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ABSTRACT 

 

 

Examining the Effects of Site-Selection Criteria for Evaluating the Effectiveness of 

Traffic Safety Improvement Countermeasures. (May 2012) 

Pei-Fen Kuo, B.E., National Taiwan University; 

M.S., National Taiwan University 

Chair of Advisory Committee: Dr. Dominique Lord 

 

 

The before-after study is still the most popular method used by traffic engineers and 

transportation safety analysts for evaluating the effects of an intervention. However, this 

kind of study may be plagued by important methodological limitations, which could 

significantly alter the study outcome. They include the regression-to-the-mean (RTM) 

and site-selection effects. So far, most of the research on these biases has focused on the 

RTM. Hence, the primary objective of this study consists of presenting a method that 

can reduce the site-selection bias when an entry criterion is used in before-after studies 

for continuous (e.g. speed, reaction times, etc.) and count data (e.g. number of crashes, 

number of fatalities, etc.). The proposed method documented in this research provides a 

way to adjust the Naïve estimator by using the sample data and without relying on the 

data collected from the control group, since finding enough appropriate sites for the 

control group is much harder in traffic-safety analyses.  

In this study, the proposed method, a.k.a. Adjusted method, was compared to commonly 

used methods in before-after studies. The study results showed that among all methods 

evaluated, the Naïve is the most significantly affected by the selection bias. Using the 

CG, the ANCOVA, or the EB method based on a control group (EBCG) method can 

eliminate the site-selection bias, as long as the characteristics of the control group are 
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exactly the same as those for the treatment group. However, control group data that have 

same characteristics based on a truncated distribution or sample may not be available in 

practice. Moreover, site-selection bias generated by using a dissimilar control group 

might be even higher than with using the Naïve method. The Adjusted method can 

partially eliminate site-selection bias even when biased estimators of the mean, variance, 

and correlation coefficient of a truncated normal distribution are used or are not known 

with certainty. In addition, three actual datasets were used to evaluate the accuracy of the 

Adjusted method for estimating site-selection biases for various types of data that have 

different mean and sample-size values. 
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1. INTRODUCTION 

 

Developing precise and reliable methods to evaluate countermeasure effectiveness is 

crucial, since erroneously measuring the safety effects could have drastic consequences 

both in terms of lives saved and funds wasted. This dissertation focuses on how site-

selection criteria affect the accuracy of current methods of evaluating countermeasures 

for traffic safety improvement. Site-selection criteria can exercise a strong influence 

over the evaluation of these countermeasures; however, this influence has not been 

adequately addressed by the traffic safety community.  

As described above, the primary purpose of this research is to describe how site selection 

effects can influence the evaluation of treatments and then present a new method that 

can remove or reduce site-selection effects when an entry criterion is used in before-after 

studies without relying on the use of a control group. This section consists of three 

sections. Section 1.1 provides the problem statement. In Section 1.2, specific objectives 

of this research are provided. The outline of the dissertation is presented in Section 1.3. 

1.1 Problem Statement  

Evaluating the effects of an intervention or a countermeasure on the number and severity 

of crashes or on the change of other surrogate measurements (e.g. driving speed, reaction 

time, and headway) is a very salient topic in highway safety. In fact, this topic has been 

researched thoroughly over the last 30 years (Abbess, 1981; Danielsson, 1986; Davis, 

2000; Hauer, 1980a; Hauer, 1980b; Hauer et al., 1983; Hauer, 1997; Maher and 

Mountain, 2009; Miranda-Moreno, 2006; Miranda-Moreno, 2009; Wright et al., 1988). 

During this time, researchers have developed and applied various methods to minimize 

known biases associated with count and continuous data. 

This dissertation follows the style of Accident Analysis and Prevention. 
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Over the years, we have seen a variety of methods that have been proposed for 

evaluating safety interventions. They include the Naïve before-after study, the before-

after study with a control group, the Analysis of Covariance, the before-after study using 

the Empirical Bayes (EB) method, and more recently the before-after study using the full 

Bayes approach (Hauer, 1997; Hauer, 1984; Li et al., 2008; Park et al., 2010; Park and 

Lord, 2010; Persaud and Lyon, 2007). As an alternative to the before-after study, some 

people have suggested using a cross-sectional study (usually via a regression model) 

(Noland, 2003; Tarko et al., 1998). However, the before-after study is still considered 

the most appropriate methodology by most researchers, since it can directly account for 

changes that occurred at the sites investigated (Hauer, 1997). 

One of the most important biases that have been documented in the literature which 

negatively influences the evaluation of treatments is the regression-to-the-mean (RTM). 

The RTM dictates that when observations characterized by very high (or low) values in a 

given time period and for a specific site (or several sites), it is anticipated that 

observations occurring in a subsequent time period are more likely to regress towards the 

long-term mean of a site (Hauer et al., 1983). Not including it could over-estimate the 

effects of the treatment (see, e.g., (Persaud, 2001). Although much work has been 

devoted to the RTM, very few studies have examined the selection bias on the effects of 

a treatment, at least as far as analyzing it as a distinct bias (see, e.g., (Davis, 2000; Hauer, 

1980a). As discussed by (Cook and Wei, 2002; Davis, 2000)) and more recently by 

(Park and Lord, 2010), the site selection effects and RTM are distinct biases and 

influence the overall effectiveness of a treatment differently. 

1.2  Research Objectives  

The primary objective of this research was to describe how site selection effects can 

influence the evaluation of treatments. More specifically, the goal was to quantify the 

bias for the safety effectiveness of a treatment as a function of different entry criteria and 

other factors associated with traffic safety data. The study objective was accomplished 

using simulated data (supported by theoretical derivations documented in Appendix A 
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and B) and observed data. In doing so, the following objectives were addressed in this 

study: 

1. Examine how setting entry criteria in a trial affects the performance of particular 

traffic-safety countermeasures. This analysis used two types of safety datasets: 

discrete data (i.e., crash numbers, fatalities, and injuries) and continuous data (i.e., 

driving speed and driver-reaction time). Negative Binomial, normal distributions, 

and other common models were employed for this part of the analysis.  

2. Estimate the difference in bias which is caused by using different entry-criteria 

values, and different methods of estimating countermeasure effectiveness. For count 

data, the most common before-after methods are: Naïve, using a control group (CG), 

EB method estimated using the method of moment (EBMM), and EB method 

estimated using a control group (EBCG). For continuous data, the most common 

methods are: the Naïve, CG, and the Analysis of Covariance (ANCOVA) methods. 

All possible influence factors (e.g. entry criteria, sample size, inverse-dispersion 

parameters, safety-effectiveness values, standard deviation of safety effectiveness, 

between-subject variances, and within-subject variances) will also be discussed. Bias 

on the estimates of the mean and variance of safety effectiveness will both be 

examined. 

3. Derive the appropriate equations for estimating the performance of countermeasures 

(mean and variance) when the study includes entry criteria; and develop a suitable 

approach foradjustingotherresearchers’estimatedvaluesoftreatmentperformance. 

1.3  Outline of the Dissertation  

This dissertation is divided into seven sections. Section 2 describes the background 

information about the RTM, site-selection effects, the truncated count model, hot-spot 

identification, and methods of estimating the effects of countermeasures. Section 

3covers the approach used for conducting the simulation and calculation. Section 4 

describes the results of the simulation analysis. Section 5 and 6 show the results for 
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count and continuous data based on the observation data. The final Section, Section 7, 

summarizes the key study results and provides avenues for further research. 
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2. BACKGROUND 

 

This section provides relevant background related to roadway- and highway-safety 

studies in five topics: 1) Regression-to-the-Mean (RTM); 2) Site-Selection Effects; 3) 

Truncated Models; 4) Hot-Spot Identification; and 5) Methods of Estimating 

Countermeasure Effectiveness. 

2.1 Regression-to-the-Mean (RTM) 

RTM refers to the concept that observations characterized by very high (or low) values 

in a given time period (K1), and for a specific site, are anticipated to regress towards the 

long-term mean ( K ) of a site in a subsequent time period (K2) (Hauer, 1997). The 

characteristics of the RTM are illustrated in Figure 2-1. 

 

  

Figure 2-1 The RTM phenomenon in before-after study 

 

The RTM is not new and was first observed more than a century ago by Francis Galton 

(Stigler, 1997). The RTM can be conceptualized mathematically using random variables 

in two time periods, labeled as 1 and 2, respectively. Let us assume that 1Y  and 2Y  are 
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two random variables with almost exactly the same distribution, but where the 

conditional expectation  2 1|E Y Y  is not equal to 1Y . It can be shown that the conditional 

expectation can be defined as a jointly normal distribution: 

    2 1 1| 1E Y Y Y    
        

 (2.1)
 

where   is the correlation between 1Y  and 2Y
,
 and where   is the common mean. 

Equation (2.1) shows that the RTM effect is a function of the correlation coefficient. 

When the correlation coefficient is equal to 1, there is no RTM, since  2 1 1|E Y Y Y . On 

the other hand, when the correlation coefficient is not equal to 1, we observe the 

presence of the RTM. Smaller values of   are associated with larger RTM effects. 

Equation (2.1) also shows that the magnitude of the RTM can be computed by taking the 

difference of  2 1|E Y Y  and 1Y  (Figure 2-2).  

 

 

Figure 2-2 Graphical representation of the RTM phenomenon 

 



7 

 

Hence, estimating countermeasure effectiveness by a simple before-after comparison–

without considering the RTM effects can be risky. Numerous studies have already 

discussed this problem (Hauer, 1997; Pendleton, 1991; Persaud, 2001). The studies 

claim that the EB approach can remove RTM bias by providing a more accurate 

estimator of the expected accident count. According to the theory, the RTM is explained 

by the temporal correlation (  ) for observations that are evaluated at different time 

periods (Chuang-Stein and Tong, 1997; Stigler, 1997). RTM will exist unless there is a 

perfect correlation, 1.   The smaller the correlation, the greater the RTM. 

Although previously published documents have often confused RTM with selection bias, 

the researcher suggests that RTM should be separated from site-selection effects, 

because RTM bias (Hauer, 1997) may exist even when entities are not selected by their 

unusually high or low response (Cook and Wei, 2002; Hauer, 1997). In others words, the 

RTM is defined as a natural phenomenon caused by its extreme value in its first 

measurement; however, site-selection effects are artificial impacts caused by how entry 

criteria are set. In this study, the goal is to examine how entry-criteria values affect the 

evaluation result.  This examination may then serve as a reference for traffic engineers 

deciding what entry criteria to use during the experiments.    

2.2 Site-Selection Effects 

This section is divided into four subsections. Section 2.2.1 briefly outlines the 

characteristics of site-selection bias. Section 2.2.2 and section 2.2.3 describe the site-

selection bias for continuous data and count data. Section 2.2.4 summaries main findings 

and problems of site-selection site from current studies.    

2.2.1 General Characteristics 

As discussed in Park and Lord (2010) and in the references herein, site-selection biases 

and RTM are two different biases. The general idea of site-selection effects is to set the 

entry criteria so as to convert the original population distribution to a truncated sample 

distribution, which results in a change in the unbiased estimators of mean and variance. 
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Ignoring these changes will cause a bias in estimating the countermeasure effectiveness 

(Figure 2-3). 

 

Figure 2-3 The distribution of population and the truncated sample 

 

In Figure 2-3, the left-hand side shows the probability related to the normally distributed 

data in the before and after periods (without selection). The difference between the mean 
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of these two curves is defined as δtrue. After setting the minimum entry criteria (the 

dashed vertical line), the data distribution in the before period is left-truncated, as 

indicated by the blue curved line on the right-hand side. It should be noted that setting 

the same entry criteria might cause different effects according to different correlation 

coefficient (  ) values with the before and after data. If   is equal to 1, the estimator of 

thedifference,δtrue, is unbiased because the mean value increases in the same manner in 

the before and after periods. If  is equal to 0, the naïve estimator of difference is less 

than its true value. The mean in the before period increases, but the mean in the after 

period remains the same because the before-after data are independent. If  is negative, 

the estimator of the difference might become lower than the above values. Removing the 

data with low values in the before period may also remove data with high values in the 

after period because of the negative correlation. Hence, the difference becomes much 

lower because of the higher mean in the before period and a lower mean in the after 

period.   

Table 2-1 summarizes the mathematical equations used for quantifying the RTM and 

site-selection effects (i.e. data are left-truncated). It should be noted that the probability 

of the data being characterized by the site-selection effects in the after period is equal to 

the truncated normal distribution multiplied by the conditional normal distribution of the 

after period (Cook and Wei, 2002).  

 

Table 2-1 Equations Describing Site-Selection and RTM Effects. 

Effects Before After 

Site selection  
1 1( ), :iP Y Y C i site i

 2 1

2 1 1

( )

( ) ( )

i

i i

P Y Y C

P Y Y P Y C



 
 

Regression-to-the-Mean 
1 1 1 1( ),i iP Y Y Y 

 2 1 1 1( ),i iP Y Y Y 
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While discussion surrounding RTM has been extensive, estimating the magnitude of 

site-selection effects according to their entry-criteria values is a new topic in traffic 

safety. It is not, however, a new topic within the realm of scientific inquiry. Medical 

studies – particularly clinical trials – frequently employ a site-selection-based approach 

to analysis. Usually, the entry criteria are chosen based on historical or baseline 

measurements of clinical signs and symptoms, which serve as the response variables. 

Cook and Wei (2002), for instance, discussed the possible impacts of selection effects on 

testing new medicines in clinical studies. They derived equations for estimating the bias 

linked to the treatment performance when the response variables followed a normal 

distribution and were classified as discrete data. The treatment performances here are 

categorized into two types: 1) The difference between the before and after periods of an 

average response (δ= μ2-μ1); and, 2) The ratio of the before and after periods of an 

averageresponse(θ=μ2/μ1). Two data sets, from an epilepsy trial and from a myocardial 

ischemia, were used to illustrate the effects of ignoring the selection mechanism when 

there were high, medium or low entry-criteria levels. Their most important findings 

included the following: 

1) For Normal Distribution responses: When the scientists set the entry criteria for 

choosing experiment subjects, the original unbiased estimators for treatment 

effectiveness become biased. Even when there is no relationship between the 

response in the before and after periods the analysis can be biased. Furthermore, 

whenthetreatmentdoesnotwork(μ1=μ2),usingthenaïvemethod may result in 

a positive estimation of treatment effectiveness, especially for low-value 

responses. Theselectionbiaswillexistuntil thecorrelation(ρ) is1ortheentry

criteria (C) are close to -∞.However, when a control group is used, this bias will 

no longer exist.  

2) For Count Data responses: The result is analogous to the Normal Distribution 

response. The bias for estimating the treatment performance increases when entry 
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criteria are set higher; however, the bias will continue to exist until the entry 

criteria are less than 0.  

In sum, Cook and Wei showed that setting higher entry criteria may cause a larger bias 

in estimating the performance of the treatment; they also showed that using a naïve 

before-after method tends to cause an overestimation of treatment performance when the 

response number is low. The overall indication is that site-selection effects can play an 

integral role in improving traffic safety, as the distributions of crash frequency usually 

have a low mean (Lord and Mannering, 2010).However,CookandWei’stheoryisnot

without its flaws. There are three major problems that need to be resolved before we 

applyCookandWei’sstudyresultstotherealmoftrafficsafety.First,thereareseveral

typos in bias-estimation equations of effectiveness and variance. Secondly, the 

calculation of the Control Group method for count data in medical studies is different 

from when it is used in traffic safety studies. Furthermore, Cook and Wei did not 

consider the dissimilar control group – a very common control group type in real 

situations – and examine the accuracy of their bias equation when the parameters (e.g.,

1, ,  ) are unknown. To these ends, the following sections show the updated equation 

of bias caused by the site-selection criteria.  

2.2.2  Site Selection Effects for Normal Distribution Responses 

The equations shown below are adapted from Cook and Wei (2002). These equations 

may be used for analyzing travel speed, driver-reaction time, and other data that follow a 

normal distribution. Let Yi1 and Yi2 denote the response of subject i in the before (k=1) 

and the after (k=2) periods. Let the sample size be n. The initial assumption is that the 

response of subject i can be separated by three components: time (    k=1 or 2), subject 

(    i=1,..,n), and random effects (     k=1 or 2, i=1,..,n). 

ik k i ikY u e             (2.2) 
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where           and            .      

In addition,    and     are considered independent. Let              
  be a bi-variables 

normal distribution with ik kE(Y )   ,   2

ikVar Y σ   , and with the correlation of 

                 
  



      
. To see the difference in response between the before and 

after periods, estimators with and without entry criteria are shown in sections 2.2.2.1 and 

2.2.2.2.     

2.2.2.1  The Estimator of μk and δ, γ Without Entry Criteria  

According to the method of moment, the unbiased estimator of the mean response is: 

        
    

 
   

 
           (2.3) 

Hence, the effectiveness of the countermeasure could be the difference between the 

responses in the before and after periods ( ), or the ratio of the responses in the before 

and after period (θ): 

2 1 2 1
ˆ ˆ ˆ Y Y                   (2.4) 

2 2

11

ˆ

ˆ
ˆ Y

Y



 


           (2.5) 

Usually, comparison analyses use a paired t-test for examining whether δ is different

fromzero,orwhetherθisdifferentfrom1.Ifδ issmallerthan0,orifθ is lessthan1,

then traffic engineers declare that this treatment reduces the response rate. 

2.2.2.2  The Estimator of μk and δ, γ With Entry Criteria  

With entry criteria, the distribution of     is truncated by C. Hence, the original estimator 

of the mean response in equation (2.3) is no longer unbiased, and the unbiased estimator 

of the mean response in the before period becomes: 
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  2

1 1 1

( )

(1 ( ))
i i

f d
E Y Y C

F d
      


         (2.6) 

where 1

2

( )c
d

 





 and f(d) and F(d) are the PDF and CDF of standard normal 

distribution respectively. Using the Bayesian theorem, the estimator for the response in 

the after period can be calculated as follow: 

   2 1 2 1 1|i i iE Y Y C Y            (2.7) 

And the estimator forδis: 

    2 1 1 2 1 1 1 1
ˆ | 1 ( | )i i i i iE Y Y Y C E Y Y C            

= 2

2 1

( )
( 1)

(1 ( ))

f d

F d
       


          (2.8) 

Cook and Wei used equation (2.8) to show that even if the responses in the before and 

after periodsare independent (ρ=0), thebias still exists.However, if theentrycriteria

are close to negative infinity then f (d) tends towards zero or  =1, and the bias may be 

ignored. Also, ̂   exists even the treatment does not work ( 2 1   ).  

The explanations from Cook and Wei are correct but not clear enough, so this study has 

added one estimator equation (2.9)forθ.Therearetworeasonsfordoingso:(1)traffic 

engineers usually prefer using θ to represent treatment performance (re: CMF in the

Highway Safety Manual); and, (2) therecanbedifferentboundaryconditionsforθandρ. 

 

2

2

2 1 1
2

1

( )
(1 ( ))ˆ ( / |

( )
(1 ( ))

i i i

f d
F d

E Y Y Y C
f d

F d

  


 

    


  
   



  (2.9) 

In equation (2.9), the bias will not exist when 
( )

(1 ( ))
f d

F d
 is very small, orwhenρis

2 1/  .Ifρdecreasesfurther,orifthedistancebetweentheentrycriteriaandthemean
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is larger, then the bias also becomes larger. It should be noted that ρ=1 canmake ̂   

unbiased but ̂  still biased until 2 1   .  

2.2.2.3  The Estimator of μk and δ, γ with Entry Criteria with Control Group  

One subscript is added to index the treatment group (j=1) and the control group (j=2). In 

medical studies, the estimator for δ is unbiased when 11 21 22       , 1 2     

and 1 2  d d d   

   

     

12 11 11 22 21 21

12 11 1 11 11 11 22 21 2 21 21 21

ˆ ( | ( |

1 ( | ) 1 ( | )

CG i i i i i i

i i i i

E Y Y Y C E Y Y Y C

E Y Y C E Y Y C



 

     

               

 

(2.10) 

where   ( )2 1
(1 ( ))11 11 11 1

( | )
f d

F di iE Y Y C         

However, the estimator for θ is biased even when 11 21 22       , 1 2      and 

1 2  d d d  .  The selection bias still exists until 
( )

(1 ( ))
f d

F d
 is very small or 0  .   
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Based on equations (2.10) and (2.11), it is very clear that using the CG method with the 

exact same control-group data may remove site-selection bias for   . However, ˆ
CG  is 

still biased until entry criteria is close to - , 
( )

(1 ( ))
f d

F d
 is very small, or if the 

responses in the before and after periods are independent ( 0  ).   

2.2.3 Site Selection Effects for Count Data 

The theorem of how site selection affects count data is analogous to that for continuous 

data. Suppose that the site i (i=1, 2… m) has 1iN crashes in the before period (time 

length = t1) and the crash counts of site i in the after period (time length = t2) is 2iN . Let 

ikN follow the Poisson distribution ( ikN ～ Poisson ( it ku  )), where itu  is the subject-

specific random effect, and where k  is the average crash rate ( k it kt   ). it  is the 

instant rate of crash. 

2.2.3.1  The Estimators of μk and δ, γ Without Entry Criteria 

 Suppose that there are no entry criteria for choosing experimental subjects, and that the 

expected value of the mean is:    

( ) kik iE N u                                                                                                                                (2.12) 

If we assume ~ N(1, )u  , then the estimator of response, variance and covariance are: 

( )ijk kE N               (2.13) 

  2

ik k kr NVa              (2.14) 

 1 2 1 2,i iCov NN                                                                               (2.15) 
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Then, the marginal distribution,  ik kP , ?Λ , ? N  , is the Poisson-Normal model. 

If we assume u～Gamma (α
-1
,α), then the estimator of response and variance, and the 

probability function become: 

 ik i k

1( )
1

E Λ

( )

u
1

1

N

k

k
k

k















  


                                                                         

(2.16) 

 ik k kVar N Λ (1 Λ α) 
        

(2.17) 

From the above equation, we can see that (2.16) and (2.17) are consistent with (2.13) and 

(2.14). Then, 
 
 ik kP Λ, , ?N   is the Poisson-gamma model (Negative- Binomial model) 

and its join distribution is: 

 
  1

1 2 1 2

1

1

1 2

1 2 1 21

1 2 1

2

2

1
, ( ) ( ) ( ) , 1,2

( ) ! ! 1 ( )
P ,Λ ,Λ , i i i i

i i N N N N

i i

i i

N N
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            (2.18) 

When , we can derive the log-likelihood function from (2.18) 

. 2
1 1

. .

1 1 1

( ) log( 1) log( ) log ( ) log(1 . )
m Ni

ik k i i

i l k

l l n N Y     

  

 
         

 
  

     

(2.19)

 

Then, we can obtain the score vectors by partial differential of the above log-likelihood 

function for obtaining the MLE estimates.   

.1 ..
1

1 .
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1

N m N
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(2.22) 

LetS(θ)=0.Theestimatorformaximumlikelihoodofresponse,andthedifferenceof

response between the before and after periods are: 

 ˆ . / , 1,2kN m k  
         

(2.23)
 

2 12 1
ˆ ˆ ˆ N N                (2.24) 

22

11

ˆ
ˆ

ˆ

N

N



 


                                                                   (2.25) 

Based on equations (2.23)-(2.25),theestimatorsforδandθarestillunbiased.Their

equations are also the same as equations (2.3) and (2.4).  

2.2.3.2  The Estimators of μk and δ, γ With Entry Criteria 

Suppose that site i has C or more crashes in the before period (time length = t1, Ni1>C). 

Equation (2.18) then does not work when the trial contains entry criteria because the 

sample model is truncated.  The new distribution is: 

1
1 2

1
1

1

. 1 2
2 1 1

1 2 1

( ) (1 ) ( )
( | )

( ) ! (1 )

i i

i

N N

i
i i N

i i

N
P N N

N N





  

 







 

   

  

     (2.26) 

Using the moment generation function, the score function is: 

   1 2
1

(1 ( ) )
, 1, , , 1, 2

1 .

k
k i

k

m m
E S N C i m k

   




 
    

 
   (2.27) 

where 1( | )k ik iE N N C    

Similar to what was discussed in section2.2.3.1,wecansetS(θ)=0togetthemaximum

likelihood estimatorsofΛ1 andΛ2.Then,thebiasesoftheestimatorsofΛ1 andΛ2 are : 
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1 1 1 1 1
ˆlim ( | , 1, , )i

m
E N C i m 


     

      

(2.28)

 

2 1 1
2 2 1

1

( )ˆlim ( | , 1, , )
1

i
m

E N C i m
 



 
    

        

(2.29)

 

Moreover, we can use (2.28) minus (2.29) to get the bias of the estimatorofδ, 

1 1 1

1

1ˆlim ( | , 1, , ) ( )
1

i
m

E N C i m


  


 
      

 




     (2.30)

 

Thesameprocedurewasusedtoobtainthebiasoftheestimatorofθ, as seen in equation 

(2.31).  However, equations (2.30) and (2.31) were both modified to account for typos 

found in the original equation proposed by Cook and Wei. Please see the red color for 

the corrections. The first typo affects the magnitude of site-selection bias, and the second 

typo changes the bias from negative to positive.   

 

1 1
1

1 1

( )ˆlim ( | , 1, , )
( 1)

i
m

E N c i m


  
 

 
     

 



      (2.31) 

This equation is very important for estimating the site selection effect, and we will 

discuss it further in section 2.2.4.  

2.2.3.3  The Estimators of μk and δ, γ With Entry Criteria And With Control Group 

Using a similar equation to that in section 2.2.3.2, we only need to add one extra 

subscript, j, to distinguish the comparison group from the control group. The term j is 

equal to 2 for the treatment group and 1 for the control group. The other conditions and 

assumptions are the same as those in Section 2.2.3.2. As such, the responses still follow 

the Poisson distribution ( ( )ijk ij jkY Poission u  , and uij follows the Gamma distribution 

(α
-1

, α). jk jk k      is the average population count for the kth period. The estimator 
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of the average crash rate (
jk̂ ) is /ijk

i

N n . According to Hauer (1997), the equation 

that traffic engineers use to calculate the effectiveness is:  δCG = 12
22 21

11

–


 


 instead of  

δ=(Λ22 –Λ21 )-(Λ12 –Λ11 ) inCookandWei’spaper. TheMLEestimatorofδ true should 

be changed as shown below: 

11
12

1121
22 21

21 11

1

11

1
CG

 

 
 

 

 
  

       
  

 

          

(2.32) 

where 
1( )jk ijk ijE N N C    . If we put in the optimal assumption Λ11 =Λ21 =Λ1 and  

μ11=μ21=μ1, then equation (2.32) is simplified to:     

22 12 1

1

( )( 1)ˆ  
( 1)

CG






  


            

(2.33) 

or equivalently to 

22 12 1 22 12 1 1
22 12

1 1

( )( 1) ( )( )ˆ   ( )
( 1) ( 1)

CG

  
 

 

     
     

   
    

(2.34)  

From equation (2.34),itshouldbeclearthattheMLEestimatorofδisstillbiasedexcept

in three conditions: when the dispersion parameter is zero; if the treatment does not work; 

or when it does not contain entry criteria. This bias will increase as entry criteria become 

larger.Followingthesamesteps,theestimatorofθshouldbecome: 

21
22

21 22

21 11 12
2112

11
11 11

1
( )

1ˆ
1

( )
1

CG

 

 
  






  
  

 
   

       (2.35) 

Let’s use the optimal assumptions Λ11 =Λ21 =Λ1 andμ11=μ21=μ1. Then, equation (2.35) 

is simplified as: 
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1
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1 22

1 1

1 12
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1
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1

1
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ˆ 0
1
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true true




 








  


   
 

  

      (2.36) 

Based on equation (2.36), it can be assumed that using a control group may cause the 

estimatorofθtobecomeasymptoticallyunbiasedwhenΛ11 =Λ21 =Λ1 andμ11=μ21=μ1. 

However, this situation is very rare because two initial assumptions need to be present: 

optimal control group and large sample size. Moreover, more conditions are necessary to 

maketheestimatorofδunbiased. 

2.2.3.4  Site Selection Effects for Dispersion Parameter 

The dispersion parameter may be another interesting parameter. Based on (Cook and 

Wei, 2002) study, site selection effect also biases its equation as shown below: 

For estimating the bias of the dispersion parameter, we can use a quasi-likelihood 

approach. Equation (2.37) was corrected from Cook and Wei’s result. As shown in 

equation (2.39), setting an entry criterion may lead to an underestimated dispersion 

parameter. Interestingly, Ye and Lord (2009) using a different approach, also discussed 

underestimating the variance in before-after studies. 

* 1 2
2
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1
1m

m


 



  
 





         

(2.37)
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        (2.38) 
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ˆlim ( , 1,..., )
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(2.39) 
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2.2.4  Discussion 

There are some interesting findings that can be discussed based on the work of Cook and 

Wei (2002). First, although selection effects may be reduced for some (not all) safety-

effectiveness indexes by using a control-group method, finding enough appropriate sites 

for the control group is much harder in traffic-safety analyses than in clinical trials. In 

otherwords,medicalresearchershavetheluxuryofsettingfewconditionsonapatient’s

age, gender, or previous-response history (such as blood pressure or heart rate) to build 

their control group. However, locating sites with similar traffic characteristics, crash 

frequencies, and geographic layouts is much more difficult – especially since collecting 

crash and other related data is expensive and time-consuming. For instance, the study 

period for analyzing traffic countermeasures is usually much longer than that used for 

clinical trials, in part because the countermeasures typically need to have been built prior 

to the analysis.  Additionally a significant amount of time is needed to collect a pool of 

data that is large enough - especially in the after period - to make proper inferences as to 

thecountermeasures’effectiveness.Furthermore,therearemanyrelated factors that may 

change during the experiment on traffic safety. Transportation safety analysts have less 

control over experimental subjects (e.g., sites, road segments), as they cannot control for 

the behavior of drivers who travel through the areas that are part of the study. Based on 

the above reasons, using a control group to reduce site-selection effects is not as 

practical as those used in clinical trials.  

ThesecondproblemwithCookandWei’sresults is the true values for the parameters,

2, , , ,  and       are seldom known. To apply their equation, the following equations 

and equation (2.37) are used as their estimators: 

1 2 1
ˆ ( , )i i iCorr Y Y Y C           (2.40) 

2

2 1
ˆˆ ( )i iVar Y Y C            (2.41) 
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1 1 1
ˆ ( )i iE Y Y C            (2.42) 

The above estimators are unbiased when C is relatively low. For more precise estimators, 

several methods have been previously proposed (Barnett et al., 2005; Barr and Sherrill, 

1999; Cohen Jr, 1950; Formann, 2008). Equations (2.43) and (2.44) show the latest 

estimators from (Formann, 2008):  

 2 1 1

2

( )ˆˆ
( ) ( )

(1 ( ) )
1 ( ) 1 ( )

i iVar Y Y C
f d f d

d
F d F d

 


 
 

 

                         (2.43) 

1 2 12
( )

ˆ
2

i i iVar Y Y Y C


 
                         (2.44) 

However, equation (2.43) includes a variable, d, which is a function of ̂  and ̂ , so 

equation (2.43) has to be solved iteratively. Because of this, this study still used 

equations (2.37), (2.40), (2.41) and (2.42) for evaluating the simulation efficiency. For 

more details about how to solve equations (2.43) and (2.44), the reader is referred to 

Formann (2008).   

Low sample size is an additional problem that may affect the accuracy of the estimating 

equations (2.30), (2.31) and (2.39), as the aforementioned equations are asymptotically 

unbiased. This study will examine the appropriateness of these equations when the 

sample size is small.  

Thefinalproblemtoberesolvedisthedifferentboundaryconditionsforθandδincount

and continuous data. Previous studies have reported that there was no RTM or site-

selection bias when the correlation coefficient was one, but the above statement is not 

true as shown in equations (2.9), (2.11), (2.34), and (2.39). However, Cook and Wei did 

not extend their results to figure out what occurs when site-selection bias becomes a 

minimum value. Hence, this study will define the boundary condition by applying the 

estimators of mean and variance in the truncated model from Geyer (2007). This study 
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focuses ontheindexofeffectiveness(θ)forcountdataanddifference(δ)forcontinuous

data, because most traffic studies use the above indexes to show the effects of traffic-

safety countermeasures. However, site-selection bias associated with the difference and 

the dispersion parameter for count data will be discussed below. For further discussion 

of the first index, we simplified equation (2.31) by dividing its denominator and 

numerator by µ1: 

 
1

1 1 1
1

1 1 1

1
ˆlim | , 1, ,

(1 ) (1 )
i c

m
E N c i m

 
   

  

    
            

 
 

      (2.45) 

With equation (2.45), it becomes more obvious that setting higher criteria will cause a 

larger bias because the truncated expected value (µ 1) increases. Larger values of the 

index (θ)will also increase the bias. It should be noted that µ1 is the function of entry 

criteria (C), a dispersion parameter ( ), and a mean response rate in the before period 

( 1 ) (Geyer, 2007).  Simulated data will be used to confirm this finding in the following 

section (Section 4). 

The site-selection bias will become zero when 1 1   , as shown in equation (2.45). In 

other words, site-selection bias will always exist until C<0, even when 0   (i.e., 

0  ).Thus,whenC isanonnegative integer(0,1,2,…),thesite-selection bias will 

constantly be present. This also means that for crash data, this bias will exist even when 

we include sites with a minimum of one single crash (as long as    ).  It should be 

pointed out that for count data, the site-selection effect will cause different biases for 

different estimators: 1 2, , , and      . Some of these will be discussed in subsequent 

sections. 
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2.3 Truncated Model 

In Section 2.2, we made the hypothesis that researchers tend to choose experimental 

subjects that will generate a high response because they may: be constrained by budget 

and time and simply want to focus on a target population; want to easily observe 

significant changes within the responses obtained; wish to simply comply with warrants 

from manuals, such as the MUTCD (Department of Transportation et al., 2003).This 

approach to inquiry causes the sample distribution to be truncated from the global 

population distribution. In clinical studies, several researchers have discussed the 

application of truncated models when analyzing such datasets (Cruyff and van der 

Heijden, 2008; Kennedy, 2005; Lee et al., 2003). Most clinical studies have usually 

focused on zero-truncated models. It should be pointed out that in this study, constant-

truncated models that are greater than zero will be used for the reasons described above. 

Geyer (2007) discussed the characteristics of certain truncated Poisson and Negative 

Binomial distributions. The estimators for the mean and variance are shown below: 

1. Poisson Distribution:  

 Mean   , 1

, 1 1 1

, 1

( 1)1
| ,

1 ( 1)

p Y CC
E N Y C where

p Y C

 



 






 
    

  
  

 (2.46) 

 Variance:
 , 1 1

1

1

, 1 1
1 1

1 1

E N N C C C 

  


     

      
     

     (2.47) 

 

2.  Negative Binomial distribution 

 Mean:  , 1 1 1

1

1 1
, , ( )

(1 ) 1

C
E N N C where P

p


 



    

  
     (2.48) 

 Variance: 
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    (2.49)                                                                                  

These equations can be used for estimating 1 1and   in equations (2.30), (2.31), and 

(2.39). It should be noted that Gurmu and Trivedi (1992) also derived estimators of 

mean and variance which are very similar as equations (2.48) and (2.49) and only have 

slightly different. Moreover, the values estimated by using these two study methods are 

very close to each other based on our simulation test. Hence, we selected the equation 

from Geyer (2007) since it is a more recent study and its result is also supported by the 

simulation data.      

As for the truncated continuous model, the estimators for the mean and variance are 

1 1

1 1 1
1 1

'
( ) ( )

( ' ) ( )
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( ) ( )

all all
i i all

all all

C C
f f
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                 (2.50)         
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(2.51) 

where
2 2

all     

These equations can be used for estimating 1 1and   in equations (2.41) and (2.42). It 

should be noted that this study used the negative binomial model for count data. Also, 

equations (2.41) and (2.42) are consistent with Hauer (1980a; 1980b) results. Hauer’s
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results show that higher entry criteria, and a shorter observation duration may cause 

higher bias. His results are consistent with our assumptions. Although the value of site-

selection bias could be estimated using the above equations, the variation linked to this 

method produces very large values especially when the sample size is small. 

2.4 Hot Spot Identification 

Before evaluating different countermeasures, there is always a need to identify sites 

where these countermeasures will be implemented. In an ideal world, the 

countermeasures should be randomly applied to different sites (e.g., intersections, sites, 

etc.). This approach is similar to studies done in medical trials. However, in practice, and 

by virtue of the characteristics of the sites, the countermeasures are nearly always 

installed at sites that experience larger-than-expected crash counts. This means that the 

identification of sites can also be influenced by what entry criteria are used.  

Erroneously selecting sites for applying countermeasures not only wastes limited funds 

that are allocated for such purposes, but it may also incur major social costs, as truly 

dangerous sites might go unidentified and thus crashes there will continue. Many 

research studies have been conducted over the last 30 years about different methods of 

identifying hot spots or block zones (e.g., see (Geurts and Wets, 2003; Miranda-Moreno, 

2006). These selection thresholds may help traffic engineers and transportation-safety 

analysts focus on high-risk crash locations; however, it may also cause bias in evaluating 

the effectiveness of the countermeasures, because the sample distribution may not be the 

same as the population distribution. 

According Miranda-Moreno (2006), the most common methods of identifying hot spots 

can be broken up into two types of strategies: threshold-based, and budget-limit. The 

threshold-based strategy is used to identify a list of hazardous sites whose crash counts 

exceed a certain value. This value may be a fixed number or a probability – for example, 

all sites having more than three crashes per year, or those that experience a high 

likelihood (i.e., > 80%) of having five or more crashes per year. This strategy ensures 
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that the selected locations on the list are considered dangerous at some critical level, 

with the number of locations to be selected unspecified. This is the most appropriate 

strategy when applying local safety policies that identify tolerance levels for accident 

risks. The shortcoming with this strategy is related to how one formally defines the 

thresholds or decision rules for generating the optimal selection of a hotspot list (Higle et 

al., 1988; Schlüter et al., 1997). Different hotspot priorities have been proposed by 

several researchers ((Hauer and Persaud, 1987; Heydecker and Wu, 2001; Miaou and 

Song, 2005; Persaud et al., 1999; Schlüter et al., 1997). They include the expectation of 

accident frequency, probability of excess, potential of accident reduction, and 

expectation of ranks.  

The other aforementioned strategy for identifying hotspots, budget-limit, consists of 

identifying a list of hazardous sites using available budget and crash costs. This study 

will not evaluate this strategy. 

Practically speaking, this study will compare the possible bias in estimating the 

effectiveness when using the fixed-number approach for setting entry criteria in a trial. 

This study will also focus on the change of bias in different scenarios, such as high/low 

crash rates, high/low heterogeneity, and high/low entry criteria levels. 

2.5  Methods for Estimating the Effectiveness of Countermeasures 

In the literature, several methods have been proposed for estimating the effectiveness of 

countermeasures. For count data, they include the naïve before-after study, the C-G 

method, and the EB method. For continuous data, they include the naïve before-after 

study, the C-G method, and the ANCOVA method. Additional information about these 

three methods can be found in (Barnett et al., 2005; Hauer, 1997). Recently, a more 

advanced method, known as the Full Bayes (or FB) method, has also been applied to 

before-after studies (Park et al., 2010). So far, these methods, with the exception of the 

naïve before-after study, have been used for minimizing the effects attributed to RTM. 

Very few studies have focused on using site-selection effects with these different 
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methods in order to estimate the effectiveness of particular countermeasures. As such, 

this proposed study will evaluate how site-selection effects can be incorporated into the 

above methods of estimating the effectiveness of countermeasures. Moreover, this study 

has also proposed a new adjusted method of removing site-selection effects by extending 

Cook andWei’s results.Then, how to remove site-selection bias by using FB method 

will be discussed in the third subsection in the methodology section.   

2.6 Other Methods of Minimizing Site-Selection Bias 

Unlike our adjusted method of estimating site-election bias and removing it from the 

naïve effectiveness estimator, another type of method is to reduce the site-selection bias 

itself. The following paragraphs will introduce these methods individually.  

Aside from the control group method that was mentioned earlier, other common methods 

for reducing site-selection bias include: increasing the baseline measurement, and the 

repeat screen test (Barnett et al., 2005; Davis, 1976; Yudkin and Stratton, 1996). 

Detailed information of the above-mentioned methods is introduced below. 

 

1. Increasing the baseline measurement: Taking the average of a number of 

measurements as the baseline measurement can reduce the RTM by decreasing the 

variability of the criterion measurement. Equation (2.52) shows that the site-selection 

bias decreases when the baseline measurement increases to k. Please see (Davis, 

1976) for details. 

2

2

( )ˆ
(1 ( ))

f dk

F d
k


 

 

 




                   (2.52) 

2. Repeat screen test: Use the first observation to catalog subjects and the second and 

third observations to calculate treatment effectiveness; the RTM will be removed 

while the correlation between the first and second observations equals to the 

correlation between the first and third observations. Please refer to the Davis, (1976) 

and Ederer (1972) studies for more-detailed information.  
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3. Analysis of Covariance (ANCOVA): The ANCOVA has been utilized extensively in 

epidemiology research (Barnett et al., 2005). Basically, the ANCOVA provides a 

more precise estimate of treatment effect by adjusting each subject’s follow-up 

measurement according to its baseline measurement. The characteristics of this 

method are described in the methodology section further below. Although the 

ANCOVA has successfully been used in the past in the context of a before-after 

study with entry criteria (i.e., its estimator has a narrower confidence interval than 

the traditional paired t-test), the method has the same disadvantage as the one used 

for the CG method: both methods require collecting additional data that will be part 

of the control group, which may be prohibitive depending on the study 

characteristics. Additional information can be found in Barnett et al.(2005), who 

applied the ANCOVA for analyzing the effects of skin cancer prevention treatments 

in Nambour, Australia.  

2.7  Summary 

Below are the three primary findings based on the previous literature review: 

1. Site-selection effects exist when entry criteria are used for selecting observations, 

and this selection process is very common in traffic safety. 

2. Few studies have examined how the magnitude of a site-selection effect is influenced 

by setting different entry criteria, with and without the use of a control group (the use 

of a control group is not as practical in highway safety).  

3. Many methods have been proposed for estimating the effectiveness of 

countermeasures, but few have considered the relationship between entry criteria and 

site-selection bias. 

In sum, the purpose of this study is to develop a new method that can easily adjust or 

reduce naïve estimators in before-after studies that employ continuous data and that are 

characterized by an entry criterion, without relying on data collected for the control 

group. This will be performed by comparing the new method (subsequently called the 
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Adjusted Method in the text) with the other common before-after methods: the Naïve, 

CG, and EB (for count data)/ANCOVA (for continuous data).  For practical purposes, 

this study will compare possible bias when estimating effectiveness based upon the 

methodologies used for identifying hot spots by fixed-number. This study will also focus 

on the change of bias in different scenarios, such as high/low crash rates, high/low 

heterogeneity, and high/low entry criteria. The next section describes the methodologies 

regarding how to examine the site selection bias for continuous data and count data.
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3. METHODOLOGY 

 

This section describes the methodologies regarding how to examine the site selection 

bias in two areas: 1) Estimating countermeasure effectiveness for continuous data; 2) 

Estimating countermeasure effectiveness for count data. Each section focuses on the bias 

caused by using common methods in before-after studies for different types of data and 

their safety index respectively. 

3.1 Methods to Examine Countermeasure Effectiveness for Continuous Data 

Section 3.1 includes four before-after methods for normal-distribution data: Naïve 

before-after studies, Before-after studies with a control group (CG), ANCOVA, and our 

adjusted method.  The first three methods are the most common types of before-after 

studies, and the last one is a new method that we have proposed in this study. The idea 

of this new method is to remove/reduce site-selection bias from the naïve estimator. The 

bias estimating equation has also been updated from (Cook and Wei, 2002). The 

difference, , was chosen as the index of countermeasure effectiveness for continuous 

data, because it is commonly used. This study only assumed one year for the before and 

after periods, respectively, in order to simplify the calculations.       

NOTATIONS 

Before describing the methodology, it is important to define the notations used in the 

study: 

, 'C C : The entry criterion (minimum and maximum);  

m : The sample size; 

1 1,T CG

i i  : The mean response rate for site i (T: treatment group, CG: control 

group) in the before period (k=1);  
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2 2,T CG

i i  : The mean response rate for site i (T: treatment group, CG: control 

group) in the after period (k=2); 

1 1,T CG

i iY Y : The observed response for site i (T: treatment group, CG: control group) 

in the before period for continuous data, 
1 1,T CG

i iY Y > C; 

2 2,T CG

i iY Y : The observed response for site i (T: treatment group, CG: control group) 

in the after period for continuous data;  
 

ˆ
ANCOVA : The estimator of difference by using the ANCOVA method; this is the 

coefficient (b) ofthe“group”variableintheregressionmodel;and, 

           2 1 1constant ( )i i iY a Y Y b group error      
,

 

           Where group=1, treatment group; group=0, control group.  

Given the notation above, it is now possible to define the equations of difference,  , 

which are estimated by four before-after methods for one-sided truncated normal 

distribution as below: 

(1). Naïve method: 2 1

2 11 1ˆ ˆ( )ˆ

m mT T

i ii i
i

T

n e

T

a v

Y Y

m
  


   

 
               (3.1) 

(2). CG method: 
2 1 2 1

2 1 2 1

1 1 1 1

ˆ ˆ ˆ ˆ ˆ( ) ( )

1
( ) ( )

T T CG CG

CG

m m m m
T T CG CG

i i i i

i i i i

Y Y Y Y
m



   

     

 
    

 
   

                        

(3.2) 

(3). ANCOVA method: ˆˆ
ANCOVA b                                           (3.3) 

(note: b was described above equation (2.47)) 
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(4). Adjusted method:  

 

2

1

2
1 , 2 2

1

2

ˆ( )ˆˆ ˆ( 1) ( ) ˆ(1 ( ))

( )
( )

( ( ) 1) ( )

(1 ( ))

ˆ

(

ˆ

ˆ

)

T

T
T

adj

T

usted naive

naive

T i
Ti i i

T

i

f d

F d

C Y
f

Var Y
Corr Y Y Var Y

C Y
F

Var Y

 



  


 
 
  

 
 

 





     (3.4) 

 

3.2  Methods to Examine Countermeasure Effectiveness for Count Data 

In the same way as above, Section 3.2 also includes four methods for count data: Naïve 

before-after studies, Before-after studies with a control group, Empirical Bayes, and our 

adjusted method. For the sake of convenience, the common notations are listed below: 

 : The safety effectiveness,  (could be higher, but not in this study) 

C : Entry criteria  

n : Sample size 

 : Dispersion parameter 

1 1,T C

i i  : Mean response rate for site i (T: treatment group, C: control group) in 

the before period, i=1,…,n 

2 2,T C

i i  : Mean response rate for site i (T: treatment group, C: control group) in 

the after period, i=1,…,n 

1 1,T C

ij ijN N : The observed response for site i (T: treatment group, C: control group) 

in j year (in the before period) for count data, 1

T

ijN > C 
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2 2,T C

ij ijN N : The observed response for site i (T: treatment group, C: control group) 

in j year (in the after period) for count data   

iW : Weight for site i in EB method, 
t

i1 ij1j 1

1

ˆ1 NTiW



 




 

1 : the estimator for the average crash rate of all sites in the before period, 

 

11 1 1( )i iE N N C     for the EBMM method, and 
11   for the EBCG 

method.  

1iM : Expected responses for site i in EB method, 

t

i1 i i1 i ij1

j 1

M W ( ) (1 W ) ( )N


      
 

Given the notation above, it is now possible to define the equations of safety index,  , 

which is estimated by four before-after methods for a one-sided truncated count 

distribution as below: 

(1). Naïve method:
21 21 11

11 111
1

2

1

1

1

1 1

ˆ
1 1

ˆ

ˆ

n
t T n t T

ijj iji ji
naive n n t Tt T

iji ji

n

i

i

n

i

i
jj

i

N N
n t

NN
n t








 

 








  
   

  




           (3.5) 

(2). CG method:

2

1 12

22
2 1

1 1 1 1 11

ˆ
ˆ

ˆ
ˆ

ˆ

n t
T

ijT
i j

CG CC n t n t
ijT T

ij CC
i j i j ij

N

N
N

N









 

   

 

 



 
                 

(3.6) 
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(3). Empirical Bayes:
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       (3.7) 

(Note: the denominator is used to adjust for the small sample size)  

(4). Adjusted method:  

 

1 1
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                (3.8) 

Where       1 1

1 1

1ˆ
n t

T

ij

i j

N
n  

                 (3.9) 

                

2

2 1 1

2 1

2 1

(( ) )
1

( )
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                               (3.10) 

Equation (3.8) is based on two assumptions: 

1 1
1

1

1 ˆ ˆ and 
( 1)

(1 )
( 1)

ˆ ˆ( 1)
naive

C

P N C

P N C





 


 
 

 
  



  





 

.  



36 

 

Also, according to equation (2.39) the adjusted estimator of dispersion parameter,  , is 

defined as: 

2
2 1 1 1 1

2

1

ˆ ˆ ˆ
ˆ( 1)

adjusted naive naive

naive

   
  



  
   

 

      

(3.11) 

It should be noted that equation (3.10) was calculated by using crash data in the after 

period instead of using crash data in the before period which is commonly used in 

current before-after studies.  

2

2 2 1

2 1

2 1

2

1 1 1

1 1

1 1

(( ) )
1

( )
 

( )

(( ) )
1

( )
instead of 

( )

i i

i i

i i

i i

i i

i i

E N N C

E N N C

E N N C

E N N C

E N N C

E N N C





  
 

 


  
 

 


         (3.12) 

Same as above, the equations of difference, , which is estimated by four before-after 

methods for a one-sided truncated count distribution as below: 

(1). Naïve method:
2 11 1 12

1
1

1 1

1ˆ ˆ )
1ˆ

(

n
t n tT T

naive ij ijj i

n n

i
ii i

ji N N
n t

 
  

  

           (3.13) 

(2). CG method:
22

2 1 2 1

1 1 1 1 1 1 11

ˆ 1ˆ ˆ ˆ ( )
ˆ

CC n t n t n t
ijT T T T

CG ij ij CC
i j i j i j ij

N
N N

nt N


  

      

       

       

(3.14) 

(3). Empirical Bayes:

 

2 11 1 11

1
)ˆ (

n t n tT T

ij ijj i ji
N M

nt


  
                   (3.15) 

(4). Adjusted method:  
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              (3.16) 

3.3 Summary 

In this section, the researcher provided the methodologies regarding how to examine the 

site selection bias in two areas: 1) Estimating countermeasure effectiveness for 

continuous data; 2) Estimating countermeasure effectiveness for count data. There are 

different distribution model to fit traffic safety data, but this section we have focused on 

the normal distribution for continuous data and Negative Binomial distribution for count 

data.  

Each section focused on the bias caused by using common methods in before-after 

studies for different types of data and their safety index respectively. This section also 

explains how the Adjusted method by combing Cook andWei’s (2002) and Geyer’s

(2007) results were derived. Also, prior to describing these before-after methods, detail 

notations have been provided. Each section focuses on the bias caused by using common 

methods in before-after studies for different types of data and their safety index 

respectively. Based on these equations, the next three sections apply the methodology to 

simulated dataset (section 4) and observed datasets (section 5 and 6).   
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4. QUALIFICATION OF SITE-SELECTION BIAS 

 

In this section, simulated data were generated and used to support the above theorem and 

to examine the accuracy of the previous estimates of site-selection bias, because these 

equations are modified from Cook and Wei (2002)
1
. Sections 4.1 and 4.2 provided 

possible factors, simulation protocol, and simulation results of the site-selection bias for 

continuous and count data respectively. In Section 4.3, count data simulated from vary 

mean (instead of a fixed mean in Section 4.2) were used in order to make sure the above 

finding also adapted in practical.  Section 4.4 summarized the main findings in this 

section.    

4.1 Continuous Data 

This section consists of two parts. The first part describes the methodology and 

simulation protocol used for estimating the bias for five scenarios. The second part 

provides simulation results by scenarios. This study only assumed one year for the 

before and after periods, respectively, in order to simplify the calculations.  

4.1.1 Scenarios for Possible Factors 

In the following subsections four possible factors of influence will be discussed by 

sensitive analysis: different before-after methods, different between-subject variances, 

different within-subject variances, and different sample sizes. Note that the estimators 

were estimated the same way for the subsequent scenarios. For subsequent scenarios, the 

following variables were assumed to be fixed: sample size equal to 100 (except scenario 

                                                
1 Although theoretical equations to estimate the site-selection bias are available, simulation is needed for 

three reasons: (1) the theoretical derivations proposed by Cook and Wei (2002) had to be modified 

because it included several typos, and the simulation results are used to verify the accuracy of these 

modified equations; (2) the theoretical derivations assumed that the sample is infinite, which does not 

reflect how these equations would be applied using observed data; (3) and, simulation was also used to 

examine dissimilar control groups and the accuracy of the bias-estimation equations when the parameters 

are unknown.  
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4) and the difference equal to 10. Note that scenarios 1 and 2 were analyzed 

simultaneously.   

Scenario 1: Direct Comparison of the Methods 

This scenario assumed that the entry criteria varied from C=58 (i.e., 1 58iY  ) to C=73, 

and that the mean value was 70. We can assume, for instance, that the average speed 

within various segments is 70 mph andtheminimumdrivingspeedlimitis58,61,…,or

73. The data-generating procedure followed a normal distribution to generate the 

between-subject variance, within-subject variance, and observed speed.  m  (i=1 to m ) 

observations were selected randomly for the treatment group only when the response 

was larger than the entry criteria ( 1iY C ). We labeled responses of these sites as 1

T

iY  

and 
2

T

iY . The estimators for the measure of difference are as above in equations (3.1), 

(3.2), (3.3), and (3.4). 

Recall that the estimators of 
2, , ,and     in equation (3.4) are based on equations 

(2.40) to (2.42) when their true values are unknown. It should be noted that the 

estimators were calculated in the same manner for the subsequent scenarios. For this 

scenario, the following variables were assumed to be fixed: sample size equal to 100, 

between-subject variance equal to 25 (=5
2
), and a safety difference equal to 10. Note that 

Scenarios 1 and 2 were analyzed simultaneously. 

Scenario 2: Between-subject variance   ( ) 

As discussed in previous studies (Barnett et al., 2005; Cook and Wei, 2002), a higher 

correlation coefficient reduces the site-selection bias for estimating the difference, but it 

also creates a higher bias for estimating the mean rate for the after period. Also, the 

correlation coefficient is a function of the between-subject variance and the within-

subject variance. Speed measurements can be used as an example. High between-subject 



40 

 

variance means that speed varies significantly among individual drivers. High within-

subject variance means that the speeds for the same driver in the before and after periods 

are very different. To better understand the extent of this bias, Scenarios 2 and 3 

examined the impacts on the selection bias for these two variances separately. Scenario 2 

assumed that the between-subject variance varied from 9 (=3
2
, small heterogeneity) to 

225 (=15
2
, very large heterogeneity). There are seven levels of variance: 3

2
, 4

2
, 5

2
, 7

2
, 9

2
, 

11
2
, and 15

2
. It should be pointed out that the between-subject variances that have been 

observed with real speed data are from 4
2
 to 7

2
 (Muchuruza and Mussa, 2004). 

Scenario 3: Within-Subject Variance ( 2 ) 

This scenario assumed that the within-subject variance varied from 9 (small 

heterogeneity), 16 (medium heterogeneity), and to 25 (large heterogeneity). For this 

scenario, the following variables were assumed to be fixed: a sample size equal to 100 

and the difference equal to 10.  

Scenario4: Sample Size 

Equation (2.8) was derived with the assumption that sample size tends towards infinity.  

There is a need to examine whether the estimator changes or not when sample size is 

reduced. The scenario assumed that the sample size varied as follows: 10 (small), 30 

(medium), and 100 (large). For this scenario, the difference was equal to 10. 
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4.1.2 Simulation Protocol 

The simulated data were generated using the software R (R Development Core Team, 

2006)). The general steps were as follows: 

(1). For each between-subject variance ( ), generate the subject-specific random 

effect ( iu ), which follows a normal distribution  0,N  . The sample mean in 

the before period is 70, and error term of each site also follows a normal 

distribution  20,N  .  is equal to 5 for all scenarios except for Scenario 3, 

which examines the effects of different   values. Then, observed data ( iY ) in 

the before period were generated by combining the above terms: mean, 

random effect, and error for each site i  ( ik k i ikY u e   ).   

(2). Observed data in the after period were generated using a similar procedure, 

and the only difference was that the mean in the after period was equal to 80.   

(3). Generate the data for 5,000 sites, but randomly select 100, 30 and 10 sites 

depending on the scenario. 

(4). Then, m  sites are selected as the sample, whose observed (speed) values are 

larger than the entry criteria (58, 61,…, 73). The effectiveness can be

estimated using equations (3.1), (3.2), (3.3), and (3.4). 

(5). When the control group is used, control  is equal to 0. In other words, there is 

no difference in the mean rate between the before and after periods for the 

control group. 

(6). Repeat Steps 2 to 5 for a total of 1,000 times, and estimate the biases of 

various estimators  1000̂  .  
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4.1.3  Simulation Results  

This section describes the results based on the above simulation protocol. The results are 

presented for each scenario. As mention earlier, four possible factors include different 

before-after methods, different between-subject variances, different within-subject 

variances, and different sample sizes.  

Scenario 1 - RESULTS 

Figure 4-1 shows the site-selection bias for the Naïve, CG, ANCOVA, and the Adjusted 

methods. Overall, this figure shows that the bias is reduced as the between-subject 

variance increases, except when C is particularly small (e.g. C=58). This was expected 

given the characteristics of equations (2.8) and (3.4). The greater the entry criteria, the 

more biased the estimate will be. Among the four methods, the Naïve method 

(Figure 4-1(a)) has highest site selection bias;   can be over-estimated by as much as 

49%. As discussed by Cook and Wei (2002), unless the correlation coefficient is close to 

one (which means 
2  ), ̂  will be biased if an entry criterion is used (e.g. the bias 

never equals zero even when 225  ).  

When the CG or ANCOVA method is used, the bias can be theoretically eliminated. For 

the CG method (Figure 4-2(b)), the control group needs to have the same characteristics 

(i.e., the same sample mean, variance, and entry criteria) as those of the treatment group 

used for the Naïve method. As explained above, it may be difficult in practice to find 

datasets with the exact same characteristics as those of the treatment group. 
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The application of the control group is further explored in Figure 4-2. Figure 4-2(a) is 

the same as Figure 4-1(b), and is used to compare the results with the other figure below. 

Figure 4-2(b) shows that when the control group has a slightly lower mean (0.95 × 

mean), the site-selection bias is far from zero but smaller than the bias generated from 

the Naïve method. Furthermore, the bias is in the opposite direction (CG with a lower 

mean will over-estimate ). Conversely, using a control group that has a higher mean 

value (1.2 × mean) causes a negative site-selection bias, which is even higher than with 

the Naïve method (Figure 4-2(c)). In other words, the site-selection bias caused by using 

a dissimilar control group might be even higher than with using just the Naïve method. 

Because of space limitations, other figures showing site-selection bias for the ANCOVA 

that have a different mean are not shown here. However, the results are similar to those 

documented above for the CG method. Finally, using the Adjusted Method reduced site-

selection bias by about 50% - even when the biased estimators of 
2, , ,and      are 

used Figure 4-1(d), or when they are not known with certainty. Compared to each other 

method, the Adjusted Method provides a more precise estimate than the Naïve method 

and performs better than the CG and ANCOVA methods when similar control group 

data are not available. It should be pointed out that the Adjusted Method will not 

completely eliminate the site-selection effects unless 
2, ,  and    are fully known. 

Obviously, these values are rarely known in practice. 
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Figure 4-1 Site-selection bias for the Naïve, CG, ANCOVA, and our Adjusted 

methods 
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Figure 4-2 Site selection bias for the CG method for the following characteristics: (a) 

same mean; (b) 0.95 × mean; (c) 1.2 × mean. 
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Scenario 2−RESULTS 

As discussed in the first scenario, the site-selection bias decreases when the between-

subject variance increases, but the decreasing rate becomes almost flat for values above 

11
2
 (Figure 4-1). With the Naïve method, the bias is never eliminated, as compared to 

the CG and ANCOVA methods. It should also be noted that when the between-subject 

variance tends towards zero (subjects have a low heterogeneity), the site-selection bias is 

the largest. This finding is consistent with Cook and Wei (2002), because the correlation 

coefficient is close to zero when between-subject variance is zero. 

Scenario 3 – RESULTS  

Figure 4-3 shows that the value of within-subject variance changes the value of the bias. 

This figure illustrates that the bias increases when the error term becomes larger, which 

is consistent with the characteristics of equation (2.8). Moreover, the Adjusted method 

reduces the bias by 50% for all within-subject variance. The results from Scenarios 2 and 

3 indicate that lower between-subject variance and higher within-subject variance cause 

more selection bias.  

Scenario 4 – RESULTS  

Figure 4-4 shows that the sample size of the treatment group does not affect the bias 

considerably. For all sample sizes, the biases estimated from the Adjusted method still 

reduce the bias by 50%, although there is a slightly difference when sample size is small 

and the entry criteria is low (please see the dash line in Figure 4-4(c)). Hence, equation 

(2.8) and (3.4) which was derived by assuming that the sample size is close to infinity 

(∞),maybeusedforestimatingsite-selection biases when the sample size is small. 
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Figure 4-3 Site selection bias for the Naïve and Adjusted method when the within-

subject variance is equal to 3
2
, 4

2
, and 5

2
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Figure 4-4 Site selection bias for the Adjusted method when the sample size is equal 

to (a) 100, (b) 30, (c) 10, and (d) Estimated. 
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4.2  Count Data: Simulation from Fixed Crash Mean  

Unlike previous section only focused on one safety index (difference) for continuous 

data, this section examined site-selection bias on three parameters, safety effectiveness, 

difference, and dispersion parameter in three subsections. Each subsection consists of 

two parts. The first part describes the methodology and simulation protocol used for 

estimating the bias for five scenarios. The second part provides simulation results by 

scenarios. 

4.2.1.  Safety Effectiveness 

Safety effectiveness is the most common index to measure the countermeasure 

effectiveness in count data, while difference is the main index in continuous data. 

4.2.1.1  Scenarios for Possible Factors 

In the following subsections five possible factors of influence will be discussed by 

sensitive analysis: entry criteria, sample size, inverse dispersion parameters, safety-

effectiveness values, and the standard deviation of safety effectiveness. As mentioned 

above, note that the estimators were estimated in the same way as for the subsequent 

scenarios. For this scenario, the following variables were assumed to be fixed: sample 

size equal to 100 (except Scenario 2), and safety effectiveness equal to 0.50 (except 

Scenario 4). Note that Scenarios 1 and 2 were analyzed simultaneously. 

Scenario 1: Direct Comparison of the Methods 

This scenario assumed that the entry criteria varied from C=0 (i.e., 1 1iN  ) to C=5. The 

data generation procedure followed a Poisson-gamma distribution to generate the mean 

response rate and observed number of counts.  m  (i=1 to m ) observations were selected 

randomly for the treatment group only when the response was larger than the entry 

criteria (
11

t

ijj
N C


 ). We label these observes of sites as 

1

T

ijN  and 
2

T

ijN . The estimators 
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for the measure of effectiveness are the same as in equations (3.5), (3.6), (3.7), and (3.8). 

It should be noted that the estimators were estimated in the same way for the subsequent 

scenarios. For this scenario, the following variables were assumed to be fixed: sample 

size equal to 100, and safety effectiveness equal to 0.50. Note that Scenarios 1 and 2 

were analyzed simultaneously. 

Scenario 2: Dispersion Parameter  

As discussed in Cook and Wei (2002), a larger dispersion parameter creates higher bias 

when estimating the mean rate for the after period ( 2 ), but it reduces the bias when we 

estimate the safety effectiveness. For a better understanding the extent of this bias, this 

scenario assumed that the dispersion parameters varied from 0.25 (small heterogeneity) 

to 7 (very large heterogeneity). For this scenario, the following variables were assumed 

to be fixed: a sample size equal to 100, and the safety effectiveness equal to 0.50. It 

should be pointed out that the dispersion parameters that have been observed with crash 

data rarely go beyond 2.0. 

Scenario 3: Sample Size 

Equation (2.31) was derived with the assumption that sample size tends towards infinite.  

There is a need to examine whether the estimator changes or not when sample size 

reduced. The scenario assumed that sample size varied as follows: 10 (small), 30 

(medium), and 100 (large). For this scenario, the safety effectiveness was equal to 0.50. 

Scenario 4: Safety Effectiveness  

Based on equation (2.31), it is clear that larger values of the index of safety effectiveness 

cause higher site selection bias. The scenario assumed that safety effectiveness for three 

values: 0.90 (high), 0.70 (medium), and 0.50 (low). The sample size was equal to 100. 

Scenario 5: The Standard Deviation of Safety Effectiveness 

The effectiveness of treatment was assumed as a constant in Cook and Wei (2002), but it 

is not always true in practical. We assumed the variance of safety effectiveness may also 
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be related to the site selection effect bias, and this scenario assumed a standard deviation 

of the index of safety effectiveness that varied from 0.05, 0.1, and 0.2. The safety 

effectiveness was made equal to 0.90, in order to avoid having the term   equal to or 

less than zero. This scenario is more of a theoretical exercise, since the term   is usually 

estimated from the data. This scenario could also be used to replicate the application of a 

crash reduction factor (CRF) characterized with different levels of uncertainty. 

4.2.1.2  Simulation Protocol 

The simulated data was generated using the software R (R Development Core Team, 

2006)) .The general steps were as follows: 

(1). For each dispersion parameter, generate the crash mean rate ( 1
ˆ
i ), which 

follows a gamma distribution,  1~ ,gamma    , and generate a count with 

a Poisson mean (  1 1 1
ˆ~i i i iN Poisson     ) for each site i , where i  , the 

sample mean, was equal to 3. Sample mean values equal to 1, 5 and 10 were 

also tested, but the results are not presented here due to space constraints. All 

the results were consistent with the values presented in this dissertation, 

expect at the boundary when   is almost equal to zero. 

(2). Generate three years of counts in the before period using 1i  for each site. 

Generate the data for m  = 5,000 sites, but randomly select 100, 30 and 10 

sites depending on the scenario. 

(3). Only for Scenario 5: Generate the treatment effectiveness for each site using 

a normal distribution,  2~ ,N   , where   = 0.90 and 2  = 0.05, 0.10 or 

0.20. 
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(4). Estimate the crash mean rate ( 2
ˆ
i ) for each site in after period equal to the 

product of the above matrixes ( 1
ˆ
i  ). Then, generate three years of count 

using the Poisson distribution,  2 2 2
ˆ~i i iN Poisson    .   

(5). Then, n sites are selected as the sample whose observed crash numbers are 

largerthantheentrycriteria(0,…,5),anditseffectivenesscanbe estimated 

using equations (3.5), (3.6), (3.7) or (3.8). The dispersion parameter can be 

estimated using equation (3.10) and (3.11). 

(6). When thecontrolgroup isused,θ isequal to1.Inotherwords, there isno

difference in the mean rate between before and after periods. 

(7).  Repeat steps 2 to 6 for a total of 1,000 times, and estimate the various biases 

 1000
ˆ 

.
  

It should be pointed out that the EB method was not used or evaluated by Cook and Wei 

(2002).  

4.2.1.3  Scenario Results 

This section describes the results based on the above simulation protocol. The results are 

presented for each scenario. As mention earlier, five possible factors include entry 

criteria, sample size, inverse dispersion parameters, safety-effectiveness values, and the 

standard deviation of safety effectiveness. 

Scenario 1 − RESULTS 

Figure 4-5 shows the site selection bias for the Naïve, CG, EBMM, EBCG, and the 

Adjusted methods. Overall, this figure shows that the bias goes down as the dispersion 

parameter increases, except when   is almost equal to zero (at least for C < 3) (recall 

that if 0C  , 1 1iN  , etc.). This was expected given the characteristics of equation (2.31). 

The greater the entry criteria the more biased the estimate will be. Among the four 
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methods, the Naïve (Figure 4-5a) and the EBMM (Figure 4-5c) methods are the ones that 

are the most affected by the site-selection bias;   can be overestimated by as much as 

36%. Based on equation (2.31), unless the dispersion parameter is close to infinite 

(  ),   will be biased if an entry criteria is used (i.e., the bias never equals zero 

when 7  ). Readers may be surprised to see that the EBMM method does not reduce or 

eliminate the RTM when site-selection effects are included. This is caused by the fact 

that the Method of Moment (MM) estimator is calculated using the characteristics of the 

truncated sample rather than the full population or non-truncated sample. Appendix A 

describes in greater detail the conditions under which the EB method (both for EBMM 

and EBCG) can be biased.  

When a control group is used, the bias might be theoretically eliminated. For the CG 

method (Figure 4-5(b)), the control group needs to have the same characteristics (i.e., the 

same sample mean and variance (which can be used for obtaining the dispersion 

parameter) as the truncated sample used for the Naïve method (see right-hand side of 

Figure 2-3). As explained above, it may be difficult in practice to find datasets with the 

exact same characteristics as those for the treatment group. For the EBCG method (Figure 

4-5d), the control group needs to have the same characteristics as those of the full 

sample (or sample population) from which the truncated data were used for calculating 

the Naïve or EBMM estimates (see left-hand side of Figure 2-3). Again, the reader is 

referred to Appendix A for the conditions under which the EBCG can be biased.  

The application of the control group is further explored in Figure4-6. Figure4-6(a) is the 

same as Figure 4-5(b) and is used to compare the results with the other figure below. 

Figure4-6(b) shows that when the control group does not have the same characteristics – 

in this case the same sample mean – the site-selection bias is still present (although, it is 

still smaller than when using the Naïve before-after method). Furthermore, the bias is 

also in the opposite direction (underestimate  ). 
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Figure 4-5 Site selection bias for the Naïve, CG, EB and Adjusted methods 
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Figure4-6 Site selection bias for the CG method for the following characteristics: (a) 

same mean, (b) 0.75 × mean 
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Scenario 2−RESULTS  

As discussed in the first scenario, the site selection bias decreases when the dispersion 

parameter increases, but the rate at which the bias decreases becomes almost flat for 

values above 5 (Figure 4-6). With the Naïve method, the bias is never eliminated, 

compared to the CG and EBCG method. It should also be noted that when the dispersion 

parameter tends towards zero (which now almost becomes a Poisson model), the site 

selection bias still exists, as pointed out by Cook and Wei (2002). 

Scenario 3 – RESULTS  

Figure 4-7 shows that the sample size related to the treatment group does not affect the 

bias considerably.  When the sample size is over 30, the bias estimated for the Naïve 

method, using equation (3.5), and the one estimated with equation (2.31) are very close. 

Furthermore, there is a slight difference between the simulated bias and the estimated 

one when the dispersion parameter is less than 1 (most often observed in crash data). 

However, the maximum difference (sample size=10, C=0) is about 0.04 when the safety 

effectiveness is equal to 0.50. Hence, equation (2.31) which was derived by assuming 

that the sample size is close to infinity (∞)may be used for estimating site selection

biases even the sample size is small. 

 

 

 

 

 

 

 



57 

 

  

  

Figure 4-7 Site selection bias for the Naïve method when the sample size is equal to 

(a) 100, (b) 30, (c) 10 or (d) estimated using equation (2.31). 

 

 

 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

0.18 

0.2 

0 1 2 3 4 5 6 7 

B
ia

s 

Dispersion parameter 

(a) Sample Size=100 

C=0 

C=1 

C=2 

C=3 

C=4 

C=5 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

0.18 

0.2 

0 1 2 3 4 5 6 7 

B
ia

s 

Dispersion parameter 

(b) Sample Size=30 

C=0 

C=1 

C=2 

C=3 

C=4 

C=5 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

0.18 

0.2 

0 1 2 3 4 5 6 7 

B
ia

s 

Dispersion parameter 

(c) Sample Size=10 

C=0 

C=1 

C=2 

C=3 

C=4 

C=5 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

0.18 

0.2 

0 1 2 3 4 5 6 7 

b
ia

s 

Dispersion parameter 

(d) Estimated Bias 

C=0 

C=1 

C=2 

C=3 

C=4 

C=5 



58 

 

Scenario 4 – RESULTS  

Figure4-8 shows that the value of the index of effectiveness ( ) changes the value of the 

site-selection bias, because the bias increases when the countermeasure effectiveness 

becomes smaller (closer to 1). This figure also shows that the ratio between the site-

selection bias and the safety effectiveness seems fixed, which is consistent with the 

characteristics of equation (2.31). The results illustrate that the selection bias may 

influence the final decision made by the engineer or transportation safety specialist when 

different treatments are evaluated, but only a single or a limited number of treatments 

can be selected. For instance, when the effectiveness of two treatments is very close but 

when their entry criteria are very different (because different sites are used), the 

selection bias may overestimate the performance for one of the treatments over the 

others, which could result in the wrong selection for the treatment. Looking at the first 

line (the orange line with the dashed circled node) in Figure4-8 (a), and the last line 

(blue line with the dashed circled node) in Figure4-8 (b), the biased estimator in 

Figure4-8 (a) is equal to 0.6 (=0.90-0.30), which is lower than the estimator (0.65=0.70-

0.05) found in Figure4-8 (b).  This means that the treatment identified in Figure4-8 (a) 

would be selected over the treatment identified in Figure4-8 (b), since the former one 

looks like it reduces more crashes, although it in fact reduces fewer crashes than the one 

shown in Figure4-8 (b). 

Scenario 5 −RESULTS 

Figure 4-9 shows that the standard deviation associated with the countermeasure 

effectiveness does not change the value of the bias significantly. However, if the 

standard deviation is relatively large, such as when it is equal to 0.20, the simulated 

results become unreliable, because the mean value for the after period may be equal to or 

less than zero. When this occurred, the observations were removed from the analysis. 
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Figure4-8 Site selection bias for the Naïve method when the safety countermeasure 

is equal to (a) 0.90, (b) 0.70 and (c) 0.50 
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Figure 4-9 Site selection bias for the Naïve method when the standard deviation is 

equal to (a) 0.2, (b) 0.1, (c) 0.05 or (d) the bias is estimated using equation (2.31). 
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4.2.2  Difference  

Aside from the index of safety effectiveness ( ), difference ( ) is another possible 

indexthatcanbeusedforestimatinganintervention’seffectivenessforcountdata.This

section shows the simulation result for estimating difference using various before-after 

methods and possible influence factors. Simulation protocols are not repeated here since 

they are same as Section 4.2.1.2.

 

4.2.2.1  Scenarios for Possible Factors 

In the following subsections four possible factors of influence will be discussed by 

sensitive analysis: entry criteria, different before-after methods, inverse dispersion 

parameters, and difference value. We did not repeat scenarios for various sample sizes or 

the standard deviation of difference, since the previous section already shows that they 

are unrelated factors.  

As mentioned above, note that the estimators were estimated in the same way as for the 

subsequent scenarios. For these scenarios, the following variables were assumed to be 

fixed: a sample size equal to 100 and a difference equal to 1.5. Note that Scenarios 1 and 

2 were analyzed simultaneously. 

Scenario 1: Direct Comparison of the Methods 

The setting is similar to section 4.2.1. The reason why we repeat it here is because 

equation (2.34) shows that using CG method (with ideal control group data) might not 

be able to remove site-selection bias on difference, and it is different from the results for 

safety effectiveness. 

Scenario 2: Dispersion Parameter  

Same as Section 4.2.1, the reason that we repeat it again here is because equation (3.15) 

shows that a higher dispersion parameter causes higher site-selection bias on the 
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difference ( ), while a higher dispersion parameter causes lower site-selection bias on 

the index of safety effectiveness ( ). 

Scenario 3: Difference  

Based on equation (2.30), it is clear that larger values of the index of difference cause 

higher site-selection bias. Also, site-selection bias is zero when difference is zero, which 

indicates that the treatment did not work. The scenario assumed that difference for three 

values: -2.1 (high), -1.5 (medium), and -0.9 (low).  

4.2.2.2  Scenario Results 

This section describes the results based on the above simulation protocol. The results are 

presented for each scenario. As mention earlier, four possible factors of influence will be 

discussed by sensitive analysis: entry criteria, different before-after methods, inverse 

dispersion parameters, and difference value. 

Scenario 1 – RESULTS 

Figure 4-10 shows the site-selection bias for the Naïve, CG, EBMM, EBCG, and the 

Adjusted methods. Overall, this figure shows that the bias increases as the dispersion 

parameter increases. This was expected given the characteristics of equation (2.30). The 

greater the entry criteria the more biased the estimate will be. Among the five methods, 

the Naïve (Figure 4-10 (a)) and the EBMM (Figure 4-10 (c)) methods are the ones most 

affected by the site-selection bias;  can be overestimated by as much as 533%. As 

discussed by Cook and Wei (2002),   will be biased when an entry criterion is used. 

Readers may be surprised to see that the CG and EBCG remove just a few site-selection 

biases on the estimator of difference, while these two methods remove all site-selection 

bias on the estimator of safety effectiveness. This simulation result is consistent with 

equation (2.34), because the site-selection bias generated by using the CG method is 

equal to 1

1

( 1)

( 1)

 





 
 . The application of the control group is further explored in Figure 

4-11. Figure 4-11(a) is the same as Figure 4-10 (b), and is used to compare the results 
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with the other figure below. Figure 4-11(b) shows that when the control group has a 

lower mean (0.75 × mean), the site-selection bias is slightly smaller than the bias 

generated from the Naïve method. Conversely, using a control group that has a higher 

mean value (1.2 × mean) causes a site-selection bias that is even higher than from using 

the Naïve method (Figure 4-11(c)). In other words, the site-selection bias caused by 

using a dissimilar control group might be even higher than with using just the Naïve 

method.  

Also, in the same way as the Naïve method, the EBMM method does not reduce any site-

selection effects, because they used the characteristics of the truncated sample rather 

than the full population or non-truncated sample. Appendix B describes in greater detail 

the conditions under which the CG and EB methods (EBMM and EBCG) can be biased. 

Finally, using the Adjusted Method reduced site-selection bias by about 40%—even 

when the biased estimators of ,and    are used, or when they are not known with 

certainty. Compared to each other method, the Adjusted Method provides a more precise 

estimate than the Naïve method and performs better than the CG and ANCOVA methods 

when similar control group data are not available. It should be pointed out that the 

Adjusted Method will not completely eliminate the site-selection effects unless ,and    

are fully known. Obviously, these values are rarely known in practice. 
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Figure 4-10 Site selection bias for the Naïve, CG, EB and Adjusted methods 
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Figure 4-11 Site selection bias for the CG method for the following characteristics: 

(a) same mean, (b) 0.75 × mean, and (c) 1.2 × mean 
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Scenario2−RESULTS 

As discussed in the first scenario, the site-selection bias increases when the dispersion 

parameter increases, and the rate at which the bias increases becomes sharper for values 

above three (Figure 4-10). With the Naïve method, the bias is never eliminated even 

when dispersion parameter is close zero, as compared to the CG method.  

Scenario 3 – RESULTS  

Figure 4-12 shows that the value of the difference, ( ), changes the value of the bias, 

because the bias increases when the magnitude of difference increases (i.e. becomes 

more negative). This figure also shows that the ratio between the site-selection bias and 

the difference seems fixed, which is consistent with the characteristics of equation (3.15). 

The results illustrate that the selection bias may influence the final decision made by the 

engineer or transportation safety specialist when different treatments are evaluated; 

however, only a single or a limited number of treatments can be selected. For example, 

when the difference between two treatments is very close but when their entry criteria 

are very different (because different sites are used), the selection bias may overestimate 

the performance for one of the treatments over the others, which could result in the 

wrong selection for the treatment. Looking at the first line (the orange line with the 

dashed circled node) in Figure 4-12 (a), and at the last line (the blue line with the dashed 

circled node) in Figure 4-12 (e), the biased estimator in Figure 4-12 (a) is equal to -5.9 

(=-0.9-5), which is lower than the estimator (-5.1=-2.1-3) found in Figure 4-12 (e).  This 

means that the treatment identified in Figure 4-12 (a) would be selected over the 

treatment identified in Figure 4-12 (e), since the former one looks like it reduces more 

crashes, although it in fact reduces fewer crashes than the one shown in Figure 4-12 (e). 

However, using our adjusted method may solve this problem by removing partial 

selection bias. The biased estimator in Figure 4-12 (b) is equal to -4(=-0.9-3.1), which is 

close to the estimator (-4=-2.1-1.9) found in Figure 4-12 (f).  
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Figure 4-12 Site selection bias for the Naïve and Adjusted method when the 

difference is equal to (a) -0.9, (b) -1.5 and (c) -2.1 
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4.2.3  Dispersion Parameter 

As discussed above, the dispersion parameter can be influenced by the site-selection 

effects. This section is used to show how simulating site-selection bias affects the 

estimator of dispersion parameter. Based on equations (2.37) and (3.11), the possible 

related factors are entry criteria, dispersion parameter, and estimation methods. 

Simulation protocols are not repeated because they are same as Section 4.2.1.2.  

According to the simulation result, Figure 4-13 shows that higher entry criteria and a 

higher dispersion parameter may cause higher selection bias, which results in an 

underestimated dispersion parameter.  However, when the true dispersion parameter is 

unknown there are no significant differences between our adjusted estimators and the 

naïve estimator. In other words, our site-selection bias estimation, equation (3.11), 

cannot remove a major portion of selection bias because of using naive dispersion 

parameter instead of the true dispersion parameter. Our adjusted method only works 

when dispersion parameter is known. Further studies are necessary to solve this problem. 
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Figure 4-13 Site-selection bias for the (a) Naïve, (b) Adjusted method usingnaïveα

and(c)usingtrueα 
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4.3  Count Data: Simulation from Varying Crash Mean 

In the previous section (Section 4-2), the simulation results showed that equation (3.8) 

would correctly estimate site-selection bias when the crash rate was assumed to be a 

fixed value (i.e., when all the sites had the same mean) and the crash counts follow a 

Poisson-Gamma model. However, this assumption regarding a fixed mean might not be 

true in practice, especially when sites are far from each other or have different 

characteristics, such as in their number of lanes, intersection types, or traffic volumes. 

Hence, this section changes the equation such that the crash rate is not constant, and 

instead varies from one site to the next. Two different settings will be examined below: 

(1) crash rates that follow a log-normal distribution and, (2) crash rates that are based on 

the output of a regression model.  

4.3.1  Crash Rates Followed a Log-normal Distribution 

The above-mentioned scenario assumed that the number of crashes followed a Poisson 

Gamma-Lognormal distribution, and the setting was kept the same as that which was 

used in Lord (2006). The variance (σ) of the Lognormal distribution was varied as 

follows: 0.01 (small heterogeneity), 0.5 (median heterogeneity), and 1 (very large 

heterogeneity).  The other input variables, such as mean value and dispersion parameter, 

were kept the same as those described in Section 4.2.1.2. The simulation protocol was as 

follows:  

1 1 1

1

1

~ ( )

log (log(3), )

~ ( , )

ik i k

i

N Poisson u

t

normal

u Gamma



 

 



  
                                                                                          (4.1) 

Figure 4-14 shows the simulation results for different variances. 
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Figure 4-14 Site-selection bias for Naïve and Adjusted methods when the standard 

deviation of the crash mean is equal to 0.01, 0.5, and 1  
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Figures 4-14 clearly shows that larger variances in the mean distributions decrease site-

selection biases. This result was expected because larger variances among the crashes 

mean  increase in the between-subject variance (similar to the effects of larger dispersion 

parameter values), resulting in lower site-selection biases. However, it should be pointed 

out that the adjusted method, demonstrated in equation (3.8), still reduced the site-

selection bias by approximately 50%. However, the estimator might overestimate the 

site-selection bias when the entry criteria are low.     

4.3.2  Crash Data Based on a Regression Model 

In this section, the crash regression model proposed by Harwood et al.( 2007) was used 

to generate the crash dataset. The simulation protocol was as follows: 

 
0 1 2

1 2

~ ( )

( ) ( )

i i

i

Y Poisson u

u e F F
  


         (4.2) 

where 

0 : intersect is -10.63 

1 :majorroad’sparameteris1.07 

2 :minorroad’sparameteris0.23 

1F : traffic volume of major roads which follows N (9986, crm ) 

2F : traffic volume of minor roads which follows N (3474, crm  ) 
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In Harwood et al. (2007), the traffic volumes averaged from Minnesota and North 

Carolina were 21,033 and 7,317.5 vehicles per day for major and minor roads, 

respectively. In order to get the same overall mean crash rate (=3) as was achieved in the 

previous section, the researcher adjusted the mean of traffic volume to 9,986 and 3,474 

vehicles per day, both followed a normal distribution with a variance, 2

crm  .  The 

standard deviations (
crm ) of the flow were set as follows: 50 (small), 500 (median), and 

3000 (very large).  Figure 4-15 shows the simulation results for the different variances. 

Generally, a larger variance associated with the mean crash rate caused a lower site-

selection bias. In sum, site-selection biases were lower when the crash mean was not 

fixed but the reductions were not obvious until the variance associated with the mean 

became extremely large. This conclusion will have a significant impact for safety 

analyses, since the sample sites of the treatment or the control groups do not have the 

same means, but their variances of mean are not extremely large. In other words, 

because researchers usually exercise control over all the input variables in order to keep 

their samples homogeneous , their estimates may still be biased. 
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Figure 4-15 Site-selection bias for the adjusted method when the standard deviation 

of traffic volume in crash regression model is equal to (a) 50, (b) 500, and (c) 3000  
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4.4  Summary  

This section has successfully used simulation data to show how setting an entry criterion 

influences the estimation of traffic-safety countermeasures and dispersion parameter for 

continuous data ( ) and count data ( , ,   ), respectively. For continuous data, four 

scenarios were evaluated, directly comparing the methods, differences in the sample 

sizes, within-subject variances, and between-subject variances. For the count data, five 

scenarios were evaluated, directly comparing the methods, differences in the sample 

sizes, differences in the dispersion-parameter values, different safety-effectiveness 

values, and difference in the standard-deviation values associated with safety 

effectiveness. To test and evaluate how each of the biases would work in  practice, crash 

data with a varying mean were also simulated.    

Based on the simulated scenarios, the study results showed that among all methods 

evaluated, the Naïve and EBMM (only for count data) methods were most significantly 

affected by the selection bias. Using other advanced methods (such as the control group 

(CG), EBCG, or ANCOVA method) might eliminate the site-selection bias on difference 

(for continuous data) and safety effectiveness (for count data), as long as the 

characteristics of the control group are exactly the same as those of the treatment group. 

In practice, however, this might not be possible. Also, the simulation results illustrated 

the conditions required for causing higher site-selection biased for continuous data 

(higher entry criteria, higher within-subject variance, and smaller between-subject 

variance) and for count data (higher entry criteria, larger values of the index ( ), and 

smaller dispersion parameter values). The above findings are consistent with bias 

estimation equations (2.8) and (2.45). For count data, using the CG or EBCG method did 

not eliminate the site-selection bias with regard to estimates of difference, even with a 

perfect control group, and the estimates were very close to Naïve and EBMM estimates. 

Moreover, the higher dispersion parameter caused a higher site-selection bias on 

difference while it caused lower selection-bias on safety effectiveness, because 

increasing the value of dispersion parameter raised 1 1
ˆ( )    more than 2 2

ˆ( )   . 
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Finally, with regard to dispersion parameter, setting higher entry criteria and higher 

dispersion parameter could cause a higher site-selection bias, which would result in an 

underestimation  of dispersion parameter. The results have shown that the Adjusted 

method, as illustrated in equations (3.8) and (3.15), could partially eliminate site-

selection biases in estimations regarding safety effectiveness and difference, even when 

biased estimators of the mean and dispersion parameter of a truncated Negative 

Binomial distribution are used, or when the crash rate is not a fixed number. However, 

the Adjusted method would not work well to reduce the site-selection bias for  estimates 

of the dispersion parameters. Thus, further study is necessary to solve this problem. To 

verify the simulation results, the following sections document the use of observed data to 

examine the site-selection biases for continuous data and count data, respectively. 
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5. APPLICATION USING OBSERVED DATA 

 

In order to better illustrate the simulation results, the bias-estimation equations (3.4), 

(3.8), (3.11), and (3.16) were applied to two different observed datasets: continuous data 

(Section 5.1) and count data (Section 5.2). For continuous data, equation (3.4) was used 

to assess the effects of increasing the speed limit on multilane highways in Florida, since 

normal distribution is one of most common distributions used to characterize speed data. 

The dataset was first collected and explored by Muchuruza and Mussa (2004), whose 

findings did not completely eliminate the site-selection bias. The same dataset 

subsequently was analyzed by Park and Lord (2010) to examine the effects of the RTM 

in the before-after evaluation of the continuous data. For count data, two datasets were 

used, both of which followed a negative binomial distribution. The first dataset was 

collected in College Station, Texas. A dummy variable was used to simulate a 

hypothetical treatment that was implemented using the crash data collected in that city. 

The second dataset was assembled to evaluate the effects of cameras used to record red 

light violations on the overall number of crashes. The above datasets were used to 

evaluate the accuracy of the Adjusted method for estimating site-selection biases for 

various types of data that have different mean and sample-size values.  

5.1  Continuous Data Collected in Florida 

This section describes the application of the bias-estimating equations to observed speed 

data collected in Florida. Muchuruza and Mussa (2004) examined the impacts on 

observed driving speeds when the speed limit was increased from 65 mph to 70 mph on 

four- and six-lane highways. Their analysis was carried out at 18 different study sites, 

including 10 four-lane and 8 six-lane highways. Table 5-1 summarizes the important 

characteristics of this data. Using the Naïve before-after method, these researchers 

showed that the average speed increased by 5 mph. To examine the effects of the site-

selection bias, equation (3.4) was used to obtain an adjusted difference. The first entry 

criterion was assumed to be 62, because the suggested initial assumption for the entry 
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criteria should be equal to the smallest observed data (i.e., C=min Y ij ) (Johnson et al., 

1970). Then, minimum entry criteria that were equal to 63, 64, 66, 67, and 68 were 

employed. Four-lane and six-lane highways were initially analyzed separately and were 

then combined to increase the sample size. By grouping the data, the adjusted estimators 

for six-lane highways could be compared with the results described in Park and Lord 

(2010). 

 

Table 5-1 Before-After Speed Data (Muchuruza and Mussa, 2004) 

  
Highwa

y 

Before (1996) After (2002) Before After 

difference 
Location, direction 

speed 

(mph) 
speed (mph) 

Four Lane Highway 

I-75 
At mile marker 89, WB,  Site 351,WB 66 74 8 

At mile marker 89, EB,  Site 351, EB 68 78 10 

I-10 

Overpass E. of SR 85,WB, Site 9901, WB 67 74 7 

Overpass E. of SR 85, EB,  Site 9901, EB 69 74 5 

C-280 overpass, WB,  Site 9901, WB 68 74 6 

C-280 overpass, EB,  Site 9901, EB 67 74 7 

Between SR257 & US221, WB,  Site 9928, WB 67 70 3 

Between SR257 & US221, EB,  Site 9928, EB 69 71 2 

East end of Aucilla River, WB,  Site 9928, WB 67 70 3 

East end of Aucilla River, EB,  Site 9928, EB 69 71 2 

Mean 67.7 73 5.3 

Six Lane Highway 

I-75 

Between I-10 & CR136, NB,  Site 320, NB 66 73 7 

Between I-10 & CR136, SB,  Site 320, SB 66 74 8 

Between CR234 & SR21, NB,  Site 9904, NB 68 71 3 

Between CR234 & SR21, SB,  Site 9904, SB 67 71 4 

I-95 

Between CR210 and I-295, NB,  Site 9905, NB 67 72 5 

Midpoint CR210 and I-295, SB,  Site 9905, SB 63 72 9 

Near Flagler CL, NB,  Site 9905, NB 69 72 3 

Near Flagler CL, SB,  Site 9905, SB 64 72 8 

mean 66.25 72.125 5.88 
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Figure 5-1(a) shows the results from the Naïve and Adjusted estimators for both four-

lane and six-lane highways. This figure clearly illustrates that the estimators for four-

lane highways have a higher selection bias than those for six-lane highways. For 

example, when the entry criterion is equal to 62, the Adjusted estimator (δ=5.93,

removing site-selection bias) for the six-lane group is just slightly higher than the Naïve 

estimator (δ=5.88). However, when the entry criterion is equal to 65, the Adjusted 

estimator (δ=5.57) from the four-lane group is significantly higher than the Naïve 

estimator(δ=5.30).Foran entry criterion equal to 66, the site-selection bias for the four-

laneroadgroupis0.38(δ=5.38-5.0) while the site-selection bias for the six-lane group is 

0.05. Although the absolute difference appears to be small, the relative difference in 

percentages is actually large enough (7.6%) that the bias needs to be accounted for; Lord 

(2006) includes additional details about the impact of a biased estimate even when the 

absolute difference is small. Furthermore, the true site-selection bias could be as much as 

15.2% (=7.6% 2) or more, since the adjusted method only captures 50% of the site-

selection bias when biased estimators of mean and variance are used. 

When the entire sample is analyzed, the difference between the Naïve estimators and 

adjusted estimators becomes more obvious (Figure 5-1 (b)). The Adjusted method 

increases the Naïve estimator by partially removing the selection bias, while the average 

adjusted estimator from the Park and Lord (2010) study remains the same (note that in 

Park and Lord’s research the effects linked to the RTM are removed from each site's 

estimator, and not from the average estimator). Moreover, Figure 5-1 shows that higher 

entry criteria result in cause higher selection biases, a condition which is likely to 

exacerbate the tendency to underestimate the differences even more. Equation (3.4) 

partially eliminates selection bias but it cannot remove it all (for the reason discussed 

above). It should be noted that differences are underestimated when the true difference is 

positive ( , 0naive adjusted    ). On the other hand, differences are overestimated when 

the true difference is negative ( , 0naive adjusted    ). Generally, Figure 5-1 (a) and (b) 
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support the theoretical points and simulation results described above: higher criteria 

cause larger (more negative) biases, and the adjusted estimators are larger than the Naïve 

estimators.  

 

  

 (a)  Separate Data 

 

 (b) Combined Data 

Figure 5-1 Estimated differences for the Naïve and Adjusted methods 
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5.2  Observed Count Data  

Due to the hotspot identification rule, or warrants for treatments from manuals such as 

the MUTCD (Department of Transportation et al., 2003), it is not surprising that most 

crash datasets from current before/after safety studies are truncated by high entry criteria. 

However, using datasets that only contain a few sample sites make it difficult for a 

researcher to examine whether our bias-adjusted method works or not. This difficulty 

stems from the fact that the real population mean, dispersion parameter, and site-

selection bias are usually unknown. In other words, we need a better dataset that 

contains both the before and after data from  the whole population (or as close to it as 

possible); we can then filter this data and calculate its bias via different entry criteria.  

5.2.1 First Dataset  

To complete this task, the researcher assumed that there was a dummy treatment applied 

to 917 sites (which had at least one recorded crash in 2008) in College Station, Texas, on 

December 31, 2008. This made 2008 the before period and 2009 the after period. 

Because there was no such treatment in the real world, its safety effectiveness should be 

close to 1. The actual safety effectiveness of this dummy treatment (based on the entirety 

of the crash data available, without selection) was 0.95. We then filtered the crash data 

by different entry criteria ranging from 1 to 5. Table5-2 shows the Naïve and Adjusted 

estimators of safety effectiveness, difference, and dispersion parameters in different 

entry criteria. It was very clear that higher entry criteria results in an overestimation of a 

treatment’s safetyeffectiveness,especiallywhen using the Naïve method.  Also, using 

the Adjusted method could reduce partial site-selection bias. This also results in the 

estimators being closer to the true value (0.95).  In Figure 5-2(a), the estimators of safety 

effectiveness (indicated by a green line) are closer to the true value (indicated by a blue 

line) than when using the Naive method (indicated by a red line), except when the entry 

criteria are very small. As for other parameters (e.g., the difference and dispersion 

parameters), the results were analogous to those of safety effectiveness. Setting higher 

entry criteria causes a higher level of site-selection bias. By removing partial site-
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selection bias, the Adjusted estimators are usually closer to the true value than the Naïve 

estimators (Figure 5-2 (b) and Figure 5-2 (c)). Also, it should be noted that the 

distribution of this dataset followed a negative binomial distribution. For the crash data 

in the before period and after period, the inverse dispersion parameters are 1.694 

(σ=0.113)and0.587(σ=0.037),andthemean parameters are 2.665(σ=0.086)and2.530

(σ=0.121) respectively. If the dataset does not follow the assumption distribution (a 

negative binomial distribution), equations (3.8), (3.11), and (3.16) might not be able to 

adjust site-selection biases.   

 

Table 5-2 Crash Data for Dummy Treatment in College Station, TX 

 

Safety Effectiveness Difference Dispersion Parameter 

entry criteria θtrue θnaïve θadjusted δtrue δnaïve δadjusted αtrue αnaïve αadjusted 

>1 0.95 0.96 1.11 -0.13 -0.06 0.16 3.11 2.40 3.30 

>2 0.95 0.86 0.94 -0.13 -0.76 -0.12 3.11 1.34 1.85 

>3 0.95 0.82 0.89 -0.13 -1.26 -0.42 3.11 1.05 1.59 

>4 0.95 0.81 0.85 -0.13 -1.65 -0.62 3.11 0.90 0.83 

>5 0.95 0.80 0.85 -0.13 -1.68 -0.65 3.11 0.78 1.18 
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Figure 5-2 Estimated safety effectiveness, difference, and dispersion parameter for 

the naïve and adjusted methods 
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5.2.2  Second Dataset  

The red-light running-camera crash data were obtained from a Texas Transportation 

Institute project whose goal is to examine the impact of the installation of such cameras 

on crash frequency. The original dataset includes 319 intersections in Texas; this 

dissertation only included 95 intersections, all of which had the same before and after 

periods (two years) for calculation convenience purposes. This dataset is ideal as an 

example for examining the Adjusted method, because it offered a large sample size.  

Additionally, some sites exhibited particularly low crash frequencies (even zero). In 

other words, its estimators of mean values, dispersion parameters, and indexes of safety 

effectiveness could be treated as true values because there were no entry criteria for this 

dataset (the crash frequency of some sites in the before period was zero, with the 

assumption that the dispersion parameter represents the true value). Also, the distribution 

of the various samples followed our assumption (in that it was a negative binomial). This 

study assumed that the true values of , ,  
 
were 0.72, -1.93, and 0.77, which was 

determined by using equations (3.5), (3.9), and (3.10), respectively. The results obtained 

using the Naïve before-after method showed that overall the crash frequency of all the 

intersections studied decreased by 6.8%. To examine the effects of the site-selection bias, 

equation (3.8) was used to obtain the adjusted safety effectiveness. The first entry 

criterion was assumed to be 1, because the suggested initial assumption for the entry 

criteria should be considered equal to the smallest set of observed data (i.e., C=min Nij ) 

(Johnson et al., 1970). Then, the minimum entry criteria equal to 1, 2, 3, etc., up to 20 

were subsequently employed. The details of the site-selection bias are listed in Table5-3. 

Figure 5-3(a) shows the difference between the 
adjusted  , naive , and the true . This figure 

clearly illustrates that the Adjusted estimators yielded a lower selection bias than the 

Naïve estimators. Moreover, Figure 5-3(a) shows that higher entry criteria tend to cause 

higher selection biases, which lead to an overestimation of safety effectiveness. Equation 

(3.8) partially eliminates selection bias, but does not remove all selection bias (as 

discussed above). Generally, Figure 5-3(a) supports the theoretical points and simulation 
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results described above; higher criteria cause larger (more negative) biases, and the 

Adjusted estimators are closer to the true value than that produced by the Naïve 

estimator. In addition, Table5-3 also shows that higher entry criteria may lead to 

underestimations of the dispersion parameter and overestimations of the difference. This 

result is consistent with equations (3.8), (3.11) and (3.15). 

 

Table 5-3 Estimators of Parameters for Observed Crash Data in Different Entry 

Criteria 

Entry Criteria 1 5 10 15 20 

θTRUE 0.72 0.72 0.72 0.72 0.72 

θNaïve 0.72 0.65 0.63 0.62 0.58 

θAdjusted 0.73 0.67 0.65 0.65 0.59 

δTRUE -1.93 -1.93 -1.93 -1.93 -1.93 

δNaïve -1.93 -3.68 -5.94 -7.75 -13.50 

δAdjusted -1.66 -2.50 -4.43 -5.27 -9.43 

αTrue 0.77 0.77 0.77 0.77 0.77 

αNaïve 0.77 0.48 0.22 0.21 0.37 

αAdjusted 0.80 0.61 0.29 0.30 0.70 
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Figure 5-3 Safety effectiveness, difference, and dispersion parameter for the true 

value, naïve, and adjusted method 
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5.3  Summary  

In this section, the researcher has applied site-section bias estimators to actual 

continuous data (speed data) and observed count data (crash count data). The results 

successfully support the researcher’sprevious findings based on simulation data: setting 

higher entry criteria results in higher site-selection bias. Also, the Adjusted estimators 

were closer to the true value than the Naïve estimators, even for the dispersion parameter. 

Park and Lord's (2010) study results were used to compare the differences between the 

adjusted estimators by removing RTM and removing site-selection biases. The Adjusted 

method can remove all site-selection biases when the dispersion parameter and mean are 

known. The next section provides a summary and discussion of the research 

accomplished in this study, and discusses avenues for further work. 
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6. SUMMARY AND CONCLUSIONS 

 

The before-after study is the most popular method used by traffic engineers and 

transportation safety analysts for evaluating the effects of an intervention. However, 

although this kind of study may offer superior performance than cross-sectional study, it 

can still be plagued by important methodological limitations, which could significantly 

alter the study outcome. They include the regression-to-the-mean (RTM) and site-

selection effects. So far, most of the research on these biases has been directed at the 

RTM. Hence, the primary objective of this study was to describe how site-selection 

effects influence the evaluation of treatments. More specifically, the goal was to quantify 

site-selection bias as a function of different entry criteria and other factors associated 

with traffic safety data. Then, an Adjusted method was developed to reduce the selection 

bias when an entry criterion is used in before-after studies without relying on the use of a 

control group. Moreover, this research also includes the site-selection effects on 

continuous data (e.g. speed, reaction times, etc.), since the majority of other studies 

focus on discrete counts. The advantage of using the Adjusted method is that it can 

adjust the naïve estimator by partially eliminating site-selection bias, even when biased 

estimators of the mean and dispersion parameter are used. The study objective was 

accomplished using simulated data (supported by theoretical derivations documented in 

Appendix A and B) and observed data. Truncated Normal distributions and Truncated 

Negative Binomial distributions were used to generate the simulated continuous data and 

count data. 

This section highlights the main findings from this research and makes some 

recommendations for applying the Adjusted method in highway safety research. This 

dissertation ends with potential topics in which the research can be extended. 
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6.1 Main Findings  

This study has examined how setting an entry criterion influences the estimation of 

interventions for continuous and count data. The proposed method documented in this 

research provides a way to adjust the Naïve estimator by using the sample data and 

without relying on the data collected for the control group, since finding enough 

appropriate sites for the control group is a common inhibitor to accurate traffic-safety 

analyses.  

In this exercise, the proposed method, a.k.a. the Adjusted method, was compared to 

commonly used methods in before-after studies. For continuous data, the study results 

showed that among all methods evaluated (Naïve, CG, ANCOVA, and Adjusted), the 

Naïve is the most significantly affected by the selection bias. Using a control group (CG) 

or the ANCOVA method can eliminate site-selection bias, as long as the characteristics 

of the control group are exactly the same as those for the treatment group. However, 

control group data that have the same characteristics based on a truncated distribution or 

sample may not be available in practice. Moreover, site-selection biases generated by 

using a dissimilar control group might even be higher than wihen using the Naïve 

method. The Adjusted method, as illustrated in equation (3.4), can partially eliminate 

site-selection bias even when biased estimators of the mean, variance, and correlation 

coefficient of a truncated normal distribution are used or are not known with certainty. 

Based on the simulated scenarios, the study results showed that high entry criteria, high 

within-subject variance, and small between-subject variance all cause a high site-

selection bias. The analysis performed using observed speed data collected in Florida 

supported the simulation results.  

For count data, this study examined estimates of site-selection biases within three 

parameters: safety effectiveness, difference, and dispersion parameter. For safety 

effectiveness ( ), the most popular index of countermeasure effectiveness, we obtained 

results similar to those obtained from the continuous data. Among all the methods 

evaluated (Naïve, CG, EBMM, and EBCG), the Naïve and EBMM methods are most 
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significantly affected by  selection bias. Using the CG or EBCG methods could eliminate 

site-selection biases if the control group has the exact same mean and dispersion 

parameter as those for the treatment group or population. In sum, the study revealed that 

even when the RTM is accounted for (i.e., when using the EBMM method), the index for 

the safety effectiveness can still be biased when an entry criterion is used, whether it is 

explicitly defined or not. A theoretical derivation is presented in Appendix A to support 

the results documented in this study. Based on the simulated scenarios (and also 

supported theoretically), this study’s results showed that higher entry criteria, larger 

values of the safety index ( ), and smaller dispersion parameter values ( ) will all 

cause a higher site- selection-biased estimate.  

However, site-selection bias on safety effectiveness ( ) and difference (  ) are different 

in two ways. First, using the CG or EBCG method cannot eliminate site-selection bias on 

the difference ( ) even with a perfect control group, and their estimators of difference 

are very close to the Naïve and EBMM estimators. A theoretical derivation has been 

provided to support the above findings. Secondly, according to the simulation result, 

higher entry criteria, higher dispersion parameters, and higher difference values cause 

higher site-selection biases on estimator of difference.  

Finally, regarding the dispersion parameter, setting higher entry criteria and a higher 

dispersion parameter might cause higher levels of site-selection bias, which will result in 

the underestimations of dispersion parameters.  

As in the discussion above, the Adjusted method, as illustrated in equations (3.8) and 

(3.15), can partially eliminate site-selection bias in the estimates of safety effectiveness 

and difference, even when biased estimators of the mean and dispersion parameter of a 

truncated Negative Binomial distribution are used or when the crash rate is not a fixed 

number. However, the Adjusted method does not work well to reduce the site-selection 

biases in the estimates of dispersion parameters, further study is necessary to solve this 

problem. The analysis performed using observed crash data collected in Texas supports 

the simulation results described here.  
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In sum, this study developed a new adjusted method by combining the study results 

obtained from Cook and Wei (2002)and Geyer (2007). Specific problems, such as 

different calculation of the CG method and dissimilar control groups, were discussed 

before we applied these results from medical studies to traffic safety studies. Moreover, 

two appendices are included here to describe the conditions under which the EB and CG 

estimators of the index of safety effectiveness ( ) and difference ( ) are asymptotically 

unbiased and biased, respectively. Also, our results provide evidence to challenge the 

common assumption that using the EB or the CG method can remove the selection bias. 

Finally, we hope these study results will help engineers and transportation safety 

specialists evaluate different treatment countermeasures more efficiently. 

6.2 Recommendations and Future Research Areas 

Given the nature of the work documented in this dissertation, there are many avenues for 

further work. First, since this research used a biased estimator for the mean, variance, 

correlation coefficient, and dispersion parameter to adjust the Naïve estimator, it may be 

beneficial to apply more advanced techniques to estimate the parameters of a truncated 

Normal distribution and a truncated Negative Binomial model in an effort to produce 

more precise estimates. Second, more work needs to be done involving multiple entry 

criteria in before-after studies, especially when such studies come from different types of 

data. For instance, a traffic countermeasure might be based on two warrants: a site 

having more than five crashes in the past year, and where the observed 85% driving 

speed is over 60 MPH. Third, guidelines should be developed to define what the entry 

criterion should be when it is not known (e.g., a minimum value, a speed limit, etc.). 

Finally, a simpler approach for displaying the site-selection biases should be found. 

Tables based on the sample mean, entry criteria, and level of variance could perhaps be 

provided in design manuals or similar types of documents. For example, Table 6-1 

shows the possible site-selection effects when study sites are chosen according to the top 

5% of crash rates. The true values of safety effectiveness and difference are assumed to 

be 0.5 and -1.5, and the crash rate in the before and after periods is assumed to be 3 and 
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1.5, respectively. Traffic engineers can use Table 6-1 to estimate the possible site-

selection biases according to the entry criteria and dispersion parameter of their own data.  

 

Table 6-1 Possible Site-Selection Biases in Different Entry Criteria 

Entry Criteria DispersionParameterα 1   2   biased biased  

6 0.3 8.39 2.78 0.33 -5.61 

7 0.5 9.56 3.86 0.36 -6.31 

8 0.9 11.77 4.7 0.40 -7.07 

9 1.2 13.44 5.58 0.42 -7.85 

10 1.6 15.3 6.59 0.43 -8.09 

 

In addition, since site-selection bias is a relatively new topic for count data, some issues 

should be examined in future safety studies. First, one should examine site-selection 

effects close to the boundary when 0   as a function of different mean values for the 

before period. Second, statistical tests or methodologies should be developed to ensure 

that the data collected as the control group for the EBCG method are the same as the full 

data from which the truncated distribution is used (which may or may not be possible to 

verify). Although the EBCG method has been (and still is) frequently used among 

transportation safety analysts, very few ever compare the characteristics of the treatment 

and control groups. Researchers automatically assume that the NB regression models 

estimated from the control group have the same characteristics as the sites selected for 

potential treatment. Also, future studies might apply our Adjusted method to other 

surrogate measures, such as aggressive lane merging, sharp barking, speeding, and red-

light running. Recently these measurements have also been used to estimate the 

countermeasure effectiveness. 
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APPENDIX A 

 

This appendix describes the conditions under which the empirical Bayes (EB) estimator 

oftheindexofsafetyeffectiveness(θ)isasymptoticallyunbiasedandbiased.Thebiasis

defined as the difference between 2

1





 and the expected value of  . The following 

paragraphs show the EB estimators for three different cases: (1) Without entry criteria; 

(2)Withentrycriteriaandwith“perfect”
2
 control group data; and, (3) With entry criteria 

butwithout“perfect”
2
 control group data. The first one is the most common estimator, 

and previous studies have already shown that it is unbiased (Robbins, 1956; Hauer, 

1997). For the second estimator, it is also unbiased, and the results are consistent with 

the Davis (2000) study. For the third estimator, (EBMM), which is the one used in this 

research, we demonstrate when the estimator can be as biased in the same way as when 

using the Naïve method. To simplify the comparison, all three estimators are shown 

below. 

 

It should be noted that the moment estimators, maximum likelihood estimators, or other 

estimators based on conditional data consistently estimate 
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. All notations in this appendix are the same as in the main text, 

and  1 1 1i iE N N C  
 
is for notational convenience. 

                                                
2: The perfect reference or control group has the exact same mean and dispersion parameter (or the 

variance) as those of the treatment group. This situation rarely happens occurs in the real world, because 

the true mean of the control group is most likely unknown.    
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1. Experiments without effective entry criteria 

  

For this case, the crash frequency of site i  in the before period (Ni1) can be any non-

negativeintegers(e.g.0,1,2,…).Whentherearenoentrycriteria,Cisequalto-1 

or less.  

The EB estimator for Case 1 is given as follows:  

 

 

 

2

1

2 1
2 1

1

1( ) 1
1 1

1 11

2 1

1

1
1 1

1 1 1

2 1

1

ˆ ( )
1 1

1 1

1

1 1

1 1

1
Cook and Wei (2002) show that | converges in

m

i i

i
EB

m
EB

i

i

m

i i

i

m

i

i

i i

N N
m

and are unknown

N
m

N N
m

N
m

N N
m



 


 



 














  

    
            


  

           











1

1
2 1 1

11

1 1

1
2

1

1 1
probability to and converges in probability to .

1

ˆˆLikewise, converges in probability to , converges in probability to

Therefore, converges in probability to

1

1

m

i

m

i

i

EB

N
N

m

N





 













 
    

  

 

 
 

  





1
1 1

1 1

2

1

1

1 1



 





   
     

     


 


           

(A-1)

 



100 

 

Because there are no entry criteria, the expected value of the crash count in the 

before period is equal to the long-term mean crash rate for all the sites in the sample 

population in the before period. ( 111)(  iNE ) Also, the expected value of the 

crash count in the after period is equal to 1
2

1

1

1





 
  

  
. Hence, the EB estimator 

without entry criteria is unbiased. Please see the appendix of the paper written by 

Cook and Wei (2002) for additional details about this proof.  

2. Experiments with entry criteria and a perfect control group 

 

For Case 2, the number of crashes can be any integers larger than 0, such that 

Ni1>C=0 (Ni1 =1,2,3,…).Theperfectreferencegroupdataareusedto estimate the 

dispersion parameter and the mean, which have the same values as those for the 

treatment group: 1,  .  

The EB estimator for Case 2 is given as follows:  
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The long-term mean and dispersion parameter values are estimated using a control 

group or regression model based on the control group. As in the first case, the EB 

estimator is unbiased. However, in practice, the characteristics of the control group 

may not be the same as the one used for the treatment group.  
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3. Experiments with entry criteria and without perfect control group data. 

 

For this case, the number of crashes can be any integers larger than 0, such that 

Ni1>C=0 (Ni1 = 1, 2, 3, …). The reference group data are used to estimate the 

dispersion parameter and the mean, which have different values than those from the 

treatment group. 

The EB estimator for Case 3, based on the method of moment, is given as follows:  
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           (A-3)
 

Equation (A-3) shows that the EB estimator is biased, until there are no entry 

criteria(C=-1 and 11  ) or  . Also, the EB estimator for the index of 

effectiveness (θ) is actually equal to the Naïve before-after estimator, as shown 

below:  
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In sum, using a biased estimate of 1  is the main reason why the EBmm estimator of 

  is also biased. 
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APPENDIX B 

This appendix describes the conditions under which the control group and empirical 

Bayes (EB) estimators of the index of safety effectiveness (  ) are asymptotically 

unbiased and biased. The bias is defined as the difference between 2 1    and the 

expected value of  . The following paragraphs show the CG and EB estimators for 

three different cases: (1) Without entry criteria; (2) With entry criteria and with 

“perfect”
2
 controlgroupdata;and,(3)Withentrycriteriabutwithout“perfect”

3
 control 

group data. The first one is the most common estimator, and previous studies have 

already shown that it is unbiased (Robbins, 1956; Hauer, 1997). For the second estimator, 

it is biased. For the third estimator (CGun, EBMM), which is the one used in this research, 

we demonstrate when the estimator can be as biased as for the naïve method. To 

simplify the comparison, all three estimators are shown below. 

It should be noted that the moment estimators, maximum likelihood estimators, or other 

estimators based on conditional data consistently estimate 

2 1 1 1
ˆ( ) ( ) ( )i i i iE E N N C E N N C      rather than 

2 2 2 1
ˆ ( ) ( )i iE N E N     . All 

notations in this appendix are same as those in the main text, and  1 1 1i iE N N C  

for notational convenience. 

1. Experiments without effective entry criteria but with a perfect control group 

  

For this case, the crash frequency of site i  in the before period (Ni1) can be any non-

negativeintegers(e.g.0,1,2,…).Whentherearenoentrycriteria,Cisequalto-1 

or less.  

The CG and EB estimators for Case 1 are given as follows:  

                                                
2: The perfect reference or control group has the exact same mean and dispersion parameter (or the 

variance) as those of the treatment group. This situation rarely happens in the real world, because the true 

mean of the control group is most likely unknown.    
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Because there are no entry criteria, the expected value of the crash count in the 

before period is equal to the long-term crash mean for all the sites in the sample 

population in the before period. ( 111)(  iNE ) Also, the expected value of the 

crash count in the after period is equal to 1
2

1

1

1





 
  

  
. Hence, the CG and EB 

estimators without entry criteria are unbiased. Please see the appendix of the paper 

written by Cook and Wei (2002) for additional details about this proof.  

 

2. Experiments with entry criteria and a perfect control group 

 

For Case 2, the number of crashes can be any integers larger than 0, such that 

Ni1>C=0 (Ni1 =1,2,3,…).Theperfectreferencegroupdataareusedto estimate the 

dispersion parameter and the mean, which have the same values as those for the 

treatment group: 1,  .  

 

The CG and EB estimators for Case 2 are given as follows:  
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The long-term mean and dispersion-parameter values are estimated using a control 

group or regression model based on the control group. Unlike the first case, the CG 

and EB estimators of difference are biased. Also, it should be noted that the CG and 

EB estimators of safety effectiveness are unbiased.  

 

3. Experiments with entry criteria and without perfect control group data 

 

For this case, the number of crashes can be any integers larger than 0, such that 

Ni1>C=0 (Ni1 = 1, 2, 3, …). The reference group data are used to estimate the 

dispersion parameter and the mean, which have the different values than those from 

the treatment group. 

 

The CG and EB estimators for Case 3, based on the method of moment, are given as 

follows:  
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Equation (B-3) shows that the CG and EB estimators are biased until there are no 

entry criteria (C=-1 and 11  ). It should be noted that the selection bias of 

difference still exists when   is close to . Also, the EB estimator for the index of 
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effectiveness (  ) is actually equal to the Naïve before-after estimator, as shown 

below:  
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In sum, using a biased estimate of 1  is the main reason why the EBmm estimator of 

  is also biased. 
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