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ABSTRACT

Analysis and Optimization of Classifier Error Estimator Performance within a

Bayesian Modeling Framework. (May 2012)

Lori Anne Dalton, B.S., Texas A&M University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Edward R. Dougherty

With the advent of high-throughput genomic and proteomic technologies, in con-

junction with the difficulty in obtaining even moderately sized samples, small-sample

classifier design has become a major issue in the biological and medical communi-

ties. Training-data error estimation becomes mandatory, yet none of the popular

error estimation techniques have been rigorously designed via statistical inference or

optimization. In this investigation, we place classifier error estimation in a frame-

work of minimum mean-square error (MMSE) signal estimation in the presence of

uncertainty, where uncertainty is relative to a prior over a family of distributions.

This results in a Bayesian approach to error estimation that is optimal and unbiased

relative to the model. The prior addresses a trade-off between estimator robustness

(modeling assumptions) and accuracy.

Closed-form representations for Bayesian error estimators are provided for two

important models: discrete classification with Dirichlet priors (the discrete model)

and linear classification of Gaussian distributions with fixed, scaled identity or arbi-

trary covariances and conjugate priors (the Gaussian model). We examine robustness

to false modeling assumptions and demonstrate that Bayesian error estimators per-

form especially well for moderate true errors.

The Bayesian modeling framework naturally gives rise to a practical expected
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measure of performance for arbitrary error estimators: the sample-conditioned mean-

square error (MSE). Closed-form expressions are provided for both Bayesian models.

We examine the consistency of Bayesian error estimation and illustrate a salient

application in censored sampling, where sample points are collected one at a time

until the conditional MSE reaches a stopping criterion.

Finally, we address applications for gene-expression microarray data, including

the suitability of the Gaussian model, a methodology for calibrating normal-inverse-

Wishart priors from unused data, and an approximation method for non-linear clas-

sification. Arbitrary error estimators may also be optimally calibrated on the fly

using a calibration function found off-line for an assumed Bayesian model, sample

size, classification rule, and error estimation rule.

In contrast to classical data-driven methods, the Bayesian model proposed here

facilitates both the rigorous optimization and analysis of classifier error estimation,

exploiting both the assumed model and observed data. Important applications in-

clude, but are not limited to, cancer diagnosis and any small-sample classification

problem.
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NOMENCLATURE

RMS Root-mean-square

MSE Mean-square error

MMSE Minimum mean-square error

fX,Y (x, y) Feature-label distribution

fX|Y (x|y) Class-conditional distribution

δ (x) Generalized delta functional

fθ (x, y) Parameterized feature-label distribution

fθy (x|y) Parameterized class-conditional distribution

B (α, β) Beta function

IE Indicator function, equal to one if E is true and zero otherwise

Γ (α) Gamma function

δi Kronecker delta function

fµ,Σ(x) Multivariate Gaussian distribution, mean µ and covariance Σ

ID D ×D identity matrix

Φ (x) Unit normal Gaussian cumulative distribution function

I (x; a, b) Regularized incomplete beta function

fG(x;α, β) Inverse-gamma distribution, shape α and scale β

ΓD Multivariate gamma function

fW (Σ;S, κ) Inverse-Wishart distribution, inverse scale matrix S

and degrees of freedom κ

0a×b All zero a× b matrix

!! Double factorial

F1 (a; b, b
′; c; z, z′) Appell’s hypergeometric function of the first kind
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CHAPTER I

INTRODUCTION

Although classification itself has received a great deal of attention, in the form of

rule design algorithms such as discriminant analysis and neural networks as well as

feature-selection methods, error estimation accuracy represents the salient epistemo-

logical issue in classification: model validity [1, 2]. When designing a classifier, error

estimation is a critical issue since the error estimate quantifies the predictive capacity

of the classifier and prediction is the basis of scientific validation.

The problem of classifier error estimation for small samples has become critical in

the past decade with the explosion of interest in molecular biomarker classification for

phenotypic discrimination, especially in genomic signal processing [3]. Much attention

has been paid to cancer, where classification can be between different kinds of cancer,

different stages of tumor development, or various other differences. In response to

the flood of high-dimensional gene expression, protein expression, and sequence data

from new high-throughput genomic and proteomic technologies, hundreds of papers

have appeared relating to biomarkers, the vast majority of which have small samples,

even 20 or 30. Table 1 provides a flavor of the situation in gene-expression-based

cancer classification, where the table gives the cancer type, classification problem,

sample size, and error estimator. The question is: Do these papers contain scientific

knowledge [4]? The answer depends on the performance of the error estimator.

In applications where sample data are abundant and cheap to acquire, we can

partition the observed data into training and testing samples, the classifier being

determined by a classification rule acting on the training sample and the classifier error

The journal model is IEEE Transactions on Automatic Control.
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estimated by the error rate on the testing sample, without significantly degrading

the quality of the classifier or the accuracy of the error estimator. However, error

estimation becomes problematic in a small-sample setting since splitting the data

results in poor classifier design and so the sample is not split: all of the data is

used for design (training) and the error is estimated on the same data. Absent

any guarantee on estimation accuracy, it becomes necessary to carefully study the

relationship between the true error of a classifier and an error estimator within a

probabilistic framework.

A number of training-data error estimators have been proposed in the past, leave-

one-out and cross-validation being two popular options that are “distribution-free”

in the sense that their computation does not require any distributional knowledge.

They are intuitively conceived and asymptotically converge to the true error, however

they are supported by little or no validation for small samples. Another question

arises: How can we quantify, or even optimize, the small-sample validity of such error

estimators?

When an error estimate is reported, it implicitly carries with it the properties of

the error estimator and these properties characterize the goodness of the estimate [2].

Full information is contained in the joint distribution between the estimated error, ε̂,

and the true error, ε, of a classifier. Perhaps the single most useful measure of error

estimation accuracy is the mean-square error (MSE) between the estimated and true

errors, which is the expected square deviation of the estimate from the true error.

We also use the root-mean-square (RMS) error, which is the square root of the MSE:

RMS(ε̂) =

√
E[(ε̂− ε)2]. (1.1)

Being that RMS is the square root of MSE, we will use the two interchangeably, with

MSE being used mainly in the equations to avoid square roots. The RMS can also
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be expressed in terms of bias and deviation variance,

RMS(ε̂) =
√

Vardev(ε̂) + Bias(ε̂)2,

where

Bias(ε̂) = E[ε̂− ε] and Vardev(ε̂) = Var(ε̂− ε).

The classical interpretation for the expectation in (1.1) conditions on a fixed feature-

label distribution and averages performance over the corresponding random sampling

procedure. In this work we will develop theory based on a Bayesian interpretation,

which conditions on the actual observed sample and averages over all distributions in

a Bayesian model. We will clarify the distinction between these interpretations, with

emphasis on the implications of the Bayesian interpretation.

A. Classical Error Estimator Analysis: Conditioning on a Fixed Distribution

Historically, analytic study has focused on the first and second marginal moments of

true and estimated errors with fixed distributions, either for multinomial discrimina-

tion or linear discriminant analysis (LDA) over Gaussian distributions [18, 19, 20, 21,

22, 23, 24]. A summary of such results is available in [25].

That being said, marginal knowledge regarding the error estimator does not

provide the kind of joint probabilistic knowledge required for the assessment of es-

timation accuracy. Such characterizations of classical point-based error estimators,

either in the form of a joint density or RMS, are much more recent. For multinomial

discrimination, joint distributions of the true error with the resubstitution and leave-

one-out cross-validation error estimators for the discrete histogram rule, found using

complete enumeration, were only published in 2005 [26], and exact representations of

both marginal and mixed second-order moments in 2010 [27]. For LDA, in the uni-
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variate Gaussian model the exact marginal distributions for both the resubstitution

and leave-one-out estimators have been found, and in the multivariate model with

a common known covariance matrix quasi-binomial approximations to the distribu-

tions of the resubstitution and leave-one-out estimators were discovered in 2009 [28].

The exact joint distribution between true and estimated errors for LDA with both

resubstitution and leave-one-out in the univariate Gaussian model, and approximate

joint distributions in the multivariate model with a common known covariance matrix

were also found in 2010 [25]. Regarding the RMS, whereas one could utilize approx-

imate representations of the joint density in the multivariate model with a common

known covariance matrix to find approximate moments via integration, more accu-

rate approximations, including the second order mixed moment and the RMS, can

be achieved via asymptotically exact analytic expressions using a double asymptotic

approach, where both sample size and dimensionality approach infinity at a fixed rate

between the two [29]. Such finite-sample approximations from the double asymptotic

method have long been known to show good accuracy [30, 31].

Since performance is averaged over the sampling distribution, both the classifier

and its true error are random, being evaluated from different samples. Hence a

weakness of the classical approach is that it can only provide insight for a classification

rule, not for the actual observed sample or trained classifier. Indeed, the classical

approach does not address performance for a fixed sample at all because, absent

an underlying framework, nothing is known given a single sample. Further, it is

somewhat paradoxical to consider performance on a fixed distribution, since it is

unknown in practice. Indeed, if we knew the underlying distribution it would not

be necessary to train the classifier or estimate its error in the first place, since the

optimal classifier and its true error could be determined exactly.

Given that the actual feature-label distribution is unknown in practice, the clas-
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sical approach is usually applied in one of two extremes. The first is to estimate the

feature-label distribution from the data and take this fixed distribution to be true,

hoping that the results are robust. This approach is problematic because small-sample

density estimation can be even more difficult than error estimation.

The other extreme would be to avoid distributional assumptions altogether and

employ distribution-free bounds on the RMS. In this case, very little, or perhaps

nothing, can be said about the precision of the estimate. Further, in the rare instances

in which performance bounds are known in the absence of any assumptions on the

feature-label distribution, these bounds are so loose as to be virtually worthless for

small samples [32]. For instance, consider the following distribution-free RMS bound

for the leave-one-out error estimator with the discrete histogram rule and tie-breaking

in the direction of class 0 [33]:

RMS(ε̂loo|F ) ≤

√
1

n

(
1 +

6

e

)
+

6√
π (n− 1)

, (1.2)

where F represents the true feature-label distribution and n is the sample size. This

bound is almost useless for small samples; for n = 200 it is 0.506. As another ex-

ample, consider the following bound for leave-one-out with k-nearest-neighbor (kNN)

classification and random tie-breaking [34]:

RMS(ε̂loo|F ) ≤

√
1

n
+

24

n

√
k

2π
.

With 3NN classification and a sample size of n = 100, this bound is 0.353, which is

again useless. Although such bounds guarantee good performance for large-samples,

a model-free approach for small-samples would leave us without a measure of error-

estimation accuracy, thereby rendering the resulting classifier model, classifier and

error estimate, epistemologically unsound.
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Fig. 1. RMS of three error estimators (y-axis) with respect to Bayes error (x-axis) for

the discrete model (b = 8 bins, class probability c = 0.5, sample size n = 20).

Let us now consider bounds on the RMS when there are partial distributional

assumptions. If we assume that the distribution comes from an uncertainty class of

distributions, F , and we have an expression for the RMS for each distribution in F ,

then to be assured that the RMS is bounded by some desired level of accuracy, say

λ, we require that maxF∈F RMS(F ) ≤ λ. We may then, for instance, determine a

required sample size to insure that maxF∈F RMS(F ) ≤ λ. If we do not assume an

uncertainty class as prior knowledge, then we cannot practically bound the RMS.

The RMS graphs in Fig. 1 represent a synthetic Monte-Carlo simulation for

discrete classification with b = 8 bins, a class of bin probabilities (Zipf distributions

defined in [26], mapping each Bayes error to specific distributions), sample size n =

20 and the discrete histogram rule. Resubstitution and leave-one-out are shown,

along with a Bayesian error estimator with flat priors defined in the next chapter.

Leave-one-out performs well below the bound (1.2); even with n = 20 the worst case

performance for the Zipf model is 0.25. Moreover, if one wishes to bound the RMS of

leave-one-out to a useful degree, one need only assume some maximum Bayes error.
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Fig. 2. RMS of leave-one-out (y-axis) with respect to Bayes error (x-axis) for LDA.

The left, middle and right plots represent 5, 10 and 25 features, respectively.

Within each subplot, lines marked with (+) represent 20 samples, (△) 40

samples and (O) 60 samples.

In the next example, the feature-label distribution consists of two equally prob-

able Gaussian class-conditional densities sharing a known covariance matrix. For the

LDA classification rule, we possess an analytic representation of the joint distribution

of the true error with the leave-one-out estimator [25]. Figure 2 shows the exact RMS

to be a one-to-one increasing function of the Bayes error for dimensions 5, 10 and

25 and sample sizes n = 20, 40 and 60. In this model, where the Bayes error is a

function of the distance between means of each class, in all cases the maximum RMS

is bounded and does not exceed 0.15, even with only 20 sample points. And as before,

to bound the RMS below some tolerance, one need only assume a maximum Bayes

error, or equivalently a minimum distance between the means. This kind of behavior,

where the RMS of leave-one-out is tolerable when the Bayes error is small, is often

observed–indeed, we will see this throughout our simulations–but it has only been

quantified in a small number of cases [27, 25].

The point of these examples is that in practice, the distribution-free application

of any error estimator is an illusion [32]. Even though the computation of an error
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estimator may be purely data-driven, for instance by counting, which is without an

obvious connection to the underlying distributions, its performance is certainly not.

For instance, leave-one-out in both Figs. 1 and 2 operates best with low Bayes errors,

which is quite typical, so that its use in a small-sample setting implicitly assumes

low Bayes error, at least if one is assuming some degree of accuracy. The upshot of

all this is that if an error estimator is going to be used in a small-sample setting,

there must be modeling assumptions to ensure that the RMS is acceptable and the

classifier valid. And if this is the case, why not confront the necessity of assumptions

and fully integrate them into the analysis and design process? This is exactly what

is done in the Bayesian approach.

B. Bayesian Error Estimator Analysis: Conditioning on a Fixed Sample

Having recognized that modeling assumptions (an uncertainty class) must be postu-

lated when the sample is small to achieve an acceptable RMS, we can go a step further

and assume a prior distribution on the uncertainty class, resulting in a Bayesian mod-

eling framework. The transition from an unstructured uncertainty class to a prior

distribution governing the parameters defining the uncertainty class is not uncommon

in signal processing. For instance, assuming uncertainty in the second-order statistics

of a random process originally led to a minimax theory of robust optimal linear filter-

ing [35, 36, 37], whereas subsequently a prior distribution was assumed to govern the

uncertainty class, thereby leading to a Bayesian theory of robust linear filtering [38].

In genomic signal processing, the first analysis of robust control for gene regulatory

networks assumed an uncertainty class without a prior distribution, thereby resulting

in a minimax theory of robust control [39]; subsequently it was assumed that a prior

distribution governed the uncertainty class and a Bayesian theory of robust control
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was developed [40] (see also [41]).

Bayesian frameworks define a mathematical foundation for both the analysis of

arbitrary error estimators and the design of estimators with desirable properties or

optimal performance relative to a family of distributions, conditioned on the actual

observed sample. To summarize, the Bayesian modeling framework parameterizes the

feature-label distribution by a parameter, θ, and then assigns “prior” distributions to

θ that quantify the initial uncertainty we have about the distribution before observing

the data. We have the option of using either a non-informative prior or supplementing

the classification problem with expert information in an informative prior, to either

make the problem tractable or improve performance when the sample size is small.

The observed sample is used to update the prior to a “posterior” on the distribu-

tion parameters, which represents information about the true distribution combined

from the prior and data. In essence, the Bayesian model quantifies the information we

have about the distribution, but only to an extent, admitting that we do not know the

underlying distributions perfectly and that we can not estimate them reliably because

there is not enough data. This is in contrast to the extreme approaches in classical

error estimator analysis, which either assume perfect knowledge of the distribution

or avoid distributional assumptions altogether in favor of distribution-free bounds.

Given a fixed sample and classifier the error estimator is simply fixed. Thus, in a

Bayesian approach the sample-conditioned distribution of the true error contains the

full information about error estimator accuracy, where randomness stems from the

posterior uncertainty in the underlying feature-label distribution. We will consider

only moments of the true error (for a fixed sample and classifier), and in particular

the expectation and variance. Throughout this work, we will focus on two impor-

tant Bayesian modeling frameworks: multinomial distributions with Dirichlet priors

and arbitrary classification (henceforth referred to as the discrete model) and mul-
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tivariate Gaussian distributions with fixed, scaled identity or arbitrary independent

covariance matrices, a general class of conjugate priors and arbitrary linear classifica-

tion (the Gaussian model). When arbitrary covariance matrices are used, the priors

are normal-inverse-Wishart distributions. Both discrete classification and LDA in the

Gaussian model are classical problems; indeed, the form of the LDA classifier and the

distribution of the true error go back to [42] and [43], respectively.

1. Mean of the True Error: The Bayesian Error Estimator

Bayesian error estimation is defined to be the sample-conditioned minimum mean-

square error (MMSE) estimate of the true error, which, under weak regulatory as-

sumptions, is given by the first moment of the true error conditioned on the observed

sample, where the expectation is taken over the posterior distribution of θ. It is a

training data error estimator that is a function of the entire observed sample (and

implicitly the designed classifier). Not only are Bayesian error estimators defined

to have optimal RMS performance for a fixed sample relative to the posterior, but

they enjoy several other advantages: they are unbiased, they are evaluated relative

to a fixed classifier without the need for surrogate classifiers, they are independent of

the feature-selection method, which is part of the classification rule, and they can be

customized via the priors to target certain properties, for example, to optimize perfor-

mance in moderately difficult classification problems that are typical in biomedicine

with Bayes errors in the mid range. We define the Bayesian MMSE error estimator

and discuss its properties in Chapter II. We also provide closed-form representations

in both the discrete model (Chapter III) and Gaussian model (Chapter IV). Work

in these chapters are originally from [44] and [45]. In the discrete case, we examine

performance with the discrete histogram rule when compared to classical point-based

estimators. Simulations in the Gaussian case are extensive, with a particular empha-
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sis on robustness to false modeling assumptions. As a whole, this work pushes the

study of error estimation ahead by placing it in a rigorous optimization setting rather

than relying on ad hoc “intuitive” estimation rules.

Optimization is not completely new to classifier error estimation. Under the

assumption that the error estimator is a linear combination of counting estimators,

the weights have been optimized relative to a given feature-label distribution and

classification rule [46]. Here, however, we do not wish to impose a form on the

estimator, nor do we wish to assume a known feature-label distribution.

Bayesian modeling frameworks for classification are also not completely new,

although we know of no work in recent years. Average Bayes error and the average

true error of discrete histogram classifiers have been addressed by assuming fixed class

probabilities and a uniform prior over the bin probabilities, resulting in a performance

measure dependent on only sample and bin size [47, 48]. Although this work applies a

prior to an uncertainty class of distributions, the average true error first averages over

all samples drawn from a fixed distribution and then averages over all distributions,

so that a posterior or conditioning on the sample alone were not considered.

In the 1960s, two papers made small forays in Bayesian modeling for error esti-

mation. In [49], a Bayesian error estimator is given for the univariate Gaussian model

with known covariance matrices. In [50], the problem is addressed in the multivariate

Gaussian model for a particular linear classification rule based on Fishers discriminant

for a common unknown covariance matrix and known class probabilities by using a

specific prior on the means and the inverse of the covariance matrix. In neither case

were the properties or performance of these estimators considered. Here we derive

the Bayesian MMSE error estimator for an arbitrary linear classification rule in the

multivariate Gaussian model for both known and unknown independent covariance

matrices and both known and unknown class probabilities. We use a more general
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class of priors on the means and an intermediate parameter that allows us to impose

structure on the covariance matrices.

Work in [51] uses a Bayesian approach to address confidence intervals for clas-

sification error rates; a beta prior is assigned to the true error directly and updated

to a posterior by conditioning on the size of the sample and number of misclassified

training points. One issue arises: how can we define a sensible prior on the true

error? Related work by [52] considers confidence intervals, as well as the expected

true error conditioned on an error estimate. There, the feature-label distribution is

modeled as Gaussian or mixed-Gaussian with fixed means and scalable covariance

matrices, where the Bayes error of the feature-label distribution is assigned a beta

prior scaled between 0 and 0.25, indirectly corresponding to a distribution on the

scale for the covariances used in the model. There is no updating to a posterior.

The Bayesian framework utilized here is distinct from these works because we define

a prior on the feature-label distribution itself, which is the most fundamental state

of nature in a classification problem. Also, posteriors utilize the full information in

the sample, not just the number of misclassified points. Furthermore, the current

work will be founded on a deeper theory, including analytical representations of the

MSE performance for arbitrary error estimators conditioned on the sample and the

consistency of Bayesian error estimation in both the discrete and Gaussian models.

We also address practical considerations for the application of Bayesian error

estimation in microarray data analysis in Chapter VII, originally from [53]. There, a

method-of-moments approach is proposed to calibrate priors using features from the

microarray data set that are discarded by feature selection. In addition, a toolbox of

code implementing closed-form solutions for the Gaussian model with linear classi-

fiers, as well as a Monte-Carlo approximation for the Gaussian model with non-linear

classification, are provided. Bayesian error estimation is shown to have improved per-
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formance relative to classical error estimation schemes when applying the proposed

calibration and estimation techniques to real biological data.

Chapter VIII presents a method of optimally calibrating arbitrary error estima-

tors under a Bayesian framework, originally from [54], which may be very practical

when closed-form representations are not available for the optimal Bayesian error es-

timator. Performance improvement for calibrated error estimators can be significant

compared to their classical counterparts.

2. Variance of the True Error: The Sample-Conditioned MSE of the Bayesian

Error Estimator

Although the Bayesian error estimator minimizing MSE has been solved in the dis-

crete and Gaussian models, the MSE itself was not explicitly derived. This is ad-

dressed by the sample-conditioned MSE of Bayesian error estimators, which, we will

show using the orthogonality principle, is equivalent to the variance of the true error

conditioned on the sample. Uncertainty in the MSE is relative to the parameters

in the feature-label distribution conditioned on the sample, which is fundamentally

different from the classical approach relative to the sampling distribution for a fixed

feature-label distribution. Under the Bayesian model, the sample conditions the un-

certainty, and different samples condition it to different extents.

Consider a typical application, where we are given a specific sample to train a

classifier. We are interested in estimating the error rate of our designed classifier, as

well as the validity and properties of this estimate. Bayesian frameworks not only

enable us to find an MMSE estimate of the classifier’s true error, but also make it

possible to study the performance of an error estimate conditioned on the precise

sample, trained classifier and computed error estimate in hand. In contrast, classical

analysis cannot be applied in this way because it only addresses average performance
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of a classification scheme over a sampling distribution. Thus, by taking into consid-

eration a family of distributions and reporting the exact performance using the best

knowledge available on the parameters of the distribution, the posterior probabilities,

the new concept of a sample-conditioned MSE becomes a more practical measure of

estimation accuracy falling out of the Bayesian approach.

Closed-form solutions for the sample-conditioned MSE in both the discrete model

and Gaussian model are available in Chapter V, originally from [55], and Monte-

Carlo approximation methods for the Gaussian model with non-linear classification

are also discussed. Furthermore, the exact MSE for arbitrary error estimators falls

out naturally. That is, if ε̂ is an arbitrary error estimator and ε̂BEE is the Bayesian

error estimator with correct priors, then the sample-conditioned MSE of ε̂ may be

decomposed into the MSE of the Bayesian error estimator plus an easily calculable

positive residual term:

MSE(ε̂ |Sn) = MSE(ε̂BEE|Sn) + (ε̂BEE (Sn)− ε̂ (Sn))
2,

where Sn is a sample of size n. This clearly illustrates the optimality of the Bayesian

error estimator, and shows how the closed-form analytical results presented here may

be easily applied for any error estimator under the Bayesian model.

C. Consistency and Censored Sampling

As we observe sample points, our uncertainty in the feature-label distribution should

converge to a certainty on the true distribution, and in Chapter VI, which covers work

originally from [56], we show that the posteriors indeed converge to delta functions

on the true parameters for both the discrete and Gaussian models. Convergence may

be faster with more informative priors, but convergence is assured as long as the prior
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has mass on any neighborhood of the true distribution.

One may then ask if classical frequentist consistency holds for Bayesian error

estimators on fixed distributions, that is if the estimated error converges to the true

error in some sense. Indeed, we show that it does for all true distributions in both

the discrete and Gaussian models. Hence, frequentist consistency is not exclusive to

distribution-free error estimators, which insist on being blind about the feature-label

distribution while Bayesian error estimators confront the necessity of distributional

knowledge in small-sample settings.

Not only may we observe convergence in the error estimator, but we expect the

sample-conditioned RMS converges to zero as well. For example, suppose we have a

sequence of sample points indexed by n, drawn from an unknown fixed distribution.

Starting with the first, say, n = 10 points in this sequence, we may calculate the

RMS of the Bayesian error estimator and find it to be relatively high. Although the

prior is fixed, as we observe more sample points, the posterior distribution of the

parameters will become tighter around the true distribution parameters. In this way,

the Bayesian error estimate will be closer to the true error (both are changing since

the sample is changing), and this will be reflected in the RMS. Thus, although the

RMS is calculated for a fixed sample of size n, as we increase n by acquiring more

sample points, the RMS will tend to zero if the true distribution is in the family of

distributions considered in our model.

With this motivation we also prove that the sample-conditioned MSE converges

to zero in probability for all distributions in both the discrete and Gaussian models as

we increase sample size. This suggests an important application in censored sampling,

where sample points are collected one at a time until the conditional MSE reaches an

acceptable level. Finally, we provide several simulation studies on the general behavior

of the conditional MSE, including practical examples with censored sampling.
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CHAPTER II

MODELING∗

A. Classification

In this section we define the classification setting. Sample spaces will be denoted with

a calligraphy style, such as X , vectors with a boldface style, such as x, and random

variables with capital letters, such as Y , or if it’s also a vector, X.

Confining ourselves to binary class labels, classification involves a feature vector

X on a sample space X (two examples are a simple discrete set of bins and a continuous

space X = RD with D features), a binary random variable Y (corresponding to class

labels 0 or 1), and a function (classifier) ψ : X → {0, 1} for which ψ(X) is to

predict Y . The joint behavior of X and Y is governed by a feature-label distribution

fX,Y (x, y), and we denote the class-conditional distributions by fX|Y (x|y). The a

priori probabilities for the classes are defined by c = P(Y = 0) with P(Y = 1) = 1−c.

The error, ε, of ψ is the probability of erroneous classification, namely, ε =

P (ψ(X) ̸= Y ). This true error is relative to a feature-label distribution fX,Y , and

it equals the expected absolute difference between the label and classifier prediction,

E[|Y − ψ(X)|]. It can also be decomposed as

ε = cε0 + (1− c)ε1, (2.1)

∗Part of this chapter is reprinted with permission from “Bayesian Minimum Mean-Square Error
Estimation for Classification Error–Part I: Definition and the Bayesian MMSE Error Estimator for
Discrete Classification” by L. A. Dalton and E. R. Dougherty, 2011, IEEE Transactions on Signal
Processing, vol. 59, no. 1, pp. 115–129, Copyright 2011 by IEEE.
This material is posted here with permission of the IEEE. Such permission of the IEEE does

not in any way imply IEEE endorsement of any of Texas A&M University’s products or services.
Internal or personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale
or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this material, you agree to all provisions of the copyright laws protecting it.
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where

ε0 = P(ψ(X) = 1|Y = 0) =

∫
ψ(X)=1

fX|Y (x|0)dx

is the probability of an element from class 0 being wrongly classified (which we may

think of as the error contributed by class 0). Similarly ε1 = P(ψ(X) = 0|Y = 1).

In practice, the feature-label distribution is usually unknown, so that a classifier

and its error are generally discovered via classification and error estimation rules.

We assume a supervised sampling process modeled by n independent and identically

distributed (i.i.d.) draws from the feature-label distribution. We denote a size n

random sample of pairs by Sn = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}, where each pair

is governed by the feature-label distribution, fX,Y . A classification rule is a function

on the sample that yields a good classifier, that is, a mapping of the form Ψ : [X ×

{0, 1}]n → {0, 1}X , where {0, 1}X is the family of {0, 1}-valued functions on X . Given

a specific sample (realization) of Sn, we obtain a designed classifier ψn = Ψ(Sn), where

we have added a subscript n to emphasize that a classification rule is really a sequence

depending on n. Similarly, we write the true error of the designed classifier as εn. n0

and n1 are the numbers of sample points from classes 0 and 1, respectively, and we

denote the samples from class y by xyi , i = 1, ..., ny. An error estimate, ε̂, of εn is

determined by an estimation rule Ξ : [X × {0, 1}]n → [0, 1], with an estimator being

a function of the random sample, ε̂ = Ξ(Sn).

Throughout this work, we will use four popular classification rules. The first

is the discrete histogram rule for multinomial discrimination, which is essentially a

majority vote in each discrete bin. For classification of continuous variables, we will

use linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and k-

nearest-neighbor (kNN) classification. LDA is a simple linear classification rule, often

very effective in small-sample settings [57, 58]. It was developed by Wald [42] based
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on the “Fisher discriminant” [59], and given the form known today by Anderson [60].

LDA approaches the problem of classification by assuming that the class-conditional

distributions are both Gaussian with identical full rank covariances in each class,

where the Bayes optimal solution is a linear classifier. We obtain the LDA classifier by

plugging in the estimated sample means for each class and a pooled sample covariance

into the model. QDA is similar except the covariance of each class is not necessarily

identical, and the Bayes optimal solution becomes quadratic [61]. The estimated

mean and covariance of each class is substituted for the true values in the model.

Finally, a kNN classifier is a non-parametric rule that classifies future points based

on a majority vote from the k nearest training examples in the feature space [62].

B. Classical Classifier Error Estimators

Many commonly used training-data error estimators, including resubstitution, leave-

one-out, cross-validation and bootstrap, are based on counting points. The resub-

stitution (also called “resub”) error estimate, ε̂resub, is the error rate of the designed

classifier on the training data.

In cross-validation (“cv”) [63, 64], the sample is randomly partitioned into k folds

(subsets). At each stage of the procedure, one fold is left out, a surrogate classifier is

designed on the remaining folds, and its error is estimated on the left-out fold. The

cross-validation estimate, ε̂cv, of the misclassification error of the original classifier

trained on the full data set is estimated by the average surrogate errors on the left-

out folds. This process may be repeated some number of times and the average taken

as the cross-validation estimate. In our implementation, we use k = 5 folds and

5 repetitions with different partitions. The leave-one-out (“loo”) error estimate is

a special case of cross-validation where k = n, that is where each fold contains a
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single point. In the case of leave-one-out, there is no randomness to fold generation

because there is only one possible partition of folds; however, when k < n evaluating

all combinations of partitions is computationally prohibitive so in this case partitions

are randomly chosen to make the estimation.

Counting estimators generally perform poorly for small samples owing to bias or

variance. Resubstitution tends to be optimistically biased, often severely. Leave-one-

out is close to unbiased, and more generally cross-validation is close to being unbiased

if k is not too small. However, leave-one-out and cross-validation tend to have a large

variance for small samples [65, 33, 66] and also to be poorly correlated with the actual

error [67], the two combining to create a large RMS for small samples. For a review

of error estimation performance, see [68].

The basic bootstrap zero estimator, ε̂b0, generates B bootstrap samples, S
(i)
n , i =

1, . . . , B, each consisting of n equally-likely draws with replacement from the original

sample, Sn [69]. Each bootstrap sample is used to design a classifier whose error is

estimated by the error rate on Sn−S(i)
n . The bootstrap zero estimator is the average of

these errors for i = 1, . . . , B. Like cross-validation, this error estimator is randomized

because of the randomly selected bootstrap samples, and also tends to be pessimistic

because the expected bootstrap sample size is only 0.632n. In our simulations, we use

the popular 0.632 bootstrap (“boot”) error estimator with B = 100, which attempts

to correct the pessimistic bias of the bootstrap zero estimator with optimistically

biased resubstitution [70]. In particular, ε̂boot = (1− 0.632)ε̂resub + 0.632ε̂b0.

Bolstered (“bol”) error estimation associates a bolstering kernel (density) with

each sample point to spread the mass so that a point contributes to the bolstered

error estimate based on its distance from the classifier decision boundary, thereby

smoothing counting estimators and balancing bias and variance. If the kernel fi is
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used for point i, the bolstered error estimator is given by

ε̂bol =
1

n

(
n0∑
i=1

∫
ψn(x)=1

fi(x− x0
i )dx+

n1∑
i=1

∫
ψn(x)=0

fi(x− x1
i )dx

)
.

We use spherical Gaussian kernels with the same variance used for all points in a

class. The kernel variances are determined by the method proposed in [71].

A classical estimator not based on counting is the plug-in rule, ε̂plug−in, which as-

sumes a parameterized model for the class-conditional distributions, fX|Y (x|y). The

distribution parameters are estimated from the data and ε̂plug−in is the classifier er-

ror for the resulting feature-label distribution. The plug-in rule is the only model-

dependent classical error estimator presented here, but is known to perform poorly for

small samples owing to poor estimation of the model parameters even if the model

assumption is accurate, and performance degrades further with model inaccuracy.

Potentially, however, model-based estimation can be beneficial because the model is

a form of prior knowledge that facilitates estimation (if it is accurate).

C. The Bayesian Modeling Framework

Classical error estimation methods, such as cross-validation and bootstrap, are typi-

cally heuristic counting methods that are “model-free” in the sense that their evalu-

ation does not utilize modeling assumptions. In contrast, Bayesian error estimation

uses modeling assumptions in a Bayesian framework to quantify the uncertainty in

our knowledge of the feature-label distribution parameters. We begin by reviewing

classical MMSE estimation in a general filtering framework.

1. Optimal MSE Estimation in the Presence of Uncertainty

We approach error estimation from a classical filtering perspective: find an



22

MMSE estimator of the error. To motivate our approach, consider finding a MMSE

estimator (filter), ĝ(Y ), of a function of two random variables, g(X,Y ), based on

observing only Y ; that is, minimize EX,Y [|g(X, Y )−g(Y )|2] over all Borel measurable

functions g(Y ). It is well known that the optimal estimator,

ĝ = argmin
g

EX,Y [|g(X, Y )− g(Y )|2] (2.2)

is given by the conditional expectation

ĝ(Y ) = EX [g(X, Y )|Y ]. (2.3)

Moreover, ĝ(Y ) is an unbiased estimator over the distribution, f(x, y), of (X, Y ),

namely,

EX,Y [ĝ(Y )] = EX,Y [g(X, Y )]. (2.4)

The fact that ĝ(Y ) is an unbiased MMSE estimator of g(X, Y ) over f(x, y) does

not tell us how well ĝ(Y ) estimates g(x̄, Y ) for some specific value X = x̄. This has

to do with the expected difference

EY [|g(x̄, Y )− ĝ(Y )|2] = EY

[∣∣∣∣g(x̄, Y )−
∫
g(x, Y )f(x|Y )dx

∣∣∣∣2
]

= EY

[∣∣∣∣∫ g(x, Y )[f(x|Y )− δ(x− x̄)]dx

∣∣∣∣2
]
,

where δ(x) is the generalized delta function. Bringing the absolute value inside the

integral yields

EY [|g(x̄, Y )− ĝ(Y )|2] ≤ EY

[(∫
|g(x, Y )||f(x|Y )− δ(x− x̄)|dx

)2
]
,

which reveals that the accuracy of the estimate at a point, x̄, depends upon the degree

to which the mass of the conditional distribution for X given Y is concentrated at x̄

on average for Y . If we replace the single random variable Y by a sequence {Yn} of
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random variables such that f(x|Yn) → δ(x− x̄) in a suitable sense (this not being the

place to go into the convergence of generalized functions), then we are assured that

ĝ(Yn)− g(x̄, Yn) → 0 in the mean-square sense.

The conditional distribution f(x|Y ) characterizes uncertainty with regard to x̄.

We desire ĝ(Y ) to estimate g(x̄, Y ) but are uncertain of x̄; we can obtain an unbiased

MMSE estimator for g(X,Y ), which means good performance across all possible

values of X relative to the distribution of X and Y , but the performance of that

estimator for a particular valueX = x̄ depends on the concentration of the conditional

mass of X relative to x̄.

2. Definition of the Bayesian Error Estimator

We apply MMSE estimation theory to error estimation, in which case the uncer-

tainty will manifest itself in a Bayesian framework relative to a space of feature-label

distributions and random samples. The random variable X is replaced by a random

variable θ governed by a specified “prior” distribution, π(θ), where each θ corresponds

to a feature-label distribution parameterized by θ and denoted fθ(x, y). The random

variable Yn is replaced by a random sample Sn, and we set

g(X,Y ) = εn(θ, Sn),

which is the true error on fθ of the designed classifier, ψn. In this scenario, ĝ(Y )

becomes the error estimator

ε̂(Sn) = Eθ[εn(θ, Sn)|Sn], (2.5)

which we call the “Bayesian MMSE error estimator.” The conditional distribution,

f(x|Y ), becomes the “posterior” distribution π∗(θ|Sn), which for simplicity we often

write as simply π∗(θ), tacitly keeping in mind conditioning on the sample. In this
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light, we will write the Bayesian MMSE error estimator as

ε̂ = Eπ∗ [εn(θ)],

but one should keep in mind that this is short-hand for ε̂(Sn) expressed in (2.5). In

general we will use Eπ∗ to denote a conditional expectation given the sample.

In the case of classification, θ is a random vector composed of three parts: θ =

[c, θ0, θ1] where c is the class probability for class 0, θ0 contains the parameters of

the class-0 conditional distribution and θ1 contains the parameters of the class-1

conditional distribution. We also define Θy, y ∈ {0, 1}, to be the parameter space

containing all permitted values for θy, and write the class-conditional distributions

as fθy(x|y) to emphasize that they are parameterized. The marginal prior density of

the class probability is denoted π(c) and that of the class-conditional distributions

are denoted π(θ0) and π(θ1). In using common Bayesian terminology, we also refer

to these prior distributions as “prior probabilities.”

As discussed in the previous section in a general setting, the Bayesian MMSE

error estimate is not guaranteed to be the optimal error estimate for any particular

feature-label distribution (the true error being the best estimate and perfect), but

for a given sample, and assuming the parameterized model and prior probabilities, it

is both optimal on average with respect to MSE (and therefore RMS) and unbiased

when averaged over all parameters and samples. These implications apply for any

classification rule as long as the classifier is fixed given the sample.

To facilitate analytic representations, we assume that c, θ0 and θ1 are all indepen-

dent prior to observing the data. This assumption carries limitations. For instance,

we cannot assume Gaussian distributions with the same unknown covariance for both

classes, nor can we use the same parameter in both classes. However, this assump-

tion will ultimately allow us to separate the Bayesian error estimator into components
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representing the error contributed by each class.

3. Prior and Posterior Probabilities

The prior probabilities, π(c) and π(θy), may be based on objective and subjective data.

It is up to the investigator to consider the nature of the problem at hand and to choose

an appropriate model [72]. In genomic applications based on microarray experiments,

it may be possible to define priors based on the aggregate behavior of microarray

samples by incorporating data from experiments using similar instrumentation and

techniques. One might also take advantage of any prior theoretical knowledge about

the data. Another approach is to use objective priors, which are useful for simplifying

equations or if one wishes to avoid using subjective data. Even in many classical

problems, there is no universal agreement in the “right” prior to use. Based on

our preceding filter analysis, we would like π∗(θ) to be close to δ(θ − θ̄), where θ̄

corresponds to the actual feature-label distribution from which the data have come,

but we do not know θ̄ and an overzealous effort to concentrate the conditional mass

at a particular value of θ can have detrimental effects if that value is far from θ̄.

Once π(c), π(θ0) and π(θ1) have been established, we use the data to find the

joint posterior density for all parameters. By the product rule,

π∗(θ) = f (c, θ0, θ1|Sn) = f(c|Sn, θ0, θ1)f(θ0|Sn, θ1)f(θ1|Sn).

Given n0, c is independent from the sample values and the distribution parameters

for each class. Hence,

f(c|Sn, θ0, θ1) = f(c|n0,
{
x0
i

}n0

1
,
{
x1
i

}n1

1
, θ0, θ1) = f(c|n0).

Given n0, the sample and distribution parameters for class 1 are independent from
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the sample and distribution parameters for class 0. Thus,

f(θ0|Sn, θ1) = f(θ0|n0,
{
x0
i

}n0

1
,
{
x1
i

}n1

1
, θ1)

=
f(θ0, {x0

i }
n0

1 |n0, {x1
i }
n1

1 , θ1)

f({x0
i }
n0

1 |n0, {x1
i }
n1

1 , θ1)

=
f(θ0, {x0

i }
n0

1 |n0)

f({x0
i }
n0

1 |n0)

= f(θ0|n0,
{
x0
i

}n0

1
)

= f(θ0|
{
x0
i

}n0

1
).

In the last line, we assume that knowledge of n0 is implied in the notation {x0
i }
n0

1 .

Given n1, analogous statements apply and

f(θ1|Sn) = f(θ1|n1,
{
x0
i

}n0

1
,
{
x1
i

}n1

1
) = f(θ1|

{
x1
i

}n1

1
).

As before, we assume that knowledge of n1 is implied in the notation {x1
i }
n1

1 . Combin-

ing these results, we have that c, θ0 and θ1 remain independent posterior to observing

the data:

π∗(θ) = f (c|n0) f
(
θ0|
{
x0
i

}n0

1

)
f
(
θ1|
{
x1
i

}n1

1

)
= π∗(c)π∗(θ0)π

∗(θ1),

where π∗(c), π∗(θ0) and π
∗(θ1) are the marginal posterior densities for the parameters

c, θ0 and θ1.

For the class prior probabilities, we only need to consider the size of each class:

π∗(c) = f(c|n0) ∝ π(c)f(n0|c) ∝ π(c)cn0(1− c)n1 , (2.6)

where we have taken advantage of the fact that given c, n0 has a binomial(n, c)

distribution. We present three useful models for the prior distributions of the a priori

class probabilities: beta, uniform, and known. As we will see, the Bayesian MMSE
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error estimator requires only the posterior expectation, Eπ∗ [c].

If we assume the prior distribution for c is beta(α0, α1) distributed, then the

posterior distribution for c can be simplified from (2.6). From this beta-binomial

model, π∗(c) is beta(α0 + n0, α
1 + n1) distributed:

π∗(c) =
cα

0+n0−1 (1− c)α
1+n1−1

B(α0 + n0, α1 + n1)
,

where B is the beta function. The expectation of this distribution is given by [73],

Eπ∗ [c] =
α0 + n0

α0 + α1 + n
.

In the special case where we have uniform priors that assume initially all parameters

between 0 and 1 are equally likely, we have α0 = α1 = 1, and

π∗(c) =
(n+ 1)!

n0!n1!
cn0 (1− c)n1 , (2.7)

Eπ∗ [c] =
n0 + 1

n+ 2
. (2.8)

Finally, to apply a known prior we define the parameter c to have a trivial sample

space with one point. Then, the expectation is simply the known value for c, regardless

of the data. Note if stratified sampling is used, c is essentially given in the data and

Eπ∗ [c] = n0

n
.

When finding the posterior probabilities for the class-conditional distribution

parameters, we need only consider the sample points from the corresponding class.

We find π∗(θy) using Bayes’ rule:

π∗(θy) = f(θy| {xyi }
ny

1 )

∝ π(θy)f({xyi }
ny

1 |θy)

= π(θy)

ny∏
i=1

fθy(x
y
i |y), (2.9)
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where the constant of proportionality can be found by normalizing the integral of

π∗(θy) to 1. The term f({xyi }
ny

1 |θy) is called the “likelihood function.”

Although we call π(θy) the “prior probabilities,” they are not required to be valid

density functions. In particular, the priors are called “improper” if the integral of

π(θy) is infinite, i.e., if π(θy) induces a σ-finite measure but not a finite probability

measure. Such priors can be used to represent uniform weight for all parameters in

an unbounded range, rather than truncating the range of each parameter to a finite

range. When improper priors are used, Bayes’ rule does not apply so we take (2.9)

as a definition, but normalize the posterior distributions to have a unit integral as

usual. The use of improper priors for error estimation is justified in Section II.C.5.

Whether one decides it is appropriate to use improper priors or not, in all cases it

is mandatory that the posterior is a valid probability density. If the prior is proper,

then the posterior is also guaranteed to be proper.

4. Evaluating the Bayesian MMSE Error Estimator

Since the underlying feature-label distribution is parameterized by θ, the true error

of ψn can be written as,

εn (θ, Sn) = cε0n (θ0, Sn) + (1− c)ε1n (θ1, Sn) ,

where we have explicitly indicated the dependence of εn and εyn on the distribution

parameters and the sample/classifier. Owing to the posterior independence between

c, θ0 and θ1, and since εyn is a function of θy only, the Bayesian MMSE error estimator
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can be expressed as

ε̂ (Sn) = Eθ[εn(θ, Sn)|Sn]

= Eθ[cε
0
n (θ0, Sn) + (1− c)ε1n (θ1, Sn) |Sn]

= Ec[c|Sn]Eθ0 [ε0n (θ0, Sn) |Sn] + (1− Ec[c|Sn]) Eθ1 [ε1n (θ1, Sn) |Sn].

We apply the shorthand notation introduced earlier in the definition of the Bayesian

error estimator:

ε̂ = Eπ∗ [c]Eπ∗ [ε0n(θ0)] + (1− Eπ∗ [c]) Eπ∗ [ε1n(θ1)]

= Eπ∗ [c]ε̂0 + (1− Eπ∗ [c]) ε̂1, (2.10)

where we have defined ε̂y = Eπ∗ [εyn(θy)], which may be viewed as the posterior ex-

pectation for the true error contributed by class y. Note that we have suppressed

dependence on the sample in several quantities to avoid cumbersome notation, for

instance we sometimes write εn(θ) instead of εn(θ, Sn), ε
y
n(θy) instead of εyn(θy, Sn), ε̂

instead of ε̂(Sn), and ε̂
y instead of ε̂y(Sn). However, the reader should keep in mind

that these quantities are always functions of the sample. If any of the prior probabil-

ities are improper, this is called the “generalized Bayesian MMSE error estimator.”

Also, the Bayesian error estimator is a training data error estimator, meaning that

no sample points are held out for error estimation and the entire sample set is used

to estimate the true error.

Eπ∗ [c] depends on our prior assumptions about the class probability. For example,

if we assume flat priors for c and apply (2.8), then

ε̂ =
n0 + 1

n+ 2
ε̂0 +

n1 + 1

n+ 2
ε̂1.
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For a fixed classifier, εyn is a deterministic function of θy and

ε̂y = Eπ∗ [εyn(θy)] =

∫
Θy

εyn(θy)π
∗(θy)dθy. (2.11)

The solution to this integral depends on the classifier/classification rule through εyn(θy)

and the Bayesian model and posterior through π∗(θy).

We will derive closed-form solutions for the discrete and Gaussian models in

Chapters III and IV, respectively. When closed-form solutions are not available,

ε̂y may be approximated from (2.11) using Monte-Carlo integral approximation as

discussed in Chapter VII. Once ε̂y has been found for each class, we find Eπ∗ [c]

according to our prior model for c and refer to (2.10) for the complete Bayesian error

estimator.

5. On Improper Priors

The Bayesian community is currently divided on the validity of improper priors. A

notable example suggesting that improper priors should be avoided completely comes

from [74], which presents “marginalization paradoxes” and points a finger at the use

of improper priors as the cause. At the same time, these claims and demonstrations

have been refuted by many, for example Jaynes’ response in [75] explains that there

is no marginalization paradox, and that the controversy stems from an improper use

of notation and failure to capture what information is known at different stages of a

problem.

In many cases, the posterior distribution (or a Bayesian estimate) obtained from

an improper prior is equivalent to a limit of posterior distributions (or Bayesian

estimates) from some sequence of proper prior distributions [76, 77, 78], however extra

care must be taken to ensure that the resulting posterior density can be normalized

and makes sense. Here, we justify the use of improper priors for error estimation,
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where we are primarily interested in evaluating ε̂y = Eπ∗ [εyn(θy)]. Using improper

priors directly amounts to evaluating the ratio

Eπ∗ [εyn(θy)] =

∫
Θy
εyn(θy)π(θy)

∏ny

i=1 fµy ,Σy(x
y
i |y)dθy∫

Θy
π(θy)

∏ny

i=1 fµy ,Σy(x
y
i |y)dθy

.

However, a more mathematically sound approach is to use a sequence of proper priors

indexed by positive integers k, πk(θy), that converge in some sense to the improper

priors π(θy). We would then evaluate the limit of the ratio,

lim
k→∞

∫
Θy
εyn(θy)πk(θy)

∏ny

i=1 fµy ,Σy(x
y
i |y)dθy∫

Θy
πk(θy)

∏ny

i=1 fµy ,Σy(x
y
i |y)dθy

.

Suppose there exists a sequence of proper priors, πk(θy) = Akπ(θy)Iθy∈Bk
, where Ak is

the normalization constant (which is always finite) and Bk is a sequence of bounded,

increasing sets that cover the sample space. For example, with a flat prior over a

parameter space Θy = RD, we may choose Bk to be the open ball centered at zero

with radius k. Then the correct approach to find a Bayesian error estimator leads to

lim
k→∞

∫
Θy
εyn(θy)π(θy)Iθy∈Bk

∏ny

i=1 fµy ,Σy(x
y
i |y)dθy∫

Θy
π(θy)Iθy∈Bk

∏ny

i=1 fµy ,Σy(x
y
i |y)dθy

.

As long as the limits for the numerator and denominator exist and the denominator

is non-zero with a non-zero limit (both are verified if the posterior obtained from

our improper priors can be normalized), we may take the limit in the numerator and

denominator separately. In addition, the Monotone Convergence Theorem applies

since all terms are positive and the integrands are increasing with respect to k. Once

we bring the limits inside the integrals, the indicator functions are removed and we

obtain exactly the same result as we would by starting with improper priors, with

the added caution to verify that the posterior densities can be normalized.
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CHAPTER III

BAYESIAN MMSE ERROR ESTIMATION—DISCRETE CLASSIFICATION∗

A. The Discrete Model

We next illustrate the Bayesian error estimator applied to the discrete classification

setting. Discrete classification, also called categorical classification or multinomial

discrimination [33, 79, 80, 81] is very important in several applications, particularly

in biology, economics, psychology, and social science [80]. In a general discrete clas-

sification problem, the sample space is discrete with b bins. Let pi and qi, i = 1, ..., b,

be the class-conditional probabilities for each bin for class 0 and 1, respectively. Sim-

ilarly, let Ui and Vi, i = 1, ..., b, be the number of samples observed in each bin for

class 0 and 1, respectively. The Ui’s and Vi’s are outcomes of a multinomial sam-

pling distribution with parameters {pi}b1 and {qi}b1, respectively. The class sizes are

n0 =
∑b

i=1 Ui and n1 =
∑b

i=1 Vi. A classifier in the discrete setting assigns each bin to

a class, so ψn : {1, . . . , b} → {0, 1}. This classifier may be trained using the discrete

histogram classification rule but this is not necessary.

The true error of a classifier ψn is given by εn = cε0n+(1− c)ε1n from (2.1), where

ε0n =
b∑
i=1

piIψn(i)=1 and ε1n =
b∑
i=1

qiIψn(i)=0, (3.1)

and where IE is an indicator function equal to one if E is true and zero otherwise.

∗Part of this chapter is reprinted with permission from “Bayesian Minimum Mean-Square Error
Estimation for Classification Error–Part I: Definition and the Bayesian MMSE Error Estimator for
Discrete Classification” by L. A. Dalton and E. R. Dougherty, 2011, IEEE Transactions on Signal
Processing, vol. 59, no. 1, pp. 115–129, Copyright 2011 by IEEE.
This material is posted here with permission of the IEEE. Such permission of the IEEE does

not in any way imply IEEE endorsement of any of Texas A&M University’s products or services.
Internal or personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale
or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this material, you agree to all provisions of the copyright laws protecting it.
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Many classical error estimators can be simplified considerably for the discrete prob-

lem. For one, resubstitution is the same as the plug-in rule. More details on the

discrete error estimation problem are available in [26] and [82].

We consider two models. The first is a simple problem where we derive step-

by-step the Bayesian error estimator for uniform priors and b = 2 bins. The second

generalizes the previous model by considering an arbitrary number of bins with Dirich-

let priors. When no information is available about the bin probabilities, the second

model can be applied with uniform priors as a special case.

1. Uniform Priors and b = 2

In a binary problem with b = 2, define p to be the probability for bin 1 in class 0 and

let q be the probability for bin 1 in class 1, i.e., p = p1 = 1− p2 and q = q1 = 1− q2.

In this case, p and q completely model the distributions, so we define θ0 = p and

θ1 = q with the parameter spaces Θy = [0, 1].

If we assign uniform prior distributions for p and q, the posterior probabilities

are straightforward to find using a method analogous to that used to find (2.7). In

particular, we have that π∗(p) and π∗(q) are beta distributions:

π∗(p) =
(n0 + 1)!

U1!U2!
pU1 (1− p)U2 and π∗(q) =

(n1 + 1)!

V1!V2!
qV1 (1− q)V2 .

To find the Bayesian MMSE error estimator, we simplify the posterior expected

true error contributed by each class from (2.11). For class 0 we obtain

ε̂0 =

∫ 1

0

ε0n(p)π
∗(p)dp

=
(n0 + 1)!

U1!U2!
Iψn(1)=1

∫ 1

0

pU1+1 (1− p)U2 dp+
(n0 + 1)!

U1!U2!
Iψn(2)=1

∫ 1

0

pU1 (1− p)U2+1 dp

=
U1 + 1

n0 + 2
Iψn(1)=1 +

U2 + 1

n0 + 2
Iψn(2)=1.
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Similarly, for class 1,

ε̂1 =
V1 + 1

n1 + 2
Iψn(1)=0 +

V2 + 1

n1 + 2
Iψn(2)=0.

Combining these results using (2.10), we obtain the Bayesian MMSE error estimate.

Note these results apply for any fixed discrete classification rule.

2. Dirichlet Priors and Arbitrary Bin Size

We now extend the result in the previous section by applying a more general conjugate

prior to the problem with an arbitrary number of bins. The bin probabilities, {pi}b1

and {qi}b1, are both members of the “standard (b− 1)-simplex,” which is the set of all

sequences of length b whose terms are nonnegative and add to one. Define the param-

eters for each class to contain all but one bin probability, i.e., θ0 = [p1, p2, . . . , pb−1]

and θ1 = [q1, q2, . . . , qb−1]. With this model, each parameter space is defined as the

set of all valid bin probabilities, for example [p1, p2, . . . , pb−1] ∈ Θ0 if and only if

0 ≤ pi ≤ 1 for i = 1, . . . , b− 1 and
∑b−1

i=1 pi ≤ 1. Given θ0, the last bin probability is

defined by pb = 1−
∑b−1

i=1 pi.

The conjugate prior for the multinomial distribution used to model the bin proba-

bilities in either class is given by a generalized beta distribution known as the Dirichlet

distribution:

π(θ0) ∝
b∏
i=1

p
α0
i−1
i and π(θ1) ∝

b∏
i=1

q
α1
i−1

i ,

where we require the hyperparameters αyi , i = 1, . . . , b, to satisfy αyi > 0. If αyi = 1

for all bins, i = 1, . . . , b, and both classes, y = 0 and y = 1, we obtain uniform

priors. Furthermore, the Dirichlet prior for class y is mathematically equivalent to a

likelihood resulting from
∑b

i=1 α
y
i class y observations, with αyi observations in bin i.

As we increase a specific αyi , it is as if we bias the corresponding bin with αyi samples
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from the corresponding class before ever observing the data.

Rather than working with the bin probabilities directly, it is easier to solve the

integrals with ordered bin dividers. In other words, we define the linear one-to-one

change of variables,

a0(i) =


0 if i = 0,∑i

k=1 pk if i = 1, . . . , b− 1,

1 if i = b,

and define a1(i) similarly using qk. We use the subscript (i) instead of just i to em-

phasize that the ay(i) are ordered so that 0 ≤ ay(1) ≤ . . . ≤ ay(b−1) ≤ 1. The bin

probabilities are determined by the partitions the ay(i) make in the interval [0, 1], i.e.,

pi = a0(i) − a0(i−1) for all i. The Jacobean determinant of this transformation is one,

so integrals over the pi may be converted to integrals over the a0(i) by simply re-

placing pi with a
0
(i) − a0(i−1) and defining the new integration region characterized by

0 ≤ ay(1) ≤ . . . ≤ ay(b−1) ≤ 1. To find the posterior probability of parameters θ0 and θ1

and the Bayesian MMSE error estimator itself, we will use the following lemma.

Lemma 1. Let b ≥ 2 be an integer and let Ui > −1 be real numbers for i = 1, . . . , b.

Define a(0) ≡ 0 and a(b) ≡ 1. Then,∫ 1

0

∫ a(b−1)

0

. . .

∫ a(2)

0

b∏
i=1

(
a(i) − a(i−1)

)Uida(1) . . . da(b−2)da(b−1) =

∏b
k=1 Γ (Uk + 1)

Γ
(∑b

i=1 Ui + b
) ,

where Γ is the gamma function.

Proof. Define M to be the value of this integral. Note that,

M =

∫ 1

0

(
1− a(b−1)

)Ub . . .

∫ a(3)

0

(
a(3) − a(2)

)U3∫ a(2)

0

(
a(2) − a(1)

)U2
(
a(1)
)U1 da(1) . . . da(b−1). (3.2)
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For k = 2, . . . , b also define:

Nk ≡
∫ a(k)

0

(
a(k) − a(k−1)

)Uk
(
a(k−1)

)∑k−1
i=1 Ui+k−2

da(k−1).

Substitute x = a(k−1)/a(k) and note that,

Nk =

∫ 1

0

(
a(k) − a(k)x

)Uk
(
a(k)x

)∑k−1
i=1 Ui+k−2

a(k)dx

=
(
a(k)
)∑k

i=1 Ui+(k+1)−2
∫ 1

0

(1− x)Uk (x)
∑k−1

i=1 Ui+k−2 dx

=
(
a(k)
)∑k

i=1 Ui+(k+1)−2
B

(
k−1∑
i=1

Ui + k − 1, Uk + 1

)
,

where the last integral is essentially the definition of the beta function, B.

In (3.2), the innermost integral is N2. After evaluating it and pulling out the

constant beta function, the new innermost integral is exactly N3. Using induction,

we repeat this for all b− 1 integrals to obtain the desired result:

M =
b∏

k=2

B

(
k−1∑
i=1

Ui + k − 1, Uk + 1

)

=
b∏

k=2

Γ
(∑k−1

i=1 Ui + k − 1
)
Γ (Uk + 1)

Γ
(∑k

i=1 Ui + k
)

=

∏b
k=1 Γ (Uk + 1)

Γ
(∑b

i=1 Ui + b
) .

We focus on the posterior of class 0 first. fθ0(x
0
i |0) is equal to the bin probability

corresponding to bin x0
i , thus we have the likelihood function,

n0∏
i=1

fθ0(x
0
i |0) =

b∏
i=1

pUi
i =

b∏
i=1

(
a0(i) − a0(i−1)

)Ui .

The posterior parameter density is still proportional to the product of the bin prob-
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Fig. 3. Region of integration in Eπ∗ [ε0n(θ0)] for b = 3.

abilities:

π∗(θ0) ∝
b∏
i=1

p
α0
i+Ui−1
i =

b∏
i=1

(
a0(i) − a0(i−1)

)α0
i+Ui−1

. (3.3)

The posterior for θ1 is similar. Thus, π∗(θ0) and π
∗(θ1) are also Dirichlet distributions

with updated hyperparameters, α0
i + Ui and α

1
i + Vi [83].

To find the proportionality constant in π∗(θ0), we must be careful with the region

of integration to force the bin dividers to be ordered. An example of this region is

shown in Fig. 3 for b = 3. We proceed by letting the last bin divider, a0(b−1), vary

freely between 0 and 1. Once this divider is fixed, the next smallest bin divider can

vary from 0 to a0(b−1), and this continues until we reach the first bin divider, a0(1),

which can vary from 0 to a0(2). The proportionality constant for π∗(θ0) can be found

by applying Lemma 1 to (3.3) to obtain

π∗(θ0) =
Γ
(
n0 +

∑b
i=1 α

0
i

)
∏b

k=1 Γ (Uk + α0
k)

b∏
i=1

(
a0(i) − a0(i−1)

)Ui+α
0
i−1

. (3.4)

The Bayesian MMSE error estimate contributed by class 0 is found from (2.11):

ε̂0 =

∫ 1

0

. . .

∫ a(2)

0

ε0n(θ0)π
∗(θ0)da

0
(1) . . . da

0
(b−1).
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The true error for class 0, ε0n(θ0), is given by (3.1), and the posterior parameter

density, π∗(θ0), has been found in (3.4). Using the same region of integration as

before, with an example illustrated in Fig. 3 for b = 3, the true error for class 0 is

ε̂0 =

∫ 1

0

∫ a0
(b−1)

0

. . .

∫ a0
(3)

0

∫ a0
(2)

0

ε0n(θ0)π
∗(θ0)da

0
(1)da

0
(2) . . . da

0
(b−2)da

0
(b−1)

=

∫ 1

0

. . .

∫ a0
(2)

0

(
b∑

j=1

(
a0(j) − a0(j−1)

)
Iψn(j)=1

)

×

Γ
(
n0 +

∑b
i=1 α

0
i

)
∏b

k=1 Γ (Uk + α0
k)

b∏
i=1

(
a0(i) − a0(i−1)

)Ui+α
0
i−1

 da0(1) . . . da
0
(b−1)

=
b∑

j=1

Γ
(
n0 +

∑b
i=1 α

0
i

)
∏b

k=1 Γ (Uk + α0
k)

Iψn(j)=1

×
∫ 1

0

. . .

∫ a0
(2)

0

b∏
i=1

(
a0(i) − a0(i−1)

)Ui+α
0
i−1+δi−j da0(1) . . . da

0
(b−1),

where δi is the Kronecker delta function, equal to 1 if i = 0 and 0 otherwise. These

integrals can also be solved using Lemma 1. We obtain

ε̂0 =
b∑

j=1

Γ
(
n0 +

∑b
i=1 α

0
i

)
∏b

k=1 Γ (Uk + α0
k)

Iψn(j)=1

∏b
k=1 Γ (Uk + α0

k + δk−j)

Γ
(∑b

i=1(Ui + α0
i − 1 + δi−j) + b

)
=

b∑
j=1

Γ
(
n0 +

∑b
i=1 α

0
i

)
∏b

k=1 Γ (Uk + α0
k)

Iψn(j)=1

(
Uj + α0

j

)∏b
k=1 Γ (Uk + α0

k)(
n0 +

∑b
i=1 α

0
i

)
Γ
(
n0 +

∑b
i=1 α

0
i

)
=

b∑
j=1

Uj + α0
j

n0 +
∑b

i=1 α
0
i

Iψn(j)=1. (3.5)

The proof for class 1 is identical, except we replace a0(k) with a
1
(k), Ui with Vi and n0

with n1. In the end we obtain

ε̂1 =
b∑

j=1

Vj + α1
j

n1 +
∑b

i=1 α
1
i

Iψn(j)=0. (3.6)

In the special case where we have uniform priors for the bin probabilities (αyi = 1
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for all i and y) and uniform c, the Bayesian MMSE error estimate is:

ε̂ =
n0 + 1

n+ 2

(
b∑
i=1

Ui + 1

n0 + b
Iψn(i)=1

)
+
n1 + 1

n+ 2

(
b∑
i=1

Vi + 1

n1 + b
Iψn(i)=0

)
.

These results agree with the Bayesian error estimator for uniform priors and b = 2

found in the previous section. Also, comparing the true error in (3.1) with the above

equation, we may view this Bayesian MMSE error estimator as a plug-in rule with

Ui+1
n0+b

as the estimate for pi,
Vi+1
n1+b

as the estimate for qi, and
n0+1
n+2

as the estimate of c.

B. Performance and Robustness

This section includes three simulation studies on Bayesian error estimators for discrete

models. In the first study, we observe the performance of Bayesian error estimators

for two bins and different beta prior distributions for the bin probabilities. By study-

ing beta priors that target specific values for p and q, we will observe the benefits

of informative priors and assess the robustness of discrete Bayesian error estimators

to poor prior distribution modeling. In the second study, we present performance of

Bayesian error estimators with uniform priors for an arbitrary number of bins. These

simulations show how and when Bayesian error estimators improve on the resubstitu-

tion and leave-one-out error estimators, especially as we increase the number of bins.

Finally, we conclude this section with performance results with respect to bias and

deviation variance.

1. Beta Priors and b = 2

In each simulation, we fix the bin size to b = 2, the true distribution (c = 0.5,

p ∈ [0, 1] and q = 1 − p) and the sample size. The Bayes error, or the optimal true

error obtained from the optimal classifier (not to be confused with Bayesian error
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(d) high, n = 5
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(e) low, n = 5
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(f) symmetric, n = 5
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(g) high, n = 20
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(h) low, n = 20
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(i) symmetric, n = 20

Fig. 4. High-variance, low-variance and symmetric priors centered at p = 0.5 versus

p along with RMS deviation from true error for discrete classification versus

p (b = 2, c = 0.5). Colored graphs represent Bayesian error estimators with

different beta priors, which are color coded with the distributions labeled and

shown at the top of each column.
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estimators), is simply min (p, q). We generate a random non-stratified sample by

first determining the sample size for each class using a binomial(n, c) experiment and

then assign each sample point a bin number according to the distribution of its class.

The sample is then used to train a histogram classifier where the class assigned to

each bin is determined by a majority vote. The true error is calculated using the

known distribution parameters, where the same sample used for classifier design are

used to find resubstitution, leave-one-out, and several Bayesian error estimates for

the designed classifier. With the true error and estimated error found, we finally

have the squared deviation of each estimate with respect to the true error. This

process is repeated 10,000,000 times to find a Monte-Carlo approximation for the

RMS deviation from true error for each error estimator. All results are presented in

Figs. 4 and 5.

For all Bayesian error estimators, c is assumed to have a uniform prior. In each

simulation, all Bayesian error estimators utilize slightly different priors, defined by

different hyperparameters αyi . Since we always set q = 1−p, given fixed priors for p we

choose priors for q that are the same but flipped about 0.5, i.e., α1
1 = α0

2 and α
1
2 = α0

1

so that Eπ[q] = 1−Eπ[p]. The top row of Fig. 4 shows several beta distributions used

as priors for p, each defining a different Bayesian error estimator. Part (a) contains

five beta distributions representing priors with varying means (Eπ[p] = 0.5, 0.6, 0.7,

0.8 and 0.9) and relatively high variance. Part (b) is similar, except with tighter

variances. Part (c) shows several symmetric beta distributions centered at p = 0.5

(including the uniform prior in red) with varying degrees of bias toward middle versus

edge values of p. In all priors in part (c), the αyi are equal for all i.

The graphs below the priors in Fig. 4 present RMS deviation from true error

versus the true distributions, p, for the error estimators corresponding to these priors.

Figure 5 is similar, but provides performance versus sample size. In all RMS graphs of
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(a) high, p = 0.65
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(b) low, p = 0.65
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(c) symmetric, p = 0.65
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(d) high, p = 0.8
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(e) low, p = 0.8
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(f) symmetric, p = 0.8

Fig. 5. RMS deviation from true error for discrete classification versus sample size

(b = 2, c = 0.5). Colored graphs represent Bayesian error estimators with

different beta priors, which are color coded with the distributions labeled and

shown at the top of each column.

both figures, each point represents a fixed sample size and true distribution (c, p and

q). The graphs are color coded to aid in matching priors to their corresponding error

estimator, for example if we pick the high-variance red prior in the upper left graph of

Fig. 4, the performance of the Bayesian error estimator using this prior is also shown

in red in all the graphs in the same column. For comparison, the resubstitution,

leave-one-out, and Bayesian error estimator with uniform priors are also included in

all RMS graphs.

In the first row of Fig. 5, we fix the true distributions at p = 0.65 and q = 0.35 and

observe performance as we increase the sample size. Similarly, in the second row the

true distributions are fixed at p = 0.8 and q = 0.2. Naturally, these simulations show

that priors with a high density around the true distributions have better performance
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and tend to converge more quickly to the true error. For example, in Fig 4(b) the

light blue prior (with Eπ[p] = 0.8) matches the distribution p = 0.8 very well, and this

is reflected in the RMS of Fig. 5(e), where we observe remarkable performance. On

the other hand, when our priors have a small density around the true distributions,

performance can be quite poor compared to resubstitution and leave-one-out and

converge very slowly as we observe more samples. See for example the dark blue

prior (with Eπ[p] = 0.5) in Fig 5(e).

Figure 5 also suggests that, whereas, low-variance priors can have excellent per-

formance as well as the potential for catastrophic results, high-variance priors tend

to give safer results by avoiding catastrophic behavior at the expense of performance.

This is clear by comparing Fig. 5(d), which uses high variance priors and exhibits

a fairly tight range of performance, with Fig. 5(e), where there is a wider range of

results.

The second and third rows of Fig. 4 show performance with sample sizes n = 5

and n = 20, respectively, as a function of p. These illustrate how each prior performs

as the true distributions vary. In all cases, performance is best in the ranges of p

and q well represented in the prior distributions, but outside this range results can

be poor. This is best seen in Fig. 4(h), where the RMS curves move to the right as

the priors move right.

The RMS graphs in Fig. 4 reinforce the notion that narrow priors offer better

performance if they are within the targeted range of parameters, but performance

outside this range is reciprocally worse. For example, in Fig. 4(h) note how the

curves dip very low (good performance when in range) but are narrow (away from

this range performance rapidly deteriorates) compared to the corresponding graphs

using high-variance priors in Fig. 4(g).

In the right column, Figs. 4(f) and 4(i) show that the uniform prior tends to
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have poor performance near the edges where p is close to 0 or 1. We will discuss this

phenomenon in more detail in the next section, but here these graphs show that if

one has a strong belief that p is near 0 or 1, then the uniform prior can be corrected

to improve performance. For instance, if we use the dark blue prior in Fig. 4(c), then

the new error estimator no longer has a problem near the edges in Figs. 4(f) and 4(i),

however performance near p = 0.5 is sacrificed. With this prior, note performance of

the Bayesian error estimator becomes similar to that of resubstitution; the difference

is mostly due to the estimation of c, where resubstitution effectively uses n0

n
and the

Bayesian error estimator uses n0+1
n+2

.

2. Uniform Priors

This section treats the RMS performance of Bayesian error estimators with non-

informative uniform priors for an arbitrary number of bins. As before, we use a

histogram classification rule and non-stratified sampling throughout.

Figure 6 gives the average RMS deviation from true error, as a function of sample

size, over all distributions in the model with uniform priors for the bin probabilities

and c. To generate these graphs, the true distributions and c were randomly selected,

a collection of random samples was randomly generated according to the current dis-

tributions, and the square deviation from true error was calculated for each error

estimator. This was repeated to obtain Monte-Carlo approximations of the RMS for

each error estimator. The figure indicates that the Bayesian error estimator has ex-

cellent average performance for each fixed n. Indeed, it is optimal according to (2.2).

The Bayesian MMSE error estimator shows great improvement over resubstitution

and leave-one-out, especially for small samples or a large number of bins. Note also,

as has been demonstrated analytically for discrete histogram classification, resubsti-

tution is superior to leave-one-out for small numbers of bins but poorer for large
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(a) b = 2
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(b) b = 4

5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

0.35

samples

R
M

S
 d

ev
ia

tio
n 

fr
om

 tr
ue

 e
rr

or

 

 
resub/plugin
loo
Bayes

(c) b = 8
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(d) b = 16

Fig. 6. RMS deviation from true error for discrete classification and uniform priors

with respect to sample size (c and bin probabilities uniform).

numbers (on account of increasing bias) [26].

In the remaining plots in this section, the distributions are fixed with c = 0.5.

We use the Zipf model, or power law model from [26], where pi ∝ i−α and qi = pb−i+1,

i = 1, . . . , b. The parameter α ≥ 0 is a free parameter used to target a specific Bayes

error, where larger α corresponds to smaller Bayes error.

Figure 7 shows RMS as a function of sample size for bin size 2 and Bayes errors

0.1, 0.2 and 0.4. Figures 8, 9 and 10 present analogous results for bin sizes 4, 8 and

16, respectively. Figure 11 shows RMS as a function of Bayes error for bin size 2 and

sample sizes 5 and 20. Figures 12, 13 and 14 present analogous results for bin sizes
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(a) Bayes error = 0.1
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(b) Bayes error = 0.2
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(c) Bayes error = 0.4

Fig. 7. RMS deviation from true error for discrete classification and uniform priors

with respect to sample size (c = 0.5, b = 2).
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(a) Bayes error = 0.1
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(b) Bayes error = 0.2
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(c) Bayes error = 0.4

Fig. 8. RMS deviation from true error for discrete classification and uniform priors

with respect to sample size (c = 0.5, b = 4).
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(a) Bayes error = 0.1
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(b) Bayes error = 0.2
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(c) Bayes error = 0.4

Fig. 9. RMS deviation from true error for discrete classification and uniform priors

with respect to sample size (c = 0.5, b = 8).
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(a) Bayes error = 0.1
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(b) Bayes error = 0.2
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(c) Bayes error = 0.4

Fig. 10. RMS deviation from true error for discrete classification and uniform priors

with respect to sample size (c = 0.5, b = 16).
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(a) n = 5
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(b) n = 20

Fig. 11. RMS deviation from true error for discrete classification and uniform priors

with respect to Bayes error (c = 0.5, b = 2).
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(a) n = 5

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

Bayes error

R
M

S
 d

ev
ia

tio
n 

fr
om

 tr
ue

 e
rr

or

 

 

resub/plugin
loo
Bayes

(b) n = 20

Fig. 12. RMS deviation from true error for discrete classification and uniform priors

with respect to Bayes error (c = 0.5, b = 4).
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(a) n = 5
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(b) n = 20

Fig. 13. RMS deviation from true error for discrete classification and uniform priors

with respect to Bayes error (c = 0.5, b = 8).
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(a) n = 5
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(b) n = 20

Fig. 14. RMS deviation from true error for discrete classification and uniform priors

with respect to Bayes error (c = 0.5, b = 16).
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4, 8 and 16, respectively. Increasing Bayes error corresponds to increasingly difficult

classification. As noted in [26], discrete classification for these bin sizes corresponds

to regulatory rule design in binary gene regulatory networks.

In sum, these graphs show that performance for Bayesian error estimation is

superior to resubstitution and leave-one-out for most distributions and tends to be

especially favorable with moderate to high Bayes errors and smaller sample sizes.

From Figs. 11 through 14, it appears that the performance of Bayesian MMSE error

estimation tends to be more uniform across all distributions, while the other error es-

timators, especially resubstitution, favor a small Bayes error. Bayesian MMSE error

estimators are guaranteed to be optimal on average over the ensemble of parameter-

ized distributions modeled with respect to the given priors; however, they are not

guaranteed to be optimal for a specific distribution, and a clear weakness of these

error estimators occurs when the Bayes error is very small.

To explain this latter phenomenon, suppose the true distributions are perfectly

separated by the bins, for instance, p1 = 1 and qb = 1, thereby giving a Bayes error

of zero. If we observe 5 samples from each class, these will be perfectly separated

into the two bins and the histogram classifier will assign the correct class to each bin.

Resubstitution and leave-one-out will both give estimates of 0, which is correct; how-

ever, since the true distribution is unknown, the Bayesian error estimator considers

the possibility that the bin probabilities are non-trivial. This improves the average

performance, but not for cases with zero (or very small) Bayes error. Of course, if it is

suspected before the experiment that the Bayes error is very low, or if any additional

information about the parameters is available to incorporate into the priors, we can

improve the Bayesian MMSE error estimator using informed priors as demonstrated

in Section III.B.1 with beta priors.
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(a) bias
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(b) deviation variance

Fig. 15. Bias and deviation variance from true error for discrete classification and

uniform priors versus sample size (c and bin probabilities uniform, b = 16).

3. Bias and Variance

Figure 15 examines bias and deviation variance versus sample size for a 16 bin prob-

lem, averaged over both samples and a uniform prior on the distributions. Resub-

stitution, leave-one-out, and the Bayesian error estimator with uniform priors are

shown. Recall that, according to (2.4), the Bayesian MMSE error estimator is unbi-

ased when averaged over all distributions in the model and all possible samples from

these distributions, regardless of the classification rule. We see the unbiasedness of

the Bayesian MMSE error estimator in Fig. 15(a), which shows the average bias over

all distributions and samples with respect to sample size. Figure 15(b) also shows

the significant small-sample advantage in average deviation variance of the Bayesian

MMSE error estimator relative to leave-one-out and resubstitution.

Figures 16 and 17 present bias and deviation variance versus Bayes error for 16

bins, c = 0.5, and the same error estimators with n = 5 and n = 20, respectively.
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(b) deviation variance

Fig. 16. Bias and deviation variance from true error for discrete classification and

uniform priors versus Bayes error (c = 0.5, b = 16, n = 5).
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(b) deviation variance

Fig. 17. Bias and deviation variance from true error for discrete classification and

uniform priors versus Bayes error (c = 0.5, b = 16, n = 20).
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In these figures, each point represents a fixed distribution, using the same model

described previously (i.e., the Zipf model with c = 0.5). Notice that leave-one-out

is nearly unbiased with a very large deviation variance, while resubstitution is quite

optimistically biased with a much lower deviation variance. In contrast, the Bayesian

error estimator is pessimistically biased when the true classes are well separated (low

Bayes error), but tends to be optimistically biased when the true classes are highly

mixed together (high Bayes error). This correlates with our previous RMS graphs,

where the performance of the error estimator is usually best with moderate Bayes

error. At the same time, the deviation variance often rivals that of resubstitution.

C. Discussion

We have defined the Bayesian MMSE error estimator for classification, discussed some

of its properties, derived its analytic representation for discrete classification, and

considered its performance. In the next chapter, we will derive and study the Bayesian

MMSE error estimator for linear classification in the Gaussian model, including an

application to genomic cancer classification. Before closing we would like to comment

on three background issues.

The entire development of the Bayesian MMSE estimator is based on the ex-

pectation of (2.3) involving the function g(X, Y ). In this case, the expectation is

conditioned on the sample and therefore yields a function of the sample as occurs

in (2.5). This kind of expectation, when unconditioned, plays a fundamental role in

robust classification and, more generally, in robust filter design. The theory of opti-

mal robust filtering dates back to the 1970s where the problem was to design a linear

filter that is optimal across an uncertainty class, P = {Pθ}, of random processes, i.e.,

a robust Wiener filter. The problem was originally posed in a minimax framework:
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find the filter that minimizes the maximum error across the uncertainty class [84, 85].

By putting a probability measure π(θ) on the space {Pθ}, thereby giving more weight

to more likely processes, robust filtering, both linear and nonlinear, was put in a

Bayesian framework by defining the Bayesian robust filter to be the optimal filter,

ξφ, for the process Pφ that minimizes Eθ[g(θ, φ)], where g(θ, φ) is the MSE error for

the filter ξφ applied to the process Pθ [86, 38]. Optimal Bayesian robust filtering was

applied to classification by letting F = {Fθ} be a space of feature-label distributions

and, given a sample Sn, defining the Bayesian robust classifier for classification rule

Ψ to be the designed classifier ψφ for the feature-label distribution Fφ that minimizes

Eθ[g(θ, φ, Sn)], where g(θ, φ, Sn) is the classifier error for the classifier ψφ applied to

Fθ [87]. More recently, the concept of Bayesian robustness has been extended to find-

ing a robust controller across a space of ergodic Markov chains, in particular, gene

regulatory networks [40]. All of these approaches optimize operator behavior across

a space of distributions for a given error estimator. In defining the Bayesian MMSE

error estimator, we have viewed the problem from a reverse perspective: optimize the

error estimator across a space of distributions for a given operator.

Model uncertainty leads naturally to a Bayesian approach in the context of op-

timal filtering. More generally, Bayesian estimation involves a loss function (MSE

being one possibility) and minimization of the expected value of the loss function.

For parameter estimation, the most direct Bayesian approach is to assume a prior

distribution for the parameter and then optimize relative to the corresponding pos-

terior distribution. In our case, that would mean postulating a prior distribution for

the true error directly. However, since given the classifier the true error is known for

a known feature-label distribution, the uncertainty naturally arises in regard to the

feature-label distribution and, as we have seen, this fits naturally within the filter

theory of Section II.B.
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A key aspect of the Bayesian MMSE error estimator is that it can improve error

estimation via the assumption of a prior distribution; on the other hand, it is claimed

that cross-validation is advantageous because it requires no prior distribution to com-

pute the estimate. While this is true, assumptions are needed to insure acceptable

performance. Consider Fig. 14(a). Clearly, an RMS exceeding 0.2 renders the error

estimator virtually useless. In this sense, leave-one-out is only useful for Bayes error

less than 0.02. Hence, there must be a prior assumption to this effect, or else why is

it being used? On the other hand, RMS for the Bayesian MMSE error estimator is

below 0.2 for Bayes error exceeding 0.1. It is useful over a much wider range. More-

over, whereas we explicitly know this range because the assumptions are explicit, the

assumptions required for leave-one-out to be useful are typically not specified, so that

they remain implicit and the meaningfulness of the estimate is unknown.
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CHAPTER IV

BAYESIAN MMSE ERROR ESTIMATION—LINEAR CLASSIFICATION OF

GAUSSIAN DISTRIBUTIONS∗

A. The Gaussian Model

We will derive closed-form Bayesian MMSE error estimators for the Gaussian model.

Each sample point is a column vector of D multivariate Gaussian features, so that the

sample space is RD with D dimensions. For each class, labeled y = 0 or y = 1, assume

a Gaussian distribution with parameters θy = [µy,Λy], where µy is the mean of the

class-conditional distribution and Λy is a collection of parameters that determine the

covariance of the class, Σy (we make a distinction to enable us to impose a structure

on the covariance). The parameter space of µy is RD, and the parameter space of Λy,

denoted Λy, must be carefully defined to permit only valid covariance matrices. We

will sometimes write Σy without explicitly showing its dependence on Λy, that is, we

simply write Σy instead of Σy(Λy). A multivariate Gaussian distribution with mean

µ and covariance Σ is denoted by fµ,Σ(x), so that the parameterized class-conditional

distributions are fθy(x|y) = fµy ,Σy(x).

We will consider three covariance models: a fixed covariance (Σy = Λy is known

perfectly), a scaled identity covariance having features that are uncorrelated with

equal variances (Λy = σ2
y is a scaler and Σy = σ2

yID, where ID is the D ×D identity

∗Reprinted with permission from “Bayesian Minimum Mean-Square Error Estimation for Classi-
fication Error–Part II: The Bayesian MMSE Error Estimator for Linear Classification of Gaussian
Distributions” by L. A. Dalton and E. R. Dougherty, 2011, IEEE Transactions on Signal Processing,
vol. 59, no. 1, pp. 130–144, Copyright 2011 by IEEE.
This material is posted here with permission of the IEEE. Such permission of the IEEE does

not in any way imply IEEE endorsement of any of Texas A&M University’s products or services.
Internal or personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale
or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this material, you agree to all provisions of the copyright laws protecting it.
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matrix) and an arbitrary covariance (Σy = Λy can be any valid covariance matrix).

Note that a different covariance model may be used for each class.

The sample mean and covariance matrices are found using the usual formulas:

µ̂y =
1
ny

∑ny

i=1 x
y
i and Σ̂y =

1
ny−1

∑ny

i=1(x
y
i − µ̂y)(x

y
i − µ̂y)

T . (4.1)

We assume Σ̂y is nonsingular. If Σ̂y is singular, then π∗(θy) is not trivial to find

and we will not go through the details here. Alternatively, one may also convert the

classifier and the distribution for class y to a problem in smaller dimensions where

Σ̂y is nonsingular, but this is not an equivalent approach since the class-conditional

densities will effectively be restricted to a smaller subspace.

1. Prior Parameter Densities

Considering one class at a time, we assume Σy is invertible with probability 1, and

for invertible Σy our priors are of the form:

π(θy) ∝|Σy|−(κ+D+1)/2 exp
(
−1

2
trace

(
SΣ−1

y

))
× |Σy|−1/2 exp

(
−ν

2
(µy −m)TΣ−1

y (µy −m)
)
, (4.2)

where in general we minimally require the hyperparameters κ to be a real number

(we will show that restricting κ to be an integer will permit us to utilize a closed form

solution for the Bayesian MMSE error estimator), S to be a non-negative definite

D × D matrix, ν to be a real number, and m to be a length D real vector. Note

that we can have different priors for both classes, but since the analysis for each class

can be done independently we will not make a distinction between the notation for

hyperparameters in either class.

The hyperparameter m can be viewed as a target for the mean, where the larger

ν is the more localized the prior is about m. Similarly, S can be viewed as a target
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for the shape of the covariance, although the actual expected variance may be scaled.

For instance, in the arbitrary covariance model where Σy = Λy, this prior is a normal-

inverse-Wishart distribution, which is the conjugate prior for the mean and covariance

when sampling from normal distributions [77, 88], and Eπ[Σy] = S/(κ−D− 1). If S

is scaled appropriately, then the larger κ is the less the covariance, Σy, is allowed to

wiggle. At the same time, increasing κ while fixing the other hyperparameters defines

a prior favoring smaller |Σy|.

Requirements for a proper prior depend on the definition of Λy, for example, in

the arbitrary covariance model we require κ > D−1, S positive definite, and ν > 0 to

guarantee a proper normal-inverse-Wishart prior. That being said, in the Gaussian

model we will use improper priors freely in our analysis, as long as the posterior is

proper. Some useful examples of improper priors occur when S = 0 and ν = 0. In

this case, our prior has the form

π(θy) ∝ |Σy|−(κ+D+2)/2. (4.3)

If κ+D+2 = 0, we obtain flat priors used by Laplace [89]. Alternatively, if Λy = Σy,

then with κ = 0 we obtain Jeffreys’ rule prior, which is designed to be invariant to

differentiable one-to-one transformations of the parameters [90, 91], and with κ = −1

we obtain independence Jeffreys’ prior, which uses the same principle as the Jeffreys’

rule prior but also treats the mean and covariance matrix as independent parameters.

2. Posterior Parameter Densities

For fixed κ, S, ν and m, the posterior probabilities of the distribution parameters are

found from (2.9). After some simplification, we have

π∗(θy) ∝π(θy)|Σy|
−ny
2 exp

(
−1

2
trace((ny − 1)Σ̂yΣ

−1
y )− ny

2
(µy − µ̂y)

TΣ−1
y (µy − µ̂y)

)
.
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Our prior has a similar form to this expression and can be merged with the rest of

the equation, giving

π∗(θy) ∝ |Σy|−(κ+ny+D+1)/2 exp

(
−1

2
trace

((
(ny − 1)Σ̂y + S

)
Σ−1
y

))
× |Σy|−1/2 exp

(
− 1

2

(
ny(µy − µ̂y)

TΣ−1
y (µy − µ̂y) + ν(µy −m)TΣ−1

y (µy −m)
))

.

Furthermore, as long as either ν + ny > 0 we have

ny(µy − µ̂y)
TΣ−1

y (µy − µ̂y) + ν(µy −m)TΣ−1
y (µy −m)

=(ny + ν)

(
µy −

nyµ̂y + νm

ny + ν

)T
Σ−1
y

(
µy −

nyµ̂y + νm

ny + ν

)
+

nyν

ny + ν
(µ̂y −m)TΣ−1

y (µ̂y −m).

This leads us finally to the posterior density, which has the same form as the prior:

π∗(θy) ∝|Σy|−(κ∗+D+1)/2 exp

(
−1

2
trace

(
S∗Σ−1

y

))
× |Σy|−1/2 exp

(
−ν

∗

2
(µy −m∗)T Σ−1

y (µy −m∗)

)
(4.4)

where

κ∗ = κ+ ny,

S∗ = (ny − 1)Σ̂y + S +
nyν

ny + ν
(µ̂y −m)(µ̂y −m)T ,

ν∗ = ν + ny,

m∗ =
nyµ̂y + νm

ny + ν
.

These hyperparameters may be viewed as being updated after observing the data.

Similar results have been found in [77]. Note that the choice of Λy will effect the pro-

portionality constant in π∗(θy). We may also write the posterior probability in (4.4)
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as

π∗(θy) = π∗(µy|Λy)π∗(Λy),

where

π∗(µy|Λy) = fm∗,Σy/ν∗(µy),

π∗(Λy) ∝ |Σy|−(κ∗+D+1)/2 exp

(
−1

2
trace

(
S∗Σ−1

y

))
.

Thus, for a fixed covariance matrix the posterior density for the mean, π∗(µy|Λy), is

Gaussian. We will see that we require ν∗ = ν + ny > 0 in all models considered, so

π∗(µy|Λy) is always proper. The validity of π∗(Λy) depends on the definition of Λy,

which will be covered in detail in later sections. Although it is not mandatory for the

prior to be a proper density (e.g., in the general covariance model where Σy = Λy,

recall that the prior is proper if κ > D − 1, S positive definite, and ν > 0), it is

crucial for the posterior to be proper (e.g., in the general covariance model we must

have κ∗ > D − 1, S∗ positive definite, and ν∗ > 0).

3. The Bayesian Error Estimator for Linear Classifiers

The posterior expectations for εyn used to find the Bayesian estimator follow from (2.11):

ε̂y =

∫
Λy

∫
RD

εyn(µy,Λy)π
∗(µy|Λy)dµyπ∗(Λy)dΛy. (4.5)

Suppose the classifier discriminant is linear in form, i.e.,

ψn(x) =

 0 if g(x) ≤ 0,

1 if g(x) > 0,
(4.6)

where g(x) = aTx+b with some constant vector a and constant scalar b, and we allow

this classifier to be any function of the observed samples. With fixed distribution
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parameters and non-zero a, the true error for this classifier applied to a class y

Gaussian distribution with mean µy and covariance Σy is given by

εyn = Φ

(
(−1)yg(µy)√

aTΣya

)
, (4.7)

where Φ is the unit normal Gaussian cumulative distribution function [43]. If a = 0,

that is if the designed classifier is constant, then the true error, εyn, is deterministically

zero or one, depending on the sign of b, so that the Bayesian error estimator can

be found deterministically from (2.10). Hence, in the remainder of this chapter we

assume a ̸= 0.

Interestingly, the Bayesian error estimator simplifies to a function of just the

sample mean and covariance, not the individual sample points themselves. In this

sense, the Bayesian error estimation rule boils down to the quality of the parameter

estimates, just like the plug-in rule. The difference is that it optimally processes these

parameters to find the MMSE error estimate. The plug-in rule is intuitive, but really

an arbitrary method based on the hope that parameter estimates will be close to the

true ones.

In the remainder of this section, we consider the effect of applying priors to dif-

ferent transformations of the covariance matrix. For instance, in the scaled identity

covariance model Λy contains the variances in Σy rather than standard deviations,

and in the arbitrary covariance model Λy contains the covariance matrix itself, rather

than the precision matrix (the inverse covariance matrix) or parameters from a de-

composition of the covariance matrix. We will demonstrate how such transformations

can result in Bayesian error estimators of the same form. In particular, we will show

that Bayesian error estimators derived for the arbitrary covariance model using the

covariance matrix itself for Λy are of the same form as estimators derived using a

statistic based on the Cholesky decomposition (in one dimension this is equivalent to
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using the standard deviation rather than variance).

Consider two different priors. The first is defined with respect to the covariance

matrix itself, i.e., Σy = Λy and Λy contains all positive definite matrices. For this

prior, we write the posterior density as π∗
1(Σy, κ) and the Bayesian error estimator as

ε̂y1 (κ), to emphasize the value of κ. In the second prior, we let Σy = ΛyΛ
T
y , where

Λy is the set of all invertible lower triangular matrices. The Jacobean determinant of

this transformation is determined by dΛy = |Σy|−1/2dΣy [92] and Λy is an invertible

lower triangular matrix if and only if Σy is positive definite. For this prior, we denote

the posterior density of Λy by π∗
2(Λy, κ) and the Bayesian error estimator as ε̂y2 (κ).

Observe when we normalize π∗
2(Λy, κ),∫

Λy

π∗
2(Λy, κ)dΛy =

∫
Λy

|ΛyΛTy |−
κ∗+D+1

2 exp

(
−1

2
trace

(
S∗(ΛyΛ

T
y )

−1
))

dΛy

=

∫
Σy>0

|Σy|−
κ∗+D+1

2 exp

(
−1

2
trace

(
S∗Σ−1

y

))
|Σy|−

1
2dΣy

=

∫
Σy>0

π∗
1(Σy, κ+ 1)dΣy.

In other words, we obtain the same normalization constant as we would for a prior de-

fined with respect to the covariance matrix with κ increased by 1. In fact, π∗
2(Λy, κ) =

π∗
1(Σy, κ+ 1)|Σy|1/2. The Bayesian error estimator for the second prior is thus

ε̂y2 (κ) =

∫
Λy

f
(
ΛyΛ

T
y

)
π∗
2(Λy, κ)dΛy

=

∫
Σy>0

f (Σy)π
∗
1(Σy, κ+ 1)dΣy = ε̂y1 (κ+ 1) ,

where f is the inner integral in (4.5), which can be expressed as a function of the

covariance, Σy. In other words, the Bayesian error estimator using a Cholesky de-

composition of Σy for Λy is exactly the same as the Bayesian error estimator obtained

using Λy = Σy, with a slight modification of κ.
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4. Solution for Fixed Covariance

We first consider the Bayesian error estimator for the fixed (invertible) covariance

model with arbitrary linear classification. Equivalently, we seek a closed-form solution

for the inner integral in (4.5). This is solved analytically in the following lemma.

Lemma 2. Let y ∈ {0, 1} be a class label and let ν∗ > 0. Also let m∗ ∈ RD be a mean

vector with D ≥ 1 features, Σ be an invertible covariance matrix, and g(x) = aTx+b,

where a ∈ RD is a non-zero length D vector and b ∈ R is a scalar. Then,∫
RD

Φ

(
(−1)yg(µ)√

aTΣa

)
fm∗,Σ/ν∗(µ)dµ = Φ

(
(−1)yg(m∗)√

aTΣa

√
ν∗

ν∗ + 1

)
,

where fµ,Σ is a Gaussian density with mean µ and covariance Σ.

Proof. Call this integral M . We have that,

M =

∫
RD

Φ

(
(−1)yg(µ)√

aTΣa

)
ν∗

D
2

(2π)
D
2 |Σ| 12

exp

(
−ν

∗

2
(µ−m∗)TΣ−1(µ−m∗)

)
dµ.

Since Σ is an invertible covariance matrix, we can use singular value decomposition

to write Σ = WW T with |Σ| = |W |2. Next consider the linear change of variables,

z =
√
ν∗W−1(µ−m∗). We have that,

M =

∫
RD

Φ

(−1)y
(

1√
ν∗
aTWz+ aTm∗ + b

)
√
aTΣa

 1

(2π)
D
2

exp

(
−zTz

2

)
dz.

Define ā = (−1)yWT a√
ν∗

√
aTΣa

and b̄ = (−1)yg(m∗)√
aTΣa

, and note that ∥ā∥2 = 1
ν∗
. Then,

M =

∫
RD

Φ
(
āTz+ b̄

) 1

(2π)
D
2

exp

(
−zTz

2

)
dz

=

∫
RD

∫
x<āT z+b̄

1

(2π)
D+1
2

exp

(
−x

2 + zTz

2

)
dxdz.

This is the integral of a D + 1 dimensional multivariate Gaussian distribution on

one side of a hyperplane, which is equivalent to the well known true error of a linear
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classifier contributed by a single Gaussian class given in (4.7). In this case, we have

the classifier ḡ(z, x) = āTz − x + b̄ applied to a class 0 Gaussian distribution with

zero mean and identity covariance. Hence,

M = Φ

(
b̄√

∥ā∥2 + 1

)
= Φ

(
(−1)yg (m∗)√

aTΣa

√
ν∗

ν∗ + 1

)
,

as desired.

Thus, the Bayesian error estimator, or expected error, for a Gaussian class with

fixed covariance and a linear classifier is given by

ε̂y =

∫
RD

Φ

(
(−1)yg(µy)√

aTΣya

)
fm∗,Σy/ν∗(µy)dµy = Φ

(
(−1)yg(m∗)√

aTΣya

√
ν∗

ν∗ + 1

)
. (4.8)

This equation suggests that averaging over the means simply applies a factor of
√

ν∗

ν∗+1

inside Φ. Since this factor is always less than 1, and for a good classifier (−1)yg(m∗)

tends to be negative, this suggests that the plug-in rule is pessimistic, and presents

the proper way to correct it.

5. Solution for Scaled Identity Covariance

Having solved the Bayesian error estimator for fixed covariance, Bayesian error esti-

mators for random covariance models can now be reduced to the following integral

over the covariance parameter only:

ε̂y =

∫
Λy

Φ

(
(−1)yg(m∗)√

aTΣya

√
ν∗

ν∗ + 1

)
π∗(Λy)dΛy. (4.9)

We now assume Λy contains only one parameter, Λy = σ2
y . We define the parameter

space Λy = [0,∞) and Σy = σ2
yID. This simplification of the covariance matrix is

most useful in cases with a very small sample, where estimating the entire covariance

matrix is not reliable.
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In this case, the posterior density π∗(σ2
y) is an inverse-gamma distribution:

π∗(σ2
y) =

1

Γ (α)
βα

1

(σ2
y)
α+1

exp

(
− β

σ2
y

)
,

where α > 0 and β > 0 are given by

α =
(κ∗ +D + 1)D

2
− 1,

β =
1

2
trace (S∗) .

If α ≤ 0 or β ≤ 0, then the posterior distribution is not valid and cannot be used to

find the Bayesian error estimate. Problems normalizing the posterior density occur

because we have used improper priors, which are a convenience. In these troublesome

cases, either a larger sample or better prior is needed to proceed [75].

If the posterior is valid, the expected error ε̂y from (4.9) is exactly the integral

in the following lemma.

Lemma 3. Let A ∈ R, α > 0, and β > 0. Also let fG(x;α, β) be an inverse-gamma

distribution with shape parameter α and scale parameter β. Then,∫ ∞

0

Φ

(
A√
z

)
fG(z;α, β)dz =

1

2

(
1 + sgn(A)I

(
A2

A2 + 2β
;
1

2
, α

))
,

where I(x; a, b) is the regularized incomplete beta function.

Proof. Call this integral M . Observe,

M =
1√
2π

βα

Γ(α)

∫ ∞

0

∫ ∞

− A√
z

1

zα+1
exp

(
−x

2

2
− β

z

)
dxdz

=

√
2

π

1

Γ(α)2α

∫ ∞

0

∫ ∞

− Ay√
2β

y2α−1 exp

(
−x

2 + y2

2

)
dxdy.

The last line follows from the change of variables y2/2 = β/z.

We next convert to polar coordinates with x = r cos θ and y = r sin θ. The limits
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of integration are determined by three cases, depending on the sign of A. These are

all considered simultaneously by defining,

θ0 =


arctan

(√
2β

|A|

)
if A < 0

π
2

if A = 0

π − arctan
(√

2β
|A|

)
if A > 0

= arctan

(
A√
2β

)
+
π

2
,

where the second equality follows using the identity arctanx + arctan 1/x = π/2 for

x > 0. We have

M =

√
2

π

1

Γ(α)

1

2α

∫ θ0

0

∫ ∞

0

(r sin θ)2α−1 exp

(
−r

2

2

)
rdrdθ

=

√
2

π

1

Γ(α)

1

2α

∫ θ0

0

sin2α−1 θdθ

∫ ∞

0

r2α exp

(
−r

2

2

)
dr

=

√
2

π

1

Γ(α)

1

2α

∫ θ0

0

sin2α−1 θdθ 2α−1/2Γ

(
α+

1

2

)
=

1√
π

Γ
(
α+ 1

2

)
Γ(α)

∫ θ0

0

sin2α−1 θdθ.

The integral over r was solved by noting that it contains a chi distribution with

2α + 1 degrees of freedom. The remaining integral over θ can be written in terms of

the regularized incomplete beta function. In particular, we have

M =
1√
π

Γ
(
α+ 1

2

)
Γ(α)

√
π

2

Γ (α)

Γ
(
α+ 1

2

) (1− sgn (cos θ0) I

(
cos2 θ0;

1

2
, α

))
=

1

2

(
1 + sgn(A)I

(
A2

A2 + 2β
;
1

2
, α

))
,

where we have used that cos2 θ0 =
A2

A2+2β
.

Thus, the Bayesian error estimator for the Gaussian model assuming scaled iden-
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tity covariances can be simplified to

ε̂y =
1

2

(
1 + sgn(A)I

(
A2

A2 + trace (S∗)
;
1

2
,
(κ∗ +D + 1)D

2
− 1

))
, (4.10)

where

A =
(−1)yg(m∗)

∥a∥

√
ν∗

ν∗ + 1
.

A closed-form representation for the regularized incomplete beta function, I(x; a, b),

is provided in Section IV.A.7 for cases when κ is an integer.

6. Solution for General Covariance

We now consider the general covariance model, where we define Λy = Σy and Λy

contains all positive definite matrices. In this case, π∗(Σy) is an inverse-Wishart

distribution [93, 94]:

π∗(Σy) =
|S∗|κ∗/2|Σy|−

κ∗+D+1
2

2κ∗D/2ΓD(κ∗/2)
exp

(
−1

2
trace

(
S∗Σ−1

y

))
,

where ΓD is the multivariate gamma function and for a proper posterior we require

S∗ to be positive definite (which is true when Σ̂y is invertible) and κ
∗ > D−1. In one

dimension, this is also an inverse-gamma distribution. If κ∗ ≤ D− 1 then one should

seek a proper prior distribution, obtain a larger sample, or simplify the form of the

covariance matrix (for instance by assuming identity covariances as in the previous

section) to proceed.

If the posterior is valid, the Bayesian error estimator for linear classifiers is found

from (4.9) in the following lemma.

Lemma 4. Let A ∈ R, a ∈ RD be a non-zero column vector, κ∗ > D − 1 be a real

number, and S∗ be a positive definite D × D matrix. Also let fW (Σ;S∗, κ∗) be an
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inverse-Wishart distribution with parameters S∗ and κ∗. Then∫
Σ>0

Φ

(
A√
aTΣa

)
fW (Σ;S∗, κ∗)dΣ

=
1

2

(
1 + sgn(A)I

(
A2

A2 + aTS∗a
;
1

2
,
κ∗ −D + 1

2

))
,

where the integration is over all positive definite matrices.

Proof. Call this integral M , and define the following matrix:

B =

 aT

0D−1×1 ID−1.

 .
Since a is non-zero, with a simple reordering of the dimensions we can guarantee

a1 ̸= 0. The value of aTS∗a is unchanged by such a redefinition, so without loss of

generality assume B is invertible.

Next define a change of variables, Y = BΣBT . Since B is invertible, Y is

positive definite if and only if Σ is also. Furthermore, the Jacobean determinant of

this transformation is |B|D+1 [95, 92]. Note aTΣa = y11, where the subscript 11

indexes the upper left element of a matrix, and we have:

M =

∫
Y >0

Φ

(
A

√
y11

)
fW (B−1Y (BT )−1;S∗, κ∗)

dY

|B|D+1

=

∫
Y >0

Φ

(
A

√
y11

)
fW (Y ;BS∗BT , κ∗)dY.

Since Φ
(

A√
y11

)
now depends on only one parameter in Y , the other parameters can be

integrated out. It can be shown that for any inverse-Wishart random variable,X, with

density fW (X;S∗, κ∗), the marginal distribution of x11 is also inverse-Wishart with

density fW (x11; s
∗
11, κ

∗−D+1) [96]. In one dimension, this is equivalent to the inverse-

gamma distribution fG(x11; (κ
∗−D+1)/2, s∗11/2). In this case, (BS∗BT )11 = aTS∗a,
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so

M =

∫ ∞

0

Φ

(
A

√
y11

)
fG

(
y11;

κ∗ −D + 1

2
,
aTS∗a

2

)
dy11.

Next apply Lemma 3, and we have

M =
1

2

(
1 + sgn(A)I

(
A2

A2 + aTS∗a
;
1

2
,
κ∗ −D + 1

2

))
.

Thus, the Bayesian error estimator in the case of general covariances is given by

ε̂y =
1

2

(
1 + sgn(A)I

(
A2

A2 + aTS∗a
;
1

2
,
κ∗ −D + 1

2

))
, (4.11)

where

A = (−1)yg(m∗)

√
ν∗

ν∗ + 1
.

If κ∗ (or κ) is an integer, then a closed-form representation for the Bayesian error

estimator is available in the next section.

7. Closed Form Representation for the I Function

The regularized incomplete beta function is defined by

I (x; a, b) =
1

B(a, b)

∫ x

0

ta−1(1− t)b−1dt

for 0 ≤ x ≤ 1, a > 0 and b > 0, where the beta function B(a, b) normalizes I so that

I (1; a, b) = 1. In our application, note that we only need to evaluate I
(
x; 1

2
, b
)
for

0 ≤ x < 1 and b > 0.

Although this integral does not have a closed-form solution for arbitrary param-

eters, in the following lemma we provide exact expressions for I
(
x; 1

2
, N

2

)
for positive

integers N . Restricting b to be an integer or half integer, which in all cases equiva-

lently restricts κ to be an integer, guarantees that these equations may be applied, so
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that Bayesian error estimators for the Gaussian model with linear classification may

be evaluated exactly using finite sums of common single variable functions.

Lemma 5. Let N be a positive integer. Then I
(
1; 1

2
, N

2

)
= 1 and for any real number

0 ≤ x < 1,

I

(
x;

1

2
,
N

2

)
=



2

π
arcsin

(√
x
)

if N = 1,

2

π
arcsin

(√
x
)
+

2

π

√
x

N−1
2∑

k=1

(2k − 2)!!

(2k − 1)!!
(1− x)k−

1
2 for N > 1 odd,

√
x

N−2
2∑

k=0

(2k − 1)!!

(2k)!!
(1− x)k for N > 1 even,

(4.12)

where !! is the double factorial.

Proof. I (1; a, b) = 1 is a property of the regularized incomplete beta function for all

a, b > 0. For 0 ≤ x < 1, we have that

I

(
x;

1

2
,
N

2

)
=

Γ
(
N+1
2

)
Γ
(
1
2

)
Γ
(
N
2

) ∫ x

0

t−
1
2 (1− t)

N−2
2 dt.

Using the substitution sin θ =
√
t, we have

I

(
x;

1

2
,
N

2

)
=

Γ
(
N+1
2

)
Γ
(
1
2

)
Γ
(
N
2

) ∫ arcsin
√
x

arcsin
√
0

1

sin θ

(
cosN−2 θ

)
2 sin θ cos θdθ

= 2
Γ
(
N+1
2

)
Γ
(
1
2

)
Γ
(
N
2

) ∫ arcsin
√
x

0

cosN−1 θdθ.

For 0 ≤ α < π/2 and k ≥ 0, define

Mk (α) ≡
∫ α

0

cosk θdθ.
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Using integration by parts or integration tables, it is well known that

Mk (α) =


α if k = 0,

sinα if k = 1,

k−1
k
Mk−2 (α) +

sinα cosk−1 α

k
if k > 1.

The claim for N = 1 is easy to verify using the case k = 0 above.

For n > 0, we apply a recursion using the equation for k > 1. If the recursion is

applied i > 0 times such that n− 2i ≥ 0, then

Mn (α) =
(n− 1)!!

(n− 2i− 1)!!

(n− 2i)!!

n!!
Mn−2i (α)

+
i∑

k=1

(n− 1)!!

(n− 2k + 1)!!

(n− 2k)!!

n!!
sinα cosn−2k+1 α

=
(n− 1)!!(n− 2i)!!

n!!(n− 2i− 1)!!
Mn−2i (α)

+
(n− 1)!!

n!!
sinα

i∑
k=1

(n− 2k)!!

(n− 2k + 1)!!
cosn−2k+1 α.

In particular, for n even we may repeat the recursion i = n/2 times to obtain

Mn (α) =
(n− 1)!!(0)!!

n!!(−1)!!
M0 (α) +

(n− 1)!!

n!!
sinα

n/2∑
k=1

(n− 2k)!!

(n− 2k + 1)!!
cosn−2k+1 α

=
(n− 1)!!

n!!

α+ sinα

n/2∑
k=1

(n− 2k)!!

(n− 2k + 1)!!
cosn−2k+1 α


=

(n− 1)!!

n!!

α+ sinα

n/2∑
k=1

(2k − 2)!!

(2k − 1)!!
cos2k−1 α

 ,
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and if n is odd we may repeat the recursion i = (n− 1)/2 times to obtain

Mn (α) =
(n− 1)!!(1)!!

n!!(0)!!
M1 (α) +

(n− 1)!!

n!!
sinα

(n−1)/2∑
k=1

(n− 2k)!!

(n− 2k + 1)!!
cosn−2k+1 α

=
(n− 1)!!

n!!
sinα

1 +

(n−1)/2∑
k=1

(n− 2k)!!

(n− 2k + 1)!!
cosn−2k+1 α


=

(n− 1)!!

n!!
sinα

1 +

(n−1)/2∑
k=1

(2k − 1)!!

(2k)!!
cos2k α


=

(n− 1)!!

n!!
sinα

(n−1)/2∑
k=0

(2k − 1)!!

(2k)!!
cos2k α,

where in each case we have redefined the indices of the sums in reverse order.

Returning to the original problem, we have for odd N > 1,

Γ
(
N+1
2

)
Γ
(
1
2

)
Γ
(
N
2

) =
2N−1

(
N−1
2

)
!
(
N−1
2

)
!

π (N − 2)!
=

2
N−1

2

(
N−1
2

)
!

π (N − 2)!!
=

(N − 1)!!

π (N − 2)!!

and

I

(
x;

1

2
,
N

2

)
= 2

Γ
(
N+1
2

)
Γ
(
1
2

)
Γ
(
N
2

)MN−1

(
arcsin

√
x
)

= 2
(N − 1)!!

π (N − 2)!!

(N − 2)!!

(N − 1)!!

×

arcsin
√
x+

√
x

(N−1)/2∑
k=1

(2k − 2)!!

(2k − 1)!!

(√
1− x

)2k−1


=

2

π
arcsin

√
x+

2

π

√
x

N−1
2∑

k=1

(2k − 2)!!

(2k − 1)!!
(1− x)k−

1
2 .

Finally, for even N > 1,

Γ
(
N+1
2

)
Γ
(
1
2

)
Γ
(
N
2

) =
N !

2N
(
N
2

)
!
(
N−2
2

)
!
=

(N − 1)!!

2
N
2

(
N−2
2

)
!
=

(N − 1)!!

2 (N − 2)!!
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and

I

(
x;

1

2
,
N

2

)
= 2

Γ
(
N+1
2

)
Γ
(
1
2

)
Γ
(
N
2

)MN−1

(
arcsin

√
x
)

= 2
(N − 1)!!

2 (N − 2)!!

(N − 2)!!

(N − 1)!!

√
x

(N−2)/2∑
k=0

(2k − 1)!!

(2k)!!

(√
1− x

)2k
=

√
x

N−2
2∑

k=0

(2k − 1)!!

(2k)!!
(1− x)k .

B. Performance and Robustness

We next present several simulation studies examining various aspects of performance

for Bayesian MMSE error estimators in the Gaussian model. In the first section,

we provide performance results for Bayesian error estimators that correctly assume

circular Gaussian distributions, thus demonstrating performance under true modeling

assumptions. The next section then simulates the same Bayesian error estimators

under non-circular Gaussian distributions, which is intended to show the performance

under false circular Gaussian modeling assumptions.

In the third section, we graph performance under Johnson distributions, which

are outside the assumed Gaussian model. These simulations show how robust Bayesian

error estimators are relative to the Gaussian assumption. This is important in prac-

tice since we cannot guarantee Gaussianity. We show that performance does require

nearly Gaussian distributions, but there is some degree of flexibility (in skewness and

kurtosis). This section is followed by a presentation of empirical performance on real

data from a breast cancer study.

Finally, in the last section we present an example demonstrating the average

performance for a Bayesian error estimator over all distributions using proper priors.

We show that performance is superior over all sample sizes on average, and also verify
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that these error estimators are unbiased under correct modeling assumptions.

1. Performance in True Circular Gaussian Modeling Assumptions

In this section, we provide several synthetic Monte-Carlo simulation results comparing

error estimators under circular Gaussian distributions. In all simulations, the mean

of class 0 is fixed at µ0 = [0, 0, . . . , 0] and the mean of class 1 at µ1 = [1, 0, . . . , 0].

Throughout most of this chapter, the covariance of each class is chosen to make the

distributions mirror images with respect to the hyperplane between the two means.

This plane is the optimal linear classifier and the classifier designed from the data is

meant to approximate it. In this section, the covariance of both classes are scaled

identity matrices, with the same scaling factor, denoted σ2, in both classes, i.e.,

Σ0 = Σ1 = σ2ID. The scale of the covariance matrix, σ2, is used to control Bayes

error, where a low Bayes error corresponds to a small variance and high Bayes error

to high variance.

We fix c = 0.5 and generate a random sample by first determining the sample size

for each class using a binomial(n, c) experiment. Each sample point is then assigned

a vector according to the Gaussian distribution of its class. The sample is used to

train an LDA classifier defined by

a = Σ̂−1 (µ̂1 − µ̂0) and b = −1

2
aT (µ̂1 + µ̂0) + ln

n1

n0

,

where the pooled covariance matrix, Σ̂, is given by

Σ̂ =
(n0 − 1)Σ̂0 + (n1 − 1)Σ̂1

n0 + n1 − 2
.

The estimates of the mean and covariance for each class are the usual ones given

in (4.1), and the true error of this classifier is calculated via (4.7) using the fixed true

distribution parameters.
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The same sample is used to find 5 non-parametric error estimates (resubstitution,

leave-one-out, cross-validation, 0.632 bootstrap, and bolstered resubstitution) and the

plug-in error estimate for the designed classifier, and ultimately the squared deviation

of each estimate with respect to the true error. The plug-in estimate is computed

using the usual estimates of the mean and covariance and the a priori class probability

estimate ĉ = n0

n
.

Up to three Bayesian MMSE error estimators are also evaluated, using the simple

improper priors in (4.3) with S = 0 and ν = 0 (m does not matter because ν = 0).

Two of these assume general covariances, one with κ + D + 2 = 0 (flat priors) and

one with κ = 0 (Jeffreys’ rule prior), and the last assumes scaled identity covariances

with κ +D + 2 = 0 (flat priors). In cases with only one feature, the Bayesian error

estimators assuming scaled identity covariances are the same as the ones assuming

general covariances, so only two Bayesian error estimators are provided. Since closed-

form equations are available from (4.12), these error estimates can be computed very

quickly, and this entire process is repeated 100,000 times to find a Monte-Carlo ap-

proximation for the RMS deviation from the true error for each error estimator. For

all Bayesian error estimators, in the event where the number of samples in one class

is so small that the posteriors used to find the Bayesian error estimator cannot be

normalized, κ is increased until the posterior is valid.

Figure 18 shows the RMS error of all error estimators with respect to Bayes error.

We see that the Bayesian MMSE error estimator for general covariances using a flat

prior is best for distributions with moderate Bayes error, but poor for very small or

large Bayes error. A similar result was found in the discrete classification problem.

Bolstered resubstitution is very competitive with the Bayesian error estimator for

general covariances and flat priors, especially in higher dimensions, and it is also very

flexible since it can be applied fairly easily to any classifier; however, keep in mind that
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(a) 1D, n = 30
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(b) 2D, n = 30
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(c) 5D, n = 50
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(d) 1D, n = 100
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(e) 2D, n = 100
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(f) 5D, n = 100

Fig. 18. RMS deviation from true error for Gaussian distributions with respect to

Bayes error.

bolstering is known to perform particularly well with circular densities (uncorrelated

equal variance features) like those in this example.

The Bayesian error estimator for general covariances using Jeffreys’ rule prior

(κ = 0) shifts performance in favor of lower Bayes error. Recall from the form of

the priors in (4.3) that a larger κ will put more weight on covariances with a small

determinant (usually corresponding to a small Bayes error) and less weight on those

with a large determinant (usually corresponding to a large Bayes error). If the Bayes

error is indeed very small, then the Bayesian error estimator using Jeffreys’ rule prior

is usually the best followed by the plug-in rule, which performs exceptionally well

because the sample mean and sample variance are very accurate even with a small

sample.
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Finally, regarding Fig. 18 note that with a larger number of features the Bayesian

error estimator assuming scaled identity covariances tends to be better than the one

assuming general covariances with κ = 0 over the entire range of Bayes error. This

makes clear the benefit of using more constrained assumptions, as long as the as-

sumptions are correct.

We graph RMS error with respect to sample size in Fig. 19 for 1, 2 and 5 dimen-

sions, and Bayes errors of 0.1, 0.2, 0.3 and 0.4. Graphs like these can be used to deter-

mine the sample size needed to guarantee a certain RMS. As the sample size increases,

the parametrically based error estimators (the plug-in rule and Bayesian MMSE error

estimators) tend to converge to zero much more quickly than the distribution-free er-

ror estimators. For example, all of the simulations using one feature (the left column

of Fig. 19) clearly separate the parametric and distribution-free error estimators. This

is not surprising since for a large sample the sample parameter estimates tend to be

very accurate.

Bayesian MMSE error estimators can improve greatly on traditional error esti-

mators. For only one feature, the benefit is clear, especially for moderate Bayes error

like in parts (d) and (g) of Fig. 19. In higher dimensions, there are many options

to constrain the covariance matrix and choose different priors, so the picture is more

complex.

2. Robustness to False Circular Gaussian Modeling Assumptions

The Bayesian MMSE error estimator assuming identity covariances performs very

well in many cases in Section IV.B.1, but in these simulations the identity covariance

assumption is correct. We consider two examples to investigate robustness relative

to the inaccuracy of this assumption.

For the first example, define ρ to be the correlation coefficient for class 0 in a two
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(a) 1D, Bayes error = 0.1
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(b) 2D, Bayes error = 0.1
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(c) 5D, Bayes error = 0.1
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(d) 1D, Bayes error = 0.2
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(e) 2D, Bayes error = 0.2
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(f) 5D, Bayes error = 0.2
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(g) 1D, Bayes error = 0.3
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(h) 2D, Bayes error = 0.3

50 100 150 200

0.05

0.1

0.15

samples

R
M

S
 d

ev
ia

tio
n 

fr
om

 tr
ue

 e
rr

or

 

 
resub
loo
cv
boot
bol
plugin
Bayes, iden., flat
Bayes, gen., flat
Bayes, gen., Jeff.

(i) 5D, Bayes error = 0.3
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(j) 1D, Bayes error = 0.4
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(k) 2D, Bayes error = 0.4
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(l) 5D, Bayes error = 0.4

Fig. 19. RMS deviation from true error for Gaussian distributions with respect to

sample size.
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(b) RMS deviation from true error

Fig. 20. Gaussian distributions varying correlation (2D, σ = 0.7413, n = 50).

feature problem. The correlation coefficient for class 1 is −ρ to ensure mirror image

distributions. Thus, the covariance matrices are given by

Σ0 =

 σ2 ρσ2

ρσ2 σ2

 and Σ1 =

 σ2 −ρσ2

−ρσ2 σ2

 .
Illustrations of the distributions used in this experiment are shown in Fig. 20(a) and

simulation results are shown in Fig. 20(b). For the simulations, we fix σ2 = 0.74132,

which corresponds to a Bayes error of 0.25 when there is no correlation. The Bayesian

error estimators assuming general covariances are not affected by correlation very

much, and interestingly the performance of the error estimator assuming identity co-

variances is also fairly robust to correlation in this particular model, although some

degradation can be seen for ρ > 0.8. Meanwhile, bolstering also appears to be some-

what negatively affected by high correlation, probably owing to the use of spherical

kernels when the true distributions are skewed.

In Fig. 21, we present a second experiment using different variances for each



80

1

sigma  = sigma0 1 sigma  = 2sigma0 12sigma  = sigma0 1

1 1

(a) Distributions used in RMS graphs

0.4 0.6 0.8 1
0.02

0.03

0.04

0.05

0.06

0.07

0.08

sigma
0

R
M

S
 d

ev
ia

tio
n 

fr
om

 tr
ue

 e
rr

or

 

 

resub
loo
cv
boot
bol
plugin
Bayes, iden., flat
Bayes, gen., flat
Bayes, gen., Jeff.

(b) RMS deviation from true error

Fig. 21. Gaussian distributions varying σ0 (2D, σ = 0.7413, n = 50).

feature. The covariances are given by

Σ0 = Σ1 =

 σ2
0 0

0 σ2
1

 ,
and we fix the average variance between the classes so that 1

2
(σ2

0 + σ2
1) = 0.74132.

When σ2
0 = σ2

1, the Bayes error of the classification problem is again 0.25. These

simulations show that the Bayesian error estimator assuming identity covariances can

be highly sensitive to unbalanced features, however this problem may be alleviated

by normalizing the raw data.

3. Robustness to False Gaussian Modeling Assumptions

Since Bayesian error estimators depend on parametric models of the true distribu-

tions, one may apply a Kolmogorov-Smirnov normality test or other hypothesis test

to discern if a sample deviates substantially from being Gaussian; nevertheless, the

actual distribution is very unlikely to be truly Gaussian, so we need to investigate

robustness relative to the Gaussian assumption. To explore this issue in a systematic

setting, we have applied Bayesian MMSE error estimators to Johnson distributions
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(d) Johnson SB, γ = 0.0

Fig. 22. Johnson Distributions with one parameter fixed and the other varying in

increments of 0.1 (η = 0, λ = 1).

in 1 dimension. Johnson distributions are a flexible family of distributions with four

free parameters, including mean and variance [97, 98]. There are two main classes in

the Johnson system of distributions: Johnson SU (for unbounded) and Johnson SB

(for bounded). The normal and log-normal distributions are also considered classes

in this system, and in fact they are limiting cases of the SU and SB distributions.

The Johnson system can be summarized as follows. If Z is a unit normal random

variable, then X is Johnson if (Z−γ)/δ = f((X−η)/λ), where f is a simple function

satisfying some desirable properties such as monotonicity [97, 98]. For log-normal
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distributions, f(y) = log(y); for Johnson SU distributions, f(y) = sinh−1(y); and for

Johnson SB distributions, f(y) = log(y/(1 − y)) = 2 tanh−1(2y − 1). For reference,

example graphs of these distributions are given in Fig. 22. Johnson SU distributions

are always unimodal, while SB distributions can also be bimodal. In particular, an

SB distribution is bimodal if δ < 1√
2
and |γ| < δ−1

√
1− 2δ2 − 2δ tanh−1

√
1− 2δ2.

The parameters γ and δ control the shape of the Johnson distribution and to-

gether essentially determine its skewness and kurtosis, which are normalized third

and fourth moments. In particular, skewness is equal to µ3/σ
3 and kurtosis is µ4/σ

4,

where µn is the nth mean-adjusted moment of a random variable and σ2 = µ2 is

the variance. Skewness and kurtosis are very useful statistics to measure normality;

Gaussian distributions always have a skewness of 0 and kurtosis of 3. For Johnson

distributions, skewness is more influenced by γ and kurtosis by δ, but the relationship

is not exclusive. Once the shape of the distribution is determined, η and λ are chosen

to fix the mean and variance.

Figure 23 illustrates the values of skewness and kurtosis obtainable within the

Johnson family. The region below the log-normal line can be achieved with John-

son SU distributions, while the region above can be achieved with Johnson SB

distributions. In fact, the normal, log-normal, SU and SB systems uniquely cover

the entire obtainable region of the skewness/kurtosis plane, so there is just one

distribution corresponding to each skewness/kurtosis pair. For all distributions,

kurtosis ≥ skewness2 + 1, where equality corresponds to a two point distribution

(taking on two values, one with probability p and the other with 1− p).

In this figure, γ = 0 corresponds to points on the left axis. The dotted diagonal

lines represent skewness and kurtosis obtainable with SU distributions and fixed val-

ues of δ. As we increase δ, these lines move up in an almost parallel manner. As we

increase γ, kurtosis increases along with skewness until we converge to a point on the
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Fig. 23. Skewness and kurtosis obtainable regions for Johnson distributions.

log-normal line. As a quick example, suppose we fix kurtosis at 4.0. We must have

δ > 2.3, which is limited by the worst case where γ = 0. Also, with SU distributions

we can only obtain a maximum skewness of about 0.75 (or square skewness of 0.57),

which is achieved using δ ≈ 4.1 and γ very large.

The simulation procedure in this section is the same as that in Section IV.B.1,

except the sample points are each assigned a Johnson distributed value rather than

Gaussian. We use mirror images of the same Johnson distribution for both classes;
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Fig. 24. Two class problems with Johnson distributions (1D, σ2 = 0.74132).
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examples are shown in Fig. 24. In the following, the parameters γ and δ refer to

that of class 0, while class 1 has the same δ and negative γ. Meanwhile, for each

class η and λ are selected to give the appropriate mean and covariance. The sample

size is fixed at n = 30, the means are always fixed at µ0 = 0 and µ1 = 1, and the

covariances are fixed at σ2 = 0.74132, which corresponds to a Bayes error of 0.25

for the Gaussian distribution. From Fig. 18(a), note with one feature, n = 30 and

Gaussian distributions with a Bayes error of 0.25 that the Bayesian error estimators

using the flat prior and Jeffreys’ rule prior perform quite well with RMSs of about

0.060 and 0.066, respectively. These are followed by the plug-in rule with an RMS of

0.070 and bolstering with an RMS of 0.073. We wish to observe whether the Bayesian

error estimation remains superior after distorting the skewness and kurtosis of the

original Gaussian distributions using Johnson distributions.

Figures 25(a) through 25(f) show the RMS of all error estimators for various

Johnson SU distributions, and Figs. 25(g) through 25(l) show analogous graphs for

Johnson SB distributions. In each sub-figure, we fix either δ or γ and vary the other

parameter to observe a slice of the performance behavior. The scale for the RMS

error of all error estimators is provided on the left axis as usual, and a graph of either

skewness (when δ is fixed) or kurtosis (when γ is fixed) as also been added and labeled

with a arrow, with the scale shown on the right axis. These skewness and kurtosis

graphs help illustrate the non-Gaussianity of the distributions represented by each

point.

Figure 25(f) presents a simulation observing the effect of δ (which has more

influence on kurtosis) with SU distributions and γ = 0. For γ = 0 there is no skewness,

and this graph shows that the Bayesian error estimator with flat priors requires δ to

be at least 1.5 before it surpasses all of the other error estimators (in this case the next

best is bolstering). This corresponds to a kurtosis of about 7.0. A similar graph of
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(b) SU, δ = 2.0
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(e) SU, δ = 5.0
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(f) SU, γ = 0.0
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(g) SB, δ = 0.5
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(h) SB, δ = 0.7

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

gamma

R
M

S
 d

ev
ia

tio
n 

fr
om

 tr
ue

 e
rr

or

 

 

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

sk
ew

ne
ss

resub
loo
cv
boot
bol
plugin
Bayes, flat
Bayes, Jeff.

skewness

(i) SB, δ = 0.9
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Fig. 25. RMS deviation from true error for Johnson SU and SB distributions (1D,

σ = 0.7413, n = 30). Right axis show skewness, or in (f) and (l) kurtosis.
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performance with Johnson SB distributions and γ = 0 is given in Fig. 25(l), in which

the same error estimator is the best whenever δ > 0.4, corresponding to kurtosis

greater than about 1.5. So although Gaussian distributions have a kurtosis of 3.0, in

this example the Bayesian MMSE error estimator is still better than all of the other

error estimators whenever there is no skewness and kurtosis is between 1.5 and 7.0.

Interestingly, performance can actually improve as we move away from Gaussian-

ity. For example, although it appears in Fig. 25(a) that the Bayesian error estimators

dip in the middle when δ = 1.0 (which is expected since γ = 0 for Gaussian dis-

tributions), for larger δ the RMS of the Bayesian estimators seem to monotonically

decrease with γ, as in Fig. 25(b), suggesting that they favor negative skewness (posi-

tive γ) where the classes are skewed away from each other. Simulations with Johnson

SB distributions also appear to favor slight negative skewness (negative γ), although

RMS graphs are not monotonic.

Finally, in Fig. 26 we present a graph summarizing the performance of Bayesian

error estimators on Johnson distributions with respect to the skewness and kurtosis

of class 0. The skewness-kurtosis plane shown in this figure is essentially the same as

that illustrated in Fig. 23, but also showing two sides to distinguish between positive

and negative skewness. Note performance for either positive or negative skewness

is distinct: when class 0 has positive skewness the distributions are skewed toward

each other (for mirror image distributions the kurtosis of class 1 is the same but

skewness is negative), and similarly when class 0 has negative skewness the distribu-

tions are skewed away from each other. Each of the dots in Fig. 26 represent fixed

class-conditional Johnson distributions, for example the pairs shown in Fig. 24. As

before, we fix σ2 = 0.74132, corresponding to a Bayes error of 0.25 for the Gaussian

distribution (which has a skewness 0 and kurtosis 3). All of the performance results

shown in Fig. 25 were included, along with a battery of several other simulations
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Fig. 26. RMS deviation from true error for Johnson distributions varying both skew-

ness and kurtosis (1D, σ = 0.7413, n = 30). Black dots are where the

Bayesian MMSE error estimator is best, white dots are where any other

error estimator is best.

covering different ranges for γ and δ.

Black dots in Fig. 26 represent distributions where the Bayesian MMSE error

estimator with flat priors performs better than all of the other six standard error

estimators, while white dots pessimistically represent distributions where any other

error estimator was better. With one feature, n = 30 and σ2 = 0.74132, the black

dots cover a relatively large range of skewness and kurtosis (especially with negative

skewness), indicating that Bayesian error estimators can be used relatively reliably

even if the true distributions are not perfectly Gaussian. Similar graphs or studies

may be used to determine an “acceptable” region for Gaussian modeling assumptions,

which may be useful for designing hypothesis tests. However performance in this
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graph depends heavily on the simulation settings, for instance notice in Fig. 18(a)

with one feature, n = 30 and a Bayes error of 0.45 that the Bayesian error estimator

is not the best error estimator even for Gaussian distributions, let alone Johnson

distributions.

4. Performance on Real Breast Cancer Data

We have applied the three non-informative Bayesian error estimators from the pre-

vious sections to normalized gene-expression measurements from a breast cancer

study [99]. The study included 295 sample points, with 180 assigned to class 0

(good prognosis) and 115 in class 1 (bad prognosis). From the original 295 points,

we randomly draw a non-stratified training sample of size n and use the remaining

sample points as holdout data to approximate the true error. This process is repeated

100,000 times to estimate the average RMS deviation of each error estimator from

the true error. In this analysis, we consider several combinations of 5 genes picked

in [28]: CENPA, BBC3, CFFM4, TGFB3 and DKFZP564D0462. For all feature sets

considered, a multivariate Shapiro-Wilk test applied to the full data set does not

reject Gaussianity over either of the classes at a 95% significance level.

Performance for sample sizes between 20 and 70 are shown in Fig. 27. The

Bayesian error estimator assuming general covariances with flat priors usually per-

forms quite well compared to the other error estimators and the error estimator

assuming general covariances with Jeffreys’ rule prior (κ = 0) is a decent performer,

especially for a small number of dimensions. That the flat prior seems to perform

better than Jeffreys’ rule prior is likely due to a fairly high Bayes error in these cases;

the flat prior defines a smaller κ (κ = −D−2 versus κ = 0) and is therefore better for

higher Bayes errors. If it is supposed before the experiment that the Bayes error is

in some range, this information can be used to select which prior is more appropriate
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Fig. 27. RMS deviation from true error for empirical measurements from a breast

cancer study.
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to use. In two or more dimensions, the Bayesian error estimator assuming identity

covariances sometimes performs very well, as in Fig. 27(d); however, its performance

advantage can be lost as sample size grows, as in Fig. 27(c). Contributing factors

are that there can be large differences between the variances of the features, and no

attempt has been made to avoid correlation.

5. Average Performance Using Proper Priors

Finally, we present an example illustrating the average performance of Bayesian er-

ror estimators over all distributions in a model. To average over all distributions we

require proper priors, so for the sake of demonstration we will use a carefully de-

signed proper prior in this section rather than the improper priors used previously.

Define Λy = Σy to allow general covariances, and for both classes define the prior

hyperparameters κ = ν = 5D and S = (κ−D − 1) 0.74132ID. For class 0 also define

m = [0, 0, . . . , 0], and for class 1 define m = [1, 0, . . . , 0]. For each class, this prior is

always proper and can be interpreted as the information available if we have observed

5 samples per feature before the experiment with sample mean m and covariance

0.74132ID, in the sense that this would be the posterior distribution if we had started

with a uniform prior and then observed this sample. In addition, we assume a uniform

distribution for the class probabilities, c.

We randomly generate 100,000 feature-label distributions–each determined by a

random class probability, c, and a set of means and covariances, µy and Σy for y ∈

{0, 1}, which were generated independently for each class according to the distribution

of the priors in (4.2). For each fixed feature-label distribution, we generated 10 sets

of samples, each used to train a classifier. The true error, all classical error estimator

used before and the Bayesian error estimator with correct priors are evaluated as

usual. These results were all averaged to produce Monte-Carlo approximations of
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RMS and bias over all distributions and sample sets for 1, 2 and 5 features, as shown

in Fig. 28.

These graphs validate that Bayesian error estimators, when averaged over all

distributions in the parameterized family and assuming the specified priors are true,

have optimal RMS performance and are unbiased for each sample size. In fact, the

performance of the Bayesian error estimator improves significantly relative to the

other error estimators as we increase the number of features. However, these results

only speak for average performance over all feature-label distributions with respect

to a specific prior; RMS and bias can both be poor for specific distributions.

C. Discussion

In this chapter, we have presented closed-form expressions for Bayesian MMSE er-

ror estimators applied to Gaussian distributions with a very general class of priors

and linear classification. Simulation results show that even non-informative Bayesian

error estimators can improve significantly upon traditional error estimators. Further-

more, since most performance results reported here utilize non-informative priors,

there is potential to improve results further by tailoring the priors for the experiment

at hand. We have also provided simulation results for Johnson distributions, which

show that Bayesian error estimators are fairly robust to false modeling assumptions;

nevertheless, for the sake of prudence this error estimator should be used in conjunc-

tion with hypothesis tests or a thorough examination of the problem to verify the

appropriateness of the modeling assumptions.

Robustness is a crucial issue for Bayesian error estimation because performance

can be seriously degraded when the feature-label distribution corresponding to the

data is not contained within the family of distributions covered by the model. This
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Fig. 28. RMS deviation from true error and bias for linear classification of Gaussian

distributions, averaged over all distributions and samples using a proper

prior.
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issue is especially problematic in the case of small samples, precisely the situation

in which Bayesian error estimation can be most beneficial. But, as noted in the

conclusion of the previous chapter, “model-free” error estimators are only model-free

in the sense that no model is used in their calculation. In fact, their performance is

strongly dependent on the feature-label distribution so that their use is not model-

free. In the case of Bayesian error estimators, modeling assumptions are explicit so

that it is possible to obtain concrete answers to questions regarding optimality and

performance bounds, whereas for “model-free” error estimators it is typically the case

that nothing is known of the validity of the estimate. Moreover, if we are willing to

add an extra step to the error estimation process, where we define a model and test

the observed sample for fitness in the model, then we can mitigate concern regarding

model assumptions and obtain a superior error estimator. A key aspect of this work

is that it directly confronts the necessity of assumptions by stating them outright. In

this way, Bayesian error estimators rigorously address the trade-off between accuracy

(closeness to the true error) and robustness (modeling assumptions).

That being said, there remains the critical practical issue of defining an appro-

priate model and level of robustness for a given experiment and sample size. In our

Bayesian approach, assumptions can be made on several levels. At the highest level,

we can define a larger or smaller family of distributions to consider in the model. A

few important factors to consider in this stage are model validity (are the samples suf-

ficiently Gaussian?), the number of degrees of freedom (parameters) in the model that

can be handled given the sample size, and the availability of a closed-form solution.

Once a model has been determined, we can restrict the parameter space to reduce

the number of degrees of freedom, as we have in the Gaussian model assuming scaled

identity covariance matrices. Finally, the investigator has the option to tune the prior

probabilities of the distribution parameters to take advantage of prior knowledge or
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otherwise manipulate the probability density of the parameters. Non-informative pri-

ors generate a more robust estimator, though with a higher Bayesian expected loss.

Alternatively, informed priors may not be as robust but offer decreased expected loss

as long as one has fairly accurate knowledge concerning the model parameters.
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CHAPTER V

EXACT SAMPLE-CONDITIONED MSE PERFORMANCE OF BAYESIAN

MMSE ERROR ESTIMATORS∗

A. Definition of the Sample-Conditioned MSE

There are two sources of randomness in the Bayesian model. The first is the sample,

which also randomizes the designed classifier and its true error. Almost all current

results on error estimator performance are averaged over random samples, which

demonstrates performance relative to a fixed classification rule. The second source

of randomness, which is the focus of this work, is uncertainty in the underlying

feature-label distribution. The Bayesian error estimator addresses the second source

of randomness, naturally giving rise to a practical expected measure of performance

given a fixed sample and classifier.

We fix the sample and consider the conditional MSE, which is exactly the objec-

tive function optimized by the Bayesian MMSE error estimator. According to MMSE

estimation theory, we may apply the orthogonality principle:

MSE(ε̂|Sn) = Eθ
[
(εn(θ)− ε̂)2|Sn

]
= Eθ [(εn(θ)− ε̂)εn(θ)|Sn] + Eθ [(εn(θ)− ε̂)ε̂|Sn]

= Eθ [(εn(θ)− ε̂)εn(θ)|Sn]

∗Reprinted with permission from “Exact Sample Conditioned MSE Performance of the
Bayesian MMSE Estimator for Classification Error–Part I: Representation” by L. A. Dalton and
E. R. Dougherty, 2012, IEEE Transactions on Signal Processing, in press, Copyright 2012 by IEEE.
This material is posted here with permission of the IEEE. Such permission of the IEEE does

not in any way imply IEEE endorsement of any of Texas A&M University’s products or services.
Internal or personal use of this material is permitted. However, permission to reprint/republish
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= Eθ
[
(εn(θ))

2|Sn
]
− (ε̂)2

= Varθ (εn(θ)|Sn) ,

where we have used the definition of the Bayesian error estimator given in (2.5) and

suppressed dependence on the sample in εn(θ) and ε̂ to avoid cumbersome notation.

That is, the conditional MSE of the Bayesian error estimator is equivalent to the

variance of the true error. Thanks to the posterior independence between c, θ0 and

θ1, we may expand this, via the basic variance identity, to

MSE(ε̂|Sn) = Varc,θ0,θ1
(
cε0n(θ0) + (1− c)ε1n(θ1)|Sn

)
= Varc

(
Eθ0,θ1

[
cε0n(θ0) + (1− c)ε1n(θ1)|c, Sn

]
|Sn
)

+ Ec
[
Varθ0,θ1

(
cε0n(θ0) + (1− c)ε1n(θ1)|c, Sn

)
|Sn
]
.

Further decomposing the inner expectation and variance, we have

MSE(ε̂|Sn) = Varc
(
cε̂0 + (1− c)ε̂1|Sn

)
+ Ec

[
c2Varθ0

(
ε0n(θ0)|Sn

)
+ (1− c)2Varθ1

(
ε1n(θ1)|Sn

)
|Sn
]

= Varπ∗ (c) (ε̂0 − ε̂1)2

+ Eπ∗
[
c2
]
Varπ∗

(
ε0n(θ0)

)
+ Eπ∗

[
(1− c)2

]
Varπ∗

(
ε1n(θ1)

)
, (5.1)

where ε̂0 and ε̂1 are defined in (2.11), and in the last line we have employed our

shorthand notation for expectations conditioned on the sample. Therefore, finding

the MSE of the Bayesian error estimator boils down to finding the posterior variance

of ε0n and ε1n. Furthermore, since Varπ∗ (εyn(θy)) = Eπ∗
[
(εyn(θy))

2]− (ε̂y)2,

MSE(ε̂|Sn) = −2Varπ∗ (c) ε̂0ε̂1 − (Eπ∗ [c])2 (ε̂0)2 − (Eπ∗ [1− c])2 (ε̂1)2

+ Eπ∗
[
c2
]
Eπ∗

[(
ε0n(θ0)

)2]
+ Eπ∗

[
(1− c)2

]
Eπ∗

[(
ε1n(θ1)

)2]
. (5.2)
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The variance and expectations related to the variable c depend on our prior model

for c, but are straightforward to find analytically. For example, if the prior distribution

of c is beta with hyperparameters α0 and α1, which holds with α0 = α1 = 1 when c

has a uniform prior, then the posterior of c is also beta with hyperparameters α0+n0

and α1 + n1 and,

Eπ∗ [c] =
α0 + n0

α0 + α1 + n
, (5.3)

Eπ∗ [1− c] =
α1 + n1

α0 + α1 + n
, (5.4)

Eπ∗
[
c2
]
=

(α0 + n0)(α
0 + n0 + 1)

(α0 + α1 + n)(α0 + α1 + n+ 1)
, (5.5)

Eπ∗
[
(1− c)2

]
=

(α1 + n1)(α
1 + n1 + 1)

(α0 + α1 + n)(α0 + α1 + n+ 1)
, (5.6)

Varπ∗ (c) =
(α0 + n0)(α

1 + n1)

(α0 + α1 + n)2(α0 + α1 + n+ 1)
. (5.7)

Hence,

MSE(ε̂|Sn) = − 2(α0 + n0)(α
1 + n1)

(α0 + α1 + n)2(α0 + α1 + n+ 1)
ε̂0ε̂1

− (α0 + n0)
2

(α0 + α1 + n)2
(ε̂0)2 − (α1 + n1)

2

(α0 + α1 + n)2
(ε̂1)2

+
(α0 + n0)(α

0 + n0 + 1)

(α0 + α1 + n)(α0 + α1 + n+ 1)
Eπ∗

[(
ε0n(θ0)

)2]
+

(α1 + n1)(α
1 + n1 + 1)

(α0 + α1 + n)(α0 + α1 + n+ 1)
Eπ∗

[(
ε1n(θ1)

)2]
.

Therefore, the conditional MSE for fixed samples is solved if we can find the first

moment of the true error used in the definition of the Bayesian error estimator,

ε̂y = Eπ∗ [εyn(θy)], and the second moment, Eπ∗
[
(εyn(θy))

2], for both classes, y ∈ {0, 1}.

Having evaluated the conditional MSE of the Bayesian error estimator, it is easy

to find analogous results for an arbitrary error estimate. Let ε̂• be a constant number
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representing an error estimate evaluated from the given sample. Then,

MSE(ε̂•|Sn) = Eθ
[
(εn(θ)− ε̂•)

2|Sn
]

= Eθ
[
(εn(θ)− ε̂+ ε̂− ε̂•)

2|Sn
]

= Eθ
[
(εn(θ)− ε̂)2|Sn

]
+ 2 (ε̂− ε̂•) Eθ [εn(θ)− ε̂|Sn] + (ε̂− ε̂•)

2

= MSE(ε̂|Sn) + (ε̂− ε̂•)
2, (5.8)

the last equality following from (2.5). Thus, if we solve the conditional MSE of the

Bayesian error estimator, MSE(ε̂|Sn), it is trivial to evaluate the conditional MSE of

any error estimator, MSE(ε̂•|Sn), under the Bayesian model. Further, (5.8) clearly

shows that the conditional MSE of the Bayesian error estimator lower bounds the

conditional MSE of any other error estimator.

B. The Discrete Model

We first solve the conditional MSE for the discrete classification problem defined in

Chapter III with b bins and Dirichlet priors. It has been shown that the posteriors,

π∗(θ0) and π
∗(θ1), are Dirichlet distributions with updated hyperparameters α0

i + Ui

and α1
i + Vi [83]. Furthermore, from (3.5) and (3.6),

ε̂0 =
b∑

j=1

Uj + α0
j

n0 +
∑b

i=1 α
0
i

Iψn(j)=1,

ε̂1 =
b∑

j=1

Vj + α1
j

n1 +
∑b

i=1 α
1
i

Iψn(j)=0.

Following a similar method as that used to derive ε̂0 and ε̂1, we may also evaluate

the second moments of the true errors contributed by each class. In particular, for
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class 0,

Eπ∗

[(
ε0n(θ0)

)2]
=

∫
Θ0

(
ε0n(θ0)

)2
π∗(θ0)dθ0

=

∫ 1

0

. . .

∫ a0
(2)

0

(
b∑

j=1

(
a0(j) − a0(j−1)

)
Iψn(j)=1

)2

×

Γ
(
n0 +

∑b
i=1 α

0
i

)
∏b

i=1 Γ (Ui + α0
i )

b∏
i=1

(
a0(i) − a0(i−1)

)Ui+α
0
i−1

 da0(1) . . . da
0
(b−1)

=
Γ
(
n0 +

∑b
i=1 α

0
i

)
∏b

i=1 Γ (Ui + α0
i )

b∑
j=1

b∑
k=1

Iψn(j)=1Iψn(k)=1

×
∫ 1

0

. . .

∫ a0
(2)

0

b∏
i=1

(
a0(i) − a0(i−1)

)Ui+α
0
i−1+δi−j+δi−k da0(1) . . . da

0
(b−1).

The integral in the last line has been solved in Lemma 1, thus,

Eπ∗

[(
ε0n(θ0)

)2]
=

Γ
(
n0 +

∑b
i=1 α

0
i

)
∏b

i=1 Γ (Ui + α0
i )

b∑
j=1

b∑
k=1

Iψn(j)=1Iψn(k)=1

×
∏b

i=1 Γ (Ui + α0
i + δi−j + δi−k)

Γ
(
b+

∑b
i=1 (Ui + α0

i − 1 + δi−j + δi−k)
)

=
Γ
(
n0 +

∑b
i=1 α

0
i

)
∏b

i=1 Γ (Ui + α0
i )

b∑
j=1

b∑
k=1

Iψn(j)=1Iψn(k)=1

×
(Uk + α0

k + δk−j)
(
Uj + α0

j

)∏b
i=1 Γ (Ui + α0

i )(
1 + n0 +

b∑
i=1

α0
i

)(
n0 +

b∑
i=1

α0
i

)
Γ

(
n0 +

b∑
i=1

α0
i

)

=
b∑

j=1

b∑
k=1

Iψn(j)=1Iψn(k)=1

(Uk + α0
k + δk−j)

(
Uj + α0

j

)(
1 + n0 +

∑b
i=1 α

0
i

)(
n0 +

∑b
i=1 α

0
i

) ,
where the second equality follows from properties of the gamma function. Finally, we
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simplify this expression to obtain

Eπ∗

[(
ε0n(θ0)

)2]
=

b∑
j=1

Iψn(j)=1

(
Uj + α0

j

) b∑
k=1

Iψn(k)=1

(
Uk + α0

k + δk−j
)

(
1 + n0 +

∑b
i=1 α

0
i

)(
n0 +

∑b
i=1 α

0
i

)
=

1 +
∑b

j=1 Iψn(j)=1

(
Uj + α0

j

)
1 + n0 +

∑b
i=1 α

0
i

×
∑b

j=1 Iψn(j)=1

(
Uj + α0

j

)
n0 +

∑b
i=1 α

0
i

. (5.9)

Similar results can be found for class 1:

Eπ∗

[(
ε1n(θ1)

)2]
=

1 +
∑b

j=1 Iψn(j)=0

(
Vj + α1

j

)
1 + n1 +

∑b
i=1 α

1
i

×
∑b

j=1 Iψn(j)=0

(
Vj + α1

j

)
n1 +

∑b
i=1 α

1
i

. (5.10)

Combining equations (3.5), (3.6), (5.9) and (5.10) with (5.2) specifies the conditional

MSE of the Bayesian error estimator in the discrete model.

C. The Gaussian Model with Linear Classification

We next consider the Gaussian models defined in Section IV. If the designed classifier

is constant, that is, if a = 0, then the true error, εyn, is deterministically zero or one,

depending on the sign of b. In this special case, the conditional MSE is found trivially:

Eπ∗

[(
ε0n (θ0)

)2]
= ε̂0 = ε0n = Ib>0,

Eπ∗

[(
ε1n (θ1)

)2]
= ε̂1 = ε1n = Ib≤0,

so that from (5.1) we have

MSE(ε̂|Sn) = Varπ∗ (c) ,

which is the posterior variance of the a priori class probability. In the remainder of

this section we assume a ̸= 0.

We will present closed-form expressions for the conditional MSE of Bayesian
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error estimators under Gaussian distributions with linear classification for all three

covariance models. The second moments we require in (5.2) may be written as,

Eπ∗
[
(εyn (θy))

2] = ∫
Θy

(εyn(θy))
2 π∗(θy)dθy

=

∫
Λy

∫
RD

(εyn(µy,Λy))
2 π∗(µy|Λy)dµyπ∗(Λy)dΛy. (5.11)

1. Solution for Fixed Covariance

For a fixed (invertible) covariance, Σy, we require ν
∗ > 0 to ensure that the posterior,

π∗(µy|Λy), is proper. From (4.8) we have

ε̂y = Φ(d)

where

d =
(−1)yg (m∗)√

aTΣya

√
ν∗

ν∗ + 1
. (5.12)

To find the conditional MSE, the outer integral in the definition of the second mo-

ment (5.11) is not needed in the fixed covariance model. We need only solve the inner

integral, which is given by,

Eπ∗
[
(εyn (θy))

2] = ∫
RD

(εyn(µy,Λy))
2 π∗(µy|Λy)dµy

=

∫
RD

(
Φ

(
(−1)yg(µy)√

aTΣya

))2

fm∗,Σy/ν∗(µy)dµy.

This integral is simplified to a well-behaved single integral in Lemma 6.

Lemma 6. Let y ∈ {0, 1} be a class label and let ν∗ > 0. Also let m∗ ∈ RD be a mean

vector with D ≥ 1 features, Σ be an invertible covariance matrix, and g(x) = aTx+b,
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where a ∈ RD is a non-zero length D vector and b ∈ R is a scalar. Then,∫
RD

(
Φ

(
(−1)yg(µ)√

aTΣa

))2

fm∗,Σ/ν∗(µ)dµ

= I{d>0} (2Φ (d)− 1) +
1

π

∫ arctan

(√
ν∗+2√
ν∗

)
0

exp

(
− d2

2 sin2 θ

)
dθ,

where fµ,Σ is a Gaussian density with mean µ and covariance Σ, I{d>0} is an indicator

function equal to one if d > 0 and zero otherwise, and

d =
(−1)yg (m∗)√

aTΣa

√
ν∗

ν∗ + 1
.

Proof. Call this integral M . We have that,

M =

∫
RD

(
Φ

(
(−1)yg(µ)√

aTΣa

))2
ν∗

D
2

(2π)
D
2 |Σ| 12

exp

(
−ν

∗

2
(µ−m∗)TΣ−1(µ−m∗)

)
dµ.

Since Σ is an invertible covariance matrix, we can use singular value decomposition

to write Σ = WW T with |Σ| = |W |2. Next consider the linear change of variables,

z =
√
ν∗W−1(µ−m∗). We have that,

M =

∫
RD

Φ

(−1)y
(

1√
ν∗
aTWz+ aTm∗ + b

)
√
aTΣa

2

1

(2π)
D
2

exp

(
−zTz

2

)
dz.

Define ā = (−1)yWT a√
ν∗

√
aTΣa

and b̄ = (−1)yg(m∗)√
aTΣa

, and note that ∥ā∥2 = 1
ν∗
. Then,

M =

∫
RD

(
Φ
(
āTz+ b̄

))2 1

(2π)
D
2

exp

(
−zTz

2

)
dz

=

∫
RD

∫ āT z+b̄

−∞

1√
2π

exp

(
−x

2

2

)
dx

×
∫ āT z+b̄

−∞

1√
2π

exp

(
−y

2

2

)
dy

1

(2π)
D
2

exp

(
−zTz

2

)
dz

=

∫
RD

∫ āT z+b̄

−∞

∫ āT z+b̄

−∞

1

(2π)
D+2
2

exp

(
−x

2 + y2 + zTz

2

)
dxdydz.

Next consider a change of variables w = Rz, where R rotates the vector ā to
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the vector
(

1√
ν∗
, 0, . . . , 0

)
. Since R is a rotation matrix, det(R) = 1 and RTR is an

identity matrix. Let the first element in the vector w be called w. Then this integral

simplifies to:

M =

∫
RD

∫ āTRTw+b̄

−∞

∫ āTRTw+b̄

−∞

1

(2π)
D+2
2

exp

(
−x

2 + y2 +wTw

2

)
dxdydw

=

∫ ∞

−∞

∫ 1√
ν∗
w+b̄

−∞

∫ 1√
ν∗
w+b̄

−∞

1

(2π)
3
2

exp

(
−x

2 + y2 + w2

2

)
dxdydw.

This reduces the problem to a three dimensional space.

Now consider the following rotation of the coordinate system:
x′

y′

w′

 =


−

√
2ν∗

2
√
ν∗+2

−
√
2ν∗

2
√
ν∗+2

√
2√

ν∗+2
√
2
2

−
√
2
2

0

1√
ν∗+2

1√
ν∗+2

√
ν∗√
ν∗+2



x

y

w

 .

This rotates the vector (x, y, w) =
(
1, 1,

√
ν∗
)
to the vector (x′, y′, w′) =

(
0, 0,

√
ν∗ + 2

)
.

To determine the new region of integration, note in the (x, y, w) coordinate system the

region of integration is defined by two restrictions: x < 1√
ν∗
w + b̄ and y < 1√

ν∗
w + b̄.

In the new coordinate system, the first restriction is

−
√
2ν∗

2
√
ν∗ + 2

x′ +

√
2

2
y′ +

1√
ν∗ + 2

w′ <
1√
ν∗

( √
2√

ν∗ + 2
x′ +

√
ν∗√

ν∗ + 2
w′

)
+ b̄.

Equivalently,

y′ <

(√
ν∗ + 2√
ν∗

)
x′ +

√
2 b̄.

And similarly for the other restriction,

−y′ <
(√

ν∗ + 2√
ν∗

)
x′ +

√
2 b̄.

We have designed our new coordinate system to make the variable w′ independent

from these restrictions. Hence, it may be integrated out of our original integral, which
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may be simplified to

M =

∫ ∞

−∞

∫ ∞

√
ν∗√

ν∗+2
(|y′|−

√
2 b̄)

1

2π
exp

(
−x

′2 + y′2

2

)
dx′dy′

= 2

∫ ∞

0

∫ ∞

√
ν∗√

ν∗+2
(y′−

√
2 b̄)

1

2π
exp

(
−x

′2 + y′2

2

)
dx′dy′. (5.13)

If b̄ ≤ 0, then we convert to polar coordinates, (r, θ), using

x′ = r cos

(
arctan

(√
ν∗ + 2√
ν∗

)
− θ

)
,

y′ = r sin

(
arctan

(√
ν∗ + 2√
ν∗

)
− θ

)
,

to obtain

M =
1

π

∫ arctan

(√
ν∗+2√
ν∗

)
0

∫ ∞

−
√

ν∗ b̄√
ν∗+1 sin θ

exp

(
−r

2

2

)
rdrdθ.

Let u = r2

2
. Then finally,

M =
1

π

∫ arctan

(√
ν∗+2√
ν∗

)
0

∫ ∞

ν∗ b̄2

2(ν∗+1) sin2 θ

exp (−u) dudθ

=
1

π

∫ arctan

(√
ν∗+2√
ν∗

)
0

exp

(
− ν∗ b̄2

2 (ν∗ + 1) sin2 θ

)
dθ.

On the other hand, if b̄ > 0, then from (5.13),

M =
1

π

∫ ∞

0

∫ ∞

√
ν∗+2√
ν∗

y′
exp

(
−x

′2 + y′2

2

)
dx′dy′

+
1

π

∫ ∞

0

∫ √
ν∗+2√
ν∗

y′

√
ν∗√

ν∗+2
(y′−

√
2 b̄)

exp

(
−x

′2 + y′2

2

)
dx′dy′.

The first integral is easily solved using the result for b̄ ≤ 0, and for the second integral
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we use the same polar transformation and u-substitution as before,

M =
1

π
arctan

(√
ν∗ + 2√
ν∗

)
+

1

π

∫ 0

arctan

(√
ν∗+2√
ν∗

)
−π

∫ −
√

ν∗ b̄√
ν∗+1 sin θ

0

exp

(
−r

2

2

)
rdrdθ

=
1

π
arctan

(√
ν∗ + 2√
ν∗

)
+

1

π

∫ 0

arctan

(√
ν∗+2√
ν∗

)
−π

∫ ν∗ b̄2

2(ν∗+1) sin2 θ

0

exp (−u) dudθ

=
1

π
arctan

(√
ν∗ + 2√
ν∗

)
+

1

π

∫ 0

arctan

(√
ν∗+2√
ν∗

)
−π

(
1− exp

(
− ν∗ b̄2

2 (ν∗ + 1) sin2 θ

))
dθ

= 1− 1

π

∫ 0

arctan

(√
ν∗+2√
ν∗

)
−π

exp

(
− ν∗ b̄2

2 (ν∗ + 1) sin2 θ

)
dθ.

This may be simplified by realizing that a component of this integral is equivalent

to an alternate representation for the Gaussian CDF function [100]. We first break

the integral into two parts, and then use symmetry in the integrand to simplify the

result.

M = 1− 1

π

∫ 0

−π
exp

(
− ν∗ b̄2

2 (ν∗ + 1) sin2 θ

)
dθ

+
1

π

∫ arctan

(√
ν∗+2√
ν∗

)
−π

−π
exp

(
− ν∗ b̄2

2 (ν∗ + 1) sin2 θ

)
dθ

= 1− 1

π

∫ π

0

exp

(
− ν∗ b̄2

2 (ν∗ + 1) sin2 θ

)
dθ

+
1

π

∫ arctan

(√
ν∗+2√
ν∗

)
0

exp

(
− ν∗ b̄2

2 (ν∗ + 1) sin2 θ

)
dθ

= 2Φ

( √
ν∗ b̄√
ν∗ + 1

)
− 1 +

1

π

∫ arctan

(√
ν∗+2√
ν∗

)
0

exp

(
− ν∗ b̄2

2 (ν∗ + 1) sin2 θ

)
dθ.

Thus, we have

Eπ∗
[
(εyn (θy))

2] = I{d>0} (2Φ (d)− 1) +
1

π

∫ arctan

(√
ν∗+2√
ν∗

)
0

exp

(
− d2

2 sin2 θ

)
dθ, (5.14)

where d is defined in (5.12). Combining (4.8) and (5.14) with (5.2) defines the sample-
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conditioned MSE of the Bayesian error estimator under the fixed covariance model.

2. Solution for Scaled Identity Covariance

In this model, we assume Σy is a scaled identity covariance matrix, that is, Λy = σ2

and Σy = σ2ID. Under this model, it has been shown that π∗(σ2) has an inverse-

gamma distribution with parameters

α =
(κ∗ +D + 1)D

2
− 1,

β =
1

2
trace (S∗) .

Hence, we require ν∗ > 0 to ensure that π(µy|Λy) is proper and, additionally, we re-

quire α > 0 and β > 0 to ensure that π∗(σ2) is proper or, equivalently, (κ∗ +D + 1)D >

2, and S∗ must be positive definite.

The Bayesian error estimator is given in (4.10):

ε̂y =
1

2

(
1 + sgn(A)I

(
A2

A2 + trace (S∗)
;
1

2
,
(κ∗ +D + 1)D

2
− 1

))
,

where

A =
(−1)yg(m∗)

∥a∥

√
ν∗

ν∗ + 1
.

To evaluate the second moment of the true error for scaled identity covariances, we

use the previous result from Lemma 6 for the inner integral, so that (5.11) is precisely

the integral solved in Lemma 7.

Lemma 7. Let A ∈ R, π/4 < B < π/2, α > 0, and β > 0. Let fG(x;α, β) be

an inverse-gamma distribution with shape parameter α and scale parameter β, and



108

I{A>0} be an indicator function equal to one if A > 0 and zero otherwise. Then,∫ ∞

0

(
I{A>0}

(
2Φ

(
A√
z

)
− 1

)
+

1

π

∫ B

0

exp

(
− A2

2z sin2 θ

)
dθ

)
fG(z;α, β)dz

= I{A>0}I

(
A2

A2 + 2β
;
1

2
, α

)
+R

(
sin2B,

A2

2β
;α

)
,

where I(x; a, b) is the regularized incomplete beta function, defined for 0 ≤ x ≤ 1,

a > 0 and b > 0, and R is given by an Appell hypergeometric function, F1, such that

R (x, 0; a) = 1
π
arcsin (

√
x) and

R (x, y; a) =

√
y

π(2a+ 1)

(
x

x+ y

)a+ 1
2

F1

(
a+

1

2
;
1

2
, 1; a+

3

2
;
x (y + 1)

x+ y
,

x

x+ y

)
(5.15)

for a > 0, 0 < x < 1 and y > 0.

Proof. Call this integral M. When A = 0, it is easy to show that M = B/π. For

A ̸= 0, we obtain,

M =

∫ ∞

0

I{A>0}

(
2Φ

(
A√
z

)
− 1

)
fG(z;α, β)dz

+
1

π

∫ ∞

0

∫ B

0

exp

(
− A2

2z sin2 θ

)
dθfG(z;α, β)dz

= I{A>0}

(
2

∫ ∞

0

Φ

(
A√
z

)
fG(z;α, β)dz − 1

)
+

1

π

∫ ∞

0

∫ B

0

exp

(
− A2

2z sin2 θ

)
dθfG(z;α, β)dz.

The integral in the first term has already been solved in Lemma 3. We have,

M = I{A>0} sgn (A) I

(
A2

A2 + 2β
;
1

2
, α

)
+

1

π

∫ ∞

0

∫ B

0

exp

(
− A2

2z sin2 θ

)
dθfG(z;α, β)dz

= I{A>0}I

(
A2

A2 + 2β
;
1

2
, α

)
+

1

π

∫ B

0

∫ ∞

0

exp

(
− A2

2z sin2 θ

)
fG(z;α, β)dzdθ.

(5.16)

This intermediate result will be used in Lemma 8.
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We next focus on the inner integral in the second term. Call this integral N . We

have,

N =

∫ ∞

0

exp

(
− A2

2z sin2 θ

)
βα

Γ (α)

1

zα+1
exp

(
−β
z

)
dz

=
βα

Γ (α)

∫ ∞

0

1

zα+1
exp

(
−
(
β +

A2

2 sin2 θ

)
1

z

)
dz

=
βα

Γ (α)

Γ (α)(
β + A2

2 sin2 θ

)α
=

(
sin2 θ

sin2 θ + A2

2β

)α

,

where we have solved this integral by noting it is essentially an inverse-gamma dis-

tribution. Thus our original integral is,

M = I{A>0}I

(
A2

A2 + 2β
;
1

2
, α

)
+

1

π

∫ B

0

(
sin2 θ

sin2 θ + A2

2β

)α

dθ. (5.17)

For the final integral, consider the substitution u = sin2 θ
sin2B

. We have,

∫ B

0

(
sin2 θ

sin2 θ + A2

2β

)α

dθ

=

∫ 1

0

(
u sin2B

u sin2B + A2

2β

)α
sinB

2
u−1/2(1− u sin2B)−1/2du

=
sin2α+1B

2

(
2β

A2

)α ∫ 1

0

uα−1/2(1− u sin2B)−1/2

(
1 + u

2β sin2B

A2

)−α

du.

This is essentially a one-dimensional Euler-type integral representation of Appell’s

hypergeometric function, F1. In other words,∫ B

0

(
sin2 θ

sin2 θ + A2

2β

)α

dθ

=
sin2α+1B

2α+ 1

(
2β

A2

)α
F1

(
α+

1

2
;
1

2
, α;α+

3

2
; sin2B,−2β sin2B

A2

)
.
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Finally, from the identity [101]

F1 (a; b, b
′; c; z, z′) = (1− z′)−aF1

(
a; b, c− b− b′; c;

z − z′

1− z′
,− z′

1− z′

)
we have∫ B

0

(
sin2 θ

sin2 θ + A2

2β

)α

dθ

=

√
A2

2β

2α+ 1

(
sin2B

sin2B + A2

2β

)α+ 1
2

F1

α+
1

2
;
1

2
, 1;α+

3

2
;

(
A2

2β
+ 1
)
sin2B

sin2B + A2

2β

,
sin2B

sin2B + A2

2β


= πR

(
sin2B,

A2

2β
;α

)
Combining this result with (5.17) completes the proof.

Thus, the sample-conditioned MSE for scaled identity covariances is,

Eπ∗
[
(εyn(θy))

2] = I{A>0}I

(
A2

A2 + trace (S∗)
;
1

2
,
(κ∗ +D + 1)D

2
− 1

)
+R

(
ν∗ + 2

2(ν∗ + 1)
,

A2

trace (S∗)
;
(κ∗ +D + 1)D

2
− 1

)
, (5.18)

where R is defined in Lemma 7. Combining (4.10) and (5.18) with (5.2) defines the

conditional MSE of the Bayesian error estimator under the scaled identity covariance

model. Closed-form expressions for both I and R for integer or half-integer values of

κ are discussed in Sections IV.A.7 and V.C.4, respectively.

3. Solution for General Covariance

Finally, in the general covariance model we assume Σy = Λy, that is, Σy is an arbitrary

covariance matrix, and that the parameter space Λy contains all positive definite
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matrices. In this case, π∗ (Σy) is an inverse-Wishart distribution:

π∗(Σy) =
|S∗|κ∗/2

2κ∗D/2ΓD(κ∗/2)
|Σy|−(κ∗+D+1)/2 exp

(
−1

2
trace

(
S∗Σ−1

y

))
.

For a proper posterior, we require ν∗ > 0, κ∗ > D− 1 and S∗ positive definite. It has

been shown in (4.11) that

ε̂y =
1

2

(
1 + sgn(A)I

(
A2

A2 + aTS∗a
;
1

2
,
κ∗ −D + 1

2

))
,

where

A = (−1)yg(m∗)

√
ν∗

ν∗ + 1
.

Using the same method from the previous section, we evaluate the second moment of

the true error for arbitrary covariances using the previous result from Lemma 6 for

the inner integral in (5.11). This is solved in Lemma 8 below.

Lemma 8. Let A ∈ R, π/4 < B < π/2, a ∈ RD be a non-zero column vector,

κ∗ > D− 1, and S∗ be a positive definite D×D matrix. Also let fW (Σ;S∗, κ∗) be an

inverse-Wishart distribution with parameters S∗ and κ∗ and I{A>0} be an indicator

function equal to one if A > 0 and zero otherwise. Then∫
Σ>0

(
I{A>0}

(
2Φ

(
A√
aTΣa

)
− 1

)
+
1

π

∫ B

0

exp

(
− A2(

2 sin2 θ
)
aTΣa

)
dθ

)
fW (Σ;S∗, κ∗)dΣ

= I{A>0}I

(
A2

A2 + aTS∗a
;
1

2
,
κ∗ −D + 1

2

)
+R

(
sin2B,

A2

aTS∗a
;
κ∗ −D + 1

2

)
,

where the outer integration is over all positive definite matrices, I(x; a, b) is the

regularized incomplete beta function, and R (x, y; a) is defined in the statement of

Lemma 7.

Proof. Call this integral M . If A = 0, it is easy to show that M = B/π. Otherwise,
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if A ̸= 0 then we have,

M =

∫
Σ>0

I{A>0}

(
2Φ

(
A√
aTΣa

)
− 1

)
fW (Σ;S∗, κ∗)dΣ

+
1

π

∫
Σ>0

∫ B

0

exp

(
− A2(

2 sin2 θ
)
aTΣa

)
dθfW (Σ;S∗, κ∗)dΣ

= I{A>0}

(
2

∫
Σ>0

Φ

(
A√
aTΣa

)
fW (Σ;S∗, κ∗)dΣ− 1

)
+

1

π

∫
Σ>0

∫ B

0

exp

(
− A2(

2 sin2 θ
)
aTΣa

)
dθfW (Σ;S∗, κ∗)dΣ.

The integral in the first term has been solved in Lemma 4. We have that

M = I{A>0} sgn (A) I

(
A2

A2 + aTS∗a
;
1

2
,
κ∗ −D + 1

2

)
+

1

π

∫
Σ>0

∫ B

0

exp

(
− A2(

2 sin2 θ
)
aTΣa

)
dθfW (Σ;S∗, κ∗)dΣ

= I{A>0}I

(
A2

A2 + aTS∗a
;
1

2
,
κ∗ −D + 1

2

)
+

1

π

∫ B

0

∫
Σ>0

exp

(
− A2(

2 sin2 θ
)
aTΣa

)
fW (Σ;S∗, κ∗)dΣdθ.

Define the following constant matrix:

C =

 aT

0D−1×1 ID−1.

 .
Since a is non-zero, with a simple reordering of the dimensions we can guarantee

a1 ̸= 0. The value of aTS∗a is unchanged by such a redefinition, so without loss

of generality assume C is invertible. Consider the change of variables, Y = CΣCT .

Since C is invertible, Y is positive definite if and only if Σ is also. Furthermore, the

Jacobean determinant of this transformation is |C|D+1 [95, 92]. Note aTΣa = y11,
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where the subscript 11 indexes the upper left element of a matrix, and we have:

M = I{A>0}I

(
A2

A2 + aTS∗a
;
1

2
,
κ∗ −D + 1

2

)
+

1

π

∫ B

0

∫
Y >0

exp

(
− A2

2y11 sin
2 θ

)
fW (C−1Y (CT )−1;S∗, κ∗)

1

|C|D+1
dY dθ

= I{A>0}I

(
A2

A2 + aTS∗a
;
1

2
,
κ∗ −D + 1

2

)
+

1

π

∫ B

0

∫
Y >0

exp

(
− A2

2y11 sin
2 θ

)
fW (Y ;CS∗CT , κ∗)dY dθ.

Since the integrand now depends on only one parameter in Y , namely y11, the other

parameters can be integrated out. It can be shown that for any inverse-Wishart

random variable, X, with density fW (X;A,m), the marginal distribution of x11 is

also an inverse-Wishart distribution with density fW (x11; a11,m − D + 1) [96]. In

one dimension, this is equivalent to the inverse-gamma distribution fG(x11; (m−D+

1)/2, a11/2). In this case, (CS∗CT )11 = aTS∗a, so

M = I{A>0}I

(
A2

A2 + aTS∗a
;
1

2
,
κ∗ −D + 1

2

)
+

1

π

∫ B

0

∫ ∞

0

exp

(
− A2

2y11 sin
2 θ

)
fG

(
y11;

κ∗ −D + 1

2
,
aTS∗a

2

)
dy11dθ

= I{A>0}I

(
A2

A2 + 2β
;
1

2
, α

)
+

1

π

∫ B

0

∫ ∞

0

exp

(
− A2

2y11 sin
2 θ

)
fG (y11;α, β) dy11dθ,

where we have defined

α =
κ∗ −D + 1

2
,

β =
aTS∗a

2
.

Note α > 0, β > 0, and this integral is exactly the same as (5.16) so we apply

Lemma 7 to complete the proof.
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Thus, the sample-conditioned MSE for arbitrary covariances is

Eπ∗
[
(εyn(θy))

2] = I{A>0}I

(
A2

A2 + aTS∗a
;
1

2
,
κ∗ −D + 1

2

)
+R

(
ν∗ + 2

2(ν∗ + 1)
,

A2

aTS∗a
;
κ∗ −D + 1

2

)
. (5.19)

Combining (4.11) and (5.19) with (5.2) defines the conditional MSE of the Bayesian

error estimator under the general covariance model. Again note that closed form

expressions for both I and R for integer or half-integer values of κ are discussed in

Sections IV.A.7 and V.C.4, respectively.

4. Closed Form Representation for the R Function

The solutions proposed in the previous sections utilize two Euler integrals. The first

is the regularized incomplete beta function, which is discussed in Section IV.A.7. A

closed form solution for I
(
x; 1

2
, N

2

)
was found for 0 ≤ x ≤ 1 and positive integers N

in (4.12).

The second integral is the function R (x, y; a), defined for a > 0, 0 < x < 1

and y ≥ 0 and given by R (x, 0; a) = 1
π
arcsin (

√
x) for y = 0 and (5.15) for y > 0.

The definition of R uses the Appell hypergeometric function F1 with an Euler-type

integral representation,

F1(a; b, b
′; c; z, z′) =

Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− zt)−b(1− z′t)−b
′
dt,

defined for |z| < 1, |z′| < 1, and 0 < a < c.

Although this integral does not have a closed-form solution for arbitrary param-

eters, in Lemma 9 below we provide exact closed-form expressions for R
(
x, y; N

2

)
for

0 < x < 1, y ≥ 0 and positive integers N . Restricting a to be an integer or half

integer, or equivalently restricting κ to be an integer, guarantees that these equations
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may be applied, so that both Bayesian error estimators and their conditional MSE for

the Gaussian model with linear classification may be evaluated exactly using finite

sums of common single variable functions.

Lemma 9. Let N be a positive integer, 0 < x < 1 and y ≥ 0. Then the function

R
(
x, y; N

2

)
defined in the statement of Lemma 7 can be expressed as,

R

(
x, y;

N

2

)
=



r (x, y) if N = 1,

r (x, y)−
√
y

π

N−1
2∑
i=1

(2i− 2)!!

(2i− 1)!!

(
1

y + 1

)i
×
(
1− I

(
y(1− x)

x+ y
;
1

2
, i

))
if N > 1 is odd,

1
π
arcsin (

√
x)−

√
y

2

N−2
2∑
i=0

(2i− 1)!!

(2i)!!

(
1

y + 1

)i+ 1
2

×
(
1− I

(
y(1− x)

x+ y
;
1

2
, i+

1

2

))
if N > 1 is even,

where

r (x, y) =
1

π
arcsin

(√
x+ y

1 + y

)
− 1

π
arctan (

√
y)

and we may apply (4.12) to evaluate the regularized incomplete beta function, I, in

closed-form.

Proof. If y = 0, then we have R (x, 0; a) = 1
π
arcsin (

√
x). The solution for R in the

statement of this lemma applies for this case. For y ̸= 0, to solve R for half integer

values we first focus on the Appell function, F1. Define w = x(y+1)
x+y

and z = x
x+y

, and

note that 0 < z < w < 1. For any real number a, we have the definition,

F1

(
a+ 1;

1

2
, 1; a+ 2;w, z

)
= (a+ 1)

∫ 1

0

ua (1− wu)−1/2 (1− zu)−1 du.
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With some manipulation we have,

F1

(
a+ 1;

1

2
, 1; a+ 2;w, z

)
= −a+ 1

z

∫ 1

0

ua−1(−zu) (1− wu)−1/2 (1− zu)−1 du

= −a+ 1

z

(∫ 1

0

ua−1(−zu) (1− wu)−1/2 (1− zu)−1 du

+

∫ 1

0

ua−1 (1− wu)−1/2 (1− zu)−1 du−
∫ 1

0

ua−1 (1− wu)−1/2 (1− zu)−1 du

)
= −a+ 1

z

(∫ 1

0

ua−1 (1− wu)−1/2 du−
∫ 1

0

ua−1 (1− wu)−1/2 (1− zu)−1 du

)
.

In the first integral, let v = wu. We have,

F1

(
a+ 1;

1

2
, 1; a+ 2;w, z

)
= −a+ 1

z

(
w−a

∫ w

0

va−1 (1− v)−1/2 dv −
∫ 1

0

ua−1 (1− wu)−1/2 (1− zu)−1 du

)
.

The first integral is an incomplete beta function, and the second is again an Appell

function, so that

F1

(
a+ 1;

1

2
, 1; a+ 2;w, z

)
= −a+ 1

zwa
B

(
a,

1

2

)
I

(
w; a,

1

2

)
+
a+ 1

az
F1

(
a;

1

2
, 1; a+ 1;w, z

)
.

A property of the regularized incomplete beta function is I (x; a, b) = 1−I (1− x; b, a),

hence,

F1

(
a+ 1;

1

2
, 1; a+ 2;w, z

)
=
a+ 1

az
F1

(
a;

1

2
, 1; a+ 1;w, z

)
− a+ 1

zwa
B

(
a,

1

2

)(
1− I

(
1− w;

1

2
, a

))
.
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By induction, for any positive integer k,

F1

(
a+ k;

1

2
, 1; a+ k + 1;w, z

)
=
a+ k

azk
F1

(
a;

1

2
, 1; a+ 1;w, z

)
− a+ k

wazk

k−1∑
i=0

( z
w

)i
B

(
a+ i,

1

2

)(
1− I

(
1− w;

1

2
, a+ i

))
.

We apply this to the definition of R in the statement of Lemma 7 to decompose

R into one of two Appell functions with known solutions. In particular,

R

(
x, y;

N

2

)
=

√
y

π(N + 1)
z

N+1
2

×



F1

(
1; 1

2
, 1; 2;w, z

)
if N = 1,

N + 1

2z
N−1

2

F1

(
1;

1

2
, 1; 2;w, z

)
− N + 1

2wz
N−1

2

×
N−3

2∑
i=0

( z
w

)i
B

(
i+ 1,

1

2

)(
1− I

(
1− w;

1

2
, i+ 1

))
if N > 1 is odd,

N + 1

z
N
2

F1

(
1

2
;
1

2
, 1;

3

2
;w, z

)
− N + 1

2w
1
2 z

N
2

×
N−2

2∑
i=0

( z
w

)i
B

(
i+

1

2
,
1

2

)(
1− I

(
1− w;

1

2
, i+

1

2

))
if N > 1 is even.

After some simplification,

R

(
x, y;

N

2

)
=

√
y

2π

×



zF1

(
1; 1

2
, 1; 2;w, z

)
if N = 1,

zF1

(
1; 1

2
, 1; 2;w, z

)
−

N−3
2∑
i=0

( z
w

)i+1

B

(
i+ 1,

1

2

)(
1− I

(
1− w;

1

2
, i+ 1

))
if N > 1 is odd,

2
√
zF1

(
1
2
; 1
2
, 1; 3

2
;w, z

)
−

N−2
2∑
i=0

( z
w

)i+ 1
2
B

(
i+

1

2
,
1

2

)(
1− I

(
1− w;

1

2
, i+

1

2

))
if N > 1 is even.
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Finally, to evaluate R it can be shown that

F1

(
1;

1

2
, 1; 2;w, z

)
=

2√
z(w − z)

(
arctan

(√
z

w − z

)
− arctan

(√
z(1− w)

w − z

))

and

F1

(
1

2
;
1

2
, 1;

3

2
;w, z

)
=

1√
w − z

arctan

(√
w − z

1− w

)
.

With further simplification, we obtain the result in the statement of the lemma.

D. Discussion

Perhaps the most important advantage of Bayesian error estimation is that its math-

ematical framework naturally gives rise to the sample-conditioned MSE performance

of any arbitrary error estimate, where uncertainty is modeled relative to the unknown

distribution parameters. Prior to this work, RMS for non-hold-out error estimators

has always been considered by averaging over the sampling distribution, and nothing

could be said about performance for a particular sample. In contrast, the condi-

tional RMS proposed in this chapter formally defines a very practical measure of the

expected performance of an error estimate given a fixed sample.

In the next chapter we shall characterize the consistency of the Bayesian error

estimator, conditioned upon the sample, and demonstrate consistency for both the

discrete and Gaussian models under very mild assumptions. We will show how the

sample-conditioned RMS can used for censored sampling, thereby conditioning the

sample size on the desired accuracy of the error estimator, and we will apply cen-

sored sampling to genomic classification. We will also present simulations to examine

the performance characteristics of Bayesian error estimation in relation to the prior

distribution and sample size.
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CHAPTER VI

CONSISTENCY AND SAMPLE-CONDITIONED MSE PERFORMANCE

ANALYSIS∗

A. Consistency in a Bayesian Framework

A key issue in any estimation scheme is consistency: as more data are collected, will

the estimate of a parameter converge to its true value? In our case, it is important

to determine for which parameters a Bayesian estimator is consistent. Hence in this

section we will be interested in frequentist asymptotics, which concern behavior with

respect to a fixed parameter and its sampling distribution.

Suppose that θ ∈ Θ parameterizes a distribution of interest and that θ ∈ Θ

is the unknown true parameter, where Θ is the parameter space. Further, let S∞

represent an infinite sample drawn from the true distribution and Sn denote the first

n observations of this sample. The sampling distribution will be specified in the

subscript of probabilities and expectations using a notation of the form “S∞|θ.”

A sequence of estimators, ε̂n(Sn), of a sequence of functions of the parameter,

εn(θ, Sn), is said to be weakly consistent at θ if ε̂n(Sn)−εn(θ, Sn) → 0 in probability. If

this is true for all θ ∈ Θ, then we say that ε̂n(Sn) is weakly consistent. L2 consistency

is defined by convergence in the mean-square:

ESn|θ
[
(ε̂n(Sn)− εn(θ, Sn))

2
]
→ 0.

∗Reprinted with permission from “Exact Sample Conditioned MSE Performance of the Bayesian
MMSE Estimator for Classification Error–Part II: Consistency and Performance Analysis” by
L. A. Dalton and E. R. Dougherty, 2012, IEEE Transactions on Signal Processing, in press, Copy-
right 2012 by IEEE.
This material is posted here with permission of the IEEE. Such permission of the IEEE does

not in any way imply IEEE endorsement of any of Texas A&M University’s products or services.
Internal or personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale
or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this material, you agree to all provisions of the copyright laws protecting it.
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L2 consistency implies weak consistency. Strong consistency is defined by almost sure

convergence:

PS∞|θ
(
ε̂n(Sn)− εn(θ, Sn) → 0

)
= 1. (6.1)

If ε̂n(Sn) − εn(θ, Sn) is bounded, which is always true for classifier error estimation,

then strong consistency implies L2 consistency by the Dominated Convergence The-

orem. We are also interested in showing that for all θ ∈ Θ, MSE(ε̂n(Sn)|Sn) → 0

(a.s.), or more precisely,

PS∞|θ
(
Eθ|Sn

[
(ε̂n(Sn)− εn(θ, Sn))

2]→ 0
)
= 1. (6.2)

We refer to this property as “conditional MSE convergence.”

For Bayesian error estimators, we will see that strong consistency is equivalent

to the expected true error converging to the actual true error (a.s.), while conditional

MSE convergence is equivalent to the variance of the true error converging to 0

(a.s.). The combination of these two notions of convergence is a strong property

for an estimator. Note the similarity between the expectation in (6.2) and in the

definition of L2 consistency. The difference is that in L2 consistency the expectation

is over a sampling distribution for a fixed parameter, whereas in (6.2) it is over

a posterior distribution of the parameter for a fixed sample. We will prove (6.1)

and (6.2) assuming fairly weak conditions on the model and classification rule.

1. Convergence of Posteriors to Delta Functions

It is essential in our proof to show that the Bayes posterior of the parameter converges

in some sense to a delta function on the true parameter. Note in particular that

this is a property of the posterior distribution, whereas the preceding definitions of

consistency are properties of the estimator itself, which in the case of Bayesian MMSE
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estimation is only the expected value of the posterior.

We formalize this concept with weak∗ consistency and to do so we require a few

comments regarding measure theory. Assume the sample space, X , and the parameter

space, Θ, are Borel subsets of complete separable metric spaces, each being endowed

with the induced σ-algebra from the Borel σ-algebra on its respective metric space.

In the discrete model with bin probabilities pi and qi, Θ = {[c, p1, ..., pb−1, q1, ..., qb−1] :

c, pi, qi ∈ [0, 1], i = 1, . . . , b − 1,
∑b−1

i=1 pi ≤ 1,
∑b−1

i=1 qi ≤ 1}, so Θ ⊂ R × Rb−1 × Rb−1,

which is a normed space for which we use the L1-norm. Letting B be the Borel σ-

algebra on R×Rb−1 ×Rb−1, Θ ∈ B and the σ-algebra on Θ is the induced σ-algebra

BΘ = {Θ ∩ A : A ∈ B}. In the Gaussian model, Θ = {[c, µ0,Σ0, µ1,Σ1] : c ∈

[0, 1], µ0, µ1 ∈ RD,Σ0 and Σ1 are D ×D invertible matrices} ⊂ S = R×RD×RD2 ×

RD × RD2
, which is a normed space, for which we use the L1-norm. Θ lies in the

Borel σ-algebra on S and the σ-algebra on Θ is defined in the same manner as in

the discrete model. If λn and λ are probability measures on Θ, then λn → λ weak∗

(that is, in the weak∗ topology on the space of all probability measures over Θ) if

and only if
∫
fdλn →

∫
fdλ for all bounded continuous functions f on Θ. Further,

if δθ is a point mass at θ ∈ Θ, then it can be shown that λn → δθ weak
∗ if and only

if λn(U) → 1 for every neighborhood U of θ.

Bayesian modeling parameterizes a family of probability measures, {Fθ : θ ∈ Θ},

on X . For a fixed true parameter, θ, and assuming an i.i.d. sampling process, we

denote the sampling distribution by F∞
θ
, which is an infinite product measure on X∞.

We say that the Bayes posterior of θ is weak∗ consistent at θ ∈ Θ if the posterior

probability of the parameter converges weak∗ to δθ for F∞
θ
-almost all sequences. In

other words, if for all bounded continuous functions f on Θ,

PS∞|θ
(
Eθ|Sn [f(θ)] → f(θ)

)
= 1. (6.3)
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Equivalently, we require the posterior probability (given a fixed sample) of any neigh-

borhood, U , of the true parameter, θ, to converge to 1 almost surely with respect to

the sampling distribution, i.e.,

PS∞|θ
(
Pθ|Sn(U) → 1

)
= 1. (6.4)

The posterior is called weak∗ consistent if it is weak∗ consistent for every θ ∈ Θ.

We now establish that the Bayes posteriors of c, θ0 and θ1 are weak
∗ consistent for

both discrete and Gaussian models (in the usual topologies). Throughout, we assume

proper priors on these parameters, and that the priors have positive mass on every

open set. If the underlying probability mechanism in a Bayesian estimation problem

has only a finite number of possible outcomes, e.g., flipping a coin, and the prior

probability does not exclude any neighborhood of the true parameter as impossible,

it has long been known that posteriors are weak∗ consistent [102, 103]. Thus, if

the Bayes prior of the a priori probability of the classes, c, has a beta distribution,

which has positive mass in every open interval in [0, 1], then the posterior is weak∗

consistent. Likewise, since sample points in our discrete classification model also have

a finite number of possible outcomes, the posteriors of θ0 and θ1 are weak
∗ consistent

as n0 and n1 go to infinity, respectively.

In a general Bayesian estimation problem with a proper prior on a finite dimen-

sional parameter space, as long as the true data distribution is included in the pa-

rameterized family of distributions and some regularity conditions hold, notably that

the likelihood is a bounded continuous function of the parameter that is not underi-

dentified (i.e., not flat for a range of values of the parameter) and the true parameter

is not excluded by the prior as impossible or on the boundary of the parameter space,

then the posterior distribution of the parameter approaches a normal distribution

centered at the true mean with variance proportional to 1/n as n → ∞ [83]. These
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regularity conditions hold in our Gaussian model for both classes, y ∈ {0, 1}, hence

the posterior of θy is weak∗ consistent as ny goes to infinity.

Owing to the weak∗ consistency of posteriors for c, θ0 and θ1 in the discrete and

Gaussian models, for any bounded continuous function f on Θ, (6.3) holds for all

θ = [c, θ0, θ1] ∈ Θ.

2. Sufficient Conditions for the Consistency of Bayesian Error Estimation

Given a true parameter, θ, and a fixed infinite sample, for each n suppose that the

true error function, εn(θ, Sn), is a real measurable function on the parameter space.

Define fn(θ, Sn) = εn(θ, Sn)− εn(θ, Sn). Note that the actual true error, εn(θ, Sn), is

a constant, and fn(θ, Sn) = 0. Since ε̂n(Sn) = Eθ|Sn [εn(θ, Sn)] for the Bayesian error

estimator, to prove strong consistency we must show

PS∞|θ
(
Eθ|Sn [fn(θ, Sn)] → 0

)
= 1,

and for conditional MSE convergence we must show

PS∞|θ

(
Eθ|Sn

[(
Eθ|Sn [εn(θ, Sn)]− εn(θ, Sn)

)2]→ 0
)

= PS∞|θ

(
Eθ|Sn

[(
Eθ|Sn

[
εn(θ, Sn)− εn(θ, Sn)

]
− εn(θ, Sn) + εn(θ, Sn)

)2]→ 0
)

= PS∞|θ

(
Eθ|Sn

[(
Eθ|Sn [fn(θ, Sn)]− fn(θ, Sn)

)2]→ 0
)

= PS∞|θ

(
Eθ|Sn

[
f 2
n(θ, Sn)

]
−
(
Eθ|Sn [fn(θ, Sn)]

)2 → 0
)

= 1.

Hence, both forms of convergence are proved if for any true parameter θ and both

i = 1 and i = 2,

PS∞|θ
(
Eθ|Sn

[
f in(θ, Sn)

]
→ 0

)
= 1. (6.5)

If the classifier in our original classification problem is fixed, and hence the true
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error is fixed, then we may define error functions independent of the sample, i.e.,

ε(θ) = εn(θ, Sn) and f(θ) = fn(θ, Sn) = ε(θ)−ε(θ). If the true error function, ε(θ), is

continuous (as in our discrete model and Gaussian model with linear classification),

then (6.5) follows directly from (6.3), which is the definition of the weak∗ convergence

of the posteriors of the parameters.

When applying a classification rule, the classifier and true error may change for

each n. Hence, (6.3) cannot be applied directly because f in(θ, Sn) depends on the sam-

ple. To proceed, we place restrictions on the Bayesian model and classification rule.

The next two theorems prove that the Bayesian error estimator is both strongly con-

sistent and conditional MSE convergent as long as the true error functions, εn(θ, Sn),

form equicontinuous sets for fixed samples and the posterior is weak∗ consistent.

Theorem 10. Let θ ∈ Θ represent an unknown true parameter and let F (S∞) =

{fn (•, Sn)}∞n=1 be a uniformly bounded collection of measurable functions associated

with the sample S∞, where fn(•, Sn) : Θ → R and |fn (•, Sn) | ≤ 1
2
M(S∞) for each

n ∈ N. If F (S∞) is equicontinuous at θ (almost surely with respect to the sampling

distribution for θ) and the posterior of θ is weak∗ consistent at θ, then

PS∞|θ
(
Eθ|Sn [fn(θ, Sn)]− fn(θ, Sn) → 0

)
= 1.

Proof. We begin by examining the probability of interest.

PS∞|θ
(
Eθ|Sn

[
fn(θ, Sn)− fn(θ, Sn)

]
→ 0

)
= PS∞|θ

(
|Eθ|Sn

[
fn(θ, Sn)− fn(θ, Sn)

]
| → 0

)
≥ PS∞|θ

(
Eθ|Sn

[
|fn(θ, Sn)− fn(θ, Sn)|

]
→ 0

)
.

Let dΘ be the metric associated with Θ. For fixed S∞ and ϵ > 0, if equicontinuity

holds for F (S∞), there is a δ > 0 such that |fn(θ, Sn) − fn(θ, Sn)| < ϵ for all fn ∈
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F (S∞) whenever dΘ(θ, θ) < δ. Hence,

Eθ|Sn

[
|fn(θ, Sn)− fn(θ, Sn)|

]
= Eθ|Sn

[
|fn(θ, Sn)− fn(θ, Sn)|IdΘ(θ,θ)<δ

]
+ Eθ|Sn

[
|fn(θ, Sn)− fn(θ, Sn)|IdΘ(θ,θ)≥δ

]
≤ Eθ|Sn

[
ϵIdΘ(θ,θ)<δ

]
+ Eθ|Sn

[
M(S∞)IdΘ(θ,θ)≥δ

]
= ϵEθ|Sn

[
IdΘ(θ,θ)<δ

]
+M(S∞)Eθ|Sn

[
IdΘ(θ,θ)≥δ

]
= ϵPθ|Sn

(
dΘ(θ, θ) < δ

)
+M(S∞)Pθ|Sn

(
dΘ(θ, θ) ≥ δ

)
.

From the weak∗ consistency of the posterior of θ at θ, (6.4) holds and we have,

lim sup
n→∞

Eθ|Sn

[
|fn(θ, Sn)− fn(θ, Sn)|

]
≤ ϵ lim sup

n→∞
Pθ|Sn

(
dΘ(θ, θ) < δ

)
+M(S∞) lim sup

n→∞
Pθ|Sn

(
dΘ(θ, θ) ≥ δ

)
a.s.
= ϵ · 1 +M(S∞) · 0 = ϵ.

Finally, since this is (almost surely) true for all ϵ > 0, we have

lim
n→∞

Eθ|Sn

[
|fn(θ, Sn)− fn(θ, Sn)|

] a.s.
= 0,

so that the probabilities at the beginning of this proof must all be 1.

Theorem 11. Given a Bayesian model and classification rule, if for both y = 0 and

y = 1 we have that F y(S∞) = {εyn(•, Sn)}∞n=1 is equicontinuous at θy (almost surely

with respect to the sampling distribution for θy) for every θy ∈ Θy and the posterior

of θ is weak∗ consistent, then the resulting Bayesian error estimator is both strongly

consistent and conditional MSE convergent.

Proof. We may decompose the true error of a classifier by εn(θ, Sn) = cε0n(θ0, Sn) +

(1 − c)ε1n(θ1, Sn), and it is not hard to show that F (S∞) = {εn(•, Sn)}∞n=1 is also

(a.s.) equicontinuous at every θ = [c, θ0, θ1] ∈ Θ = [0, 1] × Θ0 × Θ1. Define
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fn(θ, Sn) = εn(θ, Sn) − εn(θ, Sn), and note |fn(θ, Sn)| ≤ 1. Since {fn (•, Sn)}∞n=1

and {f 2
n (•, Sn)}∞n=1 are also (a.s.) equicontinuous at every θ ∈ Θ, by Theorem 10,

PS∞|θ
(
Eθ|Sn

[
f in(θ, Sn)

]
→ 0

)
= 1

for both i = 1 and i = 2.

3. Consistency of Bayesian Error Estimation in the Discrete and Gaussian Models

Equicontinuity essentially guarantees that the true errors for designed classifiers are

somewhat “robust” near the true parameter. Loosely speaking, with equicontinuity

we can (almost surely) find a neighborhood, U , of the true parameter such that the

error of all classifiers (for any sample size) at any parameter in U is as close as desired

to the true error. This property is only a sufficient condition for consistency but it

usually holds. Indeed, the following two theorems prove that it holds for both the

discrete and Gaussian Bayesian models. Combining these results with Theorem 11,

the Bayesian error estimator is strongly consistent and conditional MSE convergent

for both the discrete model with any classification rule and the Gaussian model with

any linear classification rule, under our assumptions.

Theorem 12. In the discrete Bayesian model with any classification rule, F y(S∞) =

{εyn(•, Sn)}∞n=1 is equicontinuous at every θy ∈ Θy for both y = 0 and y = 1.

Proof. This is a slightly stronger proof than required in Theorem 11, since equicon-

tinuity is always true for any sample. Also, we need not specify a particular classifi-

cation rule; any sequence of classifiers may be applied at each n.

In a b bin model, suppose we obtain the sequence of classifiers ψn : {1, . . . , b} →

{0, 1} from a given sample. The error of classifier ψn contributed by class 0 at
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parameter θ0 = [p1, . . . pb−1] ∈ Θ0 is

ε0n(θ0, Sn) =
b∑
i=1

piIψn(i)=1.

For any fixed sample, S∞, fixed true parameter θ0 = [p1, . . . , pb−1] and any θ0 =

[p1, . . . , pb−1],

|ε0n(θ0, Sn)− ε0n(θ0, Sn)| =

∣∣∣∣∣
b∑
i=1

(pi − pi) Iψn(i)=1

∣∣∣∣∣
=

∣∣∣∣∣
b−1∑
i=1

(pi − pi) Iψn(i)=1 −
b−1∑
i=1

(pi − pi) Iψn(b)=1

∣∣∣∣∣
≤ 2

b−1∑
i=1

|pi − pi| = 2∥θ0 − θ0∥.

Since θ0 was arbitrary, F 0(S∞) is equicontinuous. Similarly, we may show that

F 1(S∞) = {
∑b

i=1 qiIψn(i)=0}∞n=1 is equicontinuous, which completes the proof.

Theorem 13. In the Gaussian Bayesian model with D features and any linear clas-

sification rule, F y(S∞) = {εyn(•, Sn)}∞n=1 is equicontinuous at every θy ∈ Θy for both

y = 0 and y = 1.

Proof. Given S∞, suppose we obtain a sequence of linear classifiers ψn : RD → {0, 1}

of the form (4.6) with discriminant functions gn(x) = aTnx+ bn defined by vectors an

and constants bn. If an = 0 for some n, then the classifier and classifier errors are

constant. In this case, |εyn(θy, Sn)−εyn(θy, Sn)| = 0 for all θy, θy ∈ Θy, so this classifier

does not effect the equicontinuity of F y(S∞). Hence, without loss of generality we

assume an ̸= 0, so that the error of classifier ψn contributed by class y at parameter

θy = [µy,Σy] is given by

εyn(θy, Sn) = Φ

(
(−1)ygn(µy)√

aTnΣyan

)
.
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Since scaling gn does not effect the decision of classifier ψn and an ̸= 0, without loss

of generality we also assume gn is normalized so that maxi|(an)i| = 1 for all n, where

(an)i is the ith element of an.

Treating both classes at the same time, it is enough to show that {gn(µ)}∞n=1 is

equicontinuous at every µ ∈ RD and {aTnΣan}∞n=1 is equicontinuous at every positive

definite Σ (considering one fixed Σ at a time, by positive definiteness aTnΣan > 0).

For any fixed but arbitrary µ = [µ1, . . . , µD] and any µ,

|gn(µ)− gn(µ)| =

∣∣∣∣∣
D∑
i=1

(an)i (µi − µi)

∣∣∣∣∣
≤ max

i
|(an)i|

D∑
i=1

|µi − µi|

= ∥µ− µ∥.

This proves that {gn(µ)}∞n=1 is equicontinuous. For any fixed Σ, we denote σij as its

ith row, jth column element and we use similar notation for an arbitrary matrix, Σ.

Then,

|aTnΣan − aTnΣan| = |aTn
(
Σ− Σ

)
an|

=

∣∣∣∣∣
D∑
i=1

D∑
j=1

(an)i (an)j (σij − σij)

∣∣∣∣∣
≤ max

i
|(an)i|

2

D∑
i=1

D∑
j=1

|σij − σij|

= ∥Σ− Σ∥.

Hence, {aTnΣan}∞n=1 is equicontinuous.



129

B. RMS Bound for the Discrete Model

In the previous section on consistency, we have proven that MSE(ε̂|Sn) → 0 as n→ ∞

(almost surely relative to the sampling process) for the discrete model. However,

we can go one step further using the formulas derived in the previous chapter to

find an upper bound on the conditional MSE as a function of only the sample size

under fairly general assumptions. In the discrete model, noting that Varπ∗(ε0n(θ0)) =

Eπ∗ [(ε0n(θ0))
2]− (ε̂0)2, we apply (5.9) and after some simplification we have

Varπ∗
(
ε0n(θ0)

)
=


(
n0 +

∑b
i=1 α

0
i

)
ε̂0 + 1

n0 +
∑b

i=1 α
0
i + 1

 ε̂0 −
(
ε̂0
)2

=
ε̂0 (1− ε̂0)

n0 +
∑b

i=1 α
0
i + 1

.

Analogous results follow for class 1:

Varπ∗
(
ε1n(θ1)

)
=

ε̂1 (1− ε̂1)

n1 +
∑b

i=1 α
1
i + 1

.

Plugging these in (5.1) and applying the beta prior/posterior model for c,

MSE(ε̂|Sn) =
(α0 + n0)(α

1 + n1)

(α0 + α1 + n)2(α0 + α1 + n+ 1)
(ε̂0 − ε̂1)2

+
(α0 + n0)(α

0 + n0 + 1)

(α0 + α1 + n)(α0 + α1 + n+ 1)
× ε̂0 (1− ε̂0)

n0 +
b∑
i=1

α0
i + 1

+
(α1 + n1)(α

1 + n1 + 1)

(α0 + α1 + n)(α0 + α1 + n+ 1)
× ε̂1 (1− ε̂1)

n1 +
b∑
i=1

α1
i + 1

.

From this, it is clear that MSE(ε̂|Sn) indeed converges to zero (and these results apply

for any classification rule). In particular, as long as α0 ≤
∑b

i=1 α
0
i and α

1 ≤
∑b

i=1 α
1
i ,
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which is often the case,

MSE(ε̂|Sn) ≤
1

α0 + α1 + n+ 1

(
α0 + n0

α0 + α1 + n
· α1 + n1

α0 + α1 + n
(ε̂0 − ε̂1)2

+
α0 + n0

α0 + α1 + n
ε̂0
(
1− ε̂0

)
+

α1 + n1

α0 + α1 + n
ε̂1
(
1− ε̂1

))
=

1

α0 + α1 + n+ 1

(
Eπ∗ [c]Eπ∗ [1− c] (ε̂0 − ε̂1)2

+ Eπ∗ [c] ε̂0
(
1− ε̂0

)
+ Eπ∗ [1− c] ε̂1

(
1− ε̂1

) )
,

where we have used Eπ∗ [c] = (α0+n0)/(α
0+α1+n) and Eπ∗ [1− c] = (α1+n1)/(α

0+

α1 +n). To help simplify this equation further, define x = ε̂0, y = ε̂1 and z = Eπ∗ [c].

Then

MSE(ε̂|Sn) ≤
z (1− z) (x− y)2 + zx (1− x) + (1− z) y (1− y)

α0 + α1 + n+ 1

=
zx+ (1− z) y − (zx+ (1− z) y)2

α0 + α1 + n+ 1
.

From (2.10) note that ε̂ = zx+ (1− z) y, and also note that 0 ≤ ε̂ ≤ 1. Hence,

MSE(ε̂|Sn) ≤
ε̂− (ε̂)2

α0 + α1 + n+ 1
≤ 1

4(α0 + α1 + n+ 1)
,

where in the last inequality we have used the fact that w − w2 = w(1 − w) ≤ 1/4

whenever 0 ≤ w ≤ 1. Thus, the conditional RMS of the Bayesian error estimator for

any discrete classifier, averaged over all feature-label distributions with beta priors

on c and Dirichlet priors on the bin probabilities such that α0 ≤
∑b

i=1 α
0
i and α1 ≤∑b

i=1 α
1
i , satisfies

RMS(ε̂|Sn) ≤
√

1

4n
. (6.6)

Since this bound is only a function of the sample size, it holds if we remove the

conditioning on Sn.

For comparison, we consider a remarkably similar holdout bound. If the data are
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split between training and test data, where the classifier is designed on the training

data and classifier error is estimated on the test data, then we have the distribution-

free bound

RMS(ε̂holdout|Sn−m, c, θ0, θ1) ≤
√

1

4m
, (6.7)

where m is the size of the test sample and Sn−m is the training sample [33] . Note

that uncertainty here stems from the sampling distribution of the test sample. In

any case, the bound is still true if we remove the conditioning. The RMS bound on

the Bayesian error estimator is always lower than that of the holdout estimate, which

is a testament to the power of modeling assumptions. Moreover, as m → n for full

holdout, the holdout bound converges down to the Bayesian estimate bound.

C. Performance

All synthetic data simulations in this chapter implement a Bayesian model, where we

assume known fixed priors, generate random feature-label distributions, and finally

generate random samples for each fixed feature-label distribution. Unless otherwise

indicated, experiments use a fixed sample size. A summary of the simulation method

for fixed sample size experiments is shown in Fig. 29, which lists the general steps

and flow of information. The steps are as follows:

• Step 1: Define a fixed set of hyperparameters specifying a specific set of (proper)

priors.

– Define α0 and α1 for the prior of c.

– In a discrete model, define α0
1, . . . , α

0
b for the prior of θ0, and α

1
1, . . . , α

1
b for

the prior of θ1.

– In a Gaussian model, define κ, S, ν and m for both classes.
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(x, y)

Repeat steps (2, 3)      times for !xed hyperparameters/priorsT

Step 3:

Fig. 29. Simulation methodology for a Bayesian framework with fixed sample size.

• Step 2: Using the priors, generate a random realization of the parameters,

[c, θ0, θ1], corresponding to a fixed feature-label distribution, Fc,θ0,θ1 (x, y).

• Step 3A: Generate a training sample of fixed sample size from the feature-label

distribution.

• Step 3B: Design a classifier from the training sample.

• Step 3C: Collect output variables.

– Compute the Bayesian MMSE error estimator, ε̂, from the sample, classi-

fier and priors.

– Compute the Bayesian conditional MSE, MSE (ε̂|Sn), from the sample,

classifier and priors.

– Compute classical error estimators from the sample and classifier.

– Compute the exact true error from the classifier and true distribution.

Step 2 is repeated T times, to generate T different feature-label distributions. For

a fixed feature-label distribution, step 3 (steps 3A through 3C) is repeated t times
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to obtain t samples and sets of output. In total, each simulation using the model in

Fig. 29 will produce t× T sets of output results.

Some simulation studies will use a censored sampling procedure (to be explained)

in place of step 3; nevertheless, all experiments produce the same four quantities in

each iteration. From these we compute related results. For instance, although we

only evaluate the conditional MSE of the Bayesian error estimator, we may use (5.8)

to compute the conditional MSE of any classical error estimator for each iteration.

Also, it is possible to approximate the unconditional MSE (averaged over both the

feature-label distribution and the sampling distribution) for any error estimator, ε̂•,

using one of two methods:

• Semi-analytical unconditional MSE: average MSE (ε̂•|Sn) over iterations/samples.

• Empirical unconditional MSE: compute (εn − ε̂•)
2 for each iteration/sample and

average.

The empirical RMS and semi-analytical RMS are the square roots of the empirical

MSE and semi-analytical MSE, respectively. We use the semi-analytical unconditional

MSE unless otherwise indicated.

We present five simulation studies to demonstrate the power of prior knowledge

and modeling assumptions, as well as practical applications of Bayesian error estima-

tion and conditional MSE.

• Bayesian Error Estimation Versus Holdout Error Estimation: this is inspired

by the similarity between the performance bounds (6.6) and (6.7).

• Discrete Model with Synthetic Data: here we demonstrate how the theoreti-

cal conditional RMS provides practical performance results for small samples.
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These are in contrast with distribution free RMS bounds, which are so loose as

to be useless for small samples.

• Gaussian Model with Synthetic Data and Fixed Sample Size: these simulations

illustrate that different samples condition RMS performance to different extents,

and that models using more informative, or “tighter,” priors have better RMS

performance.

• Gaussian Model with Synthetic Data and Censored Sampling: here we exam-

ine a useful application in which sample points are added one at a time until

reaching a desired conditional RMS.

• Gaussian Model with Real Breast Cancer Data and Censored Sampling: we

provide a detailed example of censored sampling using real breast cancer data.

1. Bayesian Error Estimation Versus Holdout Error Estimation

We use the fixed sample size methodology outlined in Fig. 29 with a discrete model

and fixed bin size, b. In step 1, where we define a fixed prior model for c, θ0 and θ1,

we assume α0 = α1 = 1 so that the a priori probability of both classes is uniformly

distributed between 0 and 1. We also assume the bin probabilities of class 0 and 1

have Dirichlet priors given by the hyperparameters α0
i ∝ 2b− 2i+1 and α1

i ∝ 2i− 1,

where the αyi are normalized such that
∑b

i=1 α
y
i = b for both y ∈ {0, 1}. Essentially,

class 0 tends to assign more weight to bins with a low index, while class 1 assigns a

higher weight to bins with a high index. Note that these priors satisfy α0 ≤
∑b

i=1 α
0
i

and α1 ≤
∑b

i=1 α
1
i .

In step 2, we generate a random c from the uniform distribution and generate

random bin probabilities from our Dirichlet priors by first generating 2b independent

gamma distributed random variables, γyi ∼ gamma (αyi ), i = 1, . . . , b and y ∈ {0, 1}.
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The bin probabilities are then given by

pi =
γ0i∑b
i=1 γ

0
i

and qi =
γ1i∑b
i=1 γ

1
i

. (6.8)

Having defined a fixed feature-label distribution, we generate a random sample

with fixed sample size, n, in step 3A. To do this, the sample size of class 0, n0, is

determined using a binomial(c, n) experiment, and we set n1 = n − n0. Then n0

points are drawn from the discrete distribution {pi}b1 and n1 points are drawn from

the discrete distribution {qi}b1, resulting in n non-stratified sample points.

In this study, we are interested in the Bayesian error estimator, which is a full

sample error estimator, and the holdout estimator, which partitions the sample into

training and testing data sets. For a fair comparison, we will treat both error estima-

tors as separate experiments, each with the same full sample size but with different

classifiers designed from different training samples.

To compute the Bayesian error estimator, the full set of labeled sample points is

used to train a discrete histogram classifier in step 3B, which uses a majority vote to

assign a class to each bin and breaks ties toward class 0. In step 3C, the Bayesian error

estimator is found from the full sample, classifier and the same prior probabilities used

in the data model (i.e., the correct prior) by evaluating (2.10) with Eπ∗ [c] = (n0 +

1)/(n+ 2), ε̂0 defined in (3.5), and ε̂1 defined in (3.6). This Bayesian error estimator

is theoretically optimal in our Bayesian framework in the mean-square sense. We

also evaluate the theoretical RMS conditioned on the sample for the Bayesian error

estimate from (5.2) with moments of c defined in (5.3) through (5.7) for α0 = α1 = 1,

ε̂0 and ε̂1 given in (3.5) and (3.6), and Eπ∗ [(ε0n (θ0))
2
] and Eπ∗ [(ε1n (θ1))

2
] given in (5.9)

and (5.10). The exact true error of the designed classifier is also computed from the

classifier and true distribution, and no other error estimators are computed in this

experiment.
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To compute the holdout error estimator, the sample is partitioned into training

and holdout subsets, where the proportion of points from each class in the holdout

set is kept as close as possible to the original sample. The training subset is used to

find a discrete histogram classifier with the same classification rule as before and the

holdout estimate is the proportion of classification errors on the holdout subset. The

exact true error of the designed classifier is also found, but no Bayesian estimates are

computed.

Both experiments are run for each sample and the sampling procedure is repeated

t = 10, 000 times for each fixed feature-label distribution. We also generate T =

10, 000 feature-label distributions (corresponding to randomly selected parameters),

for a total of 100 million samples. The sample sizes for each experiment are chosen so

that the expected true error of the classifier trained on the full sample is 0.25 when

c = 0.5 is fixed. Note that the true error here will be somewhat smaller than 0.25,

since in these experiments c is uniform. The experiments have been run with different

values of b from 2 to 16 and different values of n from 10 to 30.

The results shown in Fig. 30 for b = 8 with n = 16 are typical, where part (a)

shows the expected true error and part (b) shows the RMS between the true and

estimated errors, both as a function of the holdout sample size. As expected, the

average true error of the classifier in the holdout experiment decreases and converges

to the average true error of the classifier trained from the full sample as the holdout

sample size decreases. In addition, the RMS performance of the Bayesian error esti-

mator consistently surpasses that of the holdout error estimator, as suggested by the

RMS bounds given in (6.6) and (6.7). Thus, under a Bayesian model not only does

using the full sample to train the classifier result in a lower true error, but we can

achieve better RMS performance using training-data error estimation than we would

by holding out the entire sample for error estimation.
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Fig. 30. Comparison of the holdout error estimator and Bayesian error estimator with

correct priors with respect to the holdout sample size for a discrete model

with b = 8 bins and fixed sample size n = 16.

2. Discrete Model with Synthetic Data

We again use the fixed sample size methodology outlined in Fig. 29 with a discrete

model and fixed bin size, b; however, in step 1 where we define a fixed prior model

for c, θ0 and θ1, we assume that the a priori probability of both classes is known and

fixed at 0.5, rather than being uniform, so that both classes are equally likely. For

the bin probabilities of class 0 and 1, we assume the same Dirichlet priors as before

with hyperparameters α0
i ∝ 2b− 2i+1 and α1

i ∝ 2i− 1, where the αyi are normalized

such that
∑b

i=1 α
y
i = b for both y ∈ {0, 1}. For step 2, c is already fixed, and we

generate random bin probabilities from our Dirichlet priors using the same method as

described in the previous section, that is by first generating 2b independent gamma

distributed random variables, and then defining pi and qi by normalizing these gamma

random variables according to (6.8).

Once the feature-label distribution has been specified by the parameters c, pi
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and qi, in step 3A we generate a non-stratified random sample with fixed sample size,

n. The sample size, n0, of class 0 is determined from a binomial(c, n) experiment and

the sample size of class 1 is set to n1 = n − n0. Then, the corresponding number

of sample points in each class is randomly generated according to the realized bin

probabilities. That is, n0 points are drawn from the discrete distribution {pi}b1 and

n1 points are drawn from the discrete distribution {qi}b1, resulting in n non-stratified

training points. Although the classes are equally likely, the actual number of sample

points from each class may not be the same. In step 3B, these labeled sample points

are used to train a discrete histogram classifier, which uses a majority vote to assign

a class to each bin and breaks ties toward class 0.

Subsequently in step 3C, the true error of the classifier is computed exactly

and the training data are used to evaluate the classical leave-one-out training-data

error estimator. We also evaluate a Bayesian error estimator with the same prior

probabilities as the data model (i.e., the correct prior). As before, we use (2.10)

to evaluate the Bayesian MMSE error estimator, this time with Eπ∗ [c] = 0.5. We

also evaluate the theoretical RMS conditioned on the sample for the Bayesian error

estimator from (5.2), this time with moments of c given by Eπ∗ [c] = Eπ∗ [1− c] = 0.5,

Eπ∗ [c2] = Eπ∗ [(1− c)2] = 0.25, and Varπ∗ (c) = 0. The conditional RMS for the

leave-one-out error estimator is computed from (5.8).

In each simulation iteration, the true error, both error estimates, and their con-

ditional RMS’s are recorded. The sampling procedure is repeated t = 1, 000 times for

each fixed feature-label distribution, with T = 10, 000 feature-label distributions, for

a total of ten million samples.

Figures 31(a) and 31(b) show the probability densities of the conditional RMS

for both the leave-one-out and Bayesian error estimators with settings b = 8, n = 16

and b = 16, n = 30, respectively. The sample sizes for each experiment are the same
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Fig. 31. Probability densities for the conditional RMS of the leave-one-out and

Bayesian error estimators with correct priors. The sample sizes for each

experiment were chosen so that the expected true error is 0.25. The uncon-

ditional RMS for both error estimators is also shown, as well as Devroye’s

distribution free bound.

as in the previous section, chosen so that the expected true error is 0.25. Within

each plot, we also show the unconditional semi-analytical RMS of both the leave-

one-out and Bayesian error estimators, as well as the distribution free RMS bound

on the leave-one-out error estimator for the discrete histogram rule in (1.2). Note

that the jaggedness in part (a) is not due to poor density estimation or Monte-

Carlo approximation, but rather is caused by the discrete nature of the problem.

In particular, the expressions for ε̂0, ε̂0, Eπ∗ [(ε0n (θ0))
2
], and Eπ∗ [(ε1n (θ1))

2
] in (3.5)

through (5.10) can take on only a finite set of values, which is especially small for a

small number of bins or sample points. In both parts of Fig. 31 (as well as in other

unshown plots for different values of b and n), the density of the conditional RMS

for the Bayesian error estimator is much tighter than that of leave-one-out. See for

example Fig. 31(b), where the conditional RMS of the Bayesian error estimator tends



140

to be very close to 0.05, whereas the leave-one-out error estimator has a long tail with

substantial mass between 0.05 and 0.2. Furthermore, the conditional RMS for the

Bayesian error estimator is concentrated on lower values of RMS, so much so that in

all cases the unconditional RMS of the Bayesian error estimator is less than half that

of leave-one-out.

Without any kind of modeling assumptions, distribution-free bounds on the un-

conditional RMS are too loose to be useful. In fact, Devroye’s bound from (1.2) is

greater than 0.85 in both subplots of Fig. 31. On the other hand, a Bayesian frame-

work permits us to obtain exact expressions for the RMS conditioned on the sample

for both the Bayesian error estimator and any other error estimation rule.

3. Gaussian Model with Synthetic Data and Fixed Sample Size

We next evaluate the performance of Bayesian error estimators on synthetic Gaussian

data with LDA classification and a fixed sample size, n. We again use the fixed sample

size methodology outlined in Fig. 29, this time with a Gaussian model assuming

arbitrary covariances.

In step 1, we assume the a priori probability of both classes is known and fixed

at 0.5. For the class-conditional distribution parameters, we consider three priors:

“low-information,” “medium-information,” and “high-information” priors, with hy-

perparameters defined in Table 2. All priors are proper probability densities and are

designed to emulate prior knowledge in normalized microarray expression data (see

Chapter VII for more information about priors for microarray data). For each prior

model, the parameter m for class 1 has been calibrated to give an expected true error

of 0.25 with one feature. The low information prior is closer to a flat non-informative

prior and models a setting where our knowledge about the distribution parameters

is less certain. Conversely, the high information prior has a relatively tight distri-
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Table 2. “Low-information,” “medium-information” and “high-information” priors

used in the Gaussian model for conditional MSE experiments

Hyperparameter Low-info prior Medium-info prior High-info prior

a priori prob., c fixed at 0.5 fixed at 0.5 fixed at 0.5

κ, class 0 and 1 3D 9D 54D

S, class 0 and 1 0.03(κ−D − 1)ID 0.03(κ−D − 1)ID 0.03(κ−D − 1)ID

ν, class 0 6D 18D 108D

ν, class 1 3D 9D 54D

m, class 0 [0, 0, . . . , 0] [0, 0, . . . , 0] [0, 0, . . . , 0]

m, class 1 −0.1719[1, 1, . . . , 1] −0.2281[1, 1, . . . , 1] −0.2406[1, 1, . . . , 1]

bution around the expected parameters and models a situation where we have more

certainty. The amount of information in each prior is reflected in the values of κ and

ν, which increase as the amount of information in the prior increases.

Since c is fixed at 0.5, in step 2 we only need to generate a random mean and

covariance for both classes, µ0, Σ0, µ1, and Σ1, according to the specified priors. For

each class, we first generate a random covariance according to the inverse-Wishart

distribution π (Σy) using methods in [104]. Conditioned by the covariance, we gener-

ate a random mean from the Gaussian distribution π (µy|Σy) = fm,Σy/ν (µy), resulting

in a normal-inverse-Wishart distributed mean and covariance pair. The parameters

for class 0 are generated independently from those of class 1.

In step 3A, once the feature-label distribution has been specified by the pa-

rameters c, µ0, Σ0, µ1, and Σ1, the sample size, n0, of class 0 is selected from a

binomial(c, n) experiment and n1 = n − n0. The corresponding number of sample

points in each class is generated according to Gaussian(µy,Σy) distributions. In this

way, we generate n non-stratified labeled training points (so that the number of sam-
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ple points from each class may be different). These labeled sample points are used

to train an LDA classifier in step 3B, where no feature selection is involved. In step

3C, the true error of the classifier is computed exactly and the training data are also

used to evaluate the classical 5-fold cross-validation training-data error estimator.

We also compute a Bayesian error estimator with the same prior probabilities as the

data model (the correct prior) from (2.10) with Eπ∗ [c] = 0.5 and ε̂y defined in (4.11).

Since the classifier is linear, the Bayesian error estimator may be computed exactly

using a closed form solution. We also evaluate the theoretical RMS conditioned on

the sample for the Bayesian error estimator, using (5.2) with moments of c given by

Eπ∗ [c] = Eπ∗ [1− c] = 0.5, Eπ∗ [c2] = Eπ∗ [(1− c)2] = 0.25, and Varπ∗ (c) = 0, as well

as ε̂y defined in (4.11) and Eπ∗ [(εyn (θy))
2] defined in (5.19). The conditional RMS for

the cross-validation error estimator is computed from (5.8).

In each iteration the true error, both error estimates, and their conditional RMS’s

are recorded. The sampling procedure is repeated t = 1, 000 times for each fixed

feature-label distribution, with T = 10, 000 feature-label distributions, for a total of

t× T = ten million samples.

Table 3 shows the accuracy of the analytical formulas for conditional RMS under

nine models using n = 60 with different priors (low, medium and high) and feature

sizes (D = 1, 2, and 5). There is close agreement between the semi-analytical RMS

and empirical RMS of the Bayesian error estimator with correct priors. The table

also provides the average true errors of each model.

Figure 32 shows the estimated densities of the conditional RMS, found from

the conditional RMS values recorded in each iteration of the experiment, for both

the cross-validation and Bayesian error estimators with the low, medium and high

information priors corresponding to each row. These figures contain the same nine

models listed in Table 3 for n = 60 sample points. The semi-analytical unconditional
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Fig. 32. Probability densities for the conditional RMS of the cross-validation and

Bayesian error estimators with correct priors and sample size n = 60. The

unconditional RMS for both error estimators is also indicated.



145

RMS for each error estimator is also printed in each graph for reference. The high

variance of these distributions illustrates that different samples condition the RMS

to different extents. For example, in Fig. 32(a) the expected true error is 0.25 and

the conditional RMS of the optimal Bayesian error estimator ranges between about 0

and 0.05, depending on the actual observed sample. Meanwhile, the conditional RMS

for cross-validation has a much higher variance and is shifted to the right, which is

expected since the conditional RMS of the Bayesian error estimator is optimal. Fur-

ther, the distributions for the conditional RMS of the Bayesian error estimator with

high-information priors have a very low variance and are shifted to the left relative

to the low information prior, demonstrating that models using more informative, or

“tighter,” priors have better RMS performance.

4. Gaussian Model with Synthetic Data and Censored Sampling

We now apply the conditional RMS to censored sampling with synthetic data from our

Gaussian model with arbitrary covariance matrices. Steps 1 and 2 of the experimental

design outlined in Fig. 29 remain exactly the same, that is, we still define a fixed set

of hyperparameters (for either the low, medium or high-information prior) and use

these priors to generate random feature-label distributions. However, the sampling

procedure in step 3 is modified to use censored sampling, as shown in Fig. 33. Instead

of fixing the sample size ahead of time, we collect sample points one at a time until

the conditional MSE reaches a stopping criterion in the form of a desired conditional

RMS.

Since steps 1 and 2 are unchanged, we begin with step 3A. Once the feature-

label distribution parameters have been determined, we draw a small initial training

sample from the feature-label distribution. The training sample is initialized with 3D

sample points in each class, for a total of 6D sample points. In step 3B, we design an
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Fig. 33. Simulation methodology for a Bayesian framework with censored sampling.

LDA classifier on the initial training sample with no feature selection. In step 3C, we

check the current conditional MSE for the initial training sample. If MSE(ε̂|Sn) > r2,

for some fixed constant, r, representing the desired RMS (which will be specified

shortly), then we append a new point to the current sample in step 3D. To do this,

we first establish the label of the new sample point from an independent Bernoulli(c)

experiment, and then draw the sample point from the corresponding class-conditional

distribution. We then design a new classifier (step 3B) and check the conditional

MSE again (step 3C). This is repeated until MSE(ε̂|Sn) ≤ r2, in which case we

stop the sampling procedure, because we have reached the desired MSE, and move

on to step 3E. The sample size is different in each trial because the conditional MSE

depends on the actual data obtained from sampling. The consistency of Bayesian error

estimation guarantees that MSE(ε̂|Sn) will eventually reach the stopping criterion, so

that censored sampling may work to any degree desired.

Having completed the sampling procedure, in step 3E we collect three internal

variables, including the final censored sample, the classifier designed from the final

censored sample, and the conditional MSE computed from the final censored sample.
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From these, in step 3F we find the exact true error (from the classifier and the

true distribution), a 5-fold cross-validation estimate (from the censored sample) and

a Bayesian error estimate (from the censored sample, classifier and correct priors)

exactly as in the fixed sample size experiment. The conditional MSE need not be

computed again, since it has already been found in the censored sampling procedure.

Step 3 is repeated t = 1, 000 times for each fixed feature-label distribution, with

T = 1, 000 random feature-label distributions for a total of t × T = one million

samples.

It remains to specify a desired RMS, r, for each experiment. In this study, we

apply censored sampling to each of our original nine models (low, medium and high-

information priors with D = 1, 2, and 5). For each model, the desired conditional

RMS of the Bayesian error estimator is set to the semi-analytical RMS reported in

Table 3 for the fixed sample experiments with n = 60.

Distributions of the sample size obtained in the censored sampling experiments

are shown in Fig. 34 with the low, medium and high-information priors corresponding

to each row. The means of the distributions are indicated with vertical dotted lines,

and spikes seen on the left side of some subplots, for example in Fig. 34(f), are caused

because the censored sample size starts at 6D and any mass of the probability density

for smaller sample sizes is concentrated at this value. For reference, a summary of

simulation results for each of the nine censored sampling experiments is provided in

Table 4.

In all cases, the RMS with censored sampling is slightly less than the RMS with

fixed sampling, which is expected since the conditional RMS with censored sampling

is upper bounded for each final sample in the censored sampling process. Further,

note that in the worst case the expected sample size is only slightly larger than 60,

especially for mid or low-information priors and higher dimensions. Cases where the
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Fig. 34. Density of sample size when using censored sampling with correct priors. For

each subplot, the desired conditional RMS of the Bayesian error estimator is

set to the semi-analytical RMS reported in Table 3 for sample size n = 60.

The vertical dotted line indicates the mean sample size.
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average sample size is slightly larger than 60 may be explained by a fundamental

tradeoff between sample size and RMS, where in this case the RMS is slightly lower.

On the other hand, the high-information prior has an expected sample size signifi-

cantly smaller than 60. A key point is that the distributions in Fig. 34 have very

wide supports, illustrating that the sample significantly conditions the RMS.

Note that one need take caution when using a smaller sample size because the

classifier does not take advantage of the information in the prior and the true error of

the classifier may increase. This effect may be alleviated by adding an additional con-

dition to stop collecting samples once the Bayesian error estimate itself (the expected

true error) also reaches a desired threshold.

Even when the fixed and censored sample experiments have essentially the same

unconditional RMS and average sample size, recall from the previous section that the

conditional RMS in the fixed sample size experiment has a high variance. In contrast,

censored sampling experiments enjoy a nearly fixed conditional RMS for each censored

sample. Hence, censored sampling provides the same RMS and average sample size or

better, while also guaranteeing a specified conditional RMS for each final sample in

the censored sampling process. We are exploiting a duality between RMS and sample

size: if we fix sample size, we observe in Fig. 32 that the conditional RMS has a large

variance, but if we fix RMS, in Fig. 34 the sample size has a large variance.

5. Gaussian Model with Real Breast Cancer Data and Censored Sampling

In this section, we apply censored sampling to classification using genomic data but

before doing so we need to explain the difference in the simulation methodology used

for real data and that for synthetic data. Heretofore we have employed two random-

izations: randomization of the feature-label distribution (fixed for an iteration) and

randomization of the samples (from the selected feature-label distribution). In effect,
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each iteration involves the assumption of a (randomly selected) “true” distribution

and, since we want a global performance analysis not dependent on any specifically

assumed “true” distribution, we average over all distributions and samples. Now,

suppose we want to consider performance for a specific true distribution, as would be

the case if we are considering samples from a real-data distribution. Then we would

not indulge in the randomization of the feature-label distribution; rather, we would

fix it and only average over the samples. The prior distribution would still be involved

because it plays a role in error estimation and the computation of MSE (ε̂|Sn), but we

are no longer interested in averaging performance across the prior distribution. This

is precisely the approach taken in this section. The simulation methodology, outlined

in Fig. 35, is similar to the censored sampling experiments in Section VI.C.4; however,

since there is a fixed true feature-label distribution, we do not simulate steps 1 or 2 in

Fig. 29. We also only consider the empirical RMS method in accessing performance

relative to the data set.

Proceeding, we apply censored sampling to normalized gene-expression measure-

ments from the same breast cancer study [99] used in Section IV.B.4. The data set

includes 295 sample points, each with a 70 feature gene profile. 180 points are as-

signed to class 0 (good prognosis) and 115 to class 1 (bad prognosis). We choose

conservative non-informative priors for the Bayesian estimator. In particular, we as-

sume c is uniform from 0 to 1, and that the priors for both classes are improper flat

distributions such that π(θ0) = π(θ1) ∝ 1.

In step A, we randomly select an initial sample from the data set without replace-

ment. The training sample is initialized with 6D stratified sample points, where the

ratio of points from each class is kept as close as possible to that of the original data

set. In step B, we design an LDA classifier on the initial training sample. To simplify

the analysis, the classifier is designed from fixed feature sets: {CENPA} for D = 1,
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Fig. 35. Simulation methodology for censored sampling with real data.

{CENPA,BBC3} forD = 2 and {CENPA,BBC3,CFFM4,TGFB3,DKFZP564D0462}

for D = 5. For all feature sets considered, a multivariate Shapiro-Wilk test applied

to the full data set does not reject Gaussianity over either of the classes at a 95%

significance level [28]. Although we do not implement a feature selection scheme, one

can be applied as part of the classifier design in step B.

Assuming flat priors, in step C we evaluate the Bayesian error estimate (the

expected true error) as well as the conditional MSE of the Bayesian error estimate for

the initial sample. Letting r = 0.05 and e = 0.30 be the maximum acceptable RMS

and error, respectively, if MSE(ε̂|Sn) > r2 or ε̂ > e, then we append a new point to

the current sample in step D, which is selected randomly from remaining points in

the data set independently of the label and without replacement. We then design a

new classifier (step B) and check the conditional MSE and expected true error again

(step C).

Ideally, this is repeated until MSE(ε̂|Sn) ≤ r2 and ε̂ ≤ e, in which case we stop

the sampling procedure because we have reached our desired MSE and acceptable

error and move on to step E. The consistency of Bayesian error estimation guarantees
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that MSE(ε̂|Sn) will eventually reach the stopping criterion (assuming the true dis-

tributions are truly Gaussian) and, assuming the classification rule is consistent, ε̂ is

also guaranteed to reach its stopping criterion so long as the optimal linear classifier

has error less than the acceptable error. That being said, because we need an accurate

estimate of the true error in the simulation, if convergence is too slow, then we stop

the sampling procedure at n = 100 to ensure there are enough data points left over

to obtain an accurate holdout estimate of the true error. In practice, if, after a large

amount of sampling, ε̂ does not fall below e, then we simply assume that we cannot

achieve an acceptable classification error for the problem at hand.

Having completed the sampling procedure, in step E we collect four internal

variables: the final censored sample, its corresponding classifier, the Bayesian error

estimate, and the conditional MSE. In step F we approximate the true error of the

classifier using (holdout) points remaining in the data set (after censored sampling).

The Bayesian error estimator and conditional MSE need not be computed again, since

they have already been found in the censored sampling procedure. This entire process

is repeated t = 100, 000 times.

In Table 5 we provide a detailed example of the censored sampling procedure

from a single iteration of an experiment with D = 1. As sample points are added,

the expected true error of the classifier tends to decrease, while the conditional MSE

decreases almost monotonically. We list the actual sample points in the initial sample

(4 in class 0 and 2 in class 1), along with the initial Bayesian error estimate and

conditional MSE. These are followed by the sample points added in each repetition of

the procedure, along with the current Bayesian error estimate and conditional MSE

computed as each point is added. Finally, in this example we stop at a sample size of

37 because the stopping criteria are satisfied: ε̂ = 0.149821 ≤ 0.30 and RMS(ε̂|Sn) =

0.049262 ≤ 0.05. The approximate true error of the designed classifier, found using
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Table 6. Simulation results for real breast cancer data with censored sampling and

flat priors

Features Average n Average ε̂ Bias Empirical RMS

D = 1 45.21553 0.2044588007 9.478× 10−4 0.0543953165

D = 2 45.39178 0.1973571098 −1.541× 10−3 0.0471570662

D = 5 52.48325 0.2004421915 −4.537× 10−3 0.0462898593

the holdout sample points, is 0.197674.

Average simulation results are shown in Table 6. Note that the empirical RMS

is very close to our desired RMS, r = 0.05. Since the average Bayesian error estimate

is much less than our desired maximum error of 0.30, in most cases this bound was

met well before the RMS bound. There is no guarantee, for a fixed distribution with

censored sampling, that the empirical RMS (which in this case is essentially the RMS

conditioned on the distribution) will be bounded by the desired RMS (which bounds

the RMS conditioned on any particular censored sample), in fact it could be either

higher or lower as reflected in Table 6. This is because the RMS conditioned on

the sample, for any individual sample, is not comparable to the RMS conditioned

on the distribution. The empirical RMS being bounded by the desired RMS is only

guaranteed when the empirical RMS is found by averaging over all distributions in

the model.

Finally, we provide a distribution of the sample size in each experiment in Fig. 36.

Even though in this experiment all samples are drawn from the same distribution,

we observe a relatively large range of sample sizes, though the variance of the sample

size is much smaller for a higher number of (fixed) features. This may be caused

by the increased average sample size, possibly because larger samples drawn from a

relatively small real data set are more likely to have common points, or larger samples
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Fig. 36. Density of sample size when using censored sampling with empirical mea-

surements from a breast cancer study. Both classes have improper non-in-

formative priors. The vertical dotted line indicates the mean sample size.

are more likely to faithfully represent the true distribution with posteriors closer to

delta functions on the true parameters.

These results again suggest that different samples condition the RMS to different

extents, even when samples are drawn from the same distribution. Hence, using the

conditional RMS to produce a censored sample with precisely the RMS necessary for

the experiment at hand can be a very attractive and economical sampling method.
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D. Discussion

Although Bayesian error estimators are not distribution-free, frequentist consistency

still holds for Bayesian error estimation in both the discrete model and Gaussian

model with linear classifiers for all distributions in the parameterized model family.

We have also analytically characterized the accuracy advantage of Bayesian error

estimation over holdout, thereby showing that the use of prior knowledge can simul-

taneously provide better classification performance and better error estimation.

Not only may we observe convergence in the error estimator, but we expect

the sample-conditioned RMS converges to zero as well. This suggests an important

application in censored sampling, where sample points are collected one at a time

until the conditional MSE reaches an acceptable level, thereby guaranteeing a desired

error-estimation accuracy with minimal sampling cost.

Extensive simulations presented in this chapter examine RMS performance char-

acteristics of Bayesian error estimation relative to the priors for both fixed sample and

censored sample experiments. Two main realizations emerge from the new sample-

conditioned MSE. First, under Bayesian models the sample conditions the uncertainty,

and different samples condition it to different extents. Second, models using more

informative, or “tighter,” priors have better RMS performance.
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CHAPTER VII

APPLICATION OF BAYESIAN MMSE ERROR ESTIMATION TO

GENE-EXPRESSION MICROARRAY DATA∗

Two practical problems naturally arise in Bayesian error estimation. First, how does

one arrive at a prior distribution governing the model? This issue arises in any

Bayesian approach, and the current chapter proposes a method to calibrate priors

using discarded microarray data. The second issue is the availability of analytic

expressions for Bayesian MMSE estimators. Although the Bayesian error estimator

has been solved in both the discrete and Gaussian models, here we also demonstrate

how to approximate Bayesian error estimators when closed-form representations are

not available. While we are not advocating the abandonment of analytic methods, it

is practically useful to have software that can evaluate Bayesian MMSE estimators via

Monte-Carlo methods. Currently, approximation is necessary in the Gaussian model

when using a non-linear classifier, since a closed form solution is not known. Software

is publicly available at http://gsp.tamu.edu/Publications/supplementary/dalton11a.

A. Modeling Microarray Data

We assume two classes and require the training sample to consist of normalized log-

ratios. Thus, use of normalization schemes such as total intensity normalization or

the LOESS method, which are popular transformations before high-level analysis is

applied, are required. Log-transformed gene expression values have nearly Gaussian

class-conditional distributions (with unknown parameters) [105, 106]. To further val-

∗Reprinted with permission from “Application of the Bayesian MMSE Estimator for Classifi-
cation Error to Gene Expression Microarray Data” by L. A. Dalton and E. R. Dougherty, 2011,
Bioinformatics, vol. 27, no. 13, pp. 1822–1831, Copyright 2011 by Oxford University Press.
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idate a Gaussian modeling assumption, during feature selection we will permit only

features that pass a Shapiro-Wilk Gaussianity test. Note that Bayesian error estima-

tors designed under the Gaussian model were shown in Chapter IV to be robust in

the sense that performance is still good when the true distributions are Johnson dis-

tributions, which are a class of non-Gaussian distributions with four free parameters

to control mean, variance, skewness and kurtosis.

Normal-inverse-Wishart priors compose a flexible class of distributions with many

degrees of freedom to facilitate the calibration of priors for gene-expression microar-

rays. Further, this family of priors possesses a fast closed-form solution when used

with linear classification. In problems where the Gaussian model applies and one

wishes to use a linear classifier, the benefit one might gain by having more control

over the prior is not worth the much greater amount of time required to run an in-

tegral approximation code and the effort of designing a specialized model, especially

for small samples where one cannot afford a very complex model anyway. Hence, we

focus on calibrating normal-inverse-Wishart priors.

Assuming the parameters between classes are fairly independent, we have jus-

tified the assumptions posed in the definition of the Bayesian error estimator, the

others being that the class-conditional distributions are relatively Gaussian and that

normal-inverse-Wishart priors are adequate for representing prior knowledge. We are

left to devise a method of calibrating priors for the mean and covariance of each class.

B. Implementation of Exact and Approximate Bayesian Error Estimators

Throughout this chapter, we will assume the Gaussian model with arbitrary covari-

ance matrices defined in Section IV.A.6, so that the prior and posterior of θy are

normal-inverse-Wishart distributions. We fix the hyperparameters for the priors of
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each class and use the observed sample to update the hyperparameters of the poste-

riors. We also check that these posteriors are valid density functions, and if they are

not, by default the code reports the error contributed by that class to be 0.5. Note

that the Bayesian error estimator is most useful in a small sample setting, but the

sample size must not be so small that the posterior is not a valid density function.

This may happen, for instance, if we use a flat prior with κ + D + 2 = 0 and the

sample size for class y is ny ≤ 2D + 1, so that κ∗ = κ + ny ≤ D − 1. In such cases,

the Bayesian error estimator is meaningless because the available information is not

sufficient for estimation, but generally there are also too few sample points for any

error estimator to provide meaningful results.

Given valid normal-inverse-Wishart posteriors, the closed form Bayesian error

estimator in Equation (4.11) for linear classification is easily evaluated. For arbitrary

classifiers, we approximate the Bayesian error estimator in Equation (2.11) with a

Monte-Carlo approach. For each class, we generate a random mean and covariance

pair according to the specified posterior normal-inverse-Wishart distribution. Sev-

eral algorithms for generating normal-inverse-Wishart distributed multivariate sam-

ple points are available, for example see [104]. For each mean and covariance pair,

the true error contributed by the class for the designed classifier is approximated by

generating 10,000 sample points from the Gaussian distribution having the specified

mean and covariance, and finding the error of these sample points on the classifier.

The Bayesian error estimator is computed by averaging these true errors over 2,500

random sets of mean and covariance pairs.

A toolbox of C code for Bayesian error estimation is publicly available. This

includes the exact Bayesian error estimator for linear classifiers, the approximation

code described above for arbitrary classifiers, a three-stage feature selection algorithm

discussed in the next section, as well as code implementing the method of generat-
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ing priors described in Section VII.D. Simulations demonstrating the accuracy of

this approximation with synthetic data and LDA classification are available in the

supplementary material of [53].

C. Feature Selection

We use a three-stage feature selection method based on the t-test and a Gaussianity

test to reduce the original feature set to D features. Since this work is not focused

on optimizing a classification scheme, but rather on investigating the performance

of error estimators, this feature selection scheme is intended to be a simple possible

scheme to produce highly differentially expressed Gaussian features.

In the first stage, only highly differentially expressed features or features with

a high likelihood of biological significance are selected. These may be selected by a

t-test or based on biological knowledge. This stage reduces the number of features

from tens of thousands to a few hundred. The second stage applies a Shapiro-Wilk

hypothesis test [107] on each feature of each class. Only features passing the Shapiro-

Wilk test with 95% confidence in both classes are used, unless there are not enough

features passing the test, in which case we select a fixed number of features with

the highest sum of the Shapiro-Wilk test statistics in each class. In the final stage

of feature selection, we reduce the feature set to D features. This is done either by

applying a t-test if it has not already been applied in the first stage, or by using the

same t-test statistics from the first stage to pick the D most differentially expressed

Gaussian features.

This implementation employs classifier independent feature selection schemes,

such as the t-test and Shapiro-Wilk test. However, even for classifier dependent

schemes, once the feature selection and classification schemes have been implemented,



162

the Bayesian error estimator may be calculated as a deterministic function of the fixed

classifier. This is in contrast to cross-validation, which uses surrogate classifiers to

estimate the error of the designed classifier.

D. Estimating Prior Hyperparameters

When calibrating priors for microarrays, what data should be used and how? With

the explosion of microarray experimentation over the last decade, the genomics com-

munity has amassed an enormous database of gene expression data, and trends in

the entire history of microarray experimentation could be used to find a prior, per-

haps conditioned on a particular organism, tissue, gene and/or type of abnormality,

depending on the nature of the experiment at hand. However, different microarray

experiments are currently very difficult to compare, although there have been some

recent efforts to normalize and integrate different data sets [106].

The method employed here uses discarded gene expression data, consisting of

a subset of the features from the microarray data that are not used for classifica-

tion, to calibrate the priors of the Bayesian error estimator. Though these features

are not used in the actual classifier, they may implicitly contain useful calibration

information such as the varying concentrations of DNA material used in each mi-

croarray, background intensities and other characteristics of the digitized images of

a microarray slide. And although calibration requires a large amount of data and

in microarray gene expression analysis we typically expect a very small sample set-

ting, the huge number of discarded features ensures that there is enough data for a

successful calibration of the hyperparameters.

It is possible to define a prior on the entire feature set and to compute the

Bayesian error estimator over the reduced feature set based on the marginal distri-
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bution of this prior on only the selected features. However, the following approach

directly defines a prior on only the selected features.

Consider one class at a time, y = 0 or y = 1. To simplify notation, in this

section we write µ instead of µy and Σ instead of Σy. We essentially use a method of

moments approach to calibrate the hyperparameters; however, estimating a vector m

and matrix S may be problematic for a small number of sample points, so to simplify

the analysis we assume the following structure on these hyperparameters:

m = m [1, 1, . . . , 1]T ,

S = σ2



1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1


,

where m is a real number, σ2 ≥ 0, and −1 ≤ ρ ≤ 1. This structure is justified because

prior to observing the data, there is no reason to think that any feature, or pair of

features, should have distinct properties. With this simplification, our problem is now

reduced to estimating five scalers for each class: ν, m, κ, σ2 and ρ.

In the first stage of a method of moments approach, we find the theoretical first

and second moments of the random variables µ and Σ (random because of the prior

distribution applied to them) in terms of the hyperparameters we wish to estimate.

Throughout the remainder of this section, a subscript i represents the ith element of

a vector, and a subscript jk represents the jth row, kth column element of a matrix.

First consider the parameter Σ, with a marginal prior having an inverse-Wishart

distribution with hyperparameters κ and S. The mean of this distribution is well

known [108],

E[Σ] =
S

κ−D − 1
,



164

and given the previously defined structure on S, we obtain

σ2 = (κ−D − 1)E[Σ11], (7.1)

ρ =
E[Σ12]

E[Σ11]
. (7.2)

Due to our imposed structure, only E[Σ11] and E[Σ12] are needed.

The variance of the jth diagonal element in inverse-Wishart distributed Σ may

be expressed as

Var (Σjj) =
2(Sjj)

2

(κ−D − 1)2(κ−D − 3)
=

2(E[Σ11])
2

κ−D − 3
,

where we have applied Equation (7.1) in the second equality. Solving for κ,

κ =
2(E[Σ11])

2

Var (Σ11)
+D + 3. (7.3)

We next consider the mean, µ, which is parameterized by the hyperparame-

ters ν and m. The marginal distribution of the mean is a multivariate Student’s

t-distribution given by [108]:

π(µ) =
Γ
(
κ+1
2

)
Γ
(
κ−D+1

2

)√νD

πD
|S|−1

(1 + ν(µ−m)TS−1(µ−m))κ+1 .

The mean and covariance of this distribution are well known:

E[µ] = m,

Var (µ) =
S

(κ−D − 1)ν
=

E[Σ]

ν
.

With the assumed structure on m, we obtain

m = E[µ1], (7.4)

ν =
E[Σ11]

Var (µ1)
. (7.5)
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Finally, our objective is to approximate the expectations in Equations (7.1)

through (7.5) using calibration features left out of the classification scheme. Suppose

the calibration data for the current class consists of n sample points with E ≫ D

features. Let µ̂E be the sample mean and Σ̂E be the sample covariance matrix of the

complete set of E features in the calibration data. From these we wish to find several

sample moments of µ and Σ in our original D feature problem, that is, to find Ê[µ1],

V̂ar (µ1), Ê[Σ11], Ê[Σ12] and V̂ar (Σ11), where the hats indicate the sample moment of

the corresponding quantity. All of these are scaler quantities.

To compress the set of E features in the calibration data to solve an estimation

problem on just D features, and ultimately to find these scaler sample moments in

a balanced way, we emulate the feature selection process by assuming the selected

features are drawn uniformly. Since any of the E features is equally likely to be

selected as the ith feature, the sample mean of the mean of the ith feature, Ê[µi],

is computed as the average of the sample means of all E features in the calibration

data. This result is the same for all i, and we use Ê[µ1] to represent all features. In

particular,

Ê[µ1] =
1

E

E∑
i=1

µ̂Ei . (7.6)

Thanks to uniform feature selection, all other moments may be balanced over all

features or any pair of distinct features. The remaining sample moments are obtained

in a similar manner:

V̂ar (µ1) =
1

E − 1

E∑
i=1

(
µ̂Ei − Ê[µ1]

)2
, (7.7)

Ê[Σ11] =
1

E

E∑
i=1

Σ̂E
ii , (7.8)
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Ê[Σ12] =
2

E(E − 1)

E∑
i=2

i−1∑
j=1

Σ̂E
ij, (7.9)

V̂ar (Σ11) =
1

E − 1

E∑
i=1

(
Σ̂E
ii − Ê[Σ11]

)2
. (7.10)

Here, V̂ar (µ1) represents the variance of each feature in the mean. We also have

Ê[Σ11] and Ê[Σ12] representing the sample mean of diagonal elements and off-diagonal

elements in Σ, respectively. Finally, V̂ar (Σ11) is the sample variance of the diagonal

elements in Σ.

Plugging our sample moments into Equations (7.1) through (7.5), we obtain

σ2 = 2Ê[Σ11]

(
(Ê[Σ11])

2

V̂ar (Σ11)
+ 1

)
, (7.11)

ρ =
Ê[Σ12]

Ê[Σ11]
, (7.12)

κ =
2(Ê[Σ11])

2

V̂ar (Σ11)
+D + 3, (7.13)

m = Ê[µ1], (7.14)

ν =
Ê[Σ11]

V̂ar (µ1)
. (7.15)

Note Equation (7.3) for κ was plugged into Equation (7.1) to obtain the final σ2.

In sum, calibration for the prior hyperparameters is defined by Equations (7.11)

through (7.15), the sample moments being given in Equations (7.6) through (7.10).

The estimates of κ and ν can be unstable, since they rely on second moments,

V̂ar (Σ11) and V̂ar (µ1), in a denominator. These parameters can be made more stable

by discarding outliers when computing the sample moments. Herein, we discard the

10% of the µ̂Ei with largest magnitude and the 10% of the Σ̂E
ii with largest value.

This method is one of many possible approaches; for simplicity and to avoid

an over-defined system of equations, we do not incorporate the covariance between
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distinct features in µ (that is Cov (µ)12), the variance of off-diagonal elements in Σ

(that is Var (Σ12)), or the correlation between distinct elements in Σ, though it may be

possible to use these to improve the estimates of the hyperparameters. It may also be

feasible to use other estimation methods, such as maximum likelihood. Furthermore,

the method proposed here to calibrate the priors is a purely data driven technique

for easy and general application to microarray experiments. Ideally, the best way to

calibrate priors would be to incorporate data and biological knowledge specific to the

particular features selected for classification.

E. Performance

We present two sets of results demonstrating good performance of Bayesian error

estimators, one on synthetic high dimensional data with three-stage feature selection

and a second based on breast cancer data with two stages of feature selection.

1. Gaussian Model with High-dimensional Synthetic Data

In this section, we apply our Bayesian prior estimation method to synthetic high-

dimensional microarray data. We use the same synthetic data model provided in [109],

which models many observations made in microarray expression based studies, in-

cluding blocked covariance matrices to model groups of interacting variables with

negligible interactions between groups.

Our model emulates a full feature-label distribution with 20,000 total features.

Features are categorized as either “markers” or “non-markers.” Markers represent

features that have different class-conditional distributions in the two classes and are

further divided into two subtypes: global markers and heterogeneous markers. Non-

markers have the same distributions for both classes and thus have no discriminatory
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Fig. 37. Different feature types in constructing the high-dimensional synthetic data

model.

power, and are also divided into two subtypes: high-variance non-markers and low-

variance non-markers. A summary of the feature types is shown in Figure 37.

Twenty features are global markers, which are homogeneous in each class. In

particular, the set of all global markers in class y has a Gaussian distribution with

mean µgm
y and covariance matrix Σgm

y .

Within class 1, we assume each sample point belongs to one of two equally likely

subclasses named 0 and 1, representing different stages or subtypes of cancer. Each

subclass is associated with fifty heterogeneous markers, which are jointly Gaussian

with mean µhm
1 and covariance Σhm

1 . Sample points associated with the other subclass

have the same distribution as class 0, which is Gaussian with mean µhm
0 and covariance

Σhm
0 . Each heterogeneous marker may only be associated with one subclass, thus there

are 100 total heterogeneous markers in the model.

We simplify the model by assuming µgm
y and µhm

y have the form my× (1, 1, . . . , 1)

for fixed scalers my. We assume Σgm
y and Σhm

y have the form σ2
yΣ, where σ2

y are
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constants and Σ has a block covariance structure, i.e.,

Σ =


Σρ · · · 0

...
. . .

...

0 · · · Σρ

 ,
with Σρ being a 5 × 5 matrix with 1 on the diagonal and ρ = 0.8 off the diagonal.

That is, we group markers into blocks of 5 features, where the blocks are independent

from each other, and the markers within each block are correlated with a relatively

high correlation coefficient to emulate a pathway.

We generate 2,000 high-variance non-marker features, which have independent

mixed Gaussian distributions given by pN(m0, σ
2
0)+ (1− p)N(m1, σ

2
1), where mi and

σ2
i are the same scalers defined for markers and N(mi, σ

2
i ) is a normal random vari-

able with mean mi and variance σ2
i . The random variable p is selected independently

for each feature with a uniform distribution over [0, 1] and is applied to all sample

points of both classes for the given feature. These features can be viewed as genes

regulated by mechanisms unrelated to those that regulate the class-0 and class-1 phe-

notypes. The remaining features are low-variance non-marker features, each having

independent univariate Gaussian distributions with mean m0 and variance σ2
0.

In this model, heterogeneous markers are Gaussian within each sub-class, but

the class-conditional distribution for class 1 is a mixed Gaussian distribution (mixing

the distributions of the sub-classes), and is thus not Gaussian. Further, the high-

variance features are also mixed Gaussian distributions, so this model incorporates

both Gaussian and non-Gaussian features to challenge the Shapiro-Wilk Gaussianity

test in the feature selection scheme.

To simplify our simulations, we set the a priori probability of both classes to

0.5 and fix the parameters m0 = 0 and m1 = 1. We also define a single parameter
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Table 7. Synthetic high-dimensional data model parameters

Parameters Values/description

Total features 20,000

Global markers 20

Subclasses in class 1 2

Heterogeneous markers 50 per subclass (100 total)

High-variance features 2,000

Low-variance features 17,880

Mean m0 = 0, m1 = 1

Variances σ2 = σ2
0 = σ2

1 (controls Bayes error)

Block size 5

Block correlation 0.8

a priori prob. of class 0 0.5

σ2 = σ2
0 = σ2

1, which specifies the difficulty of the classification problem. A summary

of our synthetic high-dimensional data model parameters is given in Table 7. In all

simulations, the values for σ2 are chosen so that a single global feature (note that

all global features are identical) has a specific Bayes error. We call this the “Bayes

error” in the remainder of this section, and it is given by ε∗ = Φ(−1/(2σ)), where Φ

is the unit normal Gaussian cumulative distribution function, so for instance, we use

σ = 0.9537 for a Bayes error of 0.3.

Under this high-dimensional model, we run several Monte-Carlo simulations. In

each experiment we fix the training sample size, n, the number of selected features,

D, and the difficulty of the classification problem via σ. The synthetically generated

samples are non-stratified, meaning that in each iteration the sample size of each class

is not fixed but determined by a binomial(0.5, n) experiment, and the corresponding
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sample points are randomly generated according to the distributions defined for each

class.

Once the sample has been generated, we apply the three-stage feature selection

scheme outlined in Section VII.C. In the first stage, we apply a t-test to obtain 1,000

highly differentially expressed features by removing most non-informative features.

In the second stage, we apply a Shapiro-Wilk Gaussianity test and eliminate features

that do not pass the test with 95% confidence. The number of features output in

this stage is variable. If there are not at least thirty features that pass the test, then

we return the thirty features with the highest sum of the Shapiro-Wilk test statistics

for both classes. In the final stage, we use the same t-test values computed before to

obtain the final set of D highly differentially expressed Gaussian features, which will

be used to design our classifier. The 1, 000 − D features that pass the first stage of

feature selection but are not used for classification are saved as calibration data.

The feature selected training data are then used to train an LDA classifier. With

the classifier fixed, 5,000 testing points are drawn from exactly the same distribution

as the training data and used expressly to approximate the true error. Subsequently,

several training-data error estimators are computed, including leave-one-out (loo), 5-

fold cross-validation (cv), 0.632 bootstrap (boot), and bolstered resubstitution (bol).

Two Bayesian error estimators are also applied, one with flat non-informative priors

defined by π (θy) = 1 (the flat Bayesian error estimator), and the other with priors

calibrated as described in Section VII.D (the calibrated Bayesian error estimator).

Since the classifier is linear, these Bayesian error estimators are computed exactly.

This entire process is repeated 120,000 times to approximate the RMS deviations

from the true error for each error estimator.

We first analyze the quality of features selected by the three-stage feature se-

lection algorithm. Figure 38(a) shows the percentage of selected features that are



172

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

expected true error

S
el

ec
te

d 
fe

at
. t

ha
t a

re
 g

lo
ba

l (
%

)

 

 

n=60, D=1
n=120, D=1
n=60, D=3
n=120, D=3
n=60, D=5
n=120, D=5
n=60, D=7
n=120, D=7

(a) vs. expected true error

2 4 6 8 10
60

70

80

90

100

Number of selected features (D)

S
el

ec
te

d 
fe

at
. t

ha
t a

re
 g

lo
ba

l (
%

)

 

 

n=60
n=120

(b) vs. feature size, Bayes error = 0.3

Fig. 38. Percentage of three-stage selected features that are global features in the

synthetic high-dimensional data model.

global features with respect to the expected true error of the designed classifier. We

would like to graph performance with respect to Bayes error, which is a more pure

measure of the difficulty of a classification problem, but evaluating Bayes error on

our high-dimensional model is difficult and it may not be close to the true error of

the designed classifier. Hence, in our graphs we focus on performance with respect

to expected true error. Similarly, Figure 38(b) graphs against feature size with a

fixed Bayes error of 0.3. Recall that this model uses 20,000 features, of which only

20 are global features that most effectively discriminate the classes. As long as the

feature size is reasonable given the difficulty of the problem (expected true error and

sample size), this percentage is quite large. However, in Figure 38(b) for sample size

60 we see that a feature size larger than 7 will result in less than 80% of the selected

features being global features. This illustrates the necessity of restricting feature size

in a small sample setting, and is consistent with earlier studies showing the difficulty

of finding good feature sets when the number of features is large and the sample is
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Fig. 39. Percentage of three-stage selected features that are not rejected by a multi-

variate Shapiro-Wilk test on either class at a 95% significance level with the

synthetic high-dimensional data model.

small [110, 111].

The graphs in Figure 39 show the percentage of selected feature sets that are not

rejected by a multivariate Shapiro-Wilk test on either class at a 95% significance level.

There are several multivariate Gaussianity tests based on the Shapiro-Wilk statistic.

We used [112], which generalizes the classical univariate Shapiro-Wilk test to the

multivariate case by transforming the data into a set of approximately independent

standard normal random variables, and essentially summing up the standard Shapiro-

Wilk statistic on each dimension. The results show that even though the three-stage

feature selection algorithm only uses a univariate Gaussianity test, and univariate

normality does not imply multivariate normality, the resulting feature set still tends

to have a high probability of passing the multivariate Gaussianity test.

We next turn our attention to the RMS performance of error estimators under

our synthetic high-dimensional model, where a summary of all simulation settings
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are available in Table 8. Our first battery of simulations in Figure 40 shows RMS

deviation from true error for all error estimators with respect to expected true error

for LDA classification with 1, 3, 5, or 7 selected features and either 60 or 120 sample

points. Given the sample sizes, it is prudent to keep the number of selected features

small to have satisfactory feature selection [110] and to avoid the peaking phenom-

ena [113, 109]. Lines marked with ‘o’ represent the Bayesian error estimator with

flat priors, and lines marked with ‘x’ represent the Bayesian error estimator with the

calibrated priors. The key point in these graphs is that the calibrated Bayesian error

estimator has best performance in the mid and high range. For an expected true

error of about 0.25 and n = 60, the RMS for the calibrated Bayesian error estimator

outperforms 5-fold cross-validation for D = 1, 3, 5 and 7 by 0.0507, 0.0300, 0.0335,

and 0.0379, respectively, representing 64, 32, 30, and 29 percent decrease in RMS,

respectively. For n = 120, the decrease in RMS for D = 1, 3, 5 and 7 is 0.0366,

0.0175, 0.0192, and 0.0198, respectively, for 67, 34, 35, and 33 percent decrease in

RMS, respectively. All other error estimators typically have best performance for

low expected true errors, with the flat Bayesian error estimator having even better

performance than the classical error estimation schemes. Indeed, all graphs except

Figure 40(g) demonstrate that either the flat or calibrated Bayesian error estimator

is the best scheme over the whole range of expected true error.

Our next set of graphs in Figure 41 show simulation results with respect to

feature size. For reference, graphs of the expected true error for these simulations

are shown in Figure 42. Calibrated priors provide the best performance, except when

combining large feature and small sample sizes, in which case a flat prior performs

best. In fact, performance of the calibrated Bayesian error estimator in Figure 41

tends to be best precisely in the rage of feature sizes with the highest percentage

of global features and the lowest true errors. For example, the calibrated Bayesian
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(a) n = 60, D = 1
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(b) n = 120, D = 1
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(c) n = 60, D = 3
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(d) n = 120, D = 3
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(e) n = 60, D = 5
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(f) n = 120, D = 5

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

expected true error

R
M

S
 d

ev
ia

tio
n 

fr
om

 tr
ue

 e
rr

or

 

 
loo
cv
boot
bolstering
BEE, flat
BEE, calib.

(g) n = 60, D = 7
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(h) n = 120, D = 7

Fig. 40. RMS deviation from true error for the synthetic high-dimensional data model

with LDA classification versus expected true error.
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(a) n = 60, Bayes error = 0.3

2 4 6 8 10

0.03

0.04

0.05

0.06

Number of selected features (D)

R
M

S
 d

ev
ia

tio
n 

fr
om

 tr
ue

 e
rr

or

 

 
loo
cv
boot
bolstering
BEE, flat
BEE, calib.

(b) n = 120, Bayes error = 0.3

Fig. 41. RMS deviation from true error for the synthetic high-dimensional data model

with LDA classification versus feature size.
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Fig. 42. Expected true error for the synthetic high-dimensional data model with LDA

classification versus feature size, Bayes error = 0.3.
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error estimator in Figure 41(a) for sample of size 60 has the best performance up to

7 features, where in Figure 38(b) the percentage of selected features being global is

greater than about 80% and in Figure 42 the true error has started to level off. Note,

also, the consistently superior performance of the calibrated Bayesian error estimator

over the non-Bayesian estimators for n = 60; indeed, throughout the range of feature

sizes, the calibrated Bayesian error estimator has an RMS at least 0.0263 smaller than

the best performing non-Bayesian error estimator, which represents an improvement

of at least 14 percent.

Note the upward RMS trend in Figure 41(a) and the downward trend in Fig-

ure 41(b) for the non-Bayesian error estimators. Although it can be dangerous to

generalize about the behavior of error estimators, let us at least conjecture. We see

in Figure 42 that the true error is large for n = 60, with little improvement as we

increase the number of features and, in fact, increasing true error as the number of

features passes 7, which is a clear sign of the peaking phenomenon. Thus, for n = 60,

adding features creates a more difficult estimation problem that is not offset by easing

error estimation on account of small true errors. On the other hand, in Figure 42

we see a fast reduction of true error for n = 120 as more features are added, thereby

greatly easing the error estimation problem and resulting in the declining RMS trend

in Figure 41(b). While these comments apply directly to the non-Bayesian error es-

timators they apply to the Bayesian estimators relative to their change of slope. The

flat Bayesian error estimator is relatively constant in Figure 41(a) but falls along with

the non-Bayesian error estimators in Figure 41(b), whereas the calibrated Bayesian

error estimator consistently rises in Figure 41(a) but remains relatively flat in Fig-

ure 41(b).



179

2. Gaussian Model Applied to Real Breast Cancer Data

We next apply Bayesian error estimation to the normalized gene-expression measure-

ments from the same breast cancer study [99] used in Section IV.B.4. This study used

295 sample points, with 180 assigned to class 0 (good prognosis) and 115 in class 1

(bad prognosis), and provides a 70 feature prognosis profile. From the original 295

points, we randomly draw a non-stratified training sample of size n. Since the number

of features in the data set is relatively small, we apply only the last two stages of

our feature selection scheme in Section VII.C. The first stage selects features passing

a Shapiro-Wilk Gaussianity test with 95% confidence and must report at least D

features, while the second stage selects D features with the highest t-test statistic.

The 70 − D features not used for classification are retained as calibration data for

Bayesian error estimation. After feature selection, we train an LDA, QDA or 3NN

classifier.

The remaining sample points are used as holdout data to approximate the true

error of the designed classifier. The previously considered error estimators are also

evaluated from the training samples (except in the case of 3NN where semi-bolstering

is used instead of bolstering owing to its superior performance for 3NN [71]), along

with exact Bayesian error estimators (for LDA) or approximate Bayesian error esti-

mators (for QDA and 3NN). Both flat and calibrated priors are applied. This process

is repeated either 100,000 times (for LDA) or 10,000 times (for QDA and 3NN) to

estimate the average RMS deviation of each error estimator from the true error.

The priors are calibrated as discussed in Section VII.D. A typical prior with 2

features and 40 sample points is ν = 16.80, m = −0.004, κ = 12, σ2/(κ −D − 1) =

0.042 and ρ = 0.020 for class 0, and ν = 2.78, m = −0.068, κ = 10, σ2/(κ−D− 1) =

0.024 and ρ = 0.073 for class 1. These indicate that the good-prognosis class (0) has a
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distribution with a more concentrated mean (since ν is much larger) and the mean is

close to 0, which is expected since the data has been normalized. On the other hand,

κ is fairly large for both classes, suggesting that the variance of each feature in either

class is probably close to the prior expected variance, σ2/(κ−D − 1). Interestingly,

the variance is a bit larger for class 0 and ρ is usually small but positive.

Figures 43, 44 and 45 provide simulation results for LDA, QDA and 3NN, re-

spectively. Each figure contains subplots representing fixed feature sizes between one

and five, and one figure showing the expected true error for all simulations with the

corresponding classifier. A summary of the simulation settings is shown in Table 9.

The uniform prior performs well over a wide range of sample and feature sizes, and

generally shows significant improvement over the classical error estimators. Prior

calibration can have even more pronounced improvement, especially for small feature

sets. And although the uniform prior often performs better than the calibrated prior

for high feature sizes, see for example Figure 43(e) for 5 features, we observe in Fig-

ure 43(f) that true error does not improve much, and may actually get worse, for as

little as 5 features. This may indicate that when there is not enough calibration data

for good prior design, there is also insufficient data for good classifier design.

F. Discussion

Our synthetic data simulations demonstrate the power of prior knowledge in two

ways: we may assume a low Bayes error by using a flat prior and outperform the

classical error estimators where they perform best, or we may calibrate a prior, even

using purely data driven methods, and obtain superior performance in the mid range

of Bayes errors. Also note that for moderately difficult classification problems which

are typical in a small sample biological setting, the mid range is precisely where
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(c) 3 features

40 50 60

0.05

0.055

0.06

0.065

0.07

0.075

0.08

Number of sample points (n)

R
M

S
 d

ev
ia

tio
n 

fr
om

 tr
ue

 e
rr

or

 

 
loo
cv
boot
bol
BEE, flat
BEE, calib.

(d) 4 features
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(e) 5 features
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Fig. 43. RMS deviation from true error and expected true error with LDA classifica-

tion of empirical measurements from a breast cancer study.
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(c) 3 features
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Fig. 44. RMS deviation from true error and expected true error with QDA classifi-

cation of empirical measurements from a breast cancer study.
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(b) 2 features
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(c) 3 features
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(d) 4 features
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(e) 5 features

20 30 40 50 60 70
0.2

0.25

0.3

Number of sample points (n)

E
xp

ec
te

d 
tr

ue
 e

rr
or

 

 
D=1
D=2
D=3
D=4
D=5

(f) expected true error

Fig. 45. RMS deviation from true error and expected true error with 3NN classifica-

tion of empirical measurements from a breast cancer study.
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training data error estimation is needed. One might argue that there is a risk with

postulating a low-Bayes-error prior since, although it will show excellent performance

if the Bayes error is truly low, it will suffer for large Bayes errors. In Figure 40,

not only does performance deteriorate with increasing Bayes error for the Bayesian

MMSE estimator, so too does the performance of cross-validation. This should not be

surprising because the use of cross-validation presupposes that the Bayes error is small

because its performance seriously degrades for increasing Bayes error. This behavior,

noted more than 30 years ago in a simple 1-dimensional Gaussian model [65], has

been demonstrated via large-simulations for both the discrete and Gaussian models,

and has been analytically proven in the Gaussian model [25]. In other words, unless

one is not interested in error estimator performance, use of cross-validation carries

with it implicitly assumed prior knowledge. If one knows that the Bayes error is low,

then why not define a prior model based on this assumption to design a Bayesian

error estimator with even better performance?
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CHAPTER VIII

BAYESIAN MMSE CALIBRATION OF CLASSIFIER ERROR ESTIMATORS

AND CONCLUSION∗

When it is reasonable to assume a Bayesian framework but an analytical or closed-

form Bayesian error estimator is not available, it may be approximated using Monte-

Carlo methods. That being said, approximating a Bayesian error estimator is much

more computationally intensive than classical counting methods and may be infea-

sible. To address this, we propose a new method of optimally calibrating arbitrary

error estimators within Bayesian frameworks. Assuming a fixed sample size, fixed

classification and error estimation schemes, and a set of priors for the distribution

parameters, this is done in two steps. First, we compute a calibration function map-

ping error estimates (from the specified error estimation rule) to their calibrated

values off-line according to the assumed model. Second, in all future experiments a

practitioner may perform classification and error estimation in the usual way, but at

the last step use the calibration function as a simple lookup table to calibrate the

final error estimate on the fly.

The calibration function is defined to be the MMSE estimate of the true error of

a classifier designed from the assumed classification scheme, given an observed error

estimate. Equivalently, this is the expected true error conditioned on the observed

error estimate, where uncertainty in the expectation stems from our uncertainty in

both the feature-label distribution and the sample. This is similar to Bayesian MMSE

error estimation itself, which is equivalent to the expected true error of a designed

classifier conditioned on the entire observed sample, except that the calibrated error

∗Reprinted from Pattern Recognition, vol. 45, no. 6, L. A. Dalton and E. R. Dougherty, “Optimal
MSE Calibration of Classifier Error Estimators Under Bayesian Models,” pp. 2308–2320, Copyright
2012, with permission from Elsevier.
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estimator conditions on only the observed error estimate. In other words, both error

estimators minimize MSE in the same assumed Bayesian model, but the Bayesian

error estimator has the benefit of the entire sample, which is an array of n sample

points with D features each, and the MMSE calibrated error estimator uses only

a single statistic (a lossy function of the observed sample) containing information

about the true error. Also, a basic property of both Bayesian and calibrated error

estimators is that they are unbiased relative to the true error. However, since the

MMSE calibrated error estimate averages true errors over all samples producing the

observed error estimate, the sample and classifier are not fixed as they are in Bayesian

error estimation, where conditioning is on the sample itself.

A. Optimal Calibration of Arbitrary Error Estimators

An optimal calibration function is associated with four assumptions: a fixed sample

size n, a Bayesian model with a proper prior π (θ) = π (c) π (θ0)π (θ1), a fixed classifi-

cation rule (including possibly a feature selection scheme), and a fixed (uncalibrated)

error estimation rule with estimates denoted by ε̂UEE. Given these assumptions, the

optimal MMSE calibration function is the expected true error conditioned on the

observed error estimate,

E[εn|ε̂UEE] =

∫ 1

0

εnf (εn|ε̂UEE) dεn

=

∫ 1

0
εnf (εn, ε̂UEE) dεn

f (ε̂UEE)
, (8.1)

where f (εn, ε̂UEE) is the unconditional joint density between the true and estimated

errors and f (ε̂UEE) is the unconditional marginal density of the estimated error.

Viewed as a function of ε̂UEE, this expectation is called the “MMSE calibration func-

tion.” It may be used to calibrate any error estimator to have optimal MSE perfor-
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mance for the assumed model. Evaluated at a particular value of ε̂UEE, it is called

the “MMSE calibrated error estimate” and will be denoted by ε̂CEE. As noted in the

Introduction, calibrated error estimators are unbiased. To wit, according to a basic

property of conditional expectation,

E[ε̂CEE] = E[E[εn|ε̂UEE]] = E[εn].

If an analytical representation for the joint density between true and estimated errors

for fixed distributions, f (εn, ε̂UEE|θ), is available, then

f (εn, ε̂UEE) =

∫
Θ

f (εn, ε̂UEE|θ) π (θ) dθ, (8.2)

where Θ is the parameter space of θ. f (ε̂UEE) may either be found directly from

f (εn, ε̂UEE) or from analytical representations of f (ε̂UEE|θ) via

f (ε̂UEE) =

∫
Θ

f (ε̂UEE|θ) π (θ) dθ. (8.3)

From (8.2), it is clear that f (εn, ε̂UEE) utilizes all of our modeling assumptions, includ-

ing the classification rule (because different classifiers will have different true errors),

the error estimation rule, and the Bayesian prior.

If analytical results for f (εn, ε̂UEE|θ) and f (ε̂UEE|θ) are not available, then

E[εn|ε̂UEE] may be found via Monte-Carlo approximation by simulating the model

and classification procedure to generate a large collection of true and estimated error

pairs. The MMSE calibration function may then be approximated by either estimat-

ing the joint density f (εn, ε̂UEE) or by simply partitioning error estimates into bins

and then finding the corresponding average true error for estimated errors falling in

each bin. An example is discussed using synthetic data in Section VIII.C.

Even though calibrated error estimation is suboptimal compared to Bayesian

error estimation, it has several practical advantages:
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1. Given the four necessary assumptions with any classification/error estimation

architecture, a calibration function may be found off-line with straightforward

Monte-Carlo approximation.

2. Analytical solutions may be derived using independent theoretical work on rep-

resentations for f (εn, ε̂UEE|θ) and f (ε̂UEE|θ).

3. Once a calibration function has been established, it may be applied by post-

processing a final error estimate with a simple lookup table.

B. On Ideal Regression

Given an arbitrary error estimation rule, ε̂, the non-linear regression between the true

and estimated errors is represented by g(ε̂) = E[εn|ε̂ ]. If ε̂ = ε̂UEE is a basic error

estimate, then g is the calibration function mapping error estimates to their calibrated

values. We say that an error estimator has “ideal regression” if g(ε̂) = E[εn|ε̂ ] = ε̂

(almost surely).

In this section, we prove that both calibrated and Bayesian error estimators have

ideal regression. The following theorem and corollary actually prove a more general

result using a measure-theoretic definition of conditional expectation based on the

Radon-Nikodym Theorem [114]. The measure theoretic definition conditions on an

entire sub-sigma-algebra, so that the conditional expectation is viewed as a function

or a random variable itself.

Theorem 14. Consider a probability space (Ω,A, P ). Let X be any A-measurable

function whose integral exists and B be a σ-algebra contained in A. Then,

E[X|E[X|B]] = E[X|B] almost surely.
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Proof. Let PB be the restriction of P to B. By definition, the conditional expectation

of X given B, E[X|B], is a B-measurable function, defined up to PB measure zero, by∫
B

E[X|B]dPB =

∫
B

XdP (8.4)

for any B ∈ B, where the existence of E[X|B] is guaranteed by the Radon-Nikodym

Theorem because PB is absolutely continuous with respect to P . Since E[X|B] is B-

measurable, the σ-algebra C generated by E[X|B] is a sub-algebra of B, and therefore

a sub-algebra of A. Hence, by definition the conditional expectation of X given C,

E[X|C], is a C-measurable function, defined up to PC measure zero, by∫
C

E[X|C]dPC =

∫
C

XdP (8.5)

for any C ∈ C. Since C ⊆ B, (8.4) and (8.5) imply that∫
C

E[X|B]dPC =

∫
C

E[X|C]dPC

for any C ∈ C. Hence, E[X|B] = E[X|C] almost surely relative to PC. Q.E.D.

Corollary 15. Consider a probability space (Ω,A, P ) and let X be an integrable

random variable and Y be a random vector. Then,

E[X|E[X|Y ]] = E[X|Y ]

almost surely.

Proof. Let B be the σ-algebra generated by Y . Then in Theorem 14 E[X|B] be-

comes E[X|Y ], C becomes the σ-algebra generated by E[X|Y ], and E[X|C] becomes

E[X|E[X|Y ]].

Note X = εn is a random variable, which is integrable since the true error is

bounded. If we let Y = ε̂UEE be an uncalibrated error estimator, by Corollary 15
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we have E[εn|E[εn|ε̂UEE]] = E[εn|ε̂UEE]. Since a calibrated error estimator is itself a

conditional expectation given by ε̂CEE = E[εn|ε̂UEE],

E[εn|ε̂CEE] = E [εn|E [εn|ε̂UEE]] = E[εn|ε̂UEE] = ε̂CEE.

Hence, calibrated error estimators have ideal regression.

Similarly, if we let Y = Sn be the entire observed sample, by Corollary 15

E[εn|E[εn|Sn]] = E[εn|Sn]. Denoting the Bayesian error estimator by ε̂MMSE, we have

E[εn|ε̂MMSE] = ε̂MMSE, proving that Bayesian error estimators also have ideal regres-

sion. We will observe that joint density plots generated from Monte-Carlo simulations

for calibrated error estimators and Bayesian error estimators indeed appear to have

ideal regression.

C. Performance

In the following synthetic data simulations we assume a fixed sample size and known

priors, generate random feature-label distributions, and generate random samples for

each fixed feature-label distribution. A summary of the simulation methodology is

shown in Fig. 46, which lists the general steps and flow of information. Throughout

this section, we maintain the notation where ε̂UEE is an uncalibrated error estimator,

ε̂CEE is a calibrated error estimator, and ε̂MMSE is a Bayesian error estimator. We

also use ε̂ in formulas that may be applied to all three types of error estimators.

1. Gaussian Model with LDA and Synthetic Data

In this section we evaluate the performance of MMSE calibrated error estimation

using synthetic data from the Gaussian model with arbitrary covariance matrices

defined in Section IV.A.6. We assume a fixed sample size, n, and LDA classification,
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Step 1:

De!ne !xed

hyperparameters

to specify priors

π (c) , π (θ0) , π (θ1)

Step 2:

Select random

parameters for the

feature-label dist.

, θ0c , θ1

Step 3A:

Generate

observed sample

Sn

Step 3B:

Design

classi!er

ψn

Step 3C: Output

Bayesian MMSE est., εMMSÊ

MSE (ε̂|Sn)Bayesian MSE,

εnTrue error,

Sn ψn,

Classical estimators, εUEÊ

Repeat steps (3A, 3B, 3C)      times for a !xed feature-label distribution,t Fc,θ0,θ1
(x, y)

Repeat steps (2, 3)      times for !xed hyperparameters/priorsT

Step 3:

Fig. 46. Synthetic data simulation methodology for a Bayesian framework with fixed

sample size.

where closed form solutions for the Bayesian error estimator and the RMS conditioned

on the sample for arbitrary error estimators are both available.

In step 1 of Fig. 46, we specify one of three normal-inverse-Wishart priors: the

“low-information,” “medium-information” or “high-information” prior, with hyper-

parameters defined in Table 10. The a priori probability of class 0 is assumed to be

known, with c = 0.5. All priors are proper probability densities designed to emulate

prior knowledge in normalized microarray expression data, where class 0 is considered

to represent a “good” prognosis (see Chapter VII for more information about priors

for microarray data). The low information prior is closer to a flat non-informative

prior and models a setting where our knowledge about the distribution parameters is

less certain. Conversely, the high information prior has a relatively tight distribution

around the expected parameters and models a situation where we have more certainty

about the feature-label distribution. In general, the amount of information in each

prior is reflected in the values of κ and ν, which increase as the amount of infor-

mation in the prior increases. For each prior model, the parameter S for each class

was inspired by the average variance of all features for both classes in the real breast

cancer data set provided in [99]. We do not attempt to model differences between
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Table 10. “Low-information,” “medium-information” and “high-information” priors

used in the Gaussian model for optimal calibration experiments

Hyperparameter Low-info prior Medium-info prior High-info prior

a priori prob., c fixed at 0.5 fixed at 0.5 fixed at 0.5

κ, class 0 and 1 3D 9D 54D

S, class 0 and 1 0.03(κ−D − 1)ID 0.03(κ−D − 1)ID 0.03(κ−D − 1)ID

ν, class 0 6D 18D 108D

ν, class 1 1D 3D 18D

m, class 0 [0, 0, . . . , 0] [0, 0, . . . , 0] [0, 0, . . . , 0]

m, class 1 −0.1210[1, 1, . . . , 1] −0.1925[1, 1, . . . , 1] −0.2000[1, 1, . . . , 1]

the variances of the classes or any correlations, however these will be considered in

the posterior using the observed data. The parameter m for class 0 (representing

the expected mean of the class) is set to zero, which approximates the effect of data

normalization, and m for class 1 has been adjusted to give an expected true error of

about 0.28 with one feature.

In step 2 we generate random feature-label distribution parameters from the

chosen prior. With c = 0.5 fixed, we need only realizations of µ0, Σ0, µ1 and Σ1.

For each class, we select a random covariance according to the inverse-Wishart dis-

tribution with parameters κ and S, π (Σy), using methods in [104]. Conditioned

on the covariance, we generate a random mean using the Gaussian distribution

π (µy|Σy) = fm,Σy/ν (µy), resulting in a normal-inverse-Wishart distributed mean and

covariance pair. The parameters for each class are generated independently.

In step 3A, we generate a training sample of sample size n (n even) from the

realized feature-label distribution. The sample sizes of both classes are fixed at n0 =

n1 = n/2. The corresponding number of sample points in each class, y ∈ {0, 1}, are
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synthetically produced according to Gaussian fµy ,Σy class-conditional distributions.

In this way, we generate n stratified labeled training points. Next, these labeled

sample points are used to train an LDA classifier in step 3B. No feature selection is

involved.

In step 3C, we collect several output variables, including the exact true error, εn,

from the classifier and true distribution, and the Bayesian MMSE error estimator,

ε̂MMSE, from the sample, classifier and (correct) priors. To aid performance analysis,

from the sample, classifier and priors we also find the MSE of the Bayesian error

estimator conditioned on the sample defined in Chapter V by

MSE (ε̂MMSE|Sn) = E[(εn − ε̂MMSE)
2|Sn].

The Bayesian error estimator is theoretically optimal in the MSE sense. Since the

classifier is linear, both ε̂MMSE and MSE (ε̂MMSE|Sn) may be computed exactly using

closed form expressions. The training data and classifier are also used to evaluate sev-

eral classical training-data error estimators: 5-fold cross-validation, 0.632 bootstrap

and bolstered resubstitution. The conditional MSE of any error estimator, ε̂, may be

evaluated off-line for each iteration from (5.8):

MSE(ε̂|Sn) = MSE(ε̂MMSE|Sn) + (ε̂MMSE − ε̂)2.

For each fixed feature-label distribution, steps 3A through 3C (collectively called

step 3) are repeated t = 1, 000 times to obtain t samples and sets of output. Further,

step 2 is repeated T = 10, 000 times for T different feature-label distributions (cor-

responding to the randomly selected parameters). In total, each simulation produces

t× T = 10 million samples and sets of output results.

After the simulation is complete, the synthetically generated true and estimated

error pairs are used to estimate four joint densities, f (εn, ε̂MMSE) and f (εn, ε̂UEE),
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where ε̂UEE can be cross-validation, bootstrap or bolstering. We use a bivariate

Gaussian kernel density estimation method. For each non-Bayesian error estimator,

we also find the expected true error conditioned on the error estimate, E[εn|ε̂UEE].

This expectation is defined in (8.1), but we approximate it by uniformly partitioning

the interval [0, 1] into 500 bins and averaging the true errors corresponding to error

estimates that fall in each bin. Moreover, the average true error is only found for bins

with at least 100 points; otherwise, the bin is considered “rare” and the lookup table

simply leaves the error estimate unchanged (an identity mapping). The result is a

calibration function (a lookup table) mapping each of the 500 bins to a corresponding

expected true error.

Once a lookup table has been generated for each error estimator, the entire

experiment is repeated again using the same prior model, classification rule, and

classical training-data error estimators; however, at the end of each iteration in step

3C, this time we apply the corresponding MMSE calibration lookup tables to each

non-Bayesian error estimator. We also report the exact true error and Bayesian

sample-conditioned MSE again, but the Bayesian error estimator is not needed since

it is not calibrated and performance would be identical to the original experiment.

As before, the procedure is iterated t = 1, 000 times for each fixed feature-label

distribution for T = 10, 000 sets of feature-label distribution parameters.

Figure 47 shows the estimated joint densities between the true error (y-axis) and

three error estimators (x-axis) for D = 2 and n = 30 sample points. Low, medium

and high-information priors are shown left to right, with expected true errors 0.2494,

0.2153 and 0.2194, respectively. Cross-validation is shown in the top row, calibrated

cross-validation in the middle row and the optimal Bayesian error estimator in the

bottom row. Within each sub-figure, the dashed white line represents the ideal case

where an error estimate equals the true error, and the solid white line is the expected
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Fig. 47. Joint distributions between true errors (y-axis) and error estimators (x-axis)

for the Gaussian model with D = 2, n = 30 and LDA. Low, medium and

high-information priors are shown left to right, with expected true errors

0.2494, 0.2153 and 0.2194, respectively. Cross-validation, calibrated cross–

validation and Bayesian error estimation with correct priors are shown in the

top, middle and bottom rows, respectively. White areas indicate a higher

density, where the scale for each plot is shown in the upper right.
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true error conditioned on the error estimator, E[εn|ε̂UEE], E[εn|ε̂CEE], or E[εn|ε̂MMSE].

To avoid misleading results from rare observations of the error estimate, the estimated

error is partitioned into 100 bins and the expected true error is only shown for bins

with at least t× T/100 = 100, 000 points. Similar results were found for D = 1 and

D = 5, which are provided in the supplementary material of [54].

The results illustrate good performance for calibrated cross-validation, relative

to classical cross-validation. Analogous plots for the bootstrap and bolstered error

estimators are not shown but similar. Classical cross-validation has decent regression

with the true error for the low-information prior, but much less regression for higher

information priors. See for instance Fig. 47(c), where the regression is nearly flat.

On the other hand, calibrated cross-validation, like Bayesian error estimation, has

ideal regression with the true error in all plots, which is consistent with the theory

presented in Section VIII.B.

Figure 48 shows four different kinds of performance results for D = 2 and

n = 30: expected true error given estimated error, conditional RMS given estimated

error, conditional RMS given true error, and probability densities for the sample-

conditioned RMS. Left, middle and right columns contain plots for low, medium and

high-information priors, respectively. In all sub-figures, the Bayesian error estimator

is shown in black, the three classical error estimators considered (cross-validation,

bootstrap and bolstering) are in red, and the corresponding calibrated error estima-

tors are in blue. Legends for all sub-figures are the same and shown in the top and

bottom rows. Similar results were found for D = 1 and D = 5, which are provided

in the supplementary material of [54]. In general, although the Bayesian error esti-

mator may have slightly better MSE performance, calibrated cross-validation is easy

to implement and still offers a significant improvement over classical cross-validation

within the proposed Bayesian models, especially for higher information priors.



198

0 0.1 0.2 0.3 0.4 0.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

estimated error

E
[ t

ru
e 

er
ro

r 
| e

st
im

at
ed

 e
rr

or
 ]

 

 

cv
boot
bol
cal cv
cal boot
cal bol
Bayes

(a) low, E[εn|ε̂ ]

0 0.1 0.2 0.3 0.4
0.1

0.15

0.2

0.25

0.3

0.35

estimated error

E
[ t

ru
e 

er
ro

r 
| e

st
im

at
ed

 e
rr

or
 ]

 

 

cv
boot
bol
cal cv
cal boot
cal bol
Bayes

(b) medium, E[εn|ε̂ ]

0 0.1 0.2 0.3 0.4
0.18

0.2

0.22

0.24

0.26

0.28

estimated error

E
[ t

ru
e 

er
ro

r 
| e

st
im

at
ed

 e
rr

or
 ]

 

 

cv
boot
bol
cal cv
cal boot
cal bol
Bayes

(c) high, E[εn|ε̂ ]

0 0.1 0.2 0.3 0.4 0.5

0.04

0.06

0.08

0.1

0.12

estimated error

R
M

S
( 

es
tim

at
ed

 e
rr

or
 | 

es
tim

at
ed

 e
rr

or
 )

(d) low, RMS(ε̂|ε̂)

0 0.1 0.2 0.3 0.4

0.04

0.06

0.08

0.1

0.12

estimated error

R
M

S
( 

es
tim

at
ed

 e
rr

or
 | 

es
tim

at
ed

 e
rr

or
 )

(e) medium, RMS(ε̂|ε̂)

0 0.1 0.2 0.3 0.4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

estimated error

R
M

S
( 

es
tim

at
ed

 e
rr

or
 | 

es
tim

at
ed

 e
rr

or
 )

(f) high, RMS(ε̂|ε̂)

0 0.1 0.2 0.3 0.4 0.5

0.04

0.06

0.08

0.1

0.12

true error

R
M

S
( 

es
tim

at
ed

 e
rr

or
 | 

tr
ue

 e
rr

or
 )

(g) low, RMS(ε̂|εn)

0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.04

0.06

0.08

0.1

0.12

true error

R
M

S
( 

es
tim

at
ed

 e
rr

or
 | 

tr
ue

 e
rr

or
 )

(h) medium, RMS(ε̂|εn)

0.15 0.2 0.25 0.3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

true error

R
M

S
( 

es
tim

at
ed

 e
rr

or
 | 

tr
ue

 e
rr

or
 )

(i) high, RMS(ε̂|εn)

0 0.05 0.1 0.15
0

10

20

30

40

50

60

70

RMS conditioned on the sample

pd
f

 

 
cv (0.079)
boot (0.076)
bol (0.063)
cal cv (0.064)
cal boot (0.061)
cal bol (0.060)
Bayes (0.052)

(j) low, RMS(ε̂|Sn) pdf

0 0.05 0.1 0.15
0

20

40

60

80

RMS conditioned on the sample

pd
f

 

 
cv (0.075)
boot (0.074)
bol (0.059)
cal cv (0.052)
cal boot (0.051)
cal bol (0.050)
Bayes (0.042)

(k) med., RMS(ε̂|Sn) pdf

0 0.05 0.1 0.15
0

10

20

30

40

50

RMS conditioned on the sample

pd
f

 

 
cv (0.076)
boot (0.075)
bol (0.060)
cal cv (0.031)
cal boot (0.031)
cal bol (0.031)
Bayes (0.025)

(l) high, RMS(ε̂|Sn) pdf

Fig. 48. Conditional RMS performance for Gaussian models (D = 2, n = 30, LDA).
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The top row in Fig. 48 shows the expected true error conditioned on the er-

ror estimate. For cross-validation, these are the same plots presented with the joint

density graphs, and as before the dotted diagonal line represents an ideal error esti-

mator equal to the true error. The second row shows RMS for each error estimator

conditioned on the error estimate itself, which, by definition, is given by

RMS[ε̂ |ε̂ ] =
√
E
[
(εn − ε̂)2 |ε̂

]
,

and the third row shows RMS conditioned on the true error,

RMS[ε̂ |εn] =
√
E
[
(εn − ε̂)2 |εn

]
,

where ε̂ equals ε̂UEE, ε̂CEE, or ε̂MMSE. These graphs indicate error estimation accu-

racy for fixed error estimates and fixed true errors, respectively. Finally, the bottom

row has probability densities for the RMS conditioned on the sample for each er-

ror estimator, that is, estimated densities for the root of the values computed for

MSE(ε̂|Sn) over all samples. For comparison, legends in the bottom row also show

the unconditional RMS for all error estimators (averaged over both distributions and

samples).

All simulations in the top row of Fig. 48 again demonstrate that the expected

true error conditioned on calibrated error estimators aligns with the ideal dashed

diagonal line, as they must. Furthermore, the RMS conditioned on calibrated error

estimators is significantly improved relative to their uncalibrated counterparts, usu-

ally tracking just above the Bayesian error estimator. Figure 48(d) is typical, where

for the low information prior the RMS conditioned on calibrated error estimators is

almost uniformly lower.

The RMS conditioned on uncalibrated error estimators tends to have a “V”

shape, achieving a minimum RMS for a very small window of estimated errors. The
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RMS conditioned on a low estimated error tends to be high because the error estima-

tor is usually low-biased, and conditioning on a high estimated error tends to result

in a high RMS because the error estimator is high-biased. The error estimate where

the RMS is minimized approximately corresponds to the point where the expected

true error conditioned on the error estimate crosses the ideal dotted line. This is seen

for example in Fig. 48(b) for the medium-information prior, where the expected true

error for all uncalibrated error estimators crosses the ideal dotted line just above 0.2

and in Fig. 48(e) they all have minimum RMS just above 0.2. Note in a small-sample

setting without modeling assumptions, this window where the estimated error is most

accurate is unknown, in contrast to Bayesian modeling where these graphs demon-

strate how to find the optimal window. Furthermore, the error-estimate-conditioned

RMS of calibrated error estimators and Bayesian error estimators tend to monotoni-

cally increase, so that the accuracy of error estimation is usually known to be higher

when the estimated error is low.

Figure 48(g) for the low-information prior is a very typical representative for

the behavior of the RMS conditioned on true errors. Uncalibrated error estimators

tend to be best for low true errors, which is consistent with many previous studies

on error estimation accuracy [65, 29, 115]. Bayesian error estimators are usually

best for moderate true errors where small-sample classification is most interesting,

as observed in Chapter III. This is also true for calibrated error estimators, which

have true-error-conditioned RMS plots usually tracking just above the Bayesian error

estimator.

Although the unconditional RMS for Bayesian error estimators are guaranteed

to be optimal (within the assumed model), in some cases the conditional RMS of

calibrated error estimators can actually exceed that of the Bayesian error estima-

tor for some small ranges of the true error, as in Fig. 48(i) for true errors around
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0.22. Furthermore, although the unconditional RMS for calibrated error estimators

are guaranteed to be lower than their uncalibrated counterparts, uncalibrated error

estimators can even outperform Bayesian error estimators in the same way, as in

Fig. 48(g) where uncalibrated bolstering has the best RMS for true errors less then

0.1. This is possible because Bayesian error estimators are only guaranteed to be

optimal given a fixed sample, and calibrated error estimators are only guaranteed

to be optimal for a fixed observed error estimate, whereas there is no guarantee of

optimality for fixed distributions or any arbitrary class of distributions (e.g., the class

of distributions having a specified true error).

The distribution of the RMS conditioned on the sample for calibrated error es-

timators tends to have more mass towards lower values of RMS than uncalibrated

error estimators, with the Bayesian error estimator being even more shifted to the

left. This is evident for example in Fig. 48(k), where the unconditional RMS indicated

in the legend of this graph for calibrated error estimators (at most 0.052) is always

lower than that of the uncalibrated estimators (at best 0.059), with the Bayesian

error estimator having optimal RMS (at 0.042).

The performances of all calibrated error estimators tend to be very close relative

to each other. For example, all blue curves in Fig. 48 have almost the same per-

formance, with perhaps the calibrated bolstered error estimator performing slightly

better than the others. This phenomenon may be due to a fundamental limit in the

amount of information available from classical counting and even bolstered counting

error estimators. Further, there is a gap in the performance between the optimal

Bayesian error estimator and the calibrated error estimators. This may be because

calibrated error estimators average the expected true error over all samples produc-

ing the observed error estimate, so that performance must be averaged over different

trained classifiers, whereas the Bayesian error estimator is always evaluated directly
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on the actual designed classifier. If averaging over random classifiers from a classi-

fication rule introduces additional uncertainty in the estimation problem, the RMS

performance of calibrated error estimators may be inherently bounded some distance

from the optimal Bayesian error estimator.

We next illustrate performance for fixed distributions. For the purposes of

demonstration we consider two distributions, named distribution “A” and distribu-

tion “B,” drawn from the medium-information prior with D = 2 and provided in

Table 11. Since we are interested in only a single fixed distribution at a time, we

perform a new experiment using only step 3 in Fig. 46 with the medium-information

prior and the same classification rule and classical, calibrated and Bayesian error es-

timators as before. We collect only the true error and error estimates, and repeat the

procedure t = 1, 000, 000 times.

Figure 49 shows the estimated joint densities between the true error (y-axis) and

three error estimators (x-axis) for distributions A (left) and B (right) with n = 30

sample points. Cross-validation is shown in the top row, calibrated cross-validation

in the middle row and the optimal Bayesian error estimator in the bottom row. As

before, the dashed white line in each sub-figure represents the ideal case where an

error estimate equals the true error and the solid white line is the expected true er-

ror conditioned on the error estimator (nonlinear regression). The estimated error

is partitioned into 100 bins and the expected true error is only shown for bins with

at least t/100 = 10, 000 points. Joint density graphs for fixed distributions typically

exhibit very little regression [67, 68] and we witness that phenomenon here, especially

in regard to uncalibrated and calibrated cross-validation. While both exhibit virtu-

ally no regression, calibrated cross-validation has much less variation. The Bayesian

estimator has some regression. The lack of regression in Fig. 49 is in contrast to joint

densities for Bayesian models, which achieve regression by spreading flat joint density
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Fig. 49. Joint distributions between true errors (y-axis) and error estimators (x-axis)

for fixed distributions from the Gaussian model with D = 2, n = 30 and

LDA. Distribution A is shown on the left and distribution B on the right.

Cross-validation, calibrated cross-validation and Bayesian error estimation

with medium-information priors are shown in the top, middle and bottom

rows, respectively. White areas indicate a higher density, where the scale for

each plot is shown in the upper right.



205

graphs, like those in Fig. 49, across all densities in a Bayesian model according to a

prior distribution (Fig. 47). When considering the distributions and regression lines

in Figs. 47 and 49, one needs to keep in mind the difference in their settings.

2. Gaussian Model with LDA Applied to Real Breast Cancer Data

To implement a Bayesian analysis on a given data set using a Gaussian model, a prac-

titioner should select features passing a Gaussianity test (such as the Shapiro-Wilk

test) or verify that the selected feature set in a given data set is approximately Gaus-

sian. The next step is to determine priors for the distribution parameters, including a

prior for c (uniform, beta or fixed) and normal-inverse-Wishart hyperparameters for

each class. Note that the calibration scheme described here requires a proper prior

because (8.2) and (8.3) are only valid if π(θ) is proper, and Monte-Carlo methods are

based on generating random parameters from valid distributions in step 2 of Fig. 46.

Thus, rather than a flat “non-informative” prior, we will use a low information prior

similar to the one in Table 10 for calibration. In any case, once a proper prior is

established, along with a sample size, classification rule and error estimator, one may

use the methods described previously with synthetic data to find the corresponding

calibration function. This may then be applied to an estimate of the true error based

on real data to obtain a calibrated error estimate.

That being said, demonstrating RMS performance for real data is difficult be-

cause any data set essentially represents a single realization of the distribution pa-

rameters. This is not a new problem or a consequence of the theory of calibrated

error estimation, but rather an inherent difficulty that always persists with real data

analysis. If we want to consider performance for a specific true distribution, then

we cannot indulge in the randomization of the feature-label distribution in step 2 of

Fig. 46; rather, we would fix it and only average over the samples. The prior distri-
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Fig. 50. Real data simulation methodology for a Bayesian framework with fixed sam-

ple size.

bution would still be involved in error estimation, but we are no longer interested in

averaging performance across the prior distribution. This is precisely the approach

taken in this section with the performance analysis methodology outlined in Fig. 50.

It is similar to the synthetic data methodology in Fig. 46, except that we do not

simulate steps 1 or 2.

Our real data set is the same normalized gene-expression measurements from a

breast cancer study [99] used in Section IV.B.4. The data set includes 295 sample

points, each with a 70 feature gene profile. 180 points are assigned to class 0 (good

prognosis) and 115 to class 1 (bad prognosis).

In step A, we randomly select a stratified sample of size n, where the ratio of

points from each class is kept as close as possible to that of the original data set.

For n = 30, 18 points are in class 0 and 12 points are in class 1. In step B, we

design an LDA classifier on the initial training sample. The classifier is designed

from fixed feature sets: {CENPA} for D = 1, {CENPA,BBC3} for D = 2 and

{CENPA,BBC3,CFFM4,TGFB3,DKFZP564D0462} for D = 5. These have previ-

ously been shown to perform reasonably well on the full data set and a multivariate

Shapiro-Wilk test applied to the full data set does not reject Gaussianity over either



207

of the classes at a 95% significance level [28]. Although we do not implement a feature

selection scheme here, one can be applied as part of the classifier design in step B.

In step C we approximate the true error of the classifier using holdout points

remaining in the data set, and compute three classical error estimates, including

5-fold cross-validation, bootstrap and bolstering. Using a modified low-information

prior with c fixed at 0.61 instead of 0.5 (corresponding to the proportion of sample

points in class 0), we evaluate calibration functions using exactly the same method

described in the synthetic data study of Section VIII.C.1. Using these calibration

functions, we compute three calibrated error estimates corresponding to each classical

error estimator. Finally, we evaluate two Bayesian error estimators: one using the

modified low-information prior and the other using a flat non-informative prior where

c is uniform from 0 to 1 and the priors for both classes are improper flat distributions

such that π(θ0) = π(θ1) ∝ 1. All together, we evaluate eight error estimators, and the

entire sampling, classification and error estimation process is repeated t = 1, 000, 000

times.

Figure 51 shows the estimated joint densities between the approximate true error

(y-axis) and three error estimators (x-axis) for D = 2 and n = 30 sample points.

Cross-validation is shown in part (a), calibrated cross-validation in part (b) and the

low-information Bayesian error estimator in part (c). As before, the dashed white line

represents the ideal case where an error estimate equals the true error, and the solid

white line is the expected true error conditioned on the error estimator, E[εn|ε̂ ]. To

avoid misleading results from rare observations of the error estimate, the estimated

error is partitioned into 100 bins and the expected true error is only shown for bins

with at least t × T/100 = 10, 000 points. Similar plots for D = 1 and D = 5

are available in the supplementary material of [54]. Also, the average true errors and

unconditioned RMS performance results are shown in Table 12 for n = 30 and D = 1,
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Fig. 51. Joint distributions between true errors (y-axis) and error estimators (x-axis)

for real data with D = 2, n = 30 and LDA. Cross-validation, calibrated

cross-validation and Bayesian error estimation with low-information priors

are shown left to right. White areas indicate a higher density, where the

scale for each plot is shown in the upper right.

2 and 5.

The joint densities in Fig. 51 have almost no regression, which is similar to the

fixed-distribution graphs in Fig. 49. This is because these simulations are based

on a single data set representing a single realization of the distribution parameters

and, as noted previously, lack of regression is common in such a situation. Indeed,

here we even see slightly negative regression. This is not an abberation; it has been

theoretically shown that negative correlation can occur for a standard model [27]. In

Table 12, we observe results that are similar to the synthetic data results. Bayesian

error estimators typically perform best, with the low-information prior performing

better than the flat prior. Also, calibrated error estimators generally outperform

their uncalibrated counterparts, each having similar RMS performance regardless of

the underlying error estimation rule.
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3. Gaussian Model with 3NN and Synthetic Data

In this section, we again evaluate the performance of MMSE calibrated error esti-

mation on synthetic Gaussian models with arbitrary covariance matrices and fixed

sample size, this time for the 3-nearest-neighbor (3NN) classification rule. In this case,

closed form solutions for the Bayesian error estimator and the MSE conditioned on

the sample for arbitrary error estimators are not available and must be approximated

using Monte-Carlo methods.

The simulation methodology is based on Fig. 46 with a few modifications. Since

calculations involved in 3NN classification require more computation time, in step 1

we use only the medium-information prior shown in Table 10 to demonstrate that

results for 3NN are similar to those obtained for LDA. As before, c is assumed to be

known and fixed at 0.5. Step 2 is performed exactly as before, where we select random

parameters, µ0, Σ0, µ1 and Σ1, from the normal-inverse-Wishart medium-information

priors.

Data generation in step 3 is also unchanged. We draw n stratified labeled training

points, n/2 being from class y ∈ {0, 1} with fµy ,Σy class-conditional distributions. We

then apply the 3NN classification rule to the training data in step 3B. As before, no

feature selection is involved.

In step 3C, we implement several changes to work with the new 3NN classifier.

First, the true error, εn, is now approximated by independently generating 100,000

labeled data points from the same distribution as the training data and evaluating

the proportion of points mislabeled by the classifier. Second, since the classifier is

non-linear, the Bayesian MMSE error estimator and theoretical MSE of the Bayesian

error estimator conditioned on the sample, MSE (ε̂MMSE|Sn), are approximated using

a Monte-Carlo approach. In particular, for each iteration and class y ∈ {0, 1}, we
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generate 10,000 mean and covariance pairs from the corresponding normal-inverse-

Wishart posterior. The first and second moments of the true error contributed by

class y, ε̂y = Eπ∗ [εyn(θy)] and Eπ∗ [(εyn(θy))
2], are then approximated by averaging

εyn(θy) and (εyn(θy))
2 for our 3NN classifier on each of the 10,000 distributions. The

Bayesian error estimator is then approximated from (2.10), and MSE (ε̂MMSE|Sn) is

found using formulas derived from the definition in Chapter V. Although the Bayesian

error estimator evaluated here is approximately optimal in the mean-square sense, this

part of the code is by far the most time-consuming. See Chapter VII for more details

on Monte-Carlo approximation in Bayesian error estimation.

Finally, the training data and classifier are used to evaluate several classical

training-data error estimators, including resubstitution, 5-fold cross-validation, 0.632

bootstrap and semi-bolstered resubstitution. The conditional MSE of each of these

error estimators is evaluated off-line from (5.8).

Step 3 is executed only t = 1 time for each fixed feature-label distribution, and

step 2 is repeated T = 100, 000 times for T different feature-label distributions. In

total, each simulation produces t× T = 100, 000 samples and sets of output results.

After the simulation is complete, the t×T = 100, 000 synthetically generated true

and estimated error pairs are used to estimate five joint densities, f (εn, ε̂MMSE) and

f (εn, ε̂UEE), where ε̂UEE can be resubstitution, cross-validation, bootstrap or semi-

bolstering. We use the same bivariate Gaussian kernel density estimation method as

before. For each non-Bayesian error estimator, we also find the expected true error

conditioned on the error estimate, E[εn|ε̂UEE]. Since the number of error pairs is

smaller in the 3NN simulation, this time we approximate it by uniformly partitioning

the interval [0, 1] into only 100 bins and averaging the true errors corresponding to

each bin. Also, the average true error is only found for bins with at least 10 points,

otherwise the bin is too rare and the lookup table leaves the error estimate unchanged.
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Fig. 52. Joint distributions between true errors (y-axis) and error estimators (x-axis)

for the medium-information Gaussian model with D = 2, n = 30 and 3NN.

The expected true error is 0.2153. Cross-validation, calibrated cross-vali-

dation and Bayesian error estimation with correct priors are shown left to

right. White areas indicate a higher density, where the scale for each plot is

shown in the upper right.

The result is a calibration function mapping each of the 100 bins to a corresponding

expected true error.

Once a lookup table has been generated for each error estimator, the entire

experiment is repeated again using the same prior model, classification rule, and

classical training-data error estimators. However, at the end of each iteration in

step 3C, this time we apply the corresponding MMSE calibration lookup tables to

each non-Bayesian error estimator. As in the LDA experiments, we also report the

approximate true error and Bayesian sample-conditioned MSE again, but not the

Bayesian error estimator. Also, only t = 1 training sample is drawn from each

fixed feature-label distribution for T = 100, 000 sets of feature-label distribution

parameters.

Figure 52 shows the joint density between the true error (y-axis) and estimated

error (x-axis) for cross-validation, calibrated cross-validation and Bayesian error es-

timation with D = 2 and n = 30 sample points, medium-information priors and
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Fig. 53. Conditional RMS performance for the medium-information Gaussian model

(D = 2, n = 30, 3NN).

3NN classification. This figure is analogous to the middle column of Fig. 47 for LDA

classification. Cross-validation is shown in part (a), calibrated cross-validation in

part (b) and the optimal Bayesian error estimator in part (c). The solid white line

is the expected true error conditioned on the error estimator. To avoid misleading

results from rare observations, the estimated error is partitioned into 100 bins and

the expected true error is only shown for bins with at least t×T/100 = 1, 000 points.

Although the number of iterations with 3NN is only t×T = 100, 000, the joint density

plots for 3NN are clearly similar to those for LDA.
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Figure 53 for 3NN is analogous to the middle column of Fig. 48 for LDA, and

presents four different kinds of performance results for the medium-information prior

with D = 2 and n = 30. In all sub-figures, the Bayesian error estimator is shown in

black, the four classical error estimators considered (resubstitution, cross-validation,

bootstrap and bolstering) are in red, and the corresponding calibrated error estimators

are in blue. Legends for all figures are the same and shown in two of the sub-figures.

Results for 3NN are again very similar to LDA. Resubstitution in particular improves

dramatically. For example in Fig. 53(a) we see that it is very low biased for 3NN;

indeed, for resubstitution E[εn|ε̂UEE] > ε̂UEE for all values of ε̂UEE. On the other

hand, as must be the case, E[εn|ε̂CEE] = ε̂CEE.

D. Discussion

Given a fixed sample size, classification rule, error estimation rule, and Bayesian

framework with priors, MMSE calibrated error estimation offers a method to opti-

mize the performance of the specified error estimator. A primary point is that it

becomes possible to take advantage of modeling assumptions offered from a Bayesian

framework for any classification and error estimation rule pair, especially when closed-

form analytical solutions for the Bayesian error estimator are not available. The

calibration function itself may be found in a conceptually straightforward manner

via Monte-Carlo simulations, where the modeling assumptions are used to emulate

the entire classification procedure and collect true and estimated error pairs for joint

density estimation. Although discovering a calibration function is somewhat compu-

tationally involved, once found it may be kept in a database for use any time the

modeling assumptions are employed. Furthermore, since calibration functions are

essentially lookup tables, they may be easily applied with almost no changes in any
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classification and error estimation procedures, coding infrastructure, or simulation

methodology.

Let us close by noting that, while the requirement of a Bayesian framework

for calibration might at first glance seem constraining, when confronted with small

sample sizes one really has very little other choice if accurate error estimation is

to be achieved: accurate distribution-free small-sample error estimation is virtually

impossible [32].
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