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ABSTRACT 

 

Effects of Oilseed Meals and Isothiocyanates (ITCS) on Phymatotrichopsis omnivora 

(Cotton Root Rot) and Soil Microbial Communities. (May 2012) 

Ping Hu, B.S., Nankai University; 

M.S., Kansas State University 

Co-Chairs of Advisory Committee: Dr. Terry J. Gentry 

 Dr. Frank M. Hons 

 

The meals from many oilseed crops contain biocidal chemicals that are known to 

inhibit the growth and activity of several soil pathogens, though little is known 

concerning impacts on whole soil microbial communities. We investigated the effect of 

oilseed meals (SMs) from both brassicaceous plants, including mustard and camelina, as 

well as non-brassicaceous plants, including jatropha and flax, on P. omnivora (the casual 

agent of cotton root rot) in Branyon clay soil (at 1 and 5% application rates). We also 

investigated the effect of SMs from camelina, jatropha, flax, and wheat straw on 

microbial communities in Weswood loam soil. We also used four types of 

isothiocyanates (ITCs) including allyl, butyl, phenyl, and benzyl ITC to test their effects 

on P. omnivora growth on potato dextrose agar (PDA), as well as on soil microbial 

communities in a microcosm study. Community qPCR assays were used to evaluate 

relative abundances of soil microbial populations. Soil microbial community 

composition was determined through tag-pyrosequencing using 454 GS FLX titanium 

technology, targeting ITS and 16S rRNA gene regions for fungal and bacterial 



 iv 

communities, respectively. 

The results showed that all tested brassicaceous and jatropha SMs were able to 

inhibit P. omnivora sclerotial germination and hyphal growth, with mustard SM being 

the most effective. Flax didn’t show any inhibitory effects on sclerotial germination. All 

tested ITCs inhibited P. omnivora OKAlf8 hyphal growth, and the level of inhibition 

varied with concentration and ITC type. Total soil fungal populations were reduced by 

ITC addition, and microbial community compositions were changed following SM and 

ITC application. These changes varied according to the type of SM or ITC added. Our 

results indicated that SMs of several brassicaceous species as well as jatropha may have 

potential for reducing cotton root rot as well as some other pathogens. Different SMs 

releasing varied ITCs may result in differential impacts on soil microorganisms 

including some pathogens.  

. 
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CHAPTER I 

INTRODUCTION AND 

LITERATURE REVIEW 

 

1.1. Introduction 

Interest in bioenergy has recently intensified due to increasing fuel prices and 

concerns regarding the worldwide supply of fossil fuels. Another potential benefit of 

bioenergy is a possible reduction in greenhouse gas emissions relative to traditional 

fuels. The Energy Independence and Security Act (December 2007) required changes to 

the previous Renewable Fuel Standard (RFS) Program, and resulted in the new RFS2 

Program (effective in July 2010) that mandated significantly increased volumes of 

renewable fuel to 36 billion gallons by 2022. 

Using oilseed crops to extract oils and subsequently transform them into 

bioethanol or biodiesel is one of several major means of bioenergy production. The 

processing of higher amounts of oilseed to meets these demands will result in large 

quantities of by-products known as oilseed meals (SMs) - the residual remaining after 

the oil extraction process. Many of these SMs including those from crops such as corn 

(Zea mays L.), cottonseed (Gossypium spp.), canola (Brassica spp.), olive (Olea  

 

 

____________ 
This dissertation follows the style of FEMS Microbiology Ecology. (Federation of European 

Microbiological Societies) 
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europaea L.), peanut (Arachis hypogaea L.), safflower (Carthamus tinctorius L.), 

sesame (Sesamum indicum L.), soybean (Glycine max L.), and sunflower (Helianthus 

annuus L.) have markets as food or animal feed due to their high energy and nutrient 

content. However, SMs from some type of plants are not suitable for food or animal feed 

due to the presence of toxic compounds such as those produced by some members of the 

Brassicaceae family (Mithen et al., 2000), Jatropha curcas (Makkar et al., 1997), castor 

bean (Ricinus communis) (Nicolson et al., 1974), Indian beech (Pongamia pinnata) 

(Bhatia et al., 2008), and neem (Azadirachta indica) (Paul et al., 1996). Thus, land 

application as an organic fertilizer may be the most promising option for use of these 

SMs. Additionally, numerous studies have demonstrated that some of these oilseed 

plants, such as many Brassica spp., can inhibit numerous different plant pathogens due 

to the release of biocidal compounds such as ITCs (Angus et al., 1994; Sarwar et al., 

1998). However, relatively little is known regarding the potential impacts of these SMs 

on major microbial processes in soil (e.g., C and N cycling) and non-target soil microbial 

populations.  

 

1.2. Background 

 

1.2.1. Biofuel oilseed crops 

Members of the Brassicaceae family such as canola and rapeseed, are typically 

grown for their seeds, which are harvested for oil production. Mustard has also been 

grown for spicy condiment production. The flour of Sinapis alba (yellow or white 
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mustard) is used for mustard paste with mild hotness, while Brassica juncea (brown or 

oriental mustard) is used to produce a sharp hot flavor paste (Yu et al., 2007). From the 

1980’s, Brassica species have also been used increasingly as cover crops in temperate 

regions of North America due to the presence of biocidal compounds produced by these 

plants leading to their utility in biofumigation (Haramoto and Gallandt, 2004; Yu et al., 

2007).  

Jatropha curcas tree is a member of the Euphorbiaceae family which grows in 

most of the tropics including Africa, Central and South America, India and South East 

Asia (Cano-Asseleih et al., 1989). It is resistant to drought and disease and can survive 

in very poor soil conditions, and is thus suitable to grow on marginal lands. It is also 

well-known for uses in medicines and as a green manure (Jones and Miller, 1991) due to 

its medicinal and nutritional contents of plant tissues (Kumar and Sharma, 2008). Its oil 

has been used for centuries in lamps in homes and for producing soap, candles, and 

varnish. Jatropha curcas has a high seed production (up to 5 tons/ hectare) and high oil 

content in the seeds (more than 60% in the kernel) with a high proportion of unsaturated 

fatty acids (78.6%), which has made J. curcas a desirable feedstock for non-edible oil 

and biodiesel production (Kumar and Sharma, 2008; Akbar et al., 2009). Jatropha 

curcas SM contains a high concentration of proteins and lipids but its utility in food and 

feed is limited by the presence of toxic chemicals such as phorbol esters, trypsin 

inhibitor, lectin and phytate (Makkar et al., 2008). 

Castor bean (Ricinus communis) is another crop in the Euphorbiaceae family that 

is very important in producing non-edible oil and biodiesel. India is currently the leading 
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producer of castor and a major exporter to the US (Sujatha et al., 2008). The world 

demand for castor oil has been increasing steadily due to its multiple uses in industries, 

such as the production of paint and varnish, nylon fiber production, jet engine lubricants, 

hydraulic fluids, plastics, manufacture of fiber optics, and as antifreeze for fuels and 

lubricants in aircraft and spacecraft (Scarpa and Guerci, 1982; Ogunniyi, 2006; Sujatha 

et al., 2008). Moreover, castor is also important as a source of vegetable and medicinal 

oil and has numerous benefits to human. Castor also contains toxic compounds such as 

lectins (ricin, Ricinus communis agglutinin) and alkaloid ricinine (Rich et al., 1989), 

which have been found able to reduce plant parasitic nematodes (Marban-Mendoza et 

al., 1987; Mashela and Nthangeni, 2002). 

Indian beech (Pongamia pinnata) is a member of the subfamily Papilionoideae, 

a fast-growing leguminous tree that originated from India and south-east Asia and has 

been introduced to the world including the USA (Scott et al., 2008). It is cultivated as an 

ornamental plant in gardens in India and Polynesia and can be grown on marginal lands 

(Bhatia et al., 2008). The plant tissues have been used in medicine for treating 

bronchitis, whooping cough, rheumatic joint scabies, and herpes (Kirtikar and Basu 

1995). The seed contains pongam oil, and its fruits and sprouts are used to treat 

abdominal tumors in India (Buccolo and David, 1973). Recently, Pongamia pinnata has 

been recognized as an important resource for the biofuel industry due to its high oil seed 

production (Scott et al., 2008). The de-oiled SM contains up to 30% protein that has the 

potential for animal feed, although the effects of potentially toxic compounds in the meal 

have not been fully elucidated (Scott et al., 2008). 
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1.2.2. SMs as organic fertilizers 

Oilseed meals, especially those not suitable for animal feed due to the presence 

of inherent toxic compounds, have been used as organic fertilizers for plants. Land 

application becomes an even more important if not the only method to reuse the 

nutrients in these types of SMs, may also increase levels of soil carbon (C), and 

contribute positively to the net C effect of biofuels. Oilseed meals contain substantial 

amounts of C, N, P and varying levels of other nutrients needed for plant growth (Wang 

et al., 2012). A significant forms of C in SMs are protein and fatty acids, thus these 

materials are often labile and easily decomposable within days of incubation (Berglund, 

2002; Wang et al., 2012). Some have reported a priming effect after several SM 

application to soil (Snyder et al., 2010), while others have reported that nearly 50% of C 

in SM was respired into the atmosphere within 51 days (Wang et al., 2012). Both these 

possibilities should be considered in C sequestration calculations. Besides C, SMs also 

contain high level of organic N, which give them great potential as a slow-release N 

fertilizer when applied to soil (Moore et al., 2010; Wang et al., 2012). 

In addition to supporting plant growth, previous studies have also reported a 

successful role of SMs in pathogen and weed control as a result of systematic response, 

which will be discussed in detail in the following sections. Nevertheless, relatively 

limited research has been focused on dedicated bioenergy oilseed crops such as jatropha 

(Mazzola et al., 2007; Moore et al., 2010; Snyder et al., 2010; Wang et al., 2012), or on 

the effects of bioenergy oilseed crops on soil ecology. 
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1.2.3. Chemicals in various SMs 

 

1.2.3.1. Brassicaceae 

It is known that Brassicaceae and their SMs can release biocidal compounds as 

glucosinolates (GLS) and their hydrolysis products to soil (Mazzola et al., 2001; Cohen 

et al., 2007). GLS are organic chemicals with a β-D-thioglucose moiety, a sulfonated 

oxime, and aliphatic or aromatic R groups (Borek and Morra, 2005). Although GLS 

stored in the cell vacuole possess limited biological activity, enzymatic degradation by 

thioglucoside glucohydrolase or myrosinase in the cell wall or cytoplasm (Poulton and 

Moller, 1993) can result in the formation of a number of toxic hydrolysis products, 

including ITCs, nitriles, organic thiocyanates, SCN
-
, oxazolidinethione, and 

epthionitriles (Cole, 1976; Borek and Morra, 2005). The ITCs are commonly among the 

major products from these plants. Higher concentrations of ITCs are typically produced 

from the seed than other parts of the plant (Woods et al., 1991). For example, Tsao et al. 

(2000) reported that mustard seeds released 1% allyl ITC compared with 0.5% from 

mustard bran or husk. 

Because of the biological toxicity of ITCs, they have been used as insecticides, 

fungicides, and nematicides. There have also been studies showing their inhibiting 

effects on soil nitrifying bacteria (Bending and Lincoln, 2000). 
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1.2.3.2. Jatropha curcas 

The toxic chemicals contained in J. curcas have been examined in numerous 

studies. The lectin (curcin) from J. curcas seeds has been reported to be toxic to 

organisms, but the toxicity level was much less than other lectins and ricin (Oslnes and 

Phil, 1973). Trypsin inhibitor activity and phytate levels in J. curcas meals have been 

reported to be very high, possibly resulting in decreased mineral bioavailability 

(especially Ca
2+

 and Fe
2+

) (Makkar et al., 1997) and decreased protein digestibility 

through interaction with enzymes such as trypsin and pepsin (Reddy and Pierson, 1994). 

Phorbol esters from J. curcas have also been found to be toxic to some fungal pathogens. 

They have also been found to be a skin-irritant, have purgative effects, and promote 

tumors (Hirota et al., 1988; Makkar et al., 1997; Saetae and Suntornsuk; 2010). Among 

all of the tested toxic compounds derived from J. curcas, the phorbol esters have been 

considered to be the primary contributor to toxicity, while lectins and trypsin inhibitors 

could be more easily mitigated by heat due to their being more labile (Makkar et al., 

1997). 

 

1.2.3.3. Other oilseed plants 

Numerous other SMs are known to produce biocidal compounds. Perhaps one of 

the best known is the castor bean (Ricinus communis). Castor contains toxic and/or 

medicinal compounds such as lectins (ricin, Ricinus communis agglutinin), alkaloid 

ricinine, and an allergenic protein polysaccharide CB-1A (Rich et al., 1989; Audi et al., 

2005). Marban-Mendoza et al. (1987) reported that application of the lectin limax flavus 
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agglutinin from castor significantly reduced tomato root knot caused by nematodes. The 

toxicity and medicinal applications of ricin and Ricinus communis agglutinin have been 

examined (Hegde and Podder, 1998) and may act as a principal compound in castor SM 

that adversely affect plant parasitic nematodes (Marban-Mendoza et al., 1987; Rich et 

al., 1989; Mashela and Nthangeni, 2002).  

Various parts of Pongamia pinnata have been reported to be of medicinal value 

(Buccolo and David, 1973; Kirtikar and Basu, 1995; Bhatia et al., 2008), but there has 

been no detailed characterization of the active constituents in these extracts. The 

reported chemical composition of P. pinnata includes the alkaloids demethoxy-kanugin, 

gamatay, glabrin, glabrosaponin, kaempferol, kanjone, kanugin, karangin, neoglabrin, 

pinnatin, pongamol, pongapin, quercitin, saponin, β-sitosterol, and tannin (Chander et al. 

1992, 2003). Some of these chemicals have been demonstrated to control a wide range 

of animal and human pathogens (Alam et al., 2004; Simin et al., 2002). 

 

1.2.4. Environmental fate and persistence of allelochemicals from SMs 

Glucosinolates themselves do not have obvious biocidal effects unless 

hydrolyzed to ITCs etc. by the enzyme myrosinase. Oilseed meal of rapeseed containing 

GLS in the presence of myrosinase were found suppressive to Aphanomyces root rot of 

pea, while no obvious disease reduction was observed by this SM after the myrosinase 

was inactivated (Smolinska et al., 1997). 

Individual SMs in combination with environmental conditions such as soil type 

and depth, pH, and microbial activities determines which reaction products exist and 
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how quickly they will degrade within the soil. Generally speaking, the time for complete 

degradation of oilseed-derived allelochemicals is rapid, ranging from minutes to weeks 

depending on individual chemical characteristics and environmental conditions. In a 

study conducted by Hansson et al. (2008), the mobility of ionic thiocyanate (SCN
-
) was 

evaluated and was found to occur predominately between 0 and 10 cm of depth and to be 

nearly completely degraded within 44 d of application. Gimsing et al. (2009) evaluated 

the sorption and degradation of 2-propenyl isothiocyanate (PrITC) and benzyl 

isothiocyanate (BeITC), in which the half-lives of the two ITCs were determined to 

range from about 1 to 4 h depending on soil type and depth. In another study on PrITC 

and BeITC soil degradation by Warton et al. (2003), the half-lives of the chemicals were 

measured to be 5 h for PrITC and 10 h for BeITC in a MITC-degrading soil (a soil that 

has been found to quickly degrade MITC), compared with 1.5 d for PrITC and 6.5 d for 

BeITC in a non-degrading soil (a soil that did not rapidly degrade MITC). Borek and 

Morra (2005) conducted a pH stability study by incubating SM extract containing 4-

hydroxybenzyl isothiocyanate dissolved in buffers ranging from pH 3.0 to 6.5. The 

shortest half-life (6 min) of 4-hydroxybenzyl isothiocyanate occurred at the highest pH 

of 6.5, and the longest half-life (321 min) occurred when the pH was decreased to 3.0.  

The importance of microbial activities in allelochemical degradation has been 

indirectly confirmed by Warton et al. (2003), who investigated to investigate the rate of 

degradation of PrITC and BeITC in sterilized and non-sterilized soil. The half-lives of 

the chemicals were measured to be 5 h for PrITC and 10 h for BeITC in the non-

sterilized soil compared with 3.1 d for PrITC and 9 d for BeITC in the sterilized soil. 
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Similar results were observed by Gimsing et al. (2008) who found that ITC 

concentration in sterilized soil was not degraded in comparison with fast first-order 

degradation in non-sterilized soil. 

 

1.3. Effects of SMs on soil microorganisms 

 

1.3.1. Soil fungal pathogens 

Numerous studies have demonstrated the potential of various Brassicaceae SMs 

on soil borne plant pests. Murray and Brennan (1998) reported suppression of take-all (a 

serious soilborne wheat disease) by Brassica spp. Other studies on SMs derived from 

Brassica juncea, B. napus, or Sinapis alba (Cohen et al., 2005; Mazzola et al., 2007) 

demonstrated that the SMs could suppress root infection by soilborne pathogens 

including Rhizoctonia spp. 

Despite their reported fungicidal, nematicidal, and insecticidal effects, to-date 

there has been no report of Jatropha curcas, castor, or Pongamia pinnata SMs being 

used to supress fungal pathogens in-situ. Extracts from J. curcas SM has been recently 

found to be toxic to several fungal pathogens including Fusarium and Colletotrichum 

spp. (Saetae and Suntornsuk, 2010). Moreover, J. curcas was found to reduce viral and 

fungal infection in transgenic tobacco due to an induced ribosome-inactivating protein 

(curcin 2) (Huang et al., 2008). Castor (Ricinus communis) SM has been reported to 

suppress plant parasitic nematodes, indicating that it may have possible application for 

the control of other organisms as well. Moreover, Pongamia pinnata SM amendment to 
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soil has been found to significantly reduce root rot disease incidence of sage caused by 

the plant pathogenic fungi Fusarium solani and Rhizoctonia solani (Mallesh et al., 2008). 

The mechanism involved in fungal inhibition has been partially explained by the 

effect of allelochemicals induced from the SMs or tissues after soil amendments. 

Previous studies used either compounds volatilized from SMs or pure chemicals such as 

ITCs and phorbol esters that were believed major toxic products from SMs to investigate 

their influence on various plant pathogenic fungi. Smolinska et al. (1997) found that 

volatile compounds (enzymatic hydrolysis products of GLS) from B. napus SM inhibited 

Aphanomyces euteiches mycelia growth and germination of encysted zoospores and 

reduced root rot of pea. Kirkegaard et al. (1996) tested volatile compounds produced 

from B. napus and B. juncea tissues on several plant pathogenic fungi and found that 

they effectively suppressed G. graminis var. tritici and Rhizoctonia solani, and the level 

of inhibition was different in various types of tissue with different ITC concentrations.  

Other studies have tested the potential for a variety of ITCs as fungicides. For 

instance, Sarwar et al. (1998) examined the effect of 6 common ITCs on numerous plant 

pathogenic fungi including Gaeumannomyces graminis var. tritici, R. solani, Fusarium 

graminearum, Bipolaris sorokiniana, and Pythium irregular. A general suppression 

effect of these ITCs on tested fungi was discovered, although the relative sensitivity 

depended upon the fungal group and ITC types. Additionally, more recent studies have 

found similar results including Manici et al. (2000) who found thiofunctionalised GLS 

degradation products effectively inhibited P. irregulare oospore germination and R. 

solani soil colonization.  
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Allelochemicals from SMs other than the Brassicaceae family have not been 

reported to control plant pathogenic fungi, although there have been reports on using 

ricin to control nematodes (Rich et al., 1989). A summarized list of studies testing the 

effects of various allelochemicals on selected microorganisms is presented in Table 1.1, 

and a summarized table of studies on effects of various SMs on selected organisms is 

presented in Table 1.2. 

 

1.3.2. Other soil microorganisms 

 

1.3.2.1. Brassicaceae SMs effects on soil microbial communities 

Relatively little literature exists on how soil microbial ecosystems respond to SM 

applications. Cohen et al. (2005) analyzed the effect of adding Brassica napus SM on 

soil microbial community structure (Table 1.2). They found an increase in total 

culturable bacteria, Streptomyces spp., and Pythium spp., with a decrease in fluorescent 

Pseudomonas spp. Since biological activity is vital for soil quality and is the driving 

force for most nutrient cycling, it is critically important to determine the effects of land 

application of various SMs on soil microbial ecosystems before this can be 

recommended as a management practice.  
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Table 1.1. Effects of selected oilseed-associated allelochemicals on soil organisms. 

 
 Tested organisms Allelochemicals Major findings Reference 

Bacteria NH4
+-oxidizing and NO2

--

oxidizing bacteria 

ITCs (Methyl, 2-Propenyl, 

Butyl, Butyl, Phenyl, Benzyl, 

Phenethyl), 3-Butene-nitrile, 3-

Phenyl-propionitrile. 

1) ITCs inhibited NH4
+-oxidizing bacteria in soil;  

2) ITCs inhibited NO2
--oxidizing bacteria in clay-loam soil; 

3) ITCs were more effective inhibitors of nitrification than 

intact GLS or nitriles;  

4) Phenyl-ITC was found the most toxic of the ITCs tested. 

Bending and 

Lincoln, 2000. 

Fungi Gaeumannomyces graminis var. 

tritici, R.solani, Fusarium 

graminearum, Bipolaris 

sorokiniana, Pythium irregulare 

methyl-ITC, propenyl-ITC, 

butenyl-ITC, pentenyl-ITC, 

benzyl-ITC and 2-phenylethyl-

ITC 

Tested soil pathogens were generally suppressed by ITCs, 

though the sensitivity depended on fungal groups and ITC 

types. 

Sarwar et al., 

1998 

G. graminis var. tritici, R. 

solani, F. graminearum. P. 

irregulare,and B. sorokiniana. 

Volatiles from Brassica napus, 

Brassica juncea tissues of 

different plant parts 

1) Gaeumannomyces and Rluzoctonia were generally the 

most sensitive to the volatiles released, while Pythium and 

Bipolaris the least. 

2) Brassica tissue age and type released different the type 

and concentration of ITCs, thus difference in effectiveness 

of fungal suppression. 

Kirkegaard et al., 

1996 

Aphanomyces euteiches f. sp. 

pisi (root rot of pea) 

Volatile compounds produced 

from rapeseed (B. napus) meal 

1) Volatile compounds produced from rapeseed suppressed 

the fungal growth and germination, and reduced root rot of 

pea; 

2) Autoclaved rapeseed meal produced mainly nitriles, while 

intact rapeseed meal produced mainly ITCs. 

Smolinska et al., 

1997 

Aspergillus niger, Penicillium 

cyclopium, Rhizopus oryzae, and 

13 additional fungi 

11 natural ITCs A remarkable antifungal activity was observed in some 

analogues of benzyl and B-phenylethyl isothiocyanate. 

Drobnica et al., 

1967 

P. irregulare and R. solani Thiofunctionalised, hydroxy-

alkenyl, and alkenyl GLS 

degradation products 

Thiofunctionalised GLS degradation products were most 

effective inhibiting of P. irregulare oospore germination and 

R. solani soil colonization. 

Manici et al., 

2000 

Wood-colonizing fungi methyl isothiocyanate (MITC) MITC (up to 0.018 µg kg-1) was uniformly toxic to most of 

the tested fungi. 

Canessa and 

Morell, 1995 
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Table 1.2. Effects of selected SMs on soil microorganisms. 

 
Organisms SMs Major findings References 

Fungi Rhizoctonia spp., Pythium 

spp., Rhizoctonia solani AG-

5, Cylindrocarpon spp.  

B. juncea, B. 

napus, S. alba  

 

 

1) All SMs reduced infection by native R. spp. and 

introduced R. solani AG-5; 

2) Only B. juncea suppressed Pratylenchus spp. while 

didn’t stimulate Pythium spp.; 

3) B. juncea and B. napus SM mixture can better control 

apple replant disease. 

 

Mazzola et al., 2007; 

Cohen et al., 2005; 

Mazzola and 

Mullinix, 2005 

Fusarium solani, Rhizoctonia 

solani  

Pongamia 

pinnata  

Pongamia pinnata SM amendment to soil significantly 

reduced root rot disease incidence of sage caused by 

Fusarium solani and Rhizoctonia solani. 

Karnataka, 2008 

Chromalveolata Phytophthora spp. B. juncea, B. 

napus, S. alba  

 

Seed meals used in this study didn’t suppress 

Phytophthora spp. 

Cohen et al., 2005; 

Mazzola and 

Mullinix, 2005; 

Aphanomyces euteiches f. sp. 

pisi   

B. napus 1) B. napus SM severely inhibited infection by oospores 

and mycelial growth; 

2) Autoclaved B. napus SM produced little disease 

reduction due to denatured myrosinase and low GLS. 

 

Smolinska et al., 

1997 

Bacteria Streptomyces spp.,  

Pseudomonas spp.  

B. juncea, B. 

napus, S. alba  

 

1) B. napus SM altered communities of both pathogenic 

and saprophytic soil microorganisms, elevated 

Streptomyces spp., but suppressed fluorescent 

Pseudomonas. 

2) Suppression of Rhizoctonia root rot by B. napus SM 

amendment requires resident soil microbiota 

(Streptomyces spp.) and generation of nitric oxide 

through nitrification. 

 

Cohen and Mazzola, 

2006 

 

http://en.wikipedia.org/wiki/Chromalveolata


 

 

15 

1.3.2.2. ITCs effects on soil microbial communities 

Although studies on the impact of SM application on general soil microbial 

communities are few in number, more (although still limited) studies have investigated 

what, if any, effects various allelochemicals from SMs have on non-target soil 

microorganisms. Several studies have investigated the effects of pure ITCs on a wide 

range of soil fungi and bacteria (primarily plant pathogens), in which a general 

suppression effect was discovered, and the sensitivity varied among different microbial 

groups and ITC types (Kirkegaard et al., 1996; Smolinska et al., 1997; Manici et al., 

2000; Bending and Lincoln, 2000; Smith and Kirkegaard, 2002; Hu et al., 2011). In the 

study of Haramoto and Gallandt (2004), daily applications of low concentrations of 2-

phenylethyl ITC were found to change the active portion of the soil microbial 

community composed of bacteria and eukaryotes. The effects of fumigants like methyl 

ITC on microbial biomass may be short-term with biomass recovery after a few weeks 

or they may be long-term. In a 12-week study by Ibekwe et al. (2001), the structural 

diversity of the dominant microbial community in general decreased with increasing 

methyl ITC concentration, but the effect was different among various groups of 

microorganisms. The effect of methyl ITC on soil microbial biomass was found to be 

dramatic during the first week of application. After this period when methyl ITC has 

been decomposed (Ibekwe, 2004), microbial composition in methyl ITC treated soil 

were quite similar to an unamended control regardless of the doses of methyl ITC used. 

Another study found long-term (a full year) changes in soil microbial composition and 
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activities, as indicated by soil respiration, after repeated exposure to methyl ITC (Taylor 

et al., 1996). 

Moreover, Rumberger and Marschner (2003) demonstrated that phenyl-ethyl-

isothiocyanate (PEITC) released by microbial degradation of canola crop residue 

affected both bacterial and eukaryotic community structure as determined by PCR-

DGGE. Results from Bending and Lincoln (2000) suggested that ITCs inhibited soil 

nitrifying bacteria communities through direct reduction of the size of nitrifying 

community bacteria and their activities, and the magnitude of the negative effects were 

related to various soil properties (Table 1.1). These results indicate that Brassicaceae 

SM could potentially affect important microbial processes, such as nitrification, nitrogen 

fixation, and mycorrhizal symbiosis. 

 

1.3.2.3. Effects of other oilseed plants on selected organisms 

Extracts from various parts of J. curcas, such as seeds and leaves, have been 

shown to have fungicidal, molluscicidal, and insecticidal properties (Nwosu and Okafor, 

1995; Meshram et al., 1996; Liu et al., 1997; Rug and Ruppel, 2000; Saetae and 

Suntornsuk, 2010). Emeasor et al. (2005) reported insecticidal effects by J. curcas seed 

powder application to soil comparable to the synthetic insecticide pirimiphos-methyl. 

Castor plant tissues, fruit, and seed extracts also been found to have antimicrobial effects 

(Jombo and Enenebeaku, 2007). For example, Kabir et al. (2001) reported and tested 

acute toxicity of P. pinnata leaf extract on American cockroach (Periplaneta 
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Americana). However, there is little-to-no information on the effects of these other SMs 

and associated allelochemicals on soil microorganisms. 

 

1.3.2.4. Summary 

The effect of SM application on soil microbial communities, such as nitrifying 

bacteria, general bacteria and fungi, and specifically selected microbial groups, still 

needs to be explored, though existing studies have given some guiding information, such 

as potential suppression of nitrifying bacteria and Pseudomonas spp., and promotion of 

total bacteria, Streptomyces spp., and Pythium spp.  

 

1.4. Conclusions 

With the increasing demand for energy and concerns about environmental 

sustainability, biofuel and biodiesel provides a promising alternative energy source. This 

could be potentially both more economical and environmentally friendly with 

appropriate use of the SM by-products. In parts of the world, these SMs have been used 

as organic fertilizers for years; however, the effects of these SMs, especially many of the 

dedicated biofuel SMs, on many plant pathogens and general soil microbial communities 

and soil processes has not been adequately investigated. Many of these dedicated biofuel 

SMs contain toxic chemicals that are potentially useful in controlling a variety of 

pathogens including several fungi, bacteria, and some insects. There is a limited amount 

of information on the use of Brassicaceae SMs to control selected pathogens. Even less 

literature exists on the use of jatropha, castor, and other SMs, although these plants are 
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very important in biodiesel production and possibly are very promising for pathogen 

control. In addition, almost no literature exists documenting the impacts of applying 

these SMs on soil microbial community composition and ecology. Before land 

application of these SMs can be recommended as an agricultural management practice, 

additional studies need to be conducted in order to increase our understanding of the 

impact these SMs will have on the microbial communities and processes in soil 

ecosystems. 
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CHAPTER II 

PHYMATOTRICHOPSIS OMNIVORA INHIBITION BY 

OILSEED MEALS AND ISOTHIOCYANATES* 

 

2.1. Introduction 

The fungus Phymatotrichopsis omnivora (Duggar) Hennebert, a serious and 

recalcitrant soilborne pathogen, can infect the roots of over 2,000 different species of 

plants and often results in rapid plant wilting and death. As the causal agent of cotton 

root rot, the fungus has greatly hindered the production of cotton [Gossypium hirsutum 

(L.)] and alfalfa [Medicago sativa (L.)] in alkaline (pH from 7.0 to 8.5), low-organic-

matter soils of Texas and the Southwestern USA (Walla and Janne, 1982; Whitson and 

Hine, 1986; Kenerley et al., 1998). The average statewide yield loss of cotton due to this 

disease has been estimated to be 3.5% in Texas, but it may range from 8-13% in severely 

infested areas (Kirkpatrick and Rothrock, 2001). This yield loss corresponds to 

approximately $100 million in annual losses to the US cotton industry (Marek et al., 

2009). One aspect that makes the disease particularly damaging to agriculture is that the 

pathogen can infect such a wide variety of plants, including cotton, alfalfa, vegetable 

crops, fruits, and nut orchards in a large region ranging from eastern Texas and southern  

 

________ 

*Reprinted with permission from “Inhibition of the Germination and Growth of 

Phymatotrichopsis omnivora (Cotton Root Rot) by Oilseed Meals and Isothiocyanates” 

by Hu P, Wang AS, Engledow AS, Hollister EB, Rothlisberger KL, Matocha JE, 

Zuberer DA, Provin TL, Hons FM & Gentry TJ, 2011, Applied Soil Ecology, 49, 68-75, 

Copyright [2011] by Elsevier Ltd. 
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Oklahoma westward through Arizona and south into Mexico (Streets and Bloss, 1973; 

Walla and Janne, 1982; Marek et al., 2009). 

The taxonomy of P. omnivora has varied over the past several decades. Recent 

research, through phylogenetic analysis, indicates that P. omnivora is a member of the 

family Rhizinaceae, Pezizales (Ascomycota: Pezizomycetes) related to Psilopezia and 

Rhizina (Marek et al., 2009). The primary inocula of P. omnivora are strands in soil or on 

host plant root systems and sclerotia that can survive as deep as 2.6 m in soil (although 

most occur at 0.5-0.9 m) (CABI/EPPO, 2004). 

Over the past several decades, numerous approaches have been investigated for 

the potential to control P. omnivora and cotton root rot. Management practices such as 

applying chemical and organic fertilizers and fungicides have been studied for disease 

control. Some research has suggested that cotton root rot may be reduced through 

application of fertilizers high in certain forms of nitrogen, such as ammonia (Walla and 

Janne, 1982). Organic amendments such as green manures have also been reported to 

suppress cotton root rot, though the mechanism causing this is still not clear. Possible 

mechanisms include an unfavorable increase in acidity after incorporation of organic 

matter, increases in populations of antagonist microorganisms, and release of toxic 

compounds during decomposition of the added material (Streets and Bloss, 1973). 

Different types of fungicides, such as telone and propiconazole, have also been 

demonstrated to have some potential efficacy in controlling cotton root rot (Hine and 

Whitson, 1982; Matocha, 2008). Other sterol-inhibiting fungicides have also been 

reported to have potential for cotton root rot control and continue to be investigated 
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(Whitson and Hine, 1986). In a recent study by Isakeit et al. (2010), the fungicide 

flutriafol showed promise for economical control of cotton root rot. However, to-date the 

use of chemical amendments and fungicides to control cotton root rot has been limited 

by the high cost of the chemicals (especially at effective rates) and unpredictable 

behavior of the fungus in different crops and soils with varied activity in even the same 

field from year to year (Walla and Janne, 1982). 

Another possible alternative for the control of P. omnivora may be the use of 

biofumigation. Compounds such as GLS in some plants, including many Brassica spp., 

are partially degraded by plant and/ or microbial enzymes upon incorporation into soil. 

Resultant biocidal products of hydrolysis include isothiocyanates (ITCs), nitriles, 

organic thiocyanates, SCN
-
, oxazolidinethione, and epthionitriles (Cole, 1976; Borek and 

Morra, 2005) which can inhibit pathogens. Numerous studies have demonstrated the 

potential for using green tissues of brassicaceous crops as biofumigants to control 

soilborne plant pathogens, such as Rhizoctonia spp. and take-all disease of wheat 

(Murray and Brennan, 1998; Charron and Sams, 1999). Additionally, recent field studies 

showed that using a brassicaceous winter cover crop in rotation with cotton resulted in 

50% reduction in plant mortality from P. omnivora compared with the untreated control 

(Matocha, 2008). 

A limited number of studies have also investigated the use of brassicaceous 

oilseed meals (SMs) (the by-product remaining after extraction of oil) as biofumigants to 

control root rot caused by soil fungal pathogens such as Aphanomyces euteiches f. sp. 

pisi (Smolinska et al., 1997) and Rhizoctonia spp. (Cohen et al., 2005; Mazzola et al., 
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2007). The use of SMs, instead of green tissue, may be particularly attractive since large 

quantities of SMs may be produced from Brassica spp., and other crops such as Jatropha 

curcas L. (jatropha), as a by-product of the biofuel industry. Like Brassica spp., jatropha 

has also been studied for its biocidal chemical contents, such as phenols, tannins, 

saponin, amylase inhibitors, cyanogenic glucosides, phorbol esters, phytate, a trypsin 

inhibitor, and lectins (curcin) (Makkar et al., 1997; Wink et al., 1997; Aregheore et 

al.,1998) which have been reported to inhibit nematodes, insects, fungi, and viruses 

(Huang et al., 2008).  

To date, no research has been published on the effects of brassicaceous and 

jatropha SMs, and their specific biocidal compounds, on P. omnivora survival and 

growth. The objectives of our study were: 1) to evaluate the impact of various SMs on P. 

omnivora sclerotial germination and active hyphal growth in soil, and 2) to determine 

the effect of selected isothiocynates (allyl, benzyl, phenyl, and butyl ITC) on P. 

omnivora hyphal growth in pure culture.  

 

2.2. Materials and Methods 

 

2.2.1. Soil collection and characterization 

The soil used in this experiment is mapped as Branyon clay (Fine, smectitic, 

thermic Udic Haplustert) and has a history of supporting P. omnivora growth. The soil 

was sampled near Snook, Texas (30.5 N, 96.5W) from 0-15 cm depth and passed 

through a 4-mm sieve to remove plant residues or rocks. The soil water content was 



 

 

23 

determined by oven-drying a subsample of 30 g of field moist soil for 24h at 105 °C and 

calculated to be 24.3% (w/w). Soils were analyzed for organic C and total N by a 

combustion method using an Elementar Vario Max CN analyzer (Storer, 1984; 

McGeehan and Naylor, 1988; Schulte and Hopkins, 1996). Organic C was determined at 

650ºC.  Soil phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), 

and sodium (Na) were extracted with Mehlich III solution and analyzed by inductively 

coupled plasma (ICP) spectrometry (Mehlich, 1978; 1984). Soil micronutrients including 

copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) were extracted using a 0.005 M 

DTPA, 0.01 M CaCl2 and 0.1 M triethanolamine solution mixture and determined by 

ICP (Lindsay and Norvell, 1978). Soil particle size distribution was determined by the 

hydrometer method (Day, 1965). 

The soil was mapped as Branyon clay, but soil analysis showed a pH of 7.0 

(Table 2.1), which is slightly lower than a typical Branyon clay soil of around 8.0. Soil 

organic C was 11.8g kg
-1

. The soil also contained various concentrations of extractable 

macro and micronutrients. Extractable P, Fe, and Zn were in the moderate category, 

while K, S, Mn, and Cu were rated as high in availability according to Texas AgriLife 

Extension Guidelines. Sodium was rated as very low, while and Ca and Mg were rated 

as very high.  

 

2.2.2. Phymatotrichopsis omnivora cultures and sclerotia 

Phymatotrichopsis omnivora (San Angelo isolate) was provided by Dr. Charles 

Rush, Texas AgriLife Research, Amarillo, TX. The fungus was isolated from diseased 
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cotton stalks collected from a field near San Angelo, Texas (C. Rush, personal 

communication). P. omnivora cultures were maintained on Difco potato dextrose agar 

(PDA) (Becton, Dickinson and Company, Sparks, MD) at 25°C. Sclerotia were 

generated by adding the P. omnivora culture from PDA into Houston Black clay (Fine, 

smectitic, thermic Udic Haplustert) amended with sterilized sorghum [Sorghum bicolor 

(L.) Moench] seeds. The soil was previously autoclaved and mixed with sterilized water 

to approximately 50% (w/w) water content. After 3-4 weeks of incubation at 28°C, 

sclerotia were recovered from the soil and stored at room temperature. P. omnivora 

OKAlf8 was obtained from the American Type Culture Collection (ATCC MYA-4551) 

(Marek et al., 2009) and was used to test the impact of selected ITCs in pure culture 

(PDA).  

 

Table 2.1. Selected characteristics of Branyon clay soil. 

 
Total N Organic C P K Ca Mg S Na Fe Zn Mn Cu Sand Silt Clay pH 

-------g kg-1------ --------------------------------- mg kg-1 ---------------------------------- ---------- % ---------  

1.06 11.8 24 297 6422 753 18 104 3.87 0.44 2.24 0.36 33 27 40 7.0 

 

 

2.2.3. SM analysis 

Mustard (Brassica juncea L.) SM was obtained from the Brassica Breeding and 

Research group at the University of Idaho. SMs of flax (Linum usitatissimum L.), 

Camelina sativa (L.) Crantz (camelina), Jatropha curcas L. (jatropha), and Triadica 

sebifera (L.). Small (Chinese tallow) were obtained by processing seeds with a Komet 

http://en.wikipedia.org/wiki/Camelina_sativa
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Oil Press (Model CA59, IBG Monforts Oekotec, Germany). Seed meals were ground 

with a mortar and pestle and passed through a 1-mm sieve. The water content of SMs 

was determined by drying sub-samples at 60°C for 3 days. Organic C and total C and N 

in the SMs were determined by a high-temperature combustion process using an 

Elementar Vario Max CN analyzer (Nelson and Sommers, 1973; Sheldrick, 1986; 

McGeehan and Naylor, 1988; Sweeney, 1989). Organic C was determined at 650ºC 

while total C was determined at 950ºC. Plant SM B, Ca, Cu, Fe, K, Mg, Na, P, S, and Zn 

concentrations were determined using a nitric acid digestion and ICP analysis (Isaac and 

Johnson, 1975; Havlin and Soltanpour, 1989).  

Glucosinolate concentrations of selected SMs were determined using methods 

similar to those found in the International Organization of Standardization (IOS, 1992), 

but with a few additions. Mustard, flax, and camelina SMs were first defatted with one 

extraction and two rinses of petroleum ether by vacuum filtration using a Büchner 

funnel. Defatted SMs were weighed (300 mg) into 50 ml centrifuge tubes to which 500 

mg of 5-mm glass beads (Borek and Morra, 2005) were added and then immediately 

vortexed. A hot (70 °C) 70% methanol: H2O solution (10 ml) was added to the samples 

that were then placed in a hot water bath at 65 °C for 20 minutes and vortexed 

intermittently. The samples were then centrifuged at 2500 g for 5 min and the 

supernatant was collected. An additional extraction was performed similar to above, but 

with 5 ml of hot methanol rather than 10 ml. The extracts were combined and 2 ml were 

added to a 0.6 ml plug of DEAE Sephadex A-25 anion exchanger and allowed to drain 

freely. The poly-prep chromatography columns (BioRad, Hercules, CA) were then rinsed 



 

 

26 

with 1 ml deionized water and finally with two aliquots of 1 ml 0.02M sodium acetate 

buffer (pH 4.5). Sulfatase solution (100 μl) was added to the columns and allowed to sit 

overnight (16 hrs). Desulfo GLS were eluted with 3 consecutive 1 ml volumes of 

deionized water. Samples were immediately separated and quantified using HPLC with a 

Waters 600s System Controller, 717 autosampler and 996 photodiode array detector. The 

system was equipped with a Waters 3.5 μm Symmetry Shied RP8 column (2.1 x 150 

mm), in which mobile phases flowed at 0.3 ml min
-1

 and compounds were separated 

using an acetonitrile gradient starting at 2.0% and increasing to 95.0%. Expected 

retention behavior, such as time and sequence, and UV spectra were used to identify 

GLS peaks. A calibration curve was constructed using sinigrin monohydrate (Science 

Lab, Houston, TX) as an external standard. 

 

2.2.4. Experimental plan 

 

2.2.4.1. Inhibition of sclerotial germination by SMs 

A preliminary experiment was conducted to test the effects of various SMs on P. 

omnivora sclerotial germination. Different rates (1 and 5% [w/w]; dry weight basis) of 

brassicaceous SMs from mustard and camelina, as well as non-brassicaceous SMs from 

jatropha, Chinese tallow, and flax were added to the Branyon soil with 3 replicates for 

each treatment. Another 3 microcosms receiving no SM were used as the control. A total 

of 27.5 g (22.1 g dry weight equivalent) of moist soil for each microcosm was mixed 

thoroughly with SM and placed into a 30- ml sterile polypropylene centrifuge tube along 
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with two P. omnivora sclerotia on top of the soil surface. The tubes were partially 

opened every 2-3 days to allow for gas exchange. 

Based upon the initial results from the above experiment, a second experiment of 

completely randomized design (CRD) and two factorial treatments were used. The two 

treatment factors were application rate and type of SM. Application rates were 0.5, 1 and 

5% (w/w), while added SMs included mustard and camelina, as well as non-

brassicaceous plants including jatropha and flax. Chinese tallow SM was not included 

because no effect was observed in the initial experiment. Each treatment had 3 

replications. Another 3 microcosms receiving no SM were used as the control. A total of 

30 g of moist soil (24.1 g dry weight equivalent) for each microcosm was mixed 

thoroughly with SM and then placed into a Petri dish (100×15 mm) to provide the 

growth medium for sclerotia. Twenty P. omnivora sclerotia were added to each Petri 

dish, and the dishes were sealed with parafilm and incubated at 28°C. At the end of each 

week (for a total of 4 weeks), the dishes were opened to read sclerotial germination rates 

and then sealed with parafilm again. At the end of the 4
th

 week, all of the remaining, 

non-germinated sclerotia in the Petri dishes were isolated from soil, placed onto wet 

filter paper, and incubated at 28°C for 1 week to determine viability. The sclerotia that 

germinated in soil were identified as “germinated” sclerotia, while those that failed to 

germinate in soil but did germinate on filter paper were identified as “inhibited” 

sclerotia. The remaining ungerminated sclerotia were considered to be “inactivated” 

sclerotia. Survival rates [(number of germinated sclerotia + number of inhibited 

sclerotia)/ 20] for each treatment were recorded. 
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2.2.4.2. Inhibition of hyphal growth by SMs 

To test the effect of SMs on P. omnivora (San Angelo isolate) hyphal growth, 

different rates [1 and 5% (w/w)] of mustard, camelina, and jatropha SMs were added to 

soil with 3 replicates for each treatment. Another 3 microcosms receiving no SM were 

used as the control. The soil water content was adjusted to 24.3% (w/w) for consistency 

with sclerotial experiments described above. A total of 65 g (52.2 g dry weight 

equivalent) of moist soil for each microcosm was mixed thoroughly with SM and then 

packed into a glass tube (25 cm long × 2.2 cm diameter). Soils were compressed to a 

similar bulk density of ~0.75 g cm
-3

. Ten sorghum seeds that had been soaked in 

sterilized water overnight were added on top of the soil surface to provide a C source 

along with a 1 × 1 cm agar plug of a one-week-old P. omnivora culture on PDA. The 

glass tubes were sealed with a rubber stopper at the bottom and a cotton plug at the top. 

The top of the tubes were elevated slightly (~10°) during incubation at 28°C. The length 

of hyphal growth was recorded every day, or as needed, for 4 weeks. No data were 

recorded for the control after one week since the hyphae had reached the bottom of the 

tube, while hyphal growth was monitored for 4 weeks for the other treatments. 

 

2.2.4.3. Inhibition of P. omnivora OKAlf8 growth by ITCs 

A laboratory study with completely randomized design was conducted to 

evaluate the effects of selected ITCs applied at different rates on P. omnivora OKAlf8 

growth. A plug of PDA-grown P. omnivora OKAlf8 (1.5 cm in diameter) was transferred 

to the center of a Petri dish (8.5 × 1.3 cm) with fresh PDA (20 ml) using a 15-ml sterile 
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polypropylene centrifuge tube. The ITC dilutions used ranged from 10
-1

 to 10
-5

 from 

pure allyl ITC (Acros Organics, New Jersey, USA), benzyl ITC (Acros Organics), 

phenyl ITC (MP Biomedicals, Ohio, USA), and butyl ITC (Alfa Aesar, MA, USA). All 

ITC dilutions were made by mixing with 1,4-dioxane (Acros Organics) as the solvent to 

ensure a complete vaporized form of ITCs. A 100-µl aliquot of each solution was added 

onto the center of the lid of a Petri dish and then the Petri dish was sealed with parafilm, 

resulting in initial ITC concentrations in the head space of the Petri dishes from 

approximately 0.02-200 µg cm
-3

. The Petri dishes were then incubated at 25°C for 5 

days, and P. omnivora hyphal growth in length was recorded every 12 hours or as 

needed. Control plates received 100-µl of 1,4-dioxane (used in data analysis) or 

sterilized water (used as a comparison for discussion only). Each treatment had 3 

replicates. The experiment was conducted twice using the same method and under the 

same conditions, except for additional ITC concentrations being used in the second 

experiment in order to provide better resolution between treatments. 

At the end of the ITC experiment, P. omnivora hyphae were tested to confirm 

that they were P. omnivora. Hyphae were collected from selected plates (1,4-dioxane 

treated control, ITC dilution treated with 10
-5

 for allyl, 10
-4

 for benzyl, 10
-4

 for phenyl, 

and 10
-3

 for butyl). Fungal DNA was extracted with a PowerSoil DNA Isolation Kit (MO 

BIO Laboratories, Inc., Carlsbad, CA). The primers ITS1-F and TW13 (Taylor et al., 

2008), which amplify an ~1200 bp region spanning both internal transcribed spacer 

regions (ITS1, ITS2) and a portion of the large ribosomal subunit, were used to generate 

PCR products for sequencing. Each 25 µl PCR reaction contained ~8 ng DNA template, 
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FailSafe buffer E (Epicentre Biotechnologies, Madison, WI, USA), 0.25 µl Taq 

polymerase, and forward and reverse primers at a final concentration of 0.5 µM each. 

Thermocycling was conducted in a 2720 Thermal Cycler (Applied Biosystems, Foster 

City, CA, USA) under the following conditions: initial denaturation at 96 ºC for 2 min; 

28 cycles of denaturation at 94 ºC for 30 sec, annealing at 55 ºC for 40 sec, and 

extension at 72 ºC for 3 min, and a final extension at 72 ºC for 10 min. Three replicate 

amplifications were performed for each sample, and their products were combined for 

downstream use. 

The PCR-amplified DNA products were then purified using 1% (w/v) agarose 

gel. DNA bands at ~1200bp were excised from the gel and then extracted using a Wizard 

SV Gel and PCR Clean-Up System (Promega, Madison, WI, USA). Purified PCR 

products were sent to Beckman-Coulter Genomics (Danvers, MA) for single-pass Sanger 

sequencing with the primer ITS1F. BLAST searches of the GenBank-nr database were 

used to assign identities to the post-ITC-inhibition cultures. 

 

2.2.5. Statistical analysis 

Statistical analyses were conducted using SAS version 9.2 (SAS Institute Inc., 

2003). A generalized linear model (Proc GLM) was used for two-way ANOVA on 

treatment factors. The pair-wise treatment mean comparisons were made using Least 

Significance Difference (LSD) when these were shown to be significant. Unless 

otherwise indicated, all statistical significance levels were set at P ≤ 0.05. Data on 

sclerotial germination and survival rates were arcsin square root transformed before 
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statistical analysis. The IC50 values for the various ITCs were calculated with BioDataFit 

1.02 (Chang Bioscience, Castro Valley, CA) using the Sigmoidal (LogEC50) model. 

 

2.3. Results 

 

2.3.1. SM chemical composition 

All SMs generally had very high concentrations of C, N, P, and K (Table 2.2). 

The brassicaceous SMs, mustard and camelina, had higher concentrations of P, S and Zn 

than the SMs of other families, namely jatropha, flax, and Chinese tallow. The Chinese 

tallow SM contained the lowest concentrations of N, P, K, S, and Mg compared to other 

meals. Greater Ca, however, was detected in jatropha SM. Other elemental 

concentrations such as Na, Mg, Cu, Fe, Mn, and B were comparable among different 

SMs. The C:N ratios of SMs ranged from 7.4 for camelina to 21.4 for Chinese tallow. 

Brassicaceous SMs varied in GLS profile and content. Mustard contained the 

highest level of GLS with 99.6% being allyl GLS at a concentration of 157.0 ± 15.6 

μmol g
–1

 of defatted SM. Camelina possessed a lower level of GLS with 51.9% being 

10-methyl-sulfinyl-decyl-GLS (glucocamelinin), followed by 30.2% being 11-methyl-

sulfinyl-decyl and 17.9% being 9-methyl-sulfinyl-decyl GLS at concentrations of 12.2 ± 

7.5, 7.1 ± 3.5, and 4.2 ± 2.6 μmol g
–1

 of defatted SM, respectively. No GLS compounds 

were detected in flax SMs. 
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Table 2.2. Selected elemental concentrations of mustard, camelina, jatropha, flax, and 

Chinese tallow SMs. 

 

Oilseed C  N  P K Ca S Mg Na Zn Fe Cu Mn B 

Meals ------------------------ g kg
-1 

---------------------- --------- mg kg
-1

 ----- 

Mustard 472 56 11.1 10.3 3.9 18.2 5.3 0.3 58 71 10 35 11 

Camelina 439 59 10.1 14.5 5.3 12.3 4.2 0.4 71 53 12 42 24 

Jatropha 477 35 6.2 12.9 9.6 2.3 5.2 1.1 31 42 21 39 30 

Flax 491 51 6.8 10.3 3.0 3.3 5.1 0.7 38 33 13 34 27 

Chinese tallow 492 23 3.7 6.0 3.2 1.4 1.9 0.3 30 19 14 107 41 

 

 

2.3.2. Sclerotial germination and survival rate 

The preliminary experiment showed that germination of P. omnivora sclerotia 

was inhibited in mustard, camelina, and jatropha SM treated soils (Table A-2.1 in 

Apprndix B). After 4 weeks of incubation, none of the 6 sclerotia (2 per tube × 3 reps) 

germinated in the 1% mustard, 5% mustard, and 5% jatropha SM treatments, and only 2 

of 6 sclerotia for the 1% jatropha treatments had germinated. Only 1 of 6 sclerotia for the 

5% camelina treatment had germinated at the end of the incubation. The 1% application 

rate of camelina SM did not suppress sclerotial germination. No inhibitory results were 

noted with flax and Chinese tallow SMs at either application rate. 

In the subsequent experiment, a significant two-way interaction was detected 

with respect to the effects of SM type and application rate on P. omnivora sclerotial 

germination rate at the end of the 1
st
, 2

nd
, 3

rd
, and 4

th
 weeks of incubation at 28 °C (Table 

A-2.2). The higher (5% w/w) application rate of mustard, camelina, and jatropha SM 
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addition significantly inhibited P. omnivora sclerotial germination (Table 2.3). Mustard 

treated soil, however, most effectively suppressed P. omnivora sclerotial germination 

compared with all other SM treatments except for the 5% camelina treatment during the 

first 3 weeks of incubation. Both the 1% and 5% mustard SM treated soils resulted in no 

sclerotial germination. Jatropha SM showed less inhibition of sclerotial germination than 

the brassicaceous SMs. Flax SM had no effect on sclerotial germination. Camelina and 

jatropha SMs applied at the higher rate suppressed sclerotial germination throughout the 

4-week incubation, but suppression decreased over time. The 0.5% application rate for 

all SM treatments did not inhibit sclerotial germination (data not included in figures). 

A significant two-way interaction was detected with respect to the effects of SM 

type and application rate on P. omnivora sclerotial survival rate (Table A-2.2) and the 

survival rates were significantly different among treatments (Fig. 2.1). The 5% 

application rate of brassicaceous and jatropha SMs resulted in significantly lower P. 

omnivora sclerotial survival rates, while only mustard SM significantly decreased 

survival rate at the 1% application rate. Camelina SM at the higher application rate 

resulted in the greatest number of inhibited sclerotia (those that did not germinate in 

treated soil but did when removed and placed on filter paper). 
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2.3.3. P. omnivora hyphal growth in soil 

All SMs at both application rates significantly reduced P. omnivora hyphal 

growth in soil compared with the control (Fig. 2.2). After one week of incubation, 

hyphal growth was reduced by 92% for 1% camelina, 95% for 1% jatropha, and 100% 

for all other treatments including 1% mustard, 5% mustard, 5% camelina, and 5% 

jatropha. No further growth was found in the following 3 weeks of incubation. 

 

Table 2.3. Effects of SMs on Phymatotrichopsis omnivora sclerotial germination rates 

(arcsin square root transformed) in SM-amended Branyon clay soil at the end of the 1
st
, 

2
nd

, 3
rd

, and 4
th

 week of incubation at 28 °C. 
  

 

Treatments 

Week 1 Week 2 Week 3 Week 4 

---------------- Germination rates (%) ------------------ 

Control 100a† 100a 100a 100a 

Mustard 1% 0d 0d 0d 0d 

Mustard 5% 0d 0d 0d 0d 

Camelina 1% 100a 100a 100a 100a 

Camelina 5% 3d 7d 7d 40c 

Jatropha 1% 100a 100a 100a 100a 

Jatropha 5% 38b 57b 65b 70b 

Flax 1% 100a 100a 100a 100a 

Flax 5% 100a 100a 100a 100a 
†Means within columns followed by the same letter are not significantly different at P<0.05. 
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Fig. 2.1. Effects of SMs on Phymatotrichopsis omnivora sclerotial survival rates in SM-

amended Branyon clay soil following 4 weeks of incubation at 28 °C. Lighter bars 

represent “germinated” sclerotia that successfully germinated in soil, while those that did 

not germinate in soil but did germinate after being removed from soil and incubated on 

filter paper for 1 week were identified as “inhibited” sclerotia and are represented by the 

darker bars. Survival rates were calculated as [(number of germinated sclerotia+ number 

of inhibited sclerotia)/ 20, expressed as percentages]. Means with the same letter are not 

significantly different at P<0.05. 
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Fig. 2.2. Effects of SMs on Phymatotrichopsis omnivora hyphal growth in SM-amended 

Branyon clay soil after 1 week of incubation at 28 °C. Means with the same letter are not 

significantly different at P<0.05. 
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Fig. 2.3. Effects of selected ITCs on Phymatotrichopsis omnivora OKAlf8 hyphal 

growth on potato dextrose agar (PDA) after 84 h of incubation at 25 °C. (♦: Allyl ITC; ■: 

Benzyl ITC; ▲: Phenyl ITC; ●: Butyl ITC; ○: 1,4-dioxane Control). Means are based on 

3 replicates. Bars represent ± standard deviation of the mean. Error bars are hidden when 

smaller than the symbols. 
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2.3.4. P. omnivora OKAlf8 hyphal growth on PDA 

Results from the first experiment, presented as supplementary data (Fig. A-2.1) 

were similar to those of the following more extensive experiment (Fig. 2.3), in which all 

tested ITCs inhibited P. omnivora OKAlf8 hyphal growth, although the level of inhibition 

varied with concentration. The IC50 values were 0.62 ± 0.19, 4.47 ± 0.08, 5.67 ± 0.10, 

and 20.48 ± 0.30 µg cm
-3

 for allyl, butyl, phenyl, and benzyl ITC, respectively. Allyl ITC 

showed the highest level of inhibition of hyphal growth, with no growth observed at a 

concentration of 1.89 µg cm
-3

, followed by butyl and phenyl ITC with no growth at 8.87 

µg cm
-3

 and 21.0 µg cm
-3

 respectively. Benzyl ITC was the least inhibitory, with no 

hyphal growth occurring at a concentration of 104.2 µg cm
-3

. 

The DNA sequencing confirmed that the fungal cultures on the post-ITC 

inhibition experiment plates were P. omnivora as indicated by ≥ 99% identity with P. 

omnivora OKAlf8. 

 

2.4. Discussion 

 

2.4.1. GLS in SMs and ITC concentrations in the soil 

In our study, the dominant GLS compound in the mustard SM was found to be 

allyl GLS at a concentration of 157.0 ± 15.6 μmol g
-1

defatted SM, which is similar to the 

results reported by Rice et al. (2007) and Hansson et al. (2008) who found the dominant 

compound contained in B. juncea meal to be allyl GLS at concentrations of 123.8 ± 

15.3μmol g
-1

 and 152.0 ± 12.3 μmol g
-1

, respectively. A higher allyl GLS concentration 
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of up to 303 μmol g
-1 

in mustard SM was reported by Mazzola et al. (2007). The major 

GLS compound detected in camelina SM was 10-methyl-sulfinyl-decyl (glucocamelinin) 

at 12.2 ± 7.5 μmol g
-1

, which is comparable with a glucocamelinin concentration of 15.5 

μmol g
-1 

reported for camelinain in the study of Schuster and Friedt (1998). 

Assuming the ratio of GLS to hydrolysis product (ITC) is 1:1 (Hansson et al., 

2008), the 1% (w/w) mustard SM treatment would have produced approximately 170 µg 

allyl ITC cm
-3

 soil. The camelina SM in our study contained much lower concentrations 

(and different forms) of GLS compounds compared with mustard and thus is likely to 

have produced less ITC in the soil.  

 

2.4.2. P. omnivora inhibition by SMs: sclerotial germination 

Mustard was the most effective SM at reducing germination of sclerotia in our 

study. Addition of mustard SM completely inhibited P. omnivora sclerotial germination 

after 4 weeks of incubation, and a large proportion (80% -100%) of these inhibited 

sclerotia appeared to be completely inactivated. Camelina SM showed less effective 

control of sclerotial germination than mustard. For camelina, only the 5% application 

rate resulted in significant inhibition of sclerotial germination. Further, inhibition by 

camelina and jatropha SMs seemed to decrease over time, possibly due to the 

volatilization of allelochemicals that may have occurred when opening the sealed Petri 

dishes at the end of each week for observation and/ or degradation of the compounds in 

soil (Warton et al., 2003; Gimsing et al., 2006; Poulsen et al., 2008). 

Our results indicated that jatropha SM also inhibited P. omnivora, though to a 
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lesser extent than the brassicaceous SMs. Although a relatively limited volume of 

literature exists regarding the chemical composition of jatropha SMs, a number of 

biocidal proteins and compounds, such as lectin (curcin), trypsin, and phorbol esters 

have been found in various parts of jatropha plants (Makkar et al., 1997; Wink et al., 

1997; Rakshit et al., 2008).  

Based on our results and publications by other researchers, we believe that the 

inhibition of P. omnivora was likely due to allelochemicals produced from the added 

SMs. The flax SM had similar elemental composition to the brassicaceous SMs, except 

for the S concentration which was higher (~2- to 6-fold) in the brassicaceous meals. It is 

likely that S-containing compounds such as carbon disulfide, dimethyl disulfide, 

dimethyl sulfide and methanethiol were produced during degradation of the SMs in soil 

and may have played an important role in suppressing P. omnivora (Bending and 

Lincoln, 1999; Vargas-Arispuro et al., 2005). Further, the higher elemental S 

concentrations likely correspond to higher levels of initial sulfur-containing biocidal 

chemicals (e.g., GLS) in Brassica spp. as we discussed before. Other researchers have 

demonstrated that several species of Brassicaceae release biocidal products of GLS 

hydrolysis including ITCs, nitriles, organic thiocyanates, SCN
-
, oxazolidinethione, and 

epthionitriles (Cole, 1976; Brown et al., 1991; Borek and Morra, 2005) to soil. It is also 

possible that high N concentrations in selected SMs may also have inhibited P. omnivora 

development. However, this did not appear to be the major mechanism of inhibition in 

our experiments as the flax meal, with N content similar to the brassicaceous species but 

no GLS content, did not show any inhibitory effect on P. omnivora.  
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2.4.3. P. omnivora inhibition by SMs: hyphal growth 

Active hyphal growth of P. omnivora in soil was significantly inhibited by 

mustard, camelina, and jatropha SMs at both 1% and 5% application rates. The SMs 

were generally more effective in suppressing active hyphal growth than in inhibiting 

sclerotial germination. Although, the mechanism of hyphal inhibition may be similar to 

that for inhibition of sclerotial germination, the morphological and structural differences 

between sclerotia and hyphae may cause a greater sensitivity of hyphae to biocidal 

chemicals in soil (Gunasekaran et al., 1974; Whitson and Hine, 1986). The effective 

control of hyphal growth indicated that even if sclerotia germinate in soil, the presence 

of appropriate SMs may inhibit the growth of hyphae and thus may reduce the virulence 

of P. omnivora. We did not test the impact of flax SM addition on hyphal growth since 

the flax did not affect sclerotial germination; however, inclusion of flax as a non-GLS-

containing SM control may have provided additional evidence that the observed 

reductions in hyphal growth were due to biocidal compounds and not just the addition of 

decomposable biomass. It is also possible that the mechanisms involved were not just a 

simple biofumigation effect by the allelochemicals induced, but also may have included 

plant systemic resistance conferred by changes in the soil faunal and floral communities 

(Cohen and Mazzola, 2006). 

 

2.4.4. P. omnivora inhibition by ITCs 

Isothiocyanates are considered to be the main allelochemicals produced from 

brassicaceous seeds (Borek and Morra, 2005). Here, we have shown that 4 types of pure 
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ITCs, including allyl, phenyl, butyl, and benzyl ITC significantly suppressed P. 

omnivora hyphal growth in pure culture. In addition to our SM results, these ITC results 

further suggest that suppression of P. omnivora by brassicaceous SMs may be largely 

due to the production of allelochemicals (e.g., allyl ITC) following application. Although 

there is no other published literature documenting the effects of ITCs on P. omnivora, 

ITCs have been found to inhibit many other soilborne pathogens including 

Gaeumannomyces graminis var. tritici, Rhizoctonia solani, Fusarium graminearum, 

Pythium irregular, Bipolaris sorokiniana, and Aphanomyces euteiches f. sp. pisi, though 

the effectiveness of suppression depends on the pathogen species and ITC tested 

(Kirkegaard et al., 1996; Smolinska et al., 1997; Sarwar et al., 1998).  

Allyl ITC, which was the dominant form of ITC in the mustard used in this 

experiment, was found to be highly suppressive to the growth of P. omnivora. If the IC50 

value (0.62 µg cm
-3

) for ally ITC is converted to a soil basis (using a soil bulk density of 

1.1 g cm
-3

), this would correspond to approximately 0.36 µg of allyl ITC cm
-3

 soil.  This 

value is much lower than the estimated amount of allyl ITC produced by addition of 1% 

mustard SM (~170 µg cm
-3

 soil) where significant effects on sclerotia were detected, but 

it is also much lower than the 0.5% mustard amendment (~85 µg cm
-3

 soil) where no 

inhibition of sclerotial germination was detected. This large difference may be due to 

methodological differences because the ITC experiment was conducted on pure cultures 

in the parafilm-sealed PDA Petri plates.  In a soil environment, the ITCs may volatilize, 

be degraded within hours, or be bound by soil thus requiring a higher concentration of 

ITCs for the same level of effectiveness (Gimsing et al., 2009). We should also note that 
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the ITC experiment was conducted using actively growing P. omivora cultures and that 

we did not test the effects of mustard SM against hyphal growth at rates lower than 1% 

(which would have been closer to ITC levels used in the pure culture experiment). Even 

though rates of mustard SM less than 1% were not effective against P. omnivora 

sclerotia, they may have been effective against hyphal growth. This is important since 

application of larger amounts of SM materials (e.g. 5%) as a biofumigant would likely 

not be cost-effective, at this time, for crops such as cotton. 

Consistent with our results describing differing rates of effectiveness among the 

four types of ITC tested, other studies have found that aromatic ITCs, such as benzyl 

ITC, were generally less effective than alkenyl aliphatic ITCs, such as allyl and butyl 

ITC, when using them in vaporized form, due to the lower volatility of aromatic ITCs 

(Sarwar et al., 1998). Within alkenyl aliphatic ITCs, butyl ITCs have been found to be 

less effective than allyl ITC (Angus et al., 1994). Additional research on the field-

effectiveness of these SMs and the development of plants with greater concentrations of 

specific GLS may further improve the prospects for land-application of SMs as a cotton 

root rot control strategy. 

 

2.5. Conclusions 

Application of 1 to 5 % brassicaceous and jatropha SMs inhibited P. omnivora 

sclerotial germination and active hyphal growth in soil, suggesting that field application 

of select SMs, especially mustard which showed the highest toxicity to P. omnivora, may 

potentially reduce cotton root rot. Although the specific mechanisms responsible for the 
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inhibition of P. omnivora by SMs were not elucidated, our results, along with previous 

studies, suggest that biocidal chemicals released from the SMs played a major role. 

Further, our results demonstrate that different ITCs have varying levels of effectiveness 

in controlling the growth of P. omnivora. 
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CHAPTER III 

SOIL MICROBIAL COMMUNITY CHANGES DUE TO 

OILSEED MEAL APPLICATION 

 

3.1. Introduction 

Extraction of oil from oilseed crops and subsequently transforming the oil into 

biodiesel is one of the major pathways for the production of biofuels. With increased 

interest in the use of biofuels to supplement fossil fuel supplies, increasing amounts of 

oilseed meals (SMs), which are the by-products (residual) remaining after the oil 

extraction process, will be produced. One of the possible uses for these SMs includes 

land application as soil organic amendments, due to their high nutrient contents (C, N, P 

etc.). Another related, potential application for some SMs (i.e., those containing 

allelochemicals) is in biofumigation strategies to control pathogens, insects, and/or 

weeds (Hu et al., 2011). Although there has been a relatively large amount of research 

on using SMs as organic fertilizers and for controlling pathogens and weeds, relatively 

limited research has been focused on dedicated bioenergy oilseed crops such as jatropha 

(Mazzola et al., 2007; Moore et al., 2010; Snyder et al., 2010; Wang et al., 2012). In 

addition, very limited information is available about the impact of these SMs on the soil 

microbial community, despite the critical importance of the soil microorganisms to many 

soil processes, plant health, and soil quality. 

Many SMs have a potential role in biofumigation and have been demonstrated to 

suppress several plant pathogens including fungi and oomycetes such as 
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Phymatotrichopsis omnivora (Duggar) Hennebert (Hu et al., 2011), Aphanomyces 

euteiches f. sp. pisi (Smolinska et al., 1997), and Rhizoctonia spp. (Cohen et al., 2005). 

Such studies using SMs are still relatively limited although meals from the oilseed crop 

seeds (where the allelochemicals tend to be more concentrated) have been demonstrated 

to be more efficient and effective as a biofumigant than other plant tissues (Mazzola et 

al. 2001; Mazzola and Zhao, 2010). The mechanisms for pathogen control by SMs have 

been attributed to either the allelochemicals released or/ and plant systemic resistance 

conferred by changes in the soil microbial community (Cohen and Mazzola, 2006; Hu et 

al., 2011). Other possible nutritional consequences included an unfavorable increase in 

acidity and increases in populations of antagonistic microorganisms (Streets and Bloss, 

1973). However, the relative importance of these mechanisms is still not clear. Thus, it 

would be beneficial to further explore soil microbial community changes as a result of 

SM application in order to gain understanding of its potential role in soil pathogen 

control. 

In addition to a potential impact on plant pathogens, changes in soil microbial 

communities may impact other ecosystem processes. Soil microorganisms play key roles 

in ecosystem processes such as nutrient cycling and organic matter degradation. 

Numerous studies have demonstrated that the addition of organic amendments can alter, 

at least transiently, soil microbial communities with these impacts possibly being either 

beneficial or detrimental to soil quality and pathogen control (Hamel et al., 2005; Yao et 

al., 2006; Lejon et al., 2007; Omirou et al., 2011). In addition, studies have shown that 

isothiocyanates (ITCs), such as those produced by many Brassica spp., can negatively 



 

 

47 

impact soil microbial communities and specifically nitrifying bacteria (Bending and 

Lincoln, 2000; Rumberger and Marschner, 2003).  

In the past, most of microbial community studies have been focused upon the soil 

bacterial community (Lauber et al., 2009), even though the soil fungal community is 

likely to be of as much, or even greater, importance than bacteria to many processes such 

as organic matter formation and decomposition (De Boer et al., 2005; Baldrian et al., 

2011). For example, previous studies have shown that soil fungi often quantitatively 

dominate the soil microbial community over soil bacteria in litter decomposition, while 

soil bacteria in many cases were little impacted or undisturbed by amendment of fresh 

organic matter (Baath and Anderson, 2003; Lindahl et al., 2010; Baldrian et al., 2011). 

Nevertheless, such studies on soil fungal communities have been quite limited primarily 

because it has been difficult to describe most fungal species, estimate their diversity, 

distinguish individual taxa, and understand the ecological roles that fungi played 

(Hawksworth, 2001; Bailey et al., 2002; McGuire and Treseder, 2010). Moreover, the 

handful of studies that have investigated the impacts of SMs on soil fungal composition 

have used low resolution techniques such as fatty acid methyl ester analysis which 

provided information regarding community shifts but little-to-no information regarding 

which specific organisms were being impacted (Wang et al., 2012). To our knowledge, 

no study has been published that details the effects of SMs on soil fungal community 

structure on a taxonomic level. 

The objectives of this study were: 1) to track changes in soil fungal and bacterial 

abundance due to SMs through time; 2) to elucidate soil fungal community composition 
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changes after SM addition; and 3) to investigate functional changes in soil microbial 

communities [community level physiological profiles (CLPPs)] due to various SM 

treatments. 

 

3.2. Materials and Methods 

 

3.2.1. Soil collection and characterization 

We used Weswood loam (fine-silty, mixed, superactive, thermic, Udifluventic 

Haplustept) in this study. Selected characteristics can be found in Wang et al. (2012). 

This type of soil is well drained and has been used as irrigated cropland (USDA NRCS, 

2008). Soil samples were collected from 0-15 cm depth, homogenized and air-dried. 

Water was added to field moisture level at the beginning of incubation.  

 

3.2.2. SM analysis 

Oilseed meals of Jatropha curcas L. (jatropha), Camelina sativa (L.) Crantz 

(camelina) and Linum usitatissimum L. (flax) were obtained by processing seeds with a 

Komet Oil Press (Model CA59, IBG Monforts Oekotec, Germany). Triticum aestivum 

L.(wheat) straw was from the Texas AgriLife Research Farm near College Station, TX. 

Seed meal pellets were ground with a mortar and pestle and passed through a 1-mm 

sieve. The water content of SMs was determined by drying at 60°C for 3 days. Total C, 

total N and organic C of the SMs were determined by a high-temperature combustion 

process using Elementar Vario Max CN analyzer (Nelson and Sommers, 1973; 
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Sheldrick, 1986; McGeehan and Naylor, 1988; Sweeney, 1989). Organic C was 

determined at 650ºC, and total C was determined at 950ºC. Biomass elemental contents 

including B, Ca, Cu, Fe, K, Mg, Na, P, S, and Zn were determined by nitric acid 

digestion and ICP analysis (Isaac and Johnson, 1975; Havlin and Soltanpour, 1989).  

 

3.2.3. Experimental plan 

Each microcosm contained 400 g dry soil in a 1-L glass jar, and organic 

amendments of SMs and wheat straw were incorporated into soils at an application rate 

of 1.0 (w/w), or a field-equivalent of approximately 18 Mg ha
-1

. The microcosms were 

maintained at 13% (w/w) water content (approximately 40% field capacity) and 

incubated at 25 °C under aerobic conditions. Each treatment had 3 replicates, with a 

series of unamended controls receiving no organic addition. To track potential changes 

in community level physiological profiling with Biolog Ecoplates, 1 g of soil from each 

microcosm was subsampled and processed at days 3, 7, 14, 28, 77, and 133. Another 5 g 

of sub samples were collected at days 3, 7, 14, 21, 28, and 77 to investigate temporal 

changes in soil bacterial and fungal abundance using quantitative real time polymerase 

chain reaction (qPCR). These soil sub-samples at days 3, 21, and 77 were used in soil 

fungal community analysis with pyrosequencing. Soil sub-samples for qPCR and 

pyrosequencing were stored at -80 °C until DNA extraction. 
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3.2.4. Functional diversity using BIOLOG analysis 

Soil CLPP based on carbon (C) source utilization patterns was obtained using 

Biolog EcoPlates (Hayward, CA, USA) containing 31 different C sources. To carry out 

the procedure, 1 g of wet soil was collected from each sample and suspended in 9 mL of 

0.87% saline solution (8.7 g NaCl/L w/v), and then diluted 100 times further. Aliquots of 

150 μL of the resulting soil solution were injected in EcoPlate wells with a multichannel 

pipette and incubated at 25 ºC in the dark for at least 96 hours, during which absorbance 

was measured at 590 nm every 24 hours using an ELx808 Microplate Reader (Biolog, 

Inc., Hayward, CA, USA). The average well-color development (AWCD) was calculated 

from each plate at each time point. For each plate, those time points of readings that had 

an AWCD closest to 0.75 were selected for data analysis (Garland, 1996) and 

normalized dividing by the AWCD to reduce biases due to different inoculum densities 

(Garland, 1997). For data analysis, the 31 C sources were grouped into 6 categories 

including carboxylic acids, carbohydrates, complex C sources, phosphate-associated C, 

amino acids, and amines (Table 3.1). 

 

3.2.5. DNA extraction and quantification 

Community DNA was extracted from 0.5 g soil samples using a PowerSoil DNA 

extraction kit (Mo Bio Laboratories, Inc., Carlsbad, CA, USA). Extracted DNA was 

purified with illustra MicroSpin S-400 HR columns (GE Healthcare Bio-Sciences Corp, 

Piscataway, NJ, USA), and quantified with a NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies, Wilmington, DE, USA) and Quant-iT PicoGreen dsDNA 
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assay kit (Invitrogen Corp, Carlsbad, CA, USA). Data generated from the latter was used 

in the analysis. 

 

Table 3.1. Carbon (C) groupings of 31 C sources used in Biolog EcoPlate™. 

 

C group* C source Well location 

Carboxylic acids Pyruvic acid methyl ester B1 

D-glucosamic acid γ-lactone F2 

D-galactonic acid A3 

D-galacturonic acid B3 

2-hydroxy benzoic acid C3 

4-hydroxy benzoic acid D3 

γ-hydroxy butyric acid E3 

Itaconic acid F3 

α-ketobutyric acid G3 

D-malic acid H3 

Complex C sources Tween 40 C1 

Tween 80 D1 

α-cyclodextrin E1 

Glycogen F1 

Carbohydrates D-cellobiose G1 

α-D-lactose H1 

β-methyl-D-glucoside A2 

D-xylose B2 

i-erythritol C2 

D-mannitol D2 

N-acetyl-D-glucosamine E2 

Phosphate C Glucose-1-phosphate G2 

D,1-α-glycerol phosphate H2 

Amino Acids L-arginine A4 

L-asparagine B4 

1-phenylalanine C4 

L-serine D4 

L-threonine E4 

Glycyl-L-glutamic acid F4 

Amines Phenylethyl-amine G4 

Putrescine H4 

*Adapted from Chazarenc et al., 2010. 
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3.2.6. qPCR on general bacterial and fungal abundance 

Community qPCR assays based on Fierer et al. (2005) and Boyle et al. (2008) 

were used to evaluate relative abundances of soil general bacterial and fungal 

populations in each sample. Assays were performed in triplicate using a Rotor-Gene 

6000 series thermal cycler (Qiagen, Valencia, CA, USA). Each 10 μL reaction for qPCR 

contained: 4.5 μL 2.5x RealMasterMix with 20x SYBR solution (5Prime, Inc., 

Gaithersburg, MD, USA), 1.0 μL BSA (10 mg mL
-1

), 0.5 μL of each primer (10 μM,), 

2.5 μL molecular-grade water, and 1.0 μL template DNA (2.5 ng μL
-1

). Thermocycling 

consisted of an initial denaturation at 95 ºC for 15 min, followed by 40 cycles of 95 ºC 

for 1 min and annealing temperature at 53 ºC for 30 s, and 72 ºC for 1 min. Primer sets 

of Eub338/518 (Fierer et al., 2005) and 5.8S/ ITS1F (Boyle et al., 2008) were used for 

bacteria and fungi, respectively. Plasmid standards for the bacterial and fungal relative 

abundance by qPCR were generated as described by Somenahally et al. (2011). Values 

representing the mean of 3 biological replicates for each treatment were used to create 

the graphs on soil fungal and bacterial abundance. 

 

3.2.7. Fungal tag-encoded amplicon pyrosequencing and analysis 

Purified community DNA samples from all treatments including 3 biological 

replicates each were submitted to the Research and Testing Laboratory (Lubbock, TX, 

USA) for tag-pyrosequencing using 454 GS FLX titanium technology (454 Life 

Sciences, Branford, CT, USA). The fungal ITS region was amplified using primers 
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ITS1F and ITS4 for the initial generation of the amplicons (Amend et al., 2010), and 

fungal amplicons were sequenced in the forward direction, generating reads from ITS1F. 

All sequences were preprocessed in MOTHUR v.1.20.0 (Schloss et al., 2009) to 

remove primers and barcodes, check quality (Q25), discard sequences that contained 

ambiguous base calls, cap the homopolymer length at 8, remove sequences that were 

shorter than 300 bp in length, and trim all sequences to the same length of 300 bp. 

Chimeric sequences were then identified from the ITS sequence libraries using the 

Fungal Metagenomics Pipeline chimera tool (http://www.borealfungi.uaf.edu) provided 

by the University of Alaska Fairbanks. All potentially chimeric reads were flagged and 

excluded from downstream analysis. Sequences from all samples were combined in one 

single file and clustered into operational taxonomic units (OTUs) at 97% similarity using 

CD-HIT-EST (Li and Godzik 2006). Identities were assigned to the OTUs using the 

UNITE database’s 454 pipeline (Tedersoo et al 2010) by submitting representative 

sequences for BLAST. Hits with BLAST scores ≤ 200 or query percentage of alignment 

≤ 60% were considered to represent unknown or unclassified fungi. The three biological 

replicates for each treatment were grouped for calculations on Theta-YC (Yue and 

Clayton, 2005) similarity metrics, and neighbor-joining tree based on Theta-YC values 

in MOTHUR v.1.20.0 (Schloss et al., 2009). The most abundant OTUs (top 200), that 

represented the majority (97%) of all the sequences produced, were selected for 

community taxonomic composition descriptions at genus level.  

Since a number of biological diversity and richness estimators tended to suffer 

from sample size bias (Magurran, 2004), we “re-sampled” our fungal sequence libraries 
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by using sub.sample function in MOTHUR resulting in randomly selected sequences 

from each library with equally sized sequence numbers. Only the community diversity 

indices and richness estimators were calculated based on these reduced sized libraries. 

Shannon and inverse Simpson diversity indeces and ChaoI richness used in our study 

were previously described by Schloss et al. (2009). Sequence coverage refers to how 

well the sub-sampled libraries represent the original whole data set for each sample. 

 

3.2.8. Statistical analysis 

Variation in community qPCR values and fungal community composition at the 

genus level among amendment types and over time were assessed using SAS version 9.2 

(SAS Institute Inc., 2003). Proc GLM was used to test individual treatment significance. 

Pair-wise treatment mean comparisons were made using Least Significance Difference 

(LSD) when treatment was shown to be significant. Unless otherwise indicated, all 

statistical significance levels were set as P ≤ 0.05. Values of qPCR were log-

transformed, and fungal genus composition values were arcsin transformed prior to 

analysis.  

Nonmetric multidimensional scaling (NMDS) of the fungal communities based 

upon OTU composition was carried out using the Bray-Curtis similarity metric in the 

PAST (Paleontological Statistics, University of Oslo) software package, version 2.08 

(Hammer et al, 2001). Data are presented using the means of biological replicates for 

each treatment with error bars represented for standard deviation among the three 

replications. Data from Biolog EcoPlate™ analysis were subject to principal component 
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analysis (PCA). Ordinations of replicate-level CLPP values for each treatment at 

different time points were performed for the first two principal components which 

loaded most of the variance of original data. A PCA biplot was created to show how 

each category of C source contributed to the separation among treatments. 

Heatmaps were used to show the relative abundances of fungal genera for each 

amendment type and time point. To create the graph, values of the mean across three 

biological replicates for each treatment were used with heatmap function included in the 

gplots package for R version 2.13.0. The colored rectangles for each taxonomic group 

represented sequence abundances relative to the mean of all samples. All treatments 

were clustered with Euclidian distance-based hierarchical agglomerative clustering.  

 

3.3. Results 

 

3.3.1. SM and wheat straw chemical composition 

The chemical compositions of the SMs, as previously determined (Hu et al., 

2011) and wheat straw used in this experiment are summarized in Table 3.2. All SMs 

generally had very high concentrations of C, N, P, and K. The C:N ratios of SMs ranged 

from 7.4 for camelina to 13.6 for jatropha. The brassicaceous SM (camelina) had higher 

concentrations of P, S and Zn than did the other SMs. Greater Ca, however, was detected 

in jatropha SM. Other elemental concentrations such as Na, Mg, Cu, Fe, Mn, and B were 

comparable among different SMs. Wheat straw had a different chemical composition 

profile than the SMs. It had similar levels of C and K, but much lower amounts of N and 
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P than the SMs did. The C:N ratio of the wheat straw was 32, which was much higher 

than that of the SMs. Other elemental contents such as Ca, S, Mg, Zn, Cu, and B in 

wheat straw were also lower, but Fe concentration was much higher (3-6 times more) 

than the selected SMs. 

 

 

 

Table 3.2. Selected elemental concentrations of SMs of jatropha, camelina, flax, and 

wheat straw.* 

 
Biomass C  N  P K Ca S Mg Na Zn Fe Cu Mn B 

Type --------------------------- g kg
-1 

----------------------- ----------- mg kg
-1

 ------- 

Jatropha 477 35 6.2 12.9 9.6 2.3 5.2 1.1 31 42 21 39 30 

Camelina 439 59 10.1 14.5 5.3 12.3 4.2 0.4 71 53 12 42 24 

Flax 491 51 6.8 10.3 3.0 3.3 5.1 0.7 38 33 13 34 27 

Wheat 416 13 1.1 16.0 2.6 1.1 1.0 1.3 15 194 7 53 <9 

(* Modified from Hu et al., 2011) 

 

 

 

3.3.2. Abundance of soil bacterial and fungal populations 

Within 7 days, SM application enhanced soil fungal abundance dramatically 

(~40-fold) compared with the unamended control (Fig. 3.1-A). Wheat straw addition 

also increased the soil fungal population though to a smaller extent (~10-fold at day 7). 

Soil fungal abundance dropped significantly at day 14 and then stabilized maintaining a 

relatively lower level after day 21 for all treatments, though flax and camelina SM 

amended treatments still contained significantly higher fungal populations compared 

with the control. 
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Fig. 3.1. Microbial abundance by qPCR in 1% (w/w) organic material (SMs of jatropha, camelina, flax, and wheat 

straw) treated Weswood loam soil after 3, 7, 14, 21, 28, and 77 days of incubation at 25ºC. (A) Soil fungal copy 

number. (B) Soil bacterial copy number. (C) The ratio of soil bacterial to fungal copy number. Different letters 

indicate significant difference at P<0.05 within each day. Bars represent the means of three biological replicates for 

each treatment, and error bars represent the standard deviation among biological replicates. 
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Soil bacterial abundances were also increased following SM amendments 

compared with the control though to a smaller extent (4- to 7-fold at day 14) than for 

fungi (Fig. 3.1-B). There was not a clear temporal trend for soil bacterial responses in 

abundance during the 77 days of incubation. Nevertheless, bacterial populations seemed 

to peak in most treatments at day 14, which was 1 week later than the peak for fungal 

populations. At day 77, soil bacterial abundance was still significantly higher in all three 

SM-amended soils than the unamended control. Across time, wheat straw amended soil 

yielded bacterial abundances that were higher than the control but lower than the SM 

treatments. 

Oilseed meal application resulted in significantly decreased soil bacterial to 

fungal ratios (75- to 150-fold at day 3) compared with the unamended treatment 

throughout the entire experiment (Fig. 3.1-C). The ratio tended to increase over time and 

then stabilized after day 21. At day 77, the soil bacterial to fungal ratio was still 

significantly lower in SM amended soils than unamended control. Similar to SM 

treatments, wheat straw amendment also resulted in a decreased bacterial to fungal ratio 

compared to the unamended control. 

  

3.3.3. Soil fungal community composition 

The NMDS analysis indicated that amendment of soil with the SMs of jatropha, 

camelina, and flax altered the soil fungal community composition (Fig. 3.2). At day 3 

when soil fungal abundances had been promoted by SMs, fungal community 

composition in all three SM-amended treatments were significantly different from the 
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unamended control (Fig. 3.2-A). However, by day 21 when both the soil fungal and 

bacterial populations stabilized, the soil fungal communities were very similar in all 

three SM treatments and the control (Fig. 3.2-B). In contrast, the wheat straw 

amendment also altered soil fungal community composition compared with the 

unamended control, but the shift was significantly different from that for the SMs and 

persisted throughout the 77 days of the experiment.  

The soil fungal community composition as described by Theta-YC similarity 

metrics also showed that regardless of time of incubation, all three SMs altered the 

fungal community composition (Fig. 3.3). All fungal communities grouped by 

amendment type with camelina being most similar to flax, then the control, jatropha, and 

wheat amendments (in order of decreasing similarity). Within each treatment, the fungal 

communities from day 21 and day 77 were generally more similar to each other than the 

communities at day 3. One exception was the jatropha SM amended soils, where more 

similarity was shared between day 3 and day 77 samples, though their differences from 

day 21 samples were relatively small. 
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Fig. 3.2. NMDS ordination based on 1741 OTUs in 1% (w/w) organic material (SMs of jatropha, camelina, flax, and 

wheat straw) treated Weswood loam soil after 3 (A), 21 (B), and 77 (C) days of incubation at 25ºC. Symbols represent 

the mean ordination of 3 biological replicates in each treatment, and the error bars represent the standard deviation 

among biological replicates. 
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As suggested by results from NMDS and Theta-YC, soil fungal taxonomic 

distribution patterns were also altered by SM applications, and these changes varied over 

time (Table 3.3, Fig. 3.4, and Fig. A-3.1). All three SMs decreased soil fungal diversity 

compared with the unamended soil at all 3 time points (Table A-3.1). Ascomycota 

(>90%) was the dominant phylum of classified fungal groups in all treatments and the 

fungal genera shown in Table 3.3 all belonged to this phylum. Fusarium was the 

dominant genus detected in all SM treatments as well as the unamended control across 

time (Fig. 3.4). Oilseed meals of camelina and flax, which greatly enhanced soil fungal 

abundance at the early stages of incubation, showed very similar proportions of 

Fusarium that was significantly higher than the unamended control.  

The Fusarium was mainly (~90%) composed of three species that were most 

closely related to F. equiseti, F. brachygibbosum, and F. oxysporum in our microcosms 

(Table A-3.2 and Fig. A-3.2). Camelina and flax SM amendments resulted in greater 

levels of all 3 Fusarium species, indicating a general enhancement of Fusarium without 

species selectivity. In contrast, the Fusarium composition in jatropha SM treatments was 

very similar to the control at the genus level. However, at the species level, the relative 

level of F. brachygibbosum was increased by jatropha SM. 

Another interesting result from the jatropha SM amendment was the relatively 

large proportion (40-50%) of unclassified fungi (most closely related to Chaetomium). 

The fungal taxonomic distribution for wheat straw on the other hand, was significantly 

different from both the unamended control and all the other three SM amended soils 

(Fig. 3.4). The dominant fungal genera in wheat straw treatments were Schizothecium 
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and Humicola in addition to Fusarium, with the Fusarium composition being much 

lower than in the control and SM-amended microcosms. The relative abundance of 

unclassified fungi was relatively high (40-60%) in some of the time points, but a large 

proportion of these unclassified fungi were found to be most closely related to either 

Schizothecium or Humicola albeit with a low percentage of the query sequence being 

covered by the BLAST alignment. 

 

3.3.4. Soil community level physiological profiles (CLPP)  

Microbial communities in SM and wheat straw treated soils were generally able 

to utilize all the 31 types of C sources. The highest average C utilization sampled from 

day 3 to 28 was observed in C sources of galacturonic acid, acetyl glucosamine, 

mannitol, L-asparagine, cellobiose, methyl glucoside, and glucose-phosphate sources. 

After 77 days of incubation, the most utilized C sources were similar to those at the 

earlier days with more complex C sources including malic acid, pyruvic acid methyl 

ester, and Tween 80 being more utilized by soil microorganisms (data not shown).  
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Fig. 3.3. Neighbor joining tree based on Theta-YC similarity metrics for a Weswood 

loam soil amended with different organic amendments including SMs of jatropha, 

camelina, flax, and wheat straw as well as unamended control at sampling time points of 

3, 21, and 77 days of incubation at 25°C. Biological replicates for each treatment were 

treated as one group to calculate the Theta-YC similarity metrics. Analysis was based on 

1741 operational taxonomic units (OTUs) clustered at 97% sequence identities. 
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Fig. 3.4. Fungal OTU distribution patterns summarized at the genus level in Weswood loam soils treated with SMs of 

jatropha, camelina, and flax, as well as wheat straw and unamended control after 3 (A), 21 (B), and 77 (C) days of 

incubation at 25°C. Bars represent the means of relative abundance of different OTUs of 3 biological replicates in 

each treatment at each time point. 
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Table 3.3. Fungal OTU composition at the genus level in Weswood loam soils treated with SMs of jatropha, camelina, and 

flax, as well as wheat straw and unamended control after 3, 21, and 77 days of incubation at 25°C. Values represent the means 

of 3 biological replicates in each treatment. 

 

Genus 

Control Jatropha Camelina Flax Wheat Control Jatropha Camelina Flax Wheat Control Jatropha Camelina Flax Wheat 

   Fungal OTU Composition %   

Day 3 Day 21 Day 77 

Fusarium 45.07b* 34.94b 54.19ab 67.53a 13.82c 41.85c 43.24c 64.59a 53.85b 4.07d 37.95b 43.53b 67.03a 61.95a 5.07c 

Schizothecium 1.81b 0.44b 0.32b 0.36b 4.21a 1.82b 0.76b 0.22b 0.96b 36.20a 1.31b 0.17c 0.21c 0.53bc 22.15a 

Humicola 2.34b 7.47a 6.75a 2.98ab 6.05a 2.00b 6.94a 4.92ab 3.39ab 4.89ab 2.26c 6.06b 5.64b 2.20c 24.12a 

Alternaria 2.59ab 2.51ab 1.81b 2.32ab 4.53a 5.28a 1.77bc 4.68ab 2.79abc 1.53c 1.11bc 0.65cd 2.55a 1.48ab 0.35d 

Phoma 2.44a 1.32a 2.42a 3.46a 3.53a 4.25a 1.48bc 1.19cd 2.69ab 0.51d 5.43a 1.75b 1.60b 1.57b 0.64b 

Zopfiella 1.79a 0.28b 0.12b 0.25b 1.56a 3.01a 0.25b 0.07b 0.16b 3.11a 2.05b 0.28bc 0.03c 0.03c 9.99a 

Bionectria 0.41ab 1.01ab 1.35a 1.39a 0.20b 1.36b 2.21b 1.30b 6.10a 0.19c 2.70ab 0.88bc 0.59bc 2.99a 0.09c 

Cercophora 0.96a 0.27a 0.13a 0.15a 0.80a 3.15a 0.12b 0.07b 0.17b 1.70a 1.27b 0.01c 0.10bc 0.05bc 3.85a 

Plectosphaerella 1.10a 0.31a 0.87a 0.99a 2.07a 1.88a 0.72ab 1.70ab 1.20ab 0.35b 0.84a 0.43a 0.91a 1.17a 0.32a 

Zygopleurage 0.00c 0.01bc 0.05b 0.05bc 0.74a 1.83a 0.04b 0.00b 0.01b 2.67a 0.13b 0.00b 0.04b 0.00b 4.78a 

Ascobolus 0.17a 0.01b 0.01b 0.01b 0.01b 1.03a 0.00a 0.05a 0.01a 0.02a 4.50a 0.10a 0.04a 0.66a 0.01a 

Cordyceps 1.95a 0.22a 0.18a 0.27a 0.31a 1.69a 0.28b 0.16b 0.30b 0.42b 0.87a 0.03b 0.12b 0.05b 0.06b 

Cosmospora 0.78a 0.11b 0.11b 0.17b 0.12b 0.85a 0.08bc 0.27b 0.26b 0.05c 0.80a 0.01b 0.09b 0.07b 0.02b 

Glomerella 0.05a 0.00a 0.01a 0.01a 0.01a 2.09a 0.01b 0.01b 0.00b 0.02b 0.94a 0.00b 0.00b 0.01b 0.00b 

Aporospora 0.00c 0.05b 0.10ab 0.05b 0.16a 0.77a 0.18ab 0.04b 0.06b 0.05b 1.80a 0.03b 0.07b 0.01b 0.08b 

Isaria 0.00c 0.00b 0.00bc 0.00c 0.02a 0.66a 0.02ab 0.02b 0.01b 0.06b 1.33a 0.02b 0.00b 0.02b 0.31b 

Others 

/unclassified 
38.54a 51.04a 31.59a 20.01a 61.87a 26.49a 41.91b 20.70b 28.03b 44.15b 34.70a 46.05c 20.98c 27.22c 28.15b 

*Different letters indicate significant difference within each row at a specific time point. 
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Soil microbial functional patterns of CLPPs based upon C source utilization 

indicated by principal component analysis (PCA) were significantly affected by SM 

additions (Fig. 3.5). All three SMs (jatropha, camelina, and flax) resulted in significantly 

different CLPPs from the control from day 3 through day 77. However, by day 133, the 

three SM treatments had CLPPs similar to the unamended soil. Wheat straw on the other 

hand, produced a CLPP similar to the three SMs at an early stage of the experiment (up 

to 7 days) that slowly diverged (14 to 77 days) and then became similar to the 

unamended control and SM-treatments at the end of the experiment (133 days). A PCA 

biplot was created to show how each of the six categories of C sources (Table 3.1) 

contributed to the separation among treatments. The cumulative percentage of variation 

explained by principal components 1 and 2 ranged from 29.5% to 50.7%. At day 3, we 

found complex C and phosphate-associated C sources were the main contributors for the 

separation of organic amendments from the unamended control (Fig. 3.5-A). At day 7, 

the primary C sources contributing to CLPP separation were slightly different from day 

3, with greater utilization of carboxylic acids and carbohydrates differentiating the 

organic amendments away from the unamended control (Fig. 3.5-B). By day 14, there 

was a differentiation between the SMs and wheat straw with the SMs observing greater 

utilization of phosphate-associated C and amines and the wheat straw having greater 

utilization of carbohydrates. This pattern continued with the wheat straw producing 

greater levels of utilization of carbohydrates and also phosphate-associated C at days 28 

and 77. Likewise, the pattern continued for the SMs at days 28 and 77, with utilization of 

amines, amino acids, and then carboxylic acids being most positively impacted. At the 
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end of the experiment (day 133), there was no substantial separation in CLPP among 

treatments (Fig. 3.5-F). 

 

3.4. Discussion 

 

3.4.1. Soil fungal and bacterial abundance enhanced by SMs 

The incorporation of jatropha, camelina, and flax SMs increased soil microbial 

abundance, especially fungi, which is not surprising given the high nutrient content (C, 

N, P etc.) present in the SMs. Previous studies found similar positive responses in soil 

microbial abundance due to SM applications although the researchers used different 

measuring techniques. For example, Cohen et al. (2005) reported increased soil fungal 

and bacterial populations caused by soybean and rapeseed meals through use of culture-

based methods. Moreover, Wang et al. (2012) found that soil microbial abundance was 

increased by mustard and flax SMs revealed from total lipid fatty acid methyl esters 

(TL-FAME) analysis. Likewise, the addition of the SMs enhanced soil microbial 

activities with C mineralization rates increasing rapidly after biomass application to soil 

(Wang et al., unpublished). A similar increase in soil respiration after SM amendments 

was reported by Wang et al. (2012). As compared with the soil respiration data which 

indicated only a transient elevated soil C mineralization rate due to addition of SMs 

(Wang et al., unpublished), the increase in soil microbial abundance was more persistent 

and significant over time. 
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Fig. 3.5. Principal component analysis (PCA) on Weswood loam soil microbial CLPP 

indicated by Biolog EcoPlate™ with C sources grouped into carboxylic acids, complex 

C, carbohydrates, phosphate-containing C, amino acids, and amines after 3 (A), 7 (B), 14 

(C), 28 (D), 77 (E), and 133 (F) days of incubation at 25°C. Treatments included 

unamended control, 1.0% (w/w) SMs of jatropha, camelina, and flax, and wheat straw. 

Symbols represent mean values from each replicate-level sample. 
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Comparing the roles of soil bacteria and fungi in soil nutrient cycling and organic 

matter degradation, the soil fungal communities appeared to have been more greatly 

impacted by the SMs and were likely more critical to SM degradation (De Boer et al., 

2005). Soil fungal abundances increased (~40 fold) much more than bacterial 

abundances (4-7 fold) by addition of the SMs. This resulted in the ratio between soil 

bacterial and fungal abundances to be decreased suggesting that soil fungi were more 

responsible for the decomposition of added SMs than were soil bacteria. Wheat straw, 

which was used as a non-SM organic amendment in our study, also increased soil fungal 

abundances temporarily but to a much lesser extent. This is likely due to the wheat 

straw’s significantly higher C:N ratio compared with SMs. Soil bacterial abundances in 

the oilseed amended treatments peaked at day 14, after soil fungal abundances had 

decreased. This delayed response may have resulted from bacteria feeding on living or 

dead fungal hyphae (Boer et al., 2001), or because of less competition for resources from 

the largely decreased number of fungi.  

Besides their roles as energy and nutrient resources for soil microorganisms, 

selected SMs could also serve as biofumigants since they can inhibit specific groups of 

soil microorganisms due to production of biocidal compounds (Mazzola et al., 2007; Hu 

et al., 2011). Our fungal abundance data showed some evidence for a biofumigation 

effect by the camelina SM, which contained a moderate level of GLS (Hu et al., 2011). 

The fungal abundances peaked at day 3 in the flax treatment (no GLS) but did not peak 

until day 7 in the camelina treatment. This delayed peak in fungal abundances in the 

camelina SM treatment may have resulted from the release of fungicidal chemicals such 
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as ITCs from the GLS. However, other studies have reported that such chemicals do not 

always produce negative impacts on soil total fungal abundance. For example, Wang et 

al. (2012) reported that soil amended with mustard SM that contained high levels of allyl 

GLS (Hu et al., 2011) resulted in a significantly higher fungal abundance than did flax at 

the early stages of incubation. However, this appeared to be due to selection and 

proliferation of a small number of specific fungal groups that were apparently more 

resistant to ITCs.  

 

3.4.2. Soil fungal community structural shifts by SMs 

Soil fungal community composition was altered by addition of SMs, and these 

shifts were relatively persistent over time. One explanation for these changes could be 

attributed to the nutritional impacts of the SMs. Numerous studies have reported 

microbial community structural changes, usually transient, following the input of various 

organic compounds (Aneja et al., 2006; Liu et al., 2007; Schlatter et al., 2009; Pascault 

et al., 2010). However, the impacts appeared to be somewhat persistent when using SMs 

as found in our study as well as by others (Wang et al., 2012). Although the differences 

in the composition of the soil fungal communities among the three SM amendments was 

not apparent as indicated by NMDS, we still found a trend that various SM amendments, 

especially jatropha versus camelina and flax, selected their unique fungal communities 

through time as indicated by Theta-YC similarities. Wheat straw treatment, on the other 

hand, also changed the soil fungal community composition but selected for a 

significantly different community than did the SMs. This is likely due to the much 
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higher C:N ratio and different elemental composition of the wheat straw. It is also 

interesting that wheat straw had a large impact on soil fungal community composition 

even though it did not alter fungal abundance much over time. 

Another explanation for changes in soil fungal community composition by SM 

application could be attributed to biofumigation effects by allelochemicals released from 

selected SMs. A previous study by Wang et al. (2012) found significantly different 

microbial communities in soil amended with SMs of mustard (containing high 

concentration of allyl GLS) and flax (containing no GLS) that had similar nutrient 

compositions. However, there were generally no significant differences in soil fungal 

community structure between soils amended with SMs of camelina and flax throughout 

time in our study, although moderate levels of several types of GLS had been previously 

detected in the camelina SM (Hu et al., 2011). The only result that may suggest 

allelochemical impacts on soil fungal composition in camelina SM amendment would be 

its relatively higher dissimilarity at day 3 compared with flax SM treatment. Taken along 

with the previously discussed fungal abundance responses to camelina and flax SMs, 

these results suggest that relatively low concentrations of GLS-induced allelochemicals 

could reduce the overall soil fungal abundance temporarily but without having a large 

impact on fungal community composition.  

One more explanation for shifts in the soil fungal community composition due to 

SM applications could be attributed to soil bacterial community responses and the 

interactions between the fungal and bacterial abundances. Previous studies showed that 

the incorporation of green manures and specific SMs could increase fungal antagonists 
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such as fluorescent Pseudomonas spp., and actinomycetes such as Streptomyces spp. 

(Mazzola et al., 2001; Cohen et al., 2005). Although we did not directly analyze soil 

bacterial community compositions, we did find significantly increased total bacterial 

abundances, which would result in direct competition with fungal groups for space and 

food, and possibly also include members that would be directly antagonistic toward soil 

fungi.  

In terms of taxonomic identification of the soil fungal communities, ascomycetes 

were the dominant fungi detected. This is not surprising since they are the largest group 

of the true fungi (Larena et al., 1999) with their members consisting of both noxious 

plant pathogens and non-pathogenic saprotrophic fungi (Osono et al., 2003). Although 

biofumigation using plant residues has been reported to be a successful strategy for 

controlling many soil pathogens, it generally fails to suppress common plant pathogenic 

ascomycetes, although ascomycete abundances have been temporarily changed (Omirou 

et al., 2011). Similarly, in our fungal community study using SMs, we found that the 

ascomycete taxonomic diversity decreased as indicated by the Shannon and Inverse 

Simpson diversity indices (Table A-3.1). However, these changes were maintained until 

the late stages of incubation (day 77), suggesting a possible greater potential of SMs than 

green manures that contains high N to alter the composition of these fungal groups. 

Among all of the ascomycete groups found in our soils, SMs of camelina and 

flax that are rich in N content mainly promoted Fusarium spp., which was also the 

dominant genus in SM amended and unamended soil. Such increase of Fusarium in our 

study may not be detrimental to the ecosystem since most Fusarium species in soil are 
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non-pathogenic and harmless to the environment. In addition, the soil in our study did 

not have a history of Fusarium-caused disease in the past. On the contrary, such 

increased Fusarium could be beneficial for agriculture since non-pathogenic Fusarium 

has been found economically and ecologically important and positively correlated to 

pathogenic Fusarium suppression in support of the competition theory for nutrients 

between non-pathogenic and pathogenic Fusarium (Scher and Baker, 1982; Alabouvette 

et al., 1985). Increasing soil N input by cultivation of cover plants has also resulted in 

promoting abundances of soil non-pathogenic Fusarium that contributed to soil 

suppressiveness to pathogenic Fusarium-caused disease (Alabouvette et al., 1996; 

Abadie et al., 1998). However, there were also documented members of noxious 

pathogenic Fusarium that could be increased by SMs such as some F. oxysporum that 

causes plant wilts (St-Arnaud et al., 1997; Abadie et al., 1998; Steinberg et al. 2007), F. 

graminearum that induces wheat head blight (Luz et al., 2003; Perez et al., 2008), and F. 

proliferatum that leads to asparagus crown and root rot (Seefelder et al., 2002; Hamel et 

al., 2005).  

We found an overall increase in fungi similar to three dominant Fusarium 

species (F. equiseti, F. brachygibbosum, and F. oxysporum) following the addition of 

camelina and flax SMs. Jatropha SM, on the other hand, increased F. brachygibbosum 

but decreased or did not change the other two dominant Fusarium species (F. equiseti 

and F. oxysporum), thus resulting in an overall Fusarium relative abundance similar to 

the unamended soil. Previous research found similar results as ours using jatropha SM 

extracts and found it suppressive to some Fusarium spp. (Saetae and Suntornsuk, 2010). 
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Different results were reported in biofumigation studies using Brassicaceae plant 

materials with no change in Ascomycota structure including Fusarium being detected 

after soil amendment (Omirou et al., 2011).  

Differences in the fungal composition in the jatropha amended soil were mostly 

due to the high percentages of unclassified fungi. Many of these fungi were most closely 

related to Chaetomium, some members of which have been used in biotechnological 

industry due to their high selectivity for assimilating polysaccharides, especially 

hemicelluloses such as xylan, as well as their ability to produce enzymes such as 

cellulase and laccase (Ankudimova et al. 1999; Mimura et al. 1999; Suyanto et al., 

2003). Research by Suyanto et al. (2003) indicates the potential of particular 

Chaetomium in decomposition of palm-oil mill fiber, which was somewhat similar to our 

kernel-containing jatropha SM (Suyanto et al., 2003). Other Chaetomium have been 

demonstrated to assist biological control of particular pathogens through production of 

toxic metabolites and/ or competition for living space and nutrient resources (Aggarwall 

et al., 2004; Zhang and Yang, 2007; Syed et al., 2009; Kharwar et al., 2010). Similar 

results in enhanced Chaetomium were reported previously by Lang et al. (2011), where 

they amended soil with amino acid and manure composts that contained high N and 

found suppressed disease of Cotton Verticillium wilt with co-occurrence of several 

fungal groups including Chaetomium. The differential impact on Fusarium compared 

with camelina and flax SMs may come from phorbol esters contained in jatropha SMs, 

which have recently been demonstrated to be toxic to several notable fungal pathogens 

including Fusarium members (Saetae amd Suntornsuk, 2010). 



 

  

75 

Wheat straw amended soil had a unique profile with dominant fungal taxonomic 

groups of Schizothecium, similar to those that have been found in opossum and rabbit 

dung (Cai et al., 2005; Kwaśna et al., 2008), and Humicola, which are considered to be 

beneficial soil fungi with some representatives having been used to produce important 

enzymes for hydrolyzing lignocellulosic materials in the renewable energy industry 

(Lang et al., 2011). Although there were relatively high percentages of unclassified fungi 

in wheat straw amended soils at some time points, a great proportion was found to be 

most closely related to either Schizothecium or Humicola. Some of the similarity 

between the fungal communities selected for by the jatropha SM and the wheat straw 

may be due to the fact that the jatropha seeds were not de-hulled prior to processing. 

They therefore had a higher C:N ratio and greater content of recalcitrant C compounds 

than the other SMs. Overall, all of the SM amendments had less of an impact on soil 

fungal community composition than did wheat straw. Although the certainty of species 

identification from partial ITS sequencing should be viewed cautiously, these results do 

reveal differential impacts of the biomass treatments on various Fusarium spp. and other 

fungal abundances. 

 

3.4.3. Soil microbial functional changes due to SM applications 

Similar to the fungal community composition results, soil microbial function 

(CLPP patterns) was also changed by SM application, as indicated by PCA. These 

changes were relatively persistent, lasting through day 77. However, similar to the soil 

fungal community composition results, there were not major differences between the 
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three types of SMs. Wheat straw also changed microbial CLPP compared with the 

control, but in a substantially different way from the SMs, again also agreeing with the 

soil fungal community composition results. Although utilization of C sources in the 

Biolog EcoPlates do not necessarily represent in situ degradation of the C substrates in 

the microcosms, changes in the utilization patterns over time do indicate shifts in the 

capacity of the microbial communities to metabolize different C sources (Gomez et al., 

2006). The most utilized C sources (galacturonic acid, acetyl glucosamine, mannitol, L-

asparagine, cellobiose, methyl glucoside, and glucose-phosphate) shown in our results 

were comparable to those reported in other studies (Gomez et al., 2006; Weber and 

Legge, 2009; Chazarenc et al., 2010). It was expected that the C sources supporting 

higher microbial growth would be those easier to be utilized by microorganisms, such as 

elemental sugars or very simple amino acids rather than relatively complex C sources 

such as Tween 80. 

The PCA biplots of the CLPP results indicated a temporal trend of shifts in 

microbial degradation of various types of organic materials (Fig. 3.5). At day 3, soil 

microorganisms in SM-applied microcosms tended to utilize more complex C and 

phosphate-associated C than the control. This trend shifted to carbohydrates and 

carboxylic acids by day 7 and then amines and amino acids at days 14-77. The apparent 

sequential hierarchy for C metabolism in the oilseed-amended microcosms was 

generally complex C > phosphate-associated C > carboxylic acids > carbohydrates > 

amines > amino acids. This suggests that the residual oils were degraded first followed 

by P-containing compounds, then the other C-containing compounds, and lastly the N-
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containing compounds. The control at day 7 had been separated from all the organic 

amendments primarily by amino acids, which could be related to dry soil re-wetting 

consequences that may have been masked by excess available nutrient sources in organic 

treatments (Sorensen, 1974; Kieft et al., 1987; Miller et al., 2005; Cosentino et al., 2006). 

The wheat straw treatment was not significantly different from the SM amendments at 

early stages of the experiment, but showed increased utilization of carbohydrates and 

phosphate-associated C sources from day 14 to day 77. This is likely due to its different 

decomposition product profile (resulting from higher cellulose and hemicelluloses 

content) and lower N and P concentrations as compared with SMs. 

 

3.4.4. Differences in soil microbial communities among different types of SM treatments 

Previous studies have shown that biocidal chemicals such as isothiocyanates 

(ITCs) produced by many Brassica spp. can negatively impact soil microbial 

communities (Rumberger and Marschner, 2003). The SM of camelina used in our study 

added total GLS compounds at a concentration of approximately 23.5 nmol g
-1

 soil [23.5 

nmol total GLS g
-1

 SM (Hu et al., 2011) applied at 1%], which could then hydrolyzed to 

several ITCs. Jatropha has also been reported to contain biocidal compounds such as 

lectins, ricin, trypsin inhibitor, and phorbol esters (Reddy and Pierson, 1994; Makkar et 

al., 1997) that have been demonstrated to be toxic to several important soil pathogenic 

fungi (Saetae and Suntornsuk, 2010). In our study, we did observe some inhibitory 

impacts on soil fungal population sizes and some influences on community composition 

in camelina and jatropha SM treatments early in the experiment (day 3). Similar impacts 
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have been discovered previously following ITC- producing SM application. Using the 

same soil as in our study, Hollister et al. (2011) found that B. juncea SM (157 nmol allyl 

GLS g
-1

 defatted meal) applied at 2.5% (w/w) that contributed 390 nmol g
-1

 allyl GLS in 

soil (>16 times higher than in our study) also delayed soil fungal proliferation compared 

with flax SM that contains no GLS. However, the composition of fungal community in 

their study was quite different from ours, with 87% to 98% of the community accounted 

for by a single genus of Retroconis, and this effect seemed to be persistent over time. 

The camelina SM used in our study was less selective on soil fungal members, which 

could be related to lower biological toxicity of released ITCs compared with the well-

known highly toxic allyl ITC (Matthiessen and Shackleton, 2005) when such SMs were 

applied to soil.  

Nevertheless, we did not find any large impacts of biocidal chemicals on 

microbial CLPP or mineralization rates (Wang et al., unpublished). Similar to our 

findings, Snyder et al. (2010) did not detect any inhibitory effect on soil CO2 efflux after 

applying SM of B. napus that was estimated to add GLS at a concentration of 29.5 nmol 

g
-1

 soil, which is comparable to the GLS application rate for the camelina SM in our 

experiment (23.5 nmol g
-1

 soil) (Hu et al., 2011). Nevertheless, similar to our soil fungal 

community composition responses, higher biocidal chemical concentration could lead to 

significant changes in soil microbial activity. Previous studies showed that SMs such as 

B. juncea and Sinapis alba that added high levels of GLS (150-340 nmol g
-1

 soil) have 

been reported to temporarily inhibit soil microbial activity (Snyder et al., 2010; Wang et 

al., 2012; Hu et al., 2011). Despite the impacts on specific microbial abundances and 



 

  

79 

fungal community composition, it appears that the microbial communities in our study 

adapted and were functionally redundant resulting in little differential impacts of the 

biocidal SMs (camelina and jatropha) on overall microbial activity and function as 

compared to the non-biocidal SM (flax). 

The larger and more long-lasting impacts on soil microorganisms appeared to be 

due to other characteristics of the added biomass such as nutritional composition (e.g., 

C:N ratio). For example, the jatropha SM that had a higher C:N ratio than camelina and 

flax due to seeds not being de-hulled prior to processing resulted in microbial impacts 

that, in many instances, shared more similarity with the wheat straw treatment than the 

other SMs (camelina and flax). The other nutritional impacting factor could be SM 

application rate, which resulted in varied amounts of total available nutrients. A similar 

study conducted by Hollister et al. (2011) using the exact same soil and flax SM under 

the same growing conditions but at a higher application rate of 2.5% found a largely 

differentiated soil fungal community structure compared with ours. Based on their 

results, Microdochium and Bionectria dominated their flax SM treatment in addition to 

Fusarium. However, these two genera were absent from all of our amendments. 

 

3.5. Conclusions 

Application of SMs to soil rapidly increased microbial, especially fungal, 

abundances. The composition of the fungal community was also impacted by SM 

additions with the resulting shifts being relatively persistent over time. Each of the SMs 

selected for specific fungal groups such as Fusarium in camelina and flax treatments and 
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Chaetomium in the jatropha treatment. In addition to changes in the soil fungal 

community composition, the SMs altered microbial CLPP patterns, suggesting that 

changes in microbial population size and composition also impacted the functionality of 

the soil microbial community. 

The different SM amendments seemed to result in slightly varied soil microbial 

community responses depending on either the allelochemicals involved, nutrient 

composition (e.g., C:N ratio), or both. Compared with flax SM that contained no 

biocidal chemicals, the camelina and jatropha SMs produced a smaller increase in soil 

fungal abundances in the first few days of the experiment. In addition, the composition 

of the soil fungal community was also differentially impacted by the camelina and 

jatropha SMs at early stages of the experiment. Nevertheless, these transient impacts on 

population size and community composition did not result in discernible impacts on 

microbial community functionality – likely due to functional redundancy of the 

microbial community and/ or relatively low concentrations of biocidal chemicals in the 

SMs used in this experiment. The more persistent differential impacts of the various 

SMs appeared to be due to variable chemical composition (e.g., C:N ratio) of the 

amendments. For example, the camelina and flax SMs selected for a fungal community 

more similar to each other over time than to the jatropha SM which had a higher C:N 

ratio and several other properties that were in many ways intermediate between the other 

SMs and the wheat straw (lignocellulosic comparison). However, even this impact on 

soil functionality was diminished by the end of the study with the amended microcosms 

not being different than the unamended control.  
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These findings elucidate the impacts that various SMs have on soil microbial 

abundance, community composition, and functionality and also highlight the critical role 

that the soil fungal community plays in the decomposition of organic amendments. 
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CHAPTER IV 

SOIL MICROBIAL COMMUNITY CHANGES DUE TO  

THE APPLICATION OF ISOTHIOCYANATES 

 

4.1. Introduction 

With increased production of biodiesel to supplement traditional fossil fuels, 

greater amounts of SMs, which are the by-products (residual) remaining after oil 

extraction from oilseeds, will be produced. Many of these SMs contain biocidal 

compounds. For example, many Brassicaceae SMs contain GLS, which can be degraded 

by plant and/ or microbial enzymes upon incorporation into soil. Resultant biocidal 

products of hydrolysis of GLS include isothiocyanates (ITCs), nitriles, organic 

thiocyanates, SCN
-
, oxazolidinethione, and epthionitriles (Cole, 1976; Borek and Morra, 

2005), which have been reported to contribute to control of soil pathogens such as 

Phymatotrichopsis omnivora (Duggar) Hennebert (Hu et al., 2011), Aphanomyces 

euteiches f. sp. pisi (Smolinska et al., 1997), Rhizoctonia spp. (Cohen et al., 2005), and 

other pathogens.  

Among all of the allelochemicals produced from Brassicaceae, the ITCs have 

received particular attention due to their high biological toxicity. Several studies have 

investigated the effects of pure ITCs on a wide range of soil fungi and bacteria 

(primarily plant pathogens), in which a general suppression effect was discovered, and 

the sensitivity varied among different microbial groups and ITC types (Kirkegaard et al., 

1996; Smolinska et al., 1997; Manici et al., 2000; Bending and Lincoln, 2000; Smith and 



 

  

83 

Kirkegaard, 2002; Hu et al., 2011). These studies provided very important information 

for determining relative effects according to the specific organism and ITC type; 

however, most of these studies were conducted on pure cultures of organisms instead of 

organisms within their natural environment, e.g., soil. Impacts of the various ITCs may 

be very different within the soil environment due to complex interactions with soil and 

phase-partitioning of ITCs (Borek et al., 1998; Matthiessen and Shackleton, 2005). 

Moreover, studies adding only pure ITCs would not resemble real-world biofumigation 

strategies where the ITCs would be added in the form of plant biomass (e.g., SMs). 

Studies adding only pure ITCs would miss the impacts from SMs, which alone could 

change soil microbial abundances and community structure during decomposition 

(Hollister et al., 2011; Baldrian et al., 2011). 

Most studies investigating the impacts of ITCs on soil microbial communities 

have been focused upon bacteria (Lauber et al., 2009), even though soil fungi may be 

more sensitive to ITCs and organic amendments, and are likely to be of as much, or even 

greater, importance than bacteria to many soil processes (Smith and Kirkegaard, 2002; 

De Boer et al., 2005; Baldrian et al., 2011). This situation may be at least partly due to 

the lower historical emphasis placed upon the taxonomy of fungal communities and 

resulting lower number of taxonomic tools available for describing fungal species, 

estimating their diversity, distinguishing individual taxa, and understanding the 

ecological roles that various fungi play (Hawksworth, 2001; Bailey et al., 2002). 

Futhermore, the handful of studies that have investigated the impacts of ITCs on soil 

fungal composition have used low-resolution techniques such as fatty acid methyl ester 
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analysis which provided information regarding community shifts but little-to-no 

information regarding which specific organisms were being impacted (Wang et al., 

2012). To our knowledge, no study has been published that details the impacts of various 

ITCs on soil fungal community composition at a taxonomic-level. 

In order to build upon these previous studies that used pure ITCs only and/ or 

pure cultures, we applied various pure ITCs in the presence of flax SM to soil and 

focused on both soil fungal and bacterial community changes following amendment. The 

specific objectives of this study were to determine the impacts of different ITCs, in the 

presence of flax SM, on soil fungal and bacterial abundance and community composition 

through time. 

 

4.2. Materials and Methods 

 

4.2.1 Soil and SM of flax 

Weswood loam (fine-silty, mixed, superactive, thermic, Udifluventic Haplustept) 

was used in this study (low nutrients and organic matter). It is an alluvial soil in the 

flood plain of the Brazos River in south central Texas. Weswood soils are well drained 

loamy soils and are used as irrigated cropland (USDA NRCS, 2008). Bulk soil samples 

were collected from 0-15 cm depth and then homogenized and passed through a 2-mm 

sieve. The soil water content was then determined by oven-drying a subsample of 20 g 

of field moist soil for 24h at 105 °C and calculated to be 14.4% (w/w). Soil samples 

were incubated at room temperature (~24°C) for 24 h before use. Soils were tested for 
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total C, organic C, and total N by a combustion method using an Elementar Vario Max 

CN analyzer (Elementar Analysensysteme, Hanau, Germany) (Storer, 1984; McGeehan 

and Naylor, 1988; Schulte and Hopkins, 1996). Organic C was determined at 650ºC 

while Total C was determined at 950ºC.  Soil phosphorus (P), potassium (K), calcium 

(Ca), magnesium (Mg), sulfur (S), and sodium (Na) were extracted with Mehlich III 

solution and analyzed by inductively coupled plasma (ICP) spectrometry (Mehlich, 

1978; 1984). Soil micronutrients including copper (Cu), iron (Fe), manganese (Mn), and 

zinc (Zn) were extracted using a 0.005 M DTPA, 0.01 M CaCl2 and 0.1 M 

triethanolamine solution mixture and determined by ICP (Lindsay and Norvell, 1978). 

Soil particle size distribution was determined using the hydrometer method (Day, 1965).  

Oilseed meal of flax (Linum usitatissimum L.) was obtained by processing seeds 

with a Komet Oil Press (Model CA59, IBG Monforts Oekotec, Germany). The resulting 

flax SM was ground with a mortar and pestle and passed through a 1-mm sieve. The 

water content of SMs was determined by drying sub-samples at 60°C for three days. 

Organic C and total C and N in the SMs were determined by a high-temperature 

combustion process using an Elementar Vario Max CN analyzer (Nelson and Sommers, 

1973; Sheldrick, 1986; McGeehan and Naylor, 1988; Sweeney, 1989). Organic C was 

determined at 650 ºC while total C was determined at 950ºC. Plant B, Ca, Cu, Fe, K, 

Mg, Na, P, S, and Zn were determined using a nitric acid digestion and ICP analysis 

(Isaac and Johnson, 1975; Havlin and Soltanpour, 1989). 
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4.2.2 Experimental Plan 

This was a laboratory microcosm study investigating soils treated with different 

types of ITCs, including allyl ITC (Acros Organics, New Jersey, USA), butyl ITC (Alfa 

Aesar, MA, USA), phenyl ITC (MP Biomedicals, Ohio, USA), and benzyl ITC (Acros 

Organics) at a concentration of 50 µg ITC g
-1

 soil. Each treatment had three replications, 

and there were three controls receiving no ITC but sterile water. The microcosms were 

set up in 127.6 cm
3
 sterile specimen containers (VWR International, LLC., Sugar Land, 

TX, USA) filled with 57.2 g (50 g dry soil equivalent) fresh soil. A total of 0.52 g (0.5 g 

dry SM equivalent) flax SM was then added to each of the microcosm including the 

three controls. ITC stock solutions were prepared by adding 10 mg pure ITCs into 1.0 ml 

sterilized water and vortexing for 1 min to homogenize before adding to the microcosms 

to generate an initial ITC concentration of 50 µg g
-1

 soil. The lids on the microcosms 

were loose to assure aerobic condition, and the microcosms were incubated at 25 ºC for 

28 days. A subsample of 2 g soil were collected at days 2, 7, 14, 21, and 28 and stored at 

-80 ºC until DNA extraction. Soil moisture was adjusted to 14.4% every 24 hours by 

addition of sterilized water.  

 

4.2.3 DNA extraction and quantification 

Community DNA was extracted from 0.5 g aliquots of each soil sample using a 

PowerSoil DNA extraction kit (Mo Bio Laboratories, Inc., Carlsbad, CA, USA). 

Extracted DNA was purified with illustra MicroSpin S-400 HR columns (GE Healthcare 

Bio-Sciences Corp, Piscataway, NJ, USA), and quantified using both a NanoDrop ND-
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1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) and a Quant-

iT PicoGreen dsDNA assay kit (Invitrogen Corp, Carlsbad, CA, USA). Data generated 

from the latter was used in the analysis. 

 

4.2.4 qPCR on general bacteria and fungi 

Community qPCR assays, based upon Fierer et al. (2005) and Boyle et al. (2008) 

were used to evaluate the relative abundances of general bacteria and fungi in the 

microcosm communities. Assays were performed in triplicate, using a Rotor-Gene 6000 

series thermal cycler (Qiagen, Valencia, CA, USA). For general bacterial and fungal 

qPCR, each 15 μL reaction contained: 6.75 μL 2.5x RealMasterMix with 20x SYBR 

solution (5Prime, Inc., Gaithersburg, MD, USA), 1.5 μL BSA (10 mg mL
-1

), 0.75 μL of 

each primer (10 μM,), 0.25 μL molecular-grade water, and 5.0 μL template DNA (1.0 ng 

μL
-1

). Thermocycling consisted of an initial denaturation at 95 ºC for 15 min, followed 

by 40 cycles of 95 ºC for 1 min and annealing temperature at 53 ºC for 30 s, and 72 ºC 

for 1 min. Primer sets of Eub338/518 (Fierer et al., 2005) and 5.8S/ ITS1F (Boyle et al., 

2008) were used for bacteria and fungi respectively. Plasmid standards for the bacterial 

and fungal relative abundance by qPCR were generated as described by Somenahally et 

al. (2011). 

 

4.2.5 Fungal and bacterial tag-encoded amplicon pyrosequencing and analysis 

Purified community DNA samples were submitted to the Research and Testing 

Laboratory (Lubbock, TX, USA) for tag-pyrosequencing using 454 GS FLX titanium 
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technology (454 Life Sciences, Branford, CT, USA). The fungal ITS region was 

amplified using primers ITS1F and ITS4 for the initial generation of the amplicons 

(Amend et al., 2010), and fungal amplicons were sequenced in the forward direction, 

generating reads from ITS1F. Bacterial 16S rRNA genes were sequenced in a similar 

manner as the fungal sequences substituting primers 530F and 1100R as described by 

Acosta-Martínez et al. (2008) to generate initial amplicons. Bacterial amplicons were 

also sequenced in the forward direction. 

Fungal sequences were preprocessed in MOTHUR v.1.20.0 (Schloss et al., 2009) 

to remove primers and barcodes, check quality (Q25), discard sequences that contain 

ambiguous base calls, cap the homopolymer length at 8, and remove sequences that were 

shorter than 300 bp in length. Chimeric sequences were then identified from the ITS 

sequence libraries using the Fungal Metagenomics Pipeline chimera tool 

(http://www.borealfungi.uaf.edu) provided by the University of Alaska Fairbanks. All 

potentially chimeric reads were flagged and excluded from downstream analysis. 

Sequences from all samples were combined in one single file and clustered into OTUs 

(97% similarity) using CD-HIT-EST (Li and Godzik 2006). Identities were assigned to 

the OTUs using the UNITE database’s 454 pipeline (Tedersoo et al 2010) by submitting 

representative sequences for BLAST. Hits with BLAST scores ≤ 200 or query 

percentage of alignment ≤ 60% were considered to represent unknown or unclassified 

fungi. Theta-YC (Yue and Clayton, 2005) similarity metrics, neighbor-joining tree based 

on Theta-YC values, and rarefaction curves based upon the OTU data were calculated in 

MOTHUR v.1.20.0 (Schloss et al., 2009). 
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Bacterial sequence processing was carried out as described by Schloss et al. 

(2011). Initial sequences were all preprocessed in MOTHUR v.1.22.0 (Schloss et al., 

2009) to remove primers and barcodes, check quality (Q25), discard sequences that 

contained ambiguous base calls, cap the homopolymer length at 8, remove sequences 

that were shorter than 250 bp in length. Resulting sequence data were then aligned, and 

chimera checked with the chimera.uchime function. All sequences that were flagged as 

potential chimeras were excluded from downstream analysis. Following chimera 

detection, we calculated the distance matrix for all bacterial samples, assigned sequences 

to OTUs (97% similarity) using cluster function, and determined Theta-YC similarity 

(Yue and Clayton, 2005) treating three biological replicates as one group. 

Since a number of biological diversity and richness estimators tend to suffer from 

sample size bias (Magurran, 2004), we “re-sampled” our fungal and bacterial sequence 

libraries by using sub.sample function in MOTHUR resulting in randomly selected 

sequences from each library with equally sized sequence numbers. Only fungal and 

bacterial diversity indices and richness estimators were calculated based on these 

reduced sized libraries. 

 

4.2.6. Statistical analysis 

Variation in community qPCR values among amendment types and over time 

were assessed using SAS version 9.2 (SAS Institute Inc., 2003). Proc GLM was used to 

test individual treatment significance. Pair-wise treatment mean comparisons were made 

using Least Significance Difference (LSD) when treatment was shown to be significant. 
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Unless otherwise indicated, all statistical significance levels were set as P ≤ 0.05. Values 

were log-transformed prior to analysis.  

Nonmetric multidimensional scaling of the bacterial and fungal communities 

based upon OTU composition was carried out using the Bray-Curtis similarity metric in 

the PAST software package, version 2.03 (Hammer et al., 2001). Heatmaps were used to 

show the relative abundances of fungal genera and bacterial phyla for each amendment 

type and time point. To create the graph, values of the mean across three biological 

replicates for each treatment were used with heatmap function included in the gplots 

package for R version 2.13.0. The colored rectangles for each taxonomic group 

represented sequence abundances relative to the mean of all samples. All treatments 

were clustered with Euclidian distance-based hierarchical agglomerative clustering.  

 

4.3. Results 

 

4.3.1. Abundance of soil fungal and bacterial populations 

Within 2 d of incubation, allyl ITC significantly reduced fungal abundance by 

80%, while the other three ITCs (benzyl, phenyl, and butyl) resulted in no significant 

difference from the control (Fig. 4.1-A). Fungal abundance peaked after 2 d of 

incubation in the control and benzyl and phenyl ITC-amended microcosms but not until 

7 d in the allyl and butyl ITC-amended microcosms. Soil fungal abundances decreased 

substantially in all treatments after 7 d and then stabilized after 14 d of incubation. By 28 
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d, fungal population levels in all treatments were not significantly different than the 

control. 

Soil bacterial abundances were generally not impacted by the ITCs as much as 

the fungal abundances were. The butyl ITC appeared to slightly inhibit bacterial 

abundances at 2 d; however, the bacterial levels were not statistically different from the 

control (Fig. 4.1-B). Similar to the soil fungal responses, soil bacterial abundance peaked 

either at day 2 or 7 and then stabilized after 14 days of incubation, with the exception of 

the butyl ITC treatment which still contained bacterial abundances significantly higher 

than the control and other treatments at 28 d.  

Due to greatly suppressed fungal abundances, the soil bacterial to fungal ratio in 

the allyl ITC-amended soil was significantly higher than the control (~6-fold) and for the 

other three types of ITCs after 2 d (Fig. 4.1-C). At the early stages of incubation (2-7 d), 

the butyl ITC-amended soil generated a significantly lower bacterial to fungal ratio than 

the allyl and benzyl ITC treatments did. However, this was reversed at 14 d when the 

butyl ITC-amended soil had a significantly higher bacterial to fungal ratio than all of the 

other treatments as a result of a significantly higher soil bacterial population. By 28 d, 

the ratio among all treatments was not significantly different.  
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Fig. 4.1. Microbial abundance by qPCR in Weswood loam soil 2, 7, 14, 21, and 28 days after amendment with 1% 

flax SM and 50 µg g-1 allyl, benzyl, butyl or phenyl isothiocyanate (ITC). The controls received 1% flax SM but no 

ITC. Bars represent the mean of 3 biological replicates for each treatment, and error bars represent standard deviation. 

(A) Soil fungal copy number. (B) Soil bacterial copy number. (C) The ratio of soil bacterial to fungal copy number. 

Different letters indicate significant difference at P<0.05 within each day. 
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Fig. 4.2. NMDS graphs of fungal and bacterial communities in Weswood loam soil at 2 (A), 7 ( B), and 28 

(C) days after amendment with 1% flax SM and 50 µg g
-1

 allyl, benzyl, butyl or phenyl isothiocyanate 

(ITC). Analysis based on operational taxonomic units (OTUs) in all samples (800 for fungi and 18,392 for 

bacteria) clustered at 97% sequence identities The controls received 1% flax SM but no ITC. Symbols 

represent the mean of 3 biological replicates for each treatment, and error bars represent standard 

deviation. 
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4.3.2. Soil fungal community composition 

The NMDS analysis indicated that amendment of soil with various ITCs altered 

the soil fungal community composition (Fig. 4.2). At day 2 when the soil fungal 

population was greatly inhibited by allyl ITC, the composition of fungal community in 

that treatment was surprisingly similar to the control. Likewise, there were no significant 

differences in the benzyl and phenyl ITC treatments compared with the control. On the 

contrary, the butyl ITC treatment, which did not suppress soil fungal abundance, did 

change the composition of the soil fungal community. By 7 d, the allyl ITC had resulted 

in a dramatic shift in the soil fungal community composition.  These differences in the 

allyl ITC treatments persisted through 28 d.  After 28 d, the soil fungal community 

compositions in all of the ITC amendments were still different from the control with the 

phenyl ITC becoming more similar to the ally ITC treatment and the benzyl and butyl 

treatments being similar to each other. 

According to the Theta-YC similarity metrics, there was not a consistent trend 

regarding the relative impacts of ITC type and time on the soil fungal community 

composition (Fig. 4.3). The unamended soil, with no flax or ITC addition, was the 

outgroup, as expected. In general, the benzyl ITC treatment produced fungal 

communities that were more similar to those in the butyl ITC treatment and the allyl 

ITC-produced communities were more similar to those in the phenyl ITC treatment. 

Soil fungal taxonomic distribution patterns were also shifted by ITC applications 

(Fig. 4.4). Allyl ITC addition increased fungal diversity through time, while the other 

three types of ITCs decreased soil fungal diversity temporarily at 2 d and later were not 
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different from the control (Table 4.1). Ascomycota and Zygomycota were the dominant 

phyla of classified fungi in all treatments (89%-97%). Fusarium, Chaetomium, 

Humicola, Mortierella, and Ascobolus were the dominant genera detected in all 

treatments as well as the control through time (Table 4.2). Among those, the fungal 

genera that responded the most to ITC amendments were Chaetomium, Humicola, and 

Mortierella. There was no significant difference in the relative abundance of Fusarium 

among all treatments through time. Similar to the NMDS and Theta-YC results, allyl, 

benzyl, and phenyl ITC amendments had similar fungal taxonomic distributions to the 

control at 2 d. The butyl ITC treatment on the other hand, had significant lower 

compositions of Chaetomium and Humicola, and significantly higher composition of 

Mortierella, both of which contributed to its unique fungal taxonomic distribution from 

all the other treatments. Later at 7 d, allyl ITC application significantly suppressed 

Chaetomium but enhanced Humicola compared with the control and the other ITC 

treatments (Fig. 4.4). After 28 d, Chaetomium were the dominant fungi (28-62%) and 

Mortierella had decreased to a minor component (< 2%) of fungal communities in all 

treatments. However, even after 28 d, the allyl ITC treatment contained a significantly 

lower proportion of Chaetomium and more Humicola than most of the other treatments 

did. 
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Fig. 4.3. Neighbor joining trees based on Theta-YC values of fungal and bacterial 

communities in Weswood loam soil at 2, 7, and 28 days after amendment with 1% flax 

SM and 50 µg g
-1

 allyl, benzyl, butyl or phenyl isothiocyanate (ITC). The 3 biological 

replicates for each treatment was grouped for calculations on Theta-YC similarity 

metrics. Biological replicates for each treatment were treated as one group to calculate 

the Theta-YC similarity metrics. Analysis was based on operational taxonomic units 

(OTUs) (800 for fungi and 18,392 for bacteria) clustered at 97% sequence identities. The 

controls received 1% flax SM but no ITC. The unamended soil was sampled at 0 d and 

had not received any amendment (neither flax nor ITC). 
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Fig. 4.4. Soil microbial operational taxonomic unit (OTU) distribution patterns in a Weswood loam at 2 

(A), 7 ( B), and 28 (C) days after amendment with 1.0% flax SM and 50 µg g
-1

 allyl, benzyl, phenyl, or 

butyl isothiocyanate (ITC). The controls received 1% flax SM but no ITC. Bars represent the mean of 3 

biological replicates for each treatment.
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Table 4.1. Fungal and bacterial community diversity indexes based upon operational taxonomic units (OTUs; 97% similarity) 

and their relative abundances in a Weswood loam soil mixed with 1% flax SM and treated with 50 µg g
-1

 allyl, benzyl, phenyl, 

or butyl isothiocyanate (ITC) and the control receiving no ITC after 2, 7, and 28 days of incubation at 25°C. Diversity and 

richness estimates were based on reduced sized sequence libraries (1036 sequences for fungal and 1558 sequences for bacterial 

community respectively). Values displayed represent the mean of 3 biological replicates for each treatment. 

 

Sample 
Community characteristics (mean ± std) 

Fungal communities Bacterial communities 

Treatment Day 

Sequence 

Coverage 

(%) 

Observed 

OTUs 

Chao I 

Richness 

Shannon 

(H’) 

Inverse 

Simpson 

Sequence 

Coverage 

(%) 

Observed 

OTUs 

Chao I 

Richness 

Shannon 

(H’) 

Inverse 

Simpson 

Control 2 98±1 52± 9 69±15 2.40±0.11 6.5±0.5 88±3 366± 39 658±202 4.81±0.03 47± 9 

Allyl 2 98±0 61± 5 86± 9 2.55±0.12 7.4±1.7 89±4 334±141 575±185 4.28±1.40 46±35 

Benzyl 2 98±0 48± 6 75±15 2.09±0.09 4.4±0.2 84±5 452± 68 837±360 5.21±0.11 78± 3 

Phenyl 2 98±0 55± 2 76±10 2.15±0.14 4.8±1.5 87±3 392± 51 645±114 4.99±0.18 61± 9 

Butyl 2 99±0 46±14 57±13 2.12±0.65 5.5±3.0 83±2 455± 29 901±159 5.20±0.12 77±19 

Control 7 98±1 53± 6 79±25 1.91±0.15 3.3±0.7 82±1 469± 13 992± 45 5.23±0.02 76± 2 

Allyl 7 98±0 51± 6 82± 7 2.08±0.04 5.4±0.7 80±2 494± 44 1091±120 5.29±0.20 82±26 

Benzyl 7 98±0 52± 9 73±10 2.05±0.21 4.1±0.5 81±0 504± 27 1055± 97 5.40±0.21 106±37 

Phenyl 7 98±0 56±10 77± 7 2.02±0.41 3.8±1.5 84±1 459± 19 785± 10 5.24±0.17 76±21 

Butyl 7 98±0 44± 6 58± 3 1.59±0.45 2.9±1.4 80±1 554±  8 1005± 96 5.65±0.11 133±36 

Control 28 97±0 49± 7 90±12 1.56±0.09 2.5±0.1 75±0 607± 14 1401±  9 5.79±0.08 183±28 

Allyl 28 98±0 42±10 61±18 2.06±0.24 5.1±1.0 77±2 627± 12 1090±112 5.91±0.09 214±44 

Benzyl 28 99±0 38± 2 48± 5 1.56±0.14 2.7±0.4 78±4 585± 60 1171±186 5.76±0.16 171±43 

Phenyl 28 99±0 40± 2 56± 8 1.70±0.10 3.1±0.2 78±2 593± 18 1208±232 5.78±0.09 173±33 

Butyl 28 98±1 44± 7 64±20 1.65±0.15 2.8±0.4 77±2 670± 29 1072± 89 5.99±0.06 195±33 
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Table 4.2. Fungal operational taxonomic unit (OTU) composition summarized at the genus level in a Weswood loam soil 

mixed with 1% flax SM and treated with 50 µg g
-1

 allyl, benzyl, phenyl, or butyl isothiocyanate (ITC) and the control receiving 

no ITC after 2, 7, and 28 days of incubation at 25°C. Values displayed represent the mean of 3 biological replicates for each 

treatment. 
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Control 2 29.00a* 3.51ab 27.16ab 15.89a 0.16a 1.13b 10.56b 0.42a 0.64ab 0.06b 2.89a 0.18b 0.02b 8.38a 

Allyl 2 22.00a 12.93a 26.54ab 15.57a 0.22a 6.00a 5.32b 0.13a 1.09a 0.33a 0.14a 0.70a 0.82a 8.21a 

Benzyl 2 17.44a 4.46ab 35.94a 10.75ab 0.73a 1.27b 21.65ab 0.21a 0.28b 0.08b 0.13a 0.52a 0.18ab 6.34ab 

Phenyl 2 21.38a 4.37ab 38.58a 16.05a 0.16a 1.32b 12.10b 0.28a 0.35b 0.01b 0.05a 0.25b 0.08ab 5.02ab 

Butyl 2 20.71a 2.36b 15.41b 6.84b 0.22a 1.21b 47.65a 0.32a 0.17b 0.06b 0.04a 0.19b 0.22ab 4.60b 

Control 7 19.61a 1.71a 52.00a 12.14b 0.24a 0.41a 4.79a 1.66a 0.12a 0.08c 0.28a  0.91ab 2.55a 3.51a 

Allyl 7 13.43a 1.36a 15.99b 53.11a 0.22a 0.24a 9.60a 0.15a 0.13a 0.82a 0.34a 0.31b 1.03a 3.25a 

Benzyl 7 27.51a 8.20a 38.43ab 10.62b 0.11a 0.31a 5.91a 0.73a 0.26a 0.23bc 0.81a 1.46a 1.55a 3.87a 

Phenyl 7 25.79a 3.98a 38.22ab 12.78b 0.62a 0.18a 6.46a 2.53a 0.30a 0.13c 0.17a 1.07ab 1.72a 6.06a 

Butyl 7 22.13a 1.33a 55.41a 6.82b 0.01a 0.44a 2.87a 3.57a 0.25a 0.51ab 1.54a 0.87ab 0.07a 4.19a 

Control 28 13.17a 13.94a 61.51a 6.65a 0.25a 0.06a 0.37b 0.85a 0.03a 0.14a 0.00b 0.42a 0.09a 2.51b 

Allyl 28 19.35a 25.70a 28.41c 11.57a 1.43a 0.11a 1.70a 0.35ab 0.04a 0.07a 0.01b 0.29a 0.04a 10.92a 

Benzyl 28 15.76a 16.87a 58.26ab 1.10b 0.98a 0.15a 0.57b 0.44ab 0.02a 0.18a 0.01b 0.40a 0.00a 5.25ab 

Phenyl 28 20.87a 30.44a 37.39bc 1.39b 0.05a 0.12a 0.60b 0.55ab 0.04a 0.03a 0.01b 0.51a 0.01a 7.99ab 

Butyl 28 16.47a 15.23a 55.49ab 1.33b 0.00a 0.14a 0.60b 0.14b 0.05a 0.12a 0.61a 0.52a 0.01a 9.30a 

*Different letters indicate significant difference at P<0.05 within each time point for each genus. 
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4.3.3. Soil bacterial community composition  

The NMDS analysis indicated that ITC applications to soil altered the bacterial 

community compositions, although these effects seemed to be somewhat less-

pronounced than for the fungi (Fig. 4.2). Allyl ITC shifted the soil bacterial composition 

compared with the control through time, while butyl ITC behaved in the opposite way 

leading to no difference from the control through time. Benzyl and phenyl ITC had a 

transient effect and altered soil bacterial community composition after 2 or 7 days of 

incubation, but these differences were diminished by 28 d.  

The soil bacterial community similarities described by Theta-YC similarity 

metrics clustered treatments primarily by time instead of ITC type (Fig. 4.3). The 

exception was the benzyl ITC at 2 d, which was an outgroup from all of the other 

treatments [this resulted from large variation among the replicate samples due to a spike 

in Proteobacteria (primarily Pseudomonas spp.; 88% of the bacterial community in one 

sample) in one replicate of the phenyl ITC treatment]. Bacterial community structures at 

the earlier stages of the experiment (2 and 7 d) were more similar to each other than 

those at the end of the experiment (28 d).  
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Soil bacterial taxonomic distribution patterns were also transiently shifted by the 

ITC applications, with no apparent differences being detected after 7 d at the phylum 

level (Fig. 4.4). Soil bacterial diversity was generally increased at 2 and 7 d by benzyl, 

phenyl, and butyl ITC addition, but was not significantly changed by the allyl ITC 

(Table 4.1). The diversity metrics were similar for all treatments by 28 d. The dominant 

bacterial phyla detected were Proteobacteria, Actinobacteria, Firmicutes, Acidobacteria, 

and Bacteroidetes (Fig. 4.4). The only bacterial phylum that differentially responded to 

ITC addition (compared to the control) was Firmicutes at 2 d, which consisted of 4 

dominant genera detected in our microcosms including Bacillus, Brevibacillus, 

Lysinibacillus, and Paenibacillus (Table 4.3). Allyl ITC significantly increased the 

proportion of Firmicutes, mainly Brevibacillus and Paenibacillus, compared to the 

control and all the other ITC treatments. However, after 7 d, Firmicutes was a less 

dominant component (< 4%) of bacterial communities in all treatments being replaced 

largely by Bacteroidetes and Acidobacteria. The benzyl ITC treatment appeared to 

increase the relative level of Proteobacteria at 2 d, but the variation among the three 

biological replicates were quite large. 
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Table 4.3. Bacterial operational taxonomic unit (OTU) composition summarized at the genus level for Firmicutes in a 

Weswood loam soil mixed with 1% flax SM and treated with 50 µg g
-1

 allyl, benzyl, phenyl, or butyl isothiocyanate (ITC) and 

the control receiving no ITC after 2, 7, and 28 days of incubation at 25°C. Values displayed represent the mean of 3 biological 

replicates for each treatment. 

Treatment Day 
Total 

Firmicutes 

Firmicutes OTU Distribution (% of Bacterial Community) 

Bacillus Brevibacillus Lysinibacillus Paenibacillus Others/ Unclassified 

Control 2 18.46b* 7.28a 0.74ab 0.01b 2.99b 7.44a 

Allyl 2 38.00a 8.92a 6.48a 0.67a 14.15a 7.77a 

Benzyl 2 12.80b 5.03a 0.29b 0.00b 1.97b 5.51a 

Phenyl 2 22.58b 8.65a 1.92ab 0.00b 4.05b 7.95a 

Butyl 2 16.61b 5.89a 0.52b 0.00b 4.85b 5.35a 

Control 7 0.96a 0.41a 0.00a 0.00a 0.05b 0.50a 

Allyl 7 1.32a 0.70a 0.00a 0.00a 0.14ab 0.48a 

Benzyl 7 1.93a 0.87a 0.00a 0.00a 0.08b 0.98a 

Phenyl 7 1.19a 0.42a 0.00a 0.00a 0.08b 0.69a 

Butyl 7 3.02a 1.37a 0.01a 0.00a 0.22a 1.42a 

Control 28 1.86a 0.90a 0.03a 0.00a 0.08a 0.85a 

Allyl 28 1.48a 0.78a 0.00a 0.00a 0.06a 0.64a 

Benzyl 28 3.39a 1.70a 0.00a 0.00a 0.12a 1.57a 

Phenyl 28 3.54a 1.78a 0.02a 0.00a 0.19a 1.55a 

Butyl 28 2.42a 1.25a 0.01a 0.00a 0.09a 1.06a 

*Different letters indicate significant difference at P<0.05 within each time point for each phylum or genus. 
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4.4. Discussion 

 

4.4.1. Soil fungal and bacterial abundance inhibited by ITCs 

The incorporation of different types of ITCs with the presence of flax SM only 

temporarily inhibited soil fungal abundance, and the level of suppression varied 

according to the ITC type, similar to results of previous studies on ITC fungicidal 

toxicity (Yulianti et al., 2007; Hu et al., 2011). Allyl ITC had a greater inhibitory effect 

on soil fungal population size than did the aromatic ITCs (benzyl and phenyl). Similarly, 

other researchers have reported that aliphatic ITCs such as allyl ITC are more 

biologically toxic to targeted microorganisms than aromatic ITCs are (Angus et al., 

1994; Matthiessen and Shackleton, 2005; Troncoso-Rojas et al., 2009; Hu et al., 2011). 

The inhibiting effect of allyl ITC released from SM on soil fungal abundances has been 

demonstrated by Hollister et al. (2011), who compared application of Brassica juncea 

(containing compounds that produce allyl ITC) and flax (induce no ITC) SMs and found 

that amendment of soil with 2.5% of B. juncea (estimated to release approximately 390 

µg g
-1

 allyl ITC in soil) delayed soil fungal proliferation. Such inhibition however, did 

not occur when a lower application rate of 0.5% B. juncea SM (estimated to release ~80 

µg allyl ITC g
-1

 soil; higher than the 50 µg g
-1

 level used in this study) was added (Wang 

et al., 2012). Butyl ITC, although also an aliphatic ITC, was not initially as inhibitory to 

soil fungal abundances. However, the presence of a delayed peak in fungal abundance in 

the butyl ITC-treatment suggested that soil fungal abundances may have been inhibited 

by butyl ITC addition initially, though other mechanisms (e.g., reduced bacterial 
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abundances) may be responsible for its higher fungal abundance level. The toxicity of 

various ITCs has been linked to specific chemical and physical properties such as water 

solubility and bioavailability; however, it can be much more difficult to predict their 

toxicity in the soil environment due to ITC phase (solid, liquid, and gas) partitioning and 

complex interactions with the soil (Borek et al., 1998; Matthiessen and Shackleton, 

2005). The observed higher inhibiting level of aliphatic than aromatic ITCs in our study 

may come from the higher chemical volatility and/ or higher biological activity of 

aliphatic ITCs (Matthiessen and Shackleton, 2005; Hu et al., 2011).  

Soil bacterial abundance was less affected than fungi by ITC addition, regardless 

of the ITC type. Similar findings of lower susceptibility of soil bacteria than fungi to 

various ITCs were reported by Matthiessen and Shackleton (2005). Nevertheless, we did 

observe a slight inhibiting effect in the butyl ITC treatment, indicating that butyl ITC 

could be generally more suppressive to soil bacterial abundances than the other ITCs. 

This was concurrent with higher fungal abundance and a lag in fungal growth peak due 

to butyl ITC addition, which suggested that butyl ITC did suppress soil fungal 

abundances initially but this may have been masked by lower level of competition from 

the reduced bacterial community. Moreover, although allyl ITC seemed not to suppress 

soil bacterial abundance, this may have been masked by the reduction in fungal 

abundances and thus less competition from soil fungi. Previous studies agreed with our 

results that allyl ITC, such as that released from some SMs, can suppress soil bacterial 

abundances. For example, Hollister et al. (2011) found that soil bacterial abundance was 

significantly reduced (compared to a flax control) by applying B. juncea SM (2.5%) that 
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was estimated to release approximately 390 µg g
-1

 allyl ITC in soil. Moreover, Wang et 

al. (2012) observed a slightly inhibited bacterial population within only a few days after 

B. juncea SM addition (5%) resulting in a total of 780 µg g
-1

 allyl ITC in soil. However, 

they found that a lower level of B. juncea SM (0.5%; ~ 80 µg allyl ITC g
-1

 soil), which 

was comparable to ITC level used in our experiment (50 µg g
-1

), produced no significant 

impact on soil bacterial population size (Wang et al., 2012), although the way the ITC 

was incorporated into soil differed from ours (SM v. pure chemical). At later time points 

(≥14 d), there were significantly higher bacterial abundances in the butyl ITC 

amendments than the other treatments, which could be related to its higher fungal 

population early in the experiment later serving as additional nutrient resources for the 

bacterial community (Bernard et al., 2011). The differential effect of the two aliphatic 

ITCs (allyl and butyl) on the soil microbial community was further revealed by the 

bacterial to fungal ratios, where we found that allyl ITC led to a transient increase in the 

bacterial to fungal ratio due to inhibition of soil fungal abundances. In contrast, the butyl 

ITC treatment led to a reduction in the bacterial to fungal ratio as a result of this ITC 

initially inhibiting bacterial abundances. 

 

4.4.2. Soil fungal community structural shifts by ITCs 

Numerous studies have demonstrated the ability of pure ITCs to inhibit a wide 

range of soil fungi (usually focused on specific plant pathogens), with the level of 

inhibition varying depending upon the ITC and organism (Kirkegaard et al., 1996; 

Sarwar et al., 1998; Smith and Kirkegaard, 2002). Far fewer studies have investigated 
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ITC impacts on the soil fungal community. Of those, even fewer studies have 

investigated the impacts of ITCs produced from added biomass (e.g., Brassicaceae SMs, 

plant residues, or root exudes etc.) as would be applied for biofumigation (Hollister et 

al., 2011; Baldrian et al., 2011). Our study extended the studies investigating pure ITC 

influences on soil organisms by adding the effect of SM and found that soil fungal 

community composition was also altered due to ITCs, and these changes were different 

according to ITC type. Generally speaking, aliphatic ITCs (allyl and butyl) seemed to 

impact the fungal community more than aromatic ITCs (benzyl and phenyl) did. To be 

specific, butyl ITC had the largest initial impact on soil fungal community composition. 

Since butyl ITC did not initially alter total fungal abundance, this indicated that various 

fungal groups responded to butyl ITC differently with some groups being inhibited while 

others were promoted. Allyl ITC on the other hand, although it greatly reduced total 

fungal abundance, did not change the composition of the fungal community compared 

with the control. This indicated that the allyl ITC had a wide-spectrum effect on the 

fungal community and impacted all of the dominant fungi similarly. These results are the 

first to detail the impacts of various ITCs on soil fungal community composition, so 

there is no direct point-of-comparison in the published literature. A related study by 

Hollister et al. (2011) using a relatively higher amendment rate of B. juncea SM (2.5%) 

producing allyl ITC reported that the amendment did alter soil fungal community 

structure within 3 days of incubation. Our results agreed with their study given a longer 

time of incubation (1 week), when we detected a recovery growth of fungal population 

in allyl ITC treatment that had a significantly different community structure from all the 
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other treatments. This suggested that fungal re-colonization in the soil may result in 

differentiation due to the varied initial ITC impacts, especially in the case of allyl ITC. 

Another possible explanation is that the ITCs were added in pure chemical form at day 0 

in our experiment, while in the oilseed experiments, the GLS would have to first be 

transformed into ITCs before they would be effective. This might at least partially 

explain the seemingly conflicting results between this experiment and those using SMs 

(Hollister et al., 2011; Wang et al., 2012). The effects of the aromatic ITCs (benzyl and 

phenyl) on soil fungal community composition were less apparent early in the 

experiment, but given a longer time of up to 4 weeks, they also shifted soil fungal 

structure. This was likely due to systematic impacts instead of pure chemical effects, 

considering that ITCs typically degrade rapidly (within hours to days) when incorporated 

into soil (Warton et al., 2003; Gimsing et al., 2008).  

In terms of taxonomic classification of the soil fungal communities, Ascomycota 

and Zygomycota were the dominant fungal phyla detected. This is not surprising since 

Ascomycota are the largest group of the true fungi (Larena et al., 1999) with their 

members consisting of both noxious plant pathogens and non-pathogenic saprotrophic 

fungi (Osono et al., 2003). Zygomycota comprise only 1% of the described species of 

true fungi, they often live in soil close to plants, are able to degrade plant materials, and 

are ecologically diverse (Kirk et al. 2001; James and O'Donnell, 2007). Zygomycota in 

soil include fast-growing members that utilize substrates that are high in sugar (James 

and O'Donnell, 2007).  
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The only genus belonging to Zygomycota that dominated our soil fungal 

community was most similar to Mortierella, and its relative abundance varied among 

treatments. This genus is considered to be sugar fungi, which means that they mainly 

utilize simple nutrient sources such as sugars, amino acids, and organic acids (Kirk et al., 

2001; Weber and Tribe, 2003). Interestingly, they are typically unable to utilize 

polymeric C sources such as lignins, celluloses, and hemicelluloses, which comprise the 

major components of many plant residues (Weber and Tribe, 2003). The proliferation of 

Mortierella early in our study may have resulted from their degradation of oils, organic 

acids, and proteins in the SMs (Wang et al., 2012), which have been reported to be good 

nutrient sources for supporting Mortierella growth (Weber and Tribe, 2003). Residual 

oils in the flax SM were likely degraded early in the incubation (Chapter 3), which could 

also explain why Mortierella became a minor proportion of the fungal community over 

time. 

In addition, the relative proportion of Mortierella was impacted by the type of 

ITC added. Mortierella has been reported to be tolerant of several fungicides and can 

often survive soil fumigation and then rapidly re-colonize the soil (Warcup, 1976; 

Kuthubutheen and Pugh, 1979). Based upon our results, it is possible that the various 

ITCs had differing levels of toxicity to Mortierella. We observed a dramatic 

proliferation of Mortierella composition in the butyl ITC treatment, which could result 

from a higher tolerance of this genus to butyl relative to the other ITCs. Increased 

abundances of Mortierella  seems to be the main reason for the lack of suppression on 

soil total fungal abundance in the butyl ITC treatment as indicated by qPCR.  
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Among all the Ascomycota groups found in our soils, Humicola and Chaetomium 

were the ones that responded to ITC additions and differed according to ITC type, while 

Fusarium and Ascobolus compositions were generally not influenced by ITC 

amendment or type. After the large, initial suppression of soil fungal abundances, the 

allyl ITC-treated soil was rapidly re-colonized, primarily by Humicola, which are 

considered to be beneficial soil fungi with some representatives having been used to 

produce important enzymes for hydrolyzing lignocellulosic materials in the renewable 

energy industry (Lang et al., 2011). The ability of Humicola to re-colonize soil rapidly 

after application of fungicides has also been reported in previous research 

(Kuthubutheen and Pugh, 1979). It could partially explain our finding that Humicola 

out-competed other genera such as Chaetomium, and this phenomenon may be related to 

the initial fungal inhibition by allyl ITC. As some Chaetomium such as C. globosum are 

notable infectious human pathogens (Guarro et al., 1995), it seems that allyl ITC-

producing SMs could be a good candidate for controlling Chaetomium pathogens.  

 

4.4.3. Soil bacterial community structural shifts by ITCs 

In our experiment, soil bacterial community composition was temporarily altered 

by the addition of ITCs, and these changes were different according to ITC type. Unlike 

the soil fungal community responses to the ITCs, there was not a clear distinction 

between the aliphatic and aromatic ITCs. The allyl ITC seemed to have a greater impact 

on the soil bacterial community throughout the experiment. At the same time, various 

bacterial groups responded to allyl ITC differently, indicating a selectivity of this 
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chemical on the soil bacterial community. Interestingly, the butyl ITC behaved in almost 

the opposite way by reducing soil bacterial abundance after only a few days of 

incubation but not impacting the composition of bacterial community. Benzyl and 

phenyl ITCs also influenced the bacterial community composition as indicated by 

NMDS that separating one another at the early days in the incubation. The later changes 

in bacterial community structure were likely due to whole systematic effects that related 

to changes in the soil fungal community and nutrient status instead of pure chemical 

influence (Bressan et al., 2009). 

In terms of taxonomic composition of the soil bacterial communities, the largest 

difference detected, at the phylum level, was in the proportion of Firmicutes at the very 

early stages of the experiment. Firmicutes includes fast-growing bacteria that produce 

endospores and thus can survive in extreme environments (Clark and Hirsch, 2008; 

Teixeira et al., 2010; Hollister et al., 2010). The dominance of Firmicutes only a few 

days after treatments were imposed in our study is likely due to the energy- and N-

compounds (Ibekwe et al., 2007; Teixeira et al., 2010; Collignon et al., 2011; Bernard et 

al., 2011) contained in the flax SM (Hu et al., 2011). Allyl ITC in our experiment 

significantly increased the composition of Firmicutes compared with the other three 

types of ITCs. It was likely that this group of bacteria was more resistant to allyl ITC 

toxicity than the other bacterial members were. Previous results from Hollister et al. 

(2011) also found the proportion of Firmicutes increased in response to addition of allyl 

ITC (in the form of B. juncea SM). When our results were examined at the genus level, 

we found that the most dominant Firmicutes were similar to Paenibacillus, which 
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includes members tolerant to pesticides (Singh et al., 2009) and suppressive to soil-borne 

fungal pathogens (notably Fusarium and Chaetomium app.) through various mechanisms 

such as chitinase production (Guemouri-Athmani et al., 2000; Budi et al., 2000; Da Mota 

et al., 2005; Singh et al., 2009; Kyselkova et al., 2009). Although there was no 

significant difference in soil bacterial taxonomic composition at the phylum-level after 7 

d, the communities in the allyl and benzyl ITC-amended treatments remained different 

than the control after 28 d, likely due to differences at lower taxonomic levels. Also at 7 

d, Bacteroidetes largely replaced Firmicutes and became one of the dominant genera in 

all treatments. This may be partially due to the large amounts of N from the flax SM, 

since Bacteroidetes are fast-growing r-strategy bacteria that have been reported to 

respond to N-rich amendments (Blagodatskaya and Kuzyakov, 2008; Bernard et al., 

2011). A similar trend was found in the study by Hollister et al. (2011) that used flax SM 

at a higher application rate (2.5%). 

 

4.4.4. Soil microbial responses due to ITC additions- an overall perspective 

The soil fungal community was more greatly impacted than bacteria by addition 

of the various ITCs in the presence of flax SM. Although many of these influences were 

relatively short-lived, some of the changes persisted until the end of the experiment. The 

impacts of the ITCs at the early stages of the experiment appeared to be directly due to 

reactions of the microbial populations to the ITCs themselves and then later shifted to 

systematic responses due to the previously altered microbial communities. The most 

interesting results came from the aliphatic ITCs (allyl and butyl). Allyl ITC had a broad 
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and intensive toxicity on the soil fungal community, while butyl ITC selectively reduced 

Chaetomium and increased Mortierella. The increase in Mortierella may have resulted 

from its higher tolerance of or ability to degrade butyl ITC. Along with the large 

suppression of fungal abundance in the allyl ITC treatment, the concurrent proliferation 

of Paenibacillus, which includes bacteria reported to be antagonist to numerous fungal 

pathogens, could therefore also have contributed to overall fungal inhibition. Humicola 

appeared to selectively re-colonize the allyl ITC-amended soil, as compared with other 

genera such as Chaetomium and Fusarium, after the initial fungal suppression. This may 

have been due to Humicola’s reported ability to rapidly re-establish its populations after 

fumigation and/ or alterations in the bacterial community such as the proliferation of 

Paenibacillus that subsequently inhibited Chaetomium and Fusarium. These results 

suggest that allyl ITC-producing SMs could be a good candidate for controlling 

Chaetomium-related pathogens through direct fungal toxicity and/ or increased numbers 

of antagonists. 

When comparing our results with other studies, especially allyl ITC-related 

research, we found that the soil fungal community structure was very sensitive to 

differences in amendments among similar studies. Using the same type of soil and 

incubation conditions, a previous study by Hollister et al. (2011) who applied SM of B. 

juncea (estimated to release 390 µg g
-1

 allyl ITC in soil), found that the soil fungal 

community was dominated (87-98%) by a single genus of fungi (Retroconis). However, 

this fungus was just a minor component of the fungal community in our study. The 

observed large difference in fungal taxonomic distribution could be related to multiple 
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impacting factors such as ITC level, nutrient amount, and the way the ITC was 

incorporated, each of which alone has been reported to greatly affect microbial responses 

to amendments in previous studies (Borek et al., 1998; Sarwar et al., 1998; Smith and 

Kirkegaard, 2002; Matthiessen and Shackleton, 2005; Wang et al., 2012; Hu et al., 

2011). To be specific, the total allyl ITC estimated to be released in the soil environment 

in the Hollister et al. (2011) study was ~8 times more than in ours, and essential nutrient 

application (C, N, and P) was also estimated to be 2 to 4 times more than in our study. 

Furthermore looking at the way the ITCs were applied, in the Hollister et al. (2011) 

experiment, allyl ITC was gradually released to soil from hydrolyzing allyl GLS 

contained in B. juncea SM during incubation. This represented a more chronic effect of 

allyl ITC on the soil fungal community instead of a one-time acute dosing as in our 

experiment. All of the described differences in amendments between Hollister et al. 

(2011) and our study could contribute to the largely varied results in soil fungal 

taxonomic structural responses. 

For soil bacterial community responses to allyl ITC, our overall results were very 

similar to those reported previously by Hollister et al. (2011), who found that the soil 

bacterial population was inhibited by allyl ITC-inducing B. juncea SM, and the 

community composition was also temporarily differentiated between SM application of 

B. juncea and no-ITC-inducing flax. Firmicutes (particularly Bacillus spp.) proliferated 

within days of incubation in their study, likely due to being more resistant to allyl ITC. 

However, impacts of ITCs (SMs) seemed to be greater in their study compared with our 

results. To be specific, bacterial population size in our study was likely to be reduced, 
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but seemed to be more transient and less apparent than reported by Hollister et al. 

(2011). Furthermore, Firmicutes at an early stage comprised a much higher proportion of 

the total bacterial community (~85%) in their study than in ours (~38%). All of the 

above differences could have resulted from either varied ITC and nutrient levels, and/ or 

systematic influence related to soil fungal community responses (Smith and Kirkegaard, 

2002; Baldrian et al., 2011; Wang et al., 2012). 

 

4.5. Conclusions 

The application of ITCs in the presence of flax SM temporarily reduced soil 

fungal and bacterial population though to differing extents depending upon the ITC type. 

Both the soil fungal and bacterial communities seemed to be more sensitive to aliphatic 

(allyl and butyl) than to aromatic (benzyl and phenyl) ITCs. Allyl and butyl ITCs had a 

wide-spectrum initial inhibiting effect on soil fungal and bacterial abundances in soil. On 

the other hand, selectivity of these ITCs was also apparent among several fungal and 

bacterial genera with ITC amendment leading to microbial community composition 

changes. Humicola re-colonized allyl ITC-treated soil rapidly, indicating its higher 

tolerance to allyl ITC and/ or its greater ability for survival and proliferation when 

provided adequate nutrients. Allyl ITC suppressed Chaetomium possibly indicating its 

utility for control of this pathogen. Mortierella, as a sugar fungus, was enhanced by flax 

SM application, and its proportion was particularly higher in the butyl ITC treatment, 

indicating that this genus may be more resistant to butyl than to the other 3 ITCs. 

Firmicutes as a bacterial phylum, which included members that are fast-growing and 
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resistant to environmental stress, was found to be most responsive to both ITC type and 

flax SM addition compared with other bacterial phyla; however, this effect was only 

transient. Several genera within the phylum Firmicutes dominated bacterial community 

composition. This included Paenibacillus spp. which appeared to be temporarily 

enhanced by allyl ITC concurrent with the initial suppression of fungal abundances in 

this treatment. Since some Paenibacillus spp. is known to produce antifungal 

compounds, this suggests that increases in abundances of these bacteria may have also 

(in addition to direct ITC effects on fungi) contributed to decreased fungal abundances. 

Our experiment was designed to determine how different ITCs released from 

SMs would impact soil microbial communities. By using pure ITCs and single type of 

SM, this enabled us to focus specifically upon differential effects of the ITCs and 

eliminate other variables such as varying chemical composition (C, N, S, other biocidal 

chemicals, etc.) inherent in comparisons of ITC-producing (e.g. mustard) and non-ITC-

producing (e.g., flax) SMs directly. Our findings are the first to detail the impacts of 

various ITCs, as part of SM application, on soil fungal and bacterial community 

composition. This information will be very useful for producers designing biofumigation 

strategies for pathogen control, for plant breeders selecting plants for controlling specific 

pathogens, and for ecologists attempting to determine the effects of land-applied ITC-

containing SMs on soil quality. 
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CHAPTER V 

CONCLUSIONS 

 

Application of 1 to 5 % brassicaceous and jatropha oilseed meals (SMs) inhibited 

P. omnivora sclerotial germination and active hyphal growth in a Branyon clay soil, 

suggesting that field application of select SMs, especially mustard which showed the 

highest toxicity to P. omnivora, may potentially reduce cotton root rot. Although the 

specific mechanisms responsible for the inhibition of P. omnivora by SMs were not 

elucidated, our results, along with previous studies, suggest that the biocidal chemicals 

released from SMs played a major role. Further, our results demonstrated that different 

ITCs have differing levels of effectiveness in controlling the growth of P. omnivora. 

Application of 1% SMs to Weswood loam soil rapidly increased microbial, 

especially fungal, abundances. The composition of the fungal community was also 

impacted by SM additions with the resulting shifts being relatively persistent over time. 

Each of the SMs selected for specific fungal groups such as Fusarium in camelina and 

flax treatments and Chaetomium in jatropha treatment. In addition to changes in the soil 

fungal community composition, the SMs altered microbial CLPP patterns, suggesting 

that changes in microbial population size and composition also impacted the 

functionality of the soil microbial community. 

The different SM amendments seemed to result in slightly varied soil microbial 

community responses depending on either the allelochemicals involved, nutrient 

composition (e.g., C:N ratio), or both. Compared with flax SM that contained no 
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biocidal chemicals, camelina and jatropha SMs produced a smaller increase in soil 

fungal abundances in the first few days of the experiment. In addition, the composition 

of the soil fungal community was also differentially impacted by camelina and jatropha 

SMs at early stages of the experiment. Nevertheless, these transient impacts on 

population size and community composition did not result in discernible impacts on 

microbial community functionality – likely due to functional redundancy of the 

microbial community and/ or relatively low concentrations of biocidal chemicals in the 

SMs used in this experiment. The more persistent differential impacts of the various 

SMs appeared to be due to variable chemical composition (e.g., C:N ratio) of the 

amendments. For example, camelina and flax SMs selected for fungal communities more 

similar to each other over time than to jatropha SM which had a higher C:N ratio and 

several other properties that were in many ways intermediate between the other SMs and 

the wheat straw (lignocellulosic comparison). However, even this impact on soil 

functionality was diminished by the end of the study with the amended microcosms not 

being different than the unamended control. These findings elucidate the impacts that 

various SMs have on soil microbial abundance, community composition, and 

functionality and also highlight the critical role that the soil fungal community plays in 

the decomposition of organic amendments. 

The application of ITCs in the presence of flax SM temporarily reduced soil 

fungal and bacterial abundances though to differing extents depending upon the ITC 

type. Both the soil fungal and bacterial communities seemed to be more sensitive to 

aliphatic (allyl and butyl) than to aromatic (benzyl and phenyl) ITCs. Allyl and butyl 
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ITCs had a wide-spectrum initial inhibiting effect on soil fungal and bacterial 

abundances in soil. On the other hand, selectivity of these ITCs was also apparent among 

several fungal and bacterial genera with ITC amendment leading to microbial 

community composition changes. Humicola re-colonized allyl ITC-treated soil rapidly, 

indicating its higher tolerance to allyl ITC and/ or its greater ability of survival and 

proliferation when provided adequate nutrients. Ally ITC suppressed Chaetomium 

possibly indicating its utility for control of this pathogen. Mortierella, as a sugar fungus, 

was enhanced by flax SM application, and its proportion was particularly higher in the 

butyl ITC treatment, indicating that this genus may be more resistant to butyl than to the 

other 3 ITCs. Firmicutes as a bacterial phylum, which included members that are fast-

growing and resistant to environmental stress, was found to be most responsive to both 

ITC type and flax SM addition compared with other bacterial phyla; however, this effect 

was only transient. Several genera within the phylum Firmicutes dominated bacterial 

community composition. This included Paenibacillus spp. which appeared to be 

temporarily enhanced by allyl ITC concurrent with the initial suppression of fungal 

abundances in this treatment. Since some Paenibacillus spp. are known to produce 

antifungal compounds, this suggests that increases in abundances of these bacteria may 

have also (in addition to direct ITC effects on fungi) contributed to decreased fungal 

abundances. 

Our experiment focusing on ITC-related microbial community responses was 

designed to determine how different ITCs released from SMs would impact soil 

microbial communities. By using pure ITCs and single type of SM, this enabled us to 
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focus specifically upon differential effects of the ITCs and eliminate other variables such 

as varying chemical composition (C, N, S, other biocidal chemicals, etc.) inherent in 

comparisons of ITC-producing (e.g. mustard) and non-ITC-producing (e.g., flax) SMs 

directly. Our findings are the first to detail the impacts of various ITCs, as part of SM 

application, on soil fungal and bacterial community composition. This information will 

be very useful for producers designing biofumigation strategies for pathogen control, for 

plant breeders selecting plants for controlling specific pathogens, and for ecologists 

attempting to determine the effects of land-apply ITC-containing SMs on soil quality. 
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APPENDIX A 

 

 
 

Fig.A-2.1. Effects of selected isothiocyanates on Phymatotrichopsis omnivora OKAlf8 

hyphal growth on potato dextrose agar (PDA) after 84 h of incubation at 25 °C. (◊: Allyl 

ITC; □: Benzyl ITC; Δ: Phenyl ITC; ×: Butyl ITC; ○: 1,4-dioxane Control). Means are 

based on 3 replicates. Bars represent ± standard deviation of the mean. Error bars are 

hidden when smaller than the symbols. 
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Fig. A-3.1. Heatmap on soil fungal communities genus level in Weswood loam soils 

treated with oilseed meals of jatropha, camelina, and flax, as well as wheat straw and 

unamended control after 3, 21, and 77 days of incubation at 25°C. This heatmap was 

created based on the fungal relative abundances of the mean of the 3 biological 

replicates. Abundances for each taxonomic group were scaled relative to the mean across 

all samples. The dendrogram depicts Euclidian distance-based hierarchical 

agglomerative clustering of samples with one another.  
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Fig. A-3.2. Fusarium OTU distribution patterns at the species level in Weswood loam soils treated with oilseed meals 

of jatropha, camelina, and flax, as well as wheat straw and unamended control after 3, 21, and 77 days of incubation at 

25°C. The means of each Fusarium species abundance relative to total Fusarium genus abundance for the 3 biological 

replicates in each treatment are represented by different color at each time point. 
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Fig. A-3.3. NMDS ordination of microbial community-level physiological profiling 

based on Biolog EcoPlate™ readings in 1% (w/w) organic material (oilseed meals of 

jatropha, camelina, flax, and wheat straw) treated Weswood loam soil after 3 (A), 7 (B), 

14 (C), 28 (D), 77 (E), and 133 (F) days of incubation at 25ºC. Symbols represent the 

means of 3 biological replicates in each treatment, and the error bars represent the 

standard deviation among biological replicates. 



 

  

152 

 
 

Fig. A-3.4. Principal component analysis (PCA) on Weswood loam soil microbial CLPP indicated by Biolog 

EcoPlate™ after 3 (A), 7 (B), 14 (C), 28 (D), 77 (E), and 133 (F) days of incubation at 25°C. Treatments included 

unamended control, 1.0% (w/w) oilseed meals of jatropha, camelina, and flax, and wheat straw. Symbols represent 

CLPP values from all the replicate-level samples. Codes for the 31 carbon sources are explained in Table 3.1. 
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Fig. A-3.5. Percent of CLPP response grouped by C source after 3 (A), 7 (B), 14 (C), 28 

(D), 77 (E), and 133 (F) days of incubation at 25°C in a Weswood loam soil. The 31 C 

sources in Biolog EcoPlate had been grouped into 6 types including carboxylic acids, 

complex C, carbohydrates, phosphate-containing C, amino acids, and amines explained 

in Table 3.1. Bars represent the mean of 3 biological replicates on CLPP values for each 

group of C source in each treatment at each time point. 
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APPENDIX B 

 

Table A-2.1. Number of germinated Phymatotrichopsis omnivora sclerotia in seed meal-

amended Branyon clay soil at the end of the 1
st
, 2

nd
, 3

rd
, and 4

th
 week of incubation at 28 

°C from preliminary studies.  

 

Treatments Week 1 Week 2 Week 3 Week 4 

 ----------Number of sclerotia germinated--------- 

Control 6 6 6 6 

Mustard 1% 0 0 0 0 

Mustard 5% 0 0 0 0 

Camelina 1% 6 6 6 6 

Camelina 5% 0 0 1 1 

Jatropha 1% 0 0 2 2 

Jatropha 5% 0 0 0 0 

Flax 1% 6 6 6 6 

Flax 5% 6 6 6 6 

Chinese tallow 1% 6 6 6 6 

Chinese tallow 5% 6 6 6 6 
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Table A-2.2. Results of analysis of variance of Phymatotrichopsis omnivora sclerotial germination rate (arcsin square root 

transformed) in seed meal-amended Branyon clay soil at the end of the 1
st
, 2

nd
, 3

rd
, and 4

th
 week of incubation, and survival 

rate (arcsin square root transformed) at the end of at 4
th

 week of incubation at 28 °C. 

 
 

 

Effects 

Germination Rate Survival Rate 

Week 4 
Week 1 Week 2 Week 3 Week 4 

F P value F P value F P value F P value F P value 

Type 350.0 <0.0001 290.2 <0.0001 251.7 <0.0001 330.4 <0.0001 326.6 <0.0001 

Rate 412.5 <0.0001 311.7 <0.0001 322.9 <0.0001 406.0 <0.0001 226.0 <0.0001 

Type*Rate 122.5 <0.0001 90.8 <0.0001 105.4 <0.0001 137.2 <0.0001 89.0 <0.0001 

Type=oilseed meal type, Rate=application rate. 

Survival rates were calculated as [(number of germinated sclerotia+ number of inhibited sclerotia)/ 20 expressed as percentages] 
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Table A-3.1. Summary of fungal community characteristics based on OTUs (97% 

similarity) and their relative abundances in a Weswood loam soil amended with 1.0% 

(w/w) oilseed meals of jatropha, camelina, flax, and wheat straw after 3, 21, and 77 days 

of incubation at 25 °C. Diversity and richness estimates are based upon normalized 

(reduced-sized) sequence libraries, each of which contained 730 sequences. Values 

represent the means of 3 biological replicates with standard deviations. 

 

Sample Community characteristics (mean ± std) 

Amendment Day 

Sequence 

Coverage 

(%) 

Observed 

OTUs 

Chao I 

richness 

Shannon 

(H’) 

Inverse 

Simpson 

Control 3 97±2 67±18 82±31 2.90±0.65 12.0±9.3 

Jatropha 3 97±1 51±3 83±15 2.12±0.13 4.3±0.8 

Camelina 3 97±0 55±6 88±15 2.55±0.17 7.6±1.0 

Flax 3 96±1 59±8 94±8 2.47±0.12 6.7±1.0 

Wheat 3 95±2 73±7 147±69 2.55±0.46 6.3±4.9 

Control 21 93±2 103±10 176±54 3.41±0.15 14.5±2.4 

Jatropha 21 95±2 64±12 107±42 2.33±0.07 5.4±0.6 

Camelina 21 96±1 62±14 94±29 2.48±0.17 6.7±0.5 

Flax 21 95±1 66±8 123±17 2.57±0.11 7.3±0.4 

Wheat 21 95±2 75±24 157±33 2.46±0.34 5.1±0.6 

Control 77 95±1 92±13 138±34 3.38±0.36 17.0±6.2 

Jatropha 77 96±2 48±10 123±66 1.93±0.28 4.1±1.1 

Camelina 77 95±1 60±9 134±55 2.32±0.13 5.9±0.4 

Flax 77 96±1 56±15 103±23 2.32±0.25 6.2±1.1 

Wheat 77 97±0 61±2 87±7 2.68±0.09 7.8±0.2 
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Table A-3.2. Fusarium composition at the species level in Weswood loam soils treated with oilseed meals of jatropha, 

camelina, and flax, as well as wheat straw and unamended control after 3, 21, and 77 days of incubation at 25°C. Values 

represent the means of 3 biological replicates in each treatment. 

 

Fusarium 

Species 

Control Jatropha Camelina Flax Wheat Control Jatropha Camelina Flax Wheat Control Jatropha Camelina Flax Wheat 

Fusarium Species  Composition %   

Day 3 Day 21 Day 77 

 F. equiseti 25.05a 9.93ab 13.73ab 24.63a 4.75b 12.33c 15.13bc 21.96ab 25.86a 1.72d 13.34c 15.68bc 22.11ab 26.14a 1.34d 

F. brachygibbosum 6.95b 13.78a 18.61a 19.20a 4.74b 11.39c 19.57ab 24.14a 14.68bc 1.18d 10.71b 20.16a 26.67a 21.04a 1.35c 

F. oxysporum 8.39b 8.08b 18.35a 18.37a 2.27c 13.75a 5.24b 13.44a 9.40a 0.58c 8.88ab 4.53b 13.59a 10.84a 0.57c 

*Different letters indicated significant difference within each row at a specific time point. 
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