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ABSTRACT

On Primitivity and the Unital Full Free Product

of Finite Dimensional C*-algebras. (May 2012)

Francisco Javier Torres Ayala, B.S., National Autonomous University of Mexico;

M.A., National Autonomous University of Mexico

Chair of Advisory Committee: Dr. Kenneth Dykema

A C∗-algebra is called primitive if it admits a ∗–representation that is both

faithful and irreducible. Thus the simplest examples are matrix algebras. The main

objective of this work is to classify unital full free products of finite dimensional C*-

algebras that are primitive. We prove that given two nontrivial finite dimensional

C∗-algebras, A1 6= C, A2 6= C, the unital C∗-algebra full free product A = A1 ∗ A2 is

primitive except when A1 = C2 = A2.

Roughly speaking, we first show that, except for trivial cases and the case A1 =

C2 = A2, there is an abundance of irreducible finite dimensional ∗–representations of

A. The latter is accomplished by taking advantage of the structure of Lie group of the

unitary operators in a finite dimensional Hilbert space. Later, by means of a sequence

of approximations and Kaplansky’s density theorem we construct an irreducible and

faithful ∗–representation of A. We want to emphasize the fact that unital full free

products of C*-algebras are highly abstract objects hence finding an irreducible ∗–

representation that is faithfully is an amazing fact.

The dissertation is divided as follows. Chapter I gives an introduction, basic

definitions and examples. Chapter II recalls some facts about ∗–automorphisms of

finite dimensional C∗-algebras. Chapter III is fully devoted to prove Theorem III.6

which is about perturbing a pair of proper unital C∗-subalgebras of a matrix algebra
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in such a way that they have trivial intersection. Theorem III.6 is the cornerstone

for the rest of the results in this work. Lastly, Chapter IV contains the proof of the

main theorem about primitivity and some consequences.
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CHAPTER I

INTRODUCTION

At some extent, primitive C*-algebras are the building blocks of the theory of C*-

algebras. Thus the study of this type of C*-algebras is reasonable. The main objective

of this is work is to prove that, except for trivial cases, the unital full free product

of two finite dimensional C*-algebras is primitive except when both algebras have

dimension 2.

Before we start, we make explicit the notation that will be used in this work.

Notation I.1. Given a Hilbert spaceH, we denote the set of bounded linear operators

by B(H) and the set of compact operators by K(H).

For a concrete C*-algebra A, contained in B(H), A′ denotes the commutator of

A in B(H), in other words

A′ = {x ∈ B(H) : xa = ax for all a in A }.

For a unital C∗-algebraA, ∗-SubAlg(A) denotes the set of all unital C∗-subalgebras

of A and U(A) denotes the set of unitary elements of A. For simplicity, given a Hilbert

space H we write U(H) instead of U(B(H)).

By Aut(A) we denote the set of ∗–automorphisms of A. For u in U(A) we let

Adu denote the ∗–automorphism of A given by Adu(x) = uxu∗. The set of all ∗–

automorphisms of the form Adu, for some u, is called the set of inner automorphism

and it is denoted by Inn(A).

The journal model is Proceedings of the American Mathematical Society.
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For a unital C∗-algebra A, C(A) denotes its center. In other words

C(A) = {x ∈ A : xa = ax for all a ∈ A}.

For a positive integer n, Mn denotes the set of n × n matrices over C and Sn

denotes the permutation group of the set {1, . . . , n}.

A. Primitive C*-algebras

The purpose of this section is to give examples of primitive C*-algebras and show

some elementary facts.

Definition I.2. A ∗–representation of a C*-algebra A in the Hilbert space H is a

∗–homomorphism from A into B(H). A ∗–representation is called faithful if it is

injective or, equivalently, it is an isometry. A ∗–representation π : A → B(H) is

called topological irreducible if the only closed invariant subspaces for π(A) are {0}

and H.

The following well known theorem gives an algebraic characterization of topo-

logical irreducibility. Hence from now on instead of saying that a ∗–representation is

topological irreducible we just say it is irreducible.

Theorem I.3. Let π : A → B(H) be a ∗–representation. Then π is topological

irreducible if and only if π(A)′ = CidH .

Definition I.4. A C*-algebras A is called primitive if there is a Hilbert space H and

a faithful irreducible ∗–representation π : A→ B(H).

As far as we now, the basic approach to prove that a C*-algebra A is primitive

is start with a faithful ∗–representation of A, or in some cases a C*-subalgebra of A,

and perform some kind of operation that does not destroy faithfulness but as a result
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gives an irreducible ∗–representation of A. We illustrate this principle by showing

that primitive C*-algebras are closed under hereditary C*-subalgebras.

Definition I.5. Let A be a C*-algebra. A C*-subalgebra B of A is called hereditary

if b1ab2 belongs to B whenever b1 and b2 lie in B and a lies in A.

Proposition I.6. Any hereditary C*-subaglebra of a primitive C*-algebra is again

primitive.

Proof. We start proving that any closed two sided ideal of a primitive C*-algebra is

again primitive.

Let A be a primitive C*-algebra and let I be a nonzero closed two sided ideal

in A. The existence of a faithful and irreducible ∗–representation of I is easy. We

take π : A → B(H) a faithful and irreducible ∗–representation and prove that its

restriction to I is still irreducible.

Firstly let V denote the vector space generated by the family {π(x)ξ : ξ ∈ H, x ∈

I}. Notice that V is nonzero and it is π(A)-invariant (since I is a left ideal). Thus V

is dense in H. Take T in B(H) with the property that π(x)T = Tπ(x) for any x in

I. We now show that T is a scalar operator. Since π is irreducible it suffices to show

Tπ(a) = π(a)T for any a in A. Since V is dense in H, Tπ(a) = π(a)T is equivalent to

show Tπ(a)v = π(a)Tv for v in V . Write v as π(x)ξ for some x in I and ξ in H. Thus

Tπ(a)v = Tπ(a)π(x)ξ = Tπ(ax)ξ = π(ax)Tξ and π(a)Tv = π(a)Tπ(x)ξ = π(ax)Tξ,

where in both cases we used T commutes with all the elements in I.

Now assume A is a primitive C*-algebra and let B denote a hereditary C*-

subalgebra of A.

Consider the set I = {ab : a ∈ A, b ∈ B}. From the fact that B is a hereditary

C*-subalgebra of A and Proposition II.5.3.2 in [3] we obtain I is a closed left ideal

in A. As a consequence the set J = {ba : b ∈ B, a ∈ A} is a closed right ideal
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in A. Thus I ∩ J is a closed two sided ideal in A. Hence I ∩ J is a primitive C*-

algebra. Using approximate units we conclude B ⊆ I ∩ J and since B is a hereditary

C*-subalgebra of A, B is a two sided ideal in I ∩ J .

To finish this section we summarize some of the main known results for primitive

C*-algebras.

One of the earliest results is due to Choi and Yoshizawa. Independently, in

[4] and [15], they showed that the full group C*-algebra of the free group in n

generators, 2 ≤ n ≤ ∞, is primitive. In [10], Murphy gave numerous conditions for

the primitivity of full group C*-algebras, for instance he proved that for amenable

discrete groups its full group C*-algebras is primitive if and only if the group is

ICC. More recently Bédos and Omland proved in [2] that the modular group is

primitive and then generalized this result in [1] and proved that if G1 and G2 are

non trivial countable discrete amenable groups where at last one of them has more

that two elements, then the full group C*-algebra of the free product of G1 and G2

is primitive.

B. Unital full free products of C*-algebras

In this section we recall the definition and give the construction of the unital full free

product of C*-algebras.

During this section A1 and A2 denote two unital C*-algebras. There are many

ways to define the unital full free product of A1 and A2. One way is using universal

properties and another, more constructive way, is using reduced words. We explain

both ways.

Definition I.7. The unital full free product of A1 and A2, denoted A1 ∗ A2, is a
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unital C*-algebra together with unital ∗–homomorphisms ιi : Ai → A1 ∗A2, i = 1, 2,

satisfying the following universal property: given a unital C*-algebra B and unital

∗–homomorphisms ϕi : Ai → B , i = 1, 2, there is a unique unital ∗–homomorphism

ϕ : A1 ∗ A2 → B with the property that ϕ ◦ ιi = ϕi, for i = 1, 2.

As you can see from the definition A1 ∗ A2 is a terminal object in the category

of C*-algebras and unital ∗–homomorphisms. Another terminology that it is used to

refer to unital full free products is push outs, for this see [12].

Next we prove existence of unital full free products.

For i = 1, 2, fix two states φi : Ai → C and let Aoi := ker(φi). For n ≥ 1, an

index j = (j(1), · · · , j(n)), where j(i) ∈ {1, 2}, is called admissible if j(1) 6= j(2) 6=

· · · 6= j(n). For an admissible index j define Wj := Aoj(1) ⊗ · · · ⊗ Aoj(n), where tensor

product is taken over the complex numbers, and define

A1 ∗alg A2 = C1⊕⊕jWj

where j is taken over all admissible indices and 1 is a distinguished element.

The next step is to give A1 ∗alg A2 an structure of ∗–algebra.

First multiplication. The element 1 acts as the multiplicative identity. For

admissible indexes j1 and j2 and elementary tensors xi = aji(1) ⊗ · · · ⊗ aji(ni) ∈ Wji ,

i = 1, 2, we define x1x2 by induction on n2. If n2 = 1 and x2 ∈ Aoj2(1) we define

x1x2 =


aj1(1) ⊗ · · · ⊗ aj1(n1) ⊗ x2, if j1(n1) 6= j2(1),

aj1(1) ⊗ · · · ⊗ (aj1(n1)x2 − ϕj0(aj1(n1)x2)1Aj0
)

+ϕj0(aj1(n1)x2)aj1(1) ⊗ · · · ⊗ aj1(n1−1),
if j0 = j1(n1) = j2(1).

For n2 ≥ 2 define x1x2 = (x1aj2(1) ⊗ · · · ⊗ aj2(n2−1))aj2(n2). One can check this

operation is well defined, extends to Wj1 ×Wj2 and makes A1 ∗alg A2 an algebra over

the complex numbers.
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Now it is turn of adjoint. For a complex number z define (z1)∗ = z1. For an

admissible index j and elementary tensor aj(1) ⊗ · · · ⊗ aj(n) in Wj define (aj(1) ⊗

· · · ⊗ aj(n))
∗ = a∗j(n) ⊗ · · · ⊗ a∗j(1). Then it is easy to check that along with the

multiplication and adjoint, A1∗algA2 becomes a ∗-algebra. Even more, at the algebraic

level A1∗algA2 has the universal property that characterize the unital full free product.

In specific define maps ιi : Ai → A1 ∗alg A2 by ιi(a) = φi(a)1⊕ (a− φi(a)1Ai
). Then

whenever B is a unital ∗–algebra and ϕi : Ai → B are unital ∗–homomorphism of

∗-algebras, there is a unique unital ∗–homomorphism ϕ : A1 ∗alg A2 → B such that

ϕ ◦ ιi = ϕi. We denote such a ϕ as ϕ1 ∗ ϕ2 . Indeed just take ϕ(1) = 1B and

ϕ(aj(1) ⊗ · · · ⊗ aj(n)) = ϕj(1)(aj(1)) · · ·ϕj(n)(aj(n)).

Now we define a norm on A1 ∗alg A2 by ‖x‖ = supπ{π(x)}, where the sup is

taken over all ∗–algebra homomorphisms π from A1 ∗alg A2 into bounded operators

of Hilbert spaces. After separation and completion we obtain a C∗-algebra that is

∗–isomorphic to the full free product of A1 and A2 as defined in I.7.

C. A crucial example

In this section we discuss some aspects of the C*-algebra C2∗C2. In particular we are

interested in finding all its irreducible ∗–representations. All the results presented in

this section are well known and are written for the convenience of the reader. For the

rest of this section A = C2 ∗C2, p = ι1((1, 0)) and q = ι2((1, 0)), where ι1, ι2 : C2 → A

are the canonical inclusions of C2 into A.

Lemma I.8. Show that if P,Q ∈ B(H) are projections then P +Q− PQ−QP lies

in the center of the unital C∗-algebra generated by P and Q.

Proof. Since P , Q, PQ and QP are in the algebra generated by P and Q then

P +Q− PQ−QP lies in the unital C∗-algebra generated by P and Q.
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To prove P +Q−PQ−QP lies in the center of the unital C∗-algebra generated

by P and Q, it suffices to prove that it commutes with P and Q. But

P (P +Q− PQ−QP ) = P − PQP = (P +Q− PQ−QP )P,

Q(P +Q− PQ−QP ) = Q−QPQ = (P +Q− PQ−QP )Q.

Proposition I.9. For any π : A→ B(K) irreducible ∗–representation, dim(K) ≤ 2.

Proof. Firstly we show that if there is a nonzero vector that is not cyclic for π then

dim(K) = 1. Indeed, assume x in K is nonzero and {π(a)x : a ∈ A} 6= K. Since π

is irreducible and {π(a)x : a ∈ A} is a closed π(A)-invariant subspace we must have

π(a)x = 0 for all a in A. Thus if V denotes the one-dimensional subspace generated

by x we have that V is π(A)-invariant. Hence K = V .

Thus we may assume all nonzero vector is cyclic for π.

Since A is generated by p, q and the identity element, π(A) is generated by P,Q

and idK , where P = π(p) and Q = π(q). Furthermore, by Lemma I.8 P+Q−PQ−QP

lies in the center of π(A). Since π is irreducible its center equals C, hence there is a

complex number λ such that P + Q − PQ − QP = λ. Multiplying by P or Q, the

last equality implies

PQP = (1− λ)P (1.1)

QPQ = (1− λ)Q (1.2)

From (1.1) and (1.2) follow that any word on P and Q simplifies to an expression of

the form (1− λ)nP, (1− λ)nQ, (1− λ)nPQ, (1− λ)nQP for some natural number n.

Then for all x in K, V = span {Px,Qx, PQx,QPx} (which is closed being finite

dimensional) is π(A)-invariant.
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We deduce that, for x 6= 0, K = V . So far dim(K) ≤ 4 but we can reduce this

upper bound for a suitable x.

Notice that if P = idk and Q = idK then π(A) = C and in consequence π(A)′ =

B(K). Since π is irreducible we conclude dim(K) = 1.

Now assume that P 6= idk or Q 6= idk. In this case we can pick a nonzero x such

that Px = 0 or Qx = 0. It follows that dim(K) ≤ 2.

Our next objective is to compute, up to unitary equivalence, all irreducible ∗–

representations of A.

Notation I.10. Let fp, fq : [0, 1]→M2 be the continuous functions given by

fp(t) =

 1 0

0 0

 , fq(t) =

 t
√
t(1− t)√

t(1− t) 1− t

 .
Notice that for each t in [0, 1], fq(t) is a projection. Thus, for each t in (0, 1) we

have a 2-dimensional irreducible ∗–representation πt : A→M2 given by πt(p) = fp(t)

and πt(q) = fq(t).

Notice that for t = 0 and t = 1 we have 1-dimensional ∗–representations that

we denote as follows. Let π1, πp, πq : A → C be the ∗–representations induced by

π1(p) = π1(p) = idC, πp(p) = idC, πp(q) = 0 and πq(p) = 0, πq(q) = idC.

Lemma I.11. Let π : A→ B(K) be a nonzero irreducible ∗–representation.

If dim(K) = 1 then π is unitarily equivalent to one of π1, πp or πq.

If dim(K) = 2 then π is unitarily equivalent to πt for a unique t in (0, 1).

Proof. C ase dim(K) = 1.

We notice that the only projections in B(K) are the identity and the zero map.

So we have 3 possibilities: π(p) = π(q) = idK , πp(p) = idK , πp(q) = 0 and π(p) =



9

0, πq(q) = idK , that are respectively unitarily equivalent to π1, πp and πq.

C ase dim(K) = 2.

Fix {e1, e2} an orthonormal basis for K.

In this case we have that the projections in B(K) are 0, idK and of the from Pv,

where v is a unit vector and Pv(w) = 〈w, v〉v.

Since π is irreducible and dim(K) = 2 neither π(p) nor π(q) equal 0 or idK .

Thus π(p) = Pvp and π(q) = Pvq for two unit vectors vp and vq. Complete {vp} to an

orthonormal base β. Thus, with respect to the base β we have

[π(p)]β =

 1 0

0 0

 , [π(q)]β =

 a1,1 a1,2

a1,2 a2,2


where a1,1 and a1,2 are non negative real numbers and a1,2 is complex. Notice

that from π(q)2 = π(q) we deduce |a1,2|2 = a1,1(1− a1,1).

Since the trace of π(q) is 1 we must have a1,1 +a2,2 = 1. Even more, a1,1 and a2,2

lie in the open interval (0, 1). Indeed, if for instance a2,2 = 1 then a1,1 = a1,2 = 0. It

follows that

π(p) =

 1 0

0 0

 , π(q) =

 0 0

0 1

 .
But this in this situation the vector space generated by vp in π(A)-invariant,

a contradiction since π is irreducible and dim(K) = 2. A similar argument shows

a2,2 6= 0, a1,1 6= 1 and a1,1 6= 0.

Let t = a1,1. Then a2,2 = 1 − t and |a1,2| =
√
t(1− t). Now notice that, for a

complex number λ in the unit circle, 1 0

0 λ


 1 0

0 0


 1 0

0 λ

 =

 1 0

0 0
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and  1 0

0 λ


 t a1,2

a2,1 1− t


 1 0

0 λ

 =

 t λa1,2

λa1,2 1− t


If we take λ such that λa1,2 = |a1,2| =

√
t(1− t) we conclude π is unitarily

equivalent to πt.

Lastly we prove that if s and t lie in (0, 1) and πt is unitarily equivalent to πs then

s = t. Assume U is a unitary matrix such that Uπt(p)U
∗ = πs(p) and Uπt(q)U

∗ =

πs(q). Notice that πt(p) = Pe1 and πt(q) = Pvt where vt =
√
te1 +

√
1− te2. It follows

that UPe1U
∗ = Pe1 and UPvtU

∗ = Pvs and in consequence Ue1 = e1 and Uvt = vs.

Thus 〈Ue1, Uvt〉 = 〈e1, vs〉 and since U is unitary we also have 〈Ue1, Uvt〉 = 〈e1, vt〉.

We conclude t = s.

As we mentioned before computing full free products is, in general, a difficult

task. Nevertheless using the fact that we know all the irreducible ∗–representations

of C2 ∗ C2 we have a nice description.

Proposition I.12. A is ∗–isomorphic to the C*-algebra of M2-valued continuous

functions over the unit interval with the property that its values at 0 and 1 are diagonal

matrices.

Proof. Let

B = {f : [0, 1]→M2 : f is continous and f(0), f(1) are diagonal }

Then fp and fq belong to B and they are projections. By the universal property

of A, there is a unital ∗-algebra homomorphism φ : A → B such that φ(p) = fp and

φ(q) = fq. We claim φ is an isometric ∗–isomorphism.
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Using Bernestein’s polynomials, we notice that B is the unital C∗-algebra gen-

erated by {I1, I2, f1, f2, fj,k : j, k ≥ 1}, where

I1(t) =

 1 0

0 0

 , I2(t) =

 0 0

0 1

 , f1(t) =

 t 0

0 0

 , f2(t) =

 0 0

0 1− t


and

fj,k =

 0 tj(1− t)k

0 0

 .
But taking sums, products and adjoints of the elements 1B, fp, fq we obtain that

{I1, I2, f1, f2, fj,k : j, k ≥ 1} ⊆ φ(A). We conclude φ(A) = B.

Next we prove φ is injective. In order to prove φ is injective first we show that

every irreducible ∗–representation π : A → B(K) factors through B i.e. there is a

∗–representation σ : B → B(K) such that σ ◦ φ = π.

Take π : A → B(K) a nonzero irreducible ∗–representation. Then dim(K) = 1

or dim(K) = 2.

If dim(K) = 1 from Lemma I.11 there are tree irreducible ∗–representations, π1,

πp and πq, where each ∗–representation is determined by

π1(p) = π1(q) = idK , πp(p) = idK , πp(q) = 0, πq(p) = 0, πq(q) = idK .

In the case π1, let σ : B → B(K) be given by σ(f) = f(1)[1, 1], where f(1)[1, 1]

denotes the (1,1)-entry of the matrix f(1).

In the case πp, let σ : B → B(K) be given by σ(f) = f(0)[1, 1].

In the case πq, let σ : B → B(K) be given by σ(f) = f(0)[2, 2].

In the case dim(K) = 2, from Lemma I.11, any irreducible ∗–representations is

unitarily equivalent to πt, for a unique t ∈ (0, 1), where πt(p) = fp(t) and πt(q) = fq(t).
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Thus in this case we may take σ to be the evaluation at t.

Lastly, take a in ker(φ) and let π : A→ B(K) be an irreducible ∗–representation

such that ‖π(a)‖ = ‖a‖. If σ is defined as above we have ‖σ(φ(a))‖ = ‖π(a)‖ = ‖a‖

but φ(a) = 0 hence a = 0 and we conclude φ is injective.
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CHAPTER II

AUTOMORPHISMS

By a ∗-automorphism of a C∗-algebra we mean a bijective map, from the algebra onto

itself, that preserves sums, products and adjoints.

In this chapter we recall some basic results concerning ∗-automorphisms of fi-

nite dimensional C∗-algebras, in particular we are interested is determine a precise

algebraic relation between the group of ∗-automorphism and the subgroup of inner

∗-automorphisms. In concrete see Propositions II.3 and II.4.

Remark II.1. Any ∗-homomorphism from a simple C∗-algebra is either zero or in-

jective (since its kernel is an ideal). Even more, any non-zero ∗-endomorphism of

a finite dimensional simple C∗-algebra is a ∗-automorphism. Indeed, any such ∗-

endomorphism is injective and thus it is bijective (by finite dimensionality) and a

straightforward computation shows its inverse is a ∗-endomorphism.

As a consequence any ∗-automorphism of a finite dimensional C∗-algebra move,

without breaking, each one of its simple C∗-subalgebras with the same dimension (we

may think these as blocks). Thus modulo an inner ∗-automorphism, a ∗-automorphism

is just a permutation. The rest of this chapter is formalizing this ideas.

Proposition II.2. Let B be a finite dimensional C∗-algebra and assume B decom-

poses as ⊕Jj=1Bj, where all Bj are ∗-isomorphic to the same matrix algebra i.e. there

is a positive integer n such that, for all j, Bj is ∗-isomorphic to Mn.

Then for any α in Aut(B) , there is a permutation σ in SJ and a family of

∗-isomorphisms, {αj : Bj → Bσ(j)}1≤j≤J , such that

α(b1, . . . , bJ) =
(
ασ−1(1)(bσ−1(1)), . . . , ασ−1(J)(bσ−1(J))

)
.
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Proof. For 1 ≤ j1, j2 ≤ J write

α[j1, j2] = πj2 ◦ α ◦ ιj1 : Bj1 → Bj2 ,

where ιj1 : Bj1 → B is the canonical inclusion and πj2 : B → Bj2 is the canonical

projection. Thus α[j1, j2] is a ∗-homomorphism.

Since all Bj have the same dimension, Remark II.1 implies that either α[j1, j2] is

zero or a ∗-isomorphism. For fixed j let

Fj = {k ∈ {1, . . . , J} : α[j, k] 6= 0}.

Next we show the sets {Fj}1≤j≤J are pair wise disjoint.

Assume j1 < j2. Take b1, c1 ∈ Bj1 and b2, c2 ∈ Bj2 . From

α(ιj1(b1)) = (α[j1, 1](b1), . . . , α[j1, J ](b1)),

α(ιj2(b2)) = (α[j2, 1](b2), . . . , α[j2, J ](b2)),

we get

α(ιj1(b1) + ιj2(b2)) = (α[j1, 1](b1) + α[j2, 1](b2), . . . , α[j1, J ](b1) + α[j2, J ](b2)).

Since

α(ιj1(b1) + ιj2(b2))α(ιj1(c1) + ιj2(c2)) = α(ιj1(b1c1) + ιj2(b2c2))

we conclude that for all 1 ≤ j ≤ J ,

(α[j1, j](b1) + α[j2, j](b2))(α[j1, j](c1) + α[j2, j](c2)) = α[j1, j](b1c1) + α[j2, j](b2c2)

which implies

α[j2, j](b2)α[j1, j](c1) + α[j1, j](b1)α[j2, j](c2) = 0. (2.1)
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Take j ∈ Fj1 so that α[j1, j] is a ∗-isomorphism. Since α[j1, j](1Bj1
) = 1Bj

,

making b1 = c1 = 1Bj1
and b2 = c2 in (2.1) we get α[j2, j](b2) = 0. We conclude

j /∈ Fj2 . This proves the sets Fj are pair wise disjoint.

We also notice each Fj is not empty. Otherwise α ◦ ιj is zero, a contradiction

since both are injective maps.

In conclusion we have each Fj contains exactly one element, call it σ(j).

Now we show the map j 7→ σ(j) is a bijection. Since we are dealing with finite

sets it is enough to show it is injective. Assume j1 < j2 and σ(j1) = σ(j2) = k. Using

that α[j1, k] and α[j2, k] are onto we can pick b ∈ Bk non-zero and b1 ∈ Bj1, b2 ∈ Bj2

both non-zero such that

α(0, . . . , b1︸︷︷︸
j1-th entry

, . . . , 0) = (0, . . . , b︸︷︷︸
k-th entry

, . . . , 0)

α(0, . . . , b2︸︷︷︸
j2-th entry

, . . . , 0) = (0, . . . , b︸︷︷︸
k-th entry

, . . . , 0)

But this implies

α(0, . . . , b1︸︷︷︸
j1-th entry

, . . . , −b2︸︷︷︸
j2-th entry

, 0) = 0

a contradiction.

The maps we are looking for are αj = α[j, σ(j)].

Proposition II.3. Let B be a finite dimensional C∗-algebra, assume B decomposes

as ⊕Jj=1Bj and there is a positive integer n such that all Bj are ∗-isomorphic to Mn.

Fix {βj : Bj →Mn}1≤j≤J a set of ∗-isomorphisms.

1. For a permutation σ in SJ define ψσ : B → B by

ψσ(b1, . . . , bJ) = (β−1
1 ◦ βσ−1(1)(bσ−1(1)), . . . , β

−1
J ◦ βσ−1(J)(bσ−1(J)))
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Then ψσ lies in Aut(B) and the map σ 7→ ψσ defines a group embedding of SJ

into Aut(B).

2. Every element α in Aut(B) factors as

(
⊕Jj=1 Aduj

)
◦ ψσ

for some permutation σ in SJ and unitaries uj in U(Bj).

3. There is a exact sequence

0→ Inn(B)→ Aut(B)→ SJ → 0.

Proof. Part 1:

A straight forward computation shows that ψσ is a ∗-homomorphism.

The next step is to show

ψσ ◦ ψς = ψσ◦ς (2.2)

Pick b an element of B and let c = ψς(b).

Take k = σ−1(j). From the equations

ψσ(c)j = β−1
j ◦ βσ−1(j)(cσ−1(j))

ψς(b)k = β−1
k ◦ βς−1(k)(bς−1(k))

we get

(ψσ ◦ ψς(b))j = β−1
j ◦ βς−1(σ−1(j))(bς−1(σ−1(j))) = ψσ◦ς(b)j.

Equation (2.2) implies ψσ belongs to Aut(B) and it also shows the map σ 7→ ψσ

is a group homomorphism.

Now assume ψσ = idB but σ 6= idSJ
. Then we can find j0 with σ−1(j0) 6= j0.

Define an element b in B via bj0 = 1Bj0
and bj = 0 for j 6= j0.
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Since ψσ = ibB we have

1Bj0
= bj0 = ψσ(b)j0 = β−1

j0
◦ βσ−1

j0

(bσ−1(j0)) = 0.

Thus σ = idSJ
.

Proof. Part 2:

By Proposition II.2, there is a permutation σ in Sj and a set of ∗-isomorphisms

{αj : Bj → Bσ(j)}1≤j≤J with

α(b) =
(
ασ−1(1)(bσ−1(1)), . . . , ασ−1(J)(bσ−1(J))

)
.

Since βσ(j) ◦ αj ◦ β−1
j lies in Aut(Mn), it equals Ad vj for some unitary vj in

U(Mn). Thus for all bσ−1(k) we have

ασ−1(k)(bσ−1(k)) = β−1
k (vσ−1(k))β

−1
k (βσ−1(k)(bσ−1(k)))β

−1
k (vσ−1(k))

∗

Hence if we take take uj = β−1
j (vσ−1(j)) we have the result.

Proof. Part 3:

We show Inn(B) is normal in Aut(B) and Aut(B)/ Inn(B) is isomorphic to SJ .

Thanks to part 2, to show normality, it suffices to show that given any ψσ and

unitary vj in U(Bj), there are unitaries wj in U(Bj) such that

ψσ−1 ◦
(
⊕Jj=1 Ad vj

)
◦ ψσ = ⊕Jj=1 Adwj.

A direct computation shows

ψσ−1 ◦
(
⊕Jj=1 Ad vj

)
◦ ψσ = Adψσ−1

(
⊕Jj=1 Ad vj

)
,
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and by definition

ψσ−1

(
⊕Jj=1 Ad vj

)
= (β−1

1 ◦ βσ(1)(vσ(1)), . . . , β
−1
J ◦ βσ(J)(vσ(J))).

Hence take wj = β−1
j ◦ βσ(j)(vσ(j)). This completes the proof that Inn(B) is

normal in Aut(B).

By part 2, to show Aut(B)/ Inn(B) is isomorphic to SJ , it is enough to prove

{ψσ : σ ∈ SJ} ∩ Inn(B) = {idB}.

Thus assume there is a unitary u in U(B) such that ψσ(b) = ubu∗ for all elements

b in B. It follows that for all 1 ≤ j ≤ J ,

β−1
j ◦ βσ−1(j)(bσ−1(j)) = ujbju

∗
j .

Since we can choose elements bj independently from each other we must have

σ−1(j) = j for all j, and we are done.

So far we have consider C∗-algebras with only one type of block subalgebra,

so to speak. Next proposition shows that a ∗-automorphism can not mix blocks of

different dimensions. As a consequence, and along with Proposition II.3, we get a

general decomposition of ∗-automorphisms of finite dimensional C∗-algebras.

Proposition II.4. Let B be a finite dimensional C∗-algebra and decompose B as

⊕Ii=1 ⊕
Ji
j=1 B(i, j), where for each i, there is a positive integer ni such that B(i, j) is

isomorphic to Mni
for all 1 ≤ j ≤ Ji, i.e. we group subalgebras that are isomorphic

to the same matrix algebra.

Then any α in Aut(B) factors as α = ⊕Ii=1αi where

αi : ⊕Jij=1B(i, j)→ ⊕Jij=1B(i, j)
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is a ∗-isomorphism.

Proof. Let’s start with a rough decomposition of α. For 1 ≤ i1, i2 ≤ I, 1 ≤ j1 ≤ Ji1

and 1 ≤ j2 ≤ Ji2 let

α[(i1, j1), (i2, j2)] = π(i2,j2) ◦ α ◦ ι(i1,j1)

where ι(i1,j1) denote the canonical inclusion of B(i1, j1) into B and π(i2,j2) denote the

canonical projection of B onto B(i2, j2). Then α[(i1, j1), (i2, j2)] is a ∗-homomorphism

from B(i1, j1) into B(i2, j2).

Now we proceed by induction on I.

The case I = 1 is trivial.

Now assume the result is true for k and let I = k + 1.

With no loss of generality we may assume n1 < · · · < nk < nk+1.

Take 1 ≤ l ≤ Jk+1. By remark II.1 α[(k+ 1, l), (i2, j2)] either is zero or injective.

But for 1 ≤ i2 ≤ k, it must be zero, because in this case dimB(i2, j2)) < dimB(k +

1, l).

As in proposition II.2, one can show that there is 1 ≤ σk+1(l) ≤ Jk+1 unique such

that α[(k + 1, l), (k + 1, σk+1(l))] is not zero and the map l 7→ σk+1(l) is a bijection.

Thus it follows that α restricted to ⊕Jk+1

j=1 B(k + 1, j) gives a ∗-isomorphism onto

⊕Jk+1

j=1 B(k + 1, j).

Next we show that α[(i1, j1), (k + 1, l)] = 0 for 1 ≤ i1 ≤ k and 1 ≤ l ≤ Jk+1.

Take b1 ∈ B(i1, j1). The (k + 1, σk+1(l))-entry of the following identity (which holds

because i1 < k + 1)

α
(
ι(i1,j1)(b1) + ι(k+1,l)(1B(k+1,l))

)
α
(
ι(i1,j1)(b1) + ι(k+1,l)(1B(k+1,l))

)
= α

(
ι(i1,j1)(b1b1) + ι(k+1,l)(1B(k+1,l))

)



20

along with the fact that α[(k + 1, l), (k + 1, σk+1(l))] is a ∗-isomorphism imply

α[(i1, j1), (k + 1, σk+1(l))](b1) = 0.

Since σ is a bijection we conclude α[(i1, j1), (k + 1, l)] = 0 for all 1 ≤ l ≤ Jk+1.

Hence we conclude that the image of ⊕ki=1 ⊕
Ji
j=1 B(i, j) under α is contained

in ⊕ki=1 ⊕
Ji
j=1 B(i, j). But α injective and thus finite dimensionality gives that this

restriction is a ∗-isomorphism. Lastly we apply induction hypothesis to this restriction

get the desired result.
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CHAPTER III

PERTURBATIONS

A. Useful results from Lie groups

In this section we summarize some result that, later on, will be repeatedly used.

Definitions and proofs of results mentioned in this section can be found in [9] and

[8].

The next two theorems are quite important and will be used in the next section.

Theorem III.1. Any closed subgroup of a Lie group is a Lie subgroup.

Theorem III.2. Let G be a Lie group of dimension n and H ⊆ G be a Lie subgroup

of dimension k.

1. Then the left coset space G/H has a natural structure of a manifold of dimension

n − k such that the canonical quotient map π : G → G/H, is a fiber bundle,

with fiber diffeomorphic to H.

2. If H is a normal Lie subgroup then G/H has a canonical structure of a Lie

group.

The next proposition is from Corollary 2.21 in [9].

Proposition III.3. Let G denote a Lie group and assume it acts smoothly on a

manifold M . For m ∈M let O(m) denote its orbit and Stab(m) denote its stabilizer

i.e.

O(m) = {g.m : g ∈ G},

Stab(m) = {g ∈ G : g.m = m}.
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The orbit O(m) is an immersed submanifold of M . If O(m) is compact, then the

map g 7→ g.m, is a diffeomorphism from G/Stab(m) onto O(m). (In this case we say

O(m) is an embedded submanifold of M .)

Corollary III.4. Let G be a compact Lie group and let K and L be closed subgroups

of G. The subspace KL = {kl : k ∈ K, l ∈ L} is an embedded submanifold of G of

dimension

dimK + dimL− dim(L ∩K).

Proof. First of all KL is compact. This follows from the fact that multiplication is

continuous and both K and L are compact. Consider the action of K×L on G given

by (k, l).g = kgl−1. Notice that the orbit of e is precisely KL. By Proposition III.3,

KL is an immersed submanifold diffeomorphic to K×L/Stab(e). Since it is compact,

it is an embedded submanifold. But Stab(e) = {(x, x) : x ∈ K ∩ L} and we conclude

dimKL = dim(K × L)− dim Stab(e) = dimK + dimL− dim(K ∩ L).

Proposition III.5. Let G be a compact Lie group and let H be a closed subgroup.

Let π denote the quotient map onto G/H.

There are:

1. NG, a compact neighborhood of e in G,

2. NH , a compact neighborhood of e in H,

3. NG/H , a compact neighborhood of π(e) in G/H,

4. a continuous function s : NG/H(π(e))→ G satisfying

(a) s(π(e)) = e and π(s(y)) = y for all y in NG/H(π(e)),
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(b) The map

NH ×NG/H → NG,

(h, y) 7→ hsg(y)

is a homeomorphism.

Proof. Let g and h denote, respectively, the Lie algebras of G and H. Take m a

vector subspace such that g is the direct sum of h and m. By Lemmas 2.4 and 4.1 in

[8], chapter 2, there are compact neighborhoods Ug, Uh and Um of 0 in g, h and m,

respectively, such that the map

Um × Uh → Ug,

(a, b) 7→ exp(a) exp(b)

is an homeomorphism and π maps homeomorphically exp(Um) onto a compact neigh-

borhood of π(e). Call the latter neighborhood NG/H . Take NG = exp(Ug), NH =

exp(Uh) and s the inverse of π restricted to exp(Um).

B. Intersections and perturbations

In this section we fix a positive integer N and, unless stated otherwise, B1  MN and

B2  MN denote proper unital C∗-subalgebras of MN .

The main purpose if this section is give a proof of the following theorem (recall

that for a C∗-algebra A, C(A) denotes its center).

Theorem III.6. Assume one of the following conditions holds:

1. dimC(B1) = 1 = dimC(B2),
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2. dimC(B1) ≥ 2, dimC(B2) = 1 and B1 is ∗–isomorphic to

MN/dimC(B1) ⊕ · · · ⊕MN/dimC(B1),

3. dimC(B1) = 2 = dimC(B2), B1 is ∗–isomorphic to

MN/2 ⊕MN/2,

and B2 is ∗–isomorphic to

MN/2 ⊕MN/(2k)

where k ≥ 2,

4. dimC(B1) ≥ 2, dimC(B2) ≥ 3 and, for i = 1, 2, Bi is ∗–isomorphic to

MN/dimC(Bi) ⊕ · · · ⊕MN/dimC(Bi).

Then

∆(B1, B2) := {u ∈ U(MN) : B1 ∩ uB2u
∗ = C}

is dense in U(MN).

The C∗-algebra uB2u
∗ is what we call a perturbation of B2 by u. With this

nomenclature we are trying to prove that, in the cases mentioned above, almost always

we can perturb one C∗-subalgebra a little bit in such a way that the intersection with

the other one is the smallest possible.

Roughly speaking, the idea behind is to show that the complement of ∆(B2, B2)

can be locally parametrized with strictly fewer variables than dimU(MN) = N2.

Thus, the complement of ∆(B1, B2) is, topologically speaking, small.

We start with some definitions. The group U(B1) acts on ∗-SubAlg(B1) via

(u,B) 7→ uBu∗ and the equivalence relation on ∗-SubAlg(B1) induced by this action



25

will be denoted by ∼B1 . Specifically, we have

B ∼B1 C ⇔ ∃u ∈ U(B1) : uBu∗ = C.

We denote by [B]B1 the ∼B1-equivalence class of a subalgebra B in ∗-SubAlg(B1).

Notation III.7. For B in ∗-SubAlg(B1) let

X(B1, B2;B) = {u ∈ U(MN) : uB2u
∗ ∩B1 = B},

Y (B2;B) = {u ∈ U(MN) : u∗Bu ⊆ B2},

Z(B1, B2; [B]B1) = {u ∈ U(MN) : uB2u
∗ ∩B1 ∼B1 B}.

It is straightforward that the complement of ∆(B1, B2) is precisely the union of

the sets Z(B1, B2; [B]B1), where B runs over all unital C∗-subalgebras of B1 and B 6=

C . Just for a moment, with out being formal, we may think Z(B1, B2; [B]B1) as being

parametrized by two coordinates. The first one is an algebra ∼B1-equivalent to B.

Hence the first coordinate lives in [B]B1 . The second, is a unitary u that realizes the

first coordinate as uB2u
∗ ∩B1. X(B1, B2;B) comes into play in order to parametrize

this second coordinate. The problem is that X(B1, B2;BB1) is complicated to handle

(for instance it may not be closed). This is way we introduce the friendlier set

Y (B2;B). Good properties about Y (B2;B) is that it is a closed subset of U(MN), in

fact we will show it is a finite union of enbedded compact submanifolds of U(MN),

and it contains X(B1, B2;B).

The rest of this section is the formalization of the previous idea. In concrete

our first goal is to show [B]B1 has a structure of manifold and we are particularly

interested in finding its dimension.

Let Stab(B1, B) denote the ∼B1-stabilizer of B i.e.

Stab(B1, B) = {u ∈ U(B1) : uBu∗ = B}.
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Remark III.8. Given B in ∗-SubAlg(B1) we can endow [B]B1 with a structure of

manifold. Indeed, let U(B1)/Stab(B1, B) denote the set of left-cosets and consider

the map

βB : [B]B1 → U(B1)/Stab(B1, B),

βB(uBu∗) = uStab(B1, B).

One can check βB is well defined and bijective. Since U(B1)/Stab(B1, B) is a manifold,

βB induces a structure of manifold on [B]B1 . To avoid ambiguity we have to check the

topology does not depend on the representative B. In fact, we will show the topology

induced by βB is the same as the topology induced by the Hausdorff distance.

For C1 and C2 in [B]B1 define

dH(C1, C2) = max

{
sup
x2

inf
x1
{‖x1 − x2‖}, sup

x1

inf
x2
{‖x1 − x2‖}

}
,

where xi is taken in the unit ball of Ci, i = 1, 2. Since unit balls of unital C∗-

subalgebras of B1 are compact subsets (in the norm topology), dH defines a metric

on [B]B1 . Let τ and τH denote, respectively, the topologies on [B]B1 induced by βB

and dH. We are going to show τ = τH . Consider the identity map id : ([B]B1 , τ) →

([B]B1 , τH). First we show id is continuous. Since U(B1)/Stab(B1, B) is endowed

with the pull back topology from the quotient map π : U(B1)→ U(B1)/Stab(B1, B)

where U(B1) is taken with the norm topology, id is continuous if and only if the map

β−1
B ◦ π : U(B1)→ ([B]B1 , τH)

is continuous. Take (un)n≥1 a sequence in U(B1) and a unitary u in U(B1) such that

limn ‖un − u‖ = 0. We need to show

lim
n

dH(β−1
B ◦ π(un), β−1

B ◦ π(u)) = lim
n

dH(unBu
∗
n, uBu

∗) = 0.
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Take n0 such that ‖un − u‖ < ε/2 for all n ≥ n0. For any b in the unit ball of B and

any n ≥ n0, we have

‖unbu∗n − ubu∗‖ < ε.

Thus, for n ≥ n0

sup
x2

inf
x1
‖x1 − x2‖ < ε

and

sup
x1

inf
x2
‖x1 − x2‖ < ε,

where x2 is taken in the unit ball of unBu
∗
n and x1 is taken in the unit ball of

uBu∗. Hence id : ([B]B1 , τ) → ([B]B1 , τH) is continuous. Lastly, since id is bijective,

([B]B1 , τ) is compact and ([B]B1 , τH) is Hausdorff, we conclude that id is a homeo-

morphism. Thus τ = τH .

Now that we know [B]B1 is a manifold, we want to find its dimension. Since by

construction [B]B1 is diffeomorphic to U(B1)/Stab(B1, B), dim[B]B1 = dimU(B1) −

dim Stab(B1, B). Thus we only need to find dim Stab(B1, B).

Notation III.9. Whenever we take commutators they will be with respect to the

ambient algebra MN , in other words for a subalgebra A in ∗-SubAlg(MN)

A′ = {x ∈MN : xa = ax, for all a in A}.

Recall that C(A) denotes the center of A i.e.

C(A) = A ∩ A′ = {a ∈ A : xa = ax for all x in A}.

Proposition III.10. For any B1 in ∗-SubAlg(MN) and for any B in ∗-SubAlg(B1),

we have

dim Stab(B1, B) = dimU(B) + dimU(B1 ∩B′)− dimU(C(B)).
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Proof. We’ll find a normal subgroup of Stab(B1, B), for which we can compute its

dimension and that partitions Stab(B1, B) into a finite number of cosets. Let G

denote the subgroup of Stab(B1, B) generated by U(B1 ∩ B′) and U(B). Since the

elements of U(B) commute with the elements of U(B1 ∩ B′), a typical element of G

looks like vw, where v lies in U(B) and w lies in U(B1 ∩ B′). Taking into account

compactness of U(B) and U(B1 ∩B′), we deduced G is compact.

Now we show G is normal in Stab(B1, B). Take u an element in Stab(B1, B).

For a unitary v in U(B) it is immediate that uvu∗ lies in U(B). For a unitary w in

U(B1 ∩ B′), the following computation shows uwu∗ belongs to U(B1 ∩ B′). For any

element b in B we have:

(uwu∗)b = uw(u∗bu)u∗ = u(u∗bu)wu∗ = b(uwu∗),

where in the second equality we used u∗bu lies in B. In conclusion uGu∗ is contained

in G for all u in St(B1, B) i.e. G is normal in Stab(B1, B).

As a result Stab(B1, B)/G is a Lie group. The next step is to show Stab(B1, B)/G

is finite. Decompose B as

B = ⊕Ii=1 ⊕
Ji
j=1 B(i, j),

where for all i there is ki such that for 1 ≤ j ≤ Ji, B(i, j) is ∗–isomorphic to Mki .

For the rest of our proof we fix a family, β(i, j) : B(i, j)→Mki , of ∗–isomorphisms.

An element u in Stab(B1, B) defines a ∗–automorphism of B by conjugation. As

a consequence, Propositions II.3 and II.4 imply there are permutations σi in SJi and

unitaries vi in U(⊕Jij=1B(i, j)) such that

∀b ∈ B : ubu∗ = vψ(b)v∗ (3.1)

where v = ⊕Ii=1vi is a uitary in U(B) and ψ = ⊕Ii=1ψσi is a ∗–automorphism in
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Aut(B) (the maps ψ depends on the family of ∗–isomorphisms β(i, j) we fixed earlier).

Equation (3.1) is telling us important information. Firstly, that ψ extends to an ∗–

isomorphism of B1 and most importantly, this extension is an inner ∗–automorphism.

Fix a unitary Uψ in U(B1) such that ψ(b) = AdUψ(b) for all b in B (note that Uψ may

not be unique but we just pick one and fix it for rest of the proof ). From equation

(3.1) we deduce there is a unitary w in U(B1 ∩ B′) satisfying u = vUψw. Since the

number of functions ψ, that may arise from (3.1), is at most J1! · · · JI !, we conclude

|Stab(B1, B)/G| ≤ J1! · · · JI !

Now that we know Stab(B1, B)/G is finite we have dim Stab(B1, B) = dimG, and

Corollary III.4 gives the result.

From Proposition III.10 and Remark III.8, we get the following corollary.

Corollary III.11. For any B1 in ∗-SubAlg(MN) and any B in ∗-SubAlg(B1), we

have

dim[B]B1 = dimU(B1)− dimU(B′ ∩B1) + dimU(C(B))− dimU(B)

Now we focus our efforts on Y (B2;B).

Proposition III.12. Assume Y (B2;B) 6= ∅. Then Y (B2;B) is a finite disjoint

union of embedded submanifolds of U(MN). For each one of these submanifolds there

is u ∈ Y (B2;B) such that the submanifold’s dimension is

dim Stab(MN , B) + dimU(B2)− dim Stab(B2, u
∗Bu).

Using Proposition III.10 the later equals

dimU(B′) + dimU(B2)− dimU(B2 ∩ u∗B′u). (3.2)
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Proof. We’ll define an action on Y (B2;B) which will partition Y (B2;B) into a fi-

nite number of orbits, each orbit an embedded submanifold of dimension (3.2) for a

corresponding unitary. Define an action of Stab(MN , B)× U(B2) on Y (B2;B) via

(w, v).u = wuv∗.

For u ∈ Y (B2;B) let O(u) denote the orbit of u and let O denote the set of all orbits.

To prove O is finite consider the function

ϕ : O → ∗-SubAlg(B2)/ ∼B2 ,

ϕ(O(u)) = [u∗Bu]B2 .

Firstly, we need to show ϕ is well defined. Assume u2 ∈ O(u1) and take (w, v) ∈

Stab(Mn, B)× U(B2) such that u2 = wu1v
∗. From the identities

u∗2Bu2 = vu1w
∗Bwu1v

∗ = vu1Bu1v
∗

we obtain [u2Bu
∗
2]B2 = [u1Bu

∗
1]B2 . Hence ϕ is well defined.

The next step is to show ϕ is injective. Assume ϕ(O(u1)) = ϕ(O(u2)), for

u1, u2 ∈ Y (B2;B). Since [u∗1Bu1]B2 = [u∗2Bu2]B2 , we have u∗2Bu2 = vu∗1Bu1v
∗ for

some v ∈ U(B2). But this implies u1v
∗u∗2 ∈ Stab(MN , B) so if w = u1v

∗u∗2 we conclude

(w, v).u2 = u1 which yields O(u1) = O(u2). We conclude |O| ≤ |∗-SubAlg(B2)/ ∼B2

| <∞.

Now we prove each orbit is an embedded submanifold of U(MN) of dimension

(3.2). Since Stab(Mn, B) × U(B2) is compact, every orbit O(u) is compact. Thus,

Proposition III.3 implies O(u) is an embedded submanifold of U(MN), diffeomorphic

to

(Stab(MN , B)× U(B2))/Stab(u)
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where

Stab(u) = {(w, v) ∈ Stab(MN , B)× U(B2) : (w, v).u = u}.

Since

(w, v).u = u ⇔ wuv∗ = u ⇔ u∗wu = v,

we deduce the group Stab(u) is isomorphic to

U(B2) ∩ [u∗Stab(MN , B)u],

via the map (w, v) 7→ v. A straightforward computation shows

u∗Stab(MN , B)u = Stab(MN , u
∗Bu),

for any u ∈ U(MN). Hence, for any u ∈ Y (B2;B),

dimO(u) = dim Stab(MN , B) + U(B2)− dimU(B2) ∩ Stab(MN , u
∗Bu).

Lastly, one can check U(B2) ∩ Stab(MN , u
∗Bu) = Stab(B2, u

∗Bu).

Notation III.13. For a unital C∗-subalgebra B of B1, with the property that B is

unitarily equivalent to a C∗-subalgebra of B2, or in other words Y (B2;B) is nonempty,

define

d(B) := dim[B]B1 + max
i
{dimYi(B2;B)},

where Y1(B2, B), . . . , Yr(B2;B) are disjoint submanifolds of U(MN) whose union is

Y (B2;B).

As we mention at the beginning of this section, in order to prove Theorem III.6,

we need to parametrize each Z(B1, B2; [B]B1) with a number of coordinates less than

N2. The number of coordinates will be given by d(B). Thus the next step is to show

that, under the hypothesis of Theorem III.6, we have d(B) < N2 for B 6= C. We will
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later see that it suffices to show d(B) < N2 for B 6= C and B abelian.

Before we proceed, we recall definition of multiplicity of of a representation. The

following lemma combines Lemma III.2.1 in [5] and Theorem 11.9 in [14].

Lemma III.14. Suppose ϕ : A1 → A2 is a unital ∗-homomorphism and Ai is iso-

morphic to
⊕li

j=1Mki(j), (i = 1, 2). Then ϕ is determined, up to unitary equivalence

in A2, by an l2× l1 matrix, written µ = µ(φ) = µ(A2, A1), having nonnegative integer

entries such that

µ


k1(1)

...

k1(l1)

 =


k2(1)

...

k2(l2)

 .
We call this the matrix of partial multiplicities. In the special case when ϕ is a

unital ∗–representation of A1 into MN , µ is a row vector and this vector is called the

multiplicity of the representation. One constructs µ as follows: decompose Ap as

Ap = ⊕lpj=1Ap(j)

where each Ap(j) is simple, p = 1, 2, 1 ≤ j ≤ lp. Taking projections, π induces unital

∗–representations πi : A1 → A2(i), 1 ≤ i ≤ l2. But up to unitary equivalence, πi

equals

idA1(1) ⊕ · · · ⊕ idA1(1)︸ ︷︷ ︸
mi,1−times

⊕ · · · ⊕ idA1(l1) ⊕ · · · ⊕ idA1(l1)︸ ︷︷ ︸
mi,l1

−times

for some nonnegative integer mi,j, 1 ≤ j ≤ l1. Set µ[i, j] := mi,j. In particular, µ[i, j]

equals the rank of πi(p) ∈ A2(i), where p is a minimal projection in A1(j). Clearly,

π is injective if and only if for all j there is i such that µ[i, j] 6= 0.

Furthermore, the C∗-subalgebra

A2 ∩ ϕ(A1)′ = {x ∈ A2 : xϕ(a) = ϕ(a)x for all a ∈ A1}
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is ∗–isomorphic to
⊕l2

i=1

⊕l1
j=1Mµ[i,j] and if we have morphisms A1 → A2 → A3, then

µ(A3, A2)µ(A2, A1) = µ(A3, A1) for the corresponding matrices.

Our next task is to show d(B) < N2, for abelian B 6= C. We prove it by cases,

so let us start.

Lemma III.15. Assume Bi is ∗–isomorphic to Mki, (i = 1, 2) and let k = gcd(k1, k2).

Take B a unital C∗-subalgebra of B1 such that it is unitarily equivalent to a C∗-

subalgebra of B2. Then there is an injective unital ∗–representation of B into Mk.

Proof. Take u in Y (B2;B) so that u∗Bu ⊆ B2. Let mi := µ(MN , Bi), so that

miki = N , (i = 1, 2). Find positive integers p1 and p2 such that k1 = kp1 and

k2 = kp2 Assume B is ∗–isomorphic to
⊕l

j=1Mnj
. To prove the result it is enough to

show there are positive integers (m(1), . . .m(l)) such that

n1m(1) + · · ·+ nlm(l) = k.

Let

µ(B1, B) = [m1(1), . . . ,m1(l)],

µ(B2, u
∗Bu) = [m2(1), . . . ,m2(l)].

Since µ(MN , B1)µ(B1, B) = µ(MN , B2)µ(B2, u
∗Bu) we deduce thatm1m1(j) = m2m2(j)

for all 1 ≤ j ≤ l. Multiplying by k and using N = m1k1 = m2k2 we conclude

N

p1

m1(j) = km1m1(j) = km2m2(j) =
N

p2

m2(j),

so p2m1(j) = p1m2(j). Since gcd(p1, p2) = 1, the number m1(j)
p1

= m2(j)
p2

is a positive

integer whose value we name m(j). From

kp1 = k1 =
l∑

j=1

njm1(j) =
l∑

j=1

njm(j)p1,
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we conclude k =
∑l

j=1 njm(j).

Proposition III.16. Assume B1 and B2 are simple. Take B 6= C an abelian unital

C∗-subalgebra of B1, that is unitarily equivalent to a C∗-subalgebra of B2. Then

d(B) < N2.

Proof. Assume Bi is ∗–isomorphic to Mki , (i = 1, 2) and B is ∗–isomorphic to Cl,

l ≥ 2. Using Corollary III.11 and Proposition III.12, we may take u in Y (B2, B) such

that d(B) equals the sum of the following terms,

S1(B) := dimU(B1)− dimU(B1 ∩B′),

S2(B) := dimU(B2)− dimU(B2 ∩ u∗B′u),

S3(B) := dimU(B′),

Let k = gcd(k1, k2) and write k1 = kp1, k2 = kp2. From proof of Lemma III.15, there

are positive integers m(j), 1 ≤ j ≤ l, such that

µ(B1, B) = [m(1)p1, . . . ,m(l)p1]

µ(B2, B) = [m(1)p2, . . . ,m(l)p2].

Hence

S1(B) = k2
1 −

l∑
i=1

m(i)2p2
1 = k2p2

1 −
l∑

i=1

m(i)2p2
1

S2(B) = k2
2 −

l∑
i=1

m(i)2p2
2 = k2p2

2 −
l∑

i=1

m(i)2p2
2.

Let mi = µ(MN , Bi), (i = 1, 2). Since

µ(MN , B1)µ(B1, B) = µ(MN , B2)µ(B2, u
∗Bu),
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we get

µ(MN , B) = [m1p1m(1), . . . ,m1p1m(l)]

= [m2p2m(1), . . . ,m2p2m(l)].

(3.3)

Hence

S3(B) =
l∑

i=1

(m(i)p1m1)(m(i)p2m2) =

(
l∑

i=1

m(i)2

)
p1p2m1m2.

Factoring the term
∑l

i=1 m(i)2 we get d(B) equals(
l∑

i=1

m(i)2

)(
p1p2m1m2 − p2

1 − p2
2

)
+ k2(p2

1 + p2
2).

On the other hand, using N = m1k1 = m1kp1 = m2k2 = m2kp2, we get N2 =

k2p1p2m1m2. Hence d(B) < N2 if and only if(
l∑

i=1

m(i)2

)(
p1p2m1m2 − p2

1 − p2
2

)
< k2(p1p2m1m2 − p2

1 − p2
2). (3.4)

We want to cancel (p1p2m1m2− p2
1− p2

2), in equation (3.4), so we prove it is positive.

First we divide it by p1p2 to get m1m2 − p1
p2
− p2

p1
. But from equation (3.3) we have

p1
p2

= m2

m1
. Thus we need to show m1m2− m1

m2
− m2

m1
is positive. If we divide it by m1m2

we get 1 − 1
m2

1
− 1

m2
2
, which is clearly positive (recall that m1 ≥ 2 and m2 ≥ 2 since

B1 6= MN and B2 6= MN). Therefore, equation (3.4) is equivalent to

l∑
i=1

m(i)2 < k2.

But
∑l

i=1m(i) = k, l ≥ 2 and each m(i) is positive.

In the nonsimple case in Theorem III.6, we will need some minimization lemmas

to show d(B) < N2, for abelian B 6= C. A straightfroward use of Lagrange multipliers

proves the following lemma, and the one after that is even more elementary.

Lemma III.17. Fix a positive integer n and let r1, . . . , rn be positive real numbers.
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Then

min

{ n∑
j=1

x2
j

rj

∣∣∣∣ n∑
j=1

xj = 1

}
=

1∑n
j=1 rj

,

where the minimum is taken over all n-tuples of real numbers that sum up to 1.

Lemma III.18. For an integer k ≥ 2 define

h(x, y) = 2xy −
(

1 +
1

k2

)
y2 − 1

2
x2.

Then

max{h(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1/2} =
1

4
− 1

4k2
.

Proposition III.19. Suppose dimC(B1) ≥ 2 and B1 is ∗–isomorphic to

MN/ dimC(B1) ⊕ · · · ⊕MN/dimC(B1). (3.5)

Assume one of the following cases holds:

1. dimC(B2) = 1,

2. B1 is ∗–isomorphic to

MN/2 ⊕MN/2,

B2 is ∗–isomorphic to

MN/2 ⊕MN/(2k)

where k ≥ 2.

3. dimC(B2) ≥ 3 and B2 is ∗–isomorphic to

MN/dimC(B2) ⊕ · · · ⊕MN/dimC(B2).

Then for any B 6= C an abelian unital C∗-subalgebra of B1 that is unitarily equivalent

to a C∗-subalgebra of B2, we have that d(B) < N2.
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Proof. Let li = dimC(Bi), (i = 1, 2), l = dim(B). Take u in Y (B2;B) such that

d(B) is the sum of the following terms:

S1(B) := dimU(B1)− dimU(B1 ∩B′), (3.6)

S2(B) := dimU(B2)− dimU(B2 ∩ u∗B′u), (3.7)

S3(B) := dimU(B′). (3.8)

Write

µ(B1, B) = [ai,j]1≤i≤l1,1≤j≤l,

µ(B2, u
∗Bu) = [bi,j]1≤i≤l2,1≤j≤l,

µ(MN , B1) = [m1(1), . . . ,m1(l1)],

µ(MN , B2) = [m2(1), . . . ,m2(l2)],

µ(MN , B) = [m(1), . . . ,m(l)].

Then

S1(B) =
N2

l1
−

l∑
i=1

l1∑
j=1

a2
i,j,

S2(B) = dimU(B2)−
l∑

i=1

l2∑
j=1

b2
i,j,

S3(B) =
l∑

j=1

m(j)2.

Since the sum of the ranks appearing in (3.5) isN , we havem1(i) = 1 for all 1 ≤ i ≤ l1.

Since

µ(MN , B) = µ(MN , B1)µ(B1, B) = µ(MN , B2)µ(B2, u
∗Bu),

we must have

m(j) =

l1∑
i=1

ai,j =

l2∑
i=1

m2(i)bi,j
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for all 1 ≤ j ≤ l. Hence there are nonnegative numbers αi,j and βi,j such that∑l1
i=1 αi,j =

∑l2
i=1 βi,j = 1 and ai,j = αi,jm(j), m2(i)bi,j = βi,jm(j). On the other

hand, since B is a unital C∗-subalgebra of MN we must have

l∑
j=1

m(j) = N.

Thus, there are positive numbers γj, (1 ≤ j ≤ l), such that
∑l

j=1 γj = 1 and m(j) =

γjN . It will be important to notice that γj > 0 for all 1 ≤ j ≤ l ( otherwise B is not

a unital C∗-algebra of MN). In consequence,

S1(B) =
N2

l1
−N2

( l∑
j=1

γ2
j

( l1∑
i=1

α2
i,j

))
,

S2(B) = dimU(B2)−N2

( l∑
j=1

γ2
j

( l2∑
i=1

β2
i,j

m2(i)2

))
,

S3(B) = N2

( l∑
j=1

γ2
j

)
.

Case (1). B2 is simple, let us say it is ∗–isomorphic to Mk2 . In this case µ(MN , B2) =

[m2] is just one number and we must have m2k2 = N . Notice that m2 ≥ 2, since by

our standing assumption, B2 6= MN . Also notice that from µ(MN , B2)µ(B2, u
∗Bu) =

µ(MN , B) we obtain m2bi,1 = m(i) and βi,1 = 1 for all 1 ≤ i ≤ l. In consequence

S1(B) =
N2

l1
−N2

( l∑
j=1

γ2
j

( l1∑
i=1

α2
i,j

))
,

S2(B) =
N2

m2
2

− N2

m2
2

( l∑
j=1

γ2
j

)
,

S3(B) = N2

( l∑
j=1

γ2
j

)
.
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From Lemma III.17, we deduce

S1(B) ≤ N2

l1
− N2

l1

( l∑
j=1

γ2
j

)
.

Thus, it suffices to show

N2

(
1

l1
+

1

m2
2

+
l∑

j=1

γ2
j −

1

l1

( l∑
j=1

γ2
j

)
− 1

m2
2

( l∑
j=1

γ2
j

))
< N2

or equivalently ( l∑
j=1

γ2
j

)(
1− 1

l1
− 1

m2
2

)
< 1− 1

l1
− 1

m2
2

.

Since l1 ≥ 2 and m2 ≥ 2 we can cancel the term 1− 1
l1
− 1

m2
2
. Thus we need to show∑l

j=1 γ
2
j < 1. But the latter follows from the fact that l ≥ 2, each γj is positive and∑l

j=1 γj = 1.

Case (2). We have

µ(MN , B1) = [1, 1],

µ(MN , B2) = [1, k].

Thus

S1(B) =
N2

2
−N2

( l∑
j=1

γ2
j

(
α2

1,j + α2
2,j

))
,

S2(B) =
N2

4
+
N2

4k2
−N2

( l∑
j=1

γ2
j

(
β2

1,j +
β2

2,j

k2

))
,

S3(B) = N2

( l∑
j=1

γ2
j

)
.
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From Lemma III.17 we obtain

S1(B) ≤ N2

2
− N2

2

( l∑
j=1

γ2
j

)
.

Thus, it suffices to show

1

2
+

1

4
+

1

4k2
+

l∑
j=1

γ2
j

(
1

2
− β2

1,j −
1

k2
β2

2,j

)
< 1

or, equivalently,
l∑

j=1

γ2
j

(
1

2
− β2

1,j −
1

k2
β2

2,j

)
<

1

4
− 1

4k2
.

Define

r =
l∑

j=1

γ2
j

(
1

2
− β2

1,j −
1

k2
β2

2,j

)
. (3.9)

Now we use the constraints on the variables γj and βi,j. First of all we have β1,j+β2,j =

1 for all 1 ≤ i ≤ l. Thus, r simplifies to

r =
l∑

j=1

γ2
j

(
2β2,j −

(
1 +

1

k2

)
β2

2,j −
1

2

)
.

We also have

l∑
j=1

β2,jγj =
1

2
. (3.10)

Indeed, since all blocks of B are one dimensional, we must have

l∑
j=1

b2,j =
N

2k
.

But kb2,j = β2,jm(j) = β2,jγjN , which implies (3.10). The final constraint is∑
j=1 γj = 1.
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Now we make the change of variables qj := γjβ2,j and r becomes

r = 2

( l∑
j=1

qjγj

)
−
(

1 +
1

k2

)( l∑
j=1

q2
j

)
− 1

2

( l∑
j=1

γ2
j

)
.

Letting γ = (γ1, . . . , γl) and q = (q1, . . . , ql) and using the Cauchy-Schwartz inequality,

we get

r ≤ 2‖q‖2‖γ‖2 −
(

1 +
1

k2

)
‖q‖2

2 −
1

2
‖γ‖2

2

Set x = ‖γ‖, y = ‖q‖. Notice that 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1/2. Take

h(x, y) = 2xy −
(

1 +
1

k2

)
y2 − 1

2
y2

apply Lemma III.18 to get

r ≤ h(‖γ‖, ‖q‖) ≤ 1

4
− 1

4k2
.

Now we will rule out equality. Assuming, for contradiction, r = 1
4
− 1

4k2
, we must

have equality in the instince of the Cauchy-Schwartz inequality. Hence q = zγ for

some real number z. Summing over the coordinates we deduce z = 1/2 and then, for

all 1 ≤ j ≤ l,

1

2
γj = qj = γjβ2,j.

Since γj > 0 we can cancel and get β2,j = 1/2. Thus, using the original formula-

tion (3.9) of r, we get

r =

(
1

4
− 1

4k2

)( l∑
j=1

γ2
j

)
which is strictly less that 1/4 − 1/(4k2), because k ≥ 2, l ≥ 2, all γj are strictly

positive and
∑l

j=1 γj = 1.
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Case (3). Then B2 is ∗–isomorphic to

MN/l2 ⊕ · · · ⊕MN/l2︸ ︷︷ ︸
l2−times

.

Arguing as we did before for m1(i), we have m2(i) = 1, for all 1 ≤ i ≤ l2. Hence

S1(B) =
N2

l1
−N2

( l∑
j=1

γ2
j

( l1∑
i=1

α2
i,j

))
,

S2(B) =
N2

l2
−N2

( l∑
j=1

γ2
j

( l2∑
i=1

β2
i,j

))
,

S3(B) = N2

( l∑
j=1

γ2
j

)
.

From Lemma III.17 we deduce

S1(B) ≤ N2

l1
− N2

l1

( l∑
j=1

γ2
j

)
,

S2(B) ≤ N2

l2
− N2

l2

( l∑
j=1

γ2
j

)
.

Thus, it suffices to show

N2

(
1

l1
+

1

l2
+

l∑
j=1

γ2
j −

1

l1

( l∑
j=1

γ2
j

)
− 1

l2

( l∑
j=1

γ2
j

))
< N2

or equivalently ( l∑
j=1

γ2
j

)(
1− 1

l1
− 1

l2

)
< 1− 1

l1
− 1

l2
.

Since l1 ≥ 2 and l2 ≥ 3 we can cancel the term 1− 1
l1
− 1

l2
in the above equation and

finish the proof as in the previous case.

The next step is to find parameterizations of Z(B1, B2; [B]B1).

Lemma III.20. Take B 6= C a unital C∗-subalgebra of B1 that is unitarily equivalent

to a C∗-subalgebra of B2. If dimU(B1) + dimU(B2) ≤ N2, B is simple and C in
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∗-SubAlg(B) is ∗–isomorphic to C2, then d(B) ≤ d(C).

Proof. Assume B is ∗–isomorphic to Mk and let m denote the multiplicity of B in

MN . Thus we must have km = N . Take a unitary u in the submanifold of maximum

dimension in Y (B2;B), so that d(B) is the sum of the terms

S1(B) := dimU(B1)− dimU(B1 ∩B′),

S2(B) := dimU(B2)− dimU(B2 ∩ u∗B′u),

S3(B) := dimU(B′),

S4(B) := dimU(B ∩B′)− dimU(B).

and let v lie in the submanifold of maximum dimension in Y (B2, C) so that d(C) is

the sum of the terms

S1(C) := dimU(B1)− dimU(B1 ∩ C ′),

S2(C) := dimU(B2)− dimU(B2 ∩ v∗C ′v),

S3(C) := dimU(C ′).

Clearly, S4(B) = 1− k2. We write

B1 '
l1⊕
i=1

Mk1(i),

B2 '
l2⊕
i=1

Mk2(i).

and

δ(B1) = [k1(1), . . . , k1(l1)]t,

δ(B2) = [k2(1), . . . , k2(l2)]t.
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From definition of multiplicity and the fact that it is invariant under unitary equiva-

lence we get

µ(B1, B)k = δ(B1), (3.11)

µ(B2, u
∗Bu)k = δ(B2),

µ(MN , B1)δ(B1) = µ(MN , B2)δ(B2) = N,

µ(MN , B1)µ(B1, B) = µ(MN , B2)µ(B2, u
∗Bu) = m.

From Lemma III.14 and equation (3.11) we get

dimU(B1 ∩B′) =
1

k2
dimU(B1). (3.12)

Hence

S1(B) =

(
1− 1

k2

)
dimU(B1).

Similarly

S2(B) =

(
1− 1

k2

)
dimU(B2).

Now it is the turn of C. To ease notation let

µ(B,C) = [x1, x2]

Notice that x1 + x2 = k. We claim

S1(C) =

(
1− x2

1 + x2
2

k2

)
dimU(B1).

Using µ(B1, C) = µ(B1, B)µ(B,C) we get

dimU(B1 ∩ C ′) = (x2
1 + x2

2) dimU(B1 ∩B′).
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Furthermore using (3.12) we obtain

dimU(B1 ∩ C ′) =
x2

1 + x2
2

k2
dimU(B1).

Hence our claim follows from definition of S1(C). Similarly

S2(C) =

(
1− x2

1 + x2
2

k2

)
dimU(B2).

Lastly from µ(MN , C) = [mx1,mx2] and mk = N we get

S3(C) = (x2
1 + x2

2)
N2

k2
,

S3(B) =
N2

k2
.

To prove d(B) ≤ d(C) we’ll show

S1(B)− S1(C) + S2(B)− S2(C) + S4(B) ≤ S3(C)− S3(B). (3.13)

Using the description of each summand we have that left hand side of (3.13) equals

x2
1 + x2

2 − 1

k2

(
dimU(B1) + dimU(B2)

)
+ 1− k2.

The right hand side of (3.13) equals

x2
1 + x2

2 − 1

k2
N2.

But x1 and x2 are strictly positive, because C is a unital subalgebra of B. Hence

we can cancel x2
1 + x2

2 − 1 and finish the proof by using that 1 − δ(B)2 < 0 and the

assumption dimU(B1) + dimU(B2) ≤ N2.

We recall an important perturbation result that can be found in Lemma III.3.2

from [5].

Lemma III.21. Let A be a finite dimensional C∗-algebra. Given any positive num-
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ber ε there is a positive number δ = δ(ε) so that whenever B and C are unital C∗-

subalgebras of A and such that C has a system of matrix units {eC(s, i, j)}s,i,j, satisfy-

ing dist(eC(s, i, j), B) < δ for all s, i and j, then there is a unitary u in U(C∗(B,C))

with ‖u− 1‖ < ε so that uCu∗ ⊆ B.

Notation III.22. For an element x in MN and a positive number ε, Nε(x) denotes

the open ε-neighborhood around x (i.e. open ball of radius ε centered at x), where

the distance is from the operator norm in MN .

The next proposition is quite technical and is mainly a consequence of Lemma

III.21. The set [B]B1 is endowed with the equivalent topologies described in Re-

mark III.8.

Lemma III.23. Take B in ∗-SubAlg(B1) and assume Z(B1, B2; [B]B1) is nonempty.

Then the function

Z(B1, B2; [B]B1) → [B]B1 (3.14)

u 7→ uB2u
∗ ∩B1

is continuous.

Proof. Assume B is ∗–isomorphic to

l⊕
s=1

Mks .

First we recall that the topology of [B]B1 is induced by the bijection

β : [B]B1 → U(B1)/Stab(B1, B),

β(uBu∗) = uStab(B1, B).

For convenience let π : U(B1) → U(B1)/Stab(B1, B) denote the canonical quotient
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map. Pick u0 in Z(B1, B2; [B]B1). With no loss of generality we may assume B =

u0B2u
∗
0 ∩B1.

We prove the result by contradiction. Suppose the function in (3.14) is not

continuous at u0. Then there is a sequence (uk)k≥1 ⊂ Z(B1, B2, [B]B1) and an open

neighborhood N of B in [B]B1 such that

1. limk uk = u0,

2. for all k, ukB2u
∗
k ∩B1 /∈ N .

On the other hand, let ε > 0 be such that π(Nε(1B1)) ⊆ β(N ). Let {ek(s, i, j)}1≤s≤l,1≤i,j≤ks

denote a system of matrix units for ukB2u
∗
k ∩ B1. Fix elements fk(s, i, j) in B2 such

that ek(s, i, j) = ukfk(s, i, j)u
∗
k. Since B2 is finite dimensional, passing to a subse-

quence if necessary, we may assume that limk fk(s, i, j) = f(s, i, j), for all s, i and j.

Using property (1) of the sequence (uk)k≥1, we deduce

lim
k
ek(s, i, j) = lim

k
ukfk(s, i, j)u

∗
k = u0f(s, i, j)u∗0.

Hence the element e(s, i, j) = u0f(s, i, j)u∗ belongs to u0B1u
∗
0 ∩B1 = B. Use Lemma

III.21 and take δ1 positive such that whenever C is a subalgebra in ∗-SubAlg(B1)

having a system of matrix units {eC(s, i, j)}s,i,j satisfying dist(eC(s, i, j), B) < δ1,

for all s, i and j, then there is a unitary Q in U(B1) such that ‖Q − 1B1‖ < ε and

QCQ∗ ⊆ B. Take k such that ‖ek(s, i, j) − e(s, i, j)‖ < δ1 for all s, i and j. This

implies dist(ek(s, i, j), B) < δ1 for all s, i and j. We conclude there is a unitary Q in

U(B1) such that ‖Q− 1B1‖ < ε and Q∗(ukB2u
∗
k ∩B1)Q ⊆ B. But

dimB = dimukB2u
∗
k ∩B1 = dimQ∗(ukB2u

∗
k ∩B1)Q,

where in the first equality we used that uk lies in Z(B1, B2; [B]B1). Hence Q∗(ukB2u
∗
k∩
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B1)Q = B. As a consequence,

β(ukB2u
∗
k ∩B1) = β(QBQ∗) = π(Q) ∈ β(N ).

But the latter contradicts property (2) of (uk)k≥1.

Lemma III.24. For B in ∗-SubAlg(B), the function c : [B]B1 → [C(B)]B1 given by

c(uBu∗) = uC(B)u∗ is continuous.

Proof. First, we must show the function c is well defined. In other words we have to

show Stab(B1, B) ⊆ Stab(B1, C(B)). But this follows directly from the fact that any

u in Stab(B1, B) defines a ∗–automorphism of B and any ∗–automorphism leaves the

center fixed. Since [B]B1 and [C(B)]B1 are homeomorphic to U(B1)/Stab(B1, B) and

U(B1)/Stab(B1, C(B)) respectively, it follows that c is continuous if and only if the

function c̃ : U(B1)/Stab(B1, B)→ U(B1)/Stab(B1, C(B)) given by c̃(uStab(B1, B)) =

uStab(B1, C(B)) is continuous. But the spaces U(B1)/Stab(B1, B) and U(B1)/Stab(B1, C(B))

have the quotient topology induced by the canonical projections

πB : U(B1)→ Stab(B1, B), πC(B) : U(B1)→ U(B1)/Stab(B1, C(B)).

Thus c̃ is continuous if and only if πB ◦ c̃ is continuous. But πB ◦ c̃ = πC(B), which is

indeed continuous.

We are ready to find local parameterizations of Z(B1, B2; [B]B1).

Proposition III.25. Take B a unital C∗-subalgebra in B1 that is unitarily equivalent

to a C∗-subalgebra of B2. Fix an element u0 in Z(B1, B2; [B]B1). Then there is a

positive number r and a continuous injective function

Ψ : Nr(u0) ∩ Z(B1, B2; [B]B1)→ Rd(C(B)).
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Proof. Using that Z(B1, B2; [B]B1) = Z(B1, B2, [u0B2u
∗
0 ∩ B1]B1), with no loss of

generality we may assume u0B2u
∗
0 ∩ B1 = B. Now, we use the manifold structure of

[C(B)]B1 and Y (B2;C(B)) to construct Ψ. Note that if Y (B2, B) is nonempty then

Y (B2, C(B)) is nonempty as well. Let d1 denote the dimension of [C(B)]B1 and let d2

denote the dimension of the submanifold of Y (B2;C(B)) that contains u0. Of course,

we have d1 + d2 ≤ d(C(B)).

We use the local cross section result from previous section to parametrize [C(B)]B1 .

To ease notation take G = U(B1), H = Stab(B1, C(B)) and let π denote the canonical

quotient map from G onto the left-cosets of H. By Proposition III.5 there are

1. NG, a compact neighborhood of 1 in G,

2. NH , a compact neighborhood of 1 in H,

3. NG/H , a compact neighborhood of π(1) in G/H,

4. a continuous function s : NG/H → NG satisfying

(a) s(π(1)) = 1 and π(s(π(g))) = π(g) whenever π(g) lies in NG/H ,

(b) the function

NH ×NG/H → NG,

(h, π(g)) 7→ hs(π(g)),

is an homeomorphism.

Since G/H is a manifold of dimension d1, we may assume there is a continuous

injective map Ψ1 : NG/H → Rd1 .

Parametrizing Y (B2;C(B)) is easier. Since u0B2u
∗
0 ∩ B1 = B, u0 belongs to

Y (B2;B). Take r1 positive and a diffeomorphism Ψ2 from Y (B2;C(B)) ∩ Nr1(u0)

onto an open subset of Rd2 .
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Now that we have fixed parametrizations Ψ1 and Ψ2, we can parametrize Z(B1, B2; [B]B1)

around u0. Recall [C(B)]B1 has the topology induced by the bijection β : [C(B)]B1 →

G/H, given by β(uC(B)u∗) = π(u). The function

Z(B1, B2; [B]B1) → [C(B)]B1 ,

u 7→ c(uB2u
∗ ∩B1)

is continuous by Lemma III.23 and Lemma III.24. Hence there is δ2 positive such that

β(c(uB2u
∗∩B1)) belongs toNG/H , whenever u lies in the intersection Z(B1, B2; [B]B1)∩

Nδ2(u0). For a unitary u in Z(B1, B2; [B]B1) ∩Nδ2(u0) define

q(u) := s(β(c(uB2u
∗ ∩B1))).

We note that q(u0) = 1, q(u) lies in G and that the map u 7→ q(u) is continuous. The

main property of q(u) is that

c(uB2u
∗ ∩B1) = q(u)c(B)q(u)∗. (3.15)

Indeed, for u in Z(B1, B2; [B]1)∩Nδ2(u0) there is a unitary v in G with the property

uB2u
∗∩B1 = vBv∗. Hence c(uB2∩B1) = vC(B)v∗. Since ‖u−u0‖ < δ2, β(c(uB2u

∗∩

B1)) lies in NG/H . Hence β(c(uB2u
∗ ∩B1)) = π(v) lies in NG/H . Using the fact that

s is a local section on NG/H (property (4a) above) we deduce π(s(π(v))) = π(v) .

On the other hand, by definition of q(u) we have

π(s(π(v))) = π(s(β(uB2u
∗ ∩B1))) = π(q(u)).

As a consequence, π(v) = π(q(u)) i.e. v∗q(u) belongs to Stab(B1, B) which is just

another way to say (3.15) holds. At last we are ready to find r. Continuity of the map

u 7→ q(u) gives a positive δ3, less that δ2, such that ‖q(u)−1‖ < δ1
2

whenever u lies in
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Z(B1, B2; [B]B1) ∩ Nδ3(u0). Define r = min{ δ1
2
, δ3}. The first thing we notice is that

q(u)∗u belongs to Y (B2;C(B))∩Nδ1(u0) whenever u lies in Z(B1, B2; [B]B1)∩Nδ(u0).

Indeed, from

q(u)c(B)q(u)∗ = c(uB2u
∗ ∩B1) ⊆ uB2u

∗

we obtain q(u)∗u ∈ Y (B2; c(B)) and a standard computation, using ‖q(u)− 1‖ < δ1
2

,

shows ‖q(u)∗u− u0‖ < δ1. Hence we are allowed to take Ψ2(q(u)∗u). Lastly, for u in

Z(B1, B2; [B]B1) ∩Nδ(u0) define

Ψ(u) := (Ψ1(β(c(uB2u
∗ ∩B1))),Ψ2(q(u)u∗)).

It is clear that Ψ is continuous.

Now we show Ψ is injective. If Ψ(u1) = Ψ(u2), for two element u1 and u2 in

Z(B1, B2; [B]B1), then

Ψ1(β(c(u1B2u
∗
1 ∩B1))) = Ψ1(β(c(u2B2u

∗
2 ∩B1))), (3.16)

Ψ2(q(u1)u∗1) = Ψ2(q(u2)u∗2). (3.17)

From (3.16) and definition of q(u) it follows that q(u1) = q(u2) and from equation

(3.17) we conclude u1 = u2.

Proposition III.26. Take B a unital C∗-subalgebra of B1 such that it is unitarily

equivalent to a C∗-subalgebra of B2. Fix an element u0 in Z(B1, B2; [B]B1).

There is a positive number r and a continuous injective function

Ψ : Nr(u0) ∩ Z(B1, B2; [B]B1)→ Rd(B)

.

The proof of Proposition III.26 is similar to that of Proposition III.25, so we omit

it.
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We now begin showing density in U(MN) of certain sets of unitaries.

Lemma III.27. Assume B1 and B2 are simple. If B 6= C is a unital C∗-subalgebra

of B1 and it is unitarily equivalent to a C∗-subalgebra of B2 then Z(B1, B2; [B]B1)
c is

dense.

Proof. Firstly we notice that dimU(B1) + dimU(B2) < N2. Indeed, if Bi is ∗–

isomorphic to Mki , i = 1, 2 and mi = µ(MN , Bi) then dimU(B1) + dimU(B2) =

N2(1/m2
2 + 1/m2

2) < N2. Secondly we will prove that for any u in Z(B1, B2; [B]B1)

there is a natural number du, with du < N2, a positive number ru and a continuous

injective function Ψu : Nru(u) ∩ Z(B1, B2; [B]B1)→ Rdu . We will consider two cases.

Case (1): B is not simple. Take du = d(C(B)). Since C(B) 6= C, Proposition III.16

implies d(C(B)) < N2. Take ru and Ψu as required to exist by Proposition III.25.

Case (2): B is simple. Take du = d(B). Since B 6= C, B contains a unital C∗-

subalgebra isomorphic to C2, call it C. Lemma III.20 implies d(B) ≤ d(C) and

Lemma III.16 implies d(C) < N2. Take ru and Ψu the positive number and continuous

injective function from Proposition III.26.

We will show that U ∩Z(B1, B2; [B]B1)
c 6= ∅, for any nonempty open subset U ⊆

U(MN). First notice that if the intersection U∩(
⋃
u∈Z(B1,B2;[B]B1

)Nru(u))c is nonempty

then we are done. Thus we may assume U ⊆
⋃
u∈Z(B1,B2;[B]B1

)Nru(u). Furthermore,

by making U smaller, if necessary, we may assume there is u in Z(B1, B2; [B]B1) such

that U ⊆ Nru(u).

For sake of contradiction assume U ⊆ Z(B1, B2; [B]B1). We may take an open

subset V , contained in U , small enough so that V is diffeomorphic to an open con-

nected set O of RN2
. Let ϕ : O → V be a diffeomorphism. It follows we have a
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continuous injective function

RN2 ⊇ O ϕ // V
Ψu // Rdu � � // RN2

.

By the Invariance of Domain Theorem, the image of this map must be open in

RN2
. But this is a contradiction since the image is contained in Rdu and du < N2.

We conclude U ∩ Z(B1, B2; [B]B1)
c 6= ∅.

Lemma III.28. Suppose dimC(B1) ≥ 2 and B1 is ∗–isomorphic to

MN/ dimC(B1) ⊕ · · · ⊕MN/dimC(B1).

Assume one of the following cases holds:

1. dimC(B2) = 1,

2. B1 is ∗–isomorphic to

MN/2 ⊕MN/2

and B2 is ∗–isomorphic to

MN/2 ⊕MN/(2k),

where k ≥ 2.

3. dimC(B2) ≥ 3 and B2 is ∗–isomorphic to

MN/dimC(B2) ⊕ · · · ⊕MN/dimC(B2).

Then for any B 6= C unital C∗-subalgebra of B1 such that it is unitarily equivalent to

a C∗-subalgebra of B2, Z(B1, B2; [B]B1)
c is dense.

Proof. The proof of Lemma III.28 is exactly as the proof of III.27 but using Lemma

III.19 instead of Lemma III.16 .
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At this point if the sets Z(B1, B2; [B]B1) were closed one could conclude imme-

diately that ∆(B1, B2) is dense. Unfortunately they may not be closed. What saves

the day is the fact that we can control the closure of Z(B1, B2; [B]B1) with sets of the

same form i.e. sets like Z(B1, B2; [C]B1) for a suitable finite family of subalgebras C.

We make this statement clearer with the definition of an order on ∗-SubAlg(B1).

Definition III.29. On ∗-SubAlg(B1)/ ∼B1 we define a partial order as follows:

[B]B1 ≤ [C]B1 ⇔ ∃D ∈ ∗-SubAlg(C) : D ∼B1 B.

Proposition III.30. For any B in ∗-SubAlg(B1),

Z(B1, B2; [B]B1) ⊆
⋃

[C]B1
≥[B]B1

Z(B1, B2; [C]B1).

Proof. Let (uk)k≥1 be a sequence in Z(B1, B2; [B]B1) and u in U(MN) such that

limk ‖uk − u‖ = 0. Pick qk in U(MN) such that qkBq
∗
k = ukB2u

∗
k ∩ B1. Let

{fk(s, i, j)}s,i,j be a matrix unit for ukB2u
∗
k ∩ B1 and take elements ek(s, i, j) in

B2 such that fk(s, i, j) = ukek(s, i, j)u
∗
k. Since B2 is finite dimensional, passing

to a subsequence if necessary, we may assume limk fk(s, i, j) = f(s, i, j) ∈ B2 and

limk ukek(s, i, j)u
∗
k = ue(s, i, j)u∗ for some e(s, i, j) ∈ B1, for all s, i and j. It follows

that limk dist(fk(s, i, j), uB2u
∗ ∩ B1) = 0. Hence, from Lemma III.21, for large k,

there is q in U(MN) so that q(ukB2u
∗
k ∩B1)q∗ = qqkBq

∗
kq
∗ is contained in uB2u

∗∩B1.

We conclude [uB2u
∗ ∩ B1]B1 ≥ [B]B1 and since u lies in Z(B1, B2; [uB2u

∗ ∩ B1]) the

proof is complete.

Lemma III.31. Assume one of the following conditions holds:

1. dimC(B1) = 1 = dimC(B2),
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2. dimC(B1) ≥ 2, dimC(B2) = 1 and B1 is ∗–isomorphic to

MN/dimC(B1) ⊕ · · · ⊕MN/dimC(B1),

3. dimC(B1) = 2 = dimC(B2), B1 is ∗–isomorphic to

MN/2 ⊕MN/2,

and B2 is ∗–isomorphic to

MN/2 ⊕MN/(2k)

where k ≥ 2,

4. dimC(B1) ≥ 2, dimC(B2) ≥ 3 and, for i = 1, 2, Bi is ∗–isomorphic to

MN/dimC(Bi) ⊕ · · · ⊕MN/dimC(Bi).

Take B a unital C∗-subalgebra of B1 such that it is unitarily equivalent to a C∗-

subalgebra of B2 . If Z(B1, B2; [B]B1)
c

is not dense and B 6= C then there is a

subalgebra C in ∗-SubAlg(B1) such that [C]B1 > [B]B1 and Z(B1, B2; [C]B1)
c

is not

dense.

Proof. We proceed by contrapositive. Thus, assume Z(B1, B2; [C]B1)
c

is dense for all

[C]B1 > [B]B1 . Since the set {[C]B1 : [C]B1 > [B]B1} is finite,

⋂
[C]B1

>[B]B1

Z(B1, B2; [C]B1)
c

is open and dense. Furthermore, Lemma III.27 or Lemma III.28 implies Z(B1, B2; [B]B1)
c

is dense. Hence the intersection

Z(B1, B2; [B]B1)
c ∩

⋂
[C]B1

>[B]B1

Z(B1, B2; [C]B1)
c
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is dense. But this along with Proposition III.30 implies Z(B1, B2; [B]B1)
c

is dense.

Lemma III.32. Assume one of the conditions (1)–(4) of Lemma III.31 holds. Then

for any B 6= C, unital C∗-subalgebra of B1 that is unitarily equivalent to a C∗-

subalgebra of B2, the set Z(B1, B2; [B]B1)
c

is dense.

Proof. Assume Z(B1, B2; [B]B1)
c

is not dense. By Lemma III.31 there is [C]B1 > [B]B1

such that Z(B1, B2; [C]B1)
c

is not dense. We notice that again we are in the same

condition to apply Lemma III.31, since [C]B1 > [B]B1 > [C]B1 . In this way we can

construct chains, in ∗-SubAlg(B1)/ ∼B1 , of length arbitrarily large, but this can not

be since it is finite.

At last we can give a proof of Theorem III.6.

Proof of Theorem III.6. A direct computation shows that

∆(B1, B2) =
⋂

[B]B1
>[C]B1

Z(B1, B2, [B]B1)
c.

Thus

∆(B1, B2) ⊇
⋂

[B]B1
>[C]B1

Z(B1, B2, [B]B1)
c
.

Now, by Lemma III.32, whenever [B]B1 > [C]B1 , the set Z(B1, B2, [B]B1)
c

is dense.

Hence ∆(B1, B2) is dense.
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CHAPTER IV

PRIMITIVITY

During this section, unless stated otherwise, A1 6= C and A2 6= C denote two nontrivial

finite dimensional C∗-algebras. Our goal is to prove A1 ∗ A2 is primitive, except for

the case A1 = C2 = A2. Two main ingredients are used. Firstly, the perturbation

results from previous chapter. Secondly, the fact that A1 ∗A2 has a separating family

of finite dimensional ∗–representations, a result due to Excel and Loring, [7].

Before we start proving results about primitivity, we want to consider the case

C2 ∗C2. This is a well studied C∗-algebra; see for instance [3], [11] and [13]. From

Proposition I.12 C2 ∗ C2 is ∗–isomorphic to the C∗-algebra of continuous M2-valued

functions on the closed interval [0, 1], whose values at 0 and 1 are diagonal matrices.

As a consequences its center is not trivial. Since the center of any primitive C∗-algebra

is trivial, we conclude C2 ∗ C2 is not primitive.

Definition IV.1. We denote by ιj the inclusion homomorphism from Aj into A1∗A2.

Given a unital ∗–representation π : A1 ∗ A2 → B(H), we define π(1) = π ◦ ι1 and

π(2) = π ◦ ι2. Thus, with this notation, we have π = π(1) ∗ π(2). For a unitary u in

U(H) we call the ∗–representation π(1) ∗ (Adu ◦ π(2)), a perturbation of π by u.

Remark IV.2. The ∗–representation π(1) ∗ (Adu ◦ π(2)) is irreducible if and only if

uπ(2)(A2)′u∗ ∩ π(1)(A1)′ = C.

where (π(1)(A1))′ denotes de commutant of π(1)(A1) in B(H).

Proposition IV.3. Assume A1 and A2 are simple. Given any unital finite dimen-

sional ∗–representation π : A1 ∗ A2 → B(H) and a positive number ε, there is u in

U(H) such that ‖u− idH‖ < ε and π(1) ∗ (Adu ◦ π(2)) is irreducible.
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Proof. Since π(i)(Ai)
′ is again simple, (i = 1, 2), the result is a direct consequence of

Remark IV.2 and part (1) of Theorem III.6.

If A1 or A2 fail to be simple, then is it not always possible to perturb any given

finite dimensional ∗–representation of A1 ∗A2 into an irreducible one, even if A1 6= C2

and A2 6= C2. The key method for the nonsimple case is to repeat blocks of A1 and

A2.

Lemma IV.4. Assume A is a finite dimensional C∗-algebra ∗–isomorphic to ⊕lj=1Mn(j)

and take π : A → B(H) a unital finite dimensional ∗–representation. Let µ(π) =

[m(1), . . . ,m(l)] and let π̃ be the restriction of π to the center of A. Then

µ(π̃) = [m(1)n(1), . . . ,m(l)n(l)].

Proof. Write

A = ⊕lj=1A(j)

where A(j) is ∗-isomorphic to Mn(j). Up to unitary equivalence in U(H), π equals

idA(1) ⊕ · · · ⊕ idA(1)︸ ︷︷ ︸
m(1)−times

⊕ · · · ⊕ idA(l) ⊕ · · · ⊕ idA(l)︸ ︷︷ ︸
m(l)−times

.

It follows that, up to unitary equivalence in U(H), π̃ equals

idC ⊕ · · · ⊕ idC︸ ︷︷ ︸
n(1)−times

⊕ · · · ⊕ idC ⊕ · · · ⊕ idC︸ ︷︷ ︸
n(1)−times︸ ︷︷ ︸

m(1)−times

⊕ · · ·

· · · ⊕ idC ⊕ · · · ⊕ idC︸ ︷︷ ︸
n(l)−times

⊕ · · · ⊕ idC ⊕ · · · ⊕ idC︸ ︷︷ ︸
n(l)−times︸ ︷︷ ︸

m(l)−times

.

and the result follows.
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Lemma IV.5. Assume A is a finite dimensional C∗-algebra and π : A→ B(H) is a

unital finite dimensional ∗–representation. Let

µ(π) = [m(1), . . . ,m(l)].

For any nonnegative integers q(1), . . . , q(l) there is a finite dimensional unital ∗–

representation ρ : A→ B(K) such that

µ(π ⊕ ρ) = [m(1) + q(1), . . . ,m(l) + q(l)].

Proof. Write A as

A =
l⊕

i=1

A(i)

where A(i) = B(Vi) for Vi finite dimensional. For 1 ≤ i ≤ l, let pi : A→ A(i) denote

the canonical projection onto A(i). Notice that pi is a unital ∗–representation of A.

Define

ρ :=
l⊕

i=1

(pi ⊕ · · · ⊕ pi)︸ ︷︷ ︸
q(i)−times

: A→
l⊕

i=1

A(i)q(i) ⊆ B(K),

where K =
⊕l

i=1(V ⊕qii ). Then ρ is a unital ∗–representation of A on K and

µ(π ⊕ ρ) = [m(1) + q(1), . . . ,m(l) + q(l)].

Definition IV.6. Let ρ : A1 ∗ A2 → B(H) be a unital, finite dimensional represen-

tation. We say that ρ satisfies the Rank of Central Projections condition (or RCP

condition) if for both i = 1, 2, the rank of ρ(p) is the same for all minimal projections

p of the center C(Ai) of Ai, (but they need not agree for different values of i).

The RCP condition for ρ, of course, is really about the pair of representations

(ρ(1), ρ(2)). However, it will be convenient to express it in terms of A1 ∗ A2. In any
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case, the following two lemmas are clear.

Lemma IV.7. Suppose ρ : A1∗A2 → B(H) is a finite dimensional representation that

satisfies the RCP condition and u ∈ U(H). Then the representation ρ(1) ∗ (Adu◦ρ(2))

of A1 ∗ A2 also satisfies the RCP condition.

Lemma IV.8. Suppose ρ : A1 ∗ A2 → B(H) and σ : A1 ∗ A2 → B(K) are finite

dimensional representations that satisfy the RCP condition. Then ρ⊕ σ : A1 ∗A2 →

B(H ⊕K) also satisfies the RCP condition.

The next lemma takes slightly more work and is essential to our construction.

Lemma IV.9. Given a unital finite dimensional ∗–representation π : A1 ∗ A2 →

B(H), there is a finite dimensional Hilbert space Ĥ and a unital ∗–representation

π̂ : A1 ∗ A2 → B(Ĥ)

such that π ⊕ π̂ satisfies the RCP condition.

Proof. For i = 1, 2, let li = dimC(Ai), let Ai be ∗–isomorphic to
⊕li

j=1Mni(j) and

write

µ(π(i)) = [mi(1), . . . ,mi(li)].

Take ni = lcm(ni(1), . . . , ni(li)) and integers ri(j), such that ri(j)ni(j) = ni, for

1 ≤ j ≤ li. Take a positive integer s such that sri(j) ≥ mi(j) for all i = 1, 2 and

1 ≤ j ≤ li. Use Lemma IV.5 to find a unital finite dimensional ∗–representation

ρi : Ai → B(Ki), i = 1, 2 such that

µ(π(i) ⊕ ρi) = [sri(1), . . . , sri(li)].

Letting κi denote the restriction of π(i) ⊕ ρi to C(Ai), from Lemma IV.4 we have

µ(κi) = [sri(1)ni(1), . . . , sri(li)ni(li)] = [sni, sni, . . . , sni].
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The ∗–representations (π(1) ⊕ ρ1) and (π(2) ⊕ ρ2) are almost what we want, but

they may take values in Hilbert spaces with different dimensions. To take care of this,

we take multiples of them. Let N = lcm(dim(H ⊕K1), dim(H ⊕K2)), find positive

integers k1 and k2 such that

N = k1 dim(H ⊕K1) = k2 dim(H ⊕K2)

and consider the Hilbert spaces (H ⊕ Ki)
⊕ki , whose dimensions agree for i = 1, 2.

Then

dim(K1 ⊕ (H ⊕K1)⊕(k1−1)) = dim(K2 ⊕ (H ⊕K2)⊕(k2−1))

and there is a unitary operator

U : K2 ⊕ (H ⊕K2)⊕(k2−1) → K1 ⊕ (H ⊕K1)⊕(k1−1).

Take

Ĥ := K1 ⊕ (H +K1)⊕(k1−1),

π̂1 := ρ1 ⊕ (π(1) ⊕ ρ)⊕(k1−1),

σ1 := π(1) ⊕ π̂1,

π̂2 := AdU ◦ (ρ2 ⊕ (π(2) ⊕ ρ)⊕(k2−1)),

σ2 := π(2) ⊕ π̂2,

π̂ := π̂1 ∗ π̂2.

Then σ1∗σ2 = (π(1)⊕π̂1)∗(π(2)⊕π̂2) = π⊕π̂. We have µ(σi) = [kisri(1), . . . , kisri(li)].

Let σ̃i denote the restriction of σi to C(Ai). From Lemma IV.4 we have

µ(σ̃i) = [kisri(1)ni(1), . . . , kisri(li)ni(li)] = [kisni, . . . , kisni].
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Proposition IV.10. Suppose A1 6= C2 or A2 6= C2 and ρ : A1 ∗ A2 → B(H) is a

finite dimensional ∗–representation that satisfies the RCP condition. Then for any

ε > 0 there is a unitary u in U(H) such that ‖u− idH‖ < ε and ρ(1) ∗ (Adu ◦ ρ(2)) is

irreducible.

Proof. After interchanging A1 and A2, if necessary, one of the following must hold:

(1) A1 and A2 are simple,

(2) dimC(A1) ≥ 2 and A2 is simple,

(3) for i = 1, 2, Ai = Mni(1) ⊕Mni(2), with n2(2) ≥ 2,

(4) dimC(A1) ≥ 2, dimC(A2) ≥ 3.

In all cases, we will show using Theorem III.6 that ∆(ρ(1)(A1)′, ρ(2)(A2)′) is dense in

U(H), from which the result follows by Remark IV.2.

In case (1), this is just as in Proposition IV.3.

In case (2), let B1 = ρ(1)(C(A1))′ and B2 = ρ(2)(A2)′. Notice that dimC(B2) = 1,

dimC(B1) = dimC(A1) ≥ 2 and, by the RCP assumption, B1 is ∗–isomorphic

to MdimH/ dimC(B1) ⊕ · · · ⊕ MdimH/ dimC(B1). By Theorem III.6m, part (2), the set

∆(B1, B2) is dense. But since ρ(i)(Ai)
′ ⊆ Bi, we have ∆(B1, B2) ⊆ ∆(ρ(1)(A1)′, ρ(2)(A2)′).

In case (3), let B1 = ρ(1)(C(A1))′ and B2 = ρ(2)(C ⊕ Mn2(2))
′. By the RCP

assumption, B1 is ∗–isomorphic to

MdimH/2 ⊕MdimH/2

and B2 is ∗–isomorphic to

MdimH/2 ⊕MdimH/(2n2(2)).

By Theorem III.6, part (3), the set ∆(B1, B2) is dense. But ∆(B1, B2) ⊆ ∆(ρ(1)(A1)′, ρ(2)(A2)′).
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In case (4), let Bi = ρ(i)(C(Ai))
′ for i = 1, 2. Then dimC(B1) = dimC(A1) ≥ 2,

dimC(B2) = dimC(A2) ≥ 3 and, for i = 1, 2, Bi is ∗–isomorphic to

MdimH/ dimC(Bi) ⊕ · · · ⊕MdimH/dimC(Bi).

By Theorem III.6, part (4), the set ∆(B1, B2) is dense. But again we have ∆(B1, B2) ⊆

∆(ρ(1)(A1)′, ρ(2)(A2)′).

Combining Lemma IV.9 and Proposition IV.10, together with Proposition IV.3,

and so long as A1 and A2 are not both C2, we construct irreducible finite dimensional

∗–representations of the form

(π(1) ⊕ π̂(1)) ∗ (Adu ◦ (π(2) ⊕ π̂(2))),

starting with any finite dimensional represenation π of A1 ∗ A2 and where u is a

unitary that can be chosen arbitrarily close to the identity. The next proposition

shows that with sufficient control on u, the values of σ on any given finite subset can

be as close as desired to the corresponding values of π ⊕ π̂.

Proposition IV.11. Let A1 and A2 be two unital C∗-algebras. Given a nonzero ele-

ment x in A1 ∗A2 and a positive number ε, there is a positive number δ = δ(x, ε) such

that for any u and v in U(H) satisfying ‖u−v‖ < δ and any unital ∗–representations

π : A1 ∗ A2 → B(H), we have

‖(π(1) ∗ (Ad v ◦ π(2)))(x)− (π(1) ∗ (Adu ◦ π(2)))(x)‖ < ε.

Proof. Fix π, a unital ∗-representation of A1 ∗A2 into B(H) and two unitaries u and

v in U(H).

To ease notation let ρu = π(1) ∗ (Adu ◦ π(2)) and ρv = π(1) ∗ (Adv ◦ π(2)).

Case 1: x is a word with letters from A1 and A2.
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Here we use induction on the length of x.

Assume the length of x is 1. We have two cases. Either x is in A1 or it is in A2.

If x lies in A1 we can take δ any positive number.

If x lies in A2 take δ(ε, x) = ε
2‖x‖ . A standard computation shows that, if u and

v satisfy ‖u− v‖ < δ then

‖ρv(x)− ρu(x)‖ < ε.

Now, assume the result true for words of length l and take x = x1 · · ·xl+1 where

xj is a non zero element in Aij , 1 ≤ j ≤ l + 1 and i1 6= · · · 6= il+1.

As before we have two cases, xl+1 lies in A1 or it lies in A2.

For convenience let y = x1 . . . xl.

If xl+1 happens to be in A1, then using the identities

ρu(x) = ρu(y)π(1)(xl+1),

ρv(x) = ρv(y)π(1)(xl+1)

we obtain

‖ρv(x)− ρu(x)‖ ≤ ‖xl+1‖‖ρv(y)− ρu(y)‖.

Therefore the δ that works in this case is δ(ε, x) = δ( ε
‖xl+1‖

, y).

The last possibility is that xl+1 lies in A2. If so, we use the identities

ρu(x) = ρu(y)uπ(2)(xl+1)u∗,

ρv(x) = ρv(y)vπ(2)(xl+1)v∗,



65

to obtain

‖ρv(x)− ρu(x)‖ ≤ ‖ρv(y)vπ(2)(xl+1)v∗ − ρv(y)vπ(2)(xl+1)u∗‖

+ ‖ρv(y)vπ(2)(xl+1)u∗ − ρu(y)vπ(2)(xl+1)u∗‖

+ ‖ρu(y)vπ(2)(xl+1)u∗ − ρu(y)uπ(2)(xl+1)u∗‖

≤ 2‖x1‖ · · · ‖xl+1‖‖v − u‖+ ‖xl+1‖‖ρv(y)− ρu(y)‖.

Thus we take δ(ε, x) = min{ ε
3‖x1‖···‖xl+1‖

, δ( ε
3‖xl+1‖

, y)}.

Case 2: General case.

Since the algebraic unital full free product of A1 and A2 is norm-dense in A1∗A2,

we can find words w1, . . . , wn with letters from A1 and A2 such that∥∥∥∥x− n∑
j=1

wj

∥∥∥∥ < ε

3
.

By case 1 there are positive numbers δ(w1,
ε

3n
), . . . , δ(wn,

ε
3n

) such that∥∥∥∥ρv(wj)− ρu(wj)∥∥∥∥ < ε

3n
,

whenever ‖u− v‖ < δ(wj,
ε

3n
).

Take δ = min{δ(w1,
ε

3n
), . . . , δ(wn,

ε
3n

)}.

If u and v satisfy ‖u− v‖ < δ, then the identity

ρv(x)− ρu(x) = ρv

(
x−

n∑
j=1

wj

)

+
n∑
j=1

(ρv − ρu)(wj)

− ρu

(
x−

n∑
j=1

wj

)
along with triangle inequality completes the proof.
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Now our objective is to perturb the direct sum of a sequence of unital finite

dimensional ∗–representations of A1 ∗A2 into an irreducible one. The construction is

long and uses several intermediate results.

Recall that if π and σ are two irreducible representations of a C∗–algebra A on

the same Hilbert space H such that π and σ are not unitarily equivalent, then there

are no nonzero operators T ∈ B(H) that intertwine the representations, i.e. such that

π(A)T = Tσ(a) for all a ∈ A. From this fact, one quickly gets the following standard

result:

Proposition IV.12. Let A be a C∗-algebra and suppose (πj)j≥1 is a sequence of ir-

reducible ∗–representations πj : A→ B(Hj) that are pairwise not unitarily equivalent.

Then, for π = ⊕j≥1πj, we have

π(A)′ = {⊕j≥1zj idHj
: zj ∈ C, sup{|zj|} <∞}.

Lemma IV.13. Let A be a C∗-algebra and assume we have π : A → B(H), a finite

dimensional ∗–representation. Given a positive number ε there is a finite set F ,

contained in the closed unit ball of A, fulfilling the condition for all y in the closed

unit ball of A there is x in F with ‖π(x)− π(y)‖ < ε.

Proof. Let E denote the norm closure, in B(H), of the set {π(a) : ‖a‖ ≤ 1}. Since H

is finite dimensional, E is compact. Thus there exists {T1, . . . , Tk}, a finite ε
2
-net for

E. For each Ti, take xi in the closed unit ball of A such that ‖xi − Ti‖ < ε
2
. Then

the set F we are looking for is {x1, . . . , xk}.

Lemma IV.14. Let (Hj)j≥1 be a sequence of finite dimensional Hilbert spaces and let

H denote its direct sum. Assume we have bounded operators Tj in B(Hj) and let T

denote its direct sum. T is a compact operator in B(H) if and only if limj ‖Tj‖ = 0.
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Proof. Assume T is compact and in order to get a contradiction assume assume there

is a positive number ε and a subsequence (jk)k≥1 such that ‖Tjk‖ > ε for all k. Take

hjk a unit vector in Hjk with ‖Tjkhjk‖ ≥ ε. Consider the sequence (ξk)k≥1, of unit

vectors in H given by

ξk(i) =

 hjk if i = jk

0 otherwise

Since T is compact there is a subsequence (kl)l≥1 such that (Tξkl)l≥1 converges

in norm. In particular it is Cauchy and then there is l0 such that ‖Tξkl1 −Tξkl2‖ <
ε
2

for all l1, l2 ≥ l0. But this implies ‖Tjklhjkl‖ <
ε
2

whenever l ≥ l0, a contradiction.

Now assume limj ‖Tj‖ = 0. To show T is compact just notice T is the norm

limit of the sequence of finite rank operators (Sk)k≥1 where Sk equals T1 ⊕ · · · ⊕ Tk

on ⊕kj=1Hj and it is zero on ⊕j≥k+1Hj.

The following result follows from the very nice fact that a ∗–representation is

faithful if and only if it is an isometry.

Lemma IV.15. Let A denote a C∗-algebra and let (πk : A→ B(H))k≥1 be a sequence

of faithful ∗–representations. If π is a ∗–representation such that for all a in A,

limk ‖πk(a)− π(a)‖ = 0 then π is faithful.

At last, we can prove A1 ∗ A2 is primitive when not both of A1 and A2 are C2.

Theorem IV.16. Assume A1 and A2 are nontrivial finite dimensional C∗-algebras.

If A1 6= C2 or A2 6= C2, then A1 ∗ A2 is primitive.

Proof. Write Ai =
⊕li

j=1Mni(j). By a result of Exel and Loring [7], there is a

separating sequence (ϑj : A1 ∗ A2 → B(Kj))j≥1, of finite dimensional unital ∗–

representations. By Lemma IV.9, there are finite dimensional Hilbert spaces K̂j
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and unital ∗–representation ϑ̂j : A1 ∗A2 → B(K̂j) such each that ϑj ⊕ ϑ̂j satisfies the

RCP condition. Let πj = ϑj ⊕ ϑ̃j and Hj = Kj ⊕ K̂j.

We may modify the original sequence (ϑj)j≥1, if necessary, so that each rep-

resentation that appears is repeated infinitely many times and, thus, we may also

assume

π(A1 ∗ A2) ∩K(H) = {0}, (4.1)

where π = ⊕j≥1πj and H =
⊕

j≥1Hj.

We will show that given ε > 0, there is a unitary u on U(H) such that ‖u−idH‖ <

ε and the representation π(1) ∗ (Adu◦π(2)) of A1 ∗A2 is irreducible and faithful. Find

a strictly increasing sequence of natural numbers (l(j))j≥0 with the property that

l(0) = 0, l(1) = 1 and for all k ≥ 1,

l(k)∑
j=l(k−1)+1

dimHj <

l(k+1)∑
j=l(k)+1

dimHj. (4.2)

Let G1 = H1 and for k ≥ 2 define Gk =
⊕l(k)

j=l(k−1)+1Hj and fix a sequence of positive

numbers (δj)j≥1 such that
∑

j≥1 δj <
ε
2
. By Lemma IV.8, for each k ≥ 1 the direct

sum

λk := ⊕l(k)
j=l(k−1)+1πj

satisfies the RCP condition. So by Proposition IV.10, there is a unitary vk in U(Gk)

with the property that ‖vk − idGk
‖ < δk and the ∗–representation

ρk := λ
(1)
k ∗ (Ad vk ◦ λ(2)

k )

is irreducible and, by Lemma IV.7, satisfies the RCP condition. To ease notation let

ρ = ⊕j≥1ρj and for k ≥ 1 let ρ[k] = ⊕kj=1ρj. If v = ⊕k≥1vk then ‖v − idH‖ < ε
2

and,

as a direct computation shows, we have ρ = π(1) ∗ (Ad v ◦π(2)). By dimension consid-

erations, the irreducible representations ρk are pairwise not unitarily equivalent, and
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Proposition IV.12 implies that the commutant of ρ consists of all diagonal operators

of the form ⊕k≥1zk idGk
. We will perturb ρ a little more to finally get an irreducible

representation.

We will construct a sequence (uk, Fk)k≥1 where

(a) uk is a unitary in U(⊕kj=1Gj) satisfying

‖uk − id⊕k
j=1Gj

‖ < ε

2k+1
. (4.3)

(b) letting

u(j,k) = uj ⊕ idGj+1
⊕ · · · ⊕ idGk

∈ U(⊕ki=1Gi)

for 1 ≤ j ≤ k − 1, letting

Uk = uku(k−1,k)u(k−2,k) · · ·u(1,k) (4.4)

and taking the unital irreducible ∗–representation

θk = ρ
(1)
[k] ∗ (AdUk ◦ ρ(2)

[k] ) (4.5)

of A1 ∗ A2 on
⊕k

i=1Gi, we have that θk is irreducible

(c) Fk is a finite subset of the closed unit ball of A1 ∗ A2 and for all y in the closed

unit ball of A1 ∗ A2 there is an element x in Fk such that

‖θk(x)− θk(y)‖ < 1

2k+1

(d) if k ≥ 2, then for any element x in the union
⋃k−1
j=1 Fj, we have

∥∥θk(x)− (θk−1 ⊕ ρk)(x)
∥∥ < 1

2k
.

Note that (4.5) together with Lemmas IV.7 and IV.8 will ensure that θk satisfies the

RCP condition.
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We construct such a sequence (uk, Fk)k≥1 by recursion. To start, we construct

(u1, F1) by letting θ1 = ρ1 and u1 = idG1 . Then conditions (a) and (b) hold trivially.

Since ρ1 : A1∗A2 → B(H1) is finite dimensional, Lemma IV.13 implies there is a finite

set F1 contained in the closed unit ball of A1 ∗ A2 so that condition (c) is satisfied.

At this stage condition (d) does not apply.

Let k ≥ 2 and let us construct (uk, Fk) from (uj, Fj), 1 ≤ j ≤ k − 1. A conse-

quence of (4.4) and (4.5) is the formula

θk = (θk−1 ⊕ ρk)(1) ∗ (Aduk ◦ (θk−1 ⊕ ρk)(2)).

Since θk−1 and ρk satisfy the RCP condition, Proposition IV.10 yields a unitary uk

as close as we like to the identity, so that θk is irreducible and (4.3) holds. Applying

Proposition IV.11 and choosing uk even closer to the identity, if necessary, we also get

that condition (d) holds. Finally, Lemma IV.13 guarantees the existence of a finite

set Fk contained in the closed unit ball of A1 ∗ A2 so that condition (c) is satisfied.

This completes the recursive construction of (uk, Fk)k≥1 so that (a)–(d) hold.

Now, letting

σk = θk ⊕⊕j≥k+1ρj. (4.6)

we will show that σk converges pointwise to an irreducible ∗–representation σ of

A1 ∗ A2. We extend the unitaries uk to all of H by defining

ũk = uk ⊕j≥k+1 idGj
,

and then from (4.5) we obtain

σk = ρ(1) ∗ (Ad Ũk ◦ ρ(2)),
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where Ũk = ũk · · · ũ1. Thanks to condition (4.3) we have

‖Ũk − idH‖ ≤
k∑
j=1

‖ũk − idH‖ <
k∑
j=1

ε

2k+1
,

and for l ≥ 1

‖Ũk+l − Ũk‖ = ‖ũk+l · · · ũk+1 − idH‖ ≤
k+l∑

j=k+1

ε

2j+1
.

Hence Cauchy’s criteria implies there is an unitary U ∈ U(H) such that the sequence

(Ũk)k≥1 converges in norm to U and ‖U − idH‖ < ε
2
. Now, by Proposition IV.11, the

sequence σk converges pointwise to the ∗–representation

σ = ρ(1) ∗ (AdU ◦ ρ(2)). (4.7)

Thus, we have limk ‖σk − σ‖ = 0, where

‖σk − σ‖ = sup
a∈A, ‖a‖=1

‖σk(a)− σ(a)‖.

Our next goal is to show that σ is irreducible. To ease notation let A = A1 ∗A2.

From (4.2) and Proposition IV.12 we get

σk(A)′′ = B(⊕kj=1Gj)⊕
⊕
j≥k+1

B(Gj). (4.8)

Hence, for all k ≥ 1, σk(A)′′ ⊆ σk+1(A)′′. Let B be the norm closure, in B(H), of⋃
k≥1 σk(A)′′. Next we will show B′′ is contained in σ(A)′′. Take T ∈ B′′. Since σ(A)

is a unital C∗-algebra, showing T lies in σ(A)′′ is equivalent to showing T is in the

strong operator topology closure of σ(A). Recall that a neighborhood basis for the

strong operator topology around T is given by the sets

NT (ξ1, . . . , ξi; r) = {S ∈ B(H) : ‖Tξj − Sξj‖ < r for all 1 ≤ j ≤ i},
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where ξ1, . . . , ξi are unit vectors in H and 0 < r < 1. We will show that given ξ1, . . . , ξi

and r as above, there is an element z in A1∗A2 such that σ(z) lies in NT (ξ1, . . . , ξi; r).

This involves several approximations, so let’s start.

By Kaplansky’s Density Theorem there is an operator S in B such that ‖S‖ ≤

‖T‖ and for all 1 ≤ j ≤ i,

‖Sξj − Tξj‖ <
r

100
. (4.9)

Since S lies in B, there is k0 and an operator R in σk0(A)′′ such that

‖S −R‖ < r

100
. (4.10)

Thus, we have ‖R‖ ≤ 1 + ‖S‖ ≤ ‖T‖+ 1. We can pick k1 ≥ k0 such that

1

2k1−1
<

r

100(‖T‖+ 2)
(4.11)

and for all 1 ≤ j ≤ i we have

‖ξj − P[k1](ξj)‖ <
r

100(‖T‖+ 2)
, (4.12)

where P[m] denotes the orthogonal projection from H onto ⊕mj=1Gj. Since R commutes

with P[k1], this implies

‖P[k1]RP[k1]ξj −Rξj‖ <
r ‖R‖

100(‖T‖+ 2)
<

r

100
. (4.13)

Since R lies in σk0(A)′′ and σk0(A)′′ ⊆ σk1(A)′′ and σk1(·)P[k1] = θk1 , Kadison’s tran-

sitivity theorem implies there is y in A such that ‖y‖ ≤ ‖R‖+ 1 and for all 1 ≤ j ≤ i

P[k1]RP[k1]ξj = θk1(y)(P[k1](ξj)). (4.14)

By construction, there is x ∈ Fk1 such that

‖θk1(y)− θk1(‖y‖x)‖ < ‖y‖
2k1

. (4.15)
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Take z = ‖y‖x and note that we have ‖z‖ ≤ ‖y‖ ≤ ‖T‖ + 2. We will show σ(z) lies

in NT (ξ1, . . . , ξi; r).

Fix 1 ≤ j ≤ i and for simplicity set ξ = ξj and η = P[k1](ξj). We also write

ξ = (ξ(k))k≥1, η = (η(k))k≥1 where ξ(k) and η(k) are in Gk. Thus ξ(k) = η(k) for

1 ≤ k ≤ k1 and η(k) = 0 for k > k1. Cleary, ‖Tξ − σ(z)ξ‖ is bounded above by the

sum of the following terms:

‖Tξ − Sξ‖ (4.16)

‖Sξ −Rξ‖ (4.17)

‖Rξ − σk1(y)ξ‖ (4.18)

‖σk1(y)ξ − σk1(z)ξ‖ (4.19)

‖σk1(z)ξ − σ(z)ξ‖ (4.20)

From (4.9) and (4.10), the terms (4.16) and (4.17) are both less than r
100

. For the

third term (4.18), we have

‖Rξ − σk1(y)ξ‖ ≤ ‖Rξ − P[k1]RP[k1]ξ‖

+ ‖P[k1]RP[k1]ξ − θk1(y)(P[k1]ξ)‖

+ ‖(⊕j>k1ρj(y))(ξ − P[k1](ξ))‖

and from (4.13), (4.14) and (4.12) we deduce that (4.18) is less than 2r
100

. For the

fourth term (4.19) we have

‖σk1(y)ξ − σk1(z)ξ‖ ≤ ‖σk1(y)(ξ − η)‖

+ ‖σk1(y)η − σk1(z)η‖

+ ‖σk1(z)(η − ξ)‖
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which, along with (4.12) and the upper bounds for ‖z‖ and ‖y‖, yield

‖σk1(y)ξ − σk1(z)ξ‖ ≤ 2r

100
+ ‖σk1(y)η − σk1(z)η‖.

Now we will show

‖σk1(y)η − σk1(z)η‖ < r

100
. (4.21)

From definition of σk1 (see (4.6)) we get

σk1(y)η = (θk1(y)(η(1), . . . , η(k1)), 0, . . . )

and

σk1(z)η = (θk1(z)(η(1), . . . , η(k1)), 0, . . . )

Hence from condition (4.15) and (4.11) we deduce (4.21). Thus, term (4.19) is less

that 3r
100

.

For the fifth term (4.20), since limk ‖σk(z) − σ(z)‖ = 0, there is k2 > k1 such

that ‖σk2(z)− σ(z)‖ < r
100

. Hence

‖σk1(z)ξ − σ(z)ξ‖ <

k2−1∑
k=k1

‖σi(z)ξ − σi+1(z)ξ‖+
r

100
(4.22)

For kI ≤ k ≤ k2 − 1 we have

σk(z)ξ = ‖y‖
(
θk(x)(P[k]ξ), ρk+1(x)ξ(k + 1), ρk+2(x)ξ(k + 2), . . .

)
σk+1(z)ξ = ‖y‖

(
θk+1(x)(P[k+1]ξ), ρk+2(x)ξ(k + 1), . . . )

)
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Hence condition (d) from the construction of the sequence (uk, Fk) and (4.11) imply

k2−1∑
k=k1

‖σk(z)ξ − σk+1(z)ξ‖ ≤

≤ ‖y‖
( k2−1∑
k=k1

‖(θk ⊕ ρk+1)(x)(P[k+1]ξ)− θk+1(x)(P[k+1]ξ)‖
)
<

r

100

Thus, from (4.22) we conclude that the fifth term (4.20) is less that 2r
100

. Putting

together all these estimates, we obtain ‖σ(z)ξ − Tξ‖ < r.

Thus we have proved B′′ ⊆ σ(A)′′. But B′′ = B(H) follows from the fact that

σk(A)′′ is contained in B′′ along with (4.8). In conclusion σ(A)′′ = B(H) which implies

σ(A)′ = C idH i.e., σ is irreducible.

Now we will show σ is faithful. Recall that, by construction, π is faithful. Using

the property (4.1) of π, we will show, inspired by Choi’s technique (see Theorem 6 in

[4]), that ρ is faithful and

ρ(A) ∩K(H) = {0}. (4.23)

Recall that we contructed

ρ = π(1) ∗ (Ad v ◦ π(2))

and v = ⊕k≥1vk where vk ∈ B(Gk). Moreover, ‖vk − idGk
‖ < δk and limk δk = 0.

So by Lemma IV.14, V differs from the identity operator by a compact operator. It

follows that the diagram

A
π //

ρ

��

B(H)

πC
��

B(H)
πC // B(H)/K(H)

(4.24)

commutes, where πC denotes the canonical quotient map onto the Calkin Algebra.

Indeed, we see directly that πC ◦ π and πC ◦ ρ agree on elements of A = A1 ∗ A2

that are words of finite length in elements of A1 and A2. However, such words span
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a dense subalgebra of A. Since πC ◦ π is faithful and the diagram (4.24) commutes,

it follows that ρ is faithful and (4.23) holds.

A second application of Choi’s technique will give us faithfulness of σ. Indeed,

from construction, for all x in A, σ(x) = limk σk(x). Thus if each σk is faithful Lemma

IV.15 would imply σ is faithful. But faithfulness of σk follows from the commutativity

of the diagram

A
ρ //

σk
��

B(H)

πC
��

B(H)
πC // B(H)/K(H),

which is implied by (4.6), and the fact that πC ◦ ρ is faithful.

We finish with some straightforward consequences of our main theorem.

Definition IV.17. A C∗-algebraA is called liminal if for all irreducible ∗–representations

π : A→ B(H) and for all elements a in A, π(a) is compact.

Example IV.18. From Proposition I.9, all irreducible ∗–representation of C2 ∗ C2

are of dimension 1 or 2. Hence C2 ∗ C2 is liminal.

Definition IV.19. A C∗-algebra A is called antiliminal if {0} is the only closed two

sided liminal ideal.

Part of Lemma 3.2 of [1] is the following:

Proposition IV.20. Any infinite dimensional primitive C∗-algebra that admits a

faithful tracial state is antiliminal.

Proof. Assume A is a infinite dimensional primitive C∗-algebra and let I be a closed

two sided liminal ideal.

Let π : A→ B(H) be a faithful infinite dimensional irreducible ∗-representation.

One can check that π restricted to I is a faithful irreducible ∗-representation of I.
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Liminality implies π(I) is contained in the compact operators. In addition, if

I 6= {0}, irreducibility implies π(I) contains all compact operators.

Thus, the restriction to I of a faithful tracial state of A gives a faithful tracial

state on the compacts operators of H, a contradiction since H is infinite dimensional.

Corollary IV.21. Assume A1 and A2 are nontrivial finite dimensional C∗-algebras.

A1 ∗ A2 is antiliminal except when A1 = C2 = A2.

Proof. By a theorem of Exel and Loring [7], a unital C∗-algebra full free product of

residually finite dimensional C∗–algebras is again residually finite dimensional. Thus,

by taking a convergent weighted infinite sum of matrix traces composed with finite

dimensional representations (from a separating family of them), the free product C∗–

algebra A1 ∗ A2 admits a faithful tracial state.

We finish with a corollary derived from a proposition of Dixmier. The following

proposition is Lemma 11.2.4 in [6].

Proposition IV.22. If A is a unital primitive antiliminal C∗-algebra then pure states

are w*-dense in state space.

Corollary IV.23. Assume A1 and A2 are nontrivial finite dimensional C∗-algebras.

If A1 6= C2 or A2 6= C2, then pure states of A1 ∗ A2 are w*-dense in the state space.
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CHAPTER V

CONCLUSION

The main contribution of this dissertation was determining all unital full free prod-

uct of finite dimensional C*-algebras that are primitive. At a philosophical level it

seems there is a basic theme underlying primitive C*-algebras. Namely some type

of perturbation or deformation of ∗-representations. This feature is manifested in

the works of Choi, Murphy, Bédos and Omland where completely different notions of

perturbation are used. We summarize the basic principle behind our approach.

The cornerstone is a theorem that we may call density of C*-subalgebras in

general position, Theorem III.6. This theorem is particularly hard to grasp and this

is due o the fact that we had to break it into several parts. We mention that at some

point we thought we had generalized this theorem as follows: with the same notation

as Theorem III.6, if dim(B1)+dim(B2) < N2 then ∆(B1, B2) is dense. Unfortunately

computations turned out to be much harder. We leave this as a conjecture for future

research.

Let A1 and A2 denote two non-trivial finite dimensional C*-algebras. With Theo-

rem III.6 at our disposition it is easy to prove that, except for the case A1 = C2 = A2,

one can find finite dimensional irreducible ∗-representations of dimensions arbitrary

large. At this point is worth to mention that C2 ∗ C2 is an illuminating C*-algebra.

Not only because it has been studied by many people but because in our investigation

it was always a good test case for our claims.

Lastly we took a faithful ∗-representation, constructed as a direct sum of a sep-

arating family of finite dimensional ∗-representations and we perturb it, using as a

main tool Kaplansky’s density theorem, to finally obtain a faithful and irreducible

∗-representation.
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