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ABSTRACT

A Novel Approach to the Analysis of Nonlinear Time Series with Applications

to Financial Data. (May 2012)

Jun Bum Lee, B.S., Seoul National University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Suhasini Subba Rao

The spectral analysis method is an important tool in time series analysis and

the spectral density plays a crucial role on the spectral analysis. However, one of

limitations of the spectral density is that the spectral density reflects only the co-

variance structure among several dependence measures in the time series data. To

overcome this restriction, we define two spectral densities, the quantile spectral den-

sity and the association spectral density. The quantile spectral density can model

the pairwise dependence structure and provide identification of nonlinear time series

and the association spectral density allows detecting periodicities on different parts

of the domain of the time series. We propose the estimators for the quantile spectral

density and the association spectral density and derive their sampling properties in-

cluding asymptotic normality. Furthermore, we use the quantile spectral density to

develop a goodness-of-fit tests for time series and explain how this test can be used

for comparing the sequential dependence structure of two time series. The asymp-

totic sampling properties of the test statistic is derived under the null and alternative

hypothesis, and a bootstrap procedure is suggested to obtain finite sample approx-

imation. The method is illustrated with simulations and some real data examples.

Besides the exploration of the new spectral densities, we consider general quadratic

forms of α-mixing time series and derive asymptotic normality of these forms under

the relatively weak assumptions.
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CHAPTER I

INTRODUCTION

One objective of time series analysis is to capture the dependence structure of

data, and there are two approaches to this. One approach is time domain analysis

and one another is frequency domain analysis. Another dichotomy can be applied to

time series model itself, linear time series and nonlinear time series.

Because of the easiness of their usage and interpretation, the linear time series

model has been more popular than the nonlinear models and most widely used lin-

ear model framework is autoregressive moving average(ARMA) model after Box and

Jenkins (1970). Due to its nature, the dependence structure of the linear time series

is often confined to linear order and autocovariance function(ACF) plays a important

role in time domain analysis approach. It describes dependence structure of the linear

time series fairly well, and if the innovation in the linear model follows Gaussian dis-

tribution, ACF solely can capture the whole dependence structure. The counter part

of ACF in the frequency domain is spectral density which is Fourier transformation

of autocovariance function. It can be used for detecting periodicities and estimating

parameters in linear model. Despite the clear advantage of this simplicity, there are

several disadvantages in using the autocovariance and spectral density as tools for

describing dependence structure. The autocovariance function only measures the av-

erage linear interaction between elements of a time series, so it often fails to provide

useful when nature of dependence structure is beyond linear as in most nonlinear time

This dissertation follows the style of Biometrics.
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series model.

Nonlinear time series model naturally arises from observation that there are

some features which can not be captured by the linear model. For example, one

of stylized facts which are common to a wide set of financial data is absence of

autocorrelations and slow decay of autocorrelation in absolute returns. The one

set of time series model satisfying this characteristic is ARCH and GARCH model

proposed by Engle (1982) and Bollerslev (1986), and they have been widely used

in volatility modeling. However, with any statistical tools based on autocovariance

function and the classical spectral density, we can not distinguish these models from

white noise and this might lead us to the false conclusion of independence in data.

Also, heavy-tailedness, one of other stylized facts of the financial time series, often

invalidates the usage of classical spectral density, hence many applications of it are

based on the finite moment assumption.

Recently several methods have been proposed to overcome these limitations of

the classical spectral density. Hong (1999) introduces the generalized spectral density,

which is the Fourier transform of the empirical characteristic function of a time series.

Li (2008) proposes Laplace spectrum and Laplace periodogram to obtain more robust-

ness in spectral density estimators. His idea is based on that the usual periodogram

is the least square coefficient estimator in the regression between time series data and

harmonic functions and it suffers from outliers due to the least square(LS) method.

To alleviate this problem, the least absolute deviation(LAD) method is used and the

LAD estimator in the regression is defined as Laplace periodogram. He shows how the

Laplace spectrum is related to spectral density of {I(Xt ≤ 0)}t called zero-crossing

spectrum and it could be used for detecting the periodicity in {I(Xt ≤ 0)}t. Hage-

mann (2011) widens this approach by considering the spectral density of {I(Xt ≤ qu)}

where qu is uth-quantile of {Xt} and Dette, Hallin, Kley, and Volgushav (2011) also



3

investigates the cross-spectral density of {I(Xt ≤ qu), I(Xt ≤ qv)}. There is a simi-

larity in these works considering spectral densities of certain transforms, Hong (1999)

for the empirical characteristic function transform and Hagemann (2011) and Dette

et al. (2011) for the empirical distribution transform. The use of empirical distribu-

tion function has the advantage of the empirical characteristic function for its easy

interpretation. In this work, we also introduce a spectral density of the empirical

distribution called the quantile spectral density. In contrast to L1 estimating method

in Dette et al. (2011), we propose the L2 estimator with an analytic form, thus can

easily be used in both goodness-of-fit test.

Goodness-of-fit tests are usually done by checking the assumptions imposed in

a statistical model. In many time series models, the independent innovation is com-

monly assumed, and this assumption is verified based on the sample autocorrelation

of the residuals from the fitted model. Box and Pierce (1970) proposes this method

in ARMA model and its modification was done by Ljung and Box (1978), and Milhøj

(1981), Velilla (1994) and Anderson (1997) provide the frequency domain counter-

parts of these methods. Hong (1996) shows that a test could be more powerful by

giving different weight on sample autocorrelations at different lags.

Since these methods only focus on the autocorrelation, they often fail to detect

dependence in general form. The more general form of dependence measure is serial

dependence, and it dates back to Hoeffding (1948) whose method is used for testing

independence in two random variables. This method is based on the fact that if X

and Y are independent, then P (X ≤ x, Y ≤ y) − P (X ≤ x)P (Y ≤ y) = 0 for

any x, y. For bivariate random sample {(Xt, Yt)}Tt=1 from (X, Y ), it measures the

difference between bivariate empirical distribution and the product of two marginal

empirical distributions. Blum, Kiefer, and Rosenblatt (1961) extends this concept for

more than 2 random variables case. Applying this measurement for time series data
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was addressed by Skaug and Tjøstheim (1993) and Hong (1998) in the time domain

and by Hong (2000) in frequency domain. The dependence measure they used is

P (Xt ≤ x,Xt+r ≤ y)− P (Xt ≤ x)P (Xt+r ≤ y) for the stationary time series {Xt}.

While Skaug and Tjøstheim (1993) and Hong (1998) use the empirical distribu-

tion function to test sequential dependence, Hallin and Puri (1992) propose a method

based on ranks and Pinkse (1998) uses the empirical characteristic function for it.

Hong (1999) takes this empirical characteristic function approach further defining

the generalized spectral density, which is the Fourier transform of the characteristic

function of pair-wise dependent data. The goodness-of-fit tests based on the gener-

alized spectral densities of the estimated residuals are presented in Hong (1999) and

Hong and Lee (2003). However, sometimes the residuals cannot be or are not easy to

estimate. For example, it is possible to estimate the residuals of an ARCH(Xt = Ztσt),

possible but difficult with a GARCH and usually impossible for many models of the

type Xt = g(Xt−1, εt). To circumvent this difficulty, we propose a new goodness-of-fit

test based on the quantile spectral density. It directly measures the difference of serial

dependence structures between the time series data and the fitted model.

In Chapter II, we present the quantile spectral density which captures serial de-

pendence in time series data without requiring linearity and certain moment assump-

tion. We propose the estimator for it and derive its sampling properties including

asymptotic normality. A goodness-of-fit test using the quantile spectral density is

developed and some simulation results and real data example are given.

In Chapter III, we introduce the association spectral density and its estimator.

The asymptotic properites of the estimator are derived.

Chapter IV contains the asymptotic normality of general quadratic forms of

nonstationary, α-mixing time series, which we encounter in Chapter II and III.
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CHAPTER II

THE QUANTILE SPECTRAL DENSITY AND COMPARISON BASED TESTS

FOR NONLINEAR TIME SERIES

1. Introduction

The analysis of most time series is based on a set of assumptions, which in practice

need to be tested. This is usually done through a goodness of fit test. The majority

of goodness of fit tests for time series are based on fitting the conjectured model

to the data, estimating the residuals of the model and testing for lack of correlation,

normally with a Ljung-Box type test (see for example, Anderson (1993), Hong (1996),

Chen and Deo (2004), and Hallin and Puri (1992) for a robust tests based on ranks).

If one restricts the class of models to just linear time series models, then such tests

can correctly identify the model. However, problems can arise, if one widens the class

of models and allow for nonlinear time series. For example, if the time series were

to satisfy an ARCH process, then it will be uncorrelated, but it is not independent.

Moreover, the squares will satisfy an autoregressive representation, with errors which

are martingale differences. Therefore, correlation based test for nonlinear time series

models may not identify the model.

Neumann and Paparoditis (2008) propose a goodness of fit test for Markov time

series models based on the one step ahead transition distribution. But this test is

specifically for Markov models. An alternative approach is to generalise the notion of

correlation to measuring the general dependence between pairs of random variables

in a time series. This notion is usually called serial dependence, and dates back to

Hoeffding (1948). Skaug and Tjøstheim (1993) and Hong (2000) use this definition
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to test for serial independence of a time series. Hong (1998) takes these notions

further, and as far as we are aware is the first paper to generalise the spectral density

to sequential dependence. He does this by defining the generalised spectral density,

which is the Fourier transform of the characteristic function of pair-wise dependent

data. He uses this device in Hong (1998) and Hong and Lee (2003) to test for goodness

of fit of a time series model, mainly through the analysis of the estimated residuals.

However, sometimes the residuals cannot be or are not easy to estimate. For example,

it is possible to estimate the residuals of an ARCH (Xt = Ztσt), possible but difficult

with a GARCH and usually impossible for many models of the type Xt = g(Xt−1, εt).

In this chapter, we use the notion of serial dependence to test for goodness of fit,

but without estimating the residuals. Instead our test is based on comparisons. In

Section 2.1 we motivate our test by considering the Microsoft daily log return data and

comparing it with the GARCH(1, 1) model, which is one of the standard models fitted

to such data sets. We show that though the GARCH model seems to model well some

of the stylised facts of this data, ie. the uncorrelatedness, and positive correlation in

the absolute and squares, if one made a deeper analysis and compared the correlation

of other transformations such as cov(I(Xt ≤ x), I(Xt+r ≤ y)) (where I denotes the

indicator function), there is large difference between the data and GARCH model.

This motivates us to define the quantile autocovariance function and the quantile

spectral density. The quantile spectral density can be considered as a measure of

serial dependence of a time series. In Sections 2.2 and 2.3 we propose a method for

estimating the quantile spectral density, and use the quantile spectral density as the

basis of a test based on the quadratic distance which compares the quantile spectral

density estimator with the spectral density estimator under the null hypothesis. The

asymptotic sampling properties of the quantile spectral density estimator are derived

in Section 3.1. Recently there have been several articles defining and estimating the
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spectral density of sequential dependence. Li (2008), Hagemann (2011) and Dette

et al. (2011) define spectral density functions similar to the quantile spectral density,

however these authors, estimate the periodogram and the quantile spectral density

using L1 methods. In contrast, we use L2 methods based on the usual definition of

the periodogram, this is because it has an analytic form and can easily be used in a

goodness of fit and other tests. It is interesting, and rather surprising, to note that the

L1 estimator proposed in Dette et al. (2011) and our estimator of the quantile spectral

density have similar asymptotic properties. In Section 3.2 we derive the asymptotic

sampling properties of the test statistic. The advantage of our approach is that it can

easily be extended to test other quantities, for example with a small adaption it can

be used to test for equality of serial dependence of two time series, this is considered

in Section 4. In Section 5 we propose a bootstrap method for estimating the finite

sampling distribution of the test statistic under the null. The proofs can be found in

Section 7 and some technical details are given in the appendix.

2. The quantile spectral density and the test statistic

2.1. Motivation

To motivate our approach, we analyze the Microsoft daily log returns (MSFT)

between March 1986 - June 2003, which we denote as {Xt}. One argument for fitting

GARCH types models to financial data is their ability to model the so called ‘stylised

facts’ seen in such data sets. We now demonstrate why this is the case for the MSFT

(see Zivot (2009)). Using the maximim likelihood, the GARCH model which best fits

the log differences of the MSFT is Xt = µ + εt , εt = σtZt, σ
2
t = a0 + a1ε

2
t−1 + bσ2

t−1

({Zt} are independent, identically distributed standard normal random variables),

where µ = 1.56 × 10−3, a0 = 1.03 × 10−5, a1 = 0.06 and b = 0.925. In Figure
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1 we give the sample autocorrelation plots of {Xt} and {|Xt|}, together with the

autocorrelation plots of the corresponding GARCH(1, 1) model. Comparing the two

plots, it appears that the GARCH(1, 1) captures the ‘stylised facts’ in the Microsoft

data, such as the near zero autocorrelation of the observations and the persistant

positive autocorrelations of the absolute and squares of the log returns. However,

if we want to check the suitability of the GARCH model for modelling the general

pair-wise dependence structure, that is the joint distribution of (Xs, Xt) for all s and

t (often called sequential dependence), then we need to look beyond the covariance

of {Xt} and {|Xt|}. To make a more general comparison we transform the data into

indicator variables {I(Xt ≤ x)} and check the correlation structure of the indicator

variables over various x. For example, define the multivariate vector time series

Y t = (I(Xt ≤ q0.1), I(Xt < q0.5), I(Xt ≤ q0.9)), where qα denotes the estimated

α-percentile of Xt.

Plots of the cross-covariances of Y t and the corresponding GARCH model (with

Gaussian innovations) are given in Figure 2. In Figure 2, there are clear differences

in the dependence structure of the data and the GARCH model. The 10th, 50th and

90th percentiles correspond to large negative, zero and large positive values of Xt

(big negative change, no change and large positive changes in the returns). In order

to do the analysis, we will use the following observations. By using that cov(I(X0 ≤

x), I(Xr ≤ y)) = P (X0 ≤ x,Xr ≤ y)−P (X0 ≤ x)P (Xr ≤ y), for all x, y ∈ R we have

cov(I(X0 ≤ x), I(Xr ≤ y)) = cov(I(X0 > x), I(Xr > y))

= −cov(I(X0 ≤ x), I(Xr > y)).

From Figure 2 we observe:

• The ACF of I(Xt ≤ q0.5) of the GARCH is zero. This is due to the symmetry
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Fig. 1. The ACF plots of {Xt} and {|Xt|} of the MSFT and the corresponding GARCH

model

of the GARCH process, given the eventX0 ≤ 0, we have equal chance Xr > 0

and Xr < 0 (ie. cov(I(X0 ≤ 0), I(Xr ≤ 0)) = −cov(I(X0 ≤ 0), I(Xr > 0))).

This means that cov(I(X0 ≤ 0), I(Xr ≤ 0)) = 0. On the other hand, for

the MSFT data we see that there is a clear positive correlation in the sample

autocorrelation of {I(Xt < 0)}. One interpretation for the MSFT data, is that

a decrease in consecutive values, is likely to lead to future decreases.

• The cross correlation of the GARCH of I(Xt < q0.1)I(Xt < q0.9) is symmetric

about zero, this means that cov(I(X0 < q0.1), I(Xr < q0.9)) = cov(I(X0 <

q0.1), I(X−r < q0.9)). On the other hand, the corresponding sample cross-

correlations of the MSFT is not symmetric. Thus the GARCH process is time
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reversible, whereas it appears that the MSFT data may not be.

The cross and autocovariances in Figure 2 are a graphical representation of the serial

dependence structure of the time series. These plots suggest that for MSFT time series

the GARCH model may not be the most appropriate model, especially if validity is

based on modelling the serial dependence structure. In the sections below we will

test this.

2.2. The quantile spectral density function

We now formalise the discussion above. Let us suppose that {Xt} is a strictly

stationary time series. It is obvious that the cross covariance of the indicator functions

{I(Xt ≤ x), I(Xt ≤ y)} is

Cr(x, y) := cov(I(X0 ≤ x), I(Xr ≤ y)) = P (X0 ≤ x,Xr ≤ y)− P (X0 ≤ x)P (Xr ≤ y).

Skaug and Tjøstheim (1993) and Hong (2000) use a similar quantity to test for serial

independence of a time series (and this definition dates back to Hoeffding (1948)).

We will call Cr(·) the quantile covariance. If {Xt} is an α-mixing time series with

mixing rate s > 1 (s is defined in Assumption IV.1, below) it can be shown that

supx,y
∑

r |cov(I(X0 ≤ x), I(Xr ≤ y))| < ∞, thus for all x, y ∈ R, it’s Fourier trans-

form

G(x, y;ω) =
1

2π

∑
r

Cr(x, y;ω) exp(irω),

is well defined. Since G(x, y;ω) can be considered as the cross-spectral density of

{I(Xt ≤ x), I(Xt ≤ y)}, we call G(·) the quantile spectral density.
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2.2.1. Properties of the quantile spectral density

The quantile spectral density carries all the information about the serial depen-

dence structure of the time series. For example (i) if {Xt} is serially independent, then

G does not depend on ω and G(x, y;ω) ∝ C0(x, y), (ii) if for all r, the distribution

function of (X0, Xr) is identical to the distribution function of (X0, X−r), then G(·)

will be real and (iii) for any given x and y, G gives information about any periodic-

ities that may exists at a given threshold. In addition, G(·) captures the covariance

structure of any transformation of {Xt} . For example, consider the transformation

{h(Xt)}, then it is straightforward to show that the spectral density of the time series

{h(Xt)} is

fh(ω) =
1

2π

∑
r

cov(h(X0), h(Xr)) exp(irω) =

∫ ∫
h(x)h(y)G(dx, dy;ω).

Of course, G(x, y;ω) only captures the serial dependency, and may miss higher order

structure. Only in the case that {Xt} is Markovian, does G(x, y;ω) capture the entire

joint distribution of {Xt}.

Remark II.1 The quantile spectral density is closely related to the generalised spec-

tral density introduced in Hong (1998). He defines the generalised spectral den-

sity as h(x, y;ω) =
∑

r cov(exp(ixX0), exp(iyXr)) exp(irω). Essentially, this is the

Fourier transform of the characteristic function of pairwise distributions minus their

marginals, therefore the relationship between the quantile spectral density and the gen-

eralised spectral density is analogous to that between the distribution function and the

characteristic function of a random variable. Hong (1998, 2003) uses the generalised

spectral density as a tool in various tests goodness of fit tests, which are mainly based

on the residual. On the other hand, the goodness of fit test that we propose, is based

on checking for similarity between the estimated quantile spectral density and the pro-
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posed spectral density.

Remark II.2 (The Copula spectral density) A closely related quantity to the

quantile spectral density is the copula spectral density, which is defined as

GC(u1, u2;ω) =
1

2π

∑
r

Cr(u1, u2) exp(irω), (2.1)

where Cr(u1, u2) = cov(I(F (X0) ≤ u1), I(F (Xr) ≤ u2)) = E(I(F (X0) ≤ u1)I(F (Xr) ≤

u2)) − u1u2, and F (·) is marginal distribution function of {Xt}. Note that by defi-

nition u1, u2 ∈ [0, 1]. Thus, unlike the quantile spectral density, the copula spectral

density is invariant to any monotonic transformation of {Xt}, for example mean and

variance shifts. By considering the ranks of {Xt}, the methods detailed in the section

below can also be used to estimate GC. Alternatively, Dette et al. (2011) have recently

proposed L1-methods for estimating GC, and the asymptotic sampling properties have

been derived for this estimator.

In Figures 3, 4 and 5 we plot the quantile spectral density for the autoregressive

(Xt = 0.9Xt−1 + Zt), ARCH (Xt = σtZt with σ2
t = 1/1.9 + 0.9X2

t−1) and the squared

ARCH, with independent, identically distributed (iid) Gaussian innovations Zt. The

diagonals are of G(x, x;ω), the lower triangle contains the real part of G(x, y;ω) and

the upper triangle the imaginary part of G(x, y;ω). We observe that the AR and

ARCH quantile spectral densities are very different. The AR has a similar shape

for all x, whereas for the ARCH, it is flat (like the spectral density of uncorrelated

data) at about the 50% percentile, but moves away from flatness at the extremes.

Furthermore, recalling that the AR and ARCH squared have the same spectral density

(if the moments of the ARCH squared exists), there is a large difference between the

quantile spectral density of the AR and the ARCH squared.
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Fig. 3. The quantile spectral density of Xt = 0.9Xt−1 + Zt
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Fig. 5. The quantile spectral density of X2
t = σ2

tZ
2
t , where σ2

t = 1/1.9 + 0.9X2
t−1

2.2.2. Estimating the quantile spectral density

The quantile spectral density G(x, y;ω) can be considered as the cross spectral

density of the bivariate time series {I(Xt ≤ x), I(Yt ≤ y)}. Therefore, our estimator

of G(x, y;ω) is motivated by the classical cross spectral. To do this we define the

class of lag windows we shall use.

Definition II.1 The lag window takes the form

λ(u) =
( r∑
j=−r

ar exp(i2πru)−
r∑
j=1

bj|u|j
)
I[−1,1](u).

This class of lag windows is quite large, and includes the truncated window, the

Bartlett window and general Tukey window (see, for example, Priestley (1981) Section

6.2.3 for properties of these lag windows).
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To obtain an estimator of G, we define the centralised, transformed variable Zt(x) =

I(Xt ≤ x) − F̂T (x) (where F̂T (x) = 1
T

∑
t I(Xt ≤ x)). We estimate the quantile

covariance Cr(x, y) = P (X0 ≤ x,Xr ≤ y) − P (X0 ≤ x)P (Xr ≤ y) with Ĉr(x, y) =

1
T

∑T−|r|
t=1 Zt(x)Zt+r(y), and use as an estimator of G

ĜT (x, y;ωk) =
1

2π

∑
r

λM(r)Ĉr(x, y) exp(irωk) (2.2)

=
∑
s

KM(ωk − ωs)JT (x;ωs)JT (y;ωs),

where

λM(r) = λ(r/M)

KM(ω) =
1

T

∑
r

λM(r) exp(irω)

JT (x;ω) =
1√
2πT

T∑
t=1

Zt(x) exp(itω).

2.3. The test statistic

The proposed test is based on the fit of the estimated quantile spectral density

to the conjectured quantile spectral density. More precisely, we test H0 : G(x, y;ω) =

G0(x, y;ω) against HA : G(x, y;ω) 6= G0(x, y;ω), where G is the quantile spectral

density of {Xt}, G0(x, y;ω) = 1
2π

∑
r C0,r(x, y) exp(irω) and C0,r(x, y) = F0,r(x, y) −

F0(x)F0(y). Thus under the null the marginal distribution is F0(·) and the joint

distribution is F0,r(·). We use the quadratic distance to measure the distance between

the estimated quantile spectral density and the conjectured spectral density, and
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define the test statistic as

QT =
1

T

T∑
k=1

∫
|ĜT (x, y;ωk)−

1

2π

∑
r

λM(r)C0,r(x, y) exp(irωk)|2dF0(x)dF0(y)

=
1

T

T∑
k=1

∫
|ĜT (x, y;ωk)−

T∑
s=1

KM(ωk − ωs)G0(ωs)|2dF0(x)dF0(y)

=
1

2π

∑
r

λM(r)2

∫ ∫ ∣∣Ĉr(x, y)− C0,r(x, y)
∣∣2dF0(x)dF0(y), (2.3)

where the above immediately follows from Parseval’s theorem. The choice of lag

window will have an influence on the type of alternatives the test can detect. For

example, the truncated window (λ(u) = I[−1,1](u)) gives equal weights to all the quan-

tile covariances, whereas the Bartlett window (λ(u) = (1 − |u|)I[−1,1](u)) gives more

weight to the lower order lags. Therefore the tests ability to detect the alternative

will depend on which order of the quantile covariance deviates most from the null,

and the weight the lag window places on these. We derive the asymptotic distribution

of QT in Section 3.2.

Remark II.3 The test can be adapted to be invariant to monotonic transformations

(such as shifts of mean and variance). This can be done by replacing the quantile

spectral density with the copula spectral density GC(·) defined in (2.1). In this case

the null is H0 : GC(x, y;ω) = GC,0(x, y;ω) = 1
2π

∑
r C0,r(u1, u2;ω) exp(irω) against

HA : GC(x, y;ω) 6= GC,0(x, y;ω). The test statistic in this case is

QT,C =
1

T

T∑
k=1

∫
|ĜT,C(u1, u2;ωk)−

1

2π

∑
r

λM(r)C0,r(u1, u2) exp(irωk)|2du1du2,

where we estimate ĜT,C(u1, u2;ωk) in the same way as we have estimated ĜT in (2.2)

but replace {Xt}t with {F̂T (Xt)}t. The distribution of QT,C is beyond the scope of the

current paper.
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3. Sampling properties

In this section we derive the sampling properties of the quantile spectral density

ĜT and the test statistic QT . We will use the α-mixing assumptions below.

Assumption II.1 Let us suppose that {Xt} is a strictly stationary α-mixing time

series such that

sup
A∈σ(Xr,Xr+1,...)
B∈σ(X0,X−1,...)

|P (A ∩B)− P (A)P (B)| ≤ α(r),

where α(r) are the mixing coefficients which satisfy α(r) ≤ K|r|−s for some s > 2.

3.1. Sampling properties of ĜT

In the following lemma we derive the limiting distribution of ĜT , this will allow

us to construct point wise confidence intervals for G.

Theorem II.1 Suppose Assumption IV.1 holds. Then

E(ĜT (x, y;ω)) = G(x, y;ω) +O(
1

M s−1
),

and for 0 < ωk < π we have

VT (x, y;ωk)
−1/2

 <ĜT (x, y;ωk)−<E(ĜT (x, y;ωk))

=ĜT (x, y;ωk)−=E(ĜT (x, y;ωk))

 D→ N
(
0, I2

)
VT (x, x;ωk)

−1/2
(
ĜT (x, x;ωk)− E(ĜT (x, x;ωk))

)
D→ N (0, 1),

where M →∞ and M/T → 0 as T →∞,

VT (x, y;ωk) =
T∑
s=1

KM(ωk − ωs)2

 A(x, y;ωs) C(x, y;ωs)

C(x, y;ωs) B(x, y;ωs)

 = O(
M

T
),
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and

A(x, y;ωs) =
1

2

(
G(x, x;ωs)G(y, y;ωs) + <G(x, y;ωs)

2 −=G(x, y;ωs)
2

)
B(x, y;ωs) =

1

2

(
G(x, x;ωs)G(y, y;ωs) + =G(x, y;ωs)

2 −<G(x, y;ωs)
2

)
C(x, y;ωs) = <G(x, y;ωs)=G(x, y;ωs).

Thus, if M
T
>> 1

M2(s−1) , in other words the variance of ĜT dominates the bias, then

we can use the above result to construct confidence intervals for G.

3.2. Sampling properties of test statistic under the null hypothesis

We now derive the limiting distribution of the test statistic under the null hy-

pothesis. Let

ET =
1

T

∫ ∫
WM(ω − θ)2G(x, x; θ)G(y, y; θ)dF0(x)dF0(y)dθdω

VT =
4

T 2

∫ ∫
∆M(θ1 − θ2)2

2∏
i=1

G(x1, x2; θi)G(y1, y2; θi)dθidF0(xi)dF0(yi),

where

WM(θ) =
T

2π
KM(θ) =

1

2π

∑
r

λM(r) exp(irθ)

∆M(θ1 − θ2) =

∫
WM(ω − θ1)WM(ω − θ2)dω. (2.4)

Lemma II.1 Suppose that Assumption IV.1 holds and G(·) is the quantile spectral

density of {Xt}. Then under the null hypothesis we have

E
(
QT
)

= ET +O(
1

T
) = O(

M

T
) and var

(
QT
)

= VT +O(
1

T
) = O(

M

T 2
).

Using the above we obtain the limiting distribution under the null.

Theorem II.2 Suppose that Assumption IV.1 holds. Then under the null hypothesis
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we have

V
−1/2
T

(
QT − ET

) D→ N (0, 1)

as M →∞ and M/T → 0 as T →∞.

Using estimates of ĜT (·), ET and VT can both be estimated. Thus by using the

above result, we reject the null at the α% level if V
−1/2
T

(
QT − ET

)
> z1−α (where

z1−α denotes the 1− α quantile of a standard normal distribution).

3.3. Behavior of the test statistic under the alternative hypothesis

We now examine the behavior of the test statistic under the alternative

HA : G(x, y;ω) = G1(x, y;ω) =
1

2π

∑
r

(
F1,r(x, y)− F1(x)F1(y)

)
exp(irω).

To obtain the limiting distribution we decompose the test statistic QT as

QT = QT,1 +QT,2 +QT,3

where

QT,1 =
1

T

T∑
k=1

∫ ∣∣ĜT (x, y;ωk)− E(ĜT (x, y;ωk))
∣∣2dF0(x)dF0(y)

QT,2 =
2

T
<

T∑
k=1

∫ (
ĜT (x, y;ωk)− E(ĜT (x, y;ωk))

)
×
(
E(ĜT (x, y;ωk))− G̃(x, y;ωk)

)
dF0(x)dF0(y)

QT,3 =
1

T

T∑
k=1

∫ ∣∣E(ĜT (x, y;ωk))− G̃(x, y;ωk)
∣∣2dF0(x)dF0(y),

and

G̃(x, y;ωk) =
1

2π

∑
r

λM(r)C0,r(x, y) exp(irω) =
∑
s

KM(ωk − ωs)G0(x, y;ωs).
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From the decomposition of QT , we observe that there are two stochastic terms QT,1

and QT,2, and a deterministic term QT,3. By using Lemma II.1, it can be shown

that QT,1 = Op(
M1/2

T
+ M

T
). On the other hand, we show in the proof of the theorem

below that QT,2, is of lower order than QT,1 and, thus, determines the distribution

of QT . To understand the role that QT,3 plays in the test, we replace G̃(x, y;ω) and

E(ĜT (x, y;ω)) with G0 and G1 respectively and obtain

QT,3 =
1

T

T∑
k=1

∫ ∣∣G1(x, y;ωk)−G0(x, y;ωk)
∣∣2dF0(x)dF0(y) +O(

1

M s−1
).

Thus QT,3 measures the deviation of the alternative from the null hypothesis, and

shifts the mean of the test statistic.

Theorem II.3 Suppose that Assumption IV.1 holds, and for all r, supx,y |Cr,0(x, y)| ≤

K|r|−(2+δ), for some δ > 0. Under the alternative hypothesis we have

√
TQT,2

D→ N (0, VT,2), (2.5)

and

√
T
(
QT −QT,3

) D→ N (0, VT,2), (2.6)

where M →∞ and
√
M/T → 0 as T →∞,

VT,2 =
8

T
<
∫ ∫

ΛT (x1, y1;ω)ΛT (x2, y2;ω){
G1(x1, x2;ω)G1(y1, y2;ω) +G1(x1, y2;ω)G1(y1, x2;ω)

}
dω

2∏
i=1

dF0(xi)dF0(yi)

+
8

T
<
∫ ∫

ΛT (x1, y1;ω1)ΛT (x2, y2;ω2)

G(x1,y1,x2,y2)(ω1,−ω1, ω2)
2∏
i=1

dF0(xi)dF0(yi)dωi,
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ΛT (x, y;ωs) = 1
2π

∑
r λM(r)2(T−|r|

T
)[C1,r(x, y)−C0,r(x, y)] exp(irωk) and G(x1,y1,x2,y2) is

the cross tri-spectral density of {(I(Xt ≤ x1), I(Xt ≤ y1), I(Xt ≤ x2), I(Xt ≤ y2))}t.

The theorem above tells us that the mean of the test statistic is shifted the further

the alternative is from the null. Interestingly, we observe from the definition of ΛT (·),

that the variance also depends on the difference between the null and alternative,

which increases as the difference increase. However, for a fixed alternative the above

result tells us that the power converges to 100% as the sample size grow.

4. Testing for equality of serial dependence of two time series

The above test statistic can easily be adapted to test other hypothesis. In this

section, we consider one such example, and consider testing for equality of serial

dependence between two time series. Let us suppose that {Ut} and {Vt} are two

stationary time series, and we wish to test whether they have the same sequential

dependence structure. Using the same motivation as that for the the goodness of fit

test described above we define the test statistic

PT =
1

T

T∑
k=1

∫
|Ĝ1,T (x, y;ωk)− Ĝ2,T (x, y;ωk)|2dF (x)dF (y),

where Ĝ1,T and Ĝ2,T are the quantile spectral density estimators based on {Ut} and

{Vt} respectively and F is any distribution function. In order to obtain the limiting

distribution under the null hypothesis we have H0 : G1(x, y;ω) = G2(x, y;ω) and the

alternative HA : G1(x, y;ω) 6= G2(x, y;ω) we expand PT

PT := Q1,1,T +Q2,2,T −Q1,2,T −Q2,1,T + 2L1,T + 2L2,T +D,
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where

Qi,j,T =
1

T

T∑
k=1

∫ (
Ĝi,T (x, y;ωk)− E(Ĝi,T (x, y;ωk))

)
(
Ĝj,T (x, y;ωk)− E(Ĝj,T (x, y;ωk))

)
dF(x)dF(y),

Li,T = < 1

T

T∑
k=1

∫ (
Ĝi,T (x, y;ωk)− E(Ĝi,T (x, y;ωk))

)
(
E(Ĝ1,T (x, y;ω))− E(Ĝ2,T (x, y;ω))

)
dF(x)dF(y)

and

D =

∫ ∫ ∫
|E(Ĝ1,T (x, y;ω))− E(Ĝ2,T (x, y;ω))|2dF(x)dF(y)dω.

Therefore, using the above expansion under the null hypothesis we have

PT := Q1,1,T +Q2,2,T −Q1,2,T −Q2,1,T ,

where the moments are E
(
PT
)

= ET,3 +O( 1
T

) = O(M
T

) and var
(
PT
)

= VT,3 +O( 1
T

) =

O(M
T 2 ), with

ET,3 =
1

T

∫ ∫
WM(ω − θ)2

( 2∑
i=1

Gi(x, x; θ)Gi(y, y; θ)
)
dF(x)dF(y)dθdω

VT,3 =
4

T 2

2∑
i=1

∫ ∫
∆M(θ1 − θ2)2

2∏
j=1

Gi(x1, y2; θi)Gj(y1, x2; θj)dθjdF (xj)dF (yj).

By using identical arguments as those used in the proof of Theorem II.2, under

the null hypothesis we have

V
−1/2
T,3

(
PT − ET,3

) D→ N (0, 1).

Using the above result, we test for equality of sequential dependence, that is we reject

the null hypothesis at the α-level if |V −1/2
T,3 (PT − ET,3)| > z1−α.

The limiting distribution of the alternative can be derived using the same meth-
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ods as those used to derive the limiting distribution of QT under its alternative. It

can be shown that

PT −D := 2L1,T + 2L2,T︸ ︷︷ ︸
Op( 1√

T
)

+Op(
M1/2

T
),

where 2L1,T + 2L2,T can be approximated by a quadratic form. Using this quadratic

approximation, asymptotic normality of the above can be shown. Thus under a fixed

alternative the power grows to 100% as T →∞.

Remark II.4 We can easily adapt our method to test that the distributions of (X0, Xr)

and (X−r, X0) are identical for all r (ie. Fr(x, y) = F−r(x, y)). This means that the

imaginary part of the quantile spectral density G(·) is zero over all x, y and ω. In this

case, we can use the test statistic

RT =
1

T

∑
r

∣∣=ĜT (x, y;ω)
∣∣2dF (x)dF (y),

where F is some distribution. We can use identical methods to those above to derive

the distribution under the null. Dette et al. (2011) also consider time reversibility

and their impact on the quantile spectral density.

5. Bootstrap approximation

The asymptotic normality result that we use to obtain the p-value of the test

statistic QT is only an approximation. For small samples, the normality approxima-

tion may not be particularly good, mainly because QT is a positive random variable,

whose distribution will be skewed. This may well lead to more false positive than we

can control for in our type I error.

To correct for this, we propose estimating the finite sample distribution of QT

using a frequency domain bootstrap procedure. In a multivariate time series, the
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periodogram matrix at the fundamental frequencies asymptotically follows a Wishart

distribution, moreover for our purposes they are close enough to be independent such

that we don’t loose too much information by treating them as independent (observe

that the asymptotic variance of the test statistic QT is only in terms of the pair-wise

distributions and does not contain any higher order dependencies). Thus motivated

by the frequency domain bootstrap methods proposed in Hurvich and Zeger (1987)

and Franke and Härdle (1992) for univariate data and Berkowitz and Diebold (1998)

and Dette and Paparoditis (2009) for multivariate data, we propose the following

bootstrap scheme to obtain an estimate of the finite sample distribution under the

null hypothesis.

Let x1 < · · · < xq be a finite discretization of the real line and note that we

approximate QT with the discretization

QT =
2π

T

T∑
k=1

q∑
i1,i2=2

|Ĝ(xi1 , xi2 ;ωk)−
∑
s

KM(ωk − ωs)G0(xi,1, xi2 ;ωk)|2 ×

(F0(xi1)− F0(xi1−1))(F0(xi2)− F0(xi2−1)).

We observe that under the null hypothesis that GZ(ω) will be the spectral den-

sity matrix of the q-dimensional multivariate time series Zt = (Z̃t(x1), · · · , Z̃t(xq))

where Z̃t(x) = I(Xt ≤ x) − F (x) and GZ(ω)i1,i2 = G0(xi1 , xi2 ;ω). Thus we use the

transformation of Xt into a high dimensional multivariate time series to construct the

the bootstrap distribution.

The steps of the frequency domain boostrap for the test statistic QT are as

follows.
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Step 1: Generate T independent matrices I∗Z(ωk) = GZ(ωk)
1/2W ∗

kGZ(ωk)
1/2, where

W ∗
k ∼


WC
q (1, Iq) 1 ≤ k < T/2

WR
q (1, Iq) k ∈ {0, T/2}

W ∗
T−k T/2 < k ≤ T

,

where WC and WR denote the complex and real Wishart distributions.

Step 2: Construct the bootstrap quantile spectral density matrix estimators with

Ĝ∗Z(ωk) =
∑

sKM(ωk − ωs)I∗Z(ωs) for k = 1, . . . , T .

Step 3: Obtain the bootstrap test statistic

Q∗T =
2π

T

T∑
k=1

q∑
i1,i2=2

|Ĝ∗(xi1 , xi2 ;ωk)−GM
0 (xi1 , xi2 ;ωk)|2 ×

(F0(xi1)− F0(xi1−1))(F0(xi2)− F0(xi2−1))

where GM
0 (x, y;ω) = 1

2π

∑
k λ( k

M
)C0,r(x, y) exp(irω).

Step 4: Approximate the distribution of QT under the null by using the empirical

distribution of the bootstrap sample {Q∗T}.

Step 5: Based on the bootstrap distribution estimate the p-value of QT .

We illustrate our procedure in Figure 6, for this example we use the quantile

spectral density G0, based on an ARCH(1) (Xt = Ztσt and σ2
t = a0 + a1X

2
t−1), where

a0 = 1/1.9, a1 = 0.9, Zt are iid standard normal random variables and T = 500. A

plot of the normal approximation, the density of QT (which is estimated and based

on 500 replications) and the bootstrap estimator of the density (along with their

rejection regions) is given in Figure 6. We observe that the skew in the finite sample

distribution means that the normal distribution is under estimating the location of
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the rejection region. However, the bootstrap approximation appears to capture the

finite sample distribution (and this the rejection region) quite well.

0.5 1 1.5 2 2.5 3 3.5 4
x 10 4

QT with T=500, ARCH1, M=25

Fig. 6. The fine line is the standard normal (with the 5% rejection line), the thick

solid line is the finite sample density of the test statistic (with 5% rejection

region) and the thick dashed line is the bootstrap approximation (with 5%

rejection region).

6. Simulations and real data examples

6.1. Simulations

In this section we conduct a simulation study. In order to determine the effec-

tiveness of the test we will use two different models that have the same first and

second order structure (thus a test based on the covariance structure would not be
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able to distinguish between them). In particular, we will consider the AR(1) model

Xt = µ+ aXt−1 + εt and the squares of the ARCH(1) model Yt = a0 + aYt−1 + (Z2
t −

1)(a0 + aYt−1), where {εt} and {Zt} are iid zero mean Gaussian random variables

with var(Zt) = 1 and µ and var(εt) chosen such that Xt and Yt have the same mean

and covariance structure. Note that in the simulation we only consider a ≤ 0.55, so

that the spectral density of the squared ARCH exists. For each model we did 1000

replications and the tests was done at both the α = 0.1 and α = 0.05 level.

In our simulations we used the Bartlett window, compared the test for various

M and used both the normal approximation and the proposed bootstrap procedure.

The results for H0 : AR(1) against the alternative HA : ARCH(1) (various a, fixing

a0 = 0.4) are given in Table 1 and 2. The results for H0 : ARCH(1) against HA :

AR(1) are given in Table 3 and 4. We use the sample sizes T = 100 and 500.

As expected under the null hypothesis the null hypothesis tends to over reject,

whereas the bootstrap gives a better approximation of the significance level. There

appears to be very little difference in the behavior under the null for various values

of a and between the AR and the ARCH. Under the alternative, the power seems

to be quite high even for quite small samples. The only model where the power is

not close to 100% is when a = 0.3, sample size T = 100, the null is an AR(1) and

the alternative is an ARCH(1). This can be explained by the fact that for small

values of a, both the AR and the ARCH models are relatively close to independent

observations, thus making it relatively difficult to reject the null.
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Table 1. H0 : AR(1) vs HA : ARCH(1) T = 100

T = 100
α = 0.1 α = 0.05

Bootstrap Normal Bootstrap Normal

a M H0 HA H0 HA H0 HA H0 HA

0.3

11 0.052 1 0.076 1 0.021 0.972 0.054 1
16 0.04 0.869 0.062 0.971 0.011 0.262 0.04 0.854
21 0.048 0.386 0.064 0.561 0.021 0.106 0.043 0.348
25 0.021 0.071 0.048 0.229 0.014 0.016 0.029 0.12

0.4

11 0.048 1 0.082 1 0.02 1 0.055 1
16 0.043 1 0.059 1 0.013 0.939 0.041 1
21 0.046 0.932 0.066 0.997 0.011 0.416 0.046 0.929
25 0.036 0.582 0.055 0.832 0.01 0.124 0.037 0.598

0.5

11 0.046 1 0.073 1 0.015 1 0.052 1
16 0.049 1 0.078 1 0.027 1 0.045 1
21 0.046 1 0.06 1 0.015 0.985 0.037 1
25 0.047 1 0.062 1 0.015 0.397 0.043 1

0.55

11 0.041 1 0.096 1 0.018 1 0.057 1
16 0.045 1 0.066 1 0.017 1 0.046 1
21 0.065 1 0.06 1 0.034 1 0.034 1
25 0.045 1 0.051 1 0.024 1 0.032 1

Table 2. H0 : AR(1) vs HA : ARCH(1) T = 500

T = 500
α = 0.1 α = 0.05

Bootstrap Normal Bootstrap Normal

a M H0 HA H0 HA H0 HA H0 HA

0.3

14 0.053 1 0.098 1 0.024 1 0.063 1
21 0.064 1 0.082 1 0.023 1 0.052 1
28 0.06 1 0.093 1 0.024 1 0.062 1
35 0.07 1 0.086 1 0.033 1 0.062 1

0.4

14 0.043 1 0.092 1 0.014 1 0.064 1
21 0.058 1 0.092 1 0.015 1 0.056 1
28 0.066 1 0.094 1 0.03 1 0.061 1
35 0.073 1 0.087 1 0.032 1 0.052 1

0.5

14 0.031 1 0.105 1 0.018 1 0.072 1
21 0.059 1 0.079 1 0.03 1 0.05 1
28 0.076 1 0.111 1 0.046 1 0.069 1
35 0.053 1 0.086 1 0.022 1 0.055 1

0.55

14 0.038 1 0.107 1 0.014 1 0.077 1
21 0.056 1 0.108 1 0.021 1 0.067 1
28 0.071 1 0.103 1 0.032 1 0.06 1
35 0.051 1 0.089 1 0.026 1 0.06 1
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Table 3. H0 : ARCH(1) vs HA : AR(1) T = 100

T = 100
α = 0.1 α = 0.05

Bootstrap Normal Bootstrap Normal

a M H0 HA H0 HA H0 HA H0 HA

0.3

11 0.039 0.994 0.08 0.997 0.022 0.984 0.051 0.995
16 0.043 0.978 0.086 0.991 0.009 0.925 0.055 0.983
21 0.045 0.98 0.07 0.99 0.016 0.934 0.051 0.983
25 0.026 0.939 0.059 0.976 0.011 0.895 0.045 0.965

0.4

11 0.046 1 0.086 1 0.012 0.999 0.053 1
16 0.049 0.993 0.092 0.999 0.014 0.988 0.062 0.996
21 0.03 0.994 0.07 0.997 0.017 0.983 0.046 0.997
25 0.038 0.994 0.083 0.997 0.024 0.982 0.059 0.994

0.5

11 0.054 1 0.107 1 0.024 1 0.067 1
16 0.063 1 0.098 1 0.03 1 0.066 1
21 0.051 1 0.083 1 0.022 1 0.061 1
25 0.028 0.997 0.06 0.998 0.012 0.995 0.043 0.998

0.55

11 0.074 1 0.113 1 0.03 1 0.081 1
16 0.056 1 0.087 1 0.02 1 0.054 1
21 0.065 1 0.08 1 0.038 1 0.057 1
25 0.067 1 0.088 1 0.03 1 0.065 1

Table 4. H0 : ARCH(1) vs HA : AR(1) T = 500

T = 500
α = 0.1 α = 0.05

Bootstrap Normal Bootstrap Normal

a M H0 HA H0 HA H0 HA H0 HA

0.3

14 0.072 1 0.09 1 0.025 1 0.059 1
21 0.062 1 0.094 1 0.032 1 0.059 1
28 0.067 1 0.097 1 0.024 1 0.062 1
35 0.076 1 0.101 1 0.026 1 0.073 1

0.4

14 0.045 1 0.097 1 0.022 1 0.059 1
21 0.075 1 0.105 1 0.03 1 0.077 1
28 0.06 1 0.111 1 0.024 1 0.07 1
35 0.085 1 0.12 1 0.041 1 0.086 1

0.5

14 0.053 1 0.129 1 0.032 1 0.079 1
21 0.1 1 0.121 1 0.054 1 0.082 1
28 0.111 1 0.124 1 0.071 1 0.085 1
35 0.066 1 0.117 1 0.029 1 0.075 1

0.55

14 0.099 1 0.143 1 0.047 1 0.104 1
21 0.074 1 0.119 1 0.042 1 0.083 1
28 0.078 1 0.11 1 0.037 1 0.072 1
35 0.082 1 0.119 1 0.037 1 0.085 1



31

6.2. Real Data

In this section we consider the the Microsoft daily return data discussed in Section

2.1 and the Intel monthly log return data (from January 1973 - December 2003), this

was considered in Tsay (2005). In the analysis below we will test whether the GARCH

and ARCH models are appropriate for the Microsoft and Intel data, respectively. We

will be using the Bartlett window.

A plot of the estimated ĜT together with the piece-wise confidence intervals

(obtained using the results in Theorem II.1) and the corresponding quantile spectral

density of the GARCH(1,1) is given in Figure 7 for the Microsoft data. It is clear from

the plot that the GARCH(1, 1) model with coefficients evaluated using the maximum

likelihood estimator is clearly not the appropriate model for fitting to this data. This

observation is further confirmed by the results of out test. Using various values of M

ranging from 30− 70, the p-value corresponding to QT is zero both using the normal

approximation and also the Bootstrap approximation. Therefore, from our analysis

it seems that the GARCH(1, 1) is not a suitable model for modelling the Microsoft

daily returns from 1986-2003. Studying the the quantile spectral density plots we see

why this the reason.

We now consider the second data set, the Intel monthly log returns from 1973

- 2003. Tsay (2005) propose fitting an ARCH(1) model to this data, and maximum

likelihood yields the estimators µ = 0.0166, a0 = 0.0125 and a1 = 0.363, where

Xt = µ + εt, εt = σtZt and σ2
t = a0 + a1ε

2
t−1. A plot of the estimated ĜT with the

piece-wise confidence intervals together the quantile spectral density of the ARCH(1)

model is given in Figure 8. We observe that the quantile spectral density of the ARCH

model lies in the confidence intervals for almost all frequencies. These observations

are confirmed by the proposed goodness of fit test. A summary of the results for
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Fig. 7. The quantile spectral density of the fitted GARCH(1, 1) model using Microsoft

data with the confidence intervals

various M , using both the normal approximation and the bootstrap method is given

in Table 5.

M 15 20 25 30

Normal p-value 0.0905 0.1279 0.1807 0.2643

Bootstrap p-value 0.3880 0.4320 0.4020 0.4780

Table 5. The p-values for the Intel Data and various values of M

The p-values for the normal approximation tend to the smaller than the p-values

of the bootstrap method, this is probably due to the skew in the finite sample distri-

bution which results in smaller p-values. However, both the normal approximation
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Fig. 8. The quantile spectral density of the fitted ARCH(1) from Intel data with the

confidence intervals

and the bootstrap give relatively large p-values for all values of M . Therefore there

is not enough evidence to reject the null. This backs the claims in Tsay (2005) that

the ARCH(1) may be an appropriate model for the the Intel data.

7. Proofs

7.1. Proof of Theorem II.1

To obtain the sampling properties of ĜT (·) and QT (under both the null and

alternative), we first replace the empirical distribution function F̂T (x), with the true

distribution and show that the error is negligible. Define the zero mean, transformed
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variable Z̃t(x) = I(Xt ≤ x) − F (x), where F (·) denotes the marginal distribution of

{Xt}. In addition define C̃r(x, y) = 1
T

∑
t Z̃t(x)Z̃t+r(y),

G̃T (x, y;ωk) =
1

2π

∑
r

λM(r)C̃r(x, y) exp(irωk) =
∑
s

KM(ωk − ωs)J̃T (x;ωs)J̃T (y;ωs),

Q̃T =
1

T

T∑
k=1

∫
|G̃T (x, y;ωk)−

∑
r

λM(r)C0,r(x, y) exp(irωk)|2dF0(x)dF0(y).

where J̃T (x;ω) = 1√
2πT

∑T
t=1 Zt(x) exp(itω).

In the proofs below we shall use the notation ‖X‖r = (E(|X|r))1/r. We first show

that replacing F̂T (x) with F (x) does not affect the asymptotic sampling properties

of GT (·) and QT .

Lemma II.2 Suppose Assumption IV.1 holds. Then we have

(E|ĜT (x, y;ω)− G̃T (x, y;ω)
∣∣2)1/2 = O(

M

T
) (2.7)

and

(E|QT − Q̃T
∣∣2)1/2 = O(

1

T
). (2.8)

PROOF. We first observe that

JT (x;ωk)JT (y;ωk)− J̃T (x;ωk)J̃T (y;ωk)

=

 0 ωk 6= 0, π

T (F̂T (x)− F (x))(F̂T (y)− F (y)) otherwise
.

Substituting the above into ĜT (ωs)− G̃T (ωs) gives

ĜT (ωs)− G̃T (ωs) = TKM(ωs)(F̂T (x)− F (x))(F̂T (y)− F (y)). (2.9)

Using KM(·) = O(M
T

) and ||F̂T (x) − F (x)||2 = O( 1
T

) in (2.9), we obtain the desired
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result for (2.7). To prove (2.8) note that

QT − Q̃T

=

∫
1

T

T∑
s=1

(
ĜT (x, y;ωs)− G̃T (x, y;ωs)

)(
ĜT (x, y;ωs) + G̃T (x, y;ωs)

)
dF0(x)dF0(y)

+ <
(∫

2

T

T∑
s=1

(
ĜT (x, y;ωs)− G̃T (x, y;ωs)

)
G(x, y;ωs)dF0(x)dF0(y)

)
.

Thus substituting (2.9) into the above gives

QT − Q̃T

=

∫
(F̂T (x)− F (x))(F̂T (y)− F (y))×( T∑
s=1

KM(ωs)
(
ĜT (x, y;ωs) + G̃T (x, y;ωs)

))
dF0(x)dF0(y)

+ 2

∫
(F̂T (x)− F (x))(F̂T (y)− F (y))<

( T∑
s=1

KM(ωs)G(x, y;ωs)

)
dF0(x)dF0(y).

Therefore

∥∥QT − Q̃T∥∥2

≤
∫ ∥∥F̂T (x)− F (x)

∥∥
8

∥∥F̂T (y)− F (y)
∥∥

8
×( T∑

s=1

(∣∣KM(ωs)
∣∣ · (∥∥ĜT (x, y;ωs)

∥∥
8

+ ‖G̃T (x, y;ωs)
∥∥

8

)))
dF0(x)dF0(y)

+ 2

∫ ∥∥F̂T (x)− F (x)
∥∥

4

∥∥F̂T (y)− F (y)
∥∥

4
×( T∑

s=1

∣∣KM(ωs)| · |G(x, y;ωs)|
)
dF0(x)dF0(y).

For all r ≥ 2, we have ‖F̂T (x) − F (x)‖r = O( 1√
T

), substituting this into the above

gives
∥∥QT − Q̃T∥∥2

= O( 1
T

), and the desired result. �

PROOF of Theorem II.1 To show asymptotic normality of ĜT (·), we first
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replace ĜT with G̃T , by (2.7) the replacement error is Op(
M
T

). Thus ĜT and G̃T have

the same asymptotic distribution and we can show how asymptotic normality of ĜT

by considering G̃T (·) instead. To show asymptotic normality of G̃T we use identical

methods to those in Chapter IV, since {I(Xt < x)} are bounded random variables,

we can use Ibragimov’s covariance bounds for bounded random variables. To obtain

the limiting variance we note that under Assumption IV.1, since s > 2, we have

that
∑

r |r| · |cov(I(X0 ≤ x), I(Xr ≤ y))| < ∞ and
∑

r1,r2,r2
(1 + |rj|)|cum(I(X0 ≤

x0), I(Xr1 ≤ x1), I(Xr2 ≤ x2), I(Xr3 ≤ x3))| < ∞. Thus, the assumptions in

Brillinger (1981), Theorem 3.4.3 are satisfied, which allows us to obtain the stated

limiting variance. �

7.2. Proof of Theorem II.2

We use the following lemma to obtain a bound for the variance of QT .

7.2.1. Proof of Lemma II.1

Lemma II.3 Let the lag window be defined as in Definition II.1 and suppose h1(·)

and h2(·) are bounded functions. Then we have

L1 =

∫
h1(u1)h2(u2)∆M(u1 − u2)2du1du2 = O(M) (2.10)

and

L2 =

∫
h1(u1)h2(u2)∆M(u1 + u2)∆M(u1 − u2)du1du2 = O(1) (2.11)

where ∆M(·) is defined in (2.4).

PROOF. To simplify notation we prove the result for the truncated lag window

λ(u) = I[−1,1](u), but a similar result can also be proven for lag windows which
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satisfy Definition II.1. In the proof we use the following two identities

T∑
t=0

eitω = e
iTω
2

sin(T+1
2
ω)

sin(ω/2)
and

( ∫ ∣∣sin(M+1
2

(u))

sin((u)/2)

∣∣pdu)1/p
= O(M1−p−1

). (2.12)

We start by expanding ∆M and using the above, to give

∆M(θ1 − θ2) =

∫ M∑
j1,j2=−M

λM(j1)λM(j2) exp(ij1(ω − θ1)) exp(ij2(ω − θ2))dω

=
∑
j

λM(j)λM(−j) exp(ij(θ1 − θ2))

=
sin((M + 1)(θ1 − θ2)/2)

sin((θ1 − θ2)/2)
2<e

iM(θ1−θ2)
2 . (2.13)

Substituting the above and (2.12) into (2.10) gives

|L1| =
∣∣ ∫ ∫ h1(u1)h2(u2)∆M(u1 − u2)2du1du2

∣∣
≤ sup

u,i
|hi(u)|2

∫ ∫ ∣∣sin(M+1
2

(u1 − u2))

sin((u1 − u2)/2)

∣∣2du1du2

= O(M).

This proves (2.10). To prove (2.11) we observe that by a change of variables (v1 =

u1 − u2 and v2 = u1 + u2) we have

|L2| ≤ C

∫
|∆M(u1 + u2)| · |∆M(u1 − u2)|du1du2

≤ C
( ∫
|∆M(u)|du

)2
.

Now by substituting (2.13) and (2.12) into the above gives L2 = O(1). Thus we have

obtained the desired result. �
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PROOF of Lemma II.1 We first evaluate the expectation of QT . By using

Lemma II.2 we have

E(QT )

=
1

T

T∑
s=1

∫ T∑
k1,k2=1

KM(ωs − ωk1)KM(ωs − ωk2)×

cov
(
J̃T (x;ωk1)J̃T (y;ωk1), J̃T (x;ωk2)J̃T (y;ωk2)

)
+O(

1

T
)

= I1 + I2 + I3 +O(
1

T
),

where

I1 =
1

T

∫ T∑
s,k1,k2=1

(
KM(ωs − ωk1)KM(ωs − ωk2)×

cov
(
J̃T (x;ωk1), J̃T (x;ωk2)

)
cov
(
J̃T (y;ωk1), J̃T (y;ωk2)

))
dF0(x)dF0(y)

I2 =
1

T

∫ T∑
s,k1,k2=1

(
KM(ωs − ωk1)KM(ωs − ωk2)×

cov
(
J̃T (x;ωk1), J̃T (y;ωk2)

)
cov
(
J̃T (y;ωk1), J̃T (x;ωk2)

))
dF0(x)dF0(y)

I3 =
1

T

∫ T∑
s,k1,k2=1

(
KM(ωs − ωk1)KM(ωs − ωk2)×

cum
(
J̃T (x;ωk1), J̃T (y;ωk1), J̃T (x;ωk2), J̃T (y;ωk2)

))
dF0(x)dF0(y).

Under Assumption IV.1, we have that
∑

r |r| · |cov(I(X0 ≤ x), I(Xr ≤ y))| <∞ and∑
r1,r2,r2

(1 + |rj|)|cum(I(X0 ≤ x0), I(Xr1 ≤ x1), I(Xr2 ≤ x2), I(Xr3 ≤ x3))| < ∞.
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Therefore we can apply Brillinger (1981), Theorem 3.4.3 to obtain

I1 =
1

T

T∑
s=1

∫ T∑
k=1

KM(ωs − ωk)2G(x, x;ωk)G(y, y;ωk)dF0(x)dF0(y) +O(
1

T
)

= O(
M

T
)

I2 =
1

T

T∑
s=1

∫ T∑
k=1

KM(ωs − ωk)KM(ωs + ωk)|G(x, y;ωk)|2dF0(x)dF0(y) +O(
1

T
)

= O(
1

T
)

I3 =
1

T 2

∫ ∑
r

λM(r)2

T∑
t1,t2=1

cum
(
Zt1(x), Zt1+r(y), Zt2(x), Zt2+r(y)

)
dF0(x)dF0(y)

= O(
1

T
).

This gives us an asymptotic expression for the expectation. We now obtain an ex-

pression for the variance. Replacing Zt(·) with Z̃t(·) gives

var(QT ) =

1

T 2

T∑
s1,s2=1

∫ ( ∑
k1,k2,k3,k4

KM(ωs1 − ωk1)KM(ωs1 − ωk2)KM(ωs2 − ωk3)KM(ωs2 − ωk4)

× cov
(
(Jk1,x1Jk1,y1 − E(Jk1,x1Jk1,y1))(Jk2,x1Jk2,y1 − E(Jk2,x1Jk2,y1)),

(Jk3,x2Jk3,y2 − E(Jk3,x2Jk3,y2))(Jk4,x2Jk4,y2 − E(Jk4,x2Jk4,y2))
))

dF0(x1)dF0(y1)dF0(x2)dF0(y2) +O(
1

T
)

= II1 + II2 + II3 +O(
1

T
)

where Jk,x = J̃T (x;ωk),
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II1 =
1

T 2

T∑
s1,s2=1

∫ ∑
k1,k2,k3,k4

cum(Jk1,x1 J̄k1,y1 , J̄k3,x2Jk3,y2)cum(Jk2,x1 J̄k2,y1 , Jk4,x2Jk4,y2)

2∏
i=1

KM(ωs1 − ωki)
4∏
i=3

KM(ωs2 − ωki)dF0(x1)dF0(y1)dF0(x2)dF0(y2)

II2 =
1

T 2

T∑
s1,s2=1

∫ ∑
k1,k2,k3,k4

cum(Jk1,x1 J̄k1,y1 , Jk4,x2Jk4,y2)cum(Jk2,x1 J̄k2,y1 , J̄k3,x2Jk3,y2)

2∏
i=1

KM(ωs1 − ωki)
4∏
i=3

KM(ωs2 − ωki)dF0(x1)dF0(y1)dF0(x2)dF0(y2)

II3 =
1

T 2

T∑
s1,s2=1

∫ ∑
k1,k2,k3,k4

cum(Jk1,x1 J̄k1,y1 , Jk2,x1 J̄k2,y1 , J̄k3,x2Jk3,y2 , Jk4,x2Jk4,y2)

2∏
i=1

KM(ωs1 − ωki)
4∏
i=3

KM(ωs2 − ωki)dF0(x1)dF0(y1)dF0(x2)dF0(y2).
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To obtain an expression for the variance we start by expanding II1

II1 =
1

T 2

∑
s1,s2

∫ ∑
k1,k2,k3,k4

2∏
i=1

KM(ωs1 − ωki)
4∏
i=3

KM(ωs2 − ωki)

×
(

cov(Jk1,x1 , Jk3,x2)cov(Jk1,y1 , Jk3,y2)cov(Jk2,x1 , Jk4,x2)cov(Jk2,y1 , Jk4,y2)

+ cov(Jk1,x1 , Jk3,x2)cov(Jk1,y1 , Jk3,y2)cov(Jk2,x1 , Jk4,y2)cov(Jk2,y1 , Jk4,x2)

+ cov(Jk1,x1 , Jk3,x2)cov(Jk1,y1 , Jk3,y2)cum(Jk2,x1 , Jk2,y1 , Jk4,x2 , Jk4,y2)

+ cov(Jk1,x1 , Jk3,y2)cov(Jk1,y1 , Jk3,x2)cov(Jk2,x1 , Jk4,x2)cov(Jk2,y1 , Jk4,y2)

+ cov(Jk1,x1 , Jk3,y2)cov(Jk1,y1 , Jk3,x2)cov(Jk2,x1 , Jk4,y2)cov(Jk2,y1 , Jk4,x2)

+ cov(Jk1,x1 , Jk3,y2)cov(Jk1,y1 , Jk3,x2)cum(Jk2,x1 , Jk2,y1 , Jk4,x2 , Jk4,y2)

+ cum(Jk1,x1 , Jk1,y1 , Jk3,x2 , Jk3,y2)cov(Jk2,x1 , Jk4,x2)cov(Jk2,y1 , Jk4,y2)

+ cum(Jk1,x1 , Jk1,y1 , Jk3,x2 , Jk3,y2)cov(Jk2,x1 , Jk4,y2)cov(Jk2,y1 , Jk4,x2)

+ cum(Jk1,x1 , Jk1,y1 , Jk3,x2 , Jk3,y2)cum(Jk2,x1 , Jk2,y1 , Jk4,x2 , Jk4,y2)

) 2∏
j=1

dF0(xj)dF0(yj)

:=
9∑
j=1

II1,j.
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We use Brillinger (1981), Theorem 3.4.3 to obtain the following expression for II1,1

II1,1 =
1

T 2

∑
s1,s2

∫ ( T∑
k1,k2=1

( 2∏
i=1

KM(ωsi − ωk1)KM(ωsi − ωk2)
)

cov(Jk1,x1 , Jk1,x2)cov(Jk1,y1 , Jk1,y2)cov(Jk2,x1 , Jk2,x2)cov(Jk2,y1 , Jk2,y2)

)
2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
)

=
1

T 2

∫ ∫ (∫
WM(ωs1 − θ1)WM(ωs1 − θ2)dωs1

)
×(∫

WM(ωs2 − θ1)WM(ωs2 − θ2)dωs2

) 2∏
i=1

G(x1, x2; θi)G(y1, y2;−θi)dθi

2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
)

=
1

T 2

∫ ∫
∆M(θ1 − θ2)2

2∏
i=1

G(x1, x2; θi)G(y1, y2;−θi)dθi
2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
).

Therefore by using (2.10) we have II1,1 = O(M
T 2 ). We now consider II1,2, by using a

similar method we have

II1,2 =
1

T 2

∫
WM(ωs1 − θ1)WM(ωs1 − θ2)WM(ωs2 − θ1)WM(ωs2 + θ2)

G(x1, x2, θ1)G(y1, y2,−θ1)G(x1, y2, θ2)G(y1, x2,−θ2)dθ1dθ2dωs1dωs2
2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
)

=
1

T 2

∫
∆M(θ1 − θ2)∆M(θ1 + θ2)G(x1, x2, θ1)G(y1, y2,−θ1)

G(x1, y2, θ2)G(y1, x2,−θ2)dθ1dθ2

2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
).

By using (2.11) the above integral is O(1), and altogether II1,2 = O( 1
T 2 ). Using a

similar argument, one can show that II1,3, II1,4 are smaller than O(M
T 2 ), so negligible.
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For II1,5, we use that

cov(Jk1,x, Jk2,y) =


G(x, y, ωk1) k1 + k2 = T

O( 1
T

) otherwise

which follows from Brillinger (1981), Theorem 3.4.3. This leads to

II1,5 =
1

T 2

∑
s1,s2

∫ ( T∑
k1,k2=1

( 2∏
i=1

KM(ωs1 − ωki)KM(ωs2 + ωki)
)

cov(Jk1,x1 , Jk1,y2)cov(Jk1,y1 , Jk1,x2)cov(Jk2,x1 , Jk2,y2)cov(Jk2,y1 , Jk2,x2)

)
2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
)

=
1

T 2

∫ ∫ (∫
WM(ωs1 − θ1)WM(ωs1 − θ2)dωs1

)
×(∫

WM(ωs2 + θ1)WM(ωs2 + θ2)dωs2

) 2∏
i=1

G(x1, y2; θi)G(y1, x2;−θi)dθi

2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
)

= II1,1

because of ∆(θ) = ∆(−θ) and interchangeability of integrals about (x1, x2, y1, y2).

With a similar method, one can show that II1,6 . . . , II1,9 are all dominated by II1,1

and II1,5 Altogether this gives

II1 =
2

T 2

∫
∆M(θ1 − θ2)2

2∏
i=1

G(x1, x2; θi)G(y1, y2; θi)dθi

2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
).

Using the identical argument with the above, we can show that

II2 =
2

T 2

∫
∆M(θ1 − θ2)2

2∏
i=1

G(x1, x2; θi)G(y1, y2; θi)dθi

2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
).
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To bound II3 we recall that

II3 =
1

T 2

T∑
s1,s2=1

∫ ∑
k1,k2,k3,k4

KM(ωs1 − ωk1)KM(ωs1 − ωk2)KM(ωs2 − ωk3)KM(ωs2 − ωk4)

cum
(
Jk1,x1Jk1,y1 , Jk2,x1Jk2,y1 , Jk3,x2Jk3,y2 , Jk4,x2Jk4,y2

) 2∏
j=1

dF0(xj)dF0(yj) +O(
1

T
).

The above cumulant is computed as the sum of the products of cumulants in decom-

posable partitions by Theorem 2.3.2 in Brillinger (1981). We used the mathematica

routine by Andrews and Stafford (1998) to find all decomposable partitions. Fur-

ther information about the indecomposable partitioning could be found in Andrews

and Stafford (1998), Stafford (1994) and Smith and Field (2001). This together with

Brillinger (1981), Theorem 3.4.3 gives us II3 = O(M
T 3 ). The detail is given in the

Appendix. Combining the expressions for II1, II2 and II3 gives us the expression for

the variance and completes the proof. �

7.2.2. Proof of Theorem II.2

Now we show that QT can be approximated by the sum of martingale differences,

this will allow us to the the martingale central limit theorem to prove Theorem II.2.

We first define the martingale difference decomposition of Z̃t(x) =
∑∞

j=0 M
(x)
j (t− j),

where M
(x)
j (t − j) = E(Z̃t(x)|Ft−j) − E(Z̃t(x)|Ft−j−1), where for t > 0 we have

Ft = σ(Xt, Xt−1, . . . , X1) and for t ≤ 0 we let Ft = σ(1), and Mj(s) = 0 for j ≥ s.

Using the above notation we define the random variable

ST =
1

T 2

∫ ∞∑
j1,...,j4=0

∑
t1,r,t2∈A

λM(r)2M
(x)
j1

(t1 − j1)M
(y)
j2

(t1 + r − j2)

×M (x)
j3

(t2 − j3)M
(y)
j4

(t2 + r − j4)dF0(x)dF0(y), (2.14)

where A = {(t1 − j1, t1 + r − j2, t2 − j3, t2 + r − j4) are all different }.
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Theorem II.4 Suppose Assumption IV.1 holds, ST is defined as in (2.14) and the

null hypothesis is true. Then we have

QT − E(QT ) = ST +Op(
1

T
+
M1/2

T 3/2
).

and for all r ≥ 2

∥∥ST∥∥r = O(
M1/2

T
).

PROOF. We use a combination of iterative martingales and Burkholder’s inequality

for martingale differences. First we note that for r ≥ 2 we have

‖M (x)
j (t− j)‖r = ‖E(Z̃t(x)|Ft−j)− E(Z̃t(x)|Ft−j−1)‖2

≤ 2‖E(Z̃t(x)|Ft−j)‖r ≤ Cα(j), (2.15)

where Ft = σ(Xt, Xt−1, . . . , X1), which follows from Ibragimov’s inequality. Substi-

tuting the representation Z̃t(x) =
∑∞

j=1M
(x)
j (t− j) into QT gives

QT − E(QT )

=
1

T 2

∫ ∞∑
j1,...,j4=0

M∑
r=−M

λM(r)2

∑
t1,t2

(
M

(x)
j1

(t1 − j1)M
(y)
j2

(t1 + r − j2)×M (x)
j3

(t2 − j3)M
(y)
j4

(t2 + r − j4)

− E
(
M

(x)
j1

(t1 − j1)M
(y)
j2

(t1 + r − j2)×M (x)
j3

(t2 − j3)M
(y)
j4

(t2 + r − j4)
))

dF0(x)dF0(y),

where X denotes the centralised random variable X−E(X) (note that Mj(s) = 0 for

s ≤ 0). We now partition the above sum into several cases, where we treat j1, . . . , j4

as free and condition on t1, t2 and r:

(i) A = {(t1, t2, r) such that (t1− j1, t1 + r− j2, t2− j3, t2 + r− j4) are all different
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}.

(ii) B = {(t1, t2, r) such that (t1 − j1 = t1 + r − j2) and (t2 − j3 = t2 + r − j4)}.

(iii) C = {(t1, t2, r) such that (t1− j1) = (t2− j3) or (t2 + r− j4) and (t1 + r− j2) 6=

(t1 − j1)}.

(iv) D = {(t1, t2, r) such that (t1 + r− j2) = (t2− j3) or (t2 + r− j4) and (t1− j1) 6=

(t1 + r − j2)}.

(v) E = {(t1, t2, r) such that (t2 − j3) = (t1 − j1) or (t1 + r− j2) and (t2 + r− j4 6=

t2 − j3)}.

(iv) F = {(t1, t2, r) such that (t2 + r− j4) = (t1− j2) or (t1 + r− j2) and (t2− j3) 6=

(t2 + r − j4)}.

Thus

QT − E(QT ) =

∫ (
IA + IB + IC + ID + IE + IF

)
dF0(x)dF0(y),

where

IA =
1

T 2

∞∑
j1,...,j4=0

∑
r,t1,t2∈A

λM(r)2

M
(x)
j1

(t1 − j1)M
(y)
j2

(t1 + r − j2)M
(x)
j3

(t2 − j3)M
(y)
j4

(t2 + r − j4),

IB =
1

T 2

∞∑
j1,...,j4=0

∑
r,t1,t2∈B

λM(j1 − j2)2

(
M

(x)
j1

(t1 − j1)M
(y)
j2

(t1 − j1)×M (x)
j3

(t2 − j3)M
(y)
j4

(t2 − j3)−

E
(
M

(x)
j1

(t1 − j1)M
(y)
j2

(t1 − j1)×M (x)
j3

(t2 − j3)M
(y)
j4

(t2 − j3)
))

for IC, . . . , IF are defined similarly.
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We first bound IA. We partition A into 24 cases by the order of (t1− j1, t1 + r−

j2, t2 − j3, t2 + r − j4). The first is A1 = {(t1, t2, r) such that t1 − j1 > t1 + r − j2 >

t2 − j3 > t2 + r − j4} which gives

IA,1 =
1

T 2

∞∑
j1,...,j4=0

∑
t1,t2∈A1

λM(r)2

M
(x)
j1

(t1 − j1)M
(y)
j2

(t1 + r − j2)M
(x)
j3

(t2 − j3)M
(y)
j4

(t2 + r − j4).

The other 23 cases are defined similarly such that we have IA =
∑24

j=1 IAj . We start

by bounding IA,1. Since t1−j1 > t1 +r−j2 > t2−j3 > t2 +r−j4, it is easy to see that

M
(x)
j1

(t1−j1)
∑

r<j2−j1 λ
2
M(r)M

(y)
j2

(t1+r−j2)
∑

t2<t1−j1+j3
M

(x)
j3

(t2−j3)M
(y)
j4

(t2+r−j4)

is a martingale over t1, M
(y)
j2

(t1 + r − j2)
∑

t2<t1−j1+j3
M

(x)
j3

(t2 − j3)M
(y)
j4

(t2 + r − j4)

is a martingale over r and {M (x)
j3

(t2 − j3)M
(y)
j4

(t2 + r − j4)} is a martingale over t2.

Thus by using Burkhölder’s inequality together with Hölder’s inequality three times,

for any q ≥ 2 we have

‖IA,1‖q =
1

T 2

∞∑
j1,...,j4=0

( ∑
r,t1,t2

λM(r)2‖M (x)
j1

(t1 − j1)‖2
4q‖M

(y)
j2

(t1 + r − j2)‖2
4q

‖M (x)
j3

(t2 − j3)‖2
4q‖M

(y)
j4

(t2 + r − j4)‖2
4q

)1/2
.

Thus by using (2.15) we have that ‖IA,1‖q = O(M
1/2

T
) and by the same argument

we have IA,j = O(M
1/2

T
) (for 2 ≤ j ≤ 24). Therefore, altogether this gives ‖IA‖q =

O(M
1/2

T
). We now bound IB. We first define the random variable

A
(x,y)
j1,j2;i(t1 − j1 − i) =

E(M
(x)
j1

(t1 − j1)M
(y)
j2

(t1 − j1)|Ft1−j1−i)− E(M
(x)
j1

(t1 − j1)M
(y)
j2

(t1 − j1)|Ft1−j1−i).
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To bound ‖A(x,y)
j1,j2;i(t1 − j1 − i)‖q, we repeatedly use Ibragimov’s inequality and (2.15)

to give

‖A(x,y)
j1,j2;i(t1 − j1 − i)‖q ≤ 2‖E(M

(x)
j1

(t1 − j1)M
(y)
j2

(t1 − j1)|Ft1−j1−i)‖

≤ Cα(i)‖M (x)
j1

(t1 − j1)M
(y)
j2

(t1 − j1)‖q

≤ Cα(i)α(j1)α(j2). (2.16)

This gives the representation

M
(x)
j1

(t1 − j1)M
(y)
j2

(t1 − j1) =
∑
i

A
(x,y)
j1,j2;i(t1 − j1 − i).

Substituting the above representation into IB gives

IB =
1

T 2

∞∑
j1,...,j4,
i1,i2=0

∑
t1,t2∈B

λM(j1 − j2)2
[
A

(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2)

−E(A
(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2))
]

:= IB,1 + IB,2 + IB,3,

where

IB,1 :=
1

T 2

∞∑
j1,...,j4,
i1,i2=0

∑
t1−j1−i1>
t2−j3−i2

λM(j1 − j2)2A
(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2)

IB,2 :=
1

T 2

∞∑
j1,...,j4,
i1,i2=0

∑
t1−j1−i1<
t2−j3−i2

λM(j1 − j2)2A
(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2)

IB,3 :=
1

T 2

∞∑
j1,...,j4,
i1,i2=0

∑
t1−j1−i1=
t2−j3−i2

λM(j1 − j2)2A
(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2).

Using similar techniques to those used to bound ‖IA,1‖q, Burkhölder’s and Hölder’s

inequalities twice on ‖IB,1‖q, together with (2.16), we obtain the bound ‖IB,1‖q =

O( 1
T

). A similar argument can be used for ‖IB,2‖q = O( 1
T

). To bound ‖IB,3‖q, we
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need to decompose

A
(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2)− E(A
(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2)),

into the sum of martingale differences, using this martingale decomposition we can use

the same argument as those used above to obtain ‖IB,3‖ = O( 1
T 3/2 ). Therefore, alto-

gether we have ‖IB‖q = O( 1
T

). Now by using similar arguments and repeated decom-

positions into martingale differences we can show that ‖IC‖q, . . . , ‖IF‖q = O(M
1/2

T 3/2 ).

Thus we have shown that IA is the dominating term in QT − E(QT ). Since ST =∫
IAdF0(x)dF0(y) we have obtained the desired result. �

To prove the asymptotic normality of QT under the null hypothesis, we use

the martingale central limit theorem on ST in (2.14). To do this, we use the same

decompositions of IA, as that used in the proof of Theorem II.4. We set ST,i := IA,i,

recalling that

ST,i =
1

T 2

∫ ∞∑
j1,...,j4=0

∑
r,t1,t2∈A,i

λM(r)2

M
(x)
j1

(t1 − j1)M
(y)
j2

(t1 + r − j2)M
(x)
j3

(t2 − j3)M
(y)
j4

(t2 + r − j4)dF0(x)dF0(y),

where Ai is some ordering of {t1 − j1, t1 + r − j2, t2 − j3, t2 + r − j4}. We show that

ST,i can be written as the sum of martingale differences. First consider ST,1, this can

be written as ST,1 = 1
T 2

∑T
k=1 Uk,1, where with a change of variables we have

Uk,1 =

∫ T−k∑
j1=0

Mj1(k)
∑
j2,j3,j4

∑
r,t1∈Ãk,1

λM(r)2

M
(y)
j2

(k + j1 + r − j2)M
(x)
j3

(t2 − j3)M
(y)
j4

(t2 + r − j4)dF0(x)dF0(y)

and Ãk,1 = {(r, t2) such that (k > k + j1 + r − j2 > t2 − j3 > t2 + r − j4)}. Using a

similar argument we can decompose ST,i as ST,i = 1
T 2

∑T
k=1 Uk,i (and Uk,i is defined

similar to above). Therefore, altogether ST is the sum of martingale differences,
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where ST = 1
T 2

∑T
k=1

∑24
i=1 Uk,i, and

∑24
i=1 Uk,i ∈ σ(Xk, Xk−1, . . .) are the martingale

differences. Therefore under the conditions in Theorem II.4 we have

QT − E(QT ) = ST +Op(
1

T
+
M1/2

T 2
) =

1

T 2

T∑
k=1

24∑
i=1

Uk,i +Op(
1

T
+
M1/2

T 2
).

These approximations will allow us to use the martingale central limit theorem to

prove asymptotic normality, which requires the following lemma.

Lemma II.4 Suppose that Assumption IV.1 holds. Then for all 1 ≤ i ≤ 24 and

1 ≤ k ≤ T we have

‖
24∑
i=1

Uk,i‖q = O(T 1/2M1/2), (2.17)

1

T 2M

T∑
k=1

E
( 24∑
i=1

U2
k,i

)
→ 4

M

∫ ∫
∆M(θ1 − θ2)2

2∏
i=1

G(x1, x2; θi)G(y1, y2; θi)dθi

2∏
j=1

dF0(xj)dF0(yj) (2.18)

and

1

T 2M

T∑
k=1

[
E
(

(
24∑
i=1

Uk,i)
2|Fk−1

)
− E

( 24∑
i=1

Uk,i
)2
]
P→ 0. (2.19)

PROOF. To prove the result we concentrate on Uk,1, a similar proof applies to the

other terms. By using the Hölder inequality, for any q ≥ 2, we obtain

‖Uk,1‖q ≤
∫ T−k∑

j1=0

‖Mj1(k)‖4q

∥∥ ∑
j2,j3,j4

∑
r,t1∈Ãk,1

λM(r)2M
(y)
j2

(k + j1 + r − j2)×

M
(x)
j3

(t2 − j3)M
(y)
j4

(t2 + r − j4)‖4q/3dF0(x)dF0(y).

Now by repeated use of Burkhölder’s inequality we have ‖Uk,1‖q = O(M1/2T 1/2),

using a similar method we obtain a similar bound for ‖Uk,i‖q, this gives (2.17). The
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proof of (2.18) follows from the proof of Theorem II.4 (noting that the asymptotic

variance of QT is determined by the variance of ST ).

To prove (2.19), we consider only the Uk,1 (the proof involving the other terms

in similar). For brevity we write Uk,1 as

Uk,1 =

∫ T−k∑
j1=0

M
(x)
j1

(k)N
(x,y)
j1,k−1,1dF0(x)dF0(y),

where

N
(x,y)
j1,k−1,1 =

∑
j2,j3,j4

∑
r,t1∈Ãk,1

λM(r)2M
(y)
j2

(k + j1 + r − j2)M
(x)
j3

(t2 − j3)M
(y)
j4

(t2 + r − j4).

Noting that N
(x,y)
j1,k−1,1 ∈ Fk−1 we have

1

T 2M

T∑
k=1

(
E
(
U2
k,1|Fk−1

)
− E

(
Uk,1

)2)
=

1

T 2M

T∑
k=1

∫ T−k∑
j1,j2=0

(
E(M

(x1)
j1

(k)M
(x2)
j2

(k)|Fk−1)− E(M
(x1)
j1

(k)M
(x2)
j2

(k))
)

N
(x1,y1)
j1,k−1,1N

(x2,y2)
j2,k−1,1

2∏
i=1

dF0(xi)dF0(yi)

+
1

T 2M

T∑
k=1

∫ T−k∑
j1,j2=0

E(M
(x1)
j1

(k)M
(x2)
j2

(k))
)

(
N

(x1,y1)
j1,k−1,1N

(x2,y2)
j2,k−1,1 − E(N

(x1,y1)
j1,k−1,1N

(x2,y2)
j2,k−1,1)

) 2∏
i=1

dF0(xi)dF0(yi).

Now by using similar methods to the iterative martingale methods detailed in the

proof of Theorem II.4, we can show that the ‖·‖q-norm (q ≥ 2) of the above converges

to zero, thus we have (2.19). �

PROOF of Theorem II.2 Using the above we have

QT − E(QT ) =
1

T 2

T∑
k=1

24∑
i=1

Uk,i +Op(
1

T
+
M1/2

T 2
),
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thus QT − E(QT ) can be written as the sum of martingales plus a smaller order

term. Therefore to prove asymptotic normality of QT we can use the martingale

central limit, for this we need to verify (a) the conditional Lindeberg condition

1
T 2M

∑T
k=1 E(|

∑24
i=1 Uk,i|2I( 1

TM1/2 |
∑24

i=1 Uk,i| > ε)|Fk−1)
P→ 0 for all ε > 0, (b) that

1
T 2M

∑T
k=1 E(|

∑24
i=1 Uk,i|2|Fk−1)− T 2

M
var(QT )

P→ 0.

To verify the conditional Lindeberg condition, we observe that the Cauchy-

Schwartz and Markov’s inequalities give

1

T 2M

T∑
k=1

E
(
|

24∑
i=1

Uk,i|2I(
1

TM1/2
|

24∑
i=1

Uk,i| > ε)|Fk−1

)
≤ 1

εT 4M2

T∑
k=1

E(|
24∑
i=1

Uk,i|4|Fk−1) := BT .

By using (2.17), the expectation of the above is E(BT ) = O( 1
T

). As BT is a non-

negative random variable, this implies B
P→ 0 as T →∞. Thus we have shown that

the Lindeberg condition is satisfied. To prove (b) we note that

1

T 2M

T∑
k=1

E
(
|

24∑
i=1

Uk,i|2|Fk−1

)
− T 2

M
var(QT )

=
1

T 2M

T∑
k=1

[
E
(
|

24∑
i=1

Uk,i|2|Fk−1

)
− E(|

24∑
i=1

Uk,i|2)

]

+
1

T 2M

T∑
k=1

E(|
24∑
i=1

Uk,i|2)− T 2

M
var(QT ).

By using (2.18) and (2.19) the above converges to zero in probability. Thus we have

verified the conditions of the martingale central limit theorem and we have the desired

result. �
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7.3. Proof of Theorem II.3

Since the limiting distribution of QT is determined by QT,2, we rewrite QT,2 as

in the proof of Theorem IV.2. We observe that

QT,2

=
2

T
<
∫ ∑

k

ΛT (x, y;ωk)
{
JT (x;ωk)JT (y;ωk)− E(JT (x;ωk)JT (y;ωk))

}
dF0(x)dF0(y)

=

∫
2

T

∑
t,τ

λM(t− τ)2Dt−τ,T (x, y)(Zt(x)Zτ (y)− E(Zt(x)Zτ (y)))dF0(x)dF0(y)

=

∫
2

T

∑
t,τ

λM(t− τ)2Dt−τ,T (x, y)(Z̃T (x)Z̃τ (y)− Cr(x, y))dF0(x)dF0(y) +Op(
1

T
),

where ΛT (x, y;ωs) =
∑

r λM(r)2(T−|r|
T

)
(
Cr,1(x, y)−Cr,0(x, y)

)
exp(irωk), Dr,T (x, y) =

(T−|r|
T

)
(
Cr,1(x, y)− Cr,0(x, y)

)
and Z̃t(x) = I(Xt ≤ x)− F1(x).

PROOF of Theorem II.3 Now we observe that under the stated assumptions

of the theorem we have that the quantile covariances under the null decay at the

rate supx,y |Cr,0(x, y)| ≤ K|r|−(2+δ) (for some δ > 0) and supx,y |Cr,1(x, y)| ≤ K|r|−s

(for some s > 2). Thus by definition of Dr,T (·), we have supx,y |λM(r)Dr,T (x, y)| ≤

K|r|−min(2+δ,s). Thus we can write QT,2 as

QT,2

=

∫
2

T

∑
t,τ

λM(t− τ)2Dt−τ,T (x, y)(Z̃T (x)Z̃τ (y)− E(Z̃T (x)Z̃τ (y)))dF0(x)dF0(y)

+ Op(
1

T
),

where we observe that terms where |t− τ | > 2M , are zero. Thus with the Bernstein

blocking arguments for quadratic forms used to prove Theorem IV.2, we can show

asymptotic normality of the above. This proves (2.5). Finally to prove (2.6), we note

that QT = QT,2 +ET,2 +Op(
M1/2

T
+ M

T
+ 1

Ms−1 ), by using (2.5), this immediately leads
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to (2.6). �
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CHAPTER III

PERIODICITIES AND OTHER FEATURES ON THE DOMAIN OF A TIME

SERIES

1. Introduction

Often spectral methods are used to analysis a (stationary) time series, because

it may exhibit periodicities or patterns which can easily be interpreted using the

Fourier transform of the autocovariances. Brillinger (1981) and Shumway and Stoffer

(2006), Chapter 4, eloquently describe spectral analysis of a time series and its appli-

cations, for example it can be used to identify the dominant frequencies in a system

and identify the linear time series model. However, despite its advantage, there are

disadvantages in using the autocovariance function as the basis in spectral analysis.

The autocovariance function only measures the average interaction between elements

of a time series, but cannot identify differences which may lie on the domain of the

time series. Consider the following toy example, suppose {Xt} is a stationary time

series where

Xt = εt + I(r1 ≤ εt ≤ r2)Zt + I(−r2 ≤ εt ≤ −r1)Yt, (3.1)

where {εt} are independent, identically distributed (iid) random variables with vari-

ance σ2 and {Zt} and {Yt} are two independent stationary, linear time series, with

spectral densities fZ(ω) and fY (ω) respectively. Both are independent of {εt}. The

spectral density of {Xt} is fX(ω) = σ2 + P (r1 ≤ ε0 ≤ r2)2fZ(ω) + P (−r2 ≤ ε0 ≤

−r1)2fY (ω), which is not particularly informative about the underlying model. Fur-

thermore, it is not clear whether the dominant frequencies in fY and fZ arise in fX .
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This is an example of a time series where it may be more valuable to understand

the interactions between different regions of the domain of the time series that the

autocovariance.

Our objective is to define a spectral density which measures associations between

different parts of the domain of the time series. More precisely, we assume that the

time series is stationary and define the association spectral density as

gS(x, y;ω) =
1

2π

(∑
r 6=0

(
fr(x, y)− f(x)f(y)

)
exp(irω)− f(x)f(y)

)
,

fr(·) and f(·) is the marginal and joint density of X0 and (X0, Xr) respectively. To

understand how gS may help, we return to example (3.1). It can be shown that the

association spectral density in this example is

gS,X(x, y;ω) =

∫ −r1
−r2

gS,Y (x− e1, y − e2)fε(e1)fε(e2)de1de2

+

∫ r2

r1

gS,Z(x− e1, y − e2)fε(e1)fε(e2)de1de2 + k(x, y)

where gS,Y and gS,Z are the association spectral densities of {Yt} and {Zt} respectively

and fε the marginal density of {εt} and k(x, y) = 1
2π

(
(
∫ r2
r1
fZ(x−e)fε(e)de)(

∫ −r1
−r2 fY (y−

ε)fε(e)de)+(
∫ r2
r1
fZ(y−ε)fε(e)de)(

∫ −r1
−r2 fY (x−ε)fε(e)de)

)
. To understand how gS be-

haves for different x and y, we consider the association spectral density of a stationary

Gaussian time series Xt =
∑

j≥0 ajεt−j, which has an explicit form such as

gS,Gaussian

=
1

(2πσ0)2
exp

(
− x2 + y2

2σ2
0

)
×(∑

r 6=0

{
1√

1− ρ2
r

exp
(
− ρ2

r(x
2 + y2)− 2ρrxy

2σ2
0(1− ρ2

r)

)
− 1

}
exp(irω)− 1

)
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where σ2
0 = σ2

∑∞
j=0 a

2
j and ρr =

∑∞
r=0 ajaj+|r|.

We observe that it tends to be largest when x and y are close to zero (since

Xt has the largest of lying there). In general this behavior is true for non-Gaussian

linear time series, that is the association spectral density of a linear time series tends

to be largest about zero. This has an interesting repercussion on gS,X . gS,X will have

different behaviors depending on the x and y. If x and y lie close to the interval

[−r2,−r1], gS,X(·) is dominated by gS,Y , on the other hand for x and y close to the

interval [r1, r2], gS,X will be dominated by gS,Z . Thus the association spectral density

suggests that Xt is a mixture of two time series. This example motivates the use of

the association spectral density as a tool in explanatory data analysis.

In general, the association spectral density can be considered as a means of de-

picting the general dependence between pairs of random variables in a time series,

which is usually called serial dependence. Several methods have been proposed to

generalize the spectral density to serial dependence. For example, Hong (1998) de-

fines generalized spectral density, which is the Fourier transform of the characteristic

function of pair-wise dependent data, which he uses to test for goodness of fit. More

recently, Li (2008), Hagemann (2011) and Dette et al. (2011) define a generalize spec-

tral density based on the cumulative distribution functions, which does not easily

represent the associations and periodicities between different parts of the domain of

the time series. In this paper, we address this issue. The purpose of this paper

is to introduce the association spectral density as a means of studying the pairwise

dependence structure of a time series at different scales and locations.

In Section 2 we consider in detail the properties of the association spectral density

and propose a method of estimation. In Section 3 we derive the asymptotic sampling

properties of the estimator. Some simulation results can be found in Section 4, and

all the proofs are in Section 5.
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2. The association covariance and association spectral density

2.1. Motivation

In this section we motivate the association covariance and the corresponding

association spectral density. The autocorrelation function gives information about the

average interaction between any two random variables in the time series. However, it

is too ‘global’ to give information about how different domains of the time series may

interact and influence each other. In order to illicit this type of information we can

transform the time series {Xt} by windowing it around regions of the domain that are

of interest. Suppose that we are interested in the interaction of the time series around

x and y, then by transformingXt as {(1
b
W (x−Xt

b
), 1

b
W (y−Xt

b
)}t, whereW : [−1, 1]→ R

is a positive symmetric kernel and b a window length, and can consider the cross

correlation of this transformed time series. Inspecting the covariance, we observe

that depending on how close the kernel W (·) is to the rectangular kernel we have

cov
(
Wb(x−Xt),Wb(y −Xτ )

)
= E

(
Wb(x−Xt)Wb(y −Xτ )

)
− E

(
Wb(x−Xt))E(Wb(y −Xτ ))

)
≈ P (x− b < Xt < x+ b, y − b < Xτ < y + b)

− P (x− b < Xt < x+ b)P (y − b < Xτ < y + b).

Therefore, we observe that a positive cov(Wb(x−Xt),Wb(y−Xτ )) implies the prob-

ability that Xt and Xτ lie in the neighborhood of x and y respectively, is greater

than independent events (thus positive association), whereas a negative covariance

suggests the opposite. However, the magnitude of association depends on various

factors that we now explore. Under the condition that {Xt} is ψ-mixing (see Lemma



59

III.2, below) it can be shown that

|cov(Wb(x−Xt),Wb(y −Xτ ))| ≤ C|t− τ |−sE(Wb(x−X0))E(Wb(y −X0)),

where Wb(x) = 1
b
W (x

b
), E(Wb(

x−X0

b
)) =

∫
1
b
W (x−y

b
)f(y)dy, f is the marginal density

of Xt and s the ψ-mixing size. We can see from the above that the covariance is

determined by two factors (a) the region that is windowed and (b) the ψ-mixing

size s. For example, the covariances cov(Wb(x1 −X0),Wb(y −Xr)) and cov(Wb(x2 −

X0),Wb(y−Xr)) both decay at the same rate (O(|r|−s)), however if x1 lies in the tails

and x2 lies close to the mode, then E(Wb(x1−Xt)) will be smaller than E(Wb(x2−Xt)),

subsequently it is likely that cov(Wb(x1 − X0),Wb(y − Xr)) will be smaller than

cov(Wb(x2−X0),Wb(y−Xr)). Therefore, to make a fairer comparison between these

two covariances, we can standardize, by defining the following pseudo association

correlation

corp(Wb(x−X0),Wb(y −Xr) =
cov(Wb(x−X0),Wb(y −Xr))

E(Wb(x−X0))E(Wb(y −X0)
. (3.2)

Comparing (3.2) with the usual correlation cor(Wb(x−X0),Wb(y−Xr)), we observe

that since var(Wb(x−Xt)) = O(b−1), then cor(Wb(x−X0),Wb(y−Xr)) = O(b|r|−s),

whereas E(Wb(x−X0)) = O(1), therefore corp, is in some sense invariant to the scale

b.

Having defined the association covariance and pseudo association correlation, we

now consider the corresponding spectral density. We recall that the for autoregres-

sive processes, the spectral density is often used to check for the order of the process

(Parzen (1974)) and to look for periodicities and patterns in the autocovariance struc-

ture. However, it could well be that periodicities that may arise in certain regions of

the domain of the random variables are averaged out in the regular spectral density.

This suggests that we should search for patterns that may arise in the cross covariance
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of {Wb(x−Xt),Wb(y −Xt)}t, thus we define its Fourier transform

gb(x, y;ω) =
1

2π

∑
r

cov
(
Wb(x−X0),Wb(y −Xr)

)
exp(irω).

However, in the following section we show that the limit of cov
(
Wb(x−X0),Wb(y −

X0)
)

as b→ 0, is not well defined, this means that the limit of gb(x, y;ω) as a function,

won’t be well defined. Therefore we a define a shifted version of gb

gS,b(x, y;ω) = gb(x, y;ω)− 1

2π
E
(
Wb(x−X0)Wb(y −X0)

)
=

1

2π

∑
r 6=0

cov
(
Wb(x−X0),Wb(y −Xr)

)
exp(irω)

− 1

2π
E
(
Wb(x−X0)

)
E
(
Wb(y −X0)

)
,

whose limit is well defined. Since gb and gS,b are simply shifts of each other, their

shapes are same. Moreover, when the intervals [x − b, x + b] and [y − b, y + b] do

not intersect, then gb(x, y;ω) = gS,b(x, y;ω). The standardized association spectral

density is defined similarly

hS,b(x, y;ω) =
1

2π

(∑
r 6=0

corp(Wb(x−X0),Wb(y −Xr)) exp(irω)− 1

)
=

gS,b(x, y;ω)

E
(
Wb(x−X0)

)
E
(
Wb(y −X0)

) .
Using the above argument hS,b may be a useful tool for comparing association spectral

for different values of x, y and b.

Remark III.1 The correlation association spectral density is defined as

hS(x, y;ω) =
1

2π

(∑
r 6=0

( fr(x, y)

f(x)f(y)
− 1
)

exp(irω)− 1

)
.

However it is possible to generalise the definition. For example, one can also consider
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monotonic tranforms of the psuedo-correlation such as the log transform

`(x, y;ω) =
1

2π

∑
r

log
( fr(x, y)

f(x)f(y)

)
exp(irω).

For the Gaussian time series, the above has the form

`(x, y;ω) = − 1

2π

∑
r

(
1

2
log(1− ρ2

r) +
1

2σ2
0(1− ρ2

r)

(
ρ2
r(x

2 + y2)− 2ρrxy
))

exp(irω),

thus `(x, y;ω) is finite for any short-memory Gaussian time series. In general, using

Assumption III.1 (ii) we have that | log( fr(x,y)
f(x)f(y)

)| ≤ log(C|r|−s+ 1), thus if s > 1 then

`(x, y;ω) is well defined. However, in general it is difficult to estimate `(·), therefore

in the following sections we will focus on gS and hS .

In Figures 9 and 10 we plot the association spectral densities for two AR(1)

(Xt = 0.6Xt−1 + Zt , Xt = 0.9Xt−1 + Zt) with independent, identically distributed

(iid) Gaussian innovations Zt. The diagonals are of gS(x, x;ω), the lower triangle

contains the real part of gS(x, y;ω) and the upper triangle the imaginary part of

gS(x, y;ω). For better understanding the behaviors of gS(·) and hS(·), we plot their

inverse Fourier transforms {fr(x, y)1r 6=0−f(x)f(y)}r and { fr(x,y)
f(x)f(y)

1r 6=0−1}r in Figures

11 and 12. The shapes and magnitudes of gS(x, x;ω) are similar for all x, but the

magnitude of hS(x, x;ω) for x = 50% percentile is much smaller than the others.

This observation hints us that the magnitude of gS(x, x;ω) for x = 50% percentile

mainly comes from the large value of f(x) and it can be confirmed in Figure 11 and

12. Except r = 0, we can interpret { fr(x,y)
f(x)f(y)

1r 6=0 − 1}r as if it is the limit pseudo

association correlation defined in (3.2) as b goes to 0. Similar to the usual auto-

correlation function of AR(1) process, its rate of decay is determined by its AR

coefficient and this rate of decay specifies the steepnesses of the curves in hS(x, x;ω)

for x = 10, 90% percentile. For the AR(1) model with φ > 0, when Xt lies in the
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either direction of the tail area, Xt+1 will likely fall onto the tail area preserving the

sign and there’s only small probability that Xt+1 is in the tail area of the opposite

direction. These behaviors could be captured in positive values of { fr(x,x)
f(x)f(x)

1r 6=0 − 1}r

and negative values of { fr(x,y)
f(x)f(y)

1r 6=0− 1}r especially between 10% and 90% percentile,

and we can see that the standardized association spectral densities have distinct looks

reflecting these features fairly well.

Figures 13 and 14 illustrate the association spectral densities for ARCH(1) (Xt =

σtZt with σ2
t = 1/1.9+0.9X2

t−1) and the squared ARCH, with independent, identically

distributed (iid) Gaussian innovations Zt. We first observe that the AR and ARCH

association spectral densities are very different and the association spectral densities

for ARCH are not flat suggesting that though ARCH process is uncorrelated overall,

there definitely exist the correlations between certain regions of the time domains.

Furthermore, recalling that the AR and ARCH squared have the same spectral density

(if the moments of the ARCH squared exist), there is a large difference between the

association spectral density of the AR and the ARCH squared in Figure 10 and 14.

2.2. Properties of gb(x, y;ω)

We now consider how gb behaves for different b, focusing on the case that b→ 0.

First we define two close related quantities

g(x, y;ω) :=
1

2π

(∑
r 6=0

(
fr(x, y)− f(x)f(y)

)
exp(irω) +

(
f(x)δx(y)− f(x)f(y)

))
gS(x, y;ω) =

1

2π

(∑
r 6=0

(
fr(x, y)− f(x)f(y)

)
exp(irω)− f(x)f(y)

)
,

where f(·) and fr denotes the densities of {Xt} and (X0, Xr), respectively and δx(y)

the Dirac delta function. Observe that for x 6= y, gS(x, y;ω) = g(x, y;ω). We call

gS(x, y;ω) the association spectral density. Since the definition of g involves a Dirac
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Fig. 9. The association spectral density of Xt = 0.6Xt−1+Zt; (Left) Nonstandardized,

(Right) Standardized
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Fig. 10. The association spectral density of Xt = 0.9Xt−1 + Zt; (Left) Nonstandard-

ized, (Right) Standardized
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Fig. 11. Xt = 0.6Xt−1+Zt; (Left) {fr(x, y)1r 6=0−f(x)f(y)}r, (Right) { fr(x,y)
f(x)f(y)
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Fig. 13. The association spectral density of Xt = σtZt, where σ2
t = 1/1.9 + 0.9X2

t−1;

(Left) Nonstandardized, (Right) Standardized
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Fig. 14. The association spectral density of X2
t = σ2

tZ
2
t , where σ2

t = 1/1.9 + 0.9X2
t−1;

(Left) Nonstandardized, (Right) Standardized
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delta function, it is not well defined, whereas we show in Lemma III.2 that gS is

finite for all x and y. However, g is a generalized function and is closely related to

the usual spectral density function. In particular, for any transformation of the time

series {h1(Xt), h2(Xt)}t, its cross spectral density can be written as

fh1h2(ω) =

∫ ∫
h1(x)h2(y)g(x, y;ω)dxdy.

Returning to the spectral density of {Wb(x − Xt),Wb(y − Xt)}t, gb(x, y;ω), we see

that by using the above argument we have

gb(x, y;ω) =

∫ ∫
1

b2
W (

x− u
b

)W (
y − v
b

)g(x, y;ω)dxdy.

If x 6= y, then for a small enough b, g(x, y;ω) is continuous in the neighborhood

of [x−, b, x + b] × [y − b, y + b], therefore by using Bochner’s Theorem (see Bochner

(1955)) we have the following result.

Lemma III.1 Suppose Assumption III.1(ii) and (iii) are satisfied. Then for all

x, y ∈ R ∫ ∫
Wb(x− u)Wb(y − v)gS(u, v;ω)dudv → gS(x, y;ω)

as b→ 0.

2.3. Estimation

In order to estimate the association spectral density gS , we define the following

discrete Fourier transform (DFT)

Jb,T (x;ω) =
1√
2πT

T∑
t=1

(
1

b
W (

x−Xt

b
)− W̄b(x)

)
exp(itω),
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where W̄b(x) = 1
T

∑
tWb(x − Xt) is the estimate of the marginal density f(x). Mo-

tivated by the classical estimator of the cross spectral density we use ĝb,T (x, y;ω) as

an estimator of gb(x, y;ω), where

ĝb,T (x, y;ωs) =
1

2π

M∑
r=−M

λ(
r

M
)ĉr(x, y) exp(irωs)

=
∑
k

KM(ωs − ωk)Jb,T (x;ωk)Jb,T (y;ωk) (3.3)

with ωs = 2πs
T

,

ĉr(x, y) =
1

T

T−|r|∑
t=1

(
1

b
W (

x−Xt

b
)− W̄b(x)

)(
1

b
W (

y −Xt+r

b
)− W̄b(y)

)
, (3.4)

λ[−1, 1] → R is the lag window and KM(ω) is the corresponding spectral window

with

KM(ω) =
1

T

M∑
r=−M

λ(
r

M
)eirω.

If we keep b fixed and {Xt} is an α-mixing time series, then asymptotic arguments

for spectral density estimators (see, for example, Rosenblatt (1984) and Chapter IV),

can be used to show ĝb,T (x, y;ω)
P→ gb(x, y;ω) (as well as asymptotic normality).

However, if we are interested in determining the limit for small windows about x and

y, then we first need to establish what we are interested in estimating. More precisely,

from Lemma III.1 we know that for x 6= y, as b→ 0, then gb goes to g, but for x = y

case the limit of gb(x, x;ω) is not a function in the strict sense. However, the limit

of gb,S , which is the association spectral density gS , is well defined for all x and y.

Noting that gS and g are the same up to a shift, we now consider and estimator of

gS . Motivated by the estimation scheme for gb, we propose ĝS,T as an estimator of
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gS , where

ĝS,T (x, y;ωs) =
1

2π

M∑
r=−M,r 6=0

λ(
r

M
) exp(irωs)ĉr(x, y)− λ(0)

1

2π
W b(x)W b(y)

=
∑
k

KM(ωs − ωk)Jb,T (x;ωk)Jb,T (y;ωk)

− λ(0)
1

2πT

T∑
t=1

1

b2
W (

x−Xt

b
)W (

y −Xt

b
) (3.5)

In order to make comparisons for different values of x and y that takes into account

that the marginal distributions of x and y we can estimate standardised association

spectral density, hS , with

ĥS,T (x, y;ωs) =
ĝS,T (x, y;ωs)

W̄b(x)W̄b(y)
.

In order to construct confidence intervals for gS and hS we derive the asymptotic

properties of their estimators, noting that unlike the usual spectral density we need

to consider the limit of ĝS,T (x, y;ωs) and ĥS,T (x, y;ωs) as b → 0 and T → ∞. This

means that the usual methods used to prove consistency and asymptotic normality

of thes spectral density estimator do not directly apply in this case and the rates of

convergence will change.

3. Sampling properties of the estimator

In order to prove the results we require the following assumptions.

Assumption III.1 (i) Let us suppose that {Xt} is a strictly stationary α-mixing

time series, ie.

sup
A∈σ(X0,X−1,...)
B∈σ(Xt,Xt+1,...)

∣∣P (A ∩B)− P (A)P (B)
∣∣ ≤ C|t|−α,

where α > 0.
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(ii) {Xt} is 2-ψ-mixing, with

sup
A∈σ(X0)
B∈σ(Xt)

∣∣∣∣ P (A ∩B)

P (A)P (B)
− 1

∣∣∣∣ ≤ Ct−s,

for some s > 2.

(iii) The densities f , fr and their derivatives exist.

(iv) supx,y
∣∣∂{fr(x,y)−f(x)f(y)}

∂x

∣∣ ≤ Cr−(1+ε) and supx,y
∣∣∂{fr(x,y)−f(x)f(y)}

∂y

∣∣ ≤ Cr−(1+ε),

for some ε > 0.

(v) We assume that the lag window is symmetric and has the following form

λ(x) = (1− |x|u) · 1(−1,1)(x) for u > 0.

We will show that under Assumption III.1 (ii) and (iii) the association spectral density

gS(x, y;ω) is well-defined and its estimator ĝS,T (x, y;ω) is asymptotically unbiased.

Furthermore, if Assumption III.1 (iv) is satisfied, we can obtain the convergence rate

for the bias of ĝS,T (x, y;ω). Assumption III.1(i) (under some assumptions on the size

α) is used to show asymptotic normality of ĝS,T (x, y;ω).

Lemma III.2 Suppose Assumption III.1(ii) holds. Then we have

(i) For all x and y, we have |fr(x, y)− f(x)f(y)| ≤ Cf(x)f(y)|r|−s.

(ii) For r 6= 0 we have

supx,y
∣∣cov

(
Wb(x−X0),Wb(y −Xr)

)∣∣ ≤ CE
(
Wb(x−X0)

)
E
(
Wb(y −X0)

)
|r|−s.

(iii) supx,y
∑

r 6=0 |fr(x, y)− f(x)f(y)| <∞.
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To obtain the sampling properties of ĝS,T (·), we first replace W̄b(x) and W̄b(y) in

ĝS,T (x, y;ω) with its expectation and define the quantities

J̃b,T (x;ω) =
1√
2πT

T∑
t=1

(
1

b
W (

x−Xt

b
)− E

(1

b
W (

x−Xt

b
)
))

exp(itω)

c̃r(x, y) =
1

T

T−|r|∑
t=1

(
1

b
W (

x−Xt

b
)− E

(1

b
W (

x−Xt

b
)
))
×(

1

b
W (

y −Xt+r

b
)− E

(1

b
W (

y −Xt+r

b
)
))

g̃S,T (x, y;ω) =
∑
k

KM(ω − ωk)J̃b,T (x;ωk)J̃b,T (y;ωk)

− 1

2πT

T∑
t=1

1

b2
W (

x−Xt

b
)W (

y −Xt

b
).

The following lemma gives the bound on the difference between ĝS,T (x, y;ωk) and

g̃S,T (x, y;ωk).

Lemma III.3 Suppose Assumption III.1(i-iii),(v) holds (with α > 6) and M ≤ T 1/2.

Then we have

‖ĝS,T (x, y;ωk)− g̃S,T (x, y;ωk)‖2 = O(
M

bT
),

where ωk = 2πk
T

.

We use the following result to obtain an expression for the mean and variance

of the estimators, where it can be considered as a variant of Brillinger (1981) which

covers the cumulants of DFTs of stationary time series on triangular arrays.

Lemma III.4 Suppose Assumption III.1 (i-ii) holds with α > 6. Then for 1 ≤ k ≤ T

we have
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(i)

cov
(
J̃b,T (x;ωk1), J̃b,T (y;ωk2)

)
=

 gb(x, y;ωk1) +O( 1
T

), ωk1 = ωk2

O( 1
T

) ωk1 6= ωk2

(ii)

cum
(
J̃b,T (x;wk1), J̃b,T (y;−wk1), J̃b,T (x;wk2), J̃b,T (y;−wk2)

)
= O(

1

b3T
)

Lemma III.2 implies that for r 6= 0,

cov
(1

b
W (

x−X0

b
),

1

b
W (

y −Xr

b
)
)
≤ E

(
Wb(x−X0)

)
E
(
Wb(y −X0)

)
|r|−s.

It is straightforward to see that cov
(

1
b
W (x−X0

b
), 1

b
W (x−X0

b
)
)

= O(1
b
), and this leads

to gb(x, x;ω) = O(1
b
). For x 6= y, gb(x, y;ω) = O

(
E
(
Wb(x − X0)

)
E
(
Wb(y − X0)

))
.

These results give us bounds for covariances of the DFTs in Lemma III.4.

In order to obtain expressions for the asymptotic variance we define

cb(x, y;ω) = <(gb(x, y;ω)) and qb(x, y;ω) = =(gb(x, y;ω)).

Lemma III.5 Suppose Assumption III.1(i-iii) is satisfied with α > 6, and b−1 <<

M . Then for 0 < ω < π we have

var
(
<g̃S,T (x, y;ω)

)
=

1

2

T∑
k=1

KM(ω − ωk)2
(
gb(x, x;ωk)gb(y, y;ωk) + cb(x, y;ωk)

2 − qb(x, y;ωk)
2
)

+ O
( 1

T
+

1

b3T
+
M1/2

b5/2T

)
,
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var
(
=g̃S,T (x, y;ω)

)
=

1

2

T∑
k=1

KM(ω − ωk)2
(
gb(x, x;ωk)gb(y, y;ωk) + qb(x, y;ωk)

2 − cb(x, y;ωk)
2
)

+ O
( 1

T
+

1

b3T
+
M1/2

b5/2T

)
,

and

cov
(
<g̃S,T (x, y;ω),=g̃S,T (x, y;ω)

)
=

T∑
k=1

KM(ω − ωk)2cb(x, y;ωk)qb(x, y;ωk)

+ O
( 1

T
+

1

b3T
+
M1/2

b5/2T

)
.

In order to estimate the above variances, we replace cb and qb with ĉb,T (x, y;ω) =

<ĝb,T (x, y;ω) and q̂b,T (x, y;ω) = =ĝb,T (x, y;ω) respectively.

In the following lemma we obtain the bias of the estimator.

Lemma III.6 Suppose Assumption III.1(ii,iii,v) is satisfied. Let us suppose that

M →∞ and b→ 0 as T →∞.

(i) Then we have E(g̃S,T (x, y;ω))→ gS(x, y;ω).

(ii) If in addition Assumption III.1(iv) is satisfied, then we have

E(g̃S,T (x, y;ω)) = gS(x, y;ω) +O
( 1

M s−1
+

1

T
+ b
)
.

Using Lemmas III.5 and III.6 we can obtain the mean squared error of the esti-

mator.

Lemma III.7 Suppose Assumption III.1 holds with α > 6. Then for 0 < ω < π we



73

have

E
(
<ĝS,T (x, y;ω)−<gS(x, y;ω)

)2

=
1

2

T∑
k=1

KM(ω − ωk)2
(
gb(x, x;ωk)gb(y, y;ωk) + cb(x, y;ωk)

2 − qb(x, y;ωk)
2
)

+

O
( 1

T
+

1

b3T
+
M1/2

b5/2T
+ (

1

M s−1
+

1

T
+ b)2

)
,

E
(
=ĝS,T (x, y;ω)−=gS(x, y;ω)

)2

=
1

2

T∑
k=1

KM(ω − ωk)2
(
gb(x, x;ωk)gb(y, y;ωk) + qb(x, y;ωk)

2 − cb(x, y;ωk)
2
)

+

O
( 1

T
+

1

b3T
+
M1/2

b5/2T
+ (

1

M s−1
+

1

T
+ b)2

)
,

In the following result we show asymptotic normality, this allows us to obtain point-

wise confidence intervals for gS .

Theorem III.1 Let us suppose that Assumption III.1 holds (with α > 14), b−1 <<

M and
√

b2T
M

(
M1/2

b5/2T
+ b2

)
→ 0. Then for 0 < ω < π we have

VT,b(x, y;ω)−1/2

 <ĝS,T (x, y;ω)−<gS(x, y;ω)

=ĝS,T (x, y;ω)−=gS(x, y;ω)

 D→ N
(
0, I2

)
where

VT,b(x, y;ω) =
T∑
k=1

KM(ω − ωk)2

 Ab(x, y;ωk) Cb(x, y;ωk)

Cb(x, y;ωk) Bb(x, y;ωk)

 ,

Ab(x, y;ωk) =
1

2
(gb(x, x;ωk)gb(y, y;ωk) + cb(x, y;ωk)

2 − qb(x, y;ωk)
2),

Bb(x, y;ωk) =
1

2
(gb(x, x;ωk)gb(y, y;ωk) + qb(x, y;ωk)

2 − cb(x, y;ωk)
2),
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and

Cb(x, y;ωk) = cb(x, y;ωk)qb(x, y;ωk).

Using the theorem above and that W̄b(x)W̄b(y)
P→ f(x)f(y) the asymptotic normality

of the standardized association density immediately follows.

Corollary III.1 Let us suppose that Assumption III.1 holds (with α > 14), f(x) > 0,

f(y) > 0, b−1 << M and
√

b2T
M

(
M1/2

b5/2T
+ b2

)
→ 0. Then for 0 < ω < π we have

f(x)f(y)VT,b(x, y;ω)−1/2

 <ĥS,T (x, y;ω)−<hS(x, y;ω)

=ĥS,T (x, y;ω)−=hS(x, y;ω)

 D→ N
(
0, I2

)
,

where VT,b(x, y;ω) is defined in Theorem III.1.

The above results allow us to make piecewise confidence intervals for gS(·) and hS(·).

4. Simulations

In this section we conduct a simulation study. In order to see the convergence

of asymptotic normality of the estimators, we construct the pointwise confidence

intervals using Theorem III.1 Corolloary III.1. We consider two AR(1) model Xt =

φXt−1 + εt, φ = 0.9, 0.6, where {εt} iid standard Gaussian random variables. In our

simulations we use the Bartlett window for λM(·) and Epanechnikov kernel for W (·)

and b was set as T−1/13.

In Figure 15, 16 17 and 18 we plot the the confidence intervals and their true

values. The confidence intervals for <gS are on the diagonal and lower triangle and

for =gS on the upper triangle. In these all plots, we could see that the confidence

intervals captures the true values fairly well with moderate sample sizes confirming

the asymptotic normality.
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Fig. 15. The confidence intervals of gS in Xt = 0.6Xt−1 + εt; (Left) T = 100, (Right)

T = 200
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Fig. 16. The confidence intervals of hS in Xt = 0.6Xt−1 + εt; (Left) T = 100, (Right)

T = 200
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Fig. 17. The confidence intervals of gS in Xt = 0.9Xt−1 + εt; (Left) T = 100, (Right)
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Fig. 18. The confidence intervals of hS in Xt = 0.9Xt−1 + εt; (Left) T = 100, (Right)

T = 200
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5. Proofs

5.1. Proof of Lemma III.2

The proof of Lemma III.2 (i) hinges on the relationship between the distribution

function and the density function. We define the function H such that H(x, y) =

G(X ≤ x, Y ≤ y). Using this, we recall that the partial derivatives of H are defined

as

∂H(x, y)

∂x
= lim

h→0

1

h

(
H(x+ h, y)−H(x, y)

)
= lim

h→0

1

h
G(x ≤ X ≤ x+ h, Y ≤ y)

∂2H(x, y)

∂x∂y
= lim

h1→0
h2→0

1

h1h2

({
H(x+ h1, y + h2)−H(x, y + h2)

}
−

{
H(x+ h1, y)−H(x, y)

})
= lim

h1→0
h2→0

1

h1h2

G(x ≤ X ≤ x+ h1, y ≤ Y ≤ y + h2). (3.6)

We now use the above to prove (i). We recall the definition of fr(x, y)− f(x)f(y) is

fr(x, y)− f(x)f(y) =
∂2Fr(x, y)

∂x∂y
− ∂2F (x)F (y)

∂x∂y
.

Let H(x, y) = G(X0 ≤ x,Xr ≤ y) = P (X0 ≤ x,Xr ≤ y) − P (X0 ≤ x)P (Xr ≤ y).

Under Assumption III.1(ii), for all h1 and h2, we have the following bound

|G(x ≤ X0 ≤ x+ h1, y ≤ Xr ≤ y + h2)|

≤ CP (x ≤ X ≤ x+ h1)P (y ≤ Xr ≤ y + h2)|r|−s.

Therefore, by substituting the above into (3.6), and letting h1, h2 → 0, we have the

required result.

To prove Lemma III.2 (ii) we use the bound of Lemma III.2 (i) in the definition
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of cov
(
Wb(x−X0),Wb(y −Xr)

)
to give

∣∣cov
(
Wb(x−X0),Wb(y −Xr)

)∣∣
=

∣∣∣∣ ∫ ∞
−∞

∫ ∞
−∞

1

b2
W (

x− z1

b
)W (

y − z2

b
)
(
fr(z1, z2)− f(z1)f(z2)

)
dz1dz2

∣∣∣∣
≤ C|r|−s

∫ ∫
1

b2
W (

x− z1

b
)W (

y − z2

b
)f(z1)f(z2)dz1dz2

≤ CE
(1

b
W (

x−X0

b
)
)
E
(1

b
W (

y −X0

b
)
)
|r|−s,

as desired.

The proof of Lemma III.2 (iii) follows immediately from Lemma III.2 (i).

5.2. Proof of Lemma III.3

We first observe that

Jb,T (x;ωk)Jb,T (y;ωk)− J̃b,T (x;ωk)J̃b,T (y;ωk)

=

 0 ωk 6= 0, π

T
(
W̄b(x)− E(Wb(x−X0))

)(
W̄b(y)− E(Wb(y −X0))

)
otherwise

.

Substituting the above into g̃S,T (x, y;ωs)− ĝS,T (x, y;ωs) gives

g̃S,T (x, y;ωs)− ĝS,T (x, y;ωs)

= TKM(ω)
(
W̄b(x)− E(Wb(x−X0))

)(
W̄b(y)− E(Wb(y −X0))

)
.

Using supx E
(
W̄b(x)−E(Wb(x−X0))

)2
= O( 1

bT
) and KM(·) = O(M

T
) , we obtain the

required result. �

5.3. Proof of Lemma III.4

To prove Lemma III.4, we first prove the following lemma which gives the bound

on the k−th order cumulant of {1
b
W (x−Xt

b
)} and its summation.
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Lemma III.8 Let us suppose that Assumption III.1(i) is satisfied with the mixing

size α > 2k.

(i) Then for 0 = t0 ≤ t1 ≤ . . . ≤ tk, the (k + 1)-th order cumulant is

∣∣cum
(1

b
W (

z0 −X0

b
),

1

b
W (

z1 −Xt1

b
), . . . ,

1

b
W (

zk −Xtk

b
)
)∣∣

≤ C min

(
1

bk−s
,

1

bk+1

k∏
i=1

|ti − ti−1|−α/k
)

where s are the number of different {ti}ki=1 (for example, if ti are all different,

then s = k, on the other hand if all are the same then s = 0).

(ii) Moreover

∞∑
t1,...,tk=−∞

∣∣cum
(1

b
W (

z0 −X0

b
),

1

b
W (

z1 −Xt1

b
), . . . ,

1

b
W (

zk −Xtk

b
)
)∣∣ ≤ 1

bk
.

PROOF. We first prove (i). To prove the first part of the inequality on the RHS

we treat cum
(

1
b
W ( z0−X0

b
), 1

b
W (

z1−Xt1
b

), . . . , 1
b
W (

zk−Xtk
b

)
)

as an integral. Let us sup-

pose that the distinct (X0, Xt1 , . . . , Xtk) are (X0, . . . , Xrs) and the joint densities of

(X0, Xt1 , . . . , Xrs) are bounded, then by a change of variables it is straightforward to

show that

∣∣cum
(1

b
W (

z0 −X0

b
),

1

b
W (

z1 −Xt1

b
), . . . ,

1

b
W (

zk −Xtk

b
)
)∣∣ ≤ C

bk−s
.

To obtain the second bound on the RHS we use Statulevicius and Jakimavicius (1988),

Theorem 3, part (1a), where it is shown that for every ti we have

∣∣cum
(1

b
W (

z0 −X0

b
),

1

b
W (

z1 −Xt1

b
), . . . ,

1

b
W (

zk −Xtk

b
)
)∣∣

≤ C
k!

bk+1(k + 1)
max
x
|W (x)|k+1|ti+1 − ti|−α.
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Taking the k-th root of the above and applying it to every ti we obtain the second

bound on the RHS of (i).

We start to prove (ii) by partitioning the summand

∞∑
t1,...,tk=−∞

∣∣cum
(1

b
W (

z0 −X0

b
),

1

b
W (

z1 −Xt1

b
), . . . ,

1

b
W (

zk −Xtk

b
)
)∣∣

=
k∑
s=0

Cs
∑

t1<...<ts

∣∣cum
(1

b
W (

z0 −X0

b
),

1

b
W (

z1 −Xt1

b
), . . . ,

1

b
W (

zs −Xts

b
)
)∣∣

≤
k∑
s=0

Cs
∑

0<t1<...<ts

min

(
1

bk−s
,

1

bk+1

k∏
i=1

|ti − ti−1|−α/k
)
,

where {Cs} are finite constants. Considering the inner summand of the above term,

for all h > 0 we obtain the bound

∑
0<t1<...<ts

min

(
1

bk−s
,

1

bk+1

k∏
i=1

|ti − ti−1|−α/k
)

≤
∑
r1,...,rs

min

(
1

bk−s
,

1

bk+1

k∏
i=1

|ri|−α/k
)

≤
h∑

r1,...,rs=1

1

bk−s
+

∑
r1, or ,r2, or ,...,rs>h

1

bk+1

k∏
i=1

|ri|−α/k

≤
(
hs

bk−s
+
h−α/k+1

bk+1

)
.

As the above bound holds for all h, let h = b−1, this gives the bound

∑
0<t1<...<ts

min

(
1

bk−s
,

1

bk+1

k∏
i=1

|ti+1 − ti|−α/k
)
≤ C

( 1

bk
+
bα/k−1

bk+1

)
.

Thus, by assumption we have α > 2k which gives

∞∑
t1,...,tk=∞

∣∣cum
(1

b
W (

z0 −X0

b
),

1

b
W (

z0 −Xt1

b
), . . . ,

1

b
W (

zk −Xtk

b
)
)∣∣ ≤ C

bk
,

which gives the desired result. �
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PROOF of Lemma III.4 To prove (i), we expand cov
(
J̃b,T (x;ωk1), J̃b,T (y;ωk2)

)
cov
(
J̃b,T (x;ωk1), J̃b,T (y;ωk2)

)
=

1

T

T∑
t,τ=1

cov
(
Wb(x−Xt),Wb(y −Xτ )

)
exp(itωk1 − iτωk2)

=
T−1∑

r=−(T−1)

[{
cov
(
Wb(x−X0),Wb(y −Xr)

)
exp(−irωk2)

}
×

{ 1

T

min(T,T−r)∑
t=max(1,1−r)

exp(it(ωk1 − ωk2))
}]

=
T−1∑

r=−(T−1)

[{
cov
(
Wb(x−X0),Wb(y −Xr)

)
exp(−irωk2)

}
×

{ 1

T

T∑
t=1

exp(it(ωk1 − ωk2))
}]

+O(
1

T
)

=


∑T−1

r=−(T−1) cov
(
Wb(x−X0),Wb(y −Xr)

)
exp(−irωk2) +O( 1

T
) ωk1 = ωk2

O( 1
T

) ωk1 6= ωk2

For k1 = k2, we obtain

|gb(x, y;ωk1)− cov
(
J̃b,T (x;ωk1), J̃b,T (y;ωk1)

)
|

≤
∑
|r|≥T

|cov
(
Wb(x−X0),Wb(y −Xr)

)
|+O(

1

T
)

≤ C ·
∑
|r|≥T

|r|−s +O(
1

T
)

= O(
1

T
).
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To prove (ii), we use Lemma IV.1 (ii) with k = 3, and this gives

∣∣cum(J̃b,T (x;wk1), J̃b,T (y;−wk1), J̃b,T (x;wk2), J̃b,T (y;−wk2))
∣∣

≤ 1

(2πT )2

T∑
t1,t2,t3,t4=1

∣∣cum(Wb(x−Xt1),Wb(x−Xt2),Wb(y −Xt3),Wb(x−Xt4))
∣∣

= O(
1

b3T
).

�

5.4. Proof of Lemma III.5

We introduce a quantity comparable to g̃S,T (·), since its asymptotic variance

could be obtained easier than g̃S,T (·). Let

g̃b,T (x, y;ω) =
∑
k

KM(ω − ωk)J̃b,T (x;ωk)J̃b,T (y;ωk).

In the following lemma we show that the variance of g̃S,T (·) and g̃b,T (·), are asymp-

totically equivalent, and in Lemma we obtain the variance and the covariance of

g̃S,T (·).

Lemma III.9 Suppose Assumption III.1(i,ii,v) is satisfied with α > 6 and b−1 <<

M . Then we have

var
(
g̃S,T (x, y;ω)

)
= var(g̃b,T

(
x, y;ω)

)
+O(

M1/2

b5/2T
)

PROOF. We recall that

g̃S,T (x, y;ω)

=
T∑
k=1

KM(ω − ωk)J̃b,T (x;ωk)J̃b,T (y;ωk)−
1

2π

(
c̃0(x, y) + W̄b(x)W̄b(y)

)
= g̃b,T (x, y;ω)− 1

2π

(
c̃0(x, y) + W̄b(x)W̄b(y)

)
(3.7)
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We now obtain the variance of c̃0(x, y) and W̄b(x)W̄b(y). We first note that

c̃0(x, y) =
2π

T

T∑
k=1

J̃b,T (x;ωk)J̃b,T (y;ωk) (3.8)

W̄b(x) =

√
2π

T
J̃b,T (x; 0) + E

(
Wb(x−X0)

)
. (3.9)

Combining the results of Lemma III.4 with (3.8), we obtain the bound for var(c̃0(x, y)).

var
(
c̃0(x, y)

)
=

(2π)2

T 2

(∑
k1,k2

cov
(
J̃b,T (x;ωk1), J̃b,T (x;ωk2)

)
cov
(
J̃b,T (y;−ωk1), J̃b,T (y;−ωk2)

)
+

∑
k1,k2

cov
(
J̃b,T (x;ωk1), J̃b,T (x;−ωk2)

)
cov
(
J̃b,T (y;−ωk1), J̃b,T (y;ωk2)

)
+

∑
k1,k2

cum
(
J̃b,T (x;ωk1), J̃b,T (x;−ωk1), J̃b,T (y;ωk2), J̃b,T (y;−ωk2)

))
= O(

1

b2T
+

1

b3T
) = O(

1

b3T
). (3.10)

To obtain the order of var(W̄b(x)W̄b(y)), we use (3.9).

var
(
W̄b(x)W̄b(y)

)
= (3.11)

var
(2π

T
J̃T (x; 0)J̃T (y; 0) +

√
2π

T
{J̃T (x; 0)E

(
Wb(y −X0)

)
+ J̃T (y; 0)E

(
Wb(x−X0)

)
}
)

With straightforward application of Lemma III.4, we find that

var
(
J̃T (x; 0)J̃T (y; 0)

)
= O(

1

b2
)

var
(
J̃T (x; 0)

)
= O(

1

b
).

Plugging the above bounds into (3.11) leads to

var
(
W̄b(x)W̄b(y)

)
= O(

1

bT
). (3.12)
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Therefore, expanding the expression (3.7) with the bounds in (3.10), (3.12) and

var
(
g̃S,T (x, y;ω)

)
= O( M

b2T
) gives us

var
(
g̃S,T (x, y;ω)

)
= var

(
g̃b,T (x, y;ω)

)
+

1

(2π)2

{
var(c̃0(x, y)) + var

(
W̄b(x)W̄b(y)

)}
+

1

2π

{
cov
(
g̃b,T (x, y;ω), c̃0(x, y)

)
+ cov

(
g̃b,T (x, y;ω), W̄b(x)W̄b(y)

)
+ cov

(
c̃0(x, y), W̄b(x)W̄b(y)

)}
= var(g̃b,T (x, y;ω)) +O(

1

b3T
) +O(

1

bT
)

+ O(
M1/2

bT 1/2
· 1

b3/2T 1/2
) +O(

M1/2

bT 1/2
· 1

b1/2T 1/2
) +O(

1

b3/2T 1/2
· 1

b1/2T 1/2
)

= var(g̃b,T (x, y;ω)) +O(
M1/2

b5/2T
)

which is the desired result. �

Lemma III.10 Suppose Assumption III.1(i-iii) is satisfied with α > 6, and b−1 <<

M . Then we have

(i)

var
(
g̃b,T (x, y;ω)

)
=

∑T
k=1KM(ω − ωk)2gb(x, x;ωk)gb(y, y;ωk) +O

(
1
b3T

)
0 < ω < π∑T

k=1 KM(−ωk)2
(
gb(x, x;ωk)gb(y, y;ωk) + |gb(x, y;ωk)|2

)
+O

(
1
b3T

)
ω = 0

(ii)

cov
(
g̃b,T (x, y;ω), g̃b,T (x, y;ω)

)
=

∑T
k=1 KM(ω − ωk)2gb(x, y;ωk)

2 +O
(

1
b3T

)
0 < ω < π∑T

k=1KM(−ωk)2
(
gb(x, x;ωk)gb(y, y;ωk) + gb(x, y;ωk)

2
)

+O
(

1
b3T

)
ω = 0



85

PROOF. We first prove var
(
g̃b,T (x, y;ω)

)
. By expanding var(g̃b,T (x, y;ω)) we have

var
(
g̃b,T (x, y;ω)

)
= I + II + III,

where

I =
T∑

k1,k2=1

KM(ω − ωk1)KM(ω − ωk2)

cov
(
J̃b,T (x;ωk1), J̃b,T (x;ωk2)

)
cov
(
J̃b,T (y;ωk1), J̃b,T (y;ωk2)

)
II =

T∑
k1,k2=1

KM(ω − ωk1)KM(ω − ωk2)

cov
(
J̃b,T (x;ωk1), J̃b,T (y;ωk2)

)
cov
(
J̃b,T (y;ωk1), J̃b,T (x;ωk2)

)
III =

T∑
k1,k2=1

KM(ω − ωk1)KM(ω − ωk2)

cum
(
J̃b,T (x;ωk1), J̃b,T (y;−ωk1), J̃b,T (x;ωk2), J̃b,T (y;−ωk2)

)
.

With Lemma III.4 (i), we obtain limiting expressions for I and II

I =
∑
k

KM(ω − ωk)2gb(x, x;ωk)gb(y, y;ωk) +O(
1

T
)

II =
∑
k

KM(ω − ωk)KM(ω − ωT−k)|gb(x, y;ωk)|2 +O(
1

T
)

=

 O( 1
T

) 0 < ω < π∑
kKM(ωk)KM(ωT−k)|gb(x, y;ωk)|2 +O( 1

T
) ω = 0

, and Lemma III.4 (ii) immedately gives the bound O( 1
b3T

) to III. This proves (i),

and the proof of (ii) is similar and we omit the details. �

We use Lemma III.9 and Lemma III.10 to prove Lemma III.5.
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PROOF of Lemma III.5 By using that

c̃S,T (x, y;ω) = <g̃S,T (x, y;ω) =
1

2

(
g̃S,T (x, y;ω) + g̃S,T (x, y;ω)

)
q̃S,T (x, y;ω) = =g̃S,T (x, y;ω) =

i

2

(
g̃S,T (x, y;ω)− g̃S,T (x, y;ω)

)
,

Lemma III.5 is an immediate corrolary from Lemma III.9 and III.10. �

5.5. Proof of Lemma III.6

Lemma III.11 Suppose Assumption III.1 (ii,iii,v) holds, then

E
(
g̃S,T (x, y;ω)

)
=

∫ ∫
1

b2
W (

x− u
b

)W (
y − v
b

)gS(u, v;ω)dudv +O
( 1

M s−1
+

1

T

)
.

Furthermore if Assumption III.1 (iv) is satisfied, then we have∣∣∣∣ ∫ ∫ Wb(x− u)Wb(y − v)gS(u, v;ω)dudv − gS(x, y;ω)

∣∣∣∣ = O(b). (3.13)

PROOF. To prove the result we observe that

E
(
g̃S,T (x, y;ω)

)
=

1

2π

∫ ∫
1

b2
W (

x− u
b

)W (
y − v
b

)

×
(∑

r 6=0

λ(
r

M
)(
T − |r|
T

){fr(u, v)− f(u)f(v)} exp(irω)− f(u)f(v)

)
dudv.

Using this expansion we have∣∣∣∣E(g̃S,T (x, y;ω)
)
−
∫ ∫

1

b2
W (

x− u
b

)W (
y − v
b

)gS(u, v;ω)dudv

∣∣∣∣ = I + II,
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where

I =
1

2π

∫ ∫
1

b2
W (

x− u
b

)W (
y − v
b

)

×
( ∑

0<|r|≤M

(
λ(

r

M
)(
T − |r|
T

)− 1
)
{fr(u, v)− f(u)f(v)} exp(irω)

)
dudv.

II =
1

2π

∫ ∫
1

b2
W (

x− u
b

)W (
y − v
b

)
∑
|r|>M

exp(irω){fr(u, v)− f(u)f(v)}dudv.

Thus we have the bounds

I ≤ C sup
u,v

∑
0<|r|≤M

∣∣λ(
r

M
)(
T − |r|
T

)− 1
∣∣∣∣fr(u, v)− f(u)f(v)

∣∣
II ≤ C sup

u,v

∑
|r|>M

∣∣fr(u, v)− f(u)f(v)
∣∣.

Finally, we use Lemma III.2(i) and that λ( r
M

) = 1− | r
M
|u to obtain

I ≤ C
M∑

r=−M

|λ(
r

M
)− 1||r|−(2+ε) +

C

T

M∑
r=−M

|rλ(
r

M
)| · |r|−s

≤ C
M∑

r=−M

| r
M
|u|r|−s +

C

T

M∑
r=−M

|r|−(s−1) = O(
1

M s
+

1

T
).

To bound II we use Lemma III.2(i) to obtain

|II| ≤ C ·
∑
|r|>M

|r|−s = O(
1

M s−1
).

The above bounds for I and II give the desired result.

To prove (3.13) we make a Taylor expansion of gS(u, v;ω) about (x, y) to give

gS(u, v;ω)− gS(x, y;ω)

= (u− x)
∂gS(x, y;ω)

∂x
c(x,y)=(x̄,ȳ) + (v − y)

∂gS(x, y;ω)

∂y
c(x,y)=(x̃,ỹ). (3.14)
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Now under Assumption III.1(iv), by exchanging sum and derivative, we have∣∣∣∣∂gS(x, y;ω)

∂x

∣∣∣∣ =

∣∣∣∣∑
r 6=0

(
∂fr(x, y)

∂x
− f(y)

∂f(x)

∂x

)
exp(irω) +

∂f(x)f(y)

∂x

∣∣∣∣
≤ K ·

∑
r 6=0

|r|−(1+ε) <∞.

and a similar bound holds for
∣∣∂g(x,y;ω)

∂y

∣∣. Plugging the above bounds into (3.14) leads

to ∣∣∣∣ ∫ ∫ 1

b2
W (

x− u
b

)W (
y − v
b

)
(
gS(u, v;ω)− gS(x, y;ω)

)∣∣∣∣dudv
≤ sup

x,y

∣∣∣∣∂gS(x, y;ω)

∂x

∣∣∣∣ ∫ ∫ 1

b2
W (

x− u
b

)W (
y − v
b

)|x− u|dudv

+ sup
x,y

∣∣∣∣∂gS(x, y;ω)

∂y

∣∣∣∣ ∫ ∫ 1

b2
W (

x− u
b

)W (
y − v
b

)|y − v|dudv

≤ C
(

sup
x,y

∣∣∣∣∂gS(x, y;ω)

∂y

∣∣∣∣+ sup
x,y

∣∣∣∣∂gS(x, y;ω)

∂x

∣∣∣∣)b,
where C is a finite constant. Thus we have (3.13). �

PROOF of Lemma III.6 The proof of Lemma III.6 follows immediately from

Lemma III.11. �

5.6. Proof of Theorem III.1

We now show asymptotic normality of g̃S,T (x, y, ω). To do so, we define the

partial sum

B
(u)
T,ST

=
1

T

ST+u∑
t=u+1

∑
τ 6=t

λ(
t− τ
M

)

(
Zb,t(x)Zb,τ (y)− E(Zb,t(x)Zb,τ (y))

)
exp(i(t− τ)ω)

(3.15)
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where Zb,t(x) = 1
b
W (x−Xt

b
) − E(1

b
W (x−Xt

b
)), and note that g̃S,T can be written as as

the quadratic form

g̃S,T (x, y;ω) =
1

2πT

T∑
t=1

∑
τ 6=t

λ(
t− τ
M

)Zb,t(x)Zb,τ (y) exp(i(t− τ)ω)

− 1

2π
E
(
Wb(x−X0)

)
E
(
Wb(y −X0)

)
. (3.16)

Lemma III.12 (i) Suppose Assumption III.1(i-iii,v) holds with α ≥ 6 and b−1 <<

M . Then we have

E
(√

Tb2

M
<B(u)

T,ST

)2

= O
(ST
T

)
E
(√

Tb2

M
=B(u)

T,ST

)2

= O
(ST
T

)
(ii) Suppose Assumption III.1 holds with α ≥ 14 and b−1 << M . Then we have

E
(√

Tb2

M
<B(u)

T,ST

)4

= O
(ST
T

)2 E
(√

Tb2

M
=B(u)

T,ST

)4

= O
(ST
T

)2
.

PROOF. The proof of (i) is a straightforward application of Lemma IV.1 for the case

k = 1 and k = 3, we omit the details.

We now prove (ii). Let κ4(X) denote the fourth order cumulant of the random

variable X, then we recall that

E
(√

Tb2

M
B

(u)
T,ST

)4

= 3var

(√
Tb2

M
B

(u)
T,ST

)2

+ κ4

(√
Tb2

M
B

(u)
T,ST

)
.

It follows from (i) that var
(√

Tb2

M
B

(u)
T,ST

)2
= O

(
ST
T

)2
. We now obtain a bound for

κ4

(√
Tb2

M
B

(u)
T,ST

)
. Expanding the cumulant we have

∣∣κ4

(
B

(u)
T,ST

)∣∣ =
1

T 4

ST+u∑
t1,t2,t2,t4=u+1

∑
τ1,τ2,τ3,τ4

∣∣λ(
t1 − τ1

M
)λ(

t2 − τ2

M
)λ(

t3 − τ3

M
)λ(

t4 − τ4

M
)
∣∣

×
∣∣cum(Yb,t1Zb,τ1 , Yb,t2Zb,τ2 , Yb,t3Zb,τ3 , Yb,t4Zb,τ4)

∣∣.
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We decompose
∣∣cum(Yb,t1Zb,τ1 , Yb,t2Zb,τ2 , Yb,t3Zb,τ3 , Yb,t4Zb,τ4)

∣∣ into the sum of indecom-

posable partitions (see, for example, Brillinger (1981)). Therefore, by using Lemma

IV.1 and b−1 << M we have that
∣∣κ4

(
B

(u)
T,ST

)∣∣ = o
(
ST
T

)2
. This together with (i) gives

(ii). �

The above is moments bound on the partial sums which will be useful for applying

the central limit theorem for quadratic forms of mixing random variables.

PROOF of Theorem III.1. To prove the result we note that g̃S,T (x, y, ω)

can be written as a quadratic form (see (3.16)). Using identical arguments to those

in Theorem IV.2, with Lemma III.12 on moments of partial sums replacing Lemma

IV.4, we can prove asymptotic normality of g̃S,T (x, y, ω). �
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CHAPTER IV

A NOTE ON GENERAL QUADRATIC FORMS OF NONSTATIONARY TIME

SERIES

1. Introduction

The study of the asymptotic theory of statistics often involves quadratic forms

which have the general form

WT =
1

T

T∑
t,τ=1

Gt,τh(Xt, Xτ ), (4.1)

where {Xt} is a stochastic process, h(·) is a function and {Gt,τ} are weights, which

vary according to the application. Various statistical methods depend on the asymp-

totic sampling distribution of above statistic.

In view of its importance, several authors have studied WT for the particular case

h(Xt, Xτ ) = XtXτ under various assumptions on the stochastic process {Xt}. For

example, Mikosch (1990), Götze and Tikhomirov (1999) and the references therein,

analysis WT under the assumption that {Xt} are iid random variables. Kokoszka and

Taqqu (1997) and Bhansali, Giraitis, and Kokoszka (2007) relax the independence

assumption and establish asymptotic normality of WT under the assumption that

{Xt} is a realisation from stationary, linear time series. Rosenblatt (1984) allows for

nonlinear time series, by assuming that {Xt} are α-mixing. In particular, he shows

asymptotic normality of WT under the assumption that {Xt} is a strictly stationary

α-mixing time series and has absolutely summability eight order cumulants. The

generalising to mixing random variables, allow {Xt} to be a non-linear time series, but
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the cumulant assumptions are quite strong. Recently, Gao and Anh (2000) relax the

moment assumptions by considering geometric mixing {Xt} and Lin (2009) considers

the case {Xt} is the sum of stationary α-mixing random variables. It should be

mentioned, that there are other methods for measuring dependence. For example,

Wu and Shao (2007) show asymptotic normality when {Xt} can be written as a

function of the innovations and satisfies the assumption of physical dependence. The

study of the general quadratic form given in (4.1) can also arise in several applications,

including nonparametric estimators, but has received less attention. One reason for

this is that techniques used in the articles mentioned above cannot be directly applied

to (4.1). Moreover, the underlying assumption in all the above references is that the

process {Xt} is strictly stationary.

In the analysis of nonstationary time series (which is possibly nonlinear), quadratic

forms of the above type do occur, for example estimators of the time-varying spectral

density involve quadratic forms (see, for example, Dahlhaus (2000) and Dwivedi and

Subba Rao (2011)). In this paper, our objective is to study the asymptotic theory of

general quadratic forms for nonstationary processes.

In Section 2 we show asymptotic normality of the general quadratic form under

some moment assumptions and α-mixing of the stochastic process (which includes

both nonstationary and nonlinear processes). By using Ibragimov-type inequalities

(see Statulevicius and Jakimavicius (1988)) which link cumulants to the mixing rate,

we avoid direct assumptions on the summability of the cumulants. The assumptions

allow the weights Gt,τ to also depend on T , thus including the case of spectral density

estimators. In Section 3 we derive some results on cumulants and moments of the

quadratic form. We use mixingale and near-epoch dependent methods to prove the

results in this section, these techniques may also be of independent interest. All the

proofs can be found in Section 4.
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2. The quadratic form

Let us suppose that {Xt,T ; 1 ≤ t ≤ T} is a time series which we do not assume

to be stationary. By allowing Xt,T to depend on T , the results below cover the case

of triangular arrays, and in particular allows for locally stationary time series. We

will assume that for all t, E(Xt,T ) = 0 and for all t, T 0 < var(Xt,T ) < ∞. This

condition excludes degenerate cases by ensuring that {Xt,T} does not converge to a

non-random sequence but always has a bounded variance. In this paper we consider

general quadratic forms of the type

QT =
1

T

T∑
t,τ=1

Gt,τh(Xt,T , Xτ,T ), (4.2)

where we do not impose any conditions on the function h : R2 → R. By allowing this

amount of generality on h(·), we need to assume that the weights Gt,τ decay to zero,

in the sense that supt,T
∑

τ |Gt,τ | <∞. For example, if h(Xt,T , Xτ,T ) = (Xt,T +Xτ,T ),

then for the variance of QT to decay to zero as T →∞, we require such a condition

on the weights. In order to relax this condition on the weights {Gt,τ}, a stronger

condition on h(·) is required. Therefore, in addition to the above, we will also consider

quadratic forms which have the multiplicative form h(Xt,T , Xτ,T ) = Xt,TXτ,T :

QT,M =
1

T

T∑
t,τ=1

Gt,τ,MXt,TXτ,T (4.3)

where for some 0 < α < 1, M := M(T ) = Tα, and for |t− τ | > M , then Gt,τ,M = 0.

We now state some conditions, which we use to prove asymptotic normality of

QT and QT,M .

Assumption IV.1 (i) Let us suppose that {Xt,T} is an α-mixing time series such
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that

sup
k

sup
A∈σ(Xt+k,T ,Xt+1+k,T ,...)
B∈σ(Xk,T ,Xk−1,T ,...)

|P (A ∩B)− P (A)P (B)| ≤ α(t),

where α(t) are the mixing coefficients which satisfy α(t) ≤ K|t|−s for some

s > 0.

(ii) (a) For QT defined in (4.2), we suppose |Gt,τ | ≤ C|t− τ |−δ (δ > 2) and c1
G
T
≤

var(QT ) ≤ c2
G
T

(for some 0 < c1 ≤ c2 < ∞), were G = supt
∑

τ |Gt,τ | <

∞.

(b) For QT,M defined in (4.3), we suppose that Gt,τ,M = 0 for |t− τ | > M and

for all T , c1
GM
T
≤ var(QT,M) ≤ c2

GM
T

(for some 0 < c1 ≤ c2 < ∞), where

GM = supt
∑

τ |Gt,τ,M |2 and infM GM > 0.

(iii) (a) For some r > 2s/(s− 2) > 0, we have supt,τ,T E|h(Xt,T , Xτ,T )|r <∞.

(b) For some r > 4s/(s− 6) > 0, we have supt,T E|Xt,T |r <∞.

Before stating the asymptotic sampling properties of the the quadratic forms, some

comments on the assumptions are in order. To prove asymptotic normality of QT and

QT,M we have to treat the cases differently and use a slightly different set of conditions.

This is primarily because we need to obtain moment bounds for each of these terms

(see Lemmas IV.2 and IV.3 in Section 3). The details can be found in Section 4 but

to give a flavour of the methods, to bound QT we treat {
∑

τ Gt,τh(Xt,T , Xτ,T )}t as a

stochastic process with decaying dependence structure and use the notion of L2-NED

together with martingale methods to obtain the moment bounds. However, in the case

of QT,M , despite Assumption IV.1 (i, ii (b)) (in particular the mixing and Gt,τ,M = 0

for |t− τ | > M) implying that the dependence in the sequence {
∑

τ Gt,τ,MXt,TXτ,T}

decays the further apart the ts, the same methods used to bound QT , when applied
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to QT,M gives sub-optimal bounds. Instead we use iterative martingale methods to

obtain the optimal moment bounds for QT,M . We observe that in the case that

|Gt,τ | ≤ C|t − τ |−δ (δ > 2) and g(Xt,T , Xτ,T ) = Xt,TXτ,T , then Assumption IV.1

(iii (a)) is slightly weaker than Assumption IV.1 (iii (b)). As the assumptions on

QT,M allow
∑

τ |Gt,τ,M | → ∞ as T →∞, we require that the fourth order cumulants

are absolutely summable, see Remark IV.1 below. Finally, several time series, both

stationary and nonstationary, satisfy the α-mixing conditions given in Assumption

IV.1(i), see, for example, Tjøstheim (1990), Doukhan (1994), Cline and Pu (1999),

Bradley (2007) and Fryzlewicz and Subba Rao (2011).

Remark IV.1 (i) The variance of QT,M is

var(QT,M) =
1

T 2

T∑
t1,τ1=1

T∑
t2,τ2=1

Gt1,τ1,MGt2,τ2,M

[
cov(Xt1,T , Xt2,T )cov(Xτ1,T , Xτ2,T ) +

cov(Xt1,T , Xτ2,T )cov(Xτ1,T , Xt2,T ) + cum(Xt1,T , Xτ1,T , Xt2,T , Xτ2,T )

]
. (4.4)

(ii) If GM = O(Tα) (where 0 < α < 1), it can be shown that under Assumption

IV.1(iiib) the fourth order cumulant term in (4.4) is asymptotically negligible

with respect to the covariances terms.

We now derive the limiting distribution of QT and QT,M .

Theorem IV.1 Suppose Assumption IV.1(i, ii (a), iii (a)) is satisfied. Let var(QT ) =

VT , then we have V
−1/2
T

(
QT − E(QT )

) D→ N (0, 1) as T →∞.

Theorem IV.2 Suppose Assumption IV.1(i, ii (b), iii (b)) is satisfied. Let var(QT,M) =

VT , then we have V
−1/2
T

(
QT,M − E(QT,M)

) D→ N (0, 1) as T →∞.

The above results are for quadratic forms of univariate time series. As multi-

variate time series arise in several applications we now give an analogous result for
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multivariate time series, noting that the proof is almost identical to the univariate

case.

Corollary IV.1 Let us suppose that {X t,T} is a d-dimensional vector time series,

which is mixing

sup
k

sup
A∈σ(Xt+k,T ,Xt+1+k,T ,...)

B∈σ(Xk,T ,Xk−1,T ,...)

|P (A ∩B)− P (A)P (B)| ≤ α(t),

where α(t) are the mixing coefficients and are such that α(t) ≤ K|t|−s where s > 0,

and suppose there exists some r > 4s
s−6

, such that supt,T E(
∑d

j=1 |Xt,T,j|)r <∞ (where

| · | denotes the Euclidean norm of a vector or matrix). Define the quadratic form

QT =
1

T

T∑
t,τ=1

X ′t,TGt,τ,MXτ,T ,

where {Gt,τ,M} is a d × d matrix which satisfies Gt,τ,M = 0 (for |t − τ | > M). We

assume there exists 0 < c1 ≤ c2 < ∞ such that c1GM/T ≤ var(QT ) ≤ c2GM/T

(GM = supt
∑

τ |Gt,τ,M |). Then we have V
−1/2
T (QT − E(QT ))

D→ N (0, 1), where VT =

var(QT ).

3. Some bounds on cumulants and moments

In this section we state some bounds on the sums of moments and cumulants.

These results will be used to prove Theorems IV.1 and IV.2. We mention that the

techniques used in the proof of the results may also be of independent interest.

The following two lemmas concern summability of the higher order cumulants

of a stochastic process. We first state a bound for the sum of cumulants based on

the mixing rate. This result is motivated by Neumann (1996), Remark 3.1. Let

‖X‖p = (E(|X|p)1/p and K denote a finite generic constant.
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Lemma IV.1 Let us suppose that {Xt,T} is a α-mixing time series with rate {α(t)}.

If t1 ≤ t2 ≤ . . . ≤ tk, then we have

(i)

|cum(Xt1,T , . . . , Xtk,T )| ≤ Ck sup
t,T
‖|Xt,T‖kr

k∏
i=2

α(ti − ti−1)
1−k/r
k−1 , (4.5)

(ii)

sup
t1

∞∑
t2,...,tk=1

|cum(Xt1,T , . . . , Xtk,T )|

≤ Ck sup
t,T
‖Xt,T‖kr

(∑
t

α(t)
1−k/r
k−1

)k−1
<∞, (4.6)

(iii) For all 2 ≤ j ≤ k, we have

sup
t1

∞∑
t2,...,tk=1

(1 + |tj|)|cum(Xt1,T , . . . , Xtk,T )|

≤ Ck sup
t,T
‖Xt,T‖kr

(∑
t

α(t)
1−k/r
k−1

)k−1
<∞, (4.7)

where Ck is a finite constant which depends only on k.

Using the lemma above, the following corollary on the absolute summability of

the fourth order cumulants immediately follows.

Corollary IV.2 Suppose that {Xt,T} is a α-mixing time series which satisfies As-

sumption IV.1(i), where α(t) ≤ K · |t|−s.

(i) Let us suppose that r > 4s/(s − 3) and supt,T E|Xt,T |r < ∞, then we have

|cov(Xt,T , Xτ,T )| ≤ C|t− τ |−
(s+3)

2 and

supt1
∑∞

t2,t3,t4=−∞ |cum(Xt1,T , Xt2,T , Xt3,T , Xt4,T )| <∞.

(ii) Let us suppose that r > 4s/(s − 6) and supt,T E|Xt,T |r < ∞, then we have

|cov(Xt,T , Xτ,T )| ≤ C|t− τ |−
(s+6)

2 and for all 2 ≤ j ≤ 4,
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supt1
∑∞

t2,t3,t4=−∞(1 + |tj|)|cum(Xt1,T , Xt2,T , Xt3,T , Xt4,T )| <∞.

It is worth mentioning that Assumption IV.1 (ii (a)) is weaker than those in Corollary

IV.2, this is because we do not require absolute summability of the fourth order

cumulants in order for var(QT ) = O(T−1).

In order to use a blocking argument to prove Theorems IV.1 and IV.2, we need

to partition the data such that QT can be written as a sum of random variables which

are non-intersecting. This is immediately possible with QT,M but not QT , Thus we

now define a close approximation of QT which satisfies this condition. Let

Q̃T,M =
1

T

T∑
t,τ=1

I(
t− τ
M

)Gt,τh(Xt,T , Xτ,T ) (4.8)

where M = T 1/2+γ for some 0 < γ < 1/2 and I(x) = 1 for x ∈ [−1, 1] and zero

elsewhere. Since |Gt,τ | ≤ K|t− τ |−δ (δ > 2) we have

QT = Q̃T,M +Op(T
−1/2−γ), (4.9)

and var(
√
TQT ) = var(

√
TQ̃T,M) + O(T−γ). We will show that var(

√
TQT ) = O(1),

thus QT and the truncated Q̃T,M are asymptotically equivalent. The results concern-

ing Q̃T,M and QT,M are largely the same, the only difference are the proofs, thus to

unify notation, we let QT,M := Q̃T,M and Gt,τ,M = I( t−τ
M

)Gt,τ , and state under what

conditions we obtain the each result.

We now define sub-blocks of QT,M , which will be used to prove Theorem IV.2.

Let

Yt,T =
∑
τ<t

Gt,τ,Mh(Xt,T , Xτ,T ) +
∑
τ≤t

Gτ,t,Mh(Xτ,T , Xt,T ). (4.10)
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In the case that h(Xt,T , Xτ,T ) = Xt,TXτ,T the above is

Yt,M =
t∑

τ=1

Ft,τ,MXt,TXτ,T where Ft,τ,M =

 Gt,t,M t = τ

(Gt,τ,M +Gτ,t,M) t 6= τ
.

To use the Bernstein blocking argument we define a sub-block of ST . Let

B
(u)
T,ST

=
1

T

ST+u∑
t=u+1

Yt,T , (4.11)

noting that B
(0)
T,T = QT,M . Lemma IV.1 can be used to obtain bounds for var(B

(u)
T,ST

)

and other integer moments of B
(u)
T,ST

. However, in order to prove asymptotic normality

under relatively weak assumptions we will require bounds on non-integer moments of

B
(u)
T,ST

, which use more subtle arguments. The actual proof used to obtain the bounds

differs, depending on whether we use Assumption IV.1 (ii (a), iii (a)) or IV.1 (ii (b),

iii (b)). Thus we state the results separately.

Lemma IV.2 Suppose Assumption IV.1 (i, ii(a), iii(a)) holds and let

Ft = σ(Xt,T , Xt−1,T , . . .). If supt,τ,T ‖h(Xt,T , Xτ,T )‖r <∞ for some r > q , then

∥∥Yt,T − E(Yt,T |Ft−j)
∥∥
q

≤ K

(
j−(δ−1) sup

τ
‖h(Xt,T , Xτ,T )‖q + sup

τ
‖h(Xt,T , Xτ,T )‖rj−s(

1
q
− 1
r

)

)
, (4.12)

and almost surely Yt,T =
∑

j Nj,T (t− j) where

Nj,T (t− j) = E(Yt,T |Ft−j)− E(Yt,T |Ft−j−1).

Let q ≥ 2 and B
(u)
T,ST

be defined as in (4.11). Suppose the above conditions are satisfied,

then we have

∥∥B(u)
T,ST

∥∥
q
≤ KT−1S

1/2
T

∞∑
j=1

(
1

jδ−1
+

1

js(
1
q
− 1
r

)

)
. (4.13)
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Lemma IV.3 Suppose Assumption IV.1 (i, ii(b), iii (b)) hold and let

Ft,T = σ(Xt,T , Xt−1,T , . . .) and denote E(Z|Fj,T ) = Ej(Z). If for some r > q we have

supt,T ‖Xt,T‖r <∞, then we obtain the bound

‖Et−j(Xt,T )− Et−j−1(Xt,T )‖q ≤ 4(21/q + 1)α(j)
1
q
− 1
r ‖Xt,T‖r, (4.14)

and Xt,T almost surely admits the representation

Xt,T =
∞∑
j=0

(
Et−j(Xt,T )− Et−j−1(Xt,T )

)
.

Let Mj(t − j) = Et−j(Xt,T ) − Et−j−1(Xt,T ). If for some r̃/2 > r > q we have

supt,T ‖Xt,T‖r̃ <∞, then

∥∥Et−j1−i(Mj1(t− j1)Mj2(t− j1))− Et−j1−i−1(Mj1(t− j1)Mj2(t− j1))
∥∥
q

≤ K‖Xt,T‖2
r̃α(j1)

1
2r
− 1
r̃α(j2)

1
2r
− 1
r̃α(i)

1
q
− 1
r . (4.15)

Let q ≥ 2 and B
(u)
T,ST

be defined as in (4.11). If there exists, an r̃, such that

supt,T ‖Xt,T‖r̃ <∞, where r̃/2 > r > q, then we have

∥∥B(u)
T,ST

∥∥
q
≤ KT−1S

1/2
T

[
G

1/2
M

( ∞∑
j=1

1

js(
1
2q
− 1
r

)

)2
+
( ∞∑
j=1

1

js(
1
q
− 1
r

)

)( ∞∑
j=1

1

js(
1
2r
− 1
r̃

)

)2
]
(4.16)

A simple application of the lemmas above is to derive bounds for the moments

of the quadratic form QT,M (since QT,M is a special case of B
(u)
T,ST

, with u = 0 and

ST = T ). By using the arguments in Lemma IV.4, below, it can be shown that for

some ε > 0, we have ‖QT,M‖2+ε ≤ K/T 1/2 (under Assumption IV.1 (i, ii (a), iii (a))

and ‖QT,M‖2+ε ≤ KG
1/2
M /T 1/2 (under Assumption IV.1 (i, ii (b), iii (b)).
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4. Proofs

4.1. Proofs of results in Section 2

To do the analysis, we start by rewriting QT,M − E(QT,M) as

QT,M − E(QT,M) =
1

T

T∑
t,τ=1

Gt,τ,M

(
h(Xt,T , Xτ,T )− E(h(Xt,T , Xτ,T )

)
=

T∑
t=1

Yt,T ,

where Yt,T is defined in (4.10). To prove asymptotic normality we use a classical

Bernstein blocking argument. Here we partition {Yt,T ; t = 1, . . . , T} into the sum

of small and large blocks. Let Ui,T and Vi,T denote the big blocks and small blocks

respectively, where

Ui,T =

irT+pT∑
t=irT+1

Yt,T , Vi,T =

(i+1)rT∑
t=irT+pT+1

Yt,T ,

pT >> qT >> M and rT = (pT + qT ). Let kT = T/(pT + qT ) and qT/(pT + qT ) → 0

as T → ∞. For the purpose of proving the results below we wil assume that kT =

O((log T )1/2). Using the above notation we let QT,M − E(QT,M) = SkT +RkT , where

SkT =

kT∑
i=1

Ui,T and RkT =

kT∑
i=1

Vi,T .

Since pT >> qT , we will show that var
(√

T
GM
RkT ) → 0. We first obtain moment

bounds for {Ui,T} and {Vi,T}. We note that under Assumption IV.1 (i, ii (a), iii (a)),

that GM := G ≤ K
∑∞

j=1 j
−δ <∞.

Lemma IV.4 Let us suppose Assumptions IV.1 holds. Then for some δ > 0 we have

∥∥Ui,T∥∥2+δ
= O

(p1/2
T G

1/2
M

T

) ∥∥Vi,T∥∥2+δ
= O

(q1/2
T G

1/2
M

T

)
. (4.17)

PROOF. We use Lemmas IV.2 and Lemma IV.3 to prove the result, with pT = ST

and u = irT . We first prove the result under Assumption IV.1 (i,ii (a),iii (a)). By
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applying Lemma IV.2 for q = 2 + δ and r > 2 + δ we have

∥∥B(u)
T,ST

∥∥
2+δ

≤ K sup
t,τ,T
‖g(Xt,T , Xτ,T )‖rT−1S

1/2
T

∞∑
j=1

(
1

jδ−1
+

1

js(
1

2+δ
− 1
r

)

)
.

Thus the above bound is finite for r > s(2 + δ)/(s − 2 − δ). In other words, if

r > 2s/(s − 2), there exists a δ, such that
∥∥B(u)

T,ST

∥∥
2+δ

= O(
q
1/2
T G

1/2
M

T
). To apply

Lemma IV.3 for q = 2 + δ, then for some r̃/2 > r > 2 + δ we have

∥∥Ui,T∥∥2+δ

≤ KT−1p
1/2
T ‖Xt,T‖r̃

(
G

1/2
M

( ∞∑
j=1

1

js(
1

2(2+δ)
− 1
r̃

)

)2
+
( ∞∑
j=1

1

js(
1

(2+δ)
− 1
r

)

)( ∞∑
j=1

1

js(
1
2r
− 1
r̃

)

)2
)
.

In order to ensure that the right hand side of the above is finite, r̃ should satisfy the

conditions

1

2(2 + δ)
− 1

r̃
>

1

s
,

1

2 + δ
− 1

r
>

1

s
and

1

2r
− 1

r̃
>

1

s
,

which implies

r̃ >
2(2 + δ)s

(s− 2(2 + δ)
and r̃ >

2s(2 + δ))

(s− 3(2 + δ)
. (4.18)

Thus by Assumption IV.1 (iii (b)) (we recall there exists an r such that r > 4s/(s−6)

and supt,T ‖Xt,T‖r <∞), there exists a r̃ and δ > 0, such that (4.18) is satisfied. Thus

for both cases, (4.17) holds for some δ > 0. The proof of
∥∥Vi,T∥∥2+δ

= O
( q1/2T G

1/2
M

T

)
is

the same, hence we omit the details. �

We now show that the contribution of the sum of small blocks, RkT , is negligible

with respect to the entire sum QT,M − E(QT,M).

Lemma IV.5 Suppose Assumption IV.1 holds and qT/(pT + qT ) → 0 as T → ∞.
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Then we have

∣∣cov
(
Vi1,T , Vi2,T

)∣∣ ≤ Cα

(
|i1 − i2|pT −M

)1− 2
2+δ (GMqT

T 2

)
(4.19)

and

var

(√
T

GM

RkT

)
≤ C

qT
(pT + qT )

→ 0, (4.20)

as T →∞, where C is a finite constant.

PROOF. Define the sigma-algebras G∞i2 = σ(Yi2rT+pT+1,T , Yi2rT+pT+2,T , . . .) and

Gi1−∞ = σ(Y(i1+1)rT ,T , Y(i1+1)rT−1,T , . . .). To prove (4.19) for i2 > i1 we use Ibragimov’s

inequality to obtain

∣∣cov
(
Vi1,T , Vi2,T

)∣∣ ≤ C
{

sup
A∈G∞i2 ,B∈G

i1
−∞

∣∣P (A ∩B)− P (A)P (B)
∣∣}1− 2

2+δ
∥∥Vi1,T‖2

2+δ

≤ C
{
α
(
(i2 − i1 − 1)rT + pT + 1−M

)}1− 2
2+δ
∥∥Vi1,T‖2

2+δ

≤ Cα
(
(i2 − i1)pT −M

)1−2/(2+δ)∥∥Vi1,T‖2
2+δ. (4.21)

This gives (4.19).

To prove (4.20) we substitute (4.19) into var(RkT ) =
∑kT

i1,i2=1 cov
(
Vi1,T , Vi2,T

)
and use that ‖Vi,T‖2+δ = O(q

1/2
T G

1/2
M /T ) to get

var(

√
T

GM

RkT ) ≤ C
qT
T

( kT∑
i=1

1 + 2

kT∑
i1<i2

α
(
|i1 − i2|pT −M

)1−2/(2+δ)
)
.

Now by using that the mixing rate α(t) ≤ Kt−s and kT = T/(pT + qT ) we have

var(

√
T

GM

RkT ) ≤ K
qT

pT + qT

(
1 +

kT∑
r=1

(rpT −M)−s(1−
2

(2+δ)
)

)
≤ K

qT
pT + qT

(
1 + (pT −M)−s(1−

2
2+δ

)kT

)
.

Since kT = (log T )1/2, we have ((pT −M))−s(1−
2

2+δ
)kT <∞, which gives (4.20). �
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Using that QT,M = ST + RT and var(QT,M) := VT = O(GM
T

), the above result

implies that varQT,M
−1/2RT = o(1) and

V
−1/2
T (QT,M − E(QT,M)) = V

−1/2
T SkT + op(1). (4.22)

We now show normality of SkT . We do this by replacing SkT with S̃kT =
∑

i Ũi,T ,

where Ũi,T and Ui,T have identical distributions, but {Ũi,T} are independent random

variables. Below we show that the distributions of SkT and S̃kT are asymptotically

equivalent.

We require the following general theorem, which gives a bound on the differences

of characteristic functions of sums mixing and independent random variables. A

potentially useful aspect of this result, is that we allow for the mixing rate to change

with T .

Theorem IV.3 Suppose {Zt,T} is an α-mixing sequence which for t < τ+sT satisfies

sup
A∈σ(Zt,T ,Zt−1,T ,...)
B∈σ(Zτ,T ,Zτ+1,T ,...)

∣∣P (A ∩B)− P (A)P (B)
∣∣ ≤ a(|t− τ | − sT ). (4.23)

Let Wi,T =
∑irT+pT

t=irT+1 Zt,T , where rT = pT + qT and {W̃i,T} be independent random

variables where the marginal distributions of W̃i,T and Wi,T are the same. Then, for

any x ∈ R, we have∣∣∣∣E( exp(ix

kT∑
j=1

Wj,T )

)
−

kT∏
j=1

E
(

exp(ixW̃j,T )

)∣∣∣∣ ≤ CkTa(qT − sT ),

where C is a finite constant.
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PROOF. By expanding E
(

exp(ix
∑kT

j=1Wj,T )

)
−
∏kT

j=1 E
(

exp(ixW̃j,T )

)
, we have

DT =

∣∣∣∣E( exp(ix

kT∑
j=1

Wj,T )

)
−

kT∏
j=1

E
(

exp(ixW̃j,T )

)∣∣∣∣
≤

kT−1∑
s=1

∣∣ s−1∏
r=1

E
(

exp(ixWr,T )
)∣∣∣∣∣∣cov

(
exp(ixWs), exp(ix

kT∑
j=s+1

Wj)

)∣∣∣∣,
(to simplify notation we denote

∏0
r=1Ar = 1). From the definition of Wi,T and by

using Ibragimov’s inequality (for bounded random variables) it is straightforward to

show that

DT ≤
kT−1∑
s=1

sup
A∈σ(Z(s+1)rT+1,T ,Z(s+1)rT+2,T ,...)

B∈σ(ZsrT+pT ,T
,ZsrT+pT−1)

|P (A ∩B)− P (A)P (B)|
∣∣ ≤ CkTa(qT − sT ).

The above gives the required result. �

Lemma IV.6 Suppose that Assumption IV.1 holds, and we choose pT and qT such

that pT >> qT >> M and kT = (log T )1/2, where kT = T/(pT + qT ), then the

asymptotic distributions of V
−1/2
T (QT,M − E(QT,M)) and V

−1/2
T S̃kT are equivalent.

PROOF. From (4.22) we have V
−1/2
T (QT,M −E(QT,M)) = V

−1/2
T SkT + op(1). By using

Theorem IV.3 with Zt,T := Yt,T = T−1
∑t

τ=max(t−M,1) Ft,τ,M(Xt,TXτ,T − E(Xt,TXτ,T ))

and Wi,T := Ui,T we have

|ΦkT (x)− Φ̃kT (x)| ≤ kTα(qT −M),

where ΦkT (·) and Φ̃kT (·) are the characteristic functions of SkT and S̃kT . Since pT >>

qT >> M and kT = (log T )1/2, and under Assumption IV.1 (i) we have that |ΦkT (x)−

Φ̃kT (x)| → 0. Since the characteristic functions converge, we obtain the required

result. �
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We now show asymptotic normality of V
−1/2
T S̃kT , this result together with the

above lemma will give Theorems IV.1 and IV.2.

Lemma IV.7 Suppose Assumption IV.1 is satisfied. Then we have

V
−1/2
T S̃kT

D→ N (0, 1).

PROOF. We will use the central limit theorem for independent random variables.

Due to the independence of Ũi,T it is straightforward to show 1
T

∑kT
i=1 E(Ũ2

i,T ) →

VT , hence it remains to verify Lindeberg’s condition. By using (4.17) we have∑kT
i=1 E

[
(V
−1/2
T |Ũi,T |)2+δ

]
≤ K

(
pT
T

)δ/2 → 0, as T → ∞. Thus Lindeberg’s condi-

tion is fulfilled and we have asymptotic normality of S̃kT . �

PROOF of Theorem IV.1 To prove the result we show that QT we use that

QT = QT,T 1/2+γ +Op(T
−1/2−γ), where

QT,T 1/2+γ =
1

T

T∑
t,τ=1

I(
t− τ
T 1/2+γ

)Gt,τ,TXt,TXτ,T .

Thus by (4.22) we have

var(QT )−1/2
(
QT − E(QT )

)
= var(QT )−1/2ST,T 1/2+γ + op(1), (4.24)

and var(
√
TQT ) = var(

√
TQT,T 1/2+γ ) + O(T−γ). We observe that QT,T 1/2+γ satis-

fies representation (4.3) and Assumption IV.1, thus by applying Lemma IV.7, then

V
−1/2
T (QT,T 1/2+γ − E(QT ))

D→ N (0, 1). Therefore from (4.24) we have V
−1/2
T (QT −

E(QT ))
D→ N (0, 1), which gives the desired result. �

PROOF of Theorem IV.2 By using Lemma IV.6, it is straightforward to show

that V
−1/2
T (QT,M−E(QT,M)) and V

−1/2
T S̃kT have asymptotically the same distribution.

Now by using the same arguments as in the proof of Theorem IV.1 we obtain the
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result. �

4.2. Proofs of results in Section 3

PROOF of Lemma IV.1 To prove the lemma we apply a result from Stat-

ulevicius and Jakimavicius (1988), Theorem 3, part (2), which states that if t1 ≤

t2 ≤ . . . ≤ tk, then for all 2 ≤ i ≤ k we have
∣∣cum(Xt1,T , Xt2,T , . . . , Xtk,T )

∣∣ ≤
3(k − 1)!2k−1α(ti − ti−1)1− k

r supt,T ‖Xt,T‖kr .

To prove (i), we use a method similar to the proof of Neumann (1996), Remark

3.1. By taking the (k − 1)th root of the above for all 2 ≤ i ≤ k we have

∣∣cum(Xt1,T , Xt2,T , . . . , Xtk,T )
∣∣ 1
k−1 ≤ C

1/(k−1)
k α(ti − ti−1)

1−k/r
k−1 sup

t,T
‖Xt,T‖

k
k−1
r ,

where Ck = 3(k − 1)!2k−1. Since the above bound holds for all i, multiplying the

above over i gives

∣∣cum(Xt1,T , Xt2,T , . . . , Xtk,T )
∣∣ ≤ Ck sup

t,T
‖Xt,T‖kr

k∏
i=2

α(ti − ti−1)
1−k/r
k−1 , (4.25)

thus proving (i) of the lemma.

To prove (ii), we rewrite
∑∞

t2,...,tk=1 as the sum of orderings, that is
∑∞

t2,...,tk=1 =

k!
∑∞

1=t2≤...≤tk . Now since the number of orderings is finite, we can use (i) to obtain

∞∑
t2,...,tk=1

∣∣cum(Xt1,T , Xt2,T , . . . , Xtk,T )
∣∣ ≤ Ck sup

t,T
‖Xt,T‖kr

{∑
r

α(r)
(1−k/r)
(k−1)

}k−1
<∞,

which gives (4.6).
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To prove (iii) we use a similar argument to obtain

∞∑
t2,...,tk=1

(1 + |tj|)
∣∣cum(Xt1,T , Xt2,T , . . . , Xtk,T )

∣∣
≤

∑
1≤t2<...<tk<∞

(1 + |tj|)
∣∣cum(Xt1,T , Xt2,T , . . . , Xtk,T )

∣∣
= k!

∞∑
r2,...,rk=1

(1 +

j∑
i=2

|ri|)
∣∣cum(Xt1,T , Xt2,T , . . . , Xtk,T )

∣∣,
substituting (4.25) into the above gives the result. �

PROOF of Lemma IV.2 To prove the result we use the notion of Near Epoch

Dependence. This requires bounding

∥∥Yt,T − E(Yt,T |Ft−j)‖q = A1 + A2

where

A1 =

∥∥∥∥∑
τ<t

Gt,τ,Mh(Xt,T , Xτ,T )− E(
∑
τ<t

Gt,τ,Mh(Xt,T , Xτ,T )|Ft−j)
∥∥∥∥
q

A2 =

∥∥∥∥∑
τ≤t

Gτ,t,Mh(Xτ,T , Xt,T )− E(
∑
τ≤t

Gτ,t,Mh(Xτ,T , Xt,T )|Ft−j)
∥∥∥∥
q

.

As the derivation of bounds on A1 and A2 are identical, we shall focus on A1. We

first observe that by using the Minkowski inequality we have

A1 =

∥∥∥∥ t−1∑
τ=1

Gt,τ,Mh(Xt,T , Xτ,T )− E(
∑
τ<t

Gt,τ,Mh(Xt,T , Xτ,T )|Ft−j)
∥∥∥∥
q

≤ I + II,

where

I =
∥∥ t−1∑
τ=1

Gt,τ,Mh(Xt,T , Xτ,T )− E(
∑
τ<t

Gt,τ,Mh(Xt,T , Xτ,T )|F tt−j/2)
∥∥
q

II =
∥∥E(E(

t−1∑
τ=1

Gt,τ,Mh(Xt,T , Xτ,T )|F tt−j/2)|Ft−j
)
− E

( t−1∑
τ=1

Gt,τ,Mh(Xt,T , Xτ,T )
)∥∥

q
.
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and F tt−j/2 = σ(Xt,T , Xt−1,T , . . . , Xt−j/2,T ). To bound I we note that for t > τ and all

j we have

∥∥ t−1∑
τ=1

Gt,τ,Mh(Xt,T , Xτ,T )− E(
t−1∑
τ=1

Gt,τ,Mh(Xt,T , Xτ,T )|F tt−j)
∥∥
q

=

∥∥∥∥∑
k=j

Gt,t−k
{
h(Xt,T , Xt−k,T )− E(h(Xt,T , Xt−k,T )|F tt−j)

}∥∥∥∥
q

≤
∑
k=j

|Gt,t−k|
∥∥{h(Xt,T , Xt−k,T )− E(h(Xt,T , Xt−k,T )|F tt−j)

}∥∥∥∥
q

≤ K sup
τ,T
‖h(Xt,T , Xτ,T )‖q

∞∑
k=j

k−δ = K sup
τ,T
‖h(Xt,T , Xτ,T )‖q(j/2)−(δ−1).

where we use that |Gt,t−k,M | ≤ K|t − τ |δ. Furthermore, to bound II we use that

E(
∑t−1

τ=1 Gt,τ,Mh(Xt,T , Xτ,T )|F tt−j/2) ∈ F tt−j/2 together with Ibragimov’s inequality to

obtain

II ≤ K(j/2)−s(
1
q
− 1
r

)
∑
τ<t

|Gt,τ,M |‖h(Xt,T , Xτ,T )‖r

Thus altogether we have

A1 ≤ K

(
j−(δ−1) sup

t,τ,T
‖h(Xt,T , Xτ,T )‖q + sup

t,τ,T
‖h(Xt,T , Xτ,T )‖rj−s(

1
q
− 1
r

)

)
.

A similar bound also applies to A2, thus altogether this gives

∥∥Yt,T − E(Yt,T |Ft−j)
∥∥
q
≤ K

(
j−(δ−1)‖h(Xt,T , Xt−j,T )‖q + ‖h(Xt,T , Xt−j,T )‖rj−s(

1
q
− 1
r

)

)
,

and we have shown the first part of the required result.

To show the second part we note that since
∥∥Yt,T−E(Yt,T |Ft−j)

∥∥
q
→ 0 as T →∞,

thus we almost surely have the representation Yt,T −E(Yt,T ) =
∑

j Nj,T (t− j), where

Nj,T (t− j) = E(Yt,T |Ft−j)− E(Yt,T |Ft−j−1).

Thus substituting the above into ‖B(u)
T,ST
‖q and using the Burkholder inequality we



110

have

B
(u)
T,ST

=
∥∥ ST+u∑

t=u

∞∑
j=0

Nj,T (t− j)
∥∥
q

≤
∞∑
j=0

∥∥ ST+u∑
t=u

Nj,T (t− j)
∥∥
q

≤
∞∑
j=0

( ST+u∑
t=u

‖Nj,T (t− j)‖2
q

)1/2

≤ S
1/2
T

( ∞∑
j=1

(j−δ+2 + j−s(
1
q
− 1
r

)+1)

)
,

as required. �

PROOF of Lemma IV.3 The proof of (4.14) follows immediately from Ibragi-

mov’s inequality (Ibragimov (1962)) (see also Davidson (1994), Theorem 14.2). Using

this we note that since Xt,T = E(Xt,T |Ft,T ) and E(Xt,T |Ft−j)→ 0 as j →∞, almost

surely we have

Xt,T =
∞∑
j=0

(
Et−j(Xt,T )− Et−j−1(Xt,T )

)
. (4.26)

To prove (4.15), we use Ibragimov’s and Chebyshev’s inequalities and (4.14) to obtain

∥∥E(Mj1(t− j1)Mj2(t− j1)|Ft−j1−i)− E(Mj1(t− j1)Mj2(t− j1)|Ft−j1−i−1)
∥∥
q

≤ 2
∥∥E(Mj1(t− j1)Mj2(t− j1)|Ft−j1−i)− E(Mj1(t− j1)Mj2(t− j1))

∥∥
q

≤ 4(21/q + 1)‖Mj1(t− j1)Mj2(t− j1)‖rα(i)
1
q
− 1
r

≤ 12‖Mj1(t− j1)‖2r‖Mj2(t− j1)‖2rα(i)
1
q
− 1
r

≤ 123 sup
t,T
‖Xt,T‖2

r̃α(j1)
1
2r
− 1
r̃α(j2)

1
2r
− 1
r̃α(i)

1
q
− 1
r ,

where r̃/2 > r > q. Now we prove (4.16). By substituting (4.26) into B
(u)
T,ST

and using



111

the above notation for conditional expectations we have

B
(u)
T,ST

= T−1

ST+u∑
t=u+1

∑
τ

Ft,τ,M
(
Xt,TXτ,T − E(Xt,TXτ,T )

)
= T−1

∞∑
j1,j2=0

ST+u∑
t=u+1

t∑
τ=max(t−M,1)

Ft,τ,M

(
Mj1(t− j1)Mj2(τ − j2)

− E
(
Mj1(t− j1)Mj2(τ − j2)

))
.

Partitioning the above sum into various cases and using Minkowski’s inequality gives

∥∥B(u)
T,ST

∥∥
q

= T−1

∞∑
j1,j2=0

∥∥ ST+u∑
t=u+1

∑
τ

Ft,τ,M

(
Mj1(t− j1)Mj2(τ − j2)

− E
(
Mj1(t− j1)Mj2(τ − j2)

))∥∥
q

≤ I + II + III,

where

I = T−1

∞∑
j1,j2=0

∥∥ ST+u∑
t=u+1

∑
τ<t−j1+j2

Ft,τ,MMj1(t− j1)Mj2(τ − j2)
∥∥
q

II = T−1

∞∑
j1,j2=0

∥∥∑
τ

∑
t<τ−j2+j1

Ft,τ,MMj1(t− j1)Mj2(τ − j2)
∥∥
q

III = T−1
∥∥ ∞∑
j1,j2=0

ST+u∑
t=u+1

Ft,t−j1+j2,M

(
Mj1(t− j1)Mj2(t− j1)

− E
(
Mj1(t− j1)Mt−j1+j2(t− j1)

))∥∥
q
.

We observe that
{∑

τ<t−j1+j2
Ft,τ,MMj1(t− j1)Mj2(τ − j2)

}
t

and{∑T
t<τ−j2+j1

Ft,τ,MMj1(t− j1)Mj2(τ − j2)
}
τ

are martingale differences. Therefore by

using the Burkholder-Rosenthal inequality twice together with Cauchy-Schwarz, for
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q ≥ 2 we have

I ≤ T−1

∞∑
j1,j2=0

( ST+u∑
t=u+1

∥∥ ∑
τ<t−j1+j2

Ft,τ,MMj1(t− j1)Mj2(τ − j2)
∥∥2

q

)1/2

≤ T−1

∞∑
j1,j2=0

( ST+u∑
t=u+1

∥∥Mj1(t− j1)
∥∥2

2q

∥∥ ∑
τ<t−j1+j2

Ft,τ,MMj2(τ − j2)
∥∥2

2q

)1/2

≤ T−1

∞∑
j1,j2=0

( ST+u∑
t=u+1

∥∥Mj1(t− j1)
∥∥2

2q

∑
τ<t−j1+j2

|Ft,τ,M |2
∥∥Mj2(τ − j2)

∥∥2

2q

)1/2
.

Using (4.14) we have ‖Mj(t − j)‖2q ≤ Cα(j)
1
2q
− 1
r . Substituting these bounds into I

and under Assumption IV.1 (i) we have

I ≤ T−1C
( ∞∑
j=0

α(j)
1
2q
− 1
r
)2( ST+u∑

t=u+1

∑
τ

|Ft,τ,M |2
)1/2

≤ T−1S
1/2
T K

( ∞∑
j=0

α(j)
1
2q
− 1
r
)2

sup
t

(∑
τ

|Ft,τ,M |2
)1/2

≤ KT−1S
1/2
T G

1/2
M

( ∞∑
j=0

α(j)
1
2q
− 1
r
)2
. (4.27)

Using the same methods we have

II ≤ KT−1S
1/2
T G

1/2
M

( ∞∑
j=0

α(j)
1
2q
− 1
r
)2
. (4.28)

Finally we obtain a bound for III. This requires a more delicate analysis since

{Mj(t−j)Mt−(τ−j)(t−j)−E(Mj(t−j)Mt−(τ−j)(t−j))} are not necessarily martingale

differences over t. We first represent Mj(t− j1)Mj2(t− j1)−E(Mj1(t− j1)Mj2(t− j1))

as the sum of martingale differences. Since E(Mj1(t − j1)Mj2(t − j1)|Ft−j1−i)
a.s.→

E(Mj1(t− j1)Mj2(t− j1)), as i→∞, we have

Mj(t− j1)Mτ−(t−j)(t− j)− E(Mj(t− j)Mτ−(t−j)(t− j)) =
∞∑
i=0

Aj1,j2;i(t− j1 − i),
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almost surely, where

Aj1,j2;i(t− j1 − i)

= E(Mj1(t− j1)Mj2(t− j1)|Ft−j1−i)− E(Mj1(t− j1)Mj2(t− j1)|Ft−j1−i−1).

Substituting this into III and using Minkowski’s inequality gives

III =∥∥T−1

∞∑
j1,j2=0

u+ST∑
t=u+1

Ft,t−j2+j2,M

(
Mj1(t− j1)Mj2(t− j1)− E(Mj1(t− j1)Mj2(t− j1))

)∥∥
q

≤ T−1

∞∑
j1,j2=0

∞∑
i=0

∥∥ u+ST∑
t=u+1

Ft,t−j1+j2,MAj1,j2;i(t− j1 − i)
∥∥
q
.

We observe that since Aj1,j2;i(t− j1− i) ∈ σ(Xt−j1−i, Xt−j1−i−1, . . .) and E(Aj1,j2;i(t−

j1− i)|σ(Xt−j−i−1, Xt−j−i−2, . . .)) = 0, then {Aj1,j2;i(t− j1− i)}t are martingale differ-

ences. Therefore by using the Burkholder-Rosenthal and Hölder on the above yields

III ≤ T−1

∞∑
j1,j2=0

∞∑
i=0

( u+ST∑
t=u+1

|Ft,t−j1+j2,M |2
∥∥Aj1,j2;i(t− j1 − i)

∥∥2

q

)1/2

Substituting (4.15) into III gives

III ≤ CT−1

∞∑
j1,j2=0

∞∑
i=0

{ u+ST∑
t=u+1

|Ft,t−j1+j2,M |2
(
‖Xt‖2

r̃α(j1)
1
2r
− 1
r̃α(j2)

1
2r
− 1
r̃α(i)

1
q
− 1
r
)2}1/2

≤ T−1

∞∑
j1,j2=0

∞∑
i=0

α(i)
1
q
− 1
rα(j1)

1
2r
− 1
r̃α(j2)

1
2r
− 1
r̃

{ u+ST∑
t=u+1

sup
τ
F 2
t,τ,M

}1/2

≤ CT−1S
1/2
T

( ∞∑
i=0

α(i)
1
q
− 1
r
)( ∞∑

i=0

α(i)
1
2r
− 1
r̃

)2
(4.29)

Finally, we substitute (4.27), (4.28) and (4.29) into ‖B(u)
T,ST
‖q to obtain (4.16). �
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CHAPTER V

SUMMARY

In this dissertation, we explore new analytic tools for nonlinear time series mainly

focusing on frequency domain approach. We propose two new spectral densities which

can describe the dependence structure and periodicities of nonlinear time series.

In Chapter II, we introduce the quantile spectral density which captures serial

dependence in time series data without requiring linearity and certain moment as-

sumptions. We estimate the quantile spectral density using L2 methods and derive

the sampling properties of the estimator. We develop a goodness-of-fit test using the

quantile spectral density and propose a bootstrap method for estimating the finite

sampling distribution of the test statistic under the null hypothesis. Through some

simulations and real data example, we illustrate how this new method can be used

for linear and nonlinear time series analysis.

In Chapter III, we propose the association spectral density which can detect

periodicities on different parts of the domain of the time series. We consider the

properties of the association spectral density and propose a method of estimation.

The asymptotic properties of the estimator is derived and some simulation result is

given.

In Chapter IV, we consider general quadratic forms of nonstationary, α-mixing

time series and derive asymptotic normality of these forms under some moment as-

sumptions. In order to show asymptotic normality of the generalized quadratic form,

we obtain some bounds on moments and cumulants using mixingale and near-epoch

dependent methods.
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APPENDIX A

SUPPLEMENT TO THE PROOF OF LEMMA II.1 IN CHAPTER II

We want to show that the third part of the variance of QT in Lemma II. 1 in

Chpater II is in smaller order than the first and second term which are O(M
T 2 ). We

recall that

II3 =
1

T 2

T∑
s1,s2=1

∫ ∑
k1,k2,k3,k4

cum(Jk1,x1 J̄k1,y1 , Jk2,x1 J̄k2,y1 , J̄k3,x2Jk3,y2 , Jk4,x2Jk4,y2)

2∏
i=1

KM(ωs1 − ωki)
4∏
i=3

KM(ωs2 − ωki)dF0(x1)dF0(y1)dF0(x2)dF0(y2).

Let {Xij} be the ith row and jth column element of the matrix



Jk1,x1 Jk1,y1

Jk2,x1 Jk2,y1

Jk3,x2 Jk3,y2

Jk4,x2 Jk4,y2


and Yi =

∏2
j=1Xij for i = 1, . . . , 4. With these notations, the above cumulant is

represented as cum(Y1, Y2, Y3, Y4) and Theorem 2.3.2 in Brillinger (1981) gives

cum(Y1, Y2, Y3, Y4) =
∑
νk

cum(Xij; ij ∈ νk,1) · · · cum(Xij; ij ∈ νk,p)

where the sum is taken over all indecomposable partitions of the two way table of

indicies {i, j}, i = 1, . . . , 4, j = 1, 2. There are 3915 all indecomposable partitions of

the above matrix, thus it is infeasible to find them by hand. We used the mathematica

routine by Andrews and Stafford (1998) for this purpose.

For one indecomposable partition νk, we let n(νk) be {n(νk,1), . . . , n(νk,p)} where

n(A) is the number of elements in the set A and n(νk,i) ≥ n(νk,i+1). There are 22

ways of n(νk), but using E(Jki,xi) = 0, we only need to consider the partitions such
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that min(n(νk)) ≥ 2, i.e.. n(νk) is either one of {8}, {6, 2}, {5, 3}, {4, 4}, {4, 2, 2},

{3, 3, 2}, {2, 2, 2, 2}. With these notations, we can seperate II3 in the following way.

II3 =
7∑
j=1

∑
{νk:n(νk)=Aj}

1

T 2

T∑
s1,s2=1

∫ ∑
k1,k2,k3,k4

2∏
i=1

KM(ωs1 − ωki)
4∏
i=3

KM(ωs2 − ωki)×(
cum(Xij; ij ∈ νk,1) · · · cum(Xij; ij ∈ νk,p)

)
dF0(x1)dF0(y1)dF0(x2)dF0(y2)

:=
7∑
j=1

II3,j

where Aj is the j-th element of

A =
{
{8}, {6, 2}, {5, 3}, {4, 4}, {4, 2, 2}, {3, 3, 2}, {2, 2, 2, 2}

}
.

For these partitions, we apply Theorem 3.4.3 in Brillinger (1981) which gives us the

bounds of the cumulants.

We start by II3,1 with the case n(νk) = {8} where there’s only one partition.

Theorem 3.4.3 in Brillinger (1981) gives us

cum(Jk1,x1 , Jk1,y1 , Jk2,x1 , Jk2,y1 , Jk3,x2 , Jk3,y2 , Jk4,x2 , Jk4,y2) = O(
1

T 3
),

which leads to

II3,1 = O(
1

T 3
).

The one example of the cumulant terms in II3,2 is

cum(Jk1,x1 , Jk2,y1)cum(Jk1,y1Jk2,x1 , Jk3,x2 , Jk3,y2 , Jk4,x2 , Jk4,y2) =


O( 1

T 2 ) k1 = k2

O( 1
T 4 ) otherwise.
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This leads to

1

T 2

∑
s1,s2

∫ ∑
k1,k3,k4

KM(ωs1 − ωk1)KM(ωs1 − ωk1)KM(ωs2 − ωk3)KM(ωs2 − ωk4)

cum(Jk1,x1 , Jk2,y1)cum(Jk1,y1Jk2,x1 , Jk3,x2 , Jk3,y2 , Jk4,x2 , Jk4,y2)dF0(x1) · · · dF0(y2)

= O(
M

T 3
).

With the same method, we can obtain II3,2 = O( 1
T 3 ).

We consider the one partition in II3,3

cum(Jk1,x1 , Jk1,y1 , Jk2,x1)cum(Jk2,y1 , Jk3,x2 , Jk3,y2 , Jk4,x2 , Jk4,y2)

=


1
T 2f3(ωk1 ,−ωk1)f5(−ωk2 , ωk3 ,−ωk3 ,−ωk4) k2 = T

O( 1
T 4 ) otherwise.

, and this immediately leads to II3,3 = O( 1
T 3 ).

In II3,4, one example of sepeartions having the largest order is

cum(Jk1,x1 , Jk1,y1 , Jk2,x1 , Jk3,x2)cum(Jk2,y1 , Jk3,y2 , Jk4,x2 , Jk4,y2)

=


1
T 2f4(ωk1 ,−ωk1 , ωk2)f4(−ωk2 , ωk2 ,−ωk4) k2 = k3

O( 1
T 4 ) otherwise.
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, and this leads to

1

T 2

∑
s1,s2

∑
k1,k2=k3,k4

KM(ωs1 − ωk1)KM(ωs1 − ωk2)KM(ωs2 − ωk3)KM(ωs2 − ωk4)

cum(Jk1,x1 , Jk1,y1 , Jk2,x1 , Jk3,x2)cum(Jk2,y1 , Jk3,y2 , Jk4,x2 , Jk4,y2)

=
1

T

∫
· · ·
∫
WM(ωs1 − θ1)WM(ωs1 − θ2)WM(ωs2 − θ2)WM(ωs2 − θ4)

1

T 2
f4(θ1,−θ1, θ2)f4(−θ2, θ2,−θ4)dθ1dθ2dθ4dωs1dωs2

=
1

T 3

∫
· · ·
∫
WM(ωs1 − θ1)WM(ωs1 − θ2)WM(ωs2 − θ2)WM(ωs2 − θ4)

f4(θ1,−θ1, θ2)f4(−θ2, θ2,−θ4)dθ1dθ2dθ4dωs1dωs2

= O(
M

T 3
)

From the above, we have II3,4 = O(M
T 3 ).

The one example of the cumulant terms in II3,5 is

cum(Jk1,x1 , Jk2,x1)cum(Jk1,y1 , Jk3,x2)cum(Jk2,y1 , Jk3,y2 , Jk4,x2 , Jk4,y2)

=



1
T
G(x1, x1, ωk1)G(y1, x2,−ωk1)f4(ωk1 ,−ωk1 ,−ωk4) k1 + k2 = T, k2 = k3

O( 1
T 3 ) k1 + k2 = T exclusively or k2 = k3

O( 1
T 4 ) otherwise.

With the similar argument above, we obtain II3,5 < O( 1
T 3 ).

1

T 2

∑
s1,s2

∑
k1+k2=T
k2=k3,k4

KM(ωs1 − ωk1)KM(ωs1 − ωk2)KM(ωs2 − ωk3)KM(ωs2 − ωk4)

cum(Jk1,x1 , Jk1,y1)cum(Jk3,x2 , Jk3,y2)cum(Jk2,x1 , Jk2,y1 , Jk4,x2 , Jk4,y2)

=
1

T 3

∫ ∫ ∫ ∫
WM(ωs1 − θ1)WM(ωs1 + θ1)WM(ωs2 + θ1)WM(ωs2 − θ4)

G(x1, x1, θ1)G(y1, x2,−θ1)f4(θ1,−θ1,−θ4)dθ1dθ4dωs1dωs2 < O(
1

T 3
)
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One term in II3,6 is

cum(Jk1,x1 , Jk2,y1)cum(Jk1,y1 , Jk3,x2 , Jk3,x2)cum(Jk2,x1 , Jk4,x2 , Jk4,y2)

=


1
T
G(x1, y1, ωk1)f3(ωk1 ,−ωk3)f3(ωk2 ,−ωk4) k1 = k2 = T

O( 1
T 3 ) otherwise.

, and this leads to II3,6 = O( 1
T 3 ).

There are 48 partitions in II3,7. All these 48 partitions have 3 constraints on

(k1, k2, k3, k4) to maintain their largest order. For example,

cum(Jk1,x1 , Jk2,x1)cum(Jk1,y1 , Jk3,x2)cum(Jk2,y1 , Jk4,x2)cum(Jk3,y2 , Jk4,y2)

=


O(1) k1 + k2 = T, k2 = k3, k3 + k4 = T

O( 1
T 2 ) otherwise

.

Applying Lemma II.3 in Chpater II, we obtain the following.

1

T 2

∑
s1,s2

∑
k1,k2,k3,k4

KM(ωs1 − ωk1)KM(ωs1 − ωk2)KM(ωs2 − ωk3)KM(ωs2 − ωk4)

×
{

cum(Jk1,x1 , Jk2,x1)cum(Jk1,y1 , Jk3,x2)cum(Jk2,y1 , Jk4,x2)cum(Jk3,y2 , Jk4,y2)
}

=
1

T 3

∫ ∫ ∫
WM(ωs1 − θ1)WM(ωs1 + θ1)WM(ωs2 − θ1)WM(ωs2 + θ1)

×G(x1, x1, θ1)G(y1, x2,−θ1)G(y1, x2, θ1)G(y2, y2,−θ1)dθ1dωs1dωs2

= O(
M

T 3
)

We observe that the largest term in II3 is O(M
T 3 ) which is smaller than the order of

II1 and II2, O(M
T 2 ). This completes the proof. �
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