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ABSTRACT

A Novel Approach to the Analysis of Nonlinear Time Series with Applications
to Financial Data. (May 2012)
Jun Bum Lee, B.S., Seoul National University;
M.S., Texas A&M University

Chair of Advisory Committee: Dr. Suhasini Subba Rao

The spectral analysis method is an important tool in time series analysis and
the spectral density plays a crucial role on the spectral analysis. However, one of
limitations of the spectral density is that the spectral density reflects only the co-
variance structure among several dependence measures in the time series data. To
overcome this restriction, we define two spectral densities, the quantile spectral den-
sity and the association spectral density. The quantile spectral density can model
the pairwise dependence structure and provide identification of nonlinear time series
and the association spectral density allows detecting periodicities on different parts
of the domain of the time series. We propose the estimators for the quantile spectral
density and the association spectral density and derive their sampling properties in-
cluding asymptotic normality. Furthermore, we use the quantile spectral density to
develop a goodness-of-fit tests for time series and explain how this test can be used
for comparing the sequential dependence structure of two time series. The asymp-
totic sampling properties of the test statistic is derived under the null and alternative
hypothesis, and a bootstrap procedure is suggested to obtain finite sample approx-
imation. The method is illustrated with simulations and some real data examples.
Besides the exploration of the new spectral densities, we consider general quadratic
forms of a-mixing time series and derive asymptotic normality of these forms under

the relatively weak assumptions.
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CHAPTER I

INTRODUCTION

One objective of time series analysis is to capture the dependence structure of
data, and there are two approaches to this. One approach is time domain analysis
and one another is frequency domain analysis. Another dichotomy can be applied to
time series model itself, linear time series and nonlinear time series.

Because of the easiness of their usage and interpretation, the linear time series
model has been more popular than the nonlinear models and most widely used lin-
ear model framework is autoregressive moving average(ARMA) model after Box and
Jenkins (1970). Due to its nature, the dependence structure of the linear time series
is often confined to linear order and autocovariance function(ACF) plays a important
role in time domain analysis approach. It describes dependence structure of the linear
time series fairly well, and if the innovation in the linear model follows Gaussian dis-
tribution, ACF solely can capture the whole dependence structure. The counter part
of ACF in the frequency domain is spectral density which is Fourier transformation
of autocovariance function. It can be used for detecting periodicities and estimating
parameters in linear model. Despite the clear advantage of this simplicity, there are
several disadvantages in using the autocovariance and spectral density as tools for
describing dependence structure. The autocovariance function only measures the av-
erage linear interaction between elements of a time series, so it often fails to provide

useful when nature of dependence structure is beyond linear as in most nonlinear time
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series model.

Nonlinear time series model naturally arises from observation that there are
some features which can not be captured by the linear model. For example, one
of stylized facts which are common to a wide set of financial data is absence of
autocorrelations and slow decay of autocorrelation in absolute returns. The one
set of time series model satisfying this characteristic is ARCH and GARCH model
proposed by Engle (1982) and Bollerslev (1986), and they have been widely used
in volatility modeling. However, with any statistical tools based on autocovariance
function and the classical spectral density, we can not distinguish these models from
white noise and this might lead us to the false conclusion of independence in data.
Also, heavy-tailedness, one of other stylized facts of the financial time series, often
invalidates the usage of classical spectral density, hence many applications of it are
based on the finite moment assumption.

Recently several methods have been proposed to overcome these limitations of
the classical spectral density. Hong (1999) introduces the generalized spectral density,
which is the Fourier transform of the empirical characteristic function of a time series.
Li (2008) proposes Laplace spectrum and Laplace periodogram to obtain more robust-
ness in spectral density estimators. His idea is based on that the usual periodogram
is the least square coefficient estimator in the regression between time series data and
harmonic functions and it suffers from outliers due to the least square(LS) method.
To alleviate this problem, the least absolute deviation(LAD) method is used and the
LAD estimator in the regression is defined as Laplace periodogram. He shows how the
Laplace spectrum is related to spectral density of {/(X; < 0)}; called zero-crossing
spectrum and it could be used for detecting the periodicity in {I(X; < 0)};. Hage-
mann (2011) widens this approach by considering the spectral density of {I(X; < ¢,)}

where ¢, is uth-quantile of {X;} and Dette, Hallin, Kley, and Volgushav (2011) also



investigates the cross-spectral density of {I(X; < q.), I(X; < g»)}. There is a simi-
larity in these works considering spectral densities of certain transforms, Hong (1999)
for the empirical characteristic function transform and Hagemann (2011) and Dette
et al. (2011) for the empirical distribution transform. The use of empirical distribu-
tion function has the advantage of the empirical characteristic function for its easy
interpretation. In this work, we also introduce a spectral density of the empirical
distribution called the quantile spectral density. In contrast to L; estimating method
in Dette et al. (2011), we propose the Ly estimator with an analytic form, thus can
easily be used in both goodness-of-fit test.

Goodness-of-fit tests are usually done by checking the assumptions imposed in
a statistical model. In many time series models, the independent innovation is com-
monly assumed, and this assumption is verified based on the sample autocorrelation
of the residuals from the fitted model. Box and Pierce (1970) proposes this method
in ARMA model and its modification was done by Ljung and Box (1978), and Milhg;
(1981), Velilla (1994) and Anderson (1997) provide the frequency domain counter-
parts of these methods. Hong (1996) shows that a test could be more powerful by
giving different weight on sample autocorrelations at different lags.

Since these methods only focus on the autocorrelation, they often fail to detect
dependence in general form. The more general form of dependence measure is serial
dependence, and it dates back to Hoeffding (1948) whose method is used for testing
independence in two random variables. This method is based on the fact that if X
and Y are independent, then P(X < z,Y < y) — P(X < 2)P(Y < y) = 0 for
any x,y. For bivariate random sample {(X;,Y;)}1, from (X,Y), it measures the
difference between bivariate empirical distribution and the product of two marginal
empirical distributions. Blum, Kiefer, and Rosenblatt (1961) extends this concept for

more than 2 random variables case. Applying this measurement for time series data



was addressed by Skaug and Tjgstheim (1993) and Hong (1998) in the time domain
and by Hong (2000) in frequency domain. The dependence measure they used is
P(X; <z, Xy <y)— P(X; < 2)P(Xy,r <vy) for the stationary time series {X;}.

While Skaug and Tjgstheim (1993) and Hong (1998) use the empirical distribu-
tion function to test sequential dependence, Hallin and Puri (1992) propose a method
based on ranks and Pinkse (1998) uses the empirical characteristic function for it.
Hong (1999) takes this empirical characteristic function approach further defining
the generalized spectral density, which is the Fourier transform of the characteristic
function of pair-wise dependent data. The goodness-of-fit tests based on the gener-
alized spectral densities of the estimated residuals are presented in Hong (1999) and
Hong and Lee (2003). However, sometimes the residuals cannot be or are not easy to
estimate. For example, it is possible to estimate the residuals of an ARCH(X; = Z;0y),
possible but difficult with a GARCH and usually impossible for many models of the
type X; = g(Xi—1,€). To circumvent this difficulty, we propose a new goodness-of-fit
test based on the quantile spectral density. It directly measures the difference of serial
dependence structures between the time series data and the fitted model.

In Chapter II, we present the quantile spectral density which captures serial de-
pendence in time series data without requiring linearity and certain moment assump-
tion. We propose the estimator for it and derive its sampling properties including
asymptotic normality. A goodness-of-fit test using the quantile spectral density is
developed and some simulation results and real data example are given.

In Chapter III, we introduce the association spectral density and its estimator.
The asymptotic properites of the estimator are derived.

Chapter IV contains the asymptotic normality of general quadratic forms of

nonstationary, a-mixing time series, which we encounter in Chapter II and III.



CHAPTER II

THE QUANTILE SPECTRAL DENSITY AND COMPARISON BASED TESTS
FOR NONLINEAR TIME SERIES

1. Introduction

The analysis of most time series is based on a set of assumptions, which in practice
need to be tested. This is usually done through a goodness of fit test. The majority
of goodness of fit tests for time series are based on fitting the conjectured model
to the data, estimating the residuals of the model and testing for lack of correlation,
normally with a Ljung-Box type test (see for example, Anderson (1993), Hong (1996),
Chen and Deo (2004), and Hallin and Puri (1992) for a robust tests based on ranks).
If one restricts the class of models to just linear time series models, then such tests
can correctly identify the model. However, problems can arise, if one widens the class
of models and allow for nonlinear time series. For example, if the time series were
to satisfy an ARCH process, then it will be uncorrelated, but it is not independent.
Moreover, the squares will satisfy an autoregressive representation, with errors which
are martingale differences. Therefore, correlation based test for nonlinear time series
models may not identify the model.

Neumann and Paparoditis (2008) propose a goodness of fit test for Markov time
series models based on the one step ahead transition distribution. But this test is
specifically for Markov models. An alternative approach is to generalise the notion of
correlation to measuring the general dependence between pairs of random variables
in a time series. This notion is usually called serial dependence, and dates back to

Hoeffding (1948). Skaug and Tjgstheim (1993) and Hong (2000) use this definition



to test for serial independence of a time series. Hong (1998) takes these notions
further, and as far as we are aware is the first paper to generalise the spectral density
to sequential dependence. He does this by defining the generalised spectral density,
which is the Fourier transform of the characteristic function of pair-wise dependent
data. He uses this device in Hong (1998) and Hong and Lee (2003) to test for goodness
of fit of a time series model, mainly through the analysis of the estimated residuals.
However, sometimes the residuals cannot be or are not easy to estimate. For example,
it is possible to estimate the residuals of an ARCH (X; = Z,04), possible but difficult
with a GARCH and usually impossible for many models of the type X; = g(X;_1, ;).

In this chapter, we use the notion of serial dependence to test for goodness of fit,
but without estimating the residuals. Instead our test is based on comparisons. In
Section 2.1 we motivate our test by considering the Microsoft daily log return data and
comparing it with the GARCH(1, 1) model, which is one of the standard models fitted
to such data sets. We show that though the GARCH model seems to model well some
of the stylised facts of this data, ie. the uncorrelatedness, and positive correlation in
the absolute and squares, if one made a deeper analysis and compared the correlation
of other transformations such as cov(/(X; < z), I(X¢yr < y)) (where I denotes the
indicator function), there is large difference between the data and GARCH model.
This motivates us to define the gquantile autocovariance function and the quantile
spectral density. The quantile spectral density can be considered as a measure of
serial dependence of a time series. In Sections 2.2 and 2.3 we propose a method for
estimating the quantile spectral density, and use the quantile spectral density as the
basis of a test based on the quadratic distance which compares the quantile spectral
density estimator with the spectral density estimator under the null hypothesis. The
asymptotic sampling properties of the quantile spectral density estimator are derived

in Section 3.1. Recently there have been several articles defining and estimating the



spectral density of sequential dependence. Li (2008), Hagemann (2011) and Dette
et al. (2011) define spectral density functions similar to the quantile spectral density,
however these authors, estimate the periodogram and the quantile spectral density
using L; methods. In contrast, we use Ly methods based on the usual definition of
the periodogram, this is because it has an analytic form and can easily be used in a
goodness of fit and other tests. It is interesting, and rather surprising, to note that the
L, estimator proposed in Dette et al. (2011) and our estimator of the quantile spectral
density have similar asymptotic properties. In Section 3.2 we derive the asymptotic
sampling properties of the test statistic. The advantage of our approach is that it can
easily be extended to test other quantities, for example with a small adaption it can
be used to test for equality of serial dependence of two time series, this is considered
in Section 4. In Section 5 we propose a bootstrap method for estimating the finite
sampling distribution of the test statistic under the null. The proofs can be found in

Section 7 and some technical details are given in the appendix.

2. The quantile spectral density and the test statistic

2.1. Motivation

To motivate our approach, we analyze the Microsoft daily log returns (MSFT)
between March 1986 - June 2003, which we denote as {X;}. One argument for fitting
GARCH types models to financial data is their ability to model the so called ‘stylised
facts’ seen in such data sets. We now demonstrate why this is the case for the MSFT
(see Zivot (2009)). Using the maximim likelihood, the GARCH model which best fits
the log differences of the MSFT is X; = u+¢&; , ¢ = 0473, 02 = ag + a162 | + bo? |
({Z:} are independent, identically distributed standard normal random variables),

where = 1.56 x 1073, ag = 1.03 x 107°, a; = 0.06 and b = 0.925. In Figure



1 we give the sample autocorrelation plots of {X;} and {|X;|}, together with the
autocorrelation plots of the corresponding GARCH(1, 1) model. Comparing the two
plots, it appears that the GARCH(1, 1) captures the ‘stylised facts’ in the Microsoft
data, such as the near zero autocorrelation of the observations and the persistant
positive autocorrelations of the absolute and squares of the log returns. However,
if we want to check the suitability of the GARCH model for modelling the general
pair-wise dependence structure, that is the joint distribution of (X, X;) for all s and
t (often called sequential dependence), then we need to look beyond the covariance
of {X;} and {|X;|}. To make a more general comparison we transform the data into
indicator variables {I(X; < z)} and check the correlation structure of the indicator
variables over various x. For example, define the multivariate vector time series
Y, = (I(X; < qo1), 1(X: < qos), 1(X¢ < qog)), where g, denotes the estimated
a-percentile of X;.

Plots of the cross-covariances of Y, and the corresponding GARCH model (with
Gaussian innovations) are given in Figure 2. In Figure 2, there are clear differences
in the dependence structure of the data and the GARCH model. The 10th, 50th and
90th percentiles correspond to large negative, zero and large positive values of X,
(big negative change, no change and large positive changes in the returns). In order
to do the analysis, we will use the following observations. By using that cov(Z(X, <

), [(X, <y))=P(Xo <z, X, <y)—P(Xo <x)P(X, <y), forall z,y € R we have

cov(I(Xo <), I(X, <y)) = cov(I(Xo > ), [(X; > y))

= —cov({(Xo < 2),I(X, >vy)).
From Figure 2 we observe:

e The ACF of I(X; < qo5) of the GARCH is zero. This is due to the symmetry
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Fig. 1. The ACF plots of { X, } and {|X;|} of the MSFT and the corresponding GARCH
model
of the GARCH process, given the eventX,; < 0, we have equal chance X, > 0
and X, < 0 (ie. cov(I(Xy < 0),I(X, <0)) = —cov(I(Xy < 0),I(X, > 0))).
This means that cov(I(Xy < 0),7(X, < 0)) = 0. On the other hand, for
the MSFT data we see that there is a clear positive correlation in the sample
autocorrelation of {I(X; < 0)}. One interpretation for the MSFT data, is that

a decrease in consecutive values, is likely to lead to future decreases.

e The cross correlation of the GARCH of I(X; < qo1)(X; < qog) is symmetric
about zero, this means that cov(/(Xo < ¢o1), (X, < qoo)) = cov(I(Xy <
1), I(X_, < qog)). On the other hand, the corresponding sample cross-

correlations of the MSFT is not symmetric. Thus the GARCH process is time
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Fig. 2. The quantile covariance of the MSFT and the corresponding GARCH



11

reversible, whereas it appears that the MSFT data may not be.

The cross and autocovariances in Figure 2 are a graphical representation of the serial
dependence structure of the time series. These plots suggest that for MSF'T time series
the GARCH model may not be the most appropriate model, especially if validity is
based on modelling the serial dependence structure. In the sections below we will

test this.

2.2. The quantile spectral density function

We now formalise the discussion above. Let us suppose that {X;} is a strictly
stationary time series. It is obvious that the cross covariance of the indicator functions

{I(X; <x2),1(X; <y)}is
Cr(z,y):=cov(l(Xyg < z),I(X, <y)) = P(Xo<z,X, <y)— P(Xo<z2)P(X, <vy).

Skaug and Tjgstheim (1993) and Hong (2000) use a similar quantity to test for serial
independence of a time series (and this definition dates back to Hoeffding (1948)).
We will call C,.(-) the quantile covariance. If {X;} is an a-mixing time series with
mixing rate s > 1 (s is defined in Assumption IV.1, below) it can be shown that
sup,, >, [cov(I(Xo < z), [(X, < y))| < oo, thus for all z,y € R, it’s Fourier trans-

form
1 .
Gz, y;w) = Py Er Cr(z,y; w) exp(irw),

is well defined. Since G(z,y;w) can be considered as the cross-spectral density of

{I(X; <), [(X; <y)}, we call G(+) the quantile spectral density.
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2.2.1.  Properties of the quantile spectral density

The quantile spectral density carries all the information about the serial depen-
dence structure of the time series. For example (i) if { X, } is serially independent, then
G does not depend on w and G(z,y;w) x Cy(z,y), (ii) if for all r, the distribution
function of (X, X,) is identical to the distribution function of (Xy, X_,), then G(-)
will be real and (iii) for any given z and y, G gives information about any periodic-
ities that may exists at a given threshold. In addition, G(-) captures the covariance
structure of any transformation of {X;} . For example, consider the transformation
{h(X})}, then it is straightforward to show that the spectral density of the time series
{h(Xe)} is

o) = 5 3 con(h(Xa), X)) explirw) = [ [ ha)h(y)Gld, dyso)

Of course, G(x,y;w) only captures the serial dependency, and may miss higher order
structure. Only in the case that {X;} is Markovian, does G(z, y; w) capture the entire

joint distribution of {X;}.

Remark I1.1 The quantile spectral density is closely related to the generalised spec-
tral density introduced in Hong (1998). He defines the generalised spectral den-
sity as h(z,y;w) = Y cov(exp(izXp), exp(iyX,)) exp(irw). Essentially, this is the
Fourier transform of the characteristic function of pairwise distributions minus their
marginals, therefore the relationship between the quantile spectral density and the gen-
eralised spectral density is analogous to that between the distribution function and the
characteristic function of a random variable. Hong (1998, 2003) uses the generalised
spectral density as a tool in various tests goodness of fit tests, which are mainly based
on the residual. On the other hand, the goodness of fit test that we propose, is based

on checking for similarity between the estimated quantile spectral density and the pro-
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posed spectral density.

Remark I1.2 (The Copula spectral density) A closely related quantity to the

quantile spectral density is the copula spectral density, which is defined as
( ) = _1 E :C ( ) (irw) (2.1)
Ge(uy, ug;w (U1, ug) exp(irw), .
c\ i1, w2, 9 - 1, W2

where C,.(uy, us) = cov(I(F(Xo) < up), I(F(X,) <ug)) =E(I(F(Xo) <u)I(F(X,) <
ug)) — uyug, and F(-) is marginal distribution function of {X;}. Note that by defi-
nition uy,us € [0,1]. Thus, unlike the quantile spectral density, the copula spectral
density is invariant to any monotonic transformation of {X;}, for example mean and
variance shifts. By considering the ranks of {X,}, the methods detailed in the section
below can also be used to estimate Ge. Alternatively, Dette et al. (2011) have recently
proposed Ly-methods for estimating G¢, and the asymptotic sampling properties have

been derived for this estimator.

In Figures 3, 4 and 5 we plot the quantile spectral density for the autoregressive
(X; =0.9X; 1 + Z;), ARCH (X; = 6,Z; with 07 =1/1.94 0.9X? ;) and the squared
ARCH, with independent, identically distributed (iid) Gaussian innovations Z;. The
diagonals are of G(z, x;w), the lower triangle contains the real part of G(x,y;w) and
the upper triangle the imaginary part of G(z,y;w). We observe that the AR and
ARCH quantile spectral densities are very different. The AR has a similar shape
for all x, whereas for the ARCH, it is flat (like the spectral density of uncorrelated
data) at about the 50% percentile, but moves away from flatness at the extremes.
Furthermore, recalling that the AR and ARCH squared have the same spectral density
(if the moments of the ARCH squared exists), there is a large difference between the

quantile spectral density of the AR and the ARCH squared.



10%

AR(1) $=0.9 Gaussian

50%

14

90%

0.5
0.4
0.3
0.2
0.1

10%

0

0.5
0.4
0.3

0.2
0.1 &
0

50%

0.5
0.4
0.3
0.2
0.1

0

90%

N

0 0.2m 045 0.60t 0.87T TT

0 02w 04 065t 08T ot O 0.2t 045t 0.67T 08T JUT

Fig. 3. The quantile spectral density of X; =0.9X;_, 4+ Z;

10%

ARCH(1) $=0.9 Gaussian

50%

90%

0.04

0.02 ¥

-0.02

10%

0.04

0.02

50%

-0.02

0.04
0.02

o _— ]

-0.02

90%

¥

0 02w 045t 06t 08T JU

0 02m 047t 065t 087 st 0 027t 04t 06T 08T JU

Fig. 4. The quantile spectral density of X; = 0,Z;, where 07 = 1/1.9 + 0.9X? ,



15

ARCH(1)2¢ =0.9 Gaussian
10% 50% 90%
0.12
0.1
0.08
0.06
0.04
0.02
0

0.12
0.1

0.08
0.06
0.04

02—
0
0.12
0.1
0.08
0.06
0.04

o:og . ¥ ¥

0 02w 045t 06t 08m st 0 02 04 067t 08t st 0O 027t 0457w 065t 08T T

10%

50%

90%

Fig. 5. The quantile spectral density of X? = 02Z2, where 02 = 1/1.9 + 0.9X2 ,

2.2.2.  Estimating the quantile spectral density

The quantile spectral density G(x,y;w) can be considered as the cross spectral
density of the bivariate time series {I(X; < z), I(Y; < y)}. Therefore, our estimator
of G(z,y;w) is motivated by the classical cross spectral. To do this we define the

class of lag windows we shall use.

Definition I1.1 The lag window takes the form
Au) = ( Z a, exp(i2mru) — Z bilul?) 111y (w).
j=—r j=1
This class of lag windows is quite large, and includes the truncated window, the
Bartlett window and general Tukey window (see, for example, Priestley (1981) Section

6.2.3 for properties of these lag windows).
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To obtain an estimator of G, we define the centralised, transformed variable Z;(x) =
[(X; < x) — Fp(z) (where Fp(z) = L3, I(X; < z)). We estimate the quantile
covariance C,(z,y) = P(Xo < 1, X, < y) — P(Xy < 2)P(X, < y) with C,(z,y) =
T tT:—l\rl Zi(x) Zi4r(y), and use as an estimator of G

~

Gr(z,y;wg) = %Z)\M(r)d«(x,y) exp(irwy) (2.2)

= ZKM(wk - WS)JT(x;Ws>JT(y;w8)>

where

Au(r) = Ar/M)

Ky(w) = —Z)\M ) exp(irw)

!

Jr(z;w) =

x) exp(itw).

2.3. The test statistic

The proposed test is based on the fit of the estimated quantile spectral density
to the conjectured quantile spectral density. More precisely, we test Hy : G(x,y;w) =
Go(z,y;w) against Hy : G(z,y;w) # Go(x,y;w), where G is the quantile spectral
density of {X;}, Go(z,y;w) = % >, Cor(z,y) exp(irw) and Cy,(z,y) = Fo,(z,y) —
Fo(z)Fo(y). Thus under the null the marginal distribution is Fy(-) and the joint
distribution is Fp (). We use the quadratic distance to measure the distance between

the estimated quantile spectral density and the conjectured spectral density, and
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define the test statistic as

1 [ A 1
Qr = T;/|GT(37;y§wk)_%ZT:AM(T)COW(SU?:U) exp(irwy) [*dFo(2)dFy(y)

T

= % Z/ |CA;T(x, Y; wr) — Z K (wi — ws) Go(ws)|*dFy () dFo(y)
k=1

s=1

= %ZAM(TP//}CA’T(:E,(?;)—Co,,,(x’y)deo(x)dFo(y), (2.3)

where the above immediately follows from Parseval’s theorem. The choice of lag
window will have an influence on the type of alternatives the test can detect. For
example, the truncated window (A(u) = Ij_11j(u)) gives equal weights to all the quan-
tile covariances, whereas the Bartlett window (A(u) = (1 — |u|)Ij_1 1(u)) gives more
weight to the lower order lags. Therefore the tests ability to detect the alternative
will depend on which order of the quantile covariance deviates most from the null,
and the weight the lag window places on these. We derive the asymptotic distribution

of OQp in Section 3.2.

Remark I1.3 The test can be adapted to be invariant to monotonic transformations
(such as shifts of mean and variance). This can be done by replacing the quantile
spectral density with the copula spectral density Ge(-) defined in (2.1). In this case
the null is Hy : Ge(z,y;w) = Geolz,y;w) = 5= > Cop(ur, us;w) exp(irw) against

Hy: Ge(z,y;w) # Geo(z,y;w). The test statistic in this case is
1 o 1
Qre = T ;/ |Gre(uy, ug; wi) — o Zr: A (r)Cor (U, u2) eXp(irwk)|2du1du2,

where we estimate @T,c(ul, Ug; wy,) in the same way as we have estimated (/J\T in (2.2)
but replace {X;}; with {Fr(X,)}e. The distribution of Qrc is beyond the scope of the

current paper.
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3. Sampling properties

In this section we derive the sampling properties of the quantile spectral density

CA?T and the test statistic Q. We will use the a-mixing assumptions below.

Assumption II.1 Let us suppose that {X,;} is a strictly stationary a-mizing time
series such that
sup |P(ANB) — P(A)P(B)| < a(r),

AGO’(XT7XT-+1,...)
BEO’(XQ,X_l,...)

where o(r) are the mizing coefficients which satisfy a(r) < K|r|=* for some s > 2.

3.1. Sampling properties of @T

In the following lemma we derive the limiting distribution of CA?T, this will allow

us to construct point wise confidence intervals for G.

Theorem II.1 Suppose Assumption IV.1 holds. Then

E(Gr(e, ) = 6o, 5:) + Ol57:7)

and for 0 < w, < ™ we have

RG
Vi (2, y; wp) "2 AT(
S

Z, Y, Cdk) - %E(GT(xv Y; Wk))

~

Vile,a:00) ™ (Grle,ai00) — E(Grle,zse)) ) B N(0,)
where M — oo and M/T — 0 as T — oo,

Az, y;ws)  Clz,y;ws) M

s=1 C(xay;ws) B(zvy;ws)
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and

1
Al yiws) = 5 Gz, 1;w,) Gy, y;ws) + RG(z, y; ws)? — SG(x, y; wy)?

Bloap) = (Gl mi)Gl. 5 + SG(e, i) - RG(e i)’

Clz, y;ws) = RG(x,y;ws)SG (@, 5 ws).
Thus, if % >> m, in other words the variance of @T dominates the bias, then
we can use the above result to construct confidence intervals for G.
3.2. Sampling properties of test statistic under the null hypothesis

We now derive the limiting distribution of the test statistic under the null hy-

pothesis. Let
1
Eo= / / Wr(w — 0)°G (xr, 23 0) Gy, y: 0) dFo () dFy (y) dBdew

4 2
Vi = ﬁ//AM(Ql—92)2HG($1,£B2;ei)G(yl,yQ;ei)deidFo(%)dFo(yi),

=1

where
W () = %KM(H) = % > A (r) exp(ir)
A (61— 05) = /WM(w )Wt (w0 — 0y d. (2.4)

Lemma I1.1 Suppose that Assumption IV.1 holds and G(-) is the quantile spectral

density of {X;}. Then under the null hypothesis we have

E(Qr) = Er + 0(%) _ 0(% and var(Qy) = Vy + 0(%) _ 0(%).

Using the above we obtain the limiting distribution under the null.

Theorem I1.2 Suppose that Assumption IV.1 holds. Then under the null hypothesis
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we have
Ve 2(Qr — Er) B N(0,1)

as M — oo and M/T — 0 as T — oo.

Using estimates of éT(-), Er and Vy can both be estimated. Thus by using the
above result, we reject the null at the a% level if V{l/Z(QT — ET) > z1_4 (Where

21_q denotes the 1 — a quantile of a standard normal distribution).

3.3. Behavior of the test statistic under the alternative hypothesis

We now examine the behavior of the test statistic under the alternative

1

Hy: G(z,y;w) = Gh(z,y;w) = o Z (Fi(z,y) — Fi(z)Fi(y)) exp(irw).

To obtain the limiting distribution we decompose the test statistic Qr as

Or=9r1+ Qra+ 9rs

where
1 [~
Qr1 = TZ/’GT(%ZJ;U%) (GT(37 Y; W) |dF0 )dFy(y)
k=
2 : . .
Qra = fﬂ%z/(GT(I,y;wk)—E(GT(m,y;wk)))
k=1
< (E(Gr(z, y;wi)) — G(z, y;wi))dFy(2)dFy (y)
1 « . .
Ors = 13 [ [EGr(a.ys00)) = Glo,yiwa) "dEs(a)dFu(y).
k=1
and

G(z, y; wi) Z)\M )Co.(z,y) exp(irw) ZKM wi, — ws)Go(z, y; ws).
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From the decomposition of Qr, we observe that there are two stochastic terms Qg

and QOrs, and a deterministic term Qrs. By using Lemma II.1, it can be shown

that Qpy = O‘,,,(M;ﬂ/2 + 2. On the other hand, we show in the proof of the theorem

below that Qrg, is of lower order than Q7 and, thus, determines the distribution

of Qp. To understand the role that Q73 plays in the test, we replace é(x, y;w) and

~

E(Gr(x,y;w)) with Gy and G respectively and obtain

1
Ms—l)'

1 T
Qrz = f;/‘Gl(%y;wk) —Go(x,y;wk)}2dF0(x)dF0(y)—|—O(

Thus Qr3 measures the deviation of the alternative from the null hypothesis, and

shifts the mean of the test statistic.

Theorem I1.3 Suppose that Assumption IV.1 holds, and for allr, sup, , |Cro(z,y)| <

K|r|=®*)  for some § > 0. Under the alternative hypothesis we have
\/TQT,Q = N(0,Vrp), (2.5)
and
VT (Qr — Or3) B N(0, Vi), (2.6)

where M — oo and VM /T — 0 as T — oo,

8 -
Vie = f%//AT(xbyl;w)AT(iﬂ'z;yzw)
2

{G1 (21, 295 W) G1 (Y1, Y2; w) + G1(21, Y23 W) G1 (Y1, T2 w) }dw H dFo(z:)dFo(ys)

i=1

8 -
—I—T%//AT(I1,Z/1;W1)AT($27?J2SW2)

2
G (21,y1,22.52) (wi, —w1,ws) H dFy(x:)dFo(yi)dws,

=1
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Ar(w,yiws) = o5 30, A (r)2 () [Crp (. y) = Co (i, y)] explirwr) and G o,y aage) s

the cross tri-spectral density of {(I1(X; < 1), I( Xy < 1), I(Xy < x9), [(X; < 92)) 14

The theorem above tells us that the mean of the test statistic is shifted the further
the alternative is from the null. Interestingly, we observe from the definition of Az (-),
that the variance also depends on the difference between the null and alternative,
which increases as the difference increase. However, for a fixed alternative the above

result tells us that the power converges to 100% as the sample size grow.

4. Testing for equality of serial dependence of two time series

The above test statistic can easily be adapted to test other hypothesis. In this
section, we consider one such example, and consider testing for equality of serial
dependence between two time series. Let us suppose that {U;} and {V;} are two
stationary time series, and we wish to test whether they have the same sequential
dependence structure. Using the same motivation as that for the the goodness of fit

test described above we define the test statistic
1<~ [~ R
PT - f Z/ |G1,T($a y;wk) - GQ,T(-CE, y,wk)‘zdF(QZ)dF(y)’
k=1

where él,T and @27T are the quantile spectral density estimators based on {U;} and
{V;} respectively and F is any distribution function. In order to obtain the limiting
distribution under the null hypothesis we have Hy : G1(z,y;w) = Go(z,y;w) and the

alternative H, : G(z,y;w) # Go(z,y;w) we expand Pr

Pr = Qiir+ Qoor — Qior — Q17+ 2L117 +2Ls7 + D,
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where
Qi,j,T = %;/(éi,T(ﬂf,y;wk) _E(@i,T(xayQWk)D
(Gjr(w, yiwp) = E(Gjr(w, y; ) dF(2)dF(y),
ﬁi,T = %%;/(@,T(%y;wk) —E(@i,T(fL’,y;wk)))
(E(G1 (2, y:w)) — E(Gor(z, y;w)))dF(x)dF(y)
and

D:///|E(§17T($,y;w))—E(@Q,T(:ﬁ,y;w))|2dF(x)dF(y)dw_

Therefore, using the above expansion under the null hypothesis we have
Pr = Qi1+ Qoor — Qior — Qa17,

where the moments are E(Pr) = Er3+O(7) = O(4) and var(Pr) = Viz+O(3) =
O(2%), with

Brs = g [ [ Wt~ 02(3 G w006 ) amwIaF )

42
Vs = EZ//AM(% _92)2HGi<$17y2§Qi)Gj(ylax%Qj)dgde(xj>dF(yj)'
i=1

j=1
By using identical arguments as those used in the proof of Theorem II.2, under

the null hypothesis we have
Vs ? (Pr — Erz) 2 N(0,1).

Using the above result, we test for equality of sequential dependence, that is we reject
the null hypothesis at the a-level if |V£§/2(PT — Er3)| > z1-4-

The limiting distribution of the alternative can be derived using the same meth-
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ods as those used to derive the limiting distribution of Q7 under its alternative. It
can be shown that

1/2

)

Pr—D :=2Ly7+2Ly7+0,(

Op( )
where 2L 7 + 2L5 r can be approximated by a quadratic form. Using this quadratic
approximation, asymptotic normality of the above can be shown. Thus under a fixed

alternative the power grows to 100% as T" — oo.

Remark I1.4 We can easily adapt our method to test that the distributions of (Xo, X;)
and (X_,, Xo) are identical for all r (ie. F.(z,y) = F_,(x,y)). This means that the
imaginary part of the quantile spectral density G(+) is zero over all x,y and w. In this

case, we can use the test statistic

1 ~
R =D |SGr(e.y;w)[ dF (2)dF (),

r

where F' is some distribution. We can use identical methods to those above to derive
the distribution under the null. Dette et al. (2011) also consider time reversibility

and their impact on the quantile spectral density.

5. Bootstrap approximation

The asymptotic normality result that we use to obtain the p-value of the test
statistic Or is only an approximation. For small samples, the normality approxima-
tion may not be particularly good, mainly because Qr is a positive random variable,
whose distribution will be skewed. This may well lead to more false positive than we
can control for in our type I error.

To correct for this, we propose estimating the finite sample distribution of Qr

using a frequency domain bootstrap procedure. In a multivariate time series, the
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periodogram matrix at the fundamental frequencies asymptotically follows a Wishart
distribution, moreover for our purposes they are close enough to be independent such
that we don’t loose too much information by treating them as independent (observe
that the asymptotic variance of the test statistic Qr is only in terms of the pair-wise
distributions and does not contain any higher order dependencies). Thus motivated
by the frequency domain bootstrap methods proposed in Hurvich and Zeger (1987)
and Franke and Hérdle (1992) for univariate data and Berkowitz and Diebold (1998)
and Dette and Paparoditis (2009) for multivariate data, we propose the following
bootstrap scheme to obtain an estimate of the finite sample distribution under the
null hypothesis.

Let 1 < --- < x4 be a finite discretization of the real line and note that we

approximate Qr with the discretization

T q
Qr = ?Z Z ‘G(Q:il?xiz;wk) _ZKM(wk —ws)Go(ﬂfiz,hxig;wkﬂQ X

(Fo(ziy) — Fo(xi-1))(Fo(xiy) — Fo(Tiy-1))-

We observe that under the null hypothesis that Gz(w) will be the spectral den-
sity matrix of the g-dimensional multivariate time series Z, = (Zy(z1),--- , Zi(z,))
where Zt(x) = I(X; < x)— F(x) and Gz(w), i, = Go(24,, %ip;w). Thus we use the
transformation of X; into a high dimensional multivariate time series to construct the
the bootstrap distribution.

The steps of the frequency domain boostrap for the test statistic Qp are as

follows.
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Step 1: Generate T independent matrices I (wi) = Gz(wi)/?Wi Gz(wy)/?, where

WEL,1,) 1<k<T/2
Wi~ WE1,L) ke{o,T/2} .
Wi, T/2<k<T

where W and W% denote the complex and real Wishart distributions.

Step 2: Construct the bootstrap quantile spectral density matrix estimators with

Gylwr) = 32, Ky(wp — wo)T(w,) for k=1,...,T.

Step 3: Obtain the bootstrap test statistic

T q
. 2 Ak
Qr = ?2 Y NG (@i, wigs i) — GY' (i, i wp)[* X

k=1 i1,i2=2

(Fo(wi,) — Fo(wi-1))(Fo(wi,) — Fo(@i-1))
where G) (z,y;w) = % >k )\(%)C’Om(a:, y) exp(irw).

Step 4: Approximate the distribution of Q7 under the null by using the empirical

distribution of the bootstrap sample { Q. }.

Step 5: Based on the bootstrap distribution estimate the p-value of Or.

We illustrate our procedure in Figure 6, for this example we use the quantile
spectral density Gy, based on an ARCH(1) (X; = Z;0; and 07 = ag + a1 X2 ), where
ap = 1/1.9, a; = 0.9, Z; are iid standard normal random variables and 7' = 500. A
plot of the normal approximation, the density of Qr (which is estimated and based
on 500 replications) and the bootstrap estimator of the density (along with their
rejection regions) is given in Figure 6. We observe that the skew in the finite sample

distribution means that the normal distribution is under estimating the location of
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the rejection region. However, the bootstrap approximation appears to capture the

finite sample distribution (and this the rejection region) quite well.

Q.r with T=500, ARCH1, M=25

3.5 4
x 10

0.5

Fig. 6. The fine line is the standard normal (with the 5% rejection line), the thick
solid line is the finite sample density of the test statistic (with 5% rejection
region) and the thick dashed line is the bootstrap approximation (with 5%

rejection region).

6. Simulations and real data examples

6.1. Simulations

In this section we conduct a simulation study. In order to determine the effec-
tiveness of the test we will use two different models that have the same first and

second order structure (thus a test based on the covariance structure would not be
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able to distinguish between them). In particular, we will consider the AR(1) model
X; = p+aX;_ 1 +¢; and the squares of the ARCH(1) model Y; = ag+aY;_1 + (Z2 —
1)(ag + aY;—1), where {e;} and {Z;} are iid zero mean Gaussian random variables
with var(Z;) = 1 and p and var(e;) chosen such that X; and Y; have the same mean
and covariance structure. Note that in the simulation we only consider a < 0.55, so
that the spectral density of the squared ARCH exists. For each model we did 1000
replications and the tests was done at both the a = 0.1 and o = 0.05 level.

In our simulations we used the Bartlett window, compared the test for various
M and used both the normal approximation and the proposed bootstrap procedure.
The results for Hy : AR(1) against the alternative Hy : ARCH(1) (various a, fixing
ap = 0.4) are given in Table 1 and 2. The results for Hy : ARCH(1) against H4 :
AR(1) are given in Table 3 and 4. We use the sample sizes 7' = 100 and 500.

As expected under the null hypothesis the null hypothesis tends to over reject,
whereas the bootstrap gives a better approximation of the significance level. There
appears to be very little difference in the behavior under the null for various values
of a and between the AR and the ARCH. Under the alternative, the power seems
to be quite high even for quite small samples. The only model where the power is
not close to 100% is when a = 0.3, sample size T = 100, the null is an AR(1) and
the alternative is an ARCH(1). This can be explained by the fact that for small
values of a, both the AR and the ARCH models are relatively close to independent

observations, thus making it relatively difficult to reject the null.



Table 1. Hy: AR(1) vs Hy : ARCH(1) T = 100

a=0.1 a = 0.05
=100 Bootstrap Normal Bootstrap Normal

a M HO HA HO HA HO HA HO HA
11 | 0.052 110.076 1(0.021 | 0.972 | 0.054 1
0.3 16 [ 0.04 | 0.869 | 0.062 | 0.971 | 0.011 | 0.262 | 0.04 | 0.854
21 | 0.048 | 0.386 | 0.064 | 0.561 | 0.021 | 0.106 | 0.043 | 0.348
251 0.021 | 0.071 | 0.048 | 0.229 | 0.014 | 0.016 | 0.029 | 0.12
11 | 0.048 1| 0.082 1| 0.02 1| 0.055 1
04 16 | 0.043 11 0.059 1 (0.013 | 0.939 | 0.041 1
21 | 0.046 | 0.932 | 0.066 | 0.997 | 0.011 | 0.416 | 0.046 | 0.929
251 0.036 | 0.582 | 0.055 | 0.832 | 0.01 | 0.124 | 0.037 | 0.598
11 | 0.046 110.073 1 0.015 1 0.052 1
05 16 | 0.049 110.078 1{0.027 1 0.045 1
21 | 0.046 1| 0.06 1] 0.015 | 0.985 | 0.037 1
25 | 0.047 1| 0.062 1{0.015 | 0.397 | 0.043 1
11 | 0.041 1| 0.096 1{0.018 1 0.057 1
0.55 16 | 0.045 1 | 0.066 1{0.017 1| 0.046 1
21 | 0.065 1| 0.06 1{0.034 1 0.034 1
25 | 0.045 1| 0.051 1| 0.024 11 0.032 1

Table 2. Hy: AR(1) vs Ha : ARCH(1) T = 500
a=0.1 a=0.05

T'=500 Bootstrap Normal Bootstrap Normal
a M HO HA HO HA H() HA HO HA
14 | 0.053 1| 0.098 1(0.024 1| 0.063 1
03 21 | 0.064 1| 0.082 1{0.023 1| 0.052 1
28 0.06 1| 0.093 1(0.024 1| 0.062 1
35 0.07 1] 0.086 1{0.033 1| 0.062 1
14 | 0.043 1| 0.092 11 0.014 1] 0.064 1
04 21 | 0.058 1| 0.092 1{0.015 1| 0.056 1
28 | 0.066 1] 0.094 1 0.03 1| 0.061 1
35| 0.073 11| 0.087 1{0.032 1| 0.052 1
14 | 0.031 1| 0.105 1{0.018 11 0.072 1
05 21 | 0.059 1 0.079 1 0.03 1 0.05 1
28 | 0.076 1 0.111 1| 0.046 1| 0.069 1
35 | 0.053 1] 0.086 1{0.022 1| 0.055 1
14 | 0.038 1] 0.107 11 0.014 1] 0.077 1
0.55 21 | 0.056 1| 0.108 1{0.021 1] 0.067 1
28 | 0.071 1 0.103 1{0.032 1 0.06 1
35 | 0.051 1| 0.089 1 [ 0.026 1 0.06 1

29



Table 3. Hy: ARCH(1) vs Ha: AR(1) T = 100

a=0.1 a = 0.05

T'=100 Bootstrap Normal Bootstrap Normal
a M H() HA HO HA HO HA HO HA
111 0.039 | 0.994 | 0.08 | 0.997 | 0.022 | 0.984 | 0.051 | 0.995
0.3 16 | 0.043 | 0.978 | 0.086 | 0.991 | 0.009 | 0.925 | 0.055 | 0.983
21 [ 0.045 | 0.98 | 0.07 | 0.99 | 0.016 | 0.934 | 0.051 | 0.983
25 | 0.026 | 0.939 | 0.059 | 0.976 | 0.011 | 0.895 | 0.045 | 0.965
11 | 0.046 1 | 0.086 1] 0.012 | 0.999 | 0.053 1
04 16 | 0.049 | 0.993 | 0.092 | 0.999 | 0.014 | 0.988 | 0.062 | 0.996
21 0.03 | 0.994 0.07 | 0.997 | 0.017 | 0.983 | 0.046 | 0.997
25 1 0.038 | 0.994 | 0.083 | 0.997 [ 0.024 | 0.982 | 0.059 | 0.994
11 | 0.054 1] 0.107 1{ 0.024 1| 0.067 1
05 16 | 0.063 1| 0.098 1] 0.03 1 | 0.066 1
21 | 0.051 1] 0.083 1 [ 0.022 1| 0.061 1
25 [ 0.028 | 0.997 | 0.06 | 0.998 | 0.012 | 0.995 | 0.043 | 0.998
11 | 0.074 110.113 1 0.03 1| 0.081 1
0.55 16 | 0.056 1] 0.087 1] 0.02 1| 0.054 1
21 | 0.065 1] 0.08 1] 0.038 1] 0.057 1
25 | 0.067 1| 0.088 1] 0.03 1 | 0.065 1

Table 4. Hy: ARCH(1) vs Hy : AR(1) T = 500
a=0.1 a = 0.05

1= 500 Bootstrap Normal Bootstrap Normal
a M HO HA HO HA HO HA HO HA
14 | 0.072 1 0.09 1 {0.025 11 0.059 1
0.3 21 | 0.062 11 0.094 1 { 0.032 1] 0.059 1
28 | 0.067 1| 0.097 1 { 0.024 1| 0.062 1
35 1 0.076 11 0.101 1 [ 0.026 110.073 1
14 | 0.045 11 0.097 1 { 0.022 11 0.059 1
04 21 | 0.075 11 0.105 1 0.03 11 0.077 1
28 0.06 1] 0.111 1 { 0.024 1 0.07 1
35 | 0.085 1 0.12 1| 0.041 1] 0.086 1
14 | 0.053 110.129 1 { 0.032 11 0.079 1
0.5 21 0.1 11]0.121 1 [ 0.054 1] 0.082 1
’ 28 | 0.111 1] 0.124 1] 0.071 1| 0.085 1
35 | 0.066 11]0.117 1 { 0.029 11 0.075 1
14 | 0.099 110.143 1 {0.047 110.104 1
055 21 1 0.074 11]0.119 1 [ 0.042 1] 0.083 1
' 28 1 0.078 1 0.11 1{0.037 11]0.072 1
35 | 0.082 110.119 1{0.037 1] 0.085 1
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6.2. Real Data

In this section we consider the the Microsoft daily return data discussed in Section
2.1 and the Intel monthly log return data (from January 1973 - December 2003), this
was considered in Tssay (2005). In the analysis below we will test whether the GARCH
and ARCH models are appropriate for the Microsoft and Intel data, respectively. We
will be using the Bartlett window.

A plot of the estimated CAJT together with the piece-wise confidence intervals
(obtained using the results in Theorem I1.1) and the corresponding quantile spectral
density of the GARCH(1,1) is given in Figure 7 for the Microsoft data. It is clear from
the plot that the GARCH(1, 1) model with coefficients evaluated using the maximum
likelihood estimator is clearly not the appropriate model for fitting to this data. This
observation is further confirmed by the results of out test. Using various values of M
ranging from 30 — 70, the p-value corresponding to Qr is zero both using the normal
approximation and also the Bootstrap approximation. Therefore, from our analysis
it seems that the GARCH(1, 1) is not a suitable model for modelling the Microsoft
daily returns from 1986-2003. Studying the the quantile spectral density plots we see
why this the reason.

We now consider the second data set, the Intel monthly log returns from 1973
- 2003. Tsay (2005) propose fitting an ARCH(1) model to this data, and maximum
likelihood yields the estimators g = 0.0166, ay = 0.0125 and a; = 0.363, where
Xi = pu+e, 6 =07 and 02 = ag + a2 . A plot of the estimated Gr with the
piece-wise confidence intervals together the quantile spectral density of the ARCH(1)
model is given in Figure 8. We observe that the quantile spectral density of the ARCH
model lies in the confidence intervals for almost all frequencies. These observations

are confirmed by the proposed goodness of fit test. A summary of the results for
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Fig. 7. The quantile spectral density of the fitted GARCH(1, 1) model using Microsoft

data with the confidence intervals

various M, using both the normal approximation and the bootstrap method is given

in Table 5.

Table 5. The p-values for the Intel Data and various values of M

M 15 20 25 30
Normal p-value | 0.0905 | 0.1279 | 0.1807 | 0.2643
Bootstrap p-value | 0.3880 | 0.4320 | 0.4020 | 0.4780

The p-values for the normal approximation tend to the smaller than the p-values

of the bootstrap method, this is probably due to the skew in the finite sample distri-

bution which results in smaller p-values. However, both the normal approximation
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Fig. 8. The quantile spectral density of the fitted ARCH(1) from Intel data with the
confidence intervals

and the bootstrap give relatively large p-values for all values of M. Therefore there
is not enough evidence to reject the null. This backs the claims in Tsay (2005) that

the ARCH(1) may be an appropriate model for the the Intel data.

7. Proofs

7.1. Proof of Theorem II.1

To obtain the sampling properties of G7(-) and Qr (under both the null and
alternative), we first replace the empirical distribution function Fip(z), with the true

distribution and show that the error is negligible. Define the zero mean, transformed
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variable Z,(z) = I(X, < x) — F(z), where F(-) denotes the marginal distribution of

{X,}. In addition define C,(z,y) = o 7Z1(2) Ziir(y),

~ 1 N
GT(xyy;wk) = %Z)\M(r) ZL’ y exp erk ZKM Wi _ws (l’ ws)‘] (yaws)

Or = 73 [ 16wy = Y Murr)Cola ) explirin) PdFu(e)dFaly).

where Jp(z;w) = \/ﬁ ST Zy() explitw).
In the proofs below we shall use the notation || X ||, = (E(|X|"))"/". We first show

that replacing FT(:E) with F'(x) does not affect the asymptotic sampling properties
of Gr(-) and Or.

Lemma I1.2 Suppose Assumption IV.1 holds. Then we have

(EIG (2, 4:) — G,y ) )? = O(0) 2.7
and
(E|Qr — Or[)V? = 0(%). (2.8)
PROOF. We first observe that
T (s wn) Jr (y; ) — Jr (s wp) Jr (y; wi)
B 0 wp # 0,1
T(Fr(z) — F(z))(Fr(y) — F(y)) otherwise
Substituting the above into Gip(w,) — Gr(ws) gives
Grl(ws) = Gr(ws) = TEu(ws)(Fr(z) — F()(Fr(y) — F(y))- (2.9)

Using Ky (+) = O(%) and |Fr(z) — F(x)|], = O(#) in (2.9), we obtain the desired
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result for (2.7). To prove (2.8) note that

Qr — Or

= /%Z (Gr(z,y;ws) — Gr(w,y;w5)) (Gr (@, ys ws) + Gr(a, y;wy) ) dFo () dFy(y)

+ éR(/ % > (Gl yws) — @T(w,y;ws))G(fﬂ,y;ws)dFO(l")dFo(y))'

Thus substituting (2.9) into the above gives

Qr — Oy
_ / (Fr(x) — F(2))(Fr(y) - F(y)) %

( Z Ky (ws) (@T(m, y;ws) + Gr(z,y; ws))) dFy(x)dFy(y)

s=1
T

+ 2 [(Fr(e) - F@)(Erly) - F<y>>ére<2 Kas ()G, ws>)dFo<x>dFo<y>.

s=1

Therefore

~

< [ 17~ F@ o)~ P, »

< > (Enws)] - (IGr (g wo) | + ||GT<:r,y;w»HS)))dFo(x)dFo(y)
L2 / |Br(z) — F@)|,| Br(v) — Fw)|], x

(Z | K (ws)] - |G(37>y§Ws)|>dFo($)dF0(y).

For all » > 2, we have ||ﬁT(x) — F(x)|, = O(\/LT)7 substituting this into the above

gives HQT — QTH2 = O(%), and the desired result. O

PROOF of Theorem IL.1 To show asymptotic normality of Gr(-), we first
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replace Gy with G, by (2.7) the replacement error is O, (4 ). Thus Gy and G have
the same asymptotic distribution and we can show how asymptotic normality of CAJT
by considering éT() instead. To show asymptotic normality of Gy we use identical
methods to those in Chapter IV, since {I(X; < z)} are bounded random variables,
we can use Ibragimov’s covariance bounds for bounded random variables. To obtain
the limiting variance we note that under Assumption IV.1, since s > 2, we have

that Y |r| - [cov({(Xo < 2), (X, < y))| < oo and ) L+ |rj])|cum(I(Xy <

T1,72,72 (

x0), [( Xy, < x1),I(X,, < @9),1(X,; < x3))] < 0o. Thus, the assumptions in
Brillinger (1981), Theorem 3.4.3 are satisfied, which allows us to obtain the stated

limiting variance. U

7.2.  Proof of Theorem II1.2

We use the following lemma to obtain a bound for the variance of Q.

7.2.1.  Proof of Lemma II.1

Lemma I1.3 Let the lag window be defined as in Definition 1.1 and suppose hy(-)

and ho(+) are bounded functions. Then we have
L, = /hl(ul)hg(ug)AM(ul — u2)2du1du2 =0(M) (2.10)
and
L, = /hl(Ul)hQ(Ug)AM(Ul + u9) Ay (ug — ug)durdug = O(1) (2.11)

where Ay (+) is defined in (2.4).

PROOF. To simplify notation we prove the result for the truncated lag window

Awu) = Ij—11)(u), but a similar result can also be proven for lag windows which
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satisfy Definition I1.1. In the proof we use the following two identities

T T41
Zem L ) /|Sln V’d )P = omrtr. (212)
t=

“sin(w/2) sin(

We start by expanding A,, and using the above, to give

Ay (0 —02) = D Al (a) expliga(w — 6r)) exp(ija(w — 05))duw

J1,je=—M

_ Z)\M ) (—3) exp(ij (61 — 62))

Sm((M—l— 1)(6; — 63)/2) PRLICELY

sin((6; — 67)/2) (2.13)

Substituting the above and (2.12) into (2.10) gives

L] = ‘//hl(ul)hg(UQ)AM(ul—u2)2du1du2|

< sup\h |2//|SISn ;)‘Qduldug
11’1 Ul—UQ

:o(

This proves (2.10). To prove (2.11) we observe that by a change of variables (v; =

uy — ug and vy = uy + ug) we have

|L2| S C/ |AM(U1 +U2)| . |AM(U1 - U2)|dU1dU2

< o(/yAM(u)|du)2

Now by substituting (2.13) and (2.12) into the above gives Ly = O(1). Thus we have

obtained the desired result. O
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PROOF of Lemma II.1 We first evaluate the expectation of Q7. By using

Lemma I1.2 we have

E(Qr)
T T
1
— ?; k%;lKM(ws—wkl)KM(ws—wkz) X

~ - ~ — 1
cov (Jr(x; wiy ) Jr(y; Wiy )y I (25w, ) I (y; wiy)) + O(%)

1
= 5 +I2+[3+O(T>’

where

1 T

L = T 57,{%:1 (KM(WS — Wiy ) K (ws — wy,) X
COV(jT(as; Wiy ) jT(as; ka))COV<jT(y; Wiy ) jT(y; ka))) dFy(z)dFo(y)
1 T

L = = S,k%;ﬂ (KM(WS — Wiy ) K (ws — wyy) %
COV(jT($; Wy ) M) cov(m, Jr(z; wkz))) dFy(x)dFy(y)
1 T

negf > (Hrte — ) K =)

v (T (5, ), T (gsoomy ), (3 00, JT<y;wk2>))dFo<x>dFo<y>.

Under Assumption IV.1, we have that ) |r| - |cov(I(X, < ), (X, <y))| < oo and
2 m gy (LA g )|eum (I (Xo < o), I(Xo, < 1), I(Xo, < 9), [(Xoy < 3))| < 00
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Therefore we can apply Brillinger (1981), Theorem 3.4.3 to obtain

I

I3

% Z / Z K (ws — wi)*G(w, 25 w1) Gy, y; wi ) dFy (2)dFy (y) + O(%)

T

2 [ S0 Y (o), Zas ) 2o, 2 ) B2

t1,t2=1

This gives us an asymptotic expression for the expectation. We now obtain an ex-

pression for the variance. Replacing Z,(-) with Z(-) gives

Var( QT

Z / < KM(wsl - wk1>KM(w81 - wk2>KM(ws2 - wk3>KM(ws2 - wk4>
k1,k2,k3,ka

s1,52=1

X COV((Jkal thyl - E(‘]kl,xljkhw))(szﬂﬁljk%yl - E(‘]kz,xljkmyl))v

(Jks,m‘_]k&yz - E<Jk37w2jk37y2 )) (Jk4,z2‘_]k4,y2 - E<Jk47$27k47y2 ))) )

ARy (1) AFo (1 )Fol(2)dFo (1) + O )

1
=1L+ 1+ 115+ O<T)

where Jy, = Jr(z;we),



40

T
1 _ _ _
I = ﬁ Z Z Cum(‘]kl,xl‘]klvyw T3 o Jk37y2)cum(‘]k2,x1‘]k27y17 S ,vs Jk4,y2)
s1,52=1 k1,k2,k3, k4
H KM wsl - H KM w52 — (Ukl)dFO(xl)dFO(yl)dFO(.Tg)dFO(yQ)
1 T
I]Q = —2 Z Z Cum(Jkl,xl Jk1,y17 Jk;4,x2 Jk4,y2)cum(<]k27a:1 Jk’z,yu Jk’37902 Jk3yy2)
k1,k2,k3,kq
H K (ws, — H K (wsy, — wi, )dFy(x1)dFy(y1 )dFy(22)dFy(ys)
1 _ _ _ _
I3 = /_ZTQ Z Z Cum(‘]kl,rl Jk1,y17 Jka,a1 Jk27y17 Tk 22 ‘]k3,y27 T,z Jk47y2)

S1,82=1 k1,k2,k3, k:4

HKM Wgy — HKM Wgy — wki)ng(a:l)ng(yl)ng(mg)ng(yg).
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To obtain an expression for the variance we start by expanding I,

4

15 :%2/ Yo I Ewws —w) [ Karlws, —wi)

51,827 ki ka ka,ka i=1 i=3

X (cov(Jkl,xl, Jks.22)COV (T ks 1y T s 2 )COV(Tkg 1 Thea 0 )COV (T ks  kan)
coV(Jky a1 s Trsen)COV(Thy 15 Ths o )COV( Ty s Tk )COV (T kg s Ty aen)
coV(Jhy a1y Thsen ) COV(Thy 1s Ths o )CUMN ( Tk 21y Tyt s Thasens I s )
coV(Jky a1y Ty )COV( Ty 1> Thsn )COV( Ty s Ths 0 )COV( Ty r's T eagn)
coV(Jhy .y Ty )COV( Ty 1> Thsn )COV (g s ks )COV (T kg s by avn )
cOV(Jhy a1 Ths e )COV( Ty 1> Thson )CUMN (Jhy 21 s T ot s Thasens s )

Cum(thxn ‘]k1,y17 Jkg,afzv Jks,y2)cov(‘]k2ﬂ»‘17 Jk4,x2)COV(Jk27y17 Jk4,y2)

+ 4+ 4+ o+ o+ o+ o+

Cum(thwn th?/l? Jk3,df27 Jk:s,yz)cov(‘]kzwn Jk4,y2)cov(‘]k2,y17 Jk4,x2)

+

2
Cum(‘]kLIl?jkLyl? Jks,xzvjks,yQ)Cum(Jk2,561>7162,3/17 Jk4,majk4,y2)) H dFO(xj)dFO(yj)

j=1
9
= Z IIl,j-
j=1
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We use Brillinger (1981), Theorem 3.4.3 to obtain the following expression for /7; ;

= = Z/( HKM — wi) Ky (ws, — wi))

81,52 ki,ko=1 =1

COV<Jk1 L1 Jkl,m )COV(jkl Y19 jk‘l Y2 )COV(sz,m ) kawz )COV(jkzﬂh ) 71@24/2 ))

HdFo £)AFy(y;) + O()

// (/WM Way = O1) W (ws, _92)dw51) X

2

(/WM ws, — O1)War(ws, — 92)dw32) HG(%,IE%@)G(?/LQQQ —0;)d0;

i=1

HdFO (;)dFy(y;) +0( )

1 2 2 1

i=1 j=1
Therefore by using (2.10) we have II;; = O(4%). We now consider 11, 5, by using a

similar method we have

Ny = / War(wer — 00)Was(ws, — 02) Wit (s, — 01)Was (ws, + 62)

G(Il, T, QI)G(yh Y2, _61>G(x17 Y2, QQ)G(yh Zo, _02)d81d02dw51dw82

2

T Res)m) + O(5)

1
= T2 Ap (01 — 02)Ap (01 + 02)G (21, 22, 01)G (Y1, Y2, —61)

2
1
G(x1, Y2, 02)G (1, 2, —02)d61d8; | [ dFo(x;)dFo(y;) + O(7z)-

j=1
By using (2.11) the above integral is O(1), and altogether 1,5 = O(7). Using a

similar argument, one can show that 11, 3, I, 4 are smaller than O(TMQ), so negligible.



For 11, 5, we use that

_ G(r,y,wr,) ki+hke=T
coV(Jiy 2y Jhoy) =

O(7) otherwise

which follows from Brillinger (1981), Theorem 3.4.3. This leads to

IL; = % /( i (ﬁKM(wsl—wki)KM(wserwki))

S1,82 ki,ko=1 =1

COV(Jkl \T1 ‘]kl Y2 )COV(jkl Y19 7161@2 )COV(‘]kz,xl ) Jk27y2 )COV(jk%yl ’ ‘_]k2,$2 ))

2

[T aFo(es)dFo(u;) +O)

_ ;i:// (/WM(wsl — 0) Wi (ws, —Gz)dwsl> x

2
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(/WM(%2 + 01)War(ws, + 92)dwsz> H G(21, 23 0:)G (Y1, w25 —0;)db;

=1

[T aFo(e)dFs;) + O()

J=1

= II,

because of A(f) = A(—#) and interchangeability of integrals about (x1,z2,y1, ).

With a similar method, one can show that /1, 4...,11; 9 are all dominated by I1; ;

and I1; 5 Altogether this gives

9 2

2
1

IL = = [ Au(0r — 02)* | | Glar, 22:0:)G (1, y2; 0:)d0; | | dFo(a;)dFy(y;) + O(=)-
T

T2

i=1 j=1
Using the identical argument with the above, we can show that

9 2 2

1
]IQ = — AM(Hl — 02)2 G(Z’l,xg; 91>G(y1,y2, Qz>d92 dFO(ZEJ>dF0(y]) + O(—)
T2

T2

i=1 j=1
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To bound 15 we recall that

1

T
I3 :ﬁ Z Z KM<w81 - wkl)KM<w81 - wkz)KM<w82 - wks)KM<w82 - wk4)

s1,82=1 k1 ,k2,k3,kq

2
- - — - 1
Cum(*]kl,wl Jk17y17 sz,m Jk2,y17 Jk37w2 Jk31y2’ Jk4,x2 Jk4,y2) H dFO(xj)de(yj) + O(f)

j=1
The above cumulant is computed as the sum of the products of cumulants in decom-
posable partitions by Theorem 2.3.2 in Brillinger (1981). We used the mathematica
routine by Andrews and Stafford (1998) to find all decomposable partitions. Fur-
ther information about the indecomposable partitioning could be found in Andrews
and Stafford (1998), Stafford (1994) and Smith and Field (2001). This together with
Brillinger (1981), Theorem 3.4.3 gives us I3 = O(2%). The detail is given in the
Appendix. Combining the expressions for /1, 1, and 115 gives us the expression for

the variance and completes the proof. O

7.2.2.  Proof of Theorem II1.2

Now we show that Q7 can be approximated by the sum of martingale differences,
this will allow us to the the martingale central limit theorem to prove Theorem II.2.
We first define the martingale difference decomposition of Z,(x) = >0 M J@) (t—17),
where M;x)(t —j) = E(Z(2)|Fi_j) — B(Zy(x)|Fi_j_1), where for t > 0 we have
Fi=0(Xe, Xy—1,...,Xq) and for t < 0 we let F, = o(1), and M;(s) = 0 for j > s.

Using the above notation we define the random variable

o0

1 - : )
Sr = —/ SN A)?PMPI (4 — j)MP (b + 1 — )

J1,e-0J4=01t1,mt2€ A

x M (ty — jB)M](iJ) (ta + 1 — ja)dFo(z)dFo(y), (2.14)

where A = {(t; — j1,t1 +r — jo, ta — j3,ta + 17 — j4) are all different }.
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Theorem I1.4 Suppose Assumption IV.1 holds, St is defined as in (2.14) and the

null hypothesis is true. Then we have

1 M1/2
Qr —E(Qr) = Sr+ Op(f + W)'

and for all r > 2
M1/2
ISz, = O(—=—).

PROOF. We use a combination of iterative martingales and Burkholder’s inequality
for martingale differences. First we note that for » > 2 we have
I =Dl = 1E(Zu(@)| Fiy) = E(Z(0)| Figr) 2
< 2|E(Zi(@)|Fiy)llr < Cal), (2.15)
where F; = o(Xy, Xy—1,...,X1), which follows from Ibragimov’s inequality. Substi-
tuting the representation Z(z) = P M]@ (t — j) into Qr gives
Qr — E(Qr)

_ %/]i i)\M(r)Q

Lseees Jja=0r=—M

> (M}? (tr = )M (#1471 = o) x M7 (t = Gs) My (£ + 7 — )

t1,t2

— E(MP(t — j)MY (41 — o) x Mty — j3) MY (ty + 1 — j4)))

J3

dFo(x)dFo(y),

where X denotes the centralised random variable X — E(X) (note that M;(s) = 0 for
s < 0). We now partition the above sum into several cases, where we treat ji, ..., js

as free and condition on ¢, ¢y and 7:

(i) A = {(t1,t2,7) such that (t; — j1,t1 + 7 — Jo, ta — js, ta + 1 — js) are all different
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(ii) B = {(t1,t2,7) such that (t; —j1 =t + 7 — jo) and (t2 — js =to + 7 — Ju)}.

(iii) C = {(t1,t2,r) such that (t; —j1) = (t2 — js) or (t2+r —js) and (t1 + 7 — j2) #
(tr —J)}-

(iv) D = {(t1,t2,7) such that (t; +7 — jo) = (ta — j3) or (to+7r — j4) and (t; — j1) #

(tl +7r —j2>}.

(V) g = {(tl,tg,T) SU_Ch that (tg —]3> = (tl —]1> or (tl —+1r —]2) and (tQ +7r —j4 7&
ty —Jjs)}-
(iv) F = {(t1,ta,7) such that (to+r —js) = (t; — jo) or (t1 + 7 — j2) and (t3 — j3) #

(tQ +r —j4)}

Thus

Qr —E(Qr) = / (IA +Isg+Ic+Ip+Ie+ ]f) dFo(z)dFy(y),

where

L= Y Y Ay

Jlseees Jja=0 r7t17t26A

M (1= )M (07 = G) M (12 = ) MY (b2 + 7 = ),

Is = % Z Z (1 — Ja2)°
J

j15--,J4=07,t1,t2€B

(Mf)(tl - jl)Mff)(tl —J1) X M](:)(h —js)M](f)(tz — J3) —

E(M7(t — j)MP (4 — j1) x ME (ty — j) MY (15 — 3-3)))

for Ic, ..., Ir are defined similarly.
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We first bound I4. We partition A into 24 cases by the order of (t; — ji,t; +7—
jQ,tQ — j37t2 +7r— ]4) The first is Al = {(tl, tg, 7") such that tl - jl > tl +7r— jg >
to — j3 > to + 1 — js} which gives

Ly = Z > Aulr

Jise-sda=01t1,t2€ Ay

M}l (= )M (0 7 = )M (= o) M (t 4 7 = ).

The other 23 cases are defined similarly such that we have I4 = 254:1 I4;. We start
by bounding /4. Since t; —j1 > t1+r—jo > ta—js > to+1—j4, it is easy to see that
M2 (01 =0) gy Mt ()M (= 2) Sy, gy M3 (b2 = ) MY (ta o = i)
is a martingale over ¢, Mj(f) (b7 = 52) Dy ety 1 tia M;g)(tg — jg)M(y)(tQ + 17— j4)
is a martingale over r and {MJ(:) (to — jg)Mﬁ’) (ta + 1 — j4)} is a martingale over 5.
Thus by using Burkholder’s inequality together with Hélder’s inequality three times,
for any ¢ > 2 we have

1
Lol = & 3 (3 AlPIM 00— )2 1M 0+ — i),

J1yJa=0  7i1,t2

x 1/2
||M< (ta — 3a) 2 I ML (2 + 7 — ) |13,) .

Thus by using (2.15) we have that [[14.1]|, = O(%/Q) and by the same argument

we have 4 ; = O(M;/Q) (for 2 < j < 24). Therefore, altogether this gives ||14], =

O(MTI/2 ). We now bound Iz. We first define the random variable

Aty — g1 = 1) =

E(MP(t — j)MY (1 — )| Faej—i) — B (8 — ) MY (4 — 51)| Frajii)-
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To bound ||Aj1 o Z( —j1 —1)||4, we repeatedly use Ibragimov’s inequality and (2.15)

to give

JASY (4 — 1 —i)lg < 2(EME (0 — ) MY (4 — 1) Fomjii)|
< Ca@)IMP (= j)MP (t — 51)ll,
< Cafi)a(j)a(). (2.16)

This gives the representation

Mj(lw)(h — j1)M (t1 — j1) ZA]i;’;), (t1 — 71 —19).

Substituting the above representation into Iz gives

Is = TQ 3D il A (DAL s )

-Jja, t1,t2€B
11,12—0

_E<A§1 .72) 311 (tl - ~] )A§3’f4 zg( 2= .j3 - 22))}

= Ip1+1Ip2+ Ips,

Iy = Z Yo Al = PATY (b — i — DASE (b — s — in)

J1yenJ4, t1—j1—i1>
i1,i2=0 t2—j3—1i2

sz = Z Z A (1 = j2) Ajl J2)711 (t1 =51 — i)Agg ]4) in (ty — jz — i2)
J1yed4, t1—j1—i1<
i1,i2=0 t2—j3—i2

1 . .
Iss = g5 > 2. Awln— AT (b = g = DAL, (t = s = i)
j17"'7j47t1 jl 7/17
i1,i2=0 t2—j3—i2

Using similar techniques to those used to bound ||Z4;]|,, Burkhdlder’s and Holder’s
inequalities twice on ||Ig1]|4, together with (2.16), we obtain the bound |Iz:|, =

O(7). A similar argument can be used for ||Iz2[l; = O(3). To bound ||Ig3]|4, we
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need to decompose

AY(t— Gy — DAY (ty — Gy — da) — B(ADY . (4 — i — ) ATY 8y — Gy — in)),

into the sum of martingale differences, using this martingale decomposition we can use
the same argument as those used above to obtain ||z ]| = O(z7). Therefore, alto-
gether we have ||I5||; = O(7). Now by using similar arguments and repeated decom-
positions into martingale differences we can show that |I¢ls, - .., [|[1£]l, = O(%)
Thus we have shown that I4 is the dominating term in Qp — E(Qr). Since Sy =
[ L4dFy(x)dEy(y) we have obtained the desired result. O

To prove the asymptotic normality of Qr under the null hypothesis, we use
the martingale central limit theorem on Sz in (2.14). To do this, we use the same
decompositions of I4, as that used in the proof of Theorem II.4. We set Sr; 1= 14,

recalling that

oo

Si= | XX b

14y ja=0 17t ta €A L

M (= )M (4 + 7 — o) M (ts — ja) MY (b + 1 — ja)dFo(x)dFo(y),

J

where A4; is some ordering of {t; — ji,t1 + 7 — jo,ta — J3,ta + 7 — js}. We show that
St can be written as the sum of martingale differences. First consider S7q, this can

be written as Sy = %2 > x—1 Uk, where with a change of variables we have

T—k
N DIACD SIS S,

71=0 J2:73,J4 r,tlejhl

MY (k+ g1+ 7 — j2) M (ty — ja) M (s + 1 — ja)dFy(x)dFo(y)

and Ay = {(r,t) such that (k >k +j1 +7 — jo >ty — jz > to +7 — j4)}. Using a
similar argument we can decompose S7; as Sr; = % 22:1 Uk, (and Uy, is defined

similar to above). Therefore, altogether Sy is the sum of martingale differences,
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where Sp = %2 Zgzl Z?il Uk,i, and Z?il Uk € 0(Xk, Xy—1,...) are the martingale

differences. Therefore under the conditions in Theorem I1.4 we have

1 M1/2 M1/2
Qr —E(Qr) = 81+ Ol + T2ZZU,“+O —).

T2
k=1 i=1

These approximations will allow us to use the martingale central limit theorem to

prove asymptotic normality, which requires the following lemma.

Lemma 11.4 Suppose that Assumption IV.1 holds. Then for all 1 < i < 24 and

1 <k <T we have

1> Ukillg = O(T2 M), (2.17)
=1
1 T 24
k=1 1=1
4 2 2
=1 j=1
and

T21M Z { ( ZU;“ | i 1) —E(éUk,i)Z} Zo. (2.19)

PROOF. To prove the result we concentrate on Uy, a similar proof applies to the
other terms. By using the Holder inequality, for any ¢ > 2, we obtain

ialls < / S L0l Y AP+ gy o) x

71=0 J2,73,J4 rtlejk 1

MOty — )M (b2 + 7 — ) agyad Fo()dEo(y).

Now by repeated use of Burkholder’s inequality we have ||Uy|l, = O(MY2T'?),

using a similar method we obtain a similar bound for ||Uy;||,, this gives (2.17). The
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proof of (2.18) follows from the proof of Theorem II.4 (noting that the asymptotic
variance of Q7 is determined by the variance of Sy).

To prove (2.19), we consider only the Uy, (the proof involving the other terms
in similar). For brevity we write Uy ; as

T—-k

Ui = / S MOENED | dFy()dFo(y),
j1=0
where
NI = 3T ST )P M (ke + i+ — o) M (b — ) MY (b + 1 — ).

J2:03:04 rt1 € Ag 1

Noting that N;i’,flm € Fi—1 we have

2
N](fﬁll)le(jﬁi)l H dFo(x:)dFo(yi)
=1

2
(NN = B2 N ) TT dFote) dFo(w).

J
i=1
Now by using similar methods to the iterative martingale methods detailed in the
proof of Theorem I1.4, we can show that the ||-||,-norm (¢ > 2) of the above converges

to zero, thus we have (2.19). O

PROOF of Theorem II.2 Using the above we have

1 T 24 1 M1/2
Or — E(QT) = 772 Z ZUkvi + Op(f + W),

k=1 i=1
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thus Q7 — E(Qr) can be written as the sum of martingales plus a smaller order
term. Therefore to prove asymptotic normality of Qr we can use the martingale
central limit, for this we need to verify (a) the conditional Lindeberg condition
it S E( X2 U2 (s | 2 Uil > €)|Fiet) 2 0 for all € > 0, (b) that
7317 Lbor B 221 Ui P Fiee) — Fpvar(Qr) 5 0.

To verify the conditional Lindeberg condition, we observe that the Cauchy-

Schwartz and Markov’s inequalities give

1 T 24 1 24
T2 ;E(‘ ZZ Uk,z|2[(W’ ;Ukﬂ‘ > €)|.Fk,1)
T 24

< T4MQZE IZU;“! | Fr—1) :== Br.

By using (2.17), the expectation of the above is E(Br) = O(7). As By is a non-
negative random variable, this implies B 2 0 as T — co. Thus we have shown that

the Lindeberg condition is satisfied. To prove (b) we note that

T

1 24 T2
T2 M Z (| Z Uk,i|2|]:k—1) — MVM(QT)
k=1 '
24
{ ZUkz | Fr—1 —E(\ZUM‘Q)}
i=1

Z Uk 1 - _Var(QT)

!

+

M’ﬂ I

T2M
k=1

By using (2.18) and (2.19) the above converges to zero in probability. Thus we have
verified the conditions of the martingale central limit theorem and we have the desired

result. O
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7.3. Proof of Theorem II.3

Since the limiting distribution of Qr is determined by Qrq, we rewrite Qr, as

in the proof of Theorem IV.2. We observe that

Orp

= %9‘%/zk:AT(x,y;wk){JT(x;wk)jT(y;wk) — E(Jr(;wi) Jr(y; wi)) fdFo(2)dFy (y)
N / % Z Mu(t = 7)2 Do (2,9)(Zi(2) Z: (y) — E(Zi(2) Z7 (y)))dFo () dFo (y)

— [ £ Ault = Dl ) 2@ 2:(0) — Gl )AFs(w)dFu(y) + Ol ).

where Ap(z, y;ws) =D, )\M(T)Q(T%M)(Cm(m, y) — Cro(z,y)) exp(irwy), Drr(z,y) =
(T_TM)(CTJ(‘T’ y) - 0730(3:7?-/)) and Zt(x) = [(Xt < 37) - Fl(a:)

PROOF of Theorem I1.3 Now we observe that under the stated assumptions
of the theorem we have that the quantile covariances under the null decay at the
rate sup, , |Cro(z,y)| < K|r[~# (for some § > 0) and sup,, |Cy1(z,y)| < K|r|™*
(for some s > 2). Thus by definition of D, r(-), we have sup, , |[A\(7) Dy r(z,y)| <

K|r|~min(2+35) " Thus we can write Qr» as

Q1o

_ / ;ZAM@ — 72Dy, 9)(Zr(2) Z:(y) — B(Zr(2) 2+ (y)))dFy(x)dFy (y)
+ O

where we observe that terms where |t — 7| > 2M, are zero. Thus with the Bernstein
blocking arguments for quadratic forms used to prove Theorem IV.2, we can show
asymptotic normality of the above. This proves (2.5). Finally to prove (2.6), we note

that Qr = Qo+ Ero+ Op(%/2 + % + ﬁ), by using (2.5), this immediately leads



to (2.6).

o4
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CHAPTER III

PERIODICITIES AND OTHER FEATURES ON THE DOMAIN OF A TIME
SERIES

1. Introduction

Often spectral methods are used to analysis a (stationary) time series, because
it may exhibit periodicities or patterns which can easily be interpreted using the
Fourier transform of the autocovariances. Brillinger (1981) and Shumway and Stoffer
(2006), Chapter 4, eloquently describe spectral analysis of a time series and its appli-
cations, for example it can be used to identify the dominant frequencies in a system
and identify the linear time series model. However, despite its advantage, there are
disadvantages in using the autocovariance function as the basis in spectral analysis.
The autocovariance function only measures the average interaction between elements
of a time series, but cannot identify differences which may lie on the domain of the
time series. Consider the following toy example, suppose {X,} is a stationary time

series where
Xe=ce+1(r1 <e <r)Zy+1(—ry <& < —1)Y}, (3.1)

where {¢;} are independent, identically distributed (iid) random variables with vari-
ance o2 and {Z;} and {Y;} are two independent stationary, linear time series, with
spectral densities fz(w) and fy(w) respectively. Both are independent of {¢;}. The
spectral density of {X;} is fx(w) = 02 + P(r; < &g < 1m)?fz(w) + P(—ry < g9 <
—7r1)? fy (w), which is not particularly informative about the underlying model. Fur-

thermore, it is not clear whether the dominant frequencies in fy and f; arise in fx.
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This is an example of a time series where it may be more valuable to understand
the interactions between different regions of the domain of the time series that the
autocovariance.

Our objective is to define a spectral density which measures associations between
different parts of the domain of the time series. More precisely, we assume that the
time series is stationary and define the association spectral density as

aste i) = 5 (3 (o) = F2) ) explire) - 1(2)1) ).
r#0
f-(-) and f(-) is the marginal and joint density of Xy and (X, X,) respectively. To
understand how gs may help, we return to example (3.1). It can be shown that the
association spectral density in this example is

gox(z,yiw) = /_”gsy@:—el, e2) fo(e1) fo (e2)derdes

T2

T /Wgsz@:—el, eV fo(e1) o (ea)derdes + k(. )

T1
where gsy and gs 7 are the association spectral densities of {Y;} and {Z;} respectively

and f. the marginal density of {¢,} and k(z,y) = %( f:f fz(x—e)f-(e)de)( [ Tzl fry

e)fele)de)+([7 fz(y—e) fele)de)(J )} fy(z—e)fo(e)d )). To understand how gs be-

haves for different x and y, we consider the association spectral density of a stationary

Gaussian time series X; = ) >0 @j€t—j, which has an explicit form such as

9S,Gaussian

2 2
_ 1 eXp(_:chy)x

p7)
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where 0§ = 0?3 jaZ and p, = >7° aja;y -

We observe that it tends to be largest when x and y are close to zero (since
X; has the largest of lying there). In general this behavior is true for non-Gaussian
linear time series, that is the association spectral density of a linear time series tends
to be largest about zero. This has an interesting repercussion on gs x. gs,x will have
different behaviors depending on the x and y. If x and y lie close to the interval
[—72, —71], gs.x(+) is dominated by gsy, on the other hand for x and y close to the
interval [rq, 73], gs.x will be dominated by gs z. Thus the association spectral density
suggests that X; is a mixture of two time series. This example motivates the use of
the association spectral density as a tool in explanatory data analysis.

In general, the association spectral density can be considered as a means of de-
picting the general dependence between pairs of random variables in a time series,
which is usually called serial dependence. Several methods have been proposed to
generalize the spectral density to serial dependence. For example, Hong (1998) de-
fines generalized spectral density, which is the Fourier transform of the characteristic
function of pair-wise dependent data, which he uses to test for goodness of fit. More
recently, Li (2008), Hagemann (2011) and Dette et al. (2011) define a generalize spec-
tral density based on the cumulative distribution functions, which does not easily
represent the associations and periodicities between different parts of the domain of
the time series. In this paper, we address this issue. The purpose of this paper
is to introduce the association spectral density as a means of studying the pairwise
dependence structure of a time series at different scales and locations.

In Section 2 we consider in detail the properties of the association spectral density
and propose a method of estimation. In Section 3 we derive the asymptotic sampling
properties of the estimator. Some simulation results can be found in Section 4, and

all the proofs are in Section 5.
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2. The association covariance and association spectral density

2.1. Motivation

In this section we motivate the association covariance and the corresponding
association spectral density. The autocorrelation function gives information about the
average interaction between any two random variables in the time series. However, it
is too ‘global’ to give information about how different domains of the time series may
interact and influence each other. In order to illicit this type of information we can
transform the time series { X;} by windowing it around regions of the domain that are
of interest. Suppose that we are interested in the interaction of the time series around
x and y, then by transforming X, as {(: W (£52), 2W (£=24)},, where W : [-1,1] — R
is a positive symmetric kernel and b a window length, and can consider the cross
correlation of this transformed time series. Inspecting the covariance, we observe

that depending on how close the kernel W (+) is to the rectangular kernel we have

cov(Wy(z — Xy), Wo(y — X))
= E(Wi(z — X)Wy — X,)) — E(Wy(z — X)) E(Wy(y — X,)))
~ Po—-b<Xi<az+by—-b<X,<y+b)

— Pr—-b<Xi<z+bPly—b< X, <y+b).

Therefore, we observe that a positive cov(Wy(z — X;), W, (y — X)) implies the prob-
ability that X; and X, lie in the neighborhood of x and y respectively, is greater
than independent events (thus positive association), whereas a negative covariance
suggests the opposite. However, the magnitude of association depends on various

factors that we now explore. Under the condition that {X;} is ¢-mixing (see Lemma
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II1.2, below) it can be shown that
|cov(Wy(z = Xi), Wa(y — X5))| < Cft = 7| "E(Wa(z — Xo))E(W(y — Xo)),

where W (z) = tW (%), E(W,(£22)) = [ W (%Y) f(y)dy, f is the marginal density
of X; and s the ¢-mixing size. We can see from the above that the covariance is
determined by two factors (a) the region that is windowed and (b) the -mixing
size s. For example, the covariances cov(Wy(z; — Xo), Wi(y — X)) and cov(Wy(z2 —
Xo), Wy(y— X)) both decay at the same rate (O(|r|~*)), however if z; lies in the tails
and x5 lies close to the mode, then E(W; (21 —X;)) will be smaller than E(W,(z2— X)),
subsequently it is likely that cov(W,(xzy — Xo), Wi(y — X)) will be smaller than
cov(Wy(z2 — Xo), Wy(y — X,.)). Therefore, to make a fairer comparison between these
two covariances, we can standardize, by defining the following pseudo association

correlation

cor, (Wy(z — Xo), Wiy — X,) = ‘IE)(VV%’:’;”C_ }ig%gvb:é__);z)) (3.2)

Comparing (3.2) with the usual correlation cor(W,(z — Xy), Wy(y — X)), we observe
that since var(Wy(x — X;)) = O(b™1), then cor(Wy(z — Xo), Wy (y — X)) = O(b|r|~*),
whereas E(Wy,(z — Xo)) = O(1), therefore cor,, is in some sense invariant to the scale
b.

Having defined the association covariance and pseudo association correlation, we
now consider the corresponding spectral density. We recall that the for autoregres-
sive processes, the spectral density is often used to check for the order of the process
(Parzen (1974)) and to look for periodicities and patterns in the autocovariance struc-
ture. However, it could well be that periodicities that may arise in certain regions of
the domain of the random variables are averaged out in the regular spectral density.

This suggests that we should search for patterns that may arise in the cross covariance
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of {Wy(z — X¢), Wi(y — X¢)}+, thus we define its Fourier transform
1 .
(2, y;w) = o Z cov(Wy(z — Xo), Wy(y — X)) exp(irw).

However, in the following section we show that the limit of cov(Wy(z — Xo), Wy (y —
XO)) as b — 0, is not well defined, this means that the limit of g,(z, y; w) as a function,

won’t be well defined. Therefore we a define a shifted version of g,

1
gsp(T,y;w) = gy(z,y;w) — %E(Wb(fp — Xo)Ws(y — Xo))

= % Z cov(Wb(:L‘ — Xo), Wi(y — Xr)) exp(irw)
r#0

_%E(Wb(x — X0))E(Wy(y — Xo)),

whose limit is well defined. Since g, and gs; are simply shifts of each other, their
shapes are same. Moreover, when the intervals [z — b,x + b] and [y — b,y + b] do
not intersect, then g,(x,y;w) = gsp(z,y;w). The standardized association spectral

density is defined similarly

hsp(z,y;w) = % ( Z cor,(Wy(x — Xo), Wy(y — X)) exp(irw) — 1)
r#£0
9s (@, y;w)
E(Wy(z — X0))E(Wy(y — Xo))

Using the above argument hsj, may be a useful tool for comparing association spectral

for different values of x, y and b.

Remark I11.1 The correlation association spectral density is defined as

w) = L AT exp(irw) —
etne) = 27r(§0(f<x>f<y> Y exlira) 1.

Howewver it is possible to generalise the definition. For example, one can also consider
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monotonic tranforms of the psuedo-correlation such as the log transform

o) —i o) M exp(irw
i) = 57 2 10w (g, p) exvlie)

For the Gaussian time series, the above has the form

1 1 1 .
Uz, y;w) = o Z (5 log(1 — p7) + m(ﬂz(l’z +y°) - 2Pr9€y)> exp(irw),
r 0 T

thus €(z,y;w) is finite for any short-memory Gaussian time series. In general, using

Assumption III.1 (ii) we have that ]log(f@()%;))\ <log(Clr|=*+1), thus if s > 1 then
l(x,y;w) is well defined. However, in general it is difficult to estimate ((-), therefore

in the following sections we will focus on gs and hs.

In Figures 9 and 10 we plot the association spectral densities for two AR(1)
(Xy =06X;-1 + Z¢ , Xy = 09X, + Z;) with independent, identically distributed
(iid) Gaussian innovations Z;. The diagonals are of gs(z,z;w), the lower triangle
contains the real part of gs(z,y;w) and the upper triangle the imaginary part of
gs(x,y;w). For better understanding the behaviors of gs(-) and hs(-), we plot their

inverse Fourier transforms { f,.(z, y)1,.0— f(x) f(y)}» and {f&()j;?;) 1,20—1}, in Figures

11 and 12. The shapes and magnitudes of gs(z,z;w) are similar for all z, but the
magnitude of hg(z,z;w) for x = 50% percentile is much smaller than the others.
This observation hints us that the magnitude of gs(z,z;w) for z = 50% percentile
mainly comes from the large value of f(z) and it can be confirmed in Figure 11 and
12. Except r = 0, we can interpret { f&(ﬁ;?g) 1,20 — 1}, as if it is the limit pseudo

association correlation defined in (3.2) as b goes to 0. Similar to the usual auto-

correlation function of AR(1) process, its rate of decay is determined by its AR
coefficient and this rate of decay specifies the steepnesses of the curves in hg(z, z;w)

for x = 10,90% percentile. For the AR(1) model with ¢ > 0, when X, lies in the
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either direction of the tail area, X;,; will likely fall onto the tail area preserving the

sign and there’s only small probability that X;,; is in the tail area of the opposite

direction. These behaviors could be captured in positive values of { f@)?@) Lo — 1},

and negative values of { 7 ~(@y) 1,20 — 1}, especially between 10% and 90% percentile,

f@)f(y)
and we can see that the standardized association spectral densities have distinct looks
reflecting these features fairly well.

Figures 13 and 14 illustrate the association spectral densities for ARCH(1) (X; =
07y with 02 = 1/1.9+0.9X2 ,) and the squared ARCH, with independent, identically
distributed (iid) Gaussian innovations Z;. We first observe that the AR and ARCH
association spectral densities are very different and the association spectral densities
for ARCH are not flat suggesting that though ARCH process is uncorrelated overall,
there definitely exist the correlations between certain regions of the time domains.
Furthermore, recalling that the AR and ARCH squared have the same spectral density
(if the moments of the ARCH squared exist), there is a large difference between the

association spectral density of the AR and the ARCH squared in Figure 10 and 14.

2.2. Properties of gy(x,y;w)

We now consider how g, behaves for different b, focusing on the case that b — 0.

First we define two close related quantities

oo yiw) = %(Z (o 9) — () (0)) explirw) + (F(x)5u(y) — f(x)f(y)))
r#0
gs(eyiw) = %(Z (o 9) — () F(9) explire) — f(rc)f(y)),
r#0

where f(-) and f, denotes the densities of {X;} and (X, X,.), respectively and ¢, (y)
the Dirac delta function. Observe that for = # y, gs(z,y;w) = g(z,y;w). We call

gs(x,y;w) the association spectral density. Since the definition of g involves a Dirac
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delta function, it is not well defined, whereas we show in Lemma III.2 that gs is
finite for all x and y. However, g is a generalized function and is closely related to
the usual spectral density function. In particular, for any transformation of the time

series {h1(Xy), ho(X¢)}s, its cross spectral density can be written as

() = [ [ (e )haty)gle,yiw)dedy.

Returning to the spectral density of {Wy(z — X3), Wi(y — Xi) v, go(2,y;w), we see

that by using the above argument we have

— v
b(7, Y w //bQW w(? 7 )9(,ysw)dady.

If x # y, then for a small enough b, g(z,y;w) is continuous in the neighborhood

of [x—,b,z + b] X [y — b,y + b], therefore by using Bochner’s Theorem (see Bochner

(1955)) we have the following result.

Lemma II1.1 Suppose Assumption II1.1(ii) and (iii) are satisfied. Then for all

r,y € R
//Wb(w —u)Wy(y — v)gs(u, v;w)dudv — gs(z, y; w)
as b — 0.

2.3. FEstimation

In order to estimate the association spectral density gs, we define the following

discrete Fourier transform (DFT)

hirlaiw) = e SS(GWES < Wite) ) explite),

21T p—
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where W (z) = £ >, Wy(z — X,) is the estimate of the marginal density f(z). Mo-
tivated by the classical estimator of the cross spectral density we use gpr(z,y;w) as

an estimator of gy(z,y;w), where

M
. 1 T .
Gor(z,y;ws) = %:Z A(M)cr(fv,y) exp(irw;)
= ZKM<W3 - wk)Jb,T(33;wk)Jb,T(3/;wk) (3'3)
k
with w, = %,

T—|r|

- 1
Cr (-1'7 y) = ? Z
t=1

A—1,1] — R is the lag window and K)(w) is the corresponding spectral window

(w2 - i) (s =) i), 0.

with

If we keep b fixed and { X} is an a-mixing time series, then asymptotic arguments
for spectral density estimators (see, for example, Rosenblatt (1984) and Chapter IV),
can be used to show gpr(z,y;w) LA g(z,y;w) (as well as asymptotic normality).
However, if we are interested in determining the limit for small windows about x and
y, then we first need to establish what we are interested in estimating. More precisely,
from Lemma III.1 we know that for x # y, as b — 0, then g, goes to g, but for z =y
case the limit of g,(z,z;w) is not a function in the strict sense. However, the limit
of g.s, which is the association spectral density gs, is well defined for all  and y.
Noting that gs and g are the same up to a shift, we now consider and estimator of

gs. Motivated by the estimation scheme for g,, we propose gsr as an estimator of
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gs, where
1 U r 1
gsr(T,y;ws) = Dy Z )\(M> exp(irws)cy(x,y) — A(O)%Wb(x)wb(y)
=—M,r#0
= Z Ky (ws — wi) Jpr(x; wi) Jo 7 (y; wi)
27TT — b2 b '

In order to make comparisons for different values of x and y that takes into account
that the marginal distributions of  and y we can estimate standardised association

spectral density, hg, with

?]\:S,T(l',z_/; ws)
Wy (2)Wa(y)

hS,T(xv Y; ws) -
In order to construct confidence intervals for gs and hs we derive the asymptotic
properties of their estimators, noting that unlike the usual spectral density we need
to consider the limit of gsr(z,y;ws) and ﬁsyT(x, y;ws) as b — 0 and T — oo. This
means that the usual methods used to prove consistency and asymptotic normality

of thes spectral density estimator do not directly apply in this case and the rates of

convergence will change.

3. Sampling properties of the estimator

In order to prove the results we require the following assumptions.

Assumption ITL.1 (i) Let us suppose that {X;} is a strictly stationary a-mizing
time series, ie.
sup |P(ANB) — P(A)P(B)| < CJt|™*

AEU(Xo,X_l,...)
BEO’(Xt7Xt+1,...)

where a > 0.
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(ii) {Xi} is 2--mizing, with

<1 P(ANB)
Acotxe) | P(A)P(B)

Beo(Xy)

- 1’ <cr,

for some s > 2.

(11i) The densities f, f. and their derivatives exist.

(ZU) Supx,y ‘G{fr(%y)a;f(z)f(y)}} S CT’_(H_E) and Suvay 3{fr(x,y)(;yf(m)f(y)}| S CT’_(1+£),

for some € > 0.

(v) We assume that the lag window is symmetric and has the following form
AMz) = (1 —]z]") - L1 (x) foru > 0.

We will show that under Assumption ITI.1 (ii) and (iii) the association spectral density
gs(x,y;w) is well-defined and its estimator gsr(z,y;w) is asymptotically unbiased.
Furthermore, if Assumption III.1 (iv) is satisfied, we can obtain the convergence rate
for the bias of gs r(z,y;w). Assumption III.1(i) (under some assumptions on the size

) is used to show asymptotic normality of gs r(x, y;w).
Lemma II1.2 Suppose Assumption II1.1(ii) holds. Then we have

(i) For all x and y, we have |f,(z,y) — f(x)f(y)| < Cf(x)f(y)|r[~.
(i) Forr # 0 we have
sup, , ‘cov(Wb(x — Xo), Wy(y — XT))‘ < C’E(Wb(x — XO))E(Wb(y - Xo)) || ~*.

(iti) supy, > .0 |l fr(z,y) — f(2) f(y)] < oo



70

To obtain the sampling properties of gsr(+), we first replace Wy(z) and W;(y) in

gs.(x,y;w) with its expectation and define the quantities

Jor(sw) = \/2_z::< W) - E(%W(x_bXt))>exp(itw)

cwn) = 33 (WEFH-BGWET)) »
1 Y — Xigr 1 Y — Xigr
(= - EGw =)

gsr(ryiw) = > Kulw —wi)Jor(w;we) o (y; wi)
B

The following lemma gives the bound on the difference between gsr(z,y;ws) and

Gs,r(x,y; wr).

Lemma II1.3 Suppose Assumption II1.1(i-iii), (v) holds (with o > 6) and M < T*/2.

Then we have

M

||§S,T($,y;wk) - §S,T($7y;wk)||2 = O(b_T)’

where wy, = 27F.

We use the following result to obtain an expression for the mean and variance
of the estimators, where it can be considered as a variant of Brillinger (1981) which

covers the cumulants of DFT's of stationary time series on triangular arrays.

Lemma II1.4 Suppose Assumption II1.1 (i-ii) holds with « > 6. Then for1 <k <T

we have
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()
~ ~ gb(x’y;wkl) +O(l)> Wy = Wk,
COU(Jb,T(SC;UJkl), Jb,T(ZJ;wkg)) = g
O(%) Wk, 7é Wk
(i)

. - . . 1
cum(Jo.r (5 we, ), Jor (s —w, ), Jor (25 wey), Jor (y; —wi,)) = O(ﬁ)

Lemma III.2 implies that for r # 0,

1 ox—Xo, 1 y—X,
cov (W (=0, ;W (*—

)) < E(W(a — Xo)) E(Wi(y — Xo))Ir| ™

It is straightforward to see that cov(3 W (£22), 1 W (£=22)) = O(3), and this leads

to gy(z, 7;w) = O(3). For o # y, go(x,y;0) = O(E(Wy(x — Xo))E(Wi(y — Xo)))-

These results give us bounds for covariances of the DFTs in Lemma I11.4.

In order to obtain expressions for the asymptotic variance we define

(2, y;w) = Rigp(z, y; ) and  go(w,y;w) = S(go(2, y;w)).

Lemma II1.5 Suppose Assumption III.1(i-iii) is satisfied with o > 6, and b~ <<

M. Then for 0 < w < 7 we have

UGT(%gs,T(xa Y W))

T
1
Y Z Ky(w — wk)2(9b(95, 3 wk) (Y, v wi) + e,y i) — a(2, y; wk)2)
k=1
11 MY
O(= 4+ — 4+ —
* (T - b3T * b5/2T)’
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Um"(ggs,T(fEa Y W))
T

1
Y Z Ky (w — wk)2(9b(95, 5 wk) 9o (Y, v wi) + go(2, g3 i) — a2, y; Wk)Q)
k=1
11 MY
+ Ol r * pep)

and

Ky (w — wi) (2, y; wi) o (2, y; wi)

]~

cov(Rgs,r(z,y;w), Sgsr(z,y;w)) =
k=1

11 M2
Ol=+ —=+ —=).
+ Olg+ g7+ frep)
In order to estimate the above variances, we replace ¢, and ¢, with ¢ r(z,y;w) =
Roy,r(z,y;w) and g, r(z, y; w) = SG, 1 (7, y; w) respectively.

In the following lemma we obtain the bias of the estimator.

M —o00andb— 0 asT — 0.

(i) Then we have E(gsr(z,y;w)) — gs(z, y;w).
(11) If in addition Assumption II1.1(iv) is satisfied, then we have

. 1 1
E(gsr(z,y;w)) = g5z, y;w) + O(5 5= + 7 +1)-

Using Lemmas I11.5 and II1.6 we can obtain the mean squared error of the esti-

madtor.

Lemma I11.7 Suppose Assumption II1.1 holds with o > 6. Then for 0 < w < m we



have

2
E(Ws,T(:v, yiw) — Rgs(z, y; w))

1 M2 1 1
— 4+ p)?
b3T+b5/2T+(MS—1+T+ ),

O

I

DO | =
S ol
<= I~

+

2
E(%sm(x, y;w) — Sgs(z, y; w))
T

1
= 35 Ky(w — Wk)2(gb<=737x?‘ﬂk)gb(yvy;wk) + q(, y;wk)2 - Cb(I,y;wk>2) +

Lyl +M1/2+( ! +1+b)2)
T BT 2T CMsl T ’

Knr(w — wi)? (g90(@, 25 01) g6 (y, y5 wi) + co(@, y; i) — ao(@, y;wi)?) +

In the following result we show asymptotic normality, this allows us to obtain point-

wise confidence intervals for gs.

Theorem II1.1 Let us suppose that Assumption III.1 holds (with o > 14), b=! <<

M and %(%—1—62) — 0. Then for 0 < w < 7 we have

L1 | Rosr(e,y;w) — Rgs(z, y;w)

Vrp(x, y; w) B N(0, 1)
Ssr(T, y;w) — Sgs(v, y;w)
where

r Ap(z,y;wr)  Coplz,y; wy)
b\, Y; Wi b\, Y5 Wk

Vip(z, y;w) = Y Kyr(w — wg)’ ;
k=1 Co(x,y;wr)  By(w, y;wy)

Ab(%y;wk) = _<gb(xa ﬂﬁ;wk)gb(y, y;wk) + Cb(I, y;wk)2 - Qb(x, y;wk)2)>

— o =

By(z,y;wr) = =(g(z,z;08) 9y, v; wi) + @@, y; wi)* — cp(z, 95 wr)?),
2



74

and

Co(x, y;wi) = (@, y; wi)qo(x, Y3 Wi).-

Using the theorem above and that W, (z)W,(y) B (x) f(y) the asymptotic normality

of the standardized association density immediately follows.

Corollary II1.1 Let us suppose that Assumption II1.1 holds (with o > 14), f(z) > 0,

fly) >0,b7' << M and %(%4—62) — 0. Then for 0 < w < 7 we have

Rhs.r(z,y;w) — Rhs(z, y; w)

F@) fy)Vrp(x, y;w) B N(0, 1),

%ES,T<x7 Y; w) - %hg(ﬂf, Y; w)
where Vry(x,y;w) is defined in Theorem I11.1.

The above results allow us to make piecewise confidence intervals for gs(-) and hs(-).

4. Simulations

In this section we conduct a simulation study. In order to see the convergence
of asymptotic normality of the estimators, we construct the pointwise confidence
intervals using Theorem III.1 Corolloary III.1. We consider two AR(1) model X; =
¢Xi—1+ e, ¢ =0.9,0.6, where {&;} iid standard Gaussian random variables. In our
simulations we use the Bartlett window for Ay (-) and Epanechnikov kernel for W (-)
and b was set as T1/13,

In Figure 15, 16 17 and 18 we plot the the confidence intervals and their true
values. The confidence intervals for Jgs are on the diagonal and lower triangle and
for Sgs on the upper triangle. In these all plots, we could see that the confidence
intervals captures the true values fairly well with moderate sample sizes confirming

the asymptotic normality.
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5. Proofs

5.1. Proof of Lemma I11.2

The proof of Lemma II1.2 (i) hinges on the relationship between the distribution
function and the density function. We define the function H such that H(z,y) =

G(X < z,Y <y). Using this, we recall that the partial derivatives of H are defined

as
0H(x,y) .. 1
e = llg%ﬁ(H(ijh,y)—H(%y))
1
= lim — < < <

lim 2 Gz <X <a+hY <y)
O*H(z,y) .
Ty oo hlhz({mﬂhhwhg)—H<w7y+h2>}

— {H(z + h,y) - H(%?J)})

= lim
h1—0 N1N9
h2—>0

We now use the above to prove (i). We recall the definition of f,.(z,y) — f(x)f(y) is

R L

Let H(z,y) = G(Xo < 2, X, <y) = P(Xo < z,X, <y)— P(Xo < 2)P(X, <y).

Under Assumption III.1(ii), for all Ay and hs, we have the following bound

Gx < Xo <2+ h,y <X, <y+ hy)

< CP(r< X <z+h)Py<X, <y+h)lr|™

Therefore, by substituting the above into (3.6), and letting hy, hy — 0, we have the
required result.

To prove Lemma I11.2 (ii) we use the bound of Lemma III.2 (i) in the definition
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of cov(Wy(z — Xo), Wy(y — X,)) to give

|cov(Wy(z — XO) Wiy — X,))|

- ‘/ / )W(y_bZQ)(fr(Zl,ZQ)_f(Zl)f(ZQ))d21d22
< Clr|® //bQW W _bZQ)f(zl)f(zQ)dzldzg
< CE(W( bX‘)))E(%W 0,

as desired.
The proof of Lemma I11.2 (iii) follows immediately from Lemma IIL.2 (i).
5.2. Proof of Lemma II1.3

We first observe that

Jb,T(IL’; Wk)Jb,T(% wk) Jb T(l’ wk)J (?/, wk)
0 wp # 0,7
T (Wy(z) — E(Wy(z — Xo))) (Wi(y) — E(Wy(y — Xo))) otherwise

Substituting the above into gsr(z,y;ws) — gsr(z,y; ws) gives

gs.r(z,y;ws) — s, y; ws)

= T Ky (w)(Wy(z) = E(Wy(z — X0))) (Woly) — E(We(y — Xo)))-

Using sup, E(W,(z) — E(W,(z — XO)))2 = O(45) and Ky (-) = O(3) , we obtain the

required result. O

5.3. Proof of Lemma II11./

To prove Lemma II1.4, we first prove the following lemma which gives the bound

on the k—th order cumulant of {3 W (2=%t)} and its summation.
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Lemma II1.8 Let us suppose that Assumption I11.1(i) is satisfied with the mizing

size o > 2k.

(i) Then for 0 =ty <t; <...<tg, the (k+ 1)-th order cumulant is

1o 20 —=Xo, 1 21— Xy 12— Xy,
‘cum(bW( 2 ) W(—b )""’bw(—b ))|

k
: 1 1 —a/k
§Cmm (%’bkﬁnltz_tlly />
i=1

where s are the number of different {t;}_, (for example, if t; are all different,

then s =k, on the other hand if all are the same then s =0).

(i) Moreover

1
b_]{].

Z ‘cum(%W(zO_bXO),EW(Zl_—bth),-.. 1VV(M)” <

PROOF. We first prove (i). To prove the first part of the inequality on the RHS

we treat cum(%W(@), %I/V(Zl_bxt1 ) R %W(@)) as an integral. Let us sup-
pose that the distinct (Xo, Xt,,...,Xt,) are (Xo,...,X,,) and the joint densities of
(Xo, X4y, ..., X,,) are bounded, then by a change of variables it is straightforward to

show that

1 20 — X() 1 21 — X 1 Zk — X C
‘Cum(EW( b Ttl), Ce —W<Ttk)>| S bk—s'

To obtain the second bound on the RHS we use Statulevicius and Jakimavicius (1988),

Theorem 3, part (la), where it is shown that for every ¢; we have

1 20— Xo, 1 2 — Xy 1 Rk — th

max W () |F i — ]

k!
<O
= Tk + 1)
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Taking the k-th root of the above and applying it to every ¢; we obtain the second
bound on the RHS of (i).

We start to prove (ii) by partitioning the summand

1 ZO_XO 1 Zl—Xl 1 Zk—X
Z ‘cum(gW( 2 )’EW(Tt)”EW(TW)){
t1yeeny tp=—00
k
1 20— Xo, 1 21— Xy 1 zs — Xq,
© 30 X fem(w e dw g e

IN

ZCS Z min (m’ﬁn’ti_ti_”_a/k)’
i=1

s=0 0<t1<...<ts

where {Cs} are finite constants. Considering the inner summand of the above term,

for all A > 0 we obtain the bound

. 1 1 . —a/k
> min (o [Tt

0<t1<...<ts i=1
k
1 1
in | — = |—e/k
< Z Tnin (bk—s’ pk+1 H |n|
T1seees Ts =1
h k
< Y L 0 Lwme
— bk—s pk+1 v
1y, Ps=1 r1, O ,I'g, OT ..., rs>h =1

hs hfa/kJrl
S <bk—s + pk+1 )

As the above bound holds for all h, let h = b~!, this gives the bound

k
, 11 ok 1 pe/kt
5> i (g gy L e =6 ) < €5+ )
0<t1<...<ts i=1
Thus, by assumption we have a > 2k which gives
> 1 Zo—XQ 1 Zo—Xt 1 Zk_Xt C
-W -W(———),...,.-W(———2))| < —

which gives the desired result. Il
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PROOF of Lemma III.4 To prove (i), we expand cov(jbf(x; Wy )y S (Y5 Wiy )

COV(jb,T(»’L’; Wiy ) jb,T(Z/; wkz))
T
1 . )
= 7 Z cov(Wb(:v — X3), Wiy — XT)) exp(itwy, — iTwg,)
t,r=1
T-1
= Z [{COV(Wb(x — Xo), Wi(y — X)) exp(—irwg,) } x
r=—(T-1)
min(T,T—r)

{f Z exp(it(wy, — sz))}}

t=max(1,1—r)

T-1

= Z [{COV(W{,(I — Xo), Wo(y — X)) exp(—irwg,) } x
r=2(r-1)

(7 2 esplitten, )} + 07
Zf;i(T—l) cov(Wy(z — Xo), Wy(y — X)) exp(—irwy,) + O(F)  wy, = wp,
O(%) Wiy 7& Wy

For ki = ko, we obtain

g6 (@, y; Wiy ) — COV(jb,T(ZU; Wiy ) jb,T(y; wkl))\

< Z |lcov(Wy(z — Xo), Wi(y — X,))| + O(%)

Ir|=T

<o Yt 0(%)
\

r|>T
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To prove (ii), we use Lemma IV.1 (ii) with k£ = 3, and this gives

|cum (Jpr (23w, ), Jor (v —w, ), Jor (3w, ), Jor (y; —wiy))|
T

Y lem(Wie - X), Wi — Xi,) Woly — X)Wl — X))

2
(27TT> t1,t2,t3,ta=1
1
En

IN

= O

5.4. Proof of Lemma IIl.5

We introduce a quantity comparable to gsr(-), since its asymptotic variance

could be obtained easier than gsr(-). Let
Gor(@, Y w ZKM w = W) Jor (; Wi Jo 1 (Y5 W)

In the following lemma we show that the variance of gsr(-) and gy r(-), are asymp-

totically equivalent, and in Lemma we obtain the variance and the covariance of

Gsr(-).

Lemma II1.9 Suppose Assumption III.1(i,i,v) is satisfied with o > 6 and b~ <<
M. Then we have

M1/2
var(gsr(z,y;w)) = var(Ger (z, y;w)) + O(b5/2T)

PROOF. We recall that

§s 7z, yw)
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We now obtain the variance of ¢(z,y) and W,(z)W,(y). We first note that

Golr,y) = 2% Z Jo.r(x;wi) o (y; wi) (3.8)
Wy(z) = \/?jbj(a:; 0) + E(Wy(z — Xo)). (3.9)

Combining the results of Lemma I11.4 with (3.8), we obtain the bound for var(¢y(z, y)).

Var(éo(x, y))

= (2;2)2 ( Z cov (Jor (25w ), Jor (23 wiy) ) cov (T 7 (Y5 —wiy ), Jor (y; —wi,))
ot ko
+ Z COV(jb,T(x; Why ) jb7T(fL‘§ _sz))cov(jb,T(y; —Wr, ), jb,T(y; wkz))
er ko
+ Z cum (Jy 75 wiy ), Jor (5 —wiy )y Jor (Y3 Wiy ), Jor (¥ —ka))>
er ko
= Ol + ) = Olir). (3.10)
To obtain the order of var(W,(xz)W,(y)), we use (3.9).
var (W, ()W (y)) = (3.11)

var(%”JT(x; 0)7r(y; 0) + \/?{JT@:; O)E(Wo(y — Xo)) + Jr(y; OE(Wi(z — Xo))})

With straightforward application of Lemma II1.4, we find that

var(jT(x; O)jT(y; 0)) = O(3)

- 1
var(Jp(z;0)) = 0(5)
Plugging the above bounds into (3.11) leads to

var (Wy(2)Wy(y)) = O(-=). (3.12)
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Therefore, expanding the expression (3.7) with the bounds in (3.10), (3.12) and

Val"(gs,T(I,y;w)) = O(%) gives us

var (gsr(z, y;w))

= var( () + g (el ) + var () (0)

+ %{cov(flb,:r(a:,?JSW),éo(x,y)) + cov(gbj(x,y;w), Wb(x)Wb(y))

+ cov(é(z,y), Wy(z)W,(y ))}

= var(gyr(r,y;w)) + O(b3T) * O<bT)

M2 1 M2 1 1 1
bT1/2 b3/2T1/2) + O<bT1/2 ' b1/2T1/2) + 0(63/2T1/2 ’ b1/2T1/2)
1/2

T

+ O(
= var(gr(r, y;w)) + O(

which is the desired result. O

Lemma II1.10 Suppose Assumption III.1(i-ii) is satisfied with o > 6, and b= <<
M. Then we have

(i)

var(gyr (@, y;w)) =
Zk y Ko (w — wn) (0, 25 wi) 96 (Y, 43 wi —i—O(LT) O<w<m

S e Ko (—wr)? (g (2, ;. w) 9oy, ys i) + go(, y;0i)[?) + O(7)  w =0
(ii)
COU(Qb,T(I;yQW),gb,T(%%W)) =

> e K (w — wi)2gs(2, y;001)? + O (537 O<w<m

Zle Kar(—wi)? (go(, 2500) 95 (y, 3 wi) + g6(@,y30k)%) + O(575)  w=0
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PROOF. We first prove var (gb,T(x, Y; w)) By expanding var(gyr(z,y;w)) we have
var (o, (2, y;w)) =1+ 11 + 111,

where

I = Z Kyr(w — wiy ) Ky (w — wi,)

k1,ko=1

COV(jbj(l’; wkl)’ Jb,T(x; wkz))COV(Jb,T(y; wkl)? Jb,T(y; wkg))

T
I = Y Ku(w—we) Ku(w—w,)
k1,ka=1

cov (Jpr (5 wry )y Jor(y; Wiy ) ) eov (Jor(y; Wiy ) Jor (25 wiy )
T

1 = 3 Kulw—wy) Kul(w —w,)

k1,ko=1

Cllm(jb,T(I; Wiy )s Io.r (Y5 =iy ), Jor (25 wiy ), T (Y5 —wy))-

With Lemma II1.4 (i), we obtain limiting expressions for I and I

I = Zk: Ky(w — wi)go(z, 23 w5) 9 (y, y; wi) + O(%)
I = ; Kyr(w — wi) Ky (w — wr_g)|go(, y; wi) | + O(%)

O(7) O<w<m

Zk K (wi) Knr(wr—i)|gs(, y;wk)IQ + O(%) w=~0

, and Lemma I11.4 (ii) immedately gives the bound O(37) to IT1. This proves (i),

and the proof of (ii) is similar and we omit the details. U

We use Lemma II1.9 and Lemma II1.10 to prove Lemma IIL.5.
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PROOF of Lemma III.5 By using that

- N 1 -
tsr(r,yw) = Risr(r,y;w) = §(QST(SU y;w) + gsr(z,y;w))
- . i -
dsr(w,y;w) = Ssr(v,y;w) = 5 (dsr(r,y;w) = s (v, y;w)),

Lemma IIL.5 is an immediate corrolary from Lemma II1.9 and III.10. U

5.5. Proof of Lemma III.6

1 1
E(gsr(z,y;w // b2W ( 7 )gg(u v; w)dudv+O(MS - +T)
Furthermore if Assumption II11.1 (iv) is satisfied, then we have
[ [ Wit - Wity — st st - gl )| =00 313

PROOQF. To prove the result we observe that

st f [

(ZA(% M){fr( v) - f<u>f<v>}exp<m>—f(u)f(v))dudv.

r#0

Using this expansion we have

‘E(QST-T Y;w //62W ( 2 )gg(u,v;w)dudv =1+11I,
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where
1= o [ [Eveswes)
< (2 0GEFD - D) - fw s explire) )ude.

o<|r|I<M

= / / S W) S explir) L (u,0) — f() (o) budo.

[r|>M

Thus we have the bounds

I < Csup Z !)\(%)(T%M) - 1Hfr(uv v) — f(u)f(v)‘
u,v 0<|r|<M
I < Csup Z |fr(U,U)—f(U)f(U)|-

U > M

Finally, we use Lemma II1.2(i) and that A(§;) = 1 — |§7|" to obtain

M r C M T
1< O NG~ 1 4 2 S A
r=—M r=—M

< C EM e+ EM 1) = O( + 7)
= T 2 ~ e T T
r=—M r=—M
To bound I1 we use Lemma II1.2(i) to obtain

17 < - ) Il =0(

|r|>M

1
)

The above bounds for I and 1 give the desired result.

To prove (3.13) we make a Taylor expansion of gs(u,v;w) about (z,y) to give

gs(u, v;w) — gs(,y; w)

_ (u- x)@gs(:v, y;w)

dgs(x,y;w)
o ley=@gp + W —y)—F——

3y Jew=@p- (3.14)
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Now under Assumption I11.1(iv), by exchanging sum and derivative, we have

dgs(z,y;w)| (afr(w, y) of (fff)) . af(x)f(y)
= = —— — f(y) exp(irw) + —-"—-=
‘ ox ; or ox ox
< K- Z Ir| =+ < 0.
r7#£0

and a similar bound holds for |89 z.yit) } Plugging the above bounds into (3.14) leads

to
1 T—u —v
’//EW( 2 )W(y 5 )(gs(u,v;w) —gs(:c,y;w)) dudv
9gs(x,y; w) y—v
< S;l?f) = 7 5 ( 5 )|z — u|dudv
9gs(z, y;w) y—v
—l—sxlg) — = 2 YW ( ; )|y — v|dudv
9gs(z, y; w) 9gs(z, y; w)
< C(sup |——=—————=| +sup|———=|)b,
( 2y dy 2y ox )
where C'is a finite constant. Thus we have (3.13). g
PROOF of Lemma II1.6 The proof of Lemma III.6 follows immediately from
Lemma III.11. ]

5.6. Proof of Theorem III.1

We now show asymptotic normality of gsr(z,y,w). To do so, we define the

partial sum

ST4+u
IS (zbt )2 (y) — E(Zb,mzb;(y») expli(t — 7))
tu+1 TH#L

(3.15)
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where Zy,(z) = ;W (£22) — E(;W(2)), and note that gsr can be written as as

the quadratic form

Gor(rye) = oo 3 SN Zu0) 2 () el — )

t=1 7#t

_ %E(Wb(x — X)) E(Wly — Xo)). (3.16)

Lemma IT1.12 (i) Suppose Assumption II1.1(i-iii,v) holds with o > 6 and b~ <<

M. Then we have

2 5 2
E(,/Tb é)%BTST) :o(%) E(M%%B(;)ST) :o(%)

i) Suppose Assumption III.1 holds with o > 14 and b=* << M. Then we have
(ii)

4 4
E(\/Tb éRBT“gT> = 0(%)2 E(,/TE\Z OB,}“)ST> = 0(%)2.

PROOF. The proof of (i) is a straightforward application of Lemma IV.1 for the case
k=1 and k£ = 3, we omit the details.
We now prove (ii). Let x4(X) denote the fourth order cumulant of the random

variable X, then we recall that

T2 0 \* [TV 0 \° [TV .
E( MB;‘)SYT> :3var( ﬁB(T??T) —f—/€4( MBFEF%T>

It follows from (i) that var(y/ 22" B(T“;T)2 = O(S?T)2. We now obtain a bound for

/14( %’ZBg‘gT) Expanding the cumulant we have

(u) 1 g 751—71 lo—Toy 3 — T3, la—T4
aBrs)l = 7 > 2| NN

ty,t2,t2,ta=u+1 711,72,73,74

X |Cum(YE7,t1 Zbﬂ'n }/I;,tQ Zb,T27 YELtS Zbﬂ':w YE)J‘A Zb,7'4) |
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We decompose |Cum(Yb7t1me Y10 Zbrss Yot Dby Yooty Zb,T4)| into the sum of indecom-
posable partitions (see, for example, Brillinger (1981)). Therefore, by using Lemma
IV.1 and b~' << M we have that |r, (B(T%T)’ = O(STT)Q. This together with (i) gives

(ii). O

The above is moments bound on the partial sums which will be useful for applying
the central limit theorem for quadratic forms of mixing random variables.

PROOF of Theorem IIL.1. To prove the result we note that gsr(z,y,w)
can be written as a quadratic form (see (3.16)). Using identical arguments to those
in Theorem V.2, with Lemma II1.12 on moments of partial sums replacing Lemma

IV.4, we can prove asymptotic normality of gsr(z,y,w). O
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CHAPTER IV

A NOTE ON GENERAL QUADRATIC FORMS OF NONSTATIONARY TIME
SERIES

1. Introduction

The study of the asymptotic theory of statistics often involves quadratic forms
which have the general form
1z
Wr = mzﬂ Gierh( Xy, X), (4.1)
where {X;} is a stochastic process, h(-) is a function and {G; .} are weights, which
vary according to the application. Various statistical methods depend on the asymp-
totic sampling distribution of above statistic.

In view of its importance, several authors have studied Wy for the particular case
h(X:, X;) = X3 X, under various assumptions on the stochastic process {X;}. For
example, Mikosch (1990), Gétze and Tikhomirov (1999) and the references therein,
analysis Wr under the assumption that {X;} are iid random variables. Kokoszka and
Taqqu (1997) and Bhansali, Giraitis, and Kokoszka (2007) relax the independence
assumption and establish asymptotic normality of W, under the assumption that
{X.} is a realisation from stationary, linear time series. Rosenblatt (1984) allows for
nonlinear time series, by assuming that {X,} are a-mixing. In particular, he shows
asymptotic normality of Wz under the assumption that {X,} is a strictly stationary
a-mixing time series and has absolutely summability eight order cumulants. The

generalising to mixing random variables, allow { X, } to be a non-linear time series, but
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the cumulant assumptions are quite strong. Recently, Gao and Anh (2000) relax the
moment assumptions by considering geometric mixing {X;} and Lin (2009) considers
the case {X;} is the sum of stationary o-mixing random variables. It should be
mentioned, that there are other methods for measuring dependence. For example,
Wu and Shao (2007) show asymptotic normality when {X,;} can be written as a
function of the innovations and satisfies the assumption of physical dependence. The
study of the general quadratic form given in (4.1) can also arise in several applications,
including nonparametric estimators, but has received less attention. One reason for
this is that techniques used in the articles mentioned above cannot be directly applied
to (4.1). Moreover, the underlying assumption in all the above references is that the
process {X;} is strictly stationary.

In the analysis of nonstationary time series (which is possibly nonlinear), quadratic
forms of the above type do occur, for example estimators of the time-varying spectral
density involve quadratic forms (see, for example, Dahlhaus (2000) and Dwivedi and
Subba Rao (2011)). In this paper, our objective is to study the asymptotic theory of
general quadratic forms for nonstationary processes.

In Section 2 we show asymptotic normality of the general quadratic form under
some moment assumptions and a-mixing of the stochastic process (which includes
both nonstationary and nonlinear processes). By using Ibragimov-type inequalities
(see Statulevicius and Jakimavicius (1988)) which link cumulants to the mixing rate,
we avoid direct assumptions on the summability of the cumulants. The assumptions
allow the weights G, ; to also depend on 7', thus including the case of spectral density
estimators. In Section 3 we derive some results on cumulants and moments of the
quadratic form. We use mixingale and near-epoch dependent methods to prove the
results in this section, these techniques may also be of independent interest. All the

proofs can be found in Section 4.
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2. The quadratic form

Let us suppose that {X;r;1 < ¢ < T} is a time series which we do not assume
to be stationary. By allowing X, to depend on T, the results below cover the case
of triangular arrays, and in particular allows for locally stationary time series. We
will assume that for all ¢, E(X;7) = 0 and for all ¢t,7 0 < var(X;r) < oo. This
condition excludes degenerate cases by ensuring that {X; 7} does not converge to a
non-random sequence but always has a bounded variance. In this paper we consider
general quadratic forms of the type

1z

Qr = T t,TZ:1 G h(Xer, Xer), (4.2)
where we do not impose any conditions on the function h : R? — R. By allowing this
amount of generality on h(-), we need to assume that the weights G, . decay to zero,
in the sense that sup, ;> |Gy | < co. For example, if h(X, 7, X-7) = (Xi7r + X7 7),
then for the variance of Q)7 to decay to zero as T' — oo, we require such a condition
on the weights. In order to relax this condition on the weights {G; .}, a stronger
condition on A(-) is required. Therefore, in addition to the above, we will also consider

quadratic forms which have the multiplicative form h(X,r, X, 1) = Xir X, 1

T
1
QT,M = T tg:l Gt,T,MXt,TXT,T (43)
where for some 0 < a < 1, M := M(T) =T*, and for |t — 7| > M, then Gy, = 0.

We now state some conditions, which we use to prove asymptotic normality of

Q7 and Q7.

Assumption IV.1 (i) Let us suppose that {X;r} is an a-mizing time series such



94

that

sup sup |P(ANB) — P(A)P(B)| < af(t),
k  Aco(Xiyr 1 Xiti4k,T>-)
Beo (X, 1, Xk—1,15---)

where a(t) are the mizing coefficients which satisfy a(t) < K[t|~* for some

s> 0.

(i) (a) For Qr defined in (4.2), we suppose |G| < Clt—7]7° (§ >2) and ;4 <
var(Qr) < &% (for some 0 < ¢; < ¢3 < 00), were G = sup, Y. |G| <

Q.

(b) For Q. defined in (4.83), we suppose that Gy =0 for [t — 7| > M and
for all T, cl% < var(Qrar) < 02% (for some 0 < ¢; < ¢3 < 00), where

Gy =sup, Y. |Girm|* and infy Gy > 0.
(i) (a) For somer > 2s/(s —2) >0, we have sup, , 7 E|h(X; 71, X77)|" < 00.

(b) For some r > 4s/(s —6) > 0, we have sup, p E|X; 7| < oc.

Before stating the asymptotic sampling properties of the the quadratic forms, some
comments on the assumptions are in order. To prove asymptotic normality of )7 and
Qv we have to treat the cases differently and use a slightly different set of conditions.
This is primarily because we need to obtain moment bounds for each of these terms
(see Lemmas IV.2 and IV.3 in Section 3). The details can be found in Section 4 but
to give a flavour of the methods, to bound Qr we treat {>°_ G, h(X; 1, X; 1)} as a
stochastic process with decaying dependence structure and use the notion of Lo-NED
together with martingale methods to obtain the moment bounds. However, in the case
of Qr.ar, despite Assumption IV.1 (i, ii (b)) (in particular the mixing and Gy, = 0
for [t — 7| > M) implying that the dependence in the sequence {> Gy - Xy 7 X771}

decays the further apart the ts, the same methods used to bound @7, when applied
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to Q1 gives sub-optimal bounds. Instead we use iterative martingale methods to
obtain the optimal moment bounds for ()7.;. We observe that in the case that
|Gir| < Clt —7]7° (6§ > 2) and g(Xir, Xor) = X;7X, 7, then Assumption IV.1
(iii (a)) is slightly weaker than Assumption IV.1 (iii (b)). As the assumptions on
Qrv allow > |G| — 00 as T'— 00, we require that the fourth order cumulants
are absolutely summable, see Remark IV.1 below. Finally, several time series, both
stationary and nonstationary, satisfy the a-mixing conditions given in Assumption
IV.1(i), see, for example, Tjgstheim (1990), Doukhan (1994), Cline and Pu (1999),
Bradley (2007) and Fryzlewicz and Subba Rao (2011).

Remark IV.1 (i) The variance of Qrar is

T T
1
UGT(QT,M) = ﬁ Z Z Gt1,7‘1,MGt2,T2,M COU<Xt1,T7 XtQ,T)COU(XTl,Ta X7'27T) +

t1,11=1tg,m2=1

cov( Xy, 17y Xoy 1) cOU( X7, 7y Xy 1) + cum(Xey 70 Xy 0o Xy, X)) |- (44)

(i) If Gy = O(T?) (where 0 < a < 1), it can be shown that under Assumption
IV.1(iiib) the fourth order cumulant term in (4.4) is asymptotically negligible

with respect to the covariances terms.

We now derive the limiting distribution of Q1 and Q7 .

Theorem IV.1 Suppose Assumption IV.1(i, i (a), iii (a)) is satisfied. Let var(Qr) =
Vr, then we have V{l/Q (Qr —E(Qr)) A N(0,1) as T — oo.

Theorem IV.2 Suppose Assumption IV.1(i, i (b), i (b)) is satisfied. Let var(Qr.ar) =
Vr, then we have V{l/Q (QTM - E(QT,M)) =t N(0,1) as T — oo.

The above results are for quadratic forms of univariate time series. As multi-

variate time series arise in several applications we now give an analogous result for
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multivariate time series, noting that the proof is almost identical to the univariate

case.

Corollary IV.1 Let us suppose that {X, 1} is a d-dimensional vector time series,
which 1s mixing
sup sup |P(AN B) — P(A)P(B)| < a(t),

ko Aco(XyynrXey1ynmr)
Beo(Xy po X115

where a(t) are the mizing coefficients and are such that a(t) < K|t|~* where s > 0,
and suppose there exists some r > 2% such that sup, p E(Z;l:l | Xi1;])" < oo (where

| - | denotes the Euclidean norm of a vector or matriz). Define the quadratic form
1 7
Qr = T Z XirGrrnX, 1,
tr=1

where {G -} is a d x d matriz which satisfies Girpg = 0 (for [t — 7| > M ). We
assume there ezists 0 < ¢; < cg < 00 such that c;Gy /T < var(Qr) < oGy /T
(Gy =sup, Y |Girm|). Then we have V{l/z(QT —E(Qr)) A N(0,1), where Vp =
var(Qr).

3. Some bounds on cumulants and moments

In this section we state some bounds on the sums of moments and cumulants.
These results will be used to prove Theorems IV.1 and IV.2. We mention that the
techniques used in the proof of the results may also be of independent interest.

The following two lemmas concern summability of the higher order cumulants
of a stochastic process. We first state a bound for the sum of cumulants based on
the mixing rate. This result is motivated by Neumann (1996), Remark 3.1. Let

| X1, = (E(|X|P)"/? and K denote a finite generic constant.
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Lemma IV.1 Let us suppose that {X; 1} is a a-mizing time series with rate {o(t)}.

Ift; <ty <...<ty, then we have

(i)

i 1—k/
|cum(Xe, 1, .., Xy 1) < Ci Sup IXerllf [ et = tia) =1, (4.5)
t7

=2

(i)

sup Z leum(Xe, 1y oy Xep )|
t to,...,tr=1
k 1-k/r | k—1
< O squHXt,THT(Za(t) =) < oo, (4.6)
t?

t

(111) For all 2 < j <k, we have

sup Z (1 +|t;]) | cum( Xy, 7y - oo s Xty 1)

t
Lotg,te=1

< Ceswp | X5 (D al) =) < o0, (4.7)
t,T

t

where Cy, is a finite constant which depends only on k.

Using the lemma above, the following corollary on the absolute summability of

the fourth order cumulants immediately follows.

Corollary IV.2 Suppose that {X;r} is a a-mizing time series which satisfies As-
sumption IV.1(i), where a(t) < K - |t|~*.

(i) Let us suppose that r > 4s/(s — 3) and sup, 7 E[X;r|" < oo, then we have

(s+3)

|cov( X, Xor) < Clt—7|7 72 and
SUDy, D st ta——oo | CUT( Xty 7 Xy 7y Xig 7y Xiy 1) | < 00.

(ii) Let us suppose that r > 4s/(s — 6) and sup, p E|X; 7| < oo, then we have

(s+6)

lcov(Xir, Xor)| S Clt — 7|77z and for all2 < j < 4,
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SuPy, Ztoj,tg,u:—oo(l + |tj|)|cum(Xt1,T7 Xt27T’ Xt37T7 Xt47T)| < 0.

It is worth mentioning that Assumption IV.1 (ii (a)) is weaker than those in Corollary
IV.2, this is because we do not require absolute summability of the fourth order
cumulants in order for var(Qr) = O(T1).

In order to use a blocking argument to prove Theorems IV.1 and 1V.2, we need
to partition the data such that ()7 can be written as a sum of random variables which
are non-intersecting. This is immediately possible with Q7 s but not Qr, Thus we
now define a close approximation of ()7 which satisfies this condition. Let

~ 1 « t—T1
Quar =7 t,;l ()G h(Xor, Xer) (4.8)
where M = T/?*7 for some 0 < v < 1/2 and I(z) = 1 for 2 € [~1,1] and zero

elsewhere. Since |G;,| < K|t —7|7% (§ > 2) we have
Qr = Qrar + O,(T1*77), (4.9)

and var(vTQr) = var(vVTQr,y) + O(T~7). We will show that var(vTQr) = O(1),
thus @7 and the truncated QT, m are asymptotically equivalent. The results concern-
ing QT7 v and Qs are largely the same, the only difference are the proofs, thus to
unify notation, we let Qr s = QT7 voand Gy =1 (%)Gm, and state under what
conditions we obtain the each result.

We now define sub-blocks of ()7 s, which will be used to prove Theorem IV.2.
Let

Yir =Y Gronth(Xer, Xex) + Y Grpnth(Xer, Xor). (4.10)

T<t <t
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In the case that h(X,r, X; 1) = Xi 7 X, 1 the above is

¢ Gtﬂg,M t=r1
Yiru =) FrnXorXer  where  Fyou =

=1 (Gt,‘r,M + GT,t,M) t 7é T

To use the Bernstein blocking argument we define a sub-block of Sp. Let

1 St+u
Bis, = = >, Yur (4.11)
t=u+1

noting that Bé? )T = Qr.m. Lemma IV.1 can be used to obtain bounds for Var(B(Tq%T)
and other integer moments of B(Tqi)qT. However, in order to prove asymptotic normality
under relatively weak assumptions we will require bounds on non-integer moments of
B(T%T, which use more subtle arguments. The actual proof used to obtain the bounds
differs, depending on whether we use Assumption IV.1 (ii (a), iii (a)) or IV.1 (ii (b),

iii (b)). Thus we state the results separately.

Lemma IV.2 Suppose Assumption IV.1 (i, ii(a), iii(a)) holds and let

Fi=0Xor, Xoc1r, .- -). If sup g [|M X1, Xop) || < 00 for some r > q , then

[Yer — E(YVir| 7o),

and almost surely Yy, r =3, Njr(t — j) where
Niz(t = j) = EXir|Fig) = E(Yir|Fija)-

Letq > 2 and B%)ST be defined as in (4.11). Suppose the above conditions are satisfied,

then we have

u _ /1 1
BRI, < KT 15;/2; (j“ +js<é—i>>' (4.13)
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Lemma IV.3 Suppose Assumption IV.1 (i, ii(b), @i (b)) hold and let
Fir =0(Xer, Xe—11, . ..) and denote E(Z|F,;r) =E;(Z). If for some r > q we have

sup; ¢ || Xi7|lr < 00, then we obtain the bound
11
By (Xer) = Beojor(Xer) g < 4217+ V(i) [ Xez |, (4.14)

and X, almost surely admits the representation

(e 9]

Xir =Y (B j(Xir) — By (Xir)).

=0
Let M;(t — j) = E—j(Xyr) — Eimjo1(Xe).  If for some 7/2 > r > q we have

sup; 7 | Xe7|l7 < o0, then

By s (M, (8 — 1) My, (£ = 1)) — By i1 (M, (¢ — 1) My, (t — j1))]

< K[| X rl2a(ih)FFa(j) s rali)a”

q

»-Q\»—t
i\*—‘

(4.15)

Let g > 2 and Bgﬁf)ST be defined as in (4.11). If there exists, an T, such that

sup, || Xy 7|7 < 0o, where 7/2 > 1 > q, then we have

oo o0 o0

% (2 (1}—3:))2](4'16)

S
]_1‘7 ?

1382, < K715 6

l
_ q

A simple application of the lemmas above is to derive bounds for the moments
of the quadratic form Qr s (since Q7 is a special case of BT 5, With v = 0 and
St = T). By using the arguments in Lemma IV.4, below, it can be shown that for
some € > 0, we have ||Qrr||21e < K/TY? (under Assumption IV.1 (i, i (a), iii (a))

and || Qr.sll24e < KGY2/TY? (under Assumption IV.1 (i, i (b), iii (b)).
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4. Proofs

4.1.  Proofs of results in Section 2

To do the analysis, we start by rewriting Q7. — E(Qr.r) as

Qra —E(@Qrm) = —ZG”M (Xor, Xor) = E(W( X1, X Zm,

t,r=1
where Y;r is defined in (4.10). To prove asymptotic normality we use a classical
Bernstein blocking argument. Here we partition {Y; ;¢ = 1,...,T} into the sum
of small and large blocks. Let U; r and V; 1 denote the big blocks and small blocks

respectively, where

irr+pr (i+Drr
Uir = E Yir, Vir = E Yir,
t=irp+1 t=wrr+pr+1

pr >> qr >> M and rp = (pr + qr). Let ky = T/(pr + qr) and qr/(pr + qr) — 0
as T — oo. For the purpose of proving the results below we wil assume that kr =
O((log T)*/?). Using the above notation we let Q7 — E(Qr.a) = Sky + Riy, where

kr kTt
Sty = Uir and Ry, =Y Vir.
=1

i=1

Since pr >> qr, we will show that Val“(1 /%RkT) — 0. We first obtain moment
bounds for {U; r} and {V;r}. We note that under Assumption IV.1 (i, ii (a), iii (a)),
that Gy =G < K77, % < oo.

Lemma IV.4 Let us suppose Assumptions IV.1 holds. Then for some § > 0 we have

1/2 ~1/2 1/2 ~1/2
e 121/

—o(™« Vi —o(L 2y, (4.17)

v ) T

7TH2+5 vTH2+6

PROOF. We use Lemmas IV.2 and Lemma IV.3 to prove the result, with pr = Sr

and v = ¢rp. We first prove the result under Assumption IV.1 (i,ii (a),iii (a)). By
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applying Lemma IV.2 for ¢ =2+ 0 and r > 2+ § we have

u 1 1
B8l < Ko lole TT>\|T151/22<j5_1+ 1 )

= 1 ] (2+6 T

Thus the above bound is finite for r > s(2 + 0)/(s — 2 — ¢). In other words, if

1/2 ~41/2

r > 2s/(s — 2), there exists a d, such that HBTST = O(%). To apply

I+

Lemma IV.3 for ¢ = 2 4 §, then for some 7/2 > r > 2 + ¢ we have

|U:

’TH2+5
o0

1 1/2 G2
< KT Xl (GHA(E —

=1 ,_7 2(2+5) 'r

o0

f: =)’

2+5) 'r A S(2r T
‘7: j

In order to ensure that the right hand side of the above is finite, 7 should satisfy the

conditions
1 1 1 1 1 1 1 1
2048 s 24s ros Mg TETY
which implies
2(240)s 25(2+9))

s—202+0) ° " (s—3(2+96) (4.18)

Thus by Assumption IV.1 (iii (b)) (we recall there exists an r such that r > 4s/(s—6)
and sup, || Xy 7| < 00), there exists a 7 and d > 0, such that (4.18) is satisfied. Thus

1/241/2

for both cases, (4.17) holds for some § > 0. The proof of ||V}, TH2+6 = O ) is

the same, hence we omit the details. ]

We now show that the contribution of the sum of small blocks, Ry,., is negligible

with respect to the entire sum Q7 — E(Qrar).

Lemma IV.5 Suppose Assumption IV.1 holds and qr/(pr + qr) — 0 as T — oc.
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Then we have

l—m G
|cov(Viyr Viar) | < Ca(l’il — da|pr — M> ( %]T) (4.19)

and

(WR,@ < m — 0, (4.20)

as T'— oo, where C s a finite constant.

PROOF. Define the sigma-algebras G5° = o(Yi,rpapp+1,75 Yigrptpra2,1s - - -) and
Gh = o (Yiir41yre,15 Yiis+1)rp—1,15 - - -)- 1o prove (4.19) for iy > 4, we use Ibragimov’s
inequality to obtain
1—% 2
}Cov(Vil,T, ‘/;2,T)‘ < C{ sup ’P(A NB) — P(A)P(B)|} HVil,TH2+5
AeGge,BeG

Cla((iz =i — Vre+pr+1— M)}l_ﬁuvn,Tng

IN

< Ca((i—ipr = M)V Vil (4.21)

This gives (4.19).
To prove (4.20) we substitute (4.19) into var(Rg,) = ZZTW Leov (Vi Vigr)
and use that ||V, r|l2+5 = O(q 1/2G1/2/T) to get
T QT 1— 2/ 2+5)
var(@/@RkT) < <Zl+2212<;2 (liv — iolpr — M) :

Now by using that the mixing rate a(t) < Kt~ and kr = T/(pr + qr) we have

T 2
var(y / @RkT) < KPT . (1 + Z rpp — M)~ (2+6))>

< 1 (H(m—M)S“wkT).
pr +qr

Since ky = (log T)Y/2, we have ((pr — M))™*'" 2% kp < 00, which gives (4.20). O
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Using that Qra = Sy + Rr and var(Qra) == Vi = O(%), the above result

implies that VarQT,Mfl/zRT = o(1) and

Vi 2 (Qrar = E(Qrn)) = Vi Sy + 0,(1). (422)

We now show normality of Si,. We do this by replacing Sj, with ng =>. ULT,
where Ui,T and U; r have identical distributions, but {UzT} are independent random
variables. Below we show that the distributions of Sy, and Sy, are asymptotically
equivalent.

We require the following general theorem, which gives a bound on the differences
of characteristic functions of sums mixing and independent random variables. A

potentially useful aspect of this result, is that we allow for the mixing rate to change

with 7.
Theorem IV.3 Suppose {Z;r} is an a-mizing sequence which fort < T+sp satisfies

sup |P(ANB) — P(A)P(B)| < a(|t — 7| — s7). (4.23)
AEO’(Zt,T,Zt_LT,...)
Beo(Zr 1, Zr41,T5--)

Let Wir = Z;g:fj:l Zy, where rr = pr + qr and {W,T} be independent random
variables where the marginal distributions of W@T and W; r are the same. Then, for
any x € R, we have
kr kr
‘E(exp(ix Z WLT)) - HE(eXp(iij,T)> ‘ < Ckra(qr — st),
j=1

where C' s a finite constant.
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PROOF. By expanding ]E(exp(m: ZJ W) kT E ( exp(z':ch,T)> , we have

k1
Dy = ]E(exp(ixZWj,T)) — (exp zazW]T )‘
j=1
kal s—1
< Z |HE(exp(ixWrT cov(exp (1aWy), exp(ix Z W;) >

s=1 r=1 Jj=s+1
(to simplify notation we denote [[°_; A, = 1). From the definition of W; and by
using Ibragimov’s inequality (for bounded random variables) it is straightforward to
show that

kp—1

> sup |P(AN B) — P(A)P(B)|| < Ckra(qr — sr).

s=1 AEU(Z(5+1)TT+1,T’Z(5+1)TT+27T’"')

Beo(Zsrptpp, 11 Zsrptpp—1)

The above gives the required result. [l

Lemma IV.6 Suppose that Assumption IV.1 holds, and we choose pr and qr such
that pr >> qr >> M and ky = (logT)?, where kr = T/(pr + qr), then the

asymptotic distributions of VTfl/z(QTyM —E(Qr.m)) and V{1/2SkT are equivalent.

PROOF. From (4.22) we have Vfl/Q(QT,M —E(Qrm)) = V{l/ZSkT +0,(1). By using
Theorem IV.3 with Zyp := Yir = T7' 320 oonrny Frrnr (Xer Xer — E(Xer X-1))

and W, 7 := U; r we have
|Prr () = Prp ()] < kralgr — M),

where ®,,.(-) and @y, (-) are the characteristic functions of S, and Sy,.. Since pp >>
qr >> M and kr = (log T)/2, and under Assumption IV.1 (i) we have that |®;,.(z)—
&, (r)] — 0. Since the characteristic functions converge, we obtain the required

result. O



106

We now show asymptotic normality of V. Y QSkT, this result together with the

above lemma will give Theorems IV.1 and IV.2.
Lemma IV.7 Suppose Assumption IV.1 is satisfied. Then we have
V%8, B N0, 1),

PROOEF. We will use the central limit theorem for independent random variables.
Due to the independence of U it is straightforward to show & ZkT E(U 2 —

Vr, hence it remains to verify Lindeberg’s condition. By using (4.17) we have
S E[(V{1/2|ULT\)2+5} < K(%T)E/Q — 0, as 7" — oo. Thus Lindeberg’s condi-

tion is fulfilled and we have asymptotic normality of S’kT. U

PROOF of Theorem IV.1 To prove the result we show that ()7 we use that
Qr = Qrori/ee + Op(T_1/2_PY>, where

T

Qrri/ery = Z T1/2+7 )G Xir Xor.

Thus by (4.22) we have

Var(QT)_1/2 (QT - E(QT)) = Var(QT)_l/QST,Tl/Qﬂ + 0p(1), (4.24)

and var(VTQr) = var(VTQpriaer) + O(T™7). We observe that Qg p1/2+, satis-
fies representation (4.3) and Assumption IV.1, thus by applying Lemma IV.7, then
VT_I/2<QT’T1/2+W — E(Qr)) 2 N(0,1). Therefore from (4.24) we have Vy /*(Qr —
E(Qr)) BN (0,1), which gives the desired result. O

PROOF of Theorem IV.2 By using Lemma IV.6, it is straightforward to show
that VT_l/Q(QﬂM—E(QT,M)) and VT_I/QS'kT have asymptotically the same distribution.

Now by using the same arguments as in the proof of Theorem IV.1 we obtain the
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result. O

4.2. Proofs of results in Section 3

PROOF of Lemma IV.1 To prove the lemma we apply a result from Stat-
ulevicius and Jakimavicius (1988), Theorem 3, part (2), which states that if ¢; <
ty < ... < tg, then for all 2 < ¢ < k we have ’cum(XthT,XtQ,T,...,th,T)‘ <
30k — 112 a(t, — 1)~ supyp | Xor]E

To prove (i), we use a method similar to the proof of Neumann (1996), Remark
3.1. By taking the (k — 1)th root of the above for all 2 <i < k we have

= 1/(k-1) Lok/r =
|Cum(Xt1,T7 Xy Ty - 7th,T)‘ <C, a(t;y —tiog) =1 sujp | Xer|lF
t

)

where C = 3(k — 1)!2¥=1. Since the above bound holds for all i, multiplying the

above over i gives

k
1—k/r
{Cum(XthT, XtQ,T? R 7th,T>‘ < Ck sup HXt,TH?lf H Oé(tz — tz‘—l) k=1, (425)
T

=2
thus proving (i) of the lemma.

.. . 00 . . o0
To prove (ii), we rewrite » > _, as the sum of orderings, that is > | =

kIS, <..<t,- Now since the number of orderings is finite, we can use (i) to obtain

00
(A—k/r)

> (KXo, Xy, o X )] < G Sup XIS alr) @0 1 < oo,
b r

to,...,tr=1

which gives (4.6).
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To prove (iii) we use a similar argument to obtain

Z (1 -+ ]tj\)|cum(XthT, XtQ,T; e 7th,T)‘
to,...,tp=1
< > (gD |eum (X, 1, Xy, X 1)
1<ta<...<tp <00
o0 J
= kY @+ nD)|eun (X, Xy, -, Xy )]s
T2, T=1 =2
substituting (4.25) into the above gives the result. O

PROOF of Lemma IV.2 To prove the result we use the notion of Near Epoch

Dependence. This requires bounding

HYt,T — E(Yt,ﬂ]:t—j)ﬂq =A + A

where
Al = ZGtTMh XtT7XTT ZGt’TMh XtTa TT>|'E ])
T<t T<t q
Ay = ZGTch XTT7XtT ZGTch(XTTaXtTM‘Ft J)
T<t T<t e

As the derivation of bounds on A; and A, are identical, we shall focus on A;. We

first observe that by using the Minkowski inequality we have

t—1
ZGtTMh(XtTyXTT ZGtTMh(XtT7 Xer)|Fp)|| S T+11,
Tt q
where
t—1
I = HZGtTMh XtT7XTT ZGtTMh XtTv TT)l]:t ]/Q)H
=1 T
t—1 - t—1
11 = |[E(ECQ Gronh(Xor, Xon)|Flj o) Fisy) =B Girnrh(Xor, Xox)) |-

=1 =1
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and F/ i = o(Xer, Xeo11, .-, Xi—jjor). To bound I we note that for ¢ > 7 and all

J we have
t—1 t—1
HZGtTMh XtTa TT ZGtTMh(XtTa 'rT)l"T_Zf ])H
= (1D Grar{h(Xor, Xoir) = E(M(Xy 0, Xon)| FL-y) }
k=j q
< Y NGkl |[{n(Xer, Xeir) = B X ez, Xew )| FL-j) }
k=j q

< Ksup h(Xer Xo) > K sup [h(Xor, Xor)llg(i/2) 707,
k=j T

where we use that |Gy sa| < K|t — 7|°. Furthermore, to bound I1 we use that
(Z L G h( Xy, X)) | FL ]/2) f-;t_j/Q together with Ibragimov’s inequality to

obtain

11 < K(/2) SN G I Xer, Xo)|l»

T<t

Thus altogether we have

A < K (50 sup WX Xl + sup K X)o7 ).
A similar bound also applies to As, thus altogether this gives
HYnT - E(Yt,T’}_t—j)H < K( OB X, Xomjr) g + (X, Xomjir)[|nd ™ q_T)>,

and we have shown the first part of the required result.
To show the second part we note that since ||V, 7 —E(Yr|F,_;) H —0asT — oo,

thus we almost surely have the representation Y; 7 —E(Yyr) = >, N;r(t — j), where
Njz(t =j) = BV Foy) = (Y| Fojon)-

Thus substituting the above into HB"EF%TH‘I and using the Burkholder inequality we
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have

IN
NE

']
Z
=
.

VAN IN
S 1]e
%)
PN VN
{7 Mg’
+
<
;
+
[\
_|_
<
&
QM—‘ :
| )
3= \_/
+ =
— %)
~—
N——

as required. O

PROOF of Lemma IV.3 The proof of (4.14) follows immediately from Ibragi-
mov’s inequality (Ibragimov (1962)) (see also Davidson (1994), Theorem 14.2). Using
this we note that since X; 7 = E(X;r|Fr) and E(X, 7| F—;) — 0 as j — oo, almost

surely we have
=Y (Ej(Xer) = Beojor(Xor)). (4.26)
=0
To prove (4.15), we use Ibragimov’s and Chebyshev’s inequalities and (4.14) to obtain

(M, (¢ = 51) M, (¢ = 50) | Fimju—i) — E(M, (¢ = 51) M, (¢ = )| Femju—im1) |,

< 2||E(M;, (t — ju) My, (t — ji)|Fimju—i) — B(M;, (t — j1) My, (t — j1))Hq

3=

< ARV 1) My (¢ = 1) My, (t = i) [lrali)

. . N1
< 12 My, (8 = 1) llar 1M, (8 = 51) [|2re(i)

1
T

< 12%sup || Xyr|2a() @ Fa(j)F Fa(i) T,
t,T

Q=
3=

where 7/2 > r > q. Now we prove (4.16). By substituting (4.26) into Bryi)gT and using
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the above notation for conditional expectations we have

St+u

By = TN Y Fon(XerXer — E(Xi0 X, 1))

t=u+1 7

SED YD SHED SN M STATETRITACENS

J1,72=0 t=u+1 r=max(t—M,1)

- EU@(P—ﬁM%(T—hD>-

Partitioning the above sum into various cases and using Minkowski’s inequality gives

ST+u

B8], = 77 30 30 3 Furar (Mt - M (o)

j1,j2=0 t=u+1l T

— E(M; <t—j1)Mj2(T—Jz)))Hq

< I+I1+111,

where

St+u

] = 7! Z | Z Z Fy e My, (T — j1) M; (T—Jé)”q

J1,72=0 t=u+17<t—j1+j2

I =T Y Y FawM(t—i)My(r— 5,

J1,J2=0 T t<T—j2+7J1

0o ST+u

ar = 7' Y > Ft,t_jmz,M(Mjl(t—jl)Mj (t — 1)

J1,J2=0t=u+1
Hq'

— E(Mj (t - jl)Mt—j1+j2(t - jl)))

We observe that { Zthjlﬂé Fyrna M, (t — j1) M, (T — jg)}t and
{ ZtT<r—j2+j1 Fyrma M (t — j1) M, (T — jg)}T are martingale differences. Therefore by

using the Burkholder-Rosenthal inequality twice together with Cauchy-Schwarz, for
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q > 2 we have

St+u

rem S (NS Fyra My, (= 2) My, (7 — o) [[2) 2

J1,J2=0 t=u+l 7<t—ji+j2

ST+u
< Z SoIMu =il DS i —52)]5,) "
J1,J2=0 t=u+1 T<t—j1+J2
gl 12 2 SN2 \1/2
< Z Z H jl)HQq Z | F HMJ'Q(T_]?)”Q(;) :
J1,J2=0 t=u+l T<t—j1+752

Using (4.14) we have || M;(t — j)||2q < Ca(j )2q 7. Substituting these bounds into /

and under Assumption IV.1 (i) we have

00 St+4u
I < TAC(ZO((‘Y-)Q%,—%)?( Z Z|thM\2)1/2
j=0 t=u+1 7

< TUSPE (D aG)s ) sup (Y | Fural?)?
Jj=0 '

T

< KT'S2G (Y ag)sr)? (4.27)
7=0
Using the same methods we have
1 < KT7'S2G7 (D" agh)» (4.28)
7=0

Finally we obtain a bound for I7I. This requires a more delicate analysis since
{M;(t—j)My_(r—jy(t—j) —E(M;(t—j)Mi—(-—j(t—j))} are not necessarily martingale
differences over t. We first represent M;(t — j1) M, (t — j1) —E(M;, (t — j1) M, (t— 1))
as the sum of martingale differences. Since E(M;, (t — j1)Mj,(t — ji)|Fiojy—i) =5

E(Mj, (t — j1)M,,(t — j1)), as i — oo, we have

M;(t = 1) Mr— oy (t = §) = B(M;(t — ) Mr_jp(t = ) = D Ajy jusilt — 1 — 9),
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almost surely, where

Aji gt = g1 = 1)

= B(M;, (8 = j1) My (8 = ju)|Feejo—i) = BAM;, (¢ = 5a) My, (¢ = Ju)| Foji—ia)-
Substituting this into /77 and using Minkowski’s inequality gives

I =

[e'¢) u+St

‘T ' Z Z Ftt 32+J2M (t_jl)Mjé(t_jl)_E(Mﬁ(t_jl)sz(t_jl)))Hq
J1,J2=0t=u+1

) u+St

<T~ 1 Z ZH Z Ftt ]1+]2MA]1J21( jl_i)Hq'

J1,j2=0 i=0  t=u+1
We observe that since A;, j,.i(t —j1 — 1) € 0(Xs—j—i, Xe—ji—i1,...) and E(A;, j,.i(t —
J1—D)|o(Xi—jiz1, Xi—j—i—2,...)) = 0, then {A;, j,..(t — j1 — i)}, are martingale differ-
ences. Therefore by using the Burkholder-Rosenthal and Holder on the above yields

o u+ST

mr < 7Y > ()] |Ft,t—j1+j2,M|2HAjl,jg;z'(t—jl—i)Hz)l/Q

J1,J2=0 =0 t=u+1
Substituting (4.15) into 111 gives

o0 U+ST

11T < CT, Z Z{ Z |Ftt ]1+]2M| (HXt||2 (]1)2r ra<j2)2T ra(@)% %)2}1/2

J1,72=0 =0 t=u+1

%) S u+St

< Tt Z Za(z)zlz TO[(]l)Qr Fa (J2) 2'r r{ Z SuprTM}l/2
41,j2=0 i=0 t=u+1 "
< T2 (Y a@)i ) (Y ati)=+)? (4.29)
i=0 i=0

Finally, we substitute (4.27), (4.28) and (4.29) into [|BY% ||, to obtain (4.16). O
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CHAPTER V

SUMMARY

In this dissertation, we explore new analytic tools for nonlinear time series mainly
focusing on frequency domain approach. We propose two new spectral densities which
can describe the dependence structure and periodicities of nonlinear time series.

In Chapter II, we introduce the quantile spectral density which captures serial
dependence in time series data without requiring linearity and certain moment as-
sumptions. We estimate the quantile spectral density using Lo methods and derive
the sampling properties of the estimator. We develop a goodness-of-fit test using the
quantile spectral density and propose a bootstrap method for estimating the finite
sampling distribution of the test statistic under the null hypothesis. Through some
simulations and real data example, we illustrate how this new method can be used
for linear and nonlinear time series analysis.

In Chapter III, we propose the association spectral density which can detect
periodicities on different parts of the domain of the time series. We consider the
properties of the association spectral density and propose a method of estimation.
The asymptotic properties of the estimator is derived and some simulation result is
given.

In Chapter IV, we consider general quadratic forms of nonstationary, a-mixing
time series and derive asymptotic normality of these forms under some moment as-
sumptions. In order to show asymptotic normality of the generalized quadratic form,
we obtain some bounds on moments and cumulants using mixingale and near-epoch

dependent methods.
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APPENDIX A
SUPPLEMENT TO THE PROOF OF LEMMA II.1 IN CHAPTER II

We want to show that the third part of the variance of Q7 in Lemma II. 1 in
Chpater II is in smaller order than the first and second term which are O(%) We
recall that

T
1 _ _ _ _
II; = ﬁ § , E : Cum(‘]klwl Jkl,:’Jl’ sz,ﬂcl Jk2,y17 ']ks,ﬂm Jk37y27 ch4,5102 Jk4,y2>

s1,52=1 k1,k2,k3,ka

2 4
T Eur(ws, = wi) [ Knr(ws, — wr)dFo (1) dFo(y1)dFy (w2)dFo (y)-
=1 =3

Jk1 ,T1 Jkl Y1

. . . Jk279€1 71627?/1
Let {X;;} be the ith row and jth column element of the matrix

Jks,wz Jk37y2

7k4,x2 Jk47y2
and Y; = H?:1 X;; for ¢« = 1,...,4. With these notations, the above cumulant is

represented as cum(Y7, Ys, Y3, Y)) and Theorem 2.3.2 in Brillinger (1981) gives
cum(Y7, Ys, Y3, Yy) = Zcum(Xij;ij € V1) -cum(X;j;9) € vgyp)
Vi

where the sum is taken over all indecomposable partitions of the two way table of
indicies {7,7}, i =1,...,4,7 = 1,2. There are 3915 all indecomposable partitions of
the above matrix, thus it is infeasible to find them by hand. We used the mathematica
routine by Andrews and Stafford (1998) for this purpose.

For one indecomposable partition vy, we let n(vy) be {n(vk1),...,n(vg,)} where
n(A) is the number of elements in the set A and n(vk;) > n(vkir1). There are 22

ways of n(vy), but using E(Ji, »,) = 0, we only need to consider the partitions such
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that min(n(vx)) > 2, i.e.. n(y) is either one of {8}, {6, 2}, {5, 3}, {4, 4}, {4, 2, 2},

{3, 3, 2}, {2, 2, 2, 2}. With these notations, we can seperate I3 in the following way.

2>

J

A 2 4

T2 Z / H (ws, — HKM Wsy — W, ) X
{Vk n(vg)=A;} 2=1 =1 i=3
( Xijitj € vy 1) ~cum(X;;i5 € l/]fyp))dFO(ZL'l)dFO(yl)dFo(.ﬁlfg)dFo(yz)

j{:]]gj
j=1

where A; is the j-th element of

k1,k2,k3,ka

A= {{8},{6,2},{5,3},{4,4},{4,2,2},{3,3,2},{2,2,2,2} }.

For these partitions, we apply Theorem 3.4.3 in Brillinger (1981) which gives us the

bounds of the cumulants.

We start by I13; with the case n(v;) = {8} where there’s only one partition.
Theorem 3.4.3 in Brillinger (1981) gives us

Cum(‘]kl,mlv ‘]k1,y17 ‘]k‘2,9017 Jk27y17 ‘]ks,xz? ‘]k37y27 Jk4,$27 Jk4,y2> = O(ﬁ)v

which leads to

1

I[371 - O(ﬁ)

The one example of the cumulant terms in /13 is

Cum(‘]klyxu Jk27y1)cum(<]k1,y1 Jk2,x17 Jk37$27 Jks,yw Jk4,9627 Jk47y2) -

O(7:) otherwise.
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This leads to

1
ﬁ Z Z KM(wéh - wkl)KM<w51 - wkl)KM<wS2 - wks)KM<wS2 - wk4)

51,52 k1,k3,kq

Cum(Jkl,xl?7k2,y1)cum(jk17y1 sz,:ﬁ ) 7163,12’ Jk3,y25‘7k4,x27 Jk47y2)dF0(:U1) e dFO(yQ)

M

= O(5).

With the same method, we can obtain I135 = O(75).

We consider the one partition in I3 3

Cum(thwl ’ 7/<?1,y17 Jk27$1)cum(‘_]k27y1 ) 71@3,3@2, Jk3,y2a7k4,w27 Jk4,y2)
’]%f?)(wk‘l)_wk1)f5(_wk27wk}37_wk‘37_wk4) k? - T
O(77) otherwise.

, and this immediately leads to I35 = O(%)

In I3 4, one example of sepeartions having the largest order is

Cum(‘]k17$17 Jkl,yw Jk2,21> Jka,m)cum(‘]k%yl’ Jk37y27 Jk479027 Jk4,y2>
’j%fﬁl(wk‘lu _wklawkg)f4(_wk2)wk2)_wk4) kQ - k3

O(71) otherwise.
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, and this leads to

1
ﬁ Z Z KM(wsl - wkl)KM(wsl - wkz)KM(wsz - wks)KM(wsz - wk4)

51,82 k1,ko=k3,k4

um(Jry 21> Ty ans Trosers Ihges)CUN(Thy 1 s ks I bsns Thays)
/ /WM ws, — 01)War(ws, — O2) Wiy (ws, — 02)Was(ws, — 04)
—f4(61, —01,05) f4(—02, 05, —0,4)dO1dOsdb,dw,, dws,
/ /WM ws; — 0)Wir(ws, — O2)Wir(ws, — O2)Wir(ws, — 04)
fa(01, =01, 02) f1(—05, 02, —0,4)d61d6>d6,dw,, duws,

= 0(y)

From the above, we have I3, = O(2).

The one example of the cumulant terms in /735 is

Cum(thxn Jk27:v1)cum(<]k17y17 Jk3,w2)cum(*]k27y17 Jks,yw Jk4,9627 Jk47y2)
p

%G(I’l, x17wk1)G(yl7 T2, _wk1>f4(wk‘1a —Wky _wk:4) kl + k:2 = Ta k2 = kS

= O(%) ki + ko = T exclusively or ky = k3

O(7) otherwise.

With the similar argument above, we obtain /135 < O(Z5).

1
ﬁ Z Z KM(wSI - wkl)KM(wsl - wkz)KM(wsz - wks)KM<w52 - wk4)

51,82 k1+ko=T
ko=ks,kq

cum Jkl x71) Jk'l yl)Cum(‘]k3 2 Jks yz)cum(‘]kz 1) sz Y1 ‘]k4 25 ’]k4 yz)

— ////WM ws, — 01)War(ws, + ) War(ws, + 01)Was(ws, — 04)

1
G(l’l, R Ql)G(yl, 9, —Ql)f4(€1, —91, —04)d01d04dw51dw82 < 0(773)
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One term in I3 is

U ( iy s T ha ) CUN( Ty 15 T g ens Thig e ) U ( Ty s T kg ns Theagn)
G (1, Y1, Wiy ) f3(Why s —wis ) f3(Why —wr,) k1 =ho =T
O(7) otherwise.
, and this leads to 1156 = O(75).

There are 48 partitions in [I37. All these 48 partitions have 3 constraints on

(k1, ko, k3, k4) to maintain their largest order. For example,

Cum(‘]k‘l ,T1 Jk2,$1 )Cum(jkl VY19 7163,562 )Cum(jkmw ) 71%‘4,332 )Cum<‘]k37y2 ) Jk47y2)
O()  ky+ky =T ky =k hs+ k=T
O(7z) otherwise

Applying Lemma I1.3 in Chpater II, we obtain the following.

1
772 Z Z KM(“"& _wkl)KM<ws1 _ka)KM<w52 _wk3)KM(w82 _wk4)

51,82 k1,k2,k3,k4a

X {Cum<‘]/€1 ,T1) Jk2,961 )Cum(jlﬁ VY1 7]{:3,302 )Cum<‘7k2,y1 > 7k4,x2 )Cum(‘]k&yz ) Jk47y2 ) }

1
= ﬁ///WM(wﬁ _el)WM<ws1 +91)WM<W52 _el)WM<(J.J52 +(91)

XG(iﬂl, z1, 91)G(y1> T, —91)G(y1, Z2, 91)G(y2, Y2, —01)d91dw81dw32
M

= O(3)

We observe that the largest term in /13 is O(TM?,) which is smaller than the order of

11 and I1s, O(%) This completes the proof. O
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