. (5.35). The history variables may be expressed explicitly as

1
lmX

1(tk+1) =
∆tk+1

2
D0

{
˙̄El(∆tk+1)

[
∂u0(xm, tk)

∂x
+

1

2

(
∂w0(xm, tk)

∂x

)2]
(5.36a)

+ ˙̄El(0)

[
∂u0(xm, tk+1)

∂x
+

1

2

(
∂w0(xm, tk+1)

∂x

)2]}
+ e−∆tk+1/τ

E
l 1
lmX

1(tk)

1
lmX

2(tk+1) =
1
lmX

1(tk+1) (5.36b)

2
lmX

2(tk+1) =
∆tk+1

2

[
˙̄El(∆tk+1)

(
c21D6

∂2w0(xm, tk)

∂x2
− L4

∂ϕx(xm, tk)

∂x

)
(5.36c)

+ ˙̄El(0)

(
c21D6

∂2w0(xm, tk+1)

∂x2
− L4

∂ϕx(xm, tk+1)

∂x

)]
+ e−∆tk+1/τ

E
l 2
lmX

2(tk)

3
lmX

2(tk+1) =
∆tk+1

2
Âs

[
˙̄Gl(∆tk+1)

(
∂w0(xm, tk)

∂x
+ ϕx(xm, tk)

)
(5.36d)

+ ˙̄Gl(0)

(
∂w0(xm, tk+1)

∂x
+ ϕx(xm, tk+1)

)]
+ e−∆tk+1/τ

G
l 3
lmX

2(tk)

1
lmX

3(tk+1) =
∆tk+1

2

[
˙̄El(∆tk+1)

(
M2

∂ϕx(xm, tk)

∂x
− L4

∂2w0(xm, tk)

∂x2

)
(5.36e)

+ ˙̄El(0)

(
M2

∂ϕx(xm, tk+1)

∂x
− L4

∂2w0(xm, tk+1)

∂x2

)]
+ e−∆tk+1/τ

E
l 1
lmX

3(tk)
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2
lmX

3(tk+1) =
3
lmX

2(tk+1) (5.36f)

It is now possible to express the fully discretized finite element equations at the

current time step as

[K̄]k+1{∆}k+1 = {F}k+1 − {Q̃}k+1 (5.37)

where

K̄11
ij =

∫ xb

xa

(
E(0) +

∆tk+1

2
Ė(0)

)
D0

dψ
(1)
i

dx

dψ
(1)
j

dx
dx (5.38a)

K̄12
ij =

1

2
K̄21

ji =
1

2

∫ xb

xa

(
E(0) +

∆tk+1

2
Ė(0)

)
D0

∂w0(x, tk+1)

∂x

dψ
(1)
i

dx

dψ
(2)
j

dx
dx (5.38b)

K̄13
ij = K̄31

ji = 0 (5.38c)

K̄22
ij =

∫ xb

xa

[
1

2

(
E(0) +

∆tk+1

2
Ė(0)

)
D0

(
∂w0(x, tk+1)

∂x

)2
dψ

(2)
i

dx

dψ
(2)
j

dx
(5.38d)

+

(
E (0) +

∆tk+1

2
Ė(0)

)
c21D6

d2ψ
(2)
i

dx2
d2ψ

(2)
j

dx2

+

(
G (0) +

∆tk+1

2
Ġ(0)

)
Âs
dψ

(2)
i

dx

dψ
(2)
j

dx

]
dx

K̄23
ij = K̄32

ji =

∫ xb

xa

[(
G(0) +

∆tk+1

2
Ġ(0)

)
Âs
dψ

(2)
i

dx
ψ

(1)
j (5.38e)

−
(
E(0) +

∆tk+1

2
Ė(0)

)
L4
d2ψ

(2)
i

dx2
dψ

(1)
j

dx

]
dx

K̄33
ij =

∫ xb

xa

[(
E(0) +

∆tk+1

2
Ė(0)

)
M2

dψ
(1)
i

dx

dψ
(1)
j

dx
(5.38f)

+

(
G(0) +

∆tk+1

2
Ġ(0)

)
Âsψ

(1)
i ψ

(1)
j

]
dx

and

Q̃α
i =

nα∑
j=1

jQ̄α
i (5.39)
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The components of jQ̄α
i (tk+1) are of the form

1Q̄1
i =

∆tk+1

2

∫ xb

xa

Ė(∆tk+1)D0
dψ

(1)
i

dx

[
∂u0(x, tk)

∂x
+

1

2

(
∂w0(x, tk)

∂x

)2]
dx (5.40a)

+
NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τ
E
l
dψ

(1)
i (xm)

dx
1
lmX

1(tk)Wm

1Q̄2
i =

∆tk+1

2

∫ xb

xa

Ė(∆tk+1)D0
∂w0(x, tk+1)

∂x

dψ
(2)
i

dx

[
∂u0(x, tk)

∂x
(5.40b)

+
1

2

(
∂w0(x, tk)

∂x

)2]
dx+

NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τ
E
l
∂w0(xm, tk+1)

∂x
×

dψ
(2)
i (xm)

dx
1
lmX

2(tk)Wm

2Q̄2
i =

∆tk+1

2

∫ xb

xa

Ė(∆tk+1)
d2ψ

(2)
i

dx2

(
c21D6

∂2w0(x, tk)

∂x2
− L4

∂ϕx(x, tk)

∂x

)
dx (5.40c)

+
NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τ
E
l
d2ψ

(2)
i (xm)

dx2
2
lmX

2(tk)Wm

3Q̄2
i =

∆tk+1

2

∫ xb

xa

Ġ(∆tk+1)Âs
dψ

(2)
i

dx

(
∂w0(x, tk)

∂x
+ ϕx(x, tk)

)
dx (5.40d)

+
NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τ
G
l
dψ

(2)
i (xm)

dx
3
lmX

2(tk)Wm

1Q̄3
i =

∆tk+1

2

∫ xb

xa

Ė(∆tk+1)
dψ

(1)
i

dx

(
M2

∂ϕx(x, tk)

∂x
− L4

∂2w0(x, tk)

∂x2

)
dx (5.40e)

+
NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τ
E
l
dψ

(1)
i (xm)

dx
1
lmX

3(tk)Wm

2Q̄3
i =

∆tk+1

2

∫ xb

xa

Ġ(∆tk+1)Âsψ
(1)
i

(
∂w0(x, tk)

∂x
+ ϕx(x, tk)

)
dx (5.40f)

+
NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τ
G
l ψ

(1)
i (xm)

2
lmX

3(tk)Wm

4. A Newton based iterative solution procedure

The fully discretized finite element equations are nonlinear due to the use of the von

Kármán strain components in the definition of the effective strain tensor ε. In our
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work, we adopt the Newton procedure in the iterative solution of the nonlinear finite

element equations. The resulting linearized finite element equations are of the form

[T e]
(r)
k+1{δ∆

e}(r+1)
k+1 = −([K̄e]

(r)
k+1{∆

e}(r)k+1 − {F e}(r)k+1 + {Q̃e}(r)k+1) (5.41)

where {δ∆e}(r+1)
k+1 represents the incremental solution at the (r + 1)th nonlinear iter-

ation. The total global solution at the (r + 1)th iteration is obtained as

{∆}(r+1)
k+1 = {δ∆}(r+1)

k+1 + {∆}(r)k+1 (5.42)

The element tangent stiffness matrix [T e]
(r)
k+1 appearing in the Newton linearization of

the finite element equations may be expressed (using Einstein’s summation convention

over n) as

T e
ij = K̄e

ij +
∂K̄e

in

∂∆e
j

∆e
n +

∂Q̃e
i

∂∆e
j

(5.43)

All quantities comprising the tangent stiffness matrix are formulated using the so-

lution from the rth iteration. The partial derivatives are taken with respect to the

solution at the current time step. The components of the tangent stiffness matrix

may be determined using the following general formulas

T 11
ij = K̄11

ij (5.44a)

T 12
ij = T 21

ji = 2K̄12
ij (5.44b)

T 13
ij = T̄ 31

ji = 0 (5.44c)

T 22
ij =

∫ xb

xa

D0

{(
E(0) +

∆tk+1

2
Ė(0)

)[
∂u0(x, tk+1)

∂x
+

(
∂w0(x, tk+1)

∂x

)2]
(5.44d)

+
∆tk+1

2
Ė(∆tk+1)

[
∂u0(x, tk)

∂x
+

1

2

(
∂w0(x, tk)

∂x

)2]}
dψ

(2)
i

dx

dψ
(2)
j

dx
dx

+
NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τ
E
l
dψ

(2)
i (xm)

dx

dψ
(2)
j (xm)

dx
1
lmX

2(tk)Wm + K̄22
ij
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T 23
ij = T 32

ji = K̄23
ij (5.44e)

T 33
ij = K̄33

ij (5.44f)

Clearly the tangent stiffness coefficient matrix is symmetric.

5. Numerical locking and high-order finite element interpolation functions

It is well-known that low-order finite elements for beams are prone to locking [50, 105,

3] when quadrature rules are employed that result in exact integration of the element

coefficient matrices and force vectors. To circumvent the locking phenomena, we

consider two philosophically dissimilar numerical procedures. In the first approach,

we employ the lowest order element admissible in the formulation (i.e., a two-node

element). Selective full and one point Gauss-Legendre quadrature rules are applied;

where reduced integration techniques are employed on all nonlinear expressions asso-

ciated with the finite element model. This element is denoted as an RBT-2-R element

(meaning a two-node reduced integration RBT element). It is worth noting that this

element requires a splitting of the history variables into subsets associated with the

full and reduced integration points. In the second approach, we construct the Reddy

beam finite elements using high polynomial order expansions of the dependent vari-

ables, by systematically increasing the number of nodes per finite element. In this

approach, the same quadrature formulas may be adopted in the evaluation of all ex-

pressions appearing in the coefficient matrices and force vectors of the finite element

model. The resulting elements are denoted in this work as RBT-n elements, where n

represents the number of nodes per element. In Section C we also present numerical

results obtained using Euler-Bernoulli and Timoshenko beam elements denoted as

EBT-n and TBT-n respectively.

The high-order Lagrange interpolation functions {ψ(1)
i }ni=1 are constructed, with
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Fig. 47. Interpolation functions for a high-order RBT finite element where n = 6 and

i = 1, . . . , n: (a) Lagrange interpolation functions ψ
(1)
i , (b) Hermite interpo-

lation functions ψ̂
(2)
2i−1 and (c) Hermite interpolation functions ψ̂

(2)
2i .

respect to the natural coordinate ξ, using the C0 spectral nodal interpolation formula

given in Eq. (2.4). The high-order Hermite interpolation functions {ψ̂(2)
i }2ni=1, on the

other hand, may be developed for the master element Ω̂e through the use of the

following expression

ψ̂
(2)
i (ξ) =

2n∑
j=1

cj−1
i ξj−1 (5.45)
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The coefficients cj−1
i appearing in the above equation may be determined by imposing

the following compatibility conditions on the interpolation functions

ψ̂
(2)
2i−1(ξj) = −dψ̂

(2)
2i

dξ

∣∣∣∣
ξ=ξj

= δij,
dψ̂

(2)
2i−1

dξ

∣∣∣∣
ξ=ξj

= ψ̂
(2)
2i (ξj) = 0 (5.46)

where i and j both range from 1 to n. The Hermite interpolation functions {ψ(2)
i }2ni=1

associated with the physical element Ω̄e may be determined as

ψ
(2)
2i−1(ξ) = ψ̂

(2)
2i−1(ξ), ψ

(2)
2i (ξ) = Jeψ̂

(2)
2i (ξ) (5.47)

where Je = dx/dξ is the Jacobian of the element coordinate transformation Ω̂e � Ω̄e.

With the above formulas in mind, we are now in a position to be able to generate

the interpolation functions for a beam element possessing any number of nodes per

element. The standard lowest order two-node element may be obtained as a special

case. The interpolation functions associated with a six-node RBT finite element are

shown in Figure 47.

C. Numerical examples: verification benchmarks

In this section, numerical results are presented and tabulated for the mechanical re-

sponse of viscoelastic beam structures obtained using the proposed finite element

formulation for the Euler-Bernoulli, Timoshenko and third-order Reddy beam theo-

ries. The results have been obtained using the Newton solution procedure described

previously. Nonlinear convergence is declared at the current step once the Euclidean

norm of the normalized difference between the nonlinear iterative solution increments

(i.e., ∥{∆}(r+1)
k+1 − {∆}(r)k+1∥/∥{∆}(r+1)

k+1 ∥), is less than 10−6.

The material model utilized in the quasi-static numerical studies is based upon

the experimental results tabulated by Lai and Bakker [112] for a glassy amorphous
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polymer material (PMMA). The Prony series parameters for the viscoelastic relax-

ation modulus given in Table VIII were calculated by Payette and Reddy [21] from

the published compliance parameters [112]. As in the work of Chen [91] and Payette

and Reddy [21], we assume that Poisson’s ratio is time invariant. As a result, the

shear relaxation modulus is given as

G(t) =
E(t)

2(1 + ν)
(5.48)

where Poisson’s ratio is taken to be ν = 0.40 [113].

Table VIII. Viscoelastic relaxation parameters for a PMMA.

E0 205.7818 ksi
E1 43.1773 ksi τE1 9.1955× 10−1 sec.
E2 9.2291 ksi τE2 9.8120× 100 sec.
E3 22.9546 ksi τE3 9.5268× 101 sec.
E4 26.2647 ksi τE4 9.4318× 102 sec.
E5 34.6298 ksi τE5 9.2066× 103 sec.
E6 40.3221 ksi τE6 8.9974× 104 sec.
E7 47.5275 ksi τE7 8.6852× 105 sec.
E8 46.8108 ksi τE8 8.5143× 106 sec.
E9 58.6945 ksi τE9 7.7396× 107 sec.

1. Quasi-static mechanical response

a. Deflection of a thin beam under uniform loading

In this first example we consider a viscoelastic beam of length L = 100 in. and cross

section 1 in. × 1 in. At t = 0 sec. the beam is subjected to a uniform vertically

distributed load q0 = 0.25 lbf/in that is maintained for 1,800 sec. Due to symmetry

about x = L/2, it is only necessary to computationally model half of the physical

domain; as a result, we take Ω̄hp = [0, L/2]. To assess the performance of various
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finite element discretizations in circumventing the locking phenomena, we consider

the following three sets of boundary conditions (for the RBT):

1. Hinged at both ends

w0(0, t) = u0(L/2, t) =
∂w0

∂x
(L/2, t) = ϕx(L/2, t) = 0 (5.49)

2. Pinned at both ends

u0(0, t) = w0(0, t) = u0(L/2, t) =
∂w0

∂x
(L/2, t) = ϕx(L/2, t) = 0 (5.50)

3. Clamped at both ends

u0(0, t) = w0(0, t) =
∂w0

∂x
(0, t) = ϕx(0, t) = 0

u0(L/2, t) =
∂w0

∂x
(L/2, t) = ϕx(L/2, t) = 0

(5.51)

Similar boundary conditions may also be adopted for the Euler-Bernoulli and Timo-

shenko beam theories.

In the numerical implementation we discretize the computational domain Ω̄hp

using 10 QBT-2 elements (11 nodes), 5 QBT-3 elements (11 nodes), 3 QBT-4 elements

(10 nodes) and 2 QBT-6 elements (11 nodes), where Q = E, T or R. An equal time

increment ∆t = 1.0 sec. has been employed for all time steps. Five load steps were

used in each simulation at t = 0 to insure nonlinear convergence of the instantaneous

elastic response. At each subsequent time step the finite element equations were

solved iteratively using the Newton procedure, which typically required only 2 or 3

nonlinear iterations. In Tables IX and X and we summarize the numerical results for

the maximum vertical deflection of the viscoelastic beam for the three different sets

of boundary conditions listed above. In Figures 48 and 49 we also plot the maximum

vertical deflections for the three cases as obtained using the RBT-6 discretization.
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Table IX. Quasi-static EBT and TBT finite element solutions for the maximum verti-

cal deflection w0(L/2, t) of a viscoelastic beam under uniform load q0 with

three different boundary conditions.

Time, t EBT-2-R TBT-2 TBT-3 TBT-4 TBT-6

Hinged-hinged
0 7.2961 0.8629 7.0098 7.2939 7.2980

200 8.6194 1.0194 8.1966 8.6151 8.6217
400 8.7617 1.0363 8.3221 8.7571 8.7641
600 8.8486 1.0465 8.3986 8.8439 8.8510
800 8.9183 1.0548 8.4598 8.9134 8.9207

1,000 8.9775 1.0618 8.5118 8.9725 8.9799
1,200 9.0287 1.0678 8.5567 9.0236 9.0311
1,400 9.0733 1.0731 8.5958 9.0681 9.0758
1,600 9.1126 1.0778 8.6301 9.1073 9.1150
1,800 9.1474 1.0819 8.6605 9.1420 9.1498

Pinned-pinned
0 1.2481 0.7258 1.2452 1.2453 1.2452

200 1.3278 0.8210 1.3244 1.3243 1.3242
400 1.3358 0.8307 1.3324 1.3323 1.3322
600 1.3407 0.8366 1.3372 1.3371 1.3370
800 1.3446 0.8413 1.3411 1.3410 1.3409

1,000 1.3478 0.8452 1.3443 1.3442 1.3441
1,200 1.3507 0.8486 1.3471 1.3470 1.3469
1,400 1.3531 0.8516 1.3496 1.3495 1.3494
1,600 1.3553 0.8542 1.3517 1.3516 1.3515
1,800 1.3572 0.8565 1.3536 1.3535 1.3534

Clamped-clamped
0 0.9110 0.1727 0.8832 0.9102 0.9109

200 1.0000 0.2038 0.9707 0.9988 0.9997
400 1.0089 0.2071 0.9795 1.0077 1.0086
600 1.0144 0.2092 0.9848 1.0130 1.0140
800 1.0187 0.2108 0.9891 1.0173 1.0183

1,000 1.0223 0.2122 0.9927 1.0210 1.0220
1,200 1.0255 0.2134 0.9957 1.0241 1.0251
1,400 1.0282 0.2144 0.9984 1.0268 1.0278
1,600 1.0306 0.2154 1.0008 1.0292 1.0302
1,800 1.0327 0.2162 1.0029 1.0313 1.0323
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Table X. Quasi-static RBT finite element solutions for the maximum vertical deflec-

tion w0(L/2, t) of a viscoelastic beam under uniform load q0 with three dif-

ferent boundary conditions.

Time, t RBT-2 RBT-2-R RBT-3 RBT-4 RBT-6

Hinged-hinged
0 5.4740 7.2840 7.2277 7.2946 7.2980

200 6.1234 8.6052 8.5170 8.6169 8.6217
400 6.1895 8.7473 8.6552 8.7592 8.7641
600 6.2295 8.8340 8.7396 8.8460 8.8510
800 6.2615 8.9035 8.8071 8.9156 8.9207

1,000 6.2886 8.9627 8.8646 8.9748 8.9799
1,200 6.3119 9.0138 8.9143 9.0259 9.0311
1,400 6.3322 9.0584 8.9575 9.0705 9.0758
1,600 6.3499 9.0975 8.9956 9.1098 9.1150
1,800 6.3656 9.1322 9.0293 9.1445 9.1498

Pinned-pinned
0 1.2442 1.2493 1.2452 1.2452 1.2452

200 1.3233 1.3291 1.3242 1.3242 1.3242
400 1.3313 1.3371 1.3322 1.3322 1.3322
600 1.3361 1.3420 1.3370 1.3370 1.3370
800 1.3399 1.3459 1.3409 1.3409 1.3409

1,000 1.3432 1.3492 1.3441 1.3441 1.3441
1,200 1.3460 1.3520 1.3470 1.3470 1.3469
1,400 1.3484 1.3545 1.3494 1.3494 1.3494
1,600 1.3506 1.3566 1.3515 1.3515 1.3515
1,800 1.3525 1.3585 1.3534 1.3534 1.3534

Clamped-clamped
0 0.9037 0.9098 0.9106 0.9108 0.9109

200 0.9918 0.9992 0.9993 0.9995 0.9997
400 1.0007 1.0082 1.0083 1.0084 1.0086
600 1.0060 1.0136 1.0136 1.0138 1.0140
800 1.0103 1.0180 1.0180 1.0182 1.0183

1,000 1.0139 1.0216 1.0216 1.0218 1.0220
1,200 1.0170 1.0248 1.0247 1.0249 1.0251
1,400 1.0197 1.0275 1.0275 1.0277 1.0278
1,600 1.0221 1.0299 1.0298 1.0300 1.0302
1,800 1.0242 1.0321 1.0319 1.0322 1.0323
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Fig. 48. Maximum vertical deflection w0(L/2, t) of a hinged-hinged viscoelastic beam

subjected to a uniform vertically distributed load q0, where two RBT-6 ele-

ments have been used in the finite element discretization.
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Fig. 49. Maximum vertical deflection w0(L/2, t) of both pinned-pinned and clamped–

clamped viscoelastic beams subjected to a uniform vertically distributed load

q0, where two RBT-6 elements have been used in the finite element discretiza-

tion.
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It is evident from the numerical results that the TBT element suffers from nu-

merical locking whenever low-order polynomial expansions are employed. This is also

true of the RBT-2 element when used to solve the hinged-hinged problem. In gen-

eral, however, we find that the RBT-n elements are less prone to locking than are the

TBT-n elements. In fact, the RBT-3 element is almost completely locking free. On

the other hand, the Timoshenko beam equations require the use of Lagrange interpo-

lation functions only, and are hence simple to construct. The solutions resulting from

the TBT-6 and RBT-6 discretizations are spatially fully converged and can actually

be obtained using a coarse grid consisting of only a single element. As a result, the

overall computational cost associated with these single element discretizations is ac-

tually quite low. It is interesting to note that the low-order EBT-2-R and RBT-2-R

also provide reliable numerical results for the transverse deflection.

Table XI. Analytical and finite element solutions for the maximum quasi-static verti-

cal deflection w0(L/2, t) of a hinged-hinged beam under uniform transverse

loading q0.

Maximum vertical deflection, w0(L/2, t)

Time, t Exact ∆t = 0.1 ∆t = 1.0 ∆t = 2.0 ∆t = 5.0 ∆t = 10.0

0 7.2980 7.2980 7.2980 7.2980 7.2980 7.2980
200 8.5429 8.5437 8.6217 8.8493 10.2278 14.7260
400 8.6827 8.6835 8.7641 8.9993 10.4291 15.1493
600 8.7680 8.7689 8.8510 9.0910 10.5524 15.4107
800 8.8364 8.8372 8.9207 9.1645 10.6513 15.6214

1,000 8.8945 8.8954 8.9799 9.2270 10.7356 15.8022
1,200 8.9448 8.9456 9.0311 9.2811 10.8087 15.9597
1,400 8.9886 8.9895 9.0758 9.3282 10.8726 16.0983
1,600 9.0271 9.0280 9.1150 9.3697 10.9288 16.2210
1,800 9.0612 9.0621 9.1498 9.4064 10.9787 16.3306

For the hinged-hinged beam configuration, the vertical deflection coincides with

the exact solution of the geometrically linear theory. In Table XI we compare numer-
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ical results obtained using two RBT-6 beam elements with the exact solution for the

Timoshenko beam theory given by Flügge [81] as

w0(L/2, t) =
5q0L

4

384D2

[
1 +

8(1 + ν)

5κ

(
h

L

)2]
D(t) (5.52)

where D(t) is the creep compliance and κ is the shear correction factor. The error in

the numerical solution due to temporal discretization based on the trapezoidal rule

tends to over-predict the deflection of the beam as is evident in Table XI (where

numerical solutions obtained using various time increment sizes are compared).

b. Deflection of a thick beam under uniform loading

In this next example we consider a thick viscoelastic beam (i.e., L/h < 20) to demon-

strate the ability of the RBT finite element formulation to accurately account for

deformations associated with shearing. We modify the thin beam problem given in

the previous example by taking L = 10 in., q = 25.0 lbf/in and ∆t = 1.0 sec. All

other geometric and material parameters are the same as in the previous example.

In Table XII numerical results are presented for the transverse deflection of pinned-

pinned and clamped-clamped beams. The same number of elements (per element

type) are employed as in the previous example. In Table XII we also compare results

from the Reddy beam theory with finite element solutions obtained using a low-order

reduced integration finite element model based on the Euler-Bernoulli beam theory

(which does not account for deformations associated with shearing). The numerical

results obtained for the RBT element compare well with numerical solutions obtained

using TBT finite elements [21].



176

Table XII. Comparison of the quasi-static finite element solutions for the maximum

vertical deflection w0(L/2, t) of thick pinned-pinned and clamped-clamped

viscoelastic beams under uniform transverse loading q0.

Maximum vertical deflection, w0(L/2, t)

pinned-pinned clamped-clamped

Time t EBT-2-R RBT-2-R RBT-6 EBT-2-R RBT-2-R RBT-6

0 0.07184 0.07362 0.07367 0.01459 0.01645 0.01653
200 0.08437 0.08643 0.08649 0.01724 0.01943 0.01952
400 0.08571 0.08779 0.08785 0.01752 0.01975 0.01985
600 0.08652 0.08862 0.08869 0.01769 0.01995 0.02004
800 0.08717 0.08929 0.08935 0.01783 0.02010 0.02020

1,000 0.08773 0.08985 0.08992 0.01795 0.02024 0.02033
1,200 0.08821 0.09034 0.09041 0.01805 0.02035 0.02045
1,400 0.08862 0.09076 0.09083 0.01814 0.02045 0.02055
1,600 0.08899 0.09114 0.09121 0.01822 0.02054 0.02064
1,800 0.08931 0.09147 0.09154 0.01829 0.02062 0.02072

c. Deflection of a thin beam under time-dependent loading

For this example we employ the geometric parameters, material properties and hinged-

hinged boundary conditions utilized in the first numerical example. We replace the

stationary uniformly distributed load with the following quasi-static transverse load

q(t) = q0

{
H(t)− 1

τ(β − α)
[(t− ατ)H(t− ατ)− (t− βτ)H(t− βτ)]

}
(5.53)

where q0 = 0.25 lbf/in, τ = 200 sec. and H(t) is the Heaviside function. The parame-

ters α and β (where 0 ≤ α ≤ β ≤ 1) are constants whose values may be appropriately

adjusted. The load function above is constant for 0 < t < ατ and decays linearly from

t = ατ to t = βτ , after which the load is maintained at zero. We utilize the above

loading function to numerically demonstrate that the finite element model correctly

predicts that the viscoelastic beam will eventually recover its original configuration

upon removal of all externally applied mechanical loads. The numerical solution for
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the problem, as obtained using two RBT-6 elements, is presented in Figure 50 for

various values of α and β. It is clear that in all cases, the beam does tend to recover

its original configuration following removal of the externally applied load.
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Fig. 50. Maximum vertical deflection w0(L/2, t) of a hinged-hinged viscoelastic beam

subjected to a time-dependent transversely distributed load q(t).

2. Fully-transient mechanical response

a. Forced vibrational response of hinged beams

As a final example, we consider the fully transient response of viscoelastic beams

under mechanical loading as modeled using the third-order Reddy beam theory. For

this example we employ a simple three parameter solid model utilized previously by

Chen [91]. In the standard three parameter solid model, the relaxation modulus may
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be expressed as

E(t) =
k1k2
k1 + k2

(
1− e−t/τE1

)
+ k1e

−t/τE1 (5.54)

where in the present example k1 = 9.8 × 107 N/m2 and k2 = 2.45 × 107 N/m2. The

relaxation time is of the form τE1 = η/(k1 + k2) and the material density is taken to

be ρ0 = 500 kg/m3. A constant Poisson ratio of ν = 0.3 is assumed.

q(t) = q0H(t)
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Fig. 51. A comparison of the time-dependent vertical response w0(L/2, t) (with units

of mm) of hinged-hinged beams due to a suddenly applied transversely dis-

tributed load q(t). Results are for both viscoelastic as well as elastic beams.

We consider a beam with hinged boundary conditions at both ends. The beam

length, width and thickness are taken to be L = 10 m, b = 2 m and h = 0.5 m

respectively. We consider two loading scenarios. In loading scenario (1) a uniformly

distributed transverse load is specified along the entire length of the beam as q(t) =

q0H(t) N/m, where q0 = 10. Likewise, for loading scenario (2) a periodic concentrated
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F(t) = q0sin(πt)
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Fig. 52. A comparison of the time-dependent vertical response w0(L/2, t) (with units

of mm) of hinged-hinged viscoelastic and elastic beams due to a periodic

concentrated load F (t) (where η = 2.744× 108 N-sec./m2).

force is applied at the center of the beam as F (t) = q0sin(πt) N, where q0 = 50. In the

finite element discretization of both problems, we employ two RBT-6 elements of equal

size. As in the previous examples, symmetry is once again exploited in construction of

the finite element meshes. We utilize the Newmark-β procedure [109] for performing

temporal discretization of the inertia terms appearing in the fully transient beam finite

element equations. The Newmark integration parameters are chosen in accordance

with the constant-average acceleration method [24]. Both transient problems are

solved over a total time interval of 20 sec. For loading scenario (1) we employ 500

time steps, while 1,000 time steps are utilized for loading scenario (2).

Numerical results for loading scenarios (1) and (2) are presented in Figures 51
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and 52 respectively. In each figure we present both viscoelastic and elastic solutions

(where the Young’s modulus is obtained in the elastic case by taking Eelastic = E(0)).

As expected, the viscoelastic effects tend to add damping to what would otherwise

be purely elastic response. In Figure 51 we present fully transient viscoelastic results

using two different values for η. This problem is also solved using the quasi-static

viscoelasticity solution procedure. It is evident that the transient viscoelastic solution

approaches the steady-state quasi-static viscoelastic response once a sufficiently long

enough period of time has transpired. For loading scenario (2) the viscoelastic mate-

rial properties clearly reduce the overall amplitude of the forced vibrational response.

An overall smoothing of the beam response is also observed for this problem.
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CHAPTER VI

A NONLINEAR SHELL FINITE ELEMENT FORMULATION

FOR ISOTROPIC, LAMINATED COMPOSITE AND

FUNCTIONALLY GRADED SHELL STRUCTURES

In this chapter we present a weak-form Galerkin finite element formulation for the

general analysis of elastic shear-deformable shell structures using an improved first-

order shell theory with seven independent parameters. As shells constitute some of

the most prevalent and significant of structural components employed in engineering

design, efficient and accurate procedures for their numerical simulation are of great

importance. Robust algorithms are particularly crucial, as shells are widely recognized

as the prima donnas of structures [114] due to the fact that small changes in geometry

and loading can culminate in large changes in the mechanical response.

In the finite element analysis of shells there are primarily four categories of ele-

ment types that may be adopted: (a) facet-shell elements, (b) 3-D elasticity elements

or layerwise theory elements, (c) continuum shell elements (or degenerated shell ele-

ments) and (d) 2-D shell theory elements. The facet-elements were developed during

the emergence of the finite element method and consist of planar elasticity elements

with additional plate-like bending analysis capabilities. These simple elements are

still available in many of the commercial finite element software. The 3-D elasticity

elements are of course the most general elements; however, their use becomes pro-

hibitively expensive whenever thin and/or multi-layered composite shell structures

are to be analyzed. For the case of composite shells, finite elements based on a lay-

erwise theory offer a less expensive computational procedure as compared with 3-D

elasticity elements since aspect ratio requirements are dictated by the mid-surface

mesh only (see for example Reddy [115, 116] and Robbins and Reddy [117, 118]).
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The majority of recent advances in the finite element analysis of shells have come

in the areas of continuum shell elements and 2-D shell theory elements. Continuum

shell elements were initially introduced by Ahmad et al. [119] and are constructed

by mapping a two-dimensional master element onto a surface in R3 constituting the

mid-plane of the element. An isoparametric approach is typically adopted in char-

acterizing the approximate mid-plane of the shell element as well as approximating

the displacement field. The approximate three-dimensional geometry of the shell el-

ement is usually recovered in the continuum approach by prescribing a unit normal

at each node that is interpolated using the standard basis functions of the element.

The formulation is completed by imposing appropriate kinematic assumptions on the

displacement field. Although no shell theory is explicitly invoked, the resulting formu-

lation may be identified as a shell element with qualities consistent with a first-order

shear deformation shell model.

In contrast to the so-called continuum elements, shell elements based on a shell

theory, are formulated using an exact analytical description of the undeformed mid-

surface of the shell. The shell mid-surface is therefore represented using a 2-D chart

ϕ(ω1, ω2); i.e., a smooth injective mapping from ω̄ ⊂ R2, the closure of the open

bounded region ω, onto Ω̄ ⊂ R3. The three-dimensional shell geometry is then

obtained by the 3-D chart: Φ(ω1, ω2, ω3) = ϕ(ω1, ω2) + ω3a3(ω
1, ω2), where a3 is

the analytic unit normal to the mid-surface, ω3 ∈ [−h/2, h/2] and h is the shell

thickness. In shell theory the fundamental kinematic assumptions, stress and strain

measures, constitutive model, virtual work statement and governing equations are

all expressed with respect to the general curvilinear coordinates (ω1, ω2, ω3) used

to characterize the three-dimensional shell geometry. Furthermore, the finite element

mesh is constructed on ω̄ as opposed to Ω̄. Examples of finite element models for shells

constructed directly from shell theories can be found in Refs. [120, 121, 122, 123] and
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more recently in the work of Arciniega and Reddy [124, 125]. To the casual observer,

the shell theory and continuum based shell finite elements appear quite different from

each other. As discussed by Büechter and Ramm, however, the formulations are

actually quite similar and when based on the same mechanical assumptions “differ

only in the kind of discretization” [126].

The underlying kinematic assumptions adopted in the vast majority of continuum

and shell theory based shell finite element models require either 5 or 6 independent

variables in the characterization of the displacement field. In 5-parameter models,

thickness changes are neglected and as a result, the plane-stress condition must be

invoked [127]. In addition a rotation tensor is typically introduced in finite rotation

implementations to exactly enforce the inextensibility condition [120, 108]. The rota-

tion tensor may be parametrized by means of rotational degrees of freedom; however,

depending on the adopted parametrization, singularities and other rank-deficiencies

can arise (see for example Betsch et al. [128]). 6-parameter formulations, on the

other hand, may be employed in conjunction with fully three-dimensional consti-

tutive equations; however, such implementations are unfortunately hindered by an

erroneous state of constant normal strain through the thickness, a phenomena known

as Poisson locking [129]. It is crucial to note that this form of locking is an artifact

of the mathematical model and not the discrete finite element implementation.

In recent years there has been significant attention devoted to shell finite ele-

ment formulations that may be employed with unmodified fully three-dimensional

constitutive equations. Motivation for these models stems from the desire to cir-

cumvent many of the problems associated with the incorporation of the plane-stress

assumption. Such formulations account for thickness stretching and provide reason-

able representations of all components of the through-thickness stress states of thin

and thick shell structures. These models are usually called 7-parameter formula-
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tions, as they involve seven independent parameters in the kinematical description.

In a 7-parameter model, the transverse displacement is expanded up to a quadratic

term, which essentially mitigates Poisson locking when three-dimensional constitutive

equations are adopted. Some of the notable works on 7-parameter shell formulations

include Sansour [130] and Bischoff and Ramm [129, 131].

It is well-known that low-order finite element implementations for shells suffer

from various forms of locking whenever a purely displacement-based formulation is

adopted. The locking phenomena occurs on account of inconsistencies that arise in the

discrete finite element representation of the membrane and transverse shear energies.

In recent years, the issue of locking has been most prominently addressed through

the use of low-order finite element technology using Hu-Washizu type mixed varia-

tional principles. Among the successful low-order implementations are the assumed

strain (see Dvorkin and Bathe [132] and Hinton and Huang [133]) and enhanced strain

(see Simo and Rifai [134]) formulations. High-order finite element implementations

have also been advocated in recent years as a means of eliminating the locking phe-

nomena completely. Mostly notably, whenever a sufficient degree of p-refinement is

employed, highly reliable locking free numerical solutions may be obtained in a purely

displacement-based setting. Among the relevant works are the least-squares finite el-

ement formulations of Pontaza and Reddy [135, 136] and Moleiro et al. [137, 138]

for the linear analysis of plates and the tensor-based (i.e., shell theory based) weak-

form Galerkin finite element models of Arciniega and Reddy [124, 125] for the finite

deformation analysis of isotropic, laminated composite and functionally graded shells.

In this chapter we present an improved first-order shear deformation continuum

shell finite element formulation for use in the analysis of the fully geometrically non-

linear mechanical response of thin and thick isotropic, composite and functionally

graded elastic shell structures. We adopt a 7-parameter formulation which naturally
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circumvents the need for a rotation tensor in the kinematical description and allows

us to use fully three-dimensional constitutive equations in the numerical implemen-

tation. Many of the advances in recent years in the area of locking-free shell finite

element formulations have been in the context of low-order elements and mixed varia-

tional principles. In the present work, however, we utilize high-order spectral/hp type

quadrilateral finite element technology in a purely displacement-based finite element

setting which naturally allows us to obtain: (a) highly accurate approximations of ar-

bitrary shell geometries and (b) reliable numerical results that are completely locking-

free. In the computer implementation, the Schur complement method is adopted at

the element level to statically condense out all degrees of freedom interior to each

element in a given finite element discretization. This procedure vastly improves com-

puter memory requirements in the numerical implementation of the resulting shell

element and allows for significant parallelization of the global solver. The use of spec-

tral/hp finite element technology provides an efficient mechanism for reducing errors

associated with the isoparametric approximation of arbitrary shell geometries. This

constitutes an important departure from the tensor based shell finite element formu-

lation proposed previously in the work of Arciniega and Reddy [124, 125], where a

chart was employed to insure exact parametrization of the shell mid-surface.

The shell finite element framework presented in this chapter is applicable to

the fully geometrically nonlinear analysis of elastic shell structures based on the St.

Venant Kirchhoff material model. The formulation requires as input the prescription

of the three-dimensional coordinates of the shell mid-surface as well as two sets of

directors (one set normal and the other tangent to the mid-surface) at each node in

the shell finite element model. Each of these quantities is approximated discretely

using the standard spectral/hp finite element interpolation functions within a given

shell element. The prescribed tangent vector is particularly useful, as it allows for
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the simple construction of the local bases associated with the principle orthotropic

material directions of each lamina in a given composite. This allows us to freely

adopt skewed and/or arbitrarily curved quadrilateral shell elements in actual finite

element simulations. We show, through the numerical simulation of carefully chosen

non-trivial benchmark problems, that the proposed shell element is insensitive to all

forms of numerical locking and severe geometric distortions.

A. Parametrization of the reference configuration of the shell

A shell structure is by definition a solid body with one geometric dimension being

significantly smaller than the other two. In the classical theory of shells, this concept

is made mathematically precise through the definition of a mid-surface Ω (where Ω, an

open bounded set, is the reference or undeformed mid-surface of the shell) imbedded

in physical space R3 and a thickness parameter h. The mid-surface is characterized

using either a single or a set of two-dimensional charts from R2 into R3 (e.g., in the

single chart case ϕ : ω → Ω ⊂ R3, where ω ⊂ R2).

In this work we immediately dispense with this exact parametrization of Ω and in-

stead introduce an appropriate finite element based approximation of the mid-surface.

To this end, we assume that the closure of Ω (denoted by Ω̄) has been approximated by

a conforming set of high-order spectral/hp quadrilateral finite elements. We denote

the resulting finite element approximation of Ω̄ as Ω̄hp. This isoparametric char-

acterization of the mid-surface leads to the following standard finite element type

approximation

X = ϕe(ξ1, ξ2) =
n∑

k=1

ψk(ξ
1, ξ2)Xk in Ω̂e (6.1)

within a given element, where X represents a point on the approximate mid-surface

and ψk are the two-dimensional spectral/hp basis functions. In the above expression
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Xk are the locations in R3 of the mid-surface nodes of the eth element (note that all

finite element nodes reside on Ω̄hp). The element nodal coordinates Xk (as well as

all other subsequent nodal quantities) are given with respect to a fixed orthonormal

Cartesian coordinate system with basis vectors: {Ê1, Ê2, Ê3}; as a result Xk = Xk
i Êi

(where Einstein’s summation convention is implied over i). The master element Ω̂e

used in the isoparametric characterization of the approximate element mid-surface

Ω̄e (i.e., ϕe : Ω̂e → Ω̄e ⊂ Ω̄hp) is taken as the standard bi-unit square Ω̂e = [−1,+1]2.

It should be clear that p-refinement offers us an attractive mechanism for reducing

errors in the computational model associated with approximating Ω̄ by Ω̄hp.

At each point of the mid-surface Ω̄e of a given element we define the vectors

aα =
∂X

∂ξα
≡ X,α (6.2)

which are linearly independent and thus form a local basis of the tangent plane. We

follow the customary convention and allow Greek indices to range over 1 and 2 and

Latin indices over 1, 2 and 3. The unit normal vector may be defined as

a3 =
a1 × a2

||a1 × a2||
(6.3)

We see that for each (ξ1, ξ2) ∈ Ω̂e, the vectors ai define a basis for R3. In the current

work, we will be largely unconcerned with a3 and instead utilize a finite element

approximation of the unit normal defined within a given element as

n̂ =
n∑

k=1

ψk(ξ
1, ξ2)n̂k (6.4)

The present formulation, therefore, requires as input the mid-surface locations X and

the unit normals n̂, both evaluated at the finite element nodes.

We are now in a position to characterize the three-dimensional geometry of the

undeformed configuration of a typical shell element B̄e
0 and as a consequence B̄hp

0 (i.e.,
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the finite element approximation of the three-dimensional undeformed shell config-

uration B̄0). Assuming a constant thickness h (not to be confused with the mesh

parameter) we define the position vector in the shell element as

X = Φe(ξ1, ξ2, ξ3) = ϕe(ξ1, ξ2) + ξ3
h

2
n̂ =

n∑
k=1

ψk(ξ
1, ξ2)

(
Xk + ξ3

h

2
n̂k

)
(6.5)

where ξ3 ∈ [−1,+1]. The process of parametrizing B̄e
0 is summarized in Figure 53.
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Fig. 53. The process of approximating the three-dimensional geometry of a shell ele-

ment in the reference configuration based on a isoparametric map from the

parent element to the finite element approximation of the mid-surface followed

by an additional map to account for the shell thickness.

At each point of the shell element B̄e
0 (not necessary on the mid-surface Ω̄e) we

define a set of covariant basis vectors

gi =
∂X

∂ξi
≡ X,i (6.6)
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Using Eq. (6.5) allows us to express the shell basis vectors as

gα = aα + ξ3
h

2
n̂,α, g3 =

h

2
n̂ (6.7)

In Figure 54 we provide an illustration of the vectors aα and gα at points A and B

respectively, in a typical shell element B̄e
0. Note that A resides on the mid-surface Ω̄e,

while B lies directly above A in the direction of the unit normal n̂.
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Fig. 54. Geometry of a typical shell finite element B̄e
0 in the reference configuration.

The basis vectors aα and gα as well as the finite element representation of the

unit normal n̂ are also shown.

The covariant basis vectors gi allow us to write a differential line element in B̄e
0

in terms of the curvilinear coordinates (ξ1, ξ2, ξ3) as

dX = dX1 + dX2 + dX3 = g1dξ
1 + g2dξ

2 + g3dξ
3 (6.8)
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which can be expressed in matrix form as
dX1

dX2

dX3

 = {dξ}T[J ] =


dξ1

dξ2

dξ3



T 
∂X1

∂ξ1
∂X2

∂ξ1
∂X3

∂ξ1

∂X1

∂ξ2
∂X2

∂ξ2
∂X3

∂ξ2

∂X1

∂ξ3
∂X2

∂ξ3
∂X3

∂ξ3

 (6.9)

The quantity [J ] is the Jacobian matrix, which is always invertible. The inverse of

the Jacobian matrix is for our purposes denoted as [J⋆]. Likewise, the determinant

of [J ] is simply referred to as J . It is easy to show that a differential volume element

in B̄e
0 is given as

dB̄e
0 = dX1 · (dX2 × dX3) = Jdξ1dξ2dξ3 (6.10)

We associate with the covariant basis, a dual or contravariant set of basis vectors gi

defined by the relation

gi · gj = δij (6.11)

where δij is the Kronecker delta. The contravariant basis vectors may also be deter-

mined from the following formulas

g1 =
g2 × g3

J
, g2 =

g3 × g1

J
, g3 =

g1 × g2

J
(6.12)

The covariant and contravariant basis vectors may be alternatively defined in terms

of the components of Jacobian matrix and its inverse

gi = JijÊj, gi = J⋆
jiÊj (6.13)

For completeness, we provide the following formulas for evaluating the compo-

nents of [J ]

J11 =
∂X1

∂ξ1
=

n∑
k=1

∂ψk

∂ξ1

(
Xk

1 + ξ3
h

2
n̂k
1

)
(6.14a)
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J12 =
∂X2

∂ξ1
=

n∑
k=1

∂ψk

∂ξ1

(
Xk

2 + ξ3
h

2
n̂k
2

)
(6.14b)

J13 =
∂X3

∂ξ1
=

n∑
k=1

∂ψk

∂ξ1

(
Xk

3 + ξ3
h

2
n̂k
3

)
(6.14c)

J21 =
∂X1

∂ξ2
=

n∑
k=1

∂ψk

∂ξ2

(
Xk

1 + ξ3
h

2
n̂k
1

)
(6.14d)

J22 =
∂X2

∂ξ2
=

n∑
k=1

∂ψk

∂ξ2

(
Xk

2 + ξ3
h

2
n̂k
2

)
(6.14e)

J23 =
∂X3

∂ξ2
=

n∑
k=1

∂ψk

∂ξ2

(
Xk

3 + ξ3
h

2
n̂k
3

)
(6.14f)

J31 =
∂X1

∂ξ3
=
h

2

n∑
k=1

ψkn̂
k
1 (6.14g)

J32 =
∂X2

∂ξ3
=
h

2

n∑
k=1

ψkn̂
k
2 (6.14h)

J33 =
∂X3

∂ξ3
=
h

2

n∑
k=1

ψkn̂
k
3 (6.14i)

Likewise, the components of [J⋆] may be determined as

J⋆
11 = (J22J33 − J23J32)/J (6.15a)

J⋆
12 = (J13J32 − J12J33)/J (6.15b)

J⋆
13 = (J12J23 − J13J22)/J (6.15c)

J⋆
21 = (J23J31 − J21J33)/J (6.15d)

J⋆
22 = (J11J33 − J13J31)/J (6.15e)

J⋆
23 = (J13J21 − J11J23)/J (6.15f)

J⋆
31 = (J21J32 − J22J31)/J (6.15g)

J⋆
32 = (J12J31 − J11J32)/J (6.15h)

J⋆
33 = (J11J22 − J12J21)/J (6.15i)
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where J is of the form

J = J11(J22J33 − J23J32)− J12(J21J33 − J23J31) + J13(J21J32 − J22J31) (6.16)

B. The displacement field and strain measures

We now consider the motion χ(X, t) of the shell from the reference finite element

configuration B̄hp
0 to the current or spatial finite element configuration B̄hp

t . To this end

we recall that the displacement of a material point from the reference configuration

to the current configuration may be expressed in the usual manner as

u(X, t) = χ(X, t)−X = x(X, t)−X (6.17)

We next assume that at any point within a typical shell element B̄e
0, the displacement

vector may be approximated by a Taylor series expansion with respect to the thickness

curvilinear coordinate ξ3

u(X(ξi), t) � u(0)(ξα, t) + ξ3u(1)(ξα, t) +
(ξ3)2

2
u(2)(ξα, t) + · · · (6.18)

where u(j)(ξα, t) = ∂ju(ξi, t)/∂(ξ3)j|ξ3=0.

We wish to truncate the Taylor series approximation for u such that the resulting

shell model is asymptotically consistent with three-dimensional solid mechanics [127];

thereby allowing for the use of fully three-dimensional constitutive equations in the

mathematical model and subsequent numerical implementation. We therefore restrict

the displacement field to the following seven-parameter expansion

u(ξi) = u(ξα) + ξ3
h

2
φ(ξα) + (ξ3)2

h

2
ψ(ξα) (6.19)

where each u(j)(ξα, t) (j = 0, 1 and 2) has been renamed, and for j = 1 and 2, scaled

by some factor of h. For the sake of brevity, we omit the time parameter t from the
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above expressions and the subsequent discussion. The generalized displacements u,

φ and ψ may be expressed as

u(ξα) = ui(ξ
α)Êi, φ(ξα) = φi(ξ

α)Êi, ψ(ξα) = Ψ(ξα)n̂(ξα) (6.20)

The quantity u represents the mid-plane displacement and φ is the so-called difference

vector (which gives the change in the mid-surface director). The seventh parameter

Ψ is included to circumvent spurious stresses in the thickness direction, caused in

the six-parameter formulation by an artificial constant normal strain (a phenomena

referred to as Poisson locking [129]).

The position occupied by a material point belonging to B̄e
0 at the current time

t may be evaluated by substituting the assumed displacement field into Eq. (6.17)

which upon rearrangement yields

x = X+ u = x+ ξ3
h

2
ˆ̄n+ (ξ3)2

h

2
Ψn̂ (6.21)

where x = X + u (a point on the deformed mid-surface) and ˆ̄n = n̂ + φ (a pseudo-

director associated with the deformed mid-surface). It is important to note that

unlike n̂; the director ˆ̄n is in general neither a unit vector nor is it normal to the

deformed mid-surface.

We define the finite element approximation of the displacement field given by

Eq. (6.19) as

u(ξi) =
n∑

k=1

ψk(ξ
1, ξ2)

(
uk + ξ3

h

2
φk + (ξ3)2

h

2
Ψkn̂(ξα)

)
(6.22)

where n̂(ξα) is given by Eq. (6.4). Note that we interpolate Ψ and n̂ separately in the

finite element approximation of ψ (as opposed to interpolating the product Ψn̂ as a

single entity). The derivative of the displacement field with respect to the curvilinear
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coordinates of the element may be expressed as

u,α =
n∑

k=1

∂ψk

∂ξα

[
uk + ξ3

h

2
φk + (ξ3)2

h

2

(
Ψkn̂(ξβ) + n̂kΨ(ξβ)

)]
(6.23a)

u,3 = h
n∑

k=1

ψk(ξ
1, ξ2)

(
1

2
φk + ξ3Ψkn̂(ξβ)

)
(6.23b)

We recall from continuum mechanics that the deformation gradient F may be

defined as

F = (∇0x)
T = x,ig

i = ḡig
i (6.24)

where ḡi = gi+u,i are the covariant basis vectors associated with the deformed finite

element configuration of the three-dimensional shell B̄hp
t . The nabla symbol ∇0 is the

material gradient operator. It should be clear that F is a two-point tensor relating

differential line segments in the material configuration to their associated differential

line segments in the deformed configuration.

We next define the Green-Lagrange strain tensor E as

E =
1

2

(
FT · F− I

)
=

1

2

(
u,i · gj + gi · u,j + u,i · u,j

)
gigj

(6.25)

which relates the difference in the squares of differential spatial and reference config-

uration line segments as

(ds)2 − (dS)2 = dx · dx− dX · dX = 2dX · E · dX (6.26)

The covariant components of the Green-Lagrange strain tensor (i.e., the coefficients

of the second order tensor contravariant bases gigj appearing in Eq. (6.25)) may be

expanded in terms of the thickness coordinate ξ3 as

Eij(ξ
m) = ε

(0)
ij + ξ3ε

(1)
ij + (ξ3)2ε

(2)
ij + (ξ3)3ε

(3)
ij + (ξ3)4ε

(4)
ij (6.27)



195

where ε
(n)
ij = ε

(n)
ij (ξα). In the present formulation we neglect all covariant components

of E that are of higher order than linear in ξ3. The retained covariant components

may be determined as

ε
(0)
αβ =

1

2

(
u,α · aβ + aα · u,β + u,α · u,β

)
(6.28a)

ε
(1)
αβ =

h

4

[
u,α ·

(
n̂,β +φ,β

)
+
(
n̂,α +φ,α

)
· u,β +φ,α · aβ + aα ·φ,β

]
(6.28b)

ε
(0)
α3 =

h

4

[
u,α ·

(
n̂+φ

)
+ aα ·φ

]
(6.28c)

ε
(1)
α3 =

h

2

{
h

4

[
φ,α · n̂+

(
n̂,α +φ,α

)
·φ

]
+
(
aα + u,α

)
·ψ

}
(6.28d)

ε
(0)
33 =

h2

8

(
2n̂+φ

)
·φ (6.28e)

ε
(1)
33 =

h2

2

(
n̂+φ

)
·ψ (6.28f)

We see from the above expressions that in the six-parameter formulation (obtained

by taking ψ = 0) the strain component ε
(1)
33 is identically zero.

C. Constitutive equations

The underlying kinematic assumptions of the adopted shell finite element formula-

tion can be applied in the context of a multitude of material models (e.g., Cauchy

elastic, hyperelastic, viscoelastic, elasto-plastic, etc.). In this work we assume that

the material response remains in the elastic regime. Furthermore, we assume that the

second Piola Kirchhoff stress tensor S is related to the Green-Lagrange strain tensor

E by the following relation

S = � : E (6.29)

where � = Cijklgigjgkgl is the fourth-order elasticity tensor. We require the elasticity

tensor to be independent of the shell deformation. However, we do allow � to be non-
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homogeneous (i.e., a function of X). This frame-indifferent hyperelastic constitutive

model is often called linear elastic (not to be confused with the theory of linear

elasticity). In the numerical implementation, we rely on the following component

representation of the set of constitutive equations

Sij = CijklEkl (6.30)

The adopted material model may also be expressed in matrix form as

S11

S22

S33

S23

S13

S12



=



C1111 C1122 C1133 C1123 C1113 C1112

C1122 C2222 C2233 C2223 C2213 C2212

C1133 C2233 C3333 C3323 C3313 C3312

C1123 C2223 C3323 C2323 C2313 C2312

C1113 C2213 C3313 C2313 C1313 C1312

C1112 C2212 C3312 C2312 C1312 C1212





E11

E22

E33

2E23

2E13

2E12



(6.31)

where the coefficient matrix [Cijkl] appearing in the above expression is the matrix

form of the contravariant components of the elasticity tensor �. It should be evident

that there are in general 21 unique contravariant components of �.

For completeness, we recall that the second Piola Kirchhoff stress tensor S is

defined as

S = JFF
−1 · σ · F−T (6.32)

where σ is the true or Cauchy stress tensor and JF = detF. The symmetry of S

follows from the symmetry of σ.

1. Isotropic shells: homogeneous and functionally graded

We now specialize the assumed constitutive model for use in the context of isotropic

shells. We consider the homogeneous case and also the scenario where the material
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is functionally graded through the thickness of the shell. Homogeneous shells are

abundant and can be found in piping, pressure vessels, ship hulls, large roofs and the

bodies of automobiles. Functionally graded shells on the other hand have been advo-

cated for use in high temperature environments with applications in reactor vessels,

turbines and other machine parts [116]. These materials are typically composed of

metals and ceramics to maximize the strength and toughness properties of the former

and the thermal and corrosion resistance attributes of the latter.

For isotropic materials, the fourth-order elasticity tensor may be expressed as

� = λII+ 2µ� (6.33)

The Lamé parameters λ and µ are related to the Young’s modulus E and Poisson’s

ratio ν by the following expressions

λ =
νE

(1 + ν)(1− 2ν)
(6.34a)

µ =
E

2(1 + ν)
(6.34b)

The quantities I = δijÊiÊj and � = 1
2
(δikδjl + δilδjk)ÊiÊjÊkÊl are the second and

fourth-order identity tensors respectively. These tensors may also be expressed with

respect to the covariant basis vectors gi as

I = G = gijgigj (6.35a)

� =
1

2
(gikgjl + gilgjk)gigjgkgl (6.35b)

where gij = gi · gj are the contravariant components of the Riemannian metric ten-

sor G in the reference configuration. We can therefore express the contravariant

components of � as

Cijkl = λgijgkl + µ(gikgjl + gilgjk) (6.36)
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Although � depends on only the Lamé parameters, the 21 contravariant components

associated with the matrix [Cijkl] are in general distinct from one another.

For the homogeneous case, the Young’s modulus and Poisson’s ratio are constant

throughout the shell structure. For functionally graded structures, we assume that

the shell is composed of two isotropic constituents. In such cases, we allow the Young’s

modulus to vary with respect to the shell thickness coordinate ξ3 as prescribed by

the following smooth function

E(ξ3) = (E+ − E−)f+(ξ3) + E− (6.37)

where

f+(ξ3) =

(
ξ3 + 1

2

)n

(6.38)

The quantities E− and E+ constitute the Young’s moduli at the bottom (ξ3 = −1)

and top (ξ3 = +1) surfaces of the shell respectively. Eq. (6.37) constitutes a power-

law variation of E through the shell thickness (where the non-negative constant n

is the power-law parameter). Note that E− and E+ are recovered throughout the

thickness in the limits where n→ ∞ and n→ 0 respectively. As in the homogeneous

case, functionally graded shells may also be described using Eq. (6.36) if the Lamé

parameters are taken as functions of ξ3.

2. Laminated composite shells

In this work we are also concerned with the numerical simulation of laminated com-

posite shell structures. A composite laminae is a thin sheet (plate or shell like) of

material, typically composed of two distinct constituents, which together possess de-

sirable mechanical properties that cannot be exhibited by the individual materials

acting in bulk alone. A laminated composite shell is a collection of stacked laminae
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(where the stacking sequence is typically prescribed in a manner which maximizes

the desired stiffness of the composite). In our analysis, we treat each laminae as an

orthotropic layer of material. We further assume that for a given structure, perfect

bonding exists between each layer and that the continuum hypothesis holds.

1
X

2
X

3
X

1
Ê

2
Ê

3
Ê

Fig. 55. The mid-surface Ω̄e of a typical high-order spectral/hp shell finite element

(case shown is for a p-level of 8). The unit normals n̂k and tangents t̂k are

also shown at the element nodes.

To simplify the discussion, we initially restrict our attention to a shell composed

of a single orthotopic layer (i.e., one laminae). Next, we define at each node in Ω̄hp

a unit vector t̂ that is tangent to the finite element approximation of the mid-plane.

The discrete tangents are utilized to define a continuous tangent vector field in Ω̄hp.

Within each element, the tangent field is represented using the following standard

interpolation formula

t̂ =
n∑

k=1

ψk(ξ
1, ξ2)̂tk (6.39)

The tangent vector t̂ is prescribed in a manner that allows us to easily construct a

local orthogonal Cartesian basis {ê1, ê2, ê3} associated with the principle directions
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of the orthotropic laminae. In Figure 55 we show the geometry, nodes, unit normals

n̂k and unit tangents t̂k for a typical high-order spectral/hp shell finite element. Note

that the direction of t̂ need not coincide with the direction of either â1 or â2.

We next express the elasticity tensor � for the shell with respect to the local

basis {ê1, ê2, ê3} (which we will soon define) as

� = C̄ijklêiêj êkêl (6.40)

Assuming an orthotropic material model allows us to express the coefficients C̄ijkl in

matrix form as

[C̄ijkl] =



C̄1111 C̄1122 C̄1133 0 0 0

C̄1122 C̄2222 C̄2233 0 0 0

C̄1133 C̄2233 C̄3333 0 0 0

0 0 0 C̄2323 0 0

0 0 0 0 C̄1313 0

0 0 0 0 0 C̄1212


(6.41)

The components of the coefficient matrix [C̄ijkl] may be determined in terms of the

Engineering parameters: E1, E2, E3, ν12, ν13, ν23, G12, G13 and G23 as

[C̄ijkl] =



1
E1

−ν12
E1

−ν13
E1

0 0 0

−ν12
E1

1
E2

−ν23
E2

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12



−1

(6.42)

Note that 9 independent material parameters are required to define the orthotropic

form of the elasticity tensor �.
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We next address construction of the local basis {ê1, ê2, ê3} for a typical shell

element. Without loss of generality we take ê3 = n̂. Next we assume that ê1 may

be obtained locally in terms of a proper finite rotation of the tangent t̂ about the

unit normal n̂, where the angle of rotation is θ. In this work we always define t̂

such that it is sufficient to take θ as constant in Ω̄e and throughout Ω̄hp. Given

the preceding assumptions, we can show from geometry that the local basis for the

principle directions of the material is given as

ê1 = t̂ cos θ + n̂× t̂ sin θ (6.43a)

ê2 = −t̂ sin θ + n̂× t̂ cos θ (6.43b)

ê3 = n̂ (6.43c)

It should be clear that when θ = 0, the in-plane principle basis vectors of the material

reduce to: ê1 = t̂ and ê2 = n̂× t̂. It is important to note that the in-plane material

basis vectors êα are constructed independent from the in-plane natural basis vectors

âα. As a result, we may freely employ unstructured skewed and/or curved quadrilat-

eral finite elements in the numerical discretization of complex shell structures. Key

to the success of the present formulation is an appropriate prescription of the discrete

tangent vector t̂ and angle of rotation θ. In Figure 56 we show the unit normal n̂,

unit tangent t̂, rotation angle θ and local material basis vectors êi at a point on the

mid-surface of a typical shell element.

In the numerical implementation we require the contravariant components Cijkl

of the elasticity tensor �. These may be obtained by contracting Eq. (6.40) with

gigjgkgl which yields

Cijkl = TimTjnTkpTlqC̄mnpq (6.44)
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where the components of Tij are defined as

Tij = gi · êj = J⋆
kiĒjk (6.45)

and Ējk = êj ·Êk. We see that evaluation of Cijkl requires 5 matrix multiplications. In

the actual numerical implementation, however, we have generated the C++ code for

evaluating the 21 independent coefficients in Cijkl using the symbolic algebra software

Maple. The expressions are quite involved and are hence not provided in the text of

this dissertation.

1
X

2
X

3
X

1
Ê

2
Ê

3
Ê

t̂

1
ê

2
ê

3
ˆ ˆ=e n

θ

Fig. 56. The unit normal n̂, unit tangent t̂, rotation angle θ and local basis vectors

{ê1, ê2, ê3} at a point on the mid-surface Ω̄e of a typical shell finite element.

The above discussion has been limited to the analysis of composite shells com-

posed of a single orthotropic layer. For multi-layered composites, we define a unit

tangent vector t̂ along with a set of orientation angles θ = (θ1, . . . , θNL) associated

with each ply (where NL is the total number of layers). We number each layer in

the laminated composite in order from the bottom ply to the top laminae. Within a

given layer (say layer q) we obtain the local material basis vectors {êq1, ê
q
2, ê

q
3} using θq
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in place of θ in Eq. (6.43). Once the local basis vectors are known, we may determine

the components Cijkl throughout the qth ply using Eq. (6.44).

D. Weak formulation and discrete numerical implementation

The finite element model is developed using the standard weak-form Galerkin proce-

dure, which is equivalent to the principle of virtual displacements. We restrict our

formulation to static or quasi-static analysis, and therefore omit the inertial terms.

The principle of virtual work may be stated as follows: find Φ ∈ V such that for all

δΦ ∈ W the following weak statement holds

G(δΦ,Φ) = δW I(δΦ,Φ) + δWE(δΦ,Φ) ≡ 0 (6.46)

The quantities δW I and δWE are the internal and external virtual work, respectively.

These quantities may be defined with respect to the undeformed configuration as

δW I =

∫
B0

δE : SdB0 (6.47a)

δWE = −
∫
B0

δu · ρ0b0dB0 −
∫
Γσ

δu · t0ds (6.47b)

where ρ0 is the density, b0 is the body force and t0 is the traction vector (which

are all expressed with respect to the reference configuration). The function space of

admissible configurations V and linear vector space of admissible variations W are

defined for the continuous problem as

V =
{

Φ =(u,φ,Ψ) : Φ ∈ H1(Ω)×H1(Ω)×H1(Ω), Φ = Φp on ΓD
}

(6.48a)

W =
{
δΦ =(δu, δφ, δΨ) : δΦ ∈ H1(Ω)×H1(Ω)×H1(Ω), δΦ = 0 on ΓD

}
(6.48b)

where ΓD is the part of the boundary on which Φ is specified.

In the numerical implementation, we restrict Φ and δΦ to their appropriate high-
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order spectral/hp finite element sub-spaces: Φhp ∈ Vhp and δΦhp ∈ Whp. This results

in the following discrete variation problem: find Φhp ∈ Vhp such that

G(δΦhp,Φhp) = δW I(δΦhp,Φhp) + δWE(δΦhp,Φhp) ≡ 0 ∀ δΦhp ∈ Whp (6.49)

We refer the reader to Chapter II for details on the high-order spectral/hp basis

functions. Evaluation of the internal virtual work statement for the eth element of

the discrete problem yields

δWe
I =

∫
Be
0

(δε(0) + ξ3δε(1)) : � : (ε(0) + ξ3ε(1))dBe
0

=

∫
Ω̂e

∫ +1

−1

(
δε

(0)
ij + ξ3δε

(1)
ij

)
Cijkl

(
ε
(0)
kl + ξ3ε

(1)
kl

)
Jdξ3dΩ̂e

=

∫
Ω̂e

[
Aijklδε

(0)
ij ε

(0)
kl + Bijkl

(
δε

(0)
ij ε

(1)
kl + δε

(1)
ij ε

(0)
kl

)
+ Dijklδε

(1)
ij ε

(1)
kl

]
dΩ̂e

(6.50)

where
∫
Ω̂e ( · )dΩ̂e =

∫ +1

−1

∫ +1

−1
( · )dξ1dξ2. The quantities Aijkl, Bijkl and Dijkl are the

contravariant components of the effective extensional, extensional-bending coupling

and bending fourth-order stiffnesses respectively. The components may be determined

as

{Aijkl,Bijkl,Dijkl} =

∫ +1

−1

{1, ξ3, (ξ3)2}CijklJdξ3 (6.51)

It is crucial to note that the stiffness components have been systematically defined

such that they include the Jacobian determinant J . In the computer implementation,

we perform the above integration numerically using the Gauss-Legendre quadrature

rule (with 50 quadrature points taken along the thickness direction of each laminae).

Therefore, no thin-shell approximating assumptions are imposed on either J or Cijkl

in the finite element model.

The external virtual work consists of body forces and tractions. For each element,

we decompose the boundary of the shell into top Γe
σ,+, bottom Γe

σ,− and lateral Γe
σ,S

surfaces. As a result, the external virtual work for a typical shell element may be
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expressed as

δWe
E = −

∫
Be
0

δu · ρ0bdBe
0 −

∫
Γe
σ

δu · t0ds

= −
∫
Be
0

δu · ρ0bdBe
0 −

∫
Γe
σ,+

δu · t+0 ds+ −
∫
Γe
σ,−

δu · t−0 ds−

−
∫
Γe
σ,S

δu · tS0 dsS

(6.52)

The traction boundary conditions along the top and bottom of the shell element may

be expressed as∫
Γe
σ,+

δu · t+0 ds+ =

∫
Ω̂e

n∑
k=1

ψk(ξ
1, ξ2)

(
δuk +

h

2
δφk +

h

2
δΨkn̂

)
· t+0 J+dΩ̂e (6.53a)

∫
Γe
σ,−

δu · t−0 ds− =

∫
Ω̂e

n∑
k=1

ψk(ξ
1, ξ2)

(
δuk − h

2
δφk +

h

2
δΨkn̂

)
· t−0 J−dΩ̂e (6.53b)

where the following quantities have been used:

J+ = ||g+
1 × g+

2 ||, J− = ||g−
1 × g−

2 || (6.54a)

g+
α = gα(ξ

1, ξ2,+1), g−
α = gα(ξ

1, ξ2,−1) (6.54b)

1. The nonlinear solution procedure

In general, the discrete virtual work statement constitutes a highly nonlinear set of

algebraic equations. As in previous chapters, we employ Newton’s method in the

solution of the resulting equations. To facilitate a numerical solution for problems

involving very large deformations, we further imbed the iterative Newton procedure

within an incremental load stepping algorithm. For post-buckling analysis we employ

a cylindrical arc-length solution procedure.
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a. The basic iterative Newton procedure

The basic Newton method proceeds as follows: given a characteristic solution state

Φn
hp (not necessarily satisfying the virtual work statement) we seek to find ∆Φn+1

hp

satisfying the following linearized expression

G(δΦhp,Φ
n
hp) +DG(δΦhp,Φ

n
hp)[∆Φn+1

hp ] = 0 (6.55)

where ∆Φn+1
hp = Φn+1

hp − Φn
hp. To simplify the present discussion, we introduce the

following notation for the discrete quantities: Φ̂n = Φn
hp, δΦ̂ = δΦhp and ∆Φ̂n+1 =

∆Φn+1
hp . Next, assuming that the applied loads are deformation independent, the

discrete tangent operator DG(δΦhp,Φ
n
hp)[∆Φn+1

hp ] may be evaluated within a typical

element as

DGe(δΦ̂, Φ̂n)[∆Φ̂n+1] = DGe
G(δΦ̂, Φ̂

n)[∆Φ̂n+1] +DGe
M(δΦ̂, Φ̂n)[∆Φ̂n+1] (6.56)

The geometric tangent operator DGe
G(δΦ̂, Φ̂

n)[∆Φ̂n+1] and material tangent operator

DGe
M(δΦ̂, Φ̂n)[∆Φ̂n+1] are determined within the element as

DGe
G(δΦ̂, Φ̂

n)[∆Φ̂n+1] =

∫
Be
0

(
Dδε

(0)
ij [∆Φ̂n+1] + ξ3Dδε

(1)
ij [∆Φ̂n+1]

)
SijdBe

0 (6.57a)

=

∫
Ω̂e

(
Dδε

(0)
ij [∆Φ̂n+1]N ij +Dδε

(1)
ij [∆Φ̂n+1]M ij

)
dΩ̂e

DGe
M(δΦ̂, Φ̂n)[∆Φ̂n+1] =

∫
Be
0

(
δε

(0)
ij + ξ3δε

(1)
ij

)
Cijkl

(
Dε

(0)
kl [∆Φ̂n+1] (6.57b)

+ ξ3Dε
(1)
kl [∆Φ̂n+1]

)
dBe

0

=

∫
Ω̂e

[(
Aijklδε

(0)
ij + Bijklδε

(1)
ij

)
Dε

(0)
kl [∆Φ̂n+1]

+
(
Bijklδε

(0)
ij + Dijklδε

(1)
ij

)
Dε

(1)
kl [∆Φ̂n+1]

]
dΩ̂e
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The contravariant components of the internal stress resultants N ij andM ij appearing

in the discrete tangent operator may be evaluated as

N ij =

∫ +1

−1

SijJdξ3 =
(
Aijklε

(0)
kl + Bijklε

(1)
kl

)∣∣
Φhp=Φ̂n (6.58a)

M ij =

∫ +1

−1

ξ3SijJdξ3 =
(
Bijklε

(0)
kl + Dijklε

(1)
kl

)∣∣
Φhp=Φ̂n (6.58b)

Upon substitution of the discrete finite element solution variables and trial func-

tions into the linearized virtual work statement, we arrive at a system of highly

complex equations for the eth element in the finite element model of the form

[Ke](n){δ∆e}(n+1) = {F e}(n) (6.59)

where [Ke](n) is the element tangent coefficient matrix, {F e}(n) is the element force

vector and {δ∆e}(n+1) = {∆e}(n+1) − {∆e}(n) is the incremental solution. Due to the

incredible complexity of the above system of equations (there are 22,050 unique terms

in the discrete tangent operator DGe(δΦ̂, Φ̂n)[∆Φ̂n+1]), the symbolic algebra software

Maple has been utilized in the construction of [Ke](n) and {F e}(n). As discussed in

Chapter II, we partition Eq. (6.59) into the following equivalent form
[K11](n) · · · [K17](n)

...
. . .

...

[K71](n) · · · [K77](n)



{δ∆(1)}(n+1)

...

{δ∆(7)}(n+1)

 =


{F (1)}(n)

...

{F (7)}(n)

 (6.60)

The components of each element sub-coefficient matrix and force vector may be ex-

pressed as

K
αβ(n)
ij =

∫
Ω̂e

2∑
l=0

2∑
m=0

Cαβ
lm (X(ξ1, ξ2), n̂(ξ1, ξ2),Φn

hp(ξ
1, ξ2))S lm

ij (ξ1, ξ2)dΩ̂e (6.61a)

F
α(n)
i =

∫
Ω̂e

2∑
l=0

Fα
l (X(ξ1, ξ2), n̂(ξ1, ξ2),Φn

hp(ξ
1, ξ2))T l

i (ξ
1, ξ2)dΩ̂e (6.61b)
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where i, j = 1, . . . , (p+ 1)2 and α, β = 1, . . . , 7. The functions S lm
ij and T l

i are of the

form

S00
ij = ψiψj, S0m

ij = ψi
∂ψj

∂ξm
, S l0

ij =
∂ψi

∂ξl
ψj, S lm

ij =
∂ψi

∂ξl
∂ψj

∂ξm
(6.62a)

T 0
i = ψi, T 1

i =
∂ψi

∂ξ1
, T 2

i =
∂ψi

∂ξ2
(6.62b)

where l and m each range from 1 to 2. The coefficients Cαβ
lm and Fα

l (which are in-

dependent of i and j) are quite involved; in the numerical implementation we have

obtained these quantities symbolically using Maple and have then translated the re-

sulting expressions into C++ code. At this point it is worth noting that interpolating

Ψ and n̂ separately in the finite element approximation of ψ (refer to Eq. (6.22)) is

crucial in insuring that Cαβ
lm and Fα

l are indeed independent of the i and j indices in

K
αβ(n)
ij and F

α(n)
i .

The components of the element coefficient matrix and force vector are obtained

numerically using the Gauss-Legendre quadrature rule, where p+1 quadrature points

are taken in each coordinate direction of Ω̂e. At a given integration point (ξ1I , ξ
2
J) ∈ Ω̂e

we evaluate numerically, based on Eq. (6.51), the components of Aijkl, Bijkl and Dijkl.

Once the effective stiffnesses are known we determine Cαβ
lm (ξ1I , ξ

2
J) and Fα

l (ξ
1
I , ξ

2
J) and

then apply the summation procedure of the Gauss-Legendre quadrature rule to the

components of K
αβ(n)
ij and F

α(n)
i . Repeating this process at each quadrature point in

Ω̂e insures an efficient numerical implementation.

Upon application of the global finite element assembly operator A, discussed in

detail in Chapter II, we arrive at the following global system of linearized algebraic

equations

[K](n){δ∆}(n+1) = {F}(n) (6.63)

which may be constructed and solved recurrently for {δ∆}(n+1) until a pre-defined
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nonlinear convergence criterion has been satisfied. As part of the global assembly

process, we employ element-level static condensation (see Chapter II). It is worth

mentioning that in terms of system memory requirements (associated with construct-

ing and storing the sparse form of [K](n)) our present high-order spectral/hp finite

element formulation for shells is very much comparable with standard low-order shell

finite element implementations. Furthermore, unlike many low-order discretizations,

the present shell finite element formulation is completely displacement-based. As

demonstrated in Section E, highly accurate numerical results may be obtained using

the proposed shell element without the need for solution stabilization (e.g., reduced

integration, assumed strain and/or mixed interpolation).

b. The incremental/iterative Newton and cylindrical arc-length procedures

We now discuss the incremental/iterative Newton procedure as well as the cylin-

drical arc-length method. These nonlinear solution strategies are necessary when

solving problems involving very large deformations and/or rotations. In both solu-

tion schemes, we assume that the external loads are applied in increments. Next, we

express the discrete weak formulation, given by Eq. (6.49), at the current load step

t+∆t as

t+∆t{R} = t+∆t{F int} − t+∆tλ{F ext} ≡ 0 (6.64)

where t+∆t{F int} is a column vector obtained from the internal virtual work and

{F ext} is a constant vector (independent of the load step) constructed from the ex-

ternally applied virtual work. The quantity t+∆tλ is the load factor associated with

the current load step. Linearizing the above expression using Newton’s method yields

t+∆t[K](n){δ∆}(n+1) = −t+∆t{R}(n) + δλ(n+1){F ext} (6.65)
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where {δ∆}(n+1) and δλ(n+1) are defined as

{δ∆}(n+1) = t+∆t{∆}(n+1) − t+∆t{∆}(n) (6.66a)

δλ(n+1) = t+∆tλ(n+1) − t+∆tλ(n) (6.66b)

In the incremental/iterative Newton solution procedure, t+∆tλ is prescribed by

the user, and hence δλ(n+1) = 0. In this case we solve for a sequence of shell con-

figurations {k∆tΦhp}Nk=1 associated with the prescribed load parameters {k∆tλ}Nk=1.

In solving for configuration t+∆tΦhp, the coefficient matrix t+∆t[K](0) and residual

t+∆t{R}(0) are constructed using the converged solution tΦhp from load step t.

For the vast majority of nonlinear problems, the incremental/iterative Newton

procedure is adequate. However, in the numerical simulation of the post-buckling of

shell structures, such a naive strategy may fail to trace the equilibrium path through

the limit points. For these problems we employ an arc-length procedure, wherein a

constraint equation is proposed to control the load factor associated with a given load

step. For general details on the historical development of the arc-length method we

refer to the work of Riks [139, 140] and Crisfield [141] (detailed explanations of the

method may also be found in the texts of Bathe [25] and Reddy [50]).

In the arc-length solution procedure, we introduce the following additive decom-

position of the incremental solution

{δ∆}(n+1) = {δ∆̄}(n+1) + δλ(n+1){δ∆̃}(n+1) (6.67)

Using the above expression along with Eq. (6.65) allows us to obtain the following

two sets of linearized equations for {δ∆̄}(n+1) and {δ∆̃}(n+1)

t+∆t[K](n){δ∆̄}(n+1) = −t+∆t{R}n (6.68a)

t+∆t[K](n){δ∆̃}(n+1) = {F ext} (6.68b)



211

Once the above equations have been solved (and assuming of course that δλ(n+1)

is known), we may obtain {δ∆}(n+1) using Eq. (6.67). Next we define the solution

increments t+∆t{∆̂}(n+1) and t+∆tλ̂(n+1), between configurations t+∆tΦ
(n+1)
hp and tΦhp,

as

t+∆t{∆̂}(n+1) = t+∆t{∆}(n+1) − t{∆} (6.69a)

= t+∆t{∆̂}(n) + {δ∆̄}(n+1) + δλ(n+1){δ∆̃}(n+1)

t+∆tλ̂(n+1) = t+∆tλ(n+1) − tλ (6.69b)

= t+∆tλ̂(n) + δλ(n+1)

With the above formulas in mind, we are able to define the standard spherical arc-

length constraint equation for δλ(n+1) as

t+∆tK(n+1) = ||t+∆t{∆̂}(n+1)||2 + β(t+∆tλ̂(n+1))2||{F ext}||2 − (t+∆t∆L)2

= a1(δλ
(n+1))2 + a2δλ

(n+1) + a3 = 0

(6.70)

where t+∆t∆L is the so-called arc-length, β is a scaling parameter and || · || denotes

the Euclidean norm. The constraint t+∆tK(n+1) is a quadratic equation in δλ(n+1)

with coefficients: a1, a2 and a3 given as

a1 = ||{δ∆̃}(n+1)||2 + β||{F ext}||2 (6.71a)

a2 = 2
[(

t+∆t{∆̂}(n) + {δ∆̄}(n+1)
)T{δ∆̃}(n+1) + βt+∆tλ̂(n)||{F ext}||2

]
(6.71b)

a3 = ||t+∆t{∆̂}(n) + {δ∆̄}(n+1)||2 + β(t+∆tλ̂(n))2||{F ext}||2 − (t+∆t∆L)2 (6.71c)

The two possible solutions for the constraint equation may be expressed as

δλ
(n+1)
1 =

−a2 +
√
a22 − 4a1a3

2a1
, δλ

(n+1)
2 =

−a2 −
√
a22 − 4a1a3

2a1
(6.72)

We select δλ
(n+1)
i such that the inner product of t+∆t{∆̂}(n+1) with t+∆t{∆̂}(n) is
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positive. This insures that we do not march backwards along the previously computed

solution path. In the event that both δλ
(n+1)
1 and δλ

(n+1)
2 yield positive inner products

of t+∆t{∆̂}(n+1) with t+∆t{∆̂}(n), we select {δ∆}(n+1) such that t+∆t{∆̂}(n+1) is closest

to t+∆t{∆̂}(n) in the Euclidean metric. For the first iteration of a given load step, we

select t+∆t{∆̂}(1) such that the inner product of t+∆t{∆̂}(1) with t{∆̂} is positive [142]

(where t{∆̂} is the converged incremental solution from load step t). In the numerical

implementation we take β = 0, which results in the well-known cylindrical arc-length

procedure (we refer to Crisfield [141] for a discussion on the importance of β).

To initialize the arc-length solution method (at the first load step: ∆t and initial

iteration: n = 0) we take ∆tλ(0) = 0, prescribe an appropriate value for δλ(1) (typically

we define {F ext} such that it is sufficient to take δλ(1) = 1) and then solve Eq. (6.68b)

for {δ∆̃}(1). We then take {δ∆}(1) = δλ(1){δ∆̃}(1) and define the arc-length ∆t∆L for

the subsequent nonlinear iterations as

∆t∆L = δλ(1)||δ∆̃(1)|| (6.73)

To improve the efficiency of the arc-length method, we adjust the arc-length

t+∆t∆L depending on how many iterations were required to achieve nonlinear solution

convergence at the immediate previous load step t. We adopt the following formula

from the literature [142]

t+∆t∆L = t∆L
√

t+∆tI/tI (6.74)

where tI is the actual number of iterations required for convergence at the immediate

previous load step and t+∆tI is the desired number of iterations required to satisfy

the convergence criterion at the current load step. We typically take 4 ≤ t+∆tI ≤ 6,

which naturally reduces the arc-length in the vicinity of limit points and increases

the arc-length whenever nonlinear convergence is quickly achieved.
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E. Numerical examples: verification benchmarks

In this section we present numerical results for various standard shell benchmark

problems. The problems include various plates and cylinders, a hemisphere with

an 18◦ hole and a pinched hyperboloidal shell. The problems have been selected to

showcase the capabilities of the proposed shell finite element formulation in solving

some of the more challenging finite deformation problems for elastic shells found in

the literature. We are particularly interested in comparing solutions obtained using

the present shell finite element formulation with the numerical results reported by

Arciniega and Reddy [124], wherein a tensor-based shell finite element model was

adopted. In this previous research, a given shell geometry was prescribed exactly

at the quadrature points while high-order Lagrange type basis functions (with equal

spacing of the element nodes) were utilized for the numerical solution.

We construct the finite element approximation of the undeformed mid-surface

geometry for each example problem by mapping the nodal positions of a conforming

finite element discretization of ω̄ ⊂ R2 (a closed and bounded region) onto the nodal

locations associated with Ω̄hp ⊂ R3. The coordinates of R2 are denoted as (ω1, ω2)

and unless otherwise stated we take ω̄ = [0, 1]× [0, 1]. The discrete mapping used to

characterize the nodal coordinates of Ω̄hp is also employed to prescribe the nodal values

for n̂ and t̂. A convergence criterion of 10−6 is adopted in all numerical examples.

1. A cantilevered plate strip under an end load

As a first example problem, we consider the mechanical response of a cantilevered

plate strip subjected to a distributed end shear load q as shown in Figure 57, where

L = 10, b = 1 and h = 0.1. We consider an isotropic plate and also a multi-layered
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composite laminate with material properties given as

Isotropic : E = 1.2× 106, ν = 0.0 (6.75a)

Orthotropic :


E1 = 1.0× 106, E2 = E3 = 0.3× 106

G23 = 0.12× 106, G13 = G12 = 0.15× 106

ν23 = 0.25, ν13 = ν12 = 0.25

(6.75b)

The isotropic problem has been considered by many authors (see for example Refs.

[143, 144, 145, 146, 147, 148, 149]), while a composite version of the problem has been

proposed recently by Arciniega [150].

L

h

b
X
1

X
2

X
3

q

Fig. 57. A cantilevered plate strip subjected at its end to a vertically applied shear

force.

We employ a regular finite element mesh consisting of 4 elements, with the p-level

taken as 4. The unit normal and unit tangent vectors are prescribed as: n̂ = Ê3 and

t̂ = Ê1. In Figure 58 we show the computed axial and vertical deflections of the plate

tip for the isotropic case. The calculated deflections are in excellent agreement with

the numerical results reported by Sze et al. [149]. In Figure 59 we trace the transverse

tip deflections vs. the applied load q for four different lamination schemes. We see

that the stacking sequence (90◦/0◦/90◦) yields the most flexible response while the

(0◦/90◦/0◦) laminate exhibits the greatest stiffness. As expected, the non-symmetric
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Fig. 58. Tip deflections vs. shear load q for an isotropic cantilevered plate strip under

end loading.
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(30/-60/-60/30)

(0/90/0)

(90/0/90)

Fig. 59. Vertical tip deflections u3 vs. shear load q for laminated composite cantilevered

plate strips under end loading.
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stacking sequence (-45◦/45◦/-45◦/45◦) also leads to lateral deflection of the plate in

the direction of the X2 coordinate. The composite plate results compare nicely with

the results reported by Arciniega [150]. For completeness, we show in Figure 60 the

undeformed and various deformed mid-surface configurations of the isotropic plate

strip.

Y

Z

X

Fig. 60. Undeformed and various deformed mid-surface configurations of an isotropic

cantilevered plate strip subjected at its end to a vertical shear force

(q = 0.4, 1.2, 2, 4, 10 and 20).

2. Post-buckling of a plate strip

In this next example we wish to determine the post-buckling behavior of an isotropic

plate strip subjected to an end compressive load q as shown in Figure 61. The material

properties for the problem are those employed by Massin and Al Mikdad [151], given

as

E = 2.0× 1011, ν = 0.3 (6.76)
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In addition, the geometric parameters are prescribed as L = 0.5, b = 0.075 and

h = 0.0045. The analytical solution, first obtained by Leonhard Euler, may be found

in the well-known text on the linearized theory of elasticity by Timoshenko [152].

L

h

b
X
1

X
2

X
3

q

Fig. 61. A cantilevered plate strip subjected at its end to a compressive axial force.

To instigate post-buckling behavior of the plate beyond the limit point, we intro-

duce a perturbation technique, wherein the load is prescribed slightly out-of-plane at

an angle of 1/1000 radians (see Massin and Al Mikdad [151] for a similar approach).

In Figure 62 we trace the axial and transverse deflections of the plate tip vs. the

externally applied load P , where P is the net resultant force associated with the dis-

tributed load q. We also show in this figure the Euler-Bernoulli beam theory based

critical buckling load Pcr = EI(π/2L)2 = 1124.21, where I = bh3/12 is the second

moment of area about the X2 axis. We see that post-buckling occurs in the numerical

simulation in the immediate vicinity of the critical load Pcr. We find that our com-

puted tip deflections are in excellent agreement with the numerical results reported by

Arciniega and Reddy [124]. In Figure 63 we further show the undeformed and various

post-buckled mid-surface configurations of the plate strip. Although the cylindrical

arc-length method may be employed for this problem, the reported results have been

obtained using the incremental/iterative Newton procedure. This is admissible since

the applied load is non-decreasing when traversing the limit point.
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tip deflections

P
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critical load

Fig. 62. Tip deflections vs. compressive load P for the cantilevered plate strip (a mesh

of 4 elements with the p-level taken as 8 has been employed).

Y

Z

X

Fig. 63. Undeformed and various post-buckled deformed mid-surface configurations of

the axially loaded cantilevered plate strip (P = 1,125, 1,250, 2,000, 3,000,

4,000, 5,000, 6,000, 7,000).
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3. A slit annular plate under an end shear force

We now examine a plate problem whose geometry cannot be exactly characterized

in terms of the isoparametric map given in Eq. (6.1). The problem consists of a slit

cantilevered annular plate as shown in Figure 64 that is subjected to a line shear load

q at its free end. We take Ri = 6, Ro = 10 and h = 0.03. We consider an isotropic

plate and also a multi-layered composite laminate, where the material properties are

taken as

Isotropic : E = 21.0× 106, ν = 0.0 (6.77a)

Orthotropic :


E1 = 20.0× 106, E2 = E3 = 6.0× 106

G23 = 2.4× 106, G13 = G12 = 3.0× 106

ν23 = 0.25, ν13 = ν12 = 0.3

(6.77b)

Numerical solutions for the isotropic case may be found in Refs. [126, 153, 154, 155,

156, 148, 149] among others, while a laminated composite version of the problem has

been solved by Arciniega and Reddy [124].

X
1

X
2

X
3

q

h

Ro

Ri

B

A

Fig. 64. A cantilevered slit annular plate subjected at its end to a vertical shear force.
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We employ a finite element mesh consisting of 4 elements with the p-level taken

as 8. The nodal coordinates of the mid-surface Ω̄hp are obtained using the following

formula

X = [Ri + (Ro −Ri)ω
1][cos(2πω2)Ê1 + sin(2πω2)Ê2] (6.78)

The unit normal vector is given as n̂ = Ê3 and the unit tangent vector (used for the

laminated composite problem) is defined at the nodes as

t̂ = cos(2πω2)Ê1 + sin(2πω2)Ê2 (6.79)

Each numerical simulation is conducted using the incremental/iterative Newton pro-

cedure with 80 load steps.

The transverse tip deflections vs. the net applied force P = (Ro −Ri)q at points

A and B are shown for the isotropic case in Figure 65. The computed deflections

agree very well with the tabulated displacement values reported by Sze et al. [149].

In Figure 66 we trace the tip deflections at point B vs. the applied load P for four

distinct lamination schemes. Our computed results are found to be in excellent agree-

ment with the displacements reported by Arciniega and Reddy [124] for each set of

stacking sequences. In Figure 67 we show the undeformed and various deformed mid-

surface configurations of the isotropic plate and the (-45◦/45◦/-45◦/45◦) laminated

composite structure. Clearly, both structures undergo very large deformations which

are qualitatively quite similar.
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Fig. 65. Tip deflections at points A and B vs. shear force P for the isotropic slit annular

plate.
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Fig. 66. Vertical tip deflections u3 at point B vs. shear force P for various laminated

composite slit annular plates.
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Fig. 67. Undeformed and various deformed mid-surface configurations of two annular

plates: (a) an isotropic plate, where P = 0.16, 0.32, 0.64, 1.28, 1.92, 2.56 and

3.20 and (b) a laminated composite plate with (-45◦/45◦/-45◦/45◦) stacking

sequence, where P = 0.09, 0.18, 0.36, 0.72, 1.08, 1.44 and 1.80.

4. A cylindrical panel subjected to a point load

We next examine the mechanical response of various thin cylindrical rooflike panels,

each subjected to a point force P as shown in Figure 68. Variants of this problem are

found throughout the literature (see for example Refs. [143, 146, 153, 154, 147, 124]

among others) and are especially popular on account of the snap-through behavior.

In the present example we take α = 0.1 rad., a = 508 mm and R = 2,540 mm

(where R is the radius of the undeformed mid-surface). We perform a parametric

study by considering the following three cases for the shell thickness: h = 25.4, 12.7

and 6.35 mm. We investigate isotropic, laminated composite and functionally graded

shell configurations with material properties given as

Isotropic : E = 3,102.75 N/mm, ν = 0.3 (6.80a)
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Orthotropic :


E1 = 3,300 N/mm, E2 = E3 = 1,100 N/mm

G23 = 440 N/mm, G13 = G12 = 660 N/mm

ν23 = 0.25, ν13 = ν12 = 0.25

(6.80b)

Functionally graded:

 E− = 70 GPa, E+ = 151 GPa

ν− = 0.3, ν+ = 0.3
(6.80c)

For the laminated composite shell problems, we consider the following lamination

schemes: (90◦/0◦/90◦), (0◦/90◦/0◦), (-45◦/45◦/-45◦/45◦) and (30◦/-60◦/-60◦/30◦).
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Fig. 68. A shallow cylindrical panel subjected at its center to a vertical point load.

The finite element nodal values for the mid-surface coordinates and the unit

normal vector are obtained using the following formulas

X =
a

2
ω1Ê1 +R[sin(αω2)Ê2 + cos(αω2)Ê3] (6.81a)

n̂ = sin(αω2)Ê2 + cos(αω2)Ê3 (6.81b)
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where the full physical domain may be parametrized by taking ω̄ = [−1, 1]2. The

unit tangent vector is prescribed as t̂ = Ê1. With the exception of the angled-ply

laminates (-45◦/45◦/-45◦/45◦) and (30◦/-60◦/-60◦/30◦), all numerical simulations are

conducted using one quarter of the physical domain by taking ω̄ = [0, 1]2 and invoking

appropriate symmetry boundary conditions. We employ a uniform 2 × 2 mesh for

the quarter model and a 4 × 4 discretization for the full domain using a p-level of

4. Along the hinged edges, we take the nodal translations and X1 component of the

difference vector as zero.
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Fig. 69. Vertical deflection of a shallow isotropic cylindrical panel under point loading

(case shown is for h = 25.4 mm).

In Figure 69 we show the deflection of the isotropic shell at point A vs. the

applied load P for the case where h = 25.4 mm. The results, which agree strongly

with those reported by Arciniega [150], have been obtained using the incremental/it-

erative Newton procedure. In Figures 70 through 73 we trace the center deflections
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vs. P for the isotropic and laminated composite panels for the cases where h = 12.7

and 6.35 mm. Each numerical simulation has been conducted using the cylindri-

cal arc-length method. The results are in excellent agreement with the tabulated

values given by Sze et al. [149]; and for the angled-ply laminates, the solutions pre-

sented by Arciniega and Reddy [124]. It is evident that decreasing the shell thick-

ness greatly increases the complexity of the equilibrium path associated with the

arc-length based numerical solution. For example, we observe from Figures 72 and

73 that laminates (0◦/90◦/0◦), (-45◦/45◦/-45◦/45◦) and (30◦/-60◦/-60◦/30◦) exhibit

highly involved equilibrium paths when h = 6.35 mm.

Numerical results for metal-ceramic functionally graded panels, for the cases

where h = 12.7 and 6.35 mm, are shown in Figures 74 and 75. The metal (aluminum)

is taken as the bottom material and the ceramic (zirconia) as the top constituent, with

the elastic properties given in Eq. (6.80c). As in the isotropic and laminated compos-

ite cases, the complexity of the equilibrium paths of the functionally graded panels

increases as the shell thickness h is reduced. We adopt the cylindrical arc-length pro-

cedure and vary the power-law parameter n to obtain the numerical solutions. The

results shown in Figures 74 and 75 are visually in unison with the deflection curves

provided by Arciniega and Reddy [124].

An artifact of the snap-through phenomena is the mathematical existence of mul-

tiple solution configurations for certain loading scenarios. For example, the 6.35 mm

thick laminate panel with stacking sequence (0◦/90◦/0◦) possesses 5 equilibrium con-

figurations for the case where P = 0 kN. These configurations (including the unde-

formed configuration) are shown in Figure 76, from left to right and top to bottom, in

the order in which they occur in traveling along the equilibrium path (shown in Figure

72). Further mathematical analysis (which is beyond the scope of this dissertation)

is required to assess the stability of each solution configuration.
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Fig. 70. Vertical deflection of an isotropic and laminated composite shallow cylindrical

panels under point loading (cases shown are for h = 12.7 mm).
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Fig. 71. Vertical deflection of an isotropic and a laminated composite shallow cylin-

drical panel under point loading (cases shown are for h = 6.35 mm).
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Fig. 72. Vertical deflection of a laminated composite shallow cylindrical panel under

point loading (case shown is for h = 6.35 mm).
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Fig. 73. Vertical deflection of laminated composite shallow cylindrical panels under

point loading (cases shown are for h = 6.35 mm).
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Fig. 74. Vertical deflection of functionally graded metal-ceramic shallow cylindrical

panels under point loading (cases shown are for h = 12.7 mm).
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Fig. 75. Vertical deflection of functionally graded metal-ceramic shallow cylindrical

panels under point loading (cases shown are for h = 6.35 mm).
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Fig. 76. Undeformed and various deformed mid-surface configurations of the

(0◦/90◦/0◦) stacking sequence laminated composite shallow cylindrical panel

(cases shown are for h = 6.35 mm and P = 0 kN). The vertical component of

each mid-surface configuration has been magnified by a factor of 4.
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5. Pull-out of an open-ended cylindrical shell

In this example we consider the mechanical deformation of an open-ended cylinder,

as shown in Figure 77, subjected to two pull-out point forces P . Unlike the previous

example, in this problem we apply the loads such that the shell undergoes very large

displacements and rotations. As a result, this problem constitutes a severe test of

shell finite element formulations and has been addressed in Refs. [153, 155, 156, 148,

149, 124] among others. The isotropic material properties are taken as

E = 10.5× 106, ν = 0.3125 (6.82)

The geometric parameters are taken as: L = 10.35, h = 0.094 and R = 4.953 (where

we have taken R as the radius of the undeformed mid-surface as opposed to the radius

of the inner surface of the shell).
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Lines of symmetry

Free edge

Free edge

L

Fig. 77. An open-ended cylindrical shell subjected to two point loads.

Symmetry in the geometry, material properties and loading allow us to construct

the numerical model using only an octant of the actual open-ended cylinder. For the
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numerical model we employ a regular 2 × 2 mesh (with the p-level taken as 8) of

the shell octant containing points A, B, C and D. The incremental/iterative Newton

procedure is adopted using a total of 80 load steps.

The radial deflections vs. the net applied pulling force P are shown in Figure

78 for points A, B and C. The computed deflections are in excellent agreement with

results of Sze et al. [149] and also Arciniega and Reddy [124]. The mechanical response

of the shell is interesting in that the deformation is initially bending dominated;

however, membrane forces clearly play an increasingly significant role as the load is

intensified, resulting in a pronounced overall stiffening of the structure. In Figure

79 we show the undeformed and various deformed mid-surface configurations for the

open-ended cylindrical shell pull-out problem. The overall deflections and rotations

are clearly quite large, especially for the final shell configuration (i.e., the case where

P = 40,000).

radial deflections at points A, B and C
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Fig. 78. Radial deflections at points A, B and C vs. pull-out force P for the open-ended

cylindrical shell.
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Fig. 79. Undeformed and various deformed mid-surface configurations of the

open-ended cylindrical shell: (a) undeformed configuration, (b) P = 5,000,

(c) P = 10,000, (d) P = 20,000, (e) P = 30,000 and (f) P = 40,000.
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6. A pinched half-cylindrical shell

In this next example we consider a half-cylindrical shell subjected to a single point

force P as shown in Figure 80. Numerical solutions for this problem may be found in

Refs. [153, 155, 147, 148, 149, 124] among others. We employ the following material

properties for the isotropic and laminated composite versions of the problem

Isotropic : E = 2.0685× 107, ν = 0.3 (6.83a)

Orthotropic :


E1 = 2,068.5, E2 = E3 = 517.125

G23 = 198.8942, G13 = G12 = 795.6

ν23 = 0.3, ν13 = ν12 = 0.3

(6.83b)

The geometric parameters are taken as L = 304.8, R = 101.6 (where R is the radius

of the mid-surface) and h = 3.0.
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Free edge

Fig. 80. A half-cylindrical shell subjected to a single point load.

As in the previous example, we exploit symmetry of the problem by perform-

ing the finite element simulations using half of the physical domain of the shell (see the
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Fig. 81. Vertical deflection at point A of an isotropic half-cylindrical shell under point

loading.
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Fig. 82. Vertical deflection at point A of two laminated composite half-cylindrical

shells under point loading.
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line of symmetry shown in Figure 80); a regular 4 × 4 mesh is adopted for each

simulation with the p-level taken as 8. For the support boundary conditions along

the bottom longitudinal edges, we take the vertical deflection and X3 component of

the difference vector as zero. For the laminated composite simulations, with stacking

sequences given as: (90◦/0◦/90◦) and (0◦/90◦/0◦), we prescribe the unit tangent vector

as t̂ = Ê1.
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Fig. 83. Undeformed and various deformed mid-surface configurations of the isotropic

pinched half-cylindrical shell: (a) undeformed configuration, (b) P = 600,

(c) P = 1,200 and (d) P = 2,000.

In Figures 81 and 82 we trace the vertical displacements at point A of the isotropic

and laminated composite cylinders. The cylindrical arc-length procedure has been

used in each numerical simulation to smoothly traverse the limit points. We find that

the computed displacements agree well with the results reported by Arciniega and
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Reddy [124]. Finally, in Figure 83 we show the undeformed and various deformed

mid-surface configurations of the pinched isotropic half-cylinder.

7. A pinched hemisphere with an 18◦ hole

We now consider a pinched isotropic hemisphere with an 18◦ circular cutout. This

problem is widely recognized as one of the most severe shell benchmark problems

involving finite deformations and has been addressed by many researchers (see for

example Refs. [144, 126, 157, 155, 156, 147, 148, 149] among others). The compu-

tational domain (i.e., one quarter of the hemisphere) is shown in Figure 84. The

external loads for the problem consist of four alternating radial point forces P , pre-

scribed along the equator at 90◦ intervals. The mid-surface radius and shell thickness

are taken as R = 10.0 and h = 0.04 respectively; furthermore, the material properties

are prescribed as

E = 6.825× 107, ν = 0.3 (6.84)
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Fig. 84. A pinched hemisphere with an 18◦ hole (the computational domain shown

above is one quarter of the physical domain of the shell).
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For the finite element mesh we employ a regular 8 × 8 discretization with the

p-level taken as 4. The finite element nodes on the mid-surface Ω̄hp are obtained using

the following formula

X = R
{
sin[α+ (π/2− α)ω1][cos(πω2/2)Ê1 + sin(πω2/2)Ê2]

+ cos[α+ (π/2− α)ω1]Ê3

} (6.85)

where α = 18◦ = π/10 rad. The incremental/iterative Newton method is used in the

solution procedure with 80 load steps and Pmax is taken as 400. In addition to the

symmetry boundary conditions, we also require theX3 component of the displacement

of the node located at point B to be zero.
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Fig. 85. Radial deflections at points B and C of the pinched hemisphere.

Figure 85 shows the radial deflections at points B and C vs. the applied pinching

force P . Our reported deflections compare quite well with the numerical results

tabulated by Sze et al. [149]. In Figure 86 we show the undeformed and three deformed
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mid-surface configurations of the pinched hemisphere.
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Fig. 86. Undeformed and various deformed mid-surface configurations of the pinched

hemispherical shell: (a) undeformed configuration, (b) P = 150, (c) P = 300

and (d) P = 400.

8. A pinched composite hyperboloidal shell

As a final numerical example we consider the finite deformation of a laminated com-

posite hyperboloidal shell that is loaded by four alternating radial point forces P . This

challenging benchmark, originally proposed by Başar et al. [108], was designed to test

the capabilities of shell elements in handling geometrically complex shell structures

undergoing very large displacements and rotations. The problem has been considered

by Wagner and Gruttmann [158], Balah and Ghamedy [159] and more recently by

Arciniega and Reddy [124]. The computational domain (i.e., one octant of the actual

hyperboloid) is shown in Figure 87. The orthotropic material properties for each
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lamina are taken as

E1 = 40.0× 106, E2 = E3 = 1.0× 106

G23 = 0.6× 106, G13 = G12 = 0.6× 106 (6.86)

ν23 = 0.25, ν13 = ν12 = 0.25
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Fig. 87. A pinched laminated composite hyperboloidal shell (the computational do-

main shown above is one octant of the physical domain of the shell).

We employ three finite element discretizations of the computational domain (see

Figure 88) including: a structured 4 × 4 mesh, an unstructured 4 × 4 mesh and a

structured 5× 5 mesh; where in all cases the p-level is taken as 8. The unstructured

mesh is utilized to showcase the ability of the proposed shell element to accurately

solve nontrivial laminated composite shell problems using skewed elements. Each

mesh is generated by mapping the nodal coordinates of an appropriate conforming
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discretization of ω̄ = [0, 1]2 onto the finite element approximation of the mid-surface

Ω̄hp of the composite hyperboloid using the following formula

X = R0(ω
2)
[
cos(πω1/2)Ê1 + sin(πω1/2)Ê2

]
+ Lω2Ê3 (6.87)

where R0(ω
2) = R1

√
1 + (Lω2/C)2. The geometric parameters are taken as R1 =

7.5, C = 20/
√
3, L = 20.0 and h = 0.04. The unit normal and tangent vectors are

defined at the finite element nodes using the following expressions

n̂ =
∂X/∂ω1 × ∂X/∂ω2

||∂X/∂ω1 × ∂X/∂ω2||
(6.88a)

t̂ = − sin(πω1/2)Ê1 + cos(πω1/2)Ê2 (6.88b)

X
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Z

(a) (b) (c)

Fig. 88. Finite element discretizations of the composite hyperboloid, where the p-level

is 8: (a) a 4×4 structured discretization, (b) a 4×4 unstructured discretization

and (c) a 5× 5 structured discretization.

In Figures 89 and 90 we show various displacement components vs. the applied

load P at points A, B, C and D of the hyperboloidal shell for the composite lamination
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deflections at points A, B, C and D
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Fig. 89. Deflections at points A, B, C and D of the pinched (0◦/90◦/0◦) stacking se-

quence laminated composite hyperboloidal shell.
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Fig. 90. Deflections at points A, B, C and D of the pinched (90◦/0◦/90◦) stacking

sequence laminated composite hyperboloidal shell.
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Fig. 91. Undeformed and various deformed mid-surface configurations of two pinched

laminated composite hyperboloidal shells: (a) (0◦/90◦/0◦): undeformed con-

figuration, P = 250 and P = 500 (from left to right) and (b) (90◦/0◦/90◦): un-

deformed configuration, P = 250 and P = 500 (from left to right).

schemes: (0◦/90◦/0◦) and (90◦/0◦/90◦). The computed displacements for the stacking

sequence (0◦/90◦/0◦), obtained using both structured and unstructured meshes, are

in excellent agreement with the results of Başar et al. [108] and Arciniega and Reddy

[124]. The displacements calculated for the laminate (90◦/0◦/90◦) (obtained using

the regular 5 × 5 discretization shown in Figure 88 (c)), however, are greater than

the values reported by Başar et al. [108] but are also somewhat less than the results
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obtained by Arciniega and Reddy [124]. In Figure 91 we show various mid-surface

configurations of the hyperboloid for each composite laminate. All numerical results

have been obtained via the incremental/iterative Newton procedure using 120 load

steps.
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CHAPTER VII

CONCLUSIONS

A. Summary and concluding remarks

In this dissertation we have presented finite element formulations for fluid and solid

mechanics problems using high-order spectral/hp finite element technology. Our aim

throughout this work has not been to indiscriminately champion high-order finite

element procedures in the numerical simulation of all phenomena associated with

these disciplines. On the contrary, our primary objective has been to adopt novel

mathematical models and innovative discretization procedures in the numerical sim-

ulation of fluids and solids, wherein the additional benefits of employing high-order

spectral/hp finite element technology are pronounced. We find that for many such

problem sets (especially those whose weak formulations may be identified as global

minimizers), high-order finite element procedures offer the prospect of highly accurate

numerical solutions that are completely devoid of all forms of locking. As a result ad-

hoc tricks (e.g., reduced integration and/or mixed interpolation) required to stabilize

low-order finite element formulations are unnecessary.

An overview of the steps involved in developing and arriving at efficient finite

element models using spectral/hp finite element technology were presented in Chap-

ter II. The presentation was quite general and therefore applicable to finite element

problems posed in 1, 2 or 3 spatial dimensions. A notable contribution contained in

this chapter was a sparse global finite element assembly operator that admits par-

allelization on shared-memory computer systems using the OpenMP paradigm. To

improve system memory requirements, we implemented an element-level static con-

densation technique, wherein the interior degrees of freedom of each element were
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implicitly eliminated prior to assembly of the global system of finite element equa-

tions. Robustness and efficiency of the proposed global assembly operator and static

condensation technique were assessed through the numerical simulation of a finite

element problem possessing nearly half a million total degrees of freedom.

Chapter III was one of two chapters devoted to finite element models formulated

using the least-squares method. In this chapter we examined the roles of minimization

and linearization in least-squares finite element models of nonlinear boundary-value

problems. As the least-squares method is independent of: (a) the adopted discretiza-

tion procedure and (b) the chosen solution scheme, the underlying least-squares prin-

ciple demands that minimization of the least-squares functional be performed prior

to linearization (where linearization is introduced in the context of an appropriate

fixed point iterative solution procedure). With this in mind, we discussed practical

consequences associated with exchanging the order of application of the minimiza-

tion and linearization operations in least-squares finite element models of nonlinear

boundary-value problems. In the analysis we relied on an examination of the abstract

mathematical setting of the least-squares method, a simple analysis of Newton’s pro-

cedure as applied to least-squares problems and on qualities observed in numerical

experiments. Overall we find that although the least-squares principle suggests that

minimization ought to be performed prior to linearization, such an approach is often

impractical and not necessary.

In Chapter IV we presented a novel least-squares finite element formulation of

the steady-state and non-stationary incompressible Navier-Stokes equations with en-

hanced local mass conservation. The proposed formulation was a modification of the

standard L2-norm least-squares formulation of the Navier-Stokes equations based on

the equivalent velocity-pressure-vorticity first-order system. In the new formulation,

we modified the standard least-squares functional to also include an appropriately
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penalized sum of the squares of the element-level integrals of a regularized form of

the continuity equation. As a consequence, the resulting finite element model directly

inherited terms in the bilinear form and linear functional (which could be adjusted

based on the penalty parameter) that tend to improve element-level mass conser-

vation. A notable quality of the formulation was that improved mass conservation

could be attained without introducing additional variables or compromising the un-

constrained minimization setting for the numerical solution. Numerical simulations

confirmed that the proposed formulation could significantly improve mass conserva-

tion for both steady and non-stationary flows. For transient flows, the formulation

was further shown to enhance velocity-pressure coupling and overall numerical sta-

bility (most notably for cases where the momentum equation residual, appearing in

the least-squares functional, was not weighted by the square of the time step).

Chapters V and VI were devoted to solid mechanics problems. In Chapter V

we presented finite element models of viscoelastic beam structures based on the kine-

matic hypotheses of the Euler-Bernoulli, Timoshenko and third-order Reddy beam

theories. The formulations (valid for beams undergoing moderately large transverse

displacements and rotations) were obtained by replacing the Green-Lagrange strain

with the von Kármán strain in both the constitutive equations and the virtual work

statement. The linear viscoelastic constitutive equations, taken in convolution form,

were temporally discretized using a two-point recurrence formula. High polynomial

order Hermite basis functions were introduced in the interpolation of the transverse

displacements for the Euler-Bernoulli and third-order Reddy beam theories. These

high-order, globally C1 continuous interpolants, were prescribed using the standard

GLL points (see Chapter II) as the nodal locations for the master element. Carefully

chosen quasi-static and fully transient benchmark example problems were solved to

showcase the insensitivity of each beam element to both membrane and shear locking.
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Finally in Chapter VI we proposed a high-order spectral/hp continuum shell

finite element for the numerical simulation of the fully finite deformation mechani-

cal response of isotropic, laminated composite and functionally graded elastic shell

structures. The shell element was based on a modified first-order shell theory using

a 7-parameter expansion of the displacement field. The seventh parameter was in-

cluded to allow for the use of fully three-dimensional constitutive equations in the

numerical implementation. The finite element coefficient matrices and force vectors

were evaluated numerically using appropriate high-order Gauss-Legendre quadrature

rules at the appropriate quadrature points of the element mid-surface. The virtual

work statement was further integrated numerically through the shell thickness at each

quadrature point of the mid-surface; hence no thin-shell approximations were imposed

in the numerical implementation. For laminated composite shells, we introduced a

user prescribed vector field (defined at the nodes) tangent to the shell mid-surface.

This discrete tangent vector allowed for simple construction of the local bases associ-

ated with the principle orthotropic material directions of each lamina. As a result, we

were free to employ skewed and/or arbitrarily curved elements in actual finite element

simulations. We demonstrated, through the numerical simulation of carefully chosen

benchmark problems, that the proposed shell element was insensitive to all forms of

numerical locking and severe geometric distortions.

B. Topics of ongoing and future research

In this dissertation we have considered applications of high-order spectral/hp finite

element technology to problems posed in the fields of fluid mechanics and solid me-

chanics. Our discussion has thus far been limited to a study of these topics in isolation

from each another. Of particular interest going forward is the combination of our de-
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veloped finite element technology to problems involving the fully coupled interaction

of fluids and solids (i.e., fluid-structure interaction). In what follows we briefly de-

scribe an example problem that is solved using a least-squares finite element model

of the incompressible Navier-Stokes equations that can handle moving fluid bound-

aries (a preliminary step towards implementation of a general purpose fluid-structure

interaction code).

We consider the flow of a viscous incompressible fluid inside a square cavity,

where the cavity under consideration is a bi-unit square centered at the origin. A

0.28 units diameter solid circular cylinder is positioned at the origin of the cavity

at t = 0. Immediately following t = 0, the cylinder begins to translate with an

instantaneous unit velocity in the x direction. We impose no-slip type boundary

conditions along all solid surfaces, including the cylinder Γcyl and cavity walls Γwalls,

where Γ = Γcyl∪Γwalls. This amounts to specifying v = 0 on Γwalls and vx = 1 on Γcyl.

We prescribe the pressure to be zero at the single node located at (x, y) = (−1, 0).

The Reynolds number for the flow is taken as Re = 100 by specifying ρ = 1, µ = 1/100

and a characteristic unit length. The initial boundary-value problem is posed on the

time interval t = (0, 0.7].

The computational domain is discretized into 480 non-uniform finite elements,

where we place 40 element layers along the circumference of the cylinder and 12 in the

radial direction. A depiction of the finite element mesh at t = 0 and t = 0.70 is shown

in Figure 92. Mesh refinement is employed near the cylinder to ensure acceptable

numerical resolution of all variables in the wake region downstream of the cylinder.

We solve the problem using a p-level of 4 in each finite element, which amounts to

31,360 total degrees of freedom in the numerical model. We employ Newton’s method

to linearize the finite element equations and adopt a time step size of ∆t = 0.005.

The α-family of time approximation is utilized in the temporal discretization (with α
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Fig. 92. Finite element discretization of computational domain Ω̄ for the analysis of

transient incompressible flow inside a square cavity induced by the motion of

a circular cylinder: (a) fluid mesh at t = 0 and (b) fluid mesh at t = 0.70.

taken as 0.5); the first-order backward difference scheme is employed in the first few

iterations.

A word on the adopted fluid mesh motion scheme is in order. The evolution of

the deforming fluid mesh is determined at each time step using a standard pseudo-

elasticity formulation (see Belytschko et al. [107]) that is implemented in conjunction

with the arbitrary Lagrangian Eulerian (ALE) formulation. In this approach, we

solve a linear elasticity boundary-value problem with Dirichlet boundary conditions

at each time step on the fluid domain. The position of the cylinder at the current

time step is used directly as a boundary condition in the mesh motion scheme to de-

termine the new locations and velocities of the nodes of the fluid mesh. A weak-form

Galerkin finite element model of the pseudo-elasticity equations is employed. To pre-

vent excessive distortion of elements in the model we specify the Young’s modulus for
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Fig. 93. Transient flow of an incompressible viscous fluid inside a square cavity induced

by a moving cylinder at t = 0.25, 0.50 and 0.70 (from left to right respec-

tively): (a) velocity component vx (b) velocity component vy and (c) non-di-

mensional pressure field p.
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the eth finite element as Ee = E0µ(Ω
e)−0.5 where µ(Ωe) is the area of the element; the

strictly-positive quantity E0 is arbitrary. In Figure 93 we present snapshots of the

numerical results for the velocity components and pressure at t = 0.25, 0.50 and 0.70.

We see that at this Reynolds number the flow field is symmetric about the y-axis. Our

numerical results agree well with the high-order weak-form spectral element solution

presented by Bodard et al. [160]. Based on these preliminary results, the prospect of

extending our work to the numerical simulation of fluid-structure interaction problems

using high-order spectral/hp finite element procedures appears promising.

In addition to the fluid-structure interaction computational technology, the shell

element developed herein may also be extended to the analysis of laminated composite

shell structures experiencing: (a) inelastic response, (b) fracture and (c) damage.

These topics are of particular interest to the structures community.
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viscoelastic helical rods,” J. Sound Vib., vol. 271, no. 3–5, pp. 921–935, 2004.

[94] Q. Chen and Y. W. Chan, “Integral finite element method for dynamical anal-

ysis of elastic-viscoelastic composite structures,” Comput. Struct., vol. 74, no.

1, pp. 51–64, 2000.

[95] M. A. Trindade, A. Benjeddou, and R. Ohayon, “Finite element modelling



263

of hybrid active-passive vibration damping of multilayer piezoelectric sandwich

beams-Part I: Formulation,” Int. J. Numer. Meth. Engng, vol. 51, no. 7, pp.

835–854, 2001.

[96] A. Pálfalvi, “A comparison of finite element formulations for dynamics of vis-

coelastic beams,” Finite Elem. Anal. Des., vol. 44, no. 14, pp. 814–818, 2008.

[97] D. J. McTavish and P. C. Hughes, “Finite element modeling of linear vis-

coelastic structures–the GHM method,” in AIAA/ASME/ASCE/AHS/ASC

Structures, Dallas, TX; United States, April 1992, Structural Dynamics and

Materials Conference, pp. 1753–1763.

[98] D. J. McTavish and P. C. Hughes, “Modeling of linear viscoelastic space struc-

tures,” J. Vib. Acoust., vol. 115, no. 1, pp. 103–110, 1993.

[99] V. Balamurugan and S. Narayanan, “Finite element formulation and active vi-

bration control study on beams using smart constrained layer damping (SCLD)

treatment,” J. Sound Vib., vol. 249, no. 2, pp. 227–250, 2002.

[100] V. Balamurugan and S. Narayanan, “Active-passive hybrid damping in beams

with enhanced smart constrained layer treatment,” Eng. Struct., vol. 24, no. 3,

pp. 355–363, 2002.

[101] G. Ranzi and A. Zona, “A steel-concrete composite beam model with partial

interaction including the shear deformability of the steel component,” Eng.

Struct., vol. 29, no. 11, pp. 3026–3041, 2007.

[102] A. R. Johnson, A. Tessler, and M. Dambach, “Dynamics of thick viscoelastic

beams,” J. Eng. Mater. Technol., vol. 119, no. 3, pp. 273–278, 1997.



264

[103] E. M. Austin and D. J. Inman, “Modeling of sandwich structures,” Smart

Structures and Materials 1998: Passive Damping and Isolation, vol. 3327, no.

1, pp. 316–327, 1998.
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