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ABSTRACT 

 

Effects of Acid Additives on Spent Acid Flowback through Carbonate Cores. (May 

2012) 

Ehsaan Ahmad Nasir, B.E., NED University of Engineering and Technology 

Chair of Advisory Committee: Dr. A. Daniel Hill 

   

Matrix acidizing is a well stimulation technique used to remove formation 

damage in the near wellbore region. But it comes with an associated set of challenges 

such as corrosion of the tubulars and iron precipitation in the formation. To counter these 

challenges, different chemicals, or additives, are added to the acid solution such as 

corrosion inhibitors and iron control agents. These additives may change the relative 

permeability of the spent acid, and formation wettability, and may either hinder or 

improve spent acid clean-up. Such effects of additives on the spent acid clean-up have 

not been documented. 

 

The aim of this research effort was to document the aforementioned change in 

the spent acid concentration (by using one additive at a time) before and after gas 

flowback. This was achieved by acidizing cores and creating wormholes halfway 

through them, then CT scanning them to observe the spent acid region. Later on, gas was 

flown through the core opposite to the direction of acid injection for 2 hours, and another 

CT scan was taken. The difference between the two CT scans was documented. Using a 
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different additive each time, a series of such CT scans was obtained to develop an idea 

about whether the said additive was beneficial or detrimental to spent acid clean-up.  

 

It was found that the corrosion inhibitor FA-CI performed the best in terms of 

spent acid recovery after gas flowback for both Indiana Limestone and Texas Cream 

Chalk cores. Moreover, the corrosion inhibitor MI-CI was the worst for Indiana 

Limestone and the non-emulsifying agent M-NEA the worst for Texas Cream Chalk for 

spent acid recovery after gas flowback. 
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NOMENCLATURE 

 

ICA Iron Control Agent 

CI Corrosion Inhibitor 

NEA Non-Emulsifying Agent 

CT Computed Tomography 

Pr. Pressure 

no. number 

µ Linear Attenuation Coefficient 

Io Intensity of the emitted x-ray beam 

I Intensity of the detected x-ray beam  

H Thickness of the object being scanned 

PPE Personal Protective Equipment 

MSDS Material Safety Data Sheet 

PVC Polyvinyl chloride 

exp. Experiment 

FA-CI Formic Acid based Corrosion Inhibitor 

MI-CI Methanol and Isopropanol based Corrosion Inhibitor 

CA-ICA Citric Acid based Iron Control Agent 

T-ICA Trisodium nitrotriacetate based Iron Control Agent 

M-NEA Methanol based Non-Emulsifying Agent 
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1. INTRODUCTION 

 

 

 

Formation damage is a phenomenon that starts as early as drilling in the life of a well. 

There are several techniques that are used to rectify formation damage and stimulate the 

well, depending on the type of the damage. One of those well stimulation methods is 

acidizing, or more specifically, matrix acidizing. 

 

In matrix acidizing, an acid (usually HCl for carbonates or an HCl/HF mixture for 

sandstones) is pumped down a well to remove the damage and increase permeability 

within a few feet of the well. The acid is pumped downhole at pressures lower than the 

formation’s breakdown pressure i.e. the pressure at which the formation starts to 

fracture. The main mode of permeability increase with matrix acidizing is the chemical 

reaction of the acid with the minerals present downhole, which are dissolved by the acid. 

This is in contrast to acid fracturing, which is another technique used for well 

stimulation, where an acid is pumped downhole at pressures higher than the formation 

breakdown pressure so as to improve permeability both by the chemical reaction, and by 

forming a hydraulic fracture. 

 

Wormholes are large channels, relative to pores, caused by the non-uniform dissolution  
 
 
 
 
This thesis follows the style of the journal SPE Production and Operations. 
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of carbonate formations by the acid. Unlike sandstone acidizing, in which the acid 

actually dissolves the formation, in carbonates the acid forms wormholes which provide 

a very low pressure drop thoroughfare for the fluids being produced to pass through, and 

flow into the wellbore. 

 

1.1 Matrix Acidizing  

 

Matrix acidizing, as with any other formation damage removal techniques, comes with 

its own set of challenges. When the acid reacts with the formation, it forms carbon 

dioxide and water. The chemical equations are as follows: 

 

CaCO3 + 2HCl CaCl2 + H2O + CO2 

MgCO3 + 2HCl MgCl2 + H2O + CO2 

 

The reaction products actually move ahead of the wormhole forming a front, which from 

now on we will call the “spent acid front”. The spent acid droplets become lodged in the 

pores and pore throat, and serve to decrease the formation permeability by water-

blocking the pores (see Fig 1.1). Furthermore, different additives are pumped along with 

the acid down the wellbore, which may change the wettability of the formation from 

water-wet to oil-wet, or vice versa.  
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Figure 1.1 Wormholes and the spent acid region; also shown is a spent acid 

droplet blocking a pore throat. 

 

A brief description of some of the additives used in matrix acidizing, along with the 

challenges they are used to counter, is given below: 

o The downhole tubulars are susceptible to corrosion upon coming into contact 

with the acid, and the relatively high temperatures downhole only serve to speed 

up the corrosion reaction. To prevent the tubulars, valves, chokes and everything 

downhole that may corrode due to the acid, “corrosion inhibitors” are used. 

Corrosion inhibitors are one of the most important additives used in an acidizing 

job. Sometimes, the selection of the corrosion inhibitor may also govern the 

choice of the acid used, due to the costs and difficulty involved. 

o Iron precipitation is also one of the mechanisms that lead to a significant 

permeability reduction. It is caused by the precipitation of Ferric (Fe3+) ions 

present downhole to form Ferric Hydroxide Fe(OH)3. “Iron control agents”, such 

as EDTA (ethylenediaminetetraacetic acid), are used to prevent the Ferric ions 

from precipitating.  
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o “Non-emulsifying agents” are used to prevent emulsions from forming in the 

acid as it is being transferred downhole. The emulsion might hinder the reaction 

between the formation rock and the acid. 

o Corrosion inhibitors may also change the formation wettability to oil-wet by 

adsorbing into the formation rock. To rectify this, “mutual solvents”, such as 

EGMBE (ethylene glycol monobutyl ether), are used to dissolve the adsorbed 

corrosion inhibitor, and any acid-insoluble residue that may have been left 

behind as a result of the acidizing reaction. 

o Many other additives are also used other than the ones mentioned, such as H2S 

scavengers for capturing hydrogen sulfide, surfactants to reduce interfacial 

tension to speed clean-up, and diverting agents to divert the acid to desired parts 

of the formation. 

 

  1.2 Literature Review 

 

Mahadevan and Sharma (2005) conducted gas displacement experiments to displace 

brine from a fully saturated brine rock sample. They concluded that rock type 

(permeability), along with several other factors such as relative permeability curves, 

govern how effective the water blockage clean-up is going to be. Moreover, the change 

in the rock’s wettability from water-wet to oil-wet also caused the rock (Texas Cream 

limestone and Berea sandstone) to clean up faster. 
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Kamathe and Laroche (2003) addressed the decrease in gas well productivity due to 

water blockage by carrying out experiments using different fluids and saturation states. 

Their results show that water blockage is a transient phenomenon that depends on the 

amount and type of the fluid lost, gas flowrate, and the pressure drawdown in the 

reservoir. The gas deliverability was found to recover in two phases: the first phase is the 

liquid production which lasts for a few hours; the second phase is evaporation of the 

water blocked region with continuous gas flow and takes several days. Adding methanol 

to the fluid resulted in drastically reducing the time required for the second phase. 

 

Nasr-El-Din et al. (2004) documented experimental studies carried out to observe the 

change in surface tension of HCl-based stimulation fluids. Similarly, Saneifar et al. 

(2011) discussed the effects of high pressure and temperature on the surface tension of 

spent acids. But so far, there hasn’t been any work done that touches on how effectively 

the water blockage effects of spent acid are removed, and what is the effect, if any, of 

different stimulation fluids on the spent acid clean-up. That is what will be addressed in 

this study. 
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2. PROBLEM DEFINITION 

 
 
 
2.1 Description of the Problem 

 

Several different additives are used in acidizing to tackle challenges encountered 

downhole, but the truth is that these additives may also alter the formation properties 

such as permeability and wettability. Hence, the selection process of additives has to 

include the upsides and downsides associated with each additive, and how they stack up 

in order to achieve the ultimate goal of stimulating the damaged well. 

 

In matrix acidizing, the spent acid  (which is the name given to the reaction products of 

the acidizing reaction plus the unused acid) actually penetrates farther into the formation 

than the wormholes. The spent acid may block pores and pore throats by clogging them 

with water droplets. Some of it may flow back during the initial phase of production of a 

well, along with the fluids being produced and a rather efficient clean-up may be 

achieved. But depending on the acid additives being used (and their effect on the 

formation wettability) the spent acid clean-up might not be significant and it might keep 

blocking the pores, or change the wettability of the rock near the wellbore, thereby 

causing a decrease in relative permeability and hence production. 

 

The goal of this study is to experimentally simulate and document this process, i.e. the 

change in formation properties caused by the additives used resulting in an inefficient 
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spent acid clean-up, that may lead to a decrease in relative permeabilities of the fluids 

flowing through the formation, and hence and overall decrease in production. 

 

2.1.1 CT Scanning Theory and Beam Hardening 

 

When an object is CT scanned, it is bombarded by x-rays from different angles by an x-

ray source. The sources revolve around the object to be scanned and the transmitted x-

rays intensity is measured by a series of detectors. The main quantity measured is the 

linear attenuation coefficient µ, which is related to the incident x-ray intensity Io by 

Beer’s law as: 

 

I / Io = exp
-µh 

 

where I is the intensity of the x-ray after it has passed through the object being scanned, 

and h is the thickness of the scanned object. 

 

Beer’s law assumes that the x-ray beam used to scan the object was monochromatic i.e. 

it has a single frequency. That is not the case in reality, and the x-ray beams are 

polychromatic. This causes low energy x-ray photons to be absorbed more readily at the 

air-object interface and also by the object itself. This leads to an error in the 

determination of the linear attenuation coefficient µ called “beam hardening”. For a 
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cylindrical object such a core, the error shows up as higher CT numbers in the periphery 

of the core and lower CT numbers at the center. 

 

Akin and Kovscek (2003) suggested that beam hardening can be corrected by 

surrounding the coreholder with a cylindrical water-jacket, or with a crushed-rock jacket, 

or using aluminum and composite carbon-fiber coreholders. 
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3. EXPERIMENTAL PROCEDURE 

 
 
 
In this section, we will discuss the procedure followed to obtain the results shown. We 

will first describe the acidizing and the flowback apparatus and how it is set up, the CT 

scanning procedure used to visualize the changes in the core during various phases of the 

experiment, then the additives employed in this study, and finally the actual procedure of 

how the experiments were carried out. 

 

3.1 Acidizing and Flowback Apparatus 

 

For the purpose of our study, we used a basic coreflood apparatus, which is comprised of 

the following parts: 

o A syringe pump (Fig 3.1), which provides the driving force to push the fluids 

trough the acidizing apparatus. The pump forces hydraulic oil through the 

interconnecting tubes. The oil in turn pushes on a piston housed in a component 

called accumulator. On the other side of the piston is the fluid to be pumped. 

o An accumulator (Fig 3.2), which holds the fluid that is to be pumped through the 

acidizing apparatus.  

o A PVC container (Fig 3.3), which is used to refill the accumulator with the fluid 

to be pumped. The fluid is first poured into the PVC container, and then is forced 

pneumatically into the accumulator. 
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 Figure 3.2 Acid 

accumulator 

 

 

Figure 3.3 PVC 

refill container 

 

Figure 3.1 Teledyne ISCO 

500D syringe pump 

 



 11 

o A coreholder (Fig 3.4), which holds the core housed in a Hessler sleeve, through 

which the desired fluid is to be pumped. 

o An overburden pump (Fig 3.5), which is used to simulate overburden pressure, 

by pressuring oil around the Hessler sleeve inside the coreholder. The sleeve, in 

turn, grips the core tightly, and compressing it as overburden would. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 ENERPAC hand pump 

Figure 3.4 TEMCO stainless steel coreholder 
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o A back pressure regulator (Fig 3.6), to keep the pressure at the coreholder’s 

outlet at a desired value. It’s also used to keep the pressure inside the coreholder 

high enough to ensure the carbon dioxide produced as a result of the acidizing 

reaction remains dissolved in solution. 

o Pressure transducers (Fig 3.7), hooked up to a computer, to monitor the pressure 

drop across the core. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Mity-Mite back pressure 

regulator 

 

Figure 3.7 FOXBORO 

pressure transducer 
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o A gas flowmeter (Fig 3.8), to measure the gas flowrate at the outlet of the 

acidized cores. 

o Nitrogen cylinders (Fig 3.9) were used as the source of the gas that will flow 

through the acidized cores.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 OMEGA gas volume flowmeter 
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All these components are connected together with 1/8 inch steel tubing (as seen in Fig 

3.10). Hastelloy tubings are preferred for connecting those components through which 

the acid will flow, as it is more resistant to corrosion. The rest of the components are 

connected with regular stainless steel tubing. 

 

 

 

 

 

 

 

 

Figure 3.9 Industrial grade-nitrogen 

cylinders 
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3.2 CT Scanner 

 

The CT scanner (Fig 3.11b) was used three times during the course of a single 

experiment. Beam hardening was seen in the initial scans which cause the CT numbers 

at the edges of a CT scan to be higher than at the center. A ¾ inch thick and 21 inches 

long hollow aluminum cylinder (see Fig 3.11a) was used to encase the cores during CT 

scans to remove beam hardening from the results. 

 

 

Figure 3.11a Hollow aluminum cylinder; for encasing cores during CT scans to 

remove beam hardening 

 

 

 

Figure 3.11b CT Scanner 
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3.3 Description of the Cores  

 

Indiana Limestone (Fig 3.12a) and Texas Cream Chalk (Fig 3.12b) carbonate cores were 

used in the study. The cores were 1.5 inch in diameter and 20 inch in length. The 

permeability for both types of cores was in the 1 to 10 md range. 

 

 

 

Figure 3.12a Indiana Limestone core 

 

 

 

Figure 3.12b Texas Cream Chalk core 
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3.4 Acid Additives 

 

The following acid additives were used in this study: 

o A formic acid based corrosion inhibitor, which for the purpose of this study will 

be called FA-CI (Fig 3.13).  It is a liquid, dark reddish-brown in color with a 

sharp odor. It is also flammable in nature. It was found that FA-CI plugs the 1/8” 

tubings coming out of the PVC refill container which had to be replaced later on. 

o A methanol and isopropanol based corrosion inhibitor, which for the purpose of 

this study will be called MI-CI (Fig 3.14). It is also a liquid, with a dark red-

amber color and an alcoholic odor. It is also flammable. Similar to FA-CI, MI-CI 

also plugs the 1/8” tubings coming out of the PVC refill container. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.13 Corrosion inhibitor FA-CI 

 

Figure 3.14 Corrosion inhibitor 

MI-CI 
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o A citric acid based iron control agent, which for the purpose of this study will be 

called CA-ICA (Fig 3.15). It is originally in the form of powder or granules, and 

is odorless. It is not flammable. 

o A trisodium nitrotriacetate (trisodium NTA) based iron control agent, which for 

the purpose of this study will be called T-ICA (Fig 3.16). It is a liquid, pale 

yellow in color with a slight ammonia odor. It is a combustible compound. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.15 Iron control agent  

CA-ICA 

 

Figure 3.16 Iron control agent  

T-ICA 
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o  A methanol based non-emulsifying agent, which for the purpose of this study 

will be called M-NEA (Fig 3.17). It is a colorless liquid, and has a sweet smell. It 

is also flammable. 

 

All these additives were obtained from BJ Services (now a part of Baker Hughes). The 

additives are all toxic. Proper PPEs should be used when handling them as mentioned in 

their respective MSDS. 

 

Moreover, a radio opaque salt (or tracer) sodium iodide NaI (Fig 3.18) was added to the 

acid solution to increase the contrast between gas-saturated and spent acid-permeated 

areas in a core during CT scans. 

 

 

 

 

 

 

 

 

 

 

 Figure 3.17 Non-emulsifying agent 

M-NEA 

Figure 3.18 Sodium Iodide 
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3.5 Acidizing and Gas Flowback Procedure 

 

The procedure is composed of the following steps: 

o Take a carbonate core and determine its permeability to gas. By applying a back 

pressure at the core’s outlet when finding the gas permeability, the gas slippage 

effect can be eliminated leading to an accurate (and lower) determination of the 

permeability (Li et al., 2004). 

o The gas saturated core is then CT scanned to serve as a control for future scans. 

This is the base scan to which future scans will be compared with to determine 

the extent the spent acid has permeated in the core. We will call this scan the 

“Gas saturated” scan. 

o Next, a 15 wt% HCl solution is prepared for acidizing the cores. To this solution, 

2 wt% of the additive being tested and 5  wt% of sodium iodide is added. The 

sodium iodide gives a yellow color to the acid solution (Fig 3.19).  

 

 

 

 

 

 

 Figure 3.19 A 15 wt% HCl solution 

with 2 wt% NaI added 
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o Before acidizing, the acidizing apparatus is first flushed with water to rid it of 

any contaminants present in the system. 

o Before starting the experiment, make sure that there is no air in the pump and the 

apparatus. 

o The acid solution prepared earlier is pushed pneumatically into the accumulator; 

this is done by pouring the acid solution into the PVC container and using the lab 

air supply to push it into the accumulator. Afterwards again make sure that there 

is no air in the system.  

o Place the core to be acidized in the coreholder, and connect the coreholder to the 

acidizing apparatus. 

o Pump oil into the coreholder using the hand pump to simulate the overburden 

pressure. The overburden pressure should be at least 200-300 psi higher than the 

core outlet pressure. This is to ensure that the acid actually goes through the core 

instead of flowing through the area between the core and the Hessler sleeve. 

o Next, pressurize the back pressure regulator connected to the outlet of the 

coreholder to a 1000 psi. This will ensure that the flow will only occur through it 

once the pressure at the core outlet is larger than 1000 psi. It also ensures that the 

CO2 formed as a result of the acidizing reaction remains in solution.  

o Acid is then pumped at the rate of 8 ml/min (or cc/min) all the while recording 

the pressure drop across the core measured by the pressure transducers. In our 

case this function was performed by LabVIEW. 
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o Let the acid flow for around 5-7 minutes. Usually for Indiana Limestone the 

pressure drop across the core should be above 500 psi. For Texas Cream Chalk it 

should be above 200 psi. This would ensure that the wormhole has penetrated a 

sufficient distance into the core to begin the next phase of experiment.  

o After pumping acid for 5-7 minutes, stop the pump. 

o Depressurize the apparatus starting with the core inlet and then overburden and 

lastly the back pressure regulator. 

o Take the core out of the core holder and encase it in the hollow aluminum 

cylinder. Fig 3.20 shows what an acidized core looks like. 

o CT scan the acidized core for a second time. This scan will show us how far the 

spent acid front has travelled inside the core. We will call this scan the “ After 

acidizing” scan.  

o Flush the whole apparatus again with water to ensure there is no acid left in the 

apparatus.  

 

Figure 3.20 Inlet faces of acidized Indiana Limestone (left) and Texas Cream 

Chalk (right) cores 
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o After the second scan, put the core in the core holder again and prepare the 

apparatus for gas flowback. Make sure the direction of gas flow is opposite to 

that of the acid flow. The core outlet during acid injection will become the inlet 

for gas injection and vice versa. 

o Also connect the back pressure regulator to the gas injection core outlet and 

pressurize it up to 300 psi. This will mimic the Bottom Hole Pressure.  

o Connect a gas flow meter to the outlet of the back pressure regulator to gage the 

gas flow rate at atmospheric conditions (or standard conditions).  

o Ensure the gas inlet pressure is high enough (800-1000 psi in our case) to have a 

gas flow rate of at least 3L/min. This value, of course, will depend on the core’s 

gas permeability and the length of the wormhole. 

o Let the gas flowback continue for 2 hours, then stop the gas supply. 

o Depressurize the gas pressure regulator and then the overburden. 

o Once the apparatus has been depressurized, take the core out from the core 

holder. 

o Put the core in the hollow aluminum cylinder and CT scan it for the third time. 

We will call this scan the “After flowback” scan. 

o We will now look at the three CT scans and see how much the spent acid front 

has been pushed back for 2 hours of gas flowback. 
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3.6 CT Scanning Procedure 

 

The procedure for CT scanning is as follows: 

o Encase the core to be scanned in a hollow aluminum cylinder to get rid of beam 

hardening. 

o Before placing the encased core in the CT scanner, make sure that the surface it’s 

being placed on is perfectly horizontally with the help of a level gage. 

o We used the following parameters for the scan: 

 Image size: 120 

 Index: 4 mm; this is the distance between two consecutive scans. 

 Thickness of the beam: 2mm; this means that a slice 2 mm thick will be 

scanned. 

 Number of scans: 125; a single 20 inches long core will have 125 slices in 

a single scan. 

o Make sure to preheat the CT scanner before starting the scan. 

o If the CT scanner heats up above its specified limit, stop the scan.  

o Wait for the CT scanner to cool down, and then restart the scan. 

 

Because of beam hardening errors, several works were studied to formulate a correct 

acidizing and CT scanning methodology, including Al-Muthana and Okasha (2008), 

Angulo and Ortiz (1992), Bartko (1995), Coles et. al (1996), Hove et. al (1987), Hunt et. 

al (1988), Wellington and Vinegar (1987), Withjack (1988) and Withjack et.al (2003). 
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4. EXPERIMENTAL RESULTS 

 

 

 

4.1 Comparison of Mean CT Numbers Before and After Gas Flowback 

 

In the section we will compare the CT number obtained from the three different scans 

performed in a single experiment. Each plot will have three curves, namely: 

o “Gas saturated”, which comprises of the CT numbers of the gas saturated core 

before being acidized 

o “After acidizing”, which comprises of the CT numbers of the core after being 

acidized, and  

o “After flowback”, which comprises of the CT numbers of the acidized core after 

gas has been flown through it for 2 hours. 

 

Another way to look at the results is a “Difference Plot” which is simply found out by 

subtracting the CT numbers after flowback from the CT numbers after acidizing (or 

before gas flowback). In these plots the magnitude of the peaks obtained is directly 

proportional to the drop in CT numbers after gas flowback i.e. how much the spent acid 

front has been pushed back and cleared up by the produced gas. 

 

Constant backpressure and overburden pressure were used throughout the acidizing 

experiments, and their values are tabulated as under (Table 4.1): 
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TABLE 4.1-BACK PRESSURE AND OVERBURDEN 

PRESSURE VALUES 

1 Back pressure 1000 psi 
2 Overburden pressure 1500 psi 

 

 

4.1.1 Indiana Limestone 

 

Six experiments were performed in total with Indiana Limestone cores. One experiment 

was done without any additive to serve as a control. The results are as under: 

 

4.1.1.1 No additive 

 

For the experiment, the acidizing and flowback parameters are as follows (see Tables 

4.2a, 4.2b and 4.2c): 

 

TABLE 4.2a-ACID FLOW PARAMETERS (INDIANA 

LIMESTONE; NO ADDITIVE)  

1 Acid Injection Rate 8 cc/min   
 2 Injection time 10 Min 30 sec 

 

 

TABLE 4.2b-ACID FORMULATION 

(INDIANA LIMESTONE; NO ADDITIVE) 

1 Water 189 cc 
2 HCl (15 wt%) 111 cc 
3 NaI (5 wt%) 15.8 g 
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TABLE 4.2c-FLOWBACK PARAMETERS 

(INDIANA LIMESTONE; NO ADDITIVE) 

1 Back pressure 300 psi 
2 Overburden pressure 1500 psi 
3 Inlet pr. 800 psi 
4 Pr. drop across the core 523 psi 
5 Flowrate 19.5 L/min 
6 Flow time 45 min 
7 Flow meter zero error 0.5 L/min 

 

 

The plot of mean CT numbers after acidizing and after flowback can be seen below (Fig 

4.1a). The recession of the spent acid front is visible in the area marked “Region of 

interest”. The end of the wormhole is also mentioned in the plot. 
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Figure 4.1a Mean CT number plot for Indiana Limestone (no additive) 

 

The Difference plot plots the difference in CT numbers after acidizing and after 

flowback (see Fig 4.1b). Positive peak shows the recession of the spent acid front with 

the magnitude of the peak corresponding to how much of the spent acid has been 

produced during flowback.  

 



 30 

 

Figure 4.1b Difference plot for Indiana Limestone (no additive) 
 

4.1.1.2 T-ICA 

 

For the experiment, the acidizing and flowback parameters are as follows (see Tables 

4.3a, 4.3b and 4.3c): 

 

TABLE 4.3a-ACID FLOW PARAMETERS (INDIANA 

LIMESTONE; T-ICA) 

1 Gas Permeability 3.4 md 
  2 Acid Injection Rate 8 cc/min   

 3 Injection time 9 min 30 sec 
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TABLE 4.3b-ACID FORMULATION 

(INDIANA LIMESTONE;T-ICA) 
1 Water 189 cc 
2 HCl (15 wt%) 111 cc 
3 NaI (5 wt%) 15.8 g 
4 T-ICA (2 wt%) 6.3 g 

 

 

TABLE 4.3c-FLOWBACK PARAMETERS 

(INDIANA LIMESTONE;T-ICA) 

1 Back pressure 300 psi 
2 Overburden pressure 1500 psi 
3 Inlet pr. 800 psi 
4 Pr. drop across the core 435 psi 
5 Flowrate 5.7 L/min 
6 Flow time 120 min 
7 Flow meter zero error 0.5 L/min 

 

 

The plot of mean CT numbers after acidizing and after flowback (Fig 4.2a) and the 

Difference plot (Fig 4.2b) are seen below.  
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Figure 4.2a Mean CT number plot for Indiana Limestone (T-ICA) 
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Figure 4.2b Difference plot for Indiana Limestone (T-ICA) 
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4.1.1.3 CA-ICA 

 

For the experiment, the acidizing and flowback parameters are as follows (see Tables 

4.4a, 4.4b and 4.4c): 

 

TABLE 4.4a-ACID FLOW PARAMETERS (INDIANA 

LIMESTONE; CA-ICA) 

1 Gas Permeability 1.2 md 
  2 Acid Injection Rate 8 cc/min   

 3 Injection time 5 min 20 sec 
 

 

TABLE 4.4b-ACID FORMULATION 

(INDIANA LIMESTONE; CA-ICA) 

1 Water 189 cc 
2 HCl (15 wt%) 111 cc 
3 NaI (5 wt%) 15.8 g 
4 CA-ICA (2 wt%) 6.3 g 

 

 

TABLE 4.4c-FLOWBACK PARAMETERS 

(INDIANA LIMESTONE; CA-ICA)  

1 Back pressure 300 psi 
2 Overburden pressure 1500 psi 
3 Inlet pr. 1100 psi 
4 Pr. drop across the core 743 psi 
5 Flowrate 1.5 L/min 
6 Flow time 120 min 
7 Flow meter zero error 0.4 L/min 
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The plot of mean CT numbers after acidizing and after flowback (Fig 4.3a) and the 

Difference plot (Fig 4.3b) are seen below.  

 

 

Figure 4.3a Mean CT number plot for Indiana Limestone (CA-ICA) 



 36 

 

Figure 4.3b Difference plot for Indiana Limestone (CA-ICA) 
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4.1.1.4 FA-CI 

 

For the experiment, the acidizing and flowback parameters are as follows (see Tables 

4.5a, 4.5b and 4.5c): 

 

TABLE 4.5a-ACID FLOW PARAMETERS (INDIANA 

LIMESTONE; FA-CI) 

1 Gas Permeability 3.3 md 
  2 Acid Injection Rate 8 cc/min   

 3 Injection time 11 min 30 sec 
 

 

TABLE 4.5b-ACID FORMULATION 

(INDIANA LIMESTONE; FA-CI) 

1 Water 189 cc 
2 HCl (15 wt%) 111 cc 
3 NaI (5 wt%) 15.8 g 
4 FA-CI (2 wt%) 6.3 g 

 

 

TABLE 4.5c-FLOWBACK PARAMETERS 

(INDIANA LIMESTONE;FA-CI) 

1 Back pressure 300 psi 
2 Overburden pressure 1500 psi 
3 Inlet pr. 800 psi 
4 Pr. drop across the core 460 psi 
5 Flowrate 15.0 L/min 
6 Flow time 120 min 
7 Flow meter zero error 0.4 L/min 

 

 

 



 38 

The plot of mean CT numbers after acidizing and after flowback (Fig 4.4a) and the 

Difference plot (Fig 4.4b) are seen below.  

 

 

Figure 4.4a Mean CT number plot for Indiana Limestone (FA-CI) 
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Figure 4.4b Difference plot for Indiana Limestone (FA-CI) 
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4.1.1.5 MI-CI 

 

For the experiment, the acidizing and flowback parameters are as follows (see Tables 

4.6a, 4.6b and 4.6c): 

 

TABLE 4.6a-ACID FLOW PARAMETERS (INDIANA 

LIMESTONE; MI-CI) 

1 Gas Permeability 1.8 md 
  2 Acid Injection Rate 8 cc/min   

 3 Injection time 5 min 20 sec 
 

 

TABLE 4.6b-ACID FORMULATION 

(INDIANA LIMESTONE; MI-CI)  

1 Water 189 cc 
2 HCl (15 wt%) 111 cc 
3 NaI (5 wt%) 15.8 g 
4 MI-CI (2 wt%) 6.3 g 

 

 

TABLE 4.6c-FLOWBACK PARAMETERS 

(INDIANA LIMESTONE; MI-CI) 

1 Back pressure 300 psi 
2 Overburden pressure 1500 psi 
3 Inlet pr. 1100 psi 
4 Pr. drop across the core 743 psi 
5 Flowrate 2.5 L/min 
6 Flow time 120 min 
7 Flow meter zero error 0.4 L/min 
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The plot of mean CT numbers after acidizing and after flowback (Fig 4.5a) and the 

Difference plot (Fig 4.5b) are seen below.  

 

 

Figure 4.5a Mean CT number plot for Indiana Limestone (MI-CI) 
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Figure 4.5b Difference plot for Indiana Limestone (MI-CI) 
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4.1.1.6 M-NEA 

 

For the experiment, the acidizing and flowback parameters are as follows (see Tables 

4.7a, 4.7b and 4.7c): 

 

TABLE 4.7a-ACID FLOW PARAMETERS (INDIANA 

LIMESTONE; M-NEA) 

1 Gas Permeability 
    2 Acid Injection Rate 8 cc/min   

 3 Injection time 5 min 30 sec 
 

 

TABLE 4.7b-ACID FORMULATION 

(INDIANA LIMESTONE; M-NEA) 

1 Water 189 cc 
2 HCl (15 wt%) 111 cc 
3 NaI (5 wt%) 15.8 g 
4 M-NEA (2 wt%) 6.3 g 

 

 

TABLE 4.7c-FLOWBACK PARAMETERS 

(INDIANA LIMESTONE; M-NEA)  

1 Back pressure 300 psi 
2 Overburden pressure 1500 psi 
3 Inlet pr. 800 psi 
4 Pr. drop across the core 452 psi 
5 Flowrate 3.3 L/min 
6 Flow time 120 min 
7 Flow meter zero error 0.4 L/min 
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The plot of mean CT numbers after acidizing and after flowback (Fig 4.6a) and the 

Difference plot (Fig 4.6b) are seen below.  

 

 

Figure 4.6a Mean CT number plot for Indiana Limestone (M-NEA) 
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Figure 4.6b Difference plot for Indiana Limestone (M-NEA) 
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4.1.1.7 Combined Difference Plot 

 

The Combined Difference Plot (Fig 4.7) is a collection of all the Difference Plots, and is 

centered at the end of the wormhole. 15 data points before and after the end of the 

wormhole are taken, and are plotted in the same chart to compare the difference in 

height of the peaks, to form an idea of the efficiency of the spent acid clean-up. 

 

 

Figure 4.7 Combined Difference plot for Indiana Limestone (all additives) 
 

 



 47 

As seen from the chart, the additives according to the peak height (highest peak to 

lowest) are listed below:  

1. FA-CI 

2. M-NEA 

3. T-ICA 

4. CA-ICA 

5. No additive 

6. MI-CI 

 

The plot shows that for all the additives, the spent acid clean-up was comparable to the 

control i.e. no additive case. However, the change in CT number range is too small to 

call which additive performed the best in terms of spent acid clean-up, or the worst. 

 

4.1.2 Texas Cream Chalk 

 

Similar to Indiana Limestone, six experiments were performed in total with Texas 

Cream Chalk cores. One experiment was done without any additive to serve as a control. 

The results are as under: 
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4.1.2.1 No additive 

 

For the experiment, the acidizing and flowback parameters are as follows (see Tables 

4.8a, 4.8b and 4.8c): 

 

TABLE 4.8a-ACID FLOW PARAMETERS 

(TEXAS CREAM CHALK; NO ADDITIVE) 

1 Acid Injection Rate 8 cc/min 
2 Injection time 10 min 

 

 

TABLE 4.8b-ACID FORMULATION 

(TEXAS CREAM CHALK; NO ADDITIVE) 

1 Water 189 cc 
2 HCl (15 wt%) 111 cc 
3 NaI (5 wt%) 15.8 g 

 

 

TABLE 4.8c-FLOWBACK PARAMETERS 

(TEXAS CREAM CHALK; NO ADDITIVE) 

1 Back pressure 300 psi 
2 Overburden pressure 1500 psi 
3 Inlet pr. 1000 psi 
4 Pr. drop across the core 713 psi 
5 Flowrate 3.3 L/min 
6 Flow time 27 min 

 

 

The plot of mean CT numbers after acidizing and after flowback (Fig 4.8a) can be seen 

below. Similar to the Indiana Limestone plots seen earlier, the recession of the spent acid 

front is visible in the area marked “Region of interest”. The end of the wormhole is also 

mentioned in the plot. 
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Figure 4.8a Mean CT number plot for Texas Cream Chalk (no additive) 
 

The Difference plot (Fig 4.8b) plots the difference in CT numbers after acidizing and 

after flowback. Positive peak shows the recession of the spent acid front with the 

magnitude of the peak corresponding to how much of the spent acid has been produced 

during flowback.  
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Figure 4.8b Difference plot for Texas Cream Chalk (no additive) 
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4.1.2.2 T-ICA 

 

For the experiment, the acidizing and flowback parameters are as follows (see Tables 

4.9a, 4.9b and 4.9c): 

 

TABLE4.9a-ACID FLOW PARRAMETERS 

(TEXAS CREAM CHALK; T-ICA) 

1 Gas Permeability 3.5 md 
2 Acid Injection Rate 8 cc/min 
2 Injection time 9 min 

 

 

TABLE 4.9b-ACID FORMULATION (TEXAS 

CREAM CHALK; T-ICA) 

1 Water 189 cc 
2 HCl (15 wt%) 111 cc 
3 NaI (5 wt%) 15.8 g 
4 T-ICA (2 wt%) 6.3 g 

 

 

TABLE 4.9c-FLOWBACK PARAMETERS 

(TEXAS CREAM CHALK; T-ICA) 

1 Back pressure 300 psi 
2 Overburden pressure 1500 psi 
3 Inlet pr. 800 psi 
4 Pr. drop across the core 435 psi 
5 Flowrate 6.5 L/min 
6 Flow time 120 min 
7 Flow meter zero error 0.5 L/min 
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The plot of mean CT numbers after acidizing and after flowback (Fig 4.9a) and the 

Difference plot (Fig 4.9b) are seen below.  

 

 

Figure 4.9a Mean CT number plot for Texas Cream Chalk (T-ICA) 
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Figure 4.9b Difference plot for Texas Cream Chalk (T-ICA) 
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4.1.2.3 CA-ICA 

 

For the experiment, the acidizing and flowback parameters are as follows (see Tables 

4.10a, 4.10b and 4.10c): 

 

TABLE 4.10a-ACID FLOW PARAMETERS (TEXAS 

CREAM CHALK; CA-ICA) 

1 Acid Injection Rate 8 cc/min   
 2 Injection time 10 min 40 sec 

 

 

TABLE 4.10b-ACID FORMULATION 

(TEXAS CREAM CHALK; CA-ICA) 

1 Water 189 cc 
2 HCl (15 wt%) 111 cc 
3 NaI (5 wt%) 15.8 g 
4 ICA Ferrotrol-300L (2 wt%) 6.3 g 

 

 

 

TABLE 4.10c-FLOWBACK PARAMETERS 

(TEXAS CREAM CHALK; CA-ICA) 

1 Back pressure 300 psi 
2 Overburden pressure 1500 psi 
3 Inlet pr. 800 psi 
4 Pr. drop across the core 460 psi 
5 Flowrate  3.6 L/min 
6 Flow time 120 min 
7 Flow meter zero error 0.5 L/min 
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The plot of mean CT numbers after acidizing and after flowback (Fig 4.10a) and the 

Difference plot (Fig 4.10b) are seen below.  

 

 

Figure 4.10a Mean CT number plot for Texas Cream Chalk (CA-ICA) 
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Figure 4.10b Difference plot for Texas Cream Chalk (CA-ICA) 
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4.1.2.4 FA-CI 

 

For the experiment, the acidizing and flowback parameters are as follows (see Tables 

4.11a, 4.11b and 4.11c): 

 

TABLE 4.11a-ACID FLOW PARAMETERS 

(TEXAS CREAM CHALK; FA-CI) 

1 Gas Permeability 4 md 
2 Acid Injection Rate 8 cc/min 
3 Injection time  7 min 

 

 

TABLE 4.11b-ACID FORMULATION 

(TEXAS CREAM CHALK; FA-CI) 

1 Water 189 cc 
2 HCl (15 wt%) 111 cc 
3 NaI (5 wt%) 15.8 g 
4 FA-CI (2 wt%) 6.3 g 

 

 

TABLE 4.11c-FLOWBACK PARAMETERS 

(TEXAS CREAM CHALK; FA-CI) 

1 Back pressure 300 psi 
2 Overburden pressure 1500 psi 
3 Inlet pr. 800 psi 
4 Pr. drop across the core 458 psi 
5 Flowrate 3.5 L/min 
6 Flow time 120 min 
7 Flow meter zero error 0.5 L/min 
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The plot of mean CT numbers after acidizing and after flowback (Fig 4.11a) and the 

Difference plot (Fig 4.11b) are seen below.  

 

 

Figure 4.11a Mean CT number plot for Texas Cream Chalk (FA-CI) 
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Figure 4.11b Difference plot for Texas Cream Chalk (FA-CI) 
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4.1.2.5 MI-CI 

 

For the experiment, the acidizing and flowback parameters are as follows (see Tables 

4.12a, 4.12b and 4.12c): 

 

TABLE 4.12a-ACID FLOW PARAMETERS (TEXAS 

CREAM CHALK; MI-CI) 

1 Gas Permeability 5.3 md 
  2 Acid Injection Rate 8 cc/min   

 3 Injection time 5 min 40 sec 
 

 

TABLE 4.12b-ACID FORMULATION 

(TEXAS CREAM CHALK; MI-CI) 

1 Water 94.5 cc 
2 HCl (15 wt%) 55.5 cc 
3 NaI (5 wt%) 7.9 g 
4 MI-CI (2 wt%) 3.2 g 

 

 

TABLE 4.12c-FLOWBACK PARAMETERS 

(TEXAS CREAM CHALK; MI-CI) 

1 Back pressure 300 psi 
2 Overburden pressure 1500 psi 
3 Inlet pr. 800 psi 
4 Pr. drop across the core 455 psi 
5 Flowrate 9.2 L/min 
6 Flow time 126 min 
7 Flow meter zero error 0.4 L/min 
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The plot of mean CT numbers after acidizing and after flowback (Fig 4.12a) and the 

Difference plot (Fig 4.12b) are seen below.  

 

 

Figure 4.12a Mean CT number plot for Texas Cream Chalk (MI-CI) 
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Figure 4.12b Difference plot for Texas Cream Chalk (MI-CI) 
 

 

The negative peak in the Difference plot shows that the spent acid clean-up was not 

effective for the Corrosion Inhibitor MI-CI. 
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4.1.2.6 M-NEA 

 

For the experiment, the acidizing and flowback parameters are as follows (see Tables 

4.13a, 4.13b and 4.13c): 

 

TABLE 4.13a-ACID FLOW PARAMETERS 

(TEXAS CREAM CHALK; M-NEA) 

1 Gas Permeability 3.2 md 
2 Acid Injection Rate 8 cc/min 
3 Injection time 10 min 

 

 

TABLE 4.13b-ACID FORMULATION (TEXAS 

CREAM CHALK; M-NEA) 

1 Water 189 cc 
2 HCl (15 wt%) 111 cc 
3 NaI (5 wt%) 15.8 g 
4 M-NEA (2 wt%) 6.3 g 

 

 

TABLE 4.13c-FLOWBACK PARAMETERS 

(TEXAS CREAM CHALK; M-NEA) 

1 Back pressure 300 psi 
2 Overburden pressure 1500 psi 
3 Inlet pr. 500 psi 
4 Pr. drop across the core 176 psi 
5 Flowrate 11.4 L/min 
6 Flow time 120 min 
7 Flow meter zero error 0.4 L/min 
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The plot of mean CT numbers after acidizing and after flowback (Fig 4.13a) and the 

Difference plot (Fig 4.13b) are seen below.  

 

 

Figure 4.13a Mean CT number plot for Texas Cream Chalk (M-NEA) 
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Figure 4.13b Difference plot for Texas Cream Chalk (M-NEA) 
 

The results shown above were not deemed conclusive because the wormhole ended very 

close to the outlet face of the core. Moreover, the CT scan after flowback couldn’t be 

performed immediately after gas flowback, and was performed 3 days later. Hence the 

experiment was repeated, even though it showed a decrease in CT numbers after 

flowback (seen just before the end of the wormhole).  
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For the second experiment, the acidizing and flowback parameters are as follows (see 

Tables 4.13d, 4.13e and 4.13f): 

 

TABLE 4.13d-ACID FLOW PARAMETERS (TEXAS 

CREAM CHALK; M-NEA; 2
nd

 EXPERIMENT) 

1 Gas Permeability 7.3 md   
2 Acid Injection Rate 8 cc/min   

 3 Injection time 5 min 29 sec 
 
 

TABLE 4.13d-ACID FORMULATION 

(TEXAS CREAM CHALK; M-NEA; 2
nd

 

EXPERIMENT) 
1 Water 189 cc 
2 HCl (15 wt%) 111 cc 
3 NaI (5 wt%) 15.8 g 
4 M-NEA (2 wt%) 6.3 g 

 
 

TABLE 4.13f-FLOWBACK 

PARAMETERS (TEXAS CREAM 

CHALK; M-NEA; 2
nd

 EXPERIMENT) 

1 Back pressure 300 psi 
2 Overburden pressure 1500 psi 
3 Inlet pr. 800 psi 
4 Pr. drop across the core 456 psi 
5 Flowrate 9.0 L/min 
6 Flow time 120 min 
7 Flow meter zero error 0.5 L/min 

 

 

The plot of mean CT numbers after acidizing and after flowback (Fig 4.13c) and the 

Difference plot (Fig 4.13d) are seen below.  
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Figure 4.13c Mean CT number plot for Texas Cream Chalk (M-NEA); 2
nd

 

experiment 
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Figure 4.13d Difference plot for Texas Cream Chalk (M-NEA); 2
nd

 experiment 
 

 

The negative peak in the Difference plot shows that the spent acid clean-up was not 

effective for the non-emulsifying agent. This result was unexpected; hence it was 

repeated for a third time. 
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For the third experiment, the acidizing and flowback parameters are as follows (see 

Tables 4.13g, 4.13h and 4.13i): 

 
TABLE 4.13g-ACID FLOW PARAMETERS (TEXAS 

CREAM CHALK; M-NEA; 3
rd

 EXPERIMENT) 

1 Gas Permeability 4.4 md 
  2 Acid Injection Rate 8 cc/min   

 3 Injection time 5 min 30 sec 
 

 

TABLE 4.13h-ACID FORMULATION 

(TEXAS CREAM CHALK; M-NEA; 3
rd

 

EXPERIMENT) 

1 Water 94.5 cc 
2 HCl (15 wt%) 55.5 cc 
3 NaI (5 wt%) 7.9 g 
4 M-NEA (2 wt%) 3.2 g 

 

 

TABLE 4.13i-FLOWBACK PARAMETERS  

(TEXAS CREAM CHALK; M-NEA; 3
rd

 

EXPERIMENT) 

1 Back pressure 300 Psi 
2 Overburden pressure 1500 Psi 
3 Inlet pr. 800 Psi 
4 Pr. drop across the core 463 Psi 
5 Flowrate 8.7 L/min 
6 Flow time 120 Min 
7 Flow meter zero error 0.4 L/min 

 

 

 

The plot of mean CT numbers after acidizing and after flowback (Fig 4.13e) and the 

Difference plot (Fig 4.13f) are seen below.  
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Figure 4.13e Mean CT number plot for Texas Cream Chalk (M-NEA); 3
rd

 

experiment 
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Figure 4.13f Difference plot for Texas Cream Chalk (M-NEA); 3
rd

 experiment 
 

 

Quite like the previous result, the spent acid clean-up wasn’t effective for this case. It 

can be observed that the spent acid has permeated deeper into the core. Hence this result 

was finally deemed to be conclusive.  
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4.1.2.7 Combined Difference Plot 

 

Similar to the Indiana Limestone, we can see the Combined Difference Plot for Texas 

Cream Chalk below (Fig 4.14). The additives according to the peak height (highest peak 

to lowest) are listed below:  

1. FA-CI 

2. No additive 

3. T-ICA 

4. CA-ICA 

5. MI-CI 

6. M-NEA 

 

The Combined Difference Plot for Texas Cream Chalk can be seen below. For M-NEA, 

the last (or the 3rd experiment) result was used. 
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Figure 4.14 Combined Difference Plot for Texas Cream Chalk (all additives) 
 

 

The plot shows that for FA-CI, CA-ICA and T-ICA, the spent acid clean-up was 

comparable to the control i.e. no additive case. The worst clean-up was found when MI-

CI and M-NEA were used. 

 

 

 

 



 74 

5. CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

1) For Indiana Limestone, the best clean-up was achieved for FA-CI and the worst for 

MI-CI. But the difference in their mean CT numbers after flowback is only 

approximately 30, which is too small to declare any additive an outright winner in 

terms of spent acid clean-up. 

 

2) For Texas Cream Chalk, the best clean-up was achieved for FA-CI and the worst for 

M-NEA. Moreover, when MI-CI and M-NEA were added to the acid, the spent acid 

clean-up was found to be inefficient, with the acid front readjusting itself and the 

spent acid concentration gradient flattening out (as can be seen in the mean CT 

numbers plot). 

 
 

3) For M-NEA and MI-CI, it does not mean that the spent acid will not clean up all the 

time. But more often than not, its clean-up will be hindered by the aforementioned 

additives, as the experiments have shown. (For M-NEA with Texas Cream Chalk, 

the spent acid front was found to have been cleaned up on one instance, but upon 

repetition of the experiment twice, the result couldn’t be replicated.) Moreover, it 

takes at least 30 minutes from the end of an experiment to perform the subsequent 

CT scan (with a number of tasks performed in between such as depressurizing the 
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equipment or pre-heating the CT scanner). This is ample time for the spent acid front 

to imbibe deeper into the core, and give a negative peak on the difference plot. 

 

4) FA-CI was found to perform the best in terms of reduction in CT numbers after 

flowback (i.e. spent acid clean-up) for both Indiana Limestone and Texas Cream 

Chalk. 

 

5) This series of experiments should be repeated for water or brine saturated cores 

(instead of gas saturated) to have a condition similar to actual conditions. 

 

6) Moreover, the experiments should be conducted with an aluminum coreholder so as 

to scan the acidized core without taking it out of the coreholder and disturbing or 

contaminating it. 
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APPENDIX A 
 
 

MSDSs of the Additives Used 
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A-1 T-ICA MSDS 
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A-2 CA-ICA MSDS 
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A-3 FA-CI MSDS 
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A-4 MI-CI MSDS 
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A-5 M-NEA MSDS 
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A-6 Sodium Iodide MSDS 
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