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ABSTRACT 

 

 

Evaluation of Steam Turbines Triangular Tooth on Stator Labyrinth Seal . (May 2012) 

Hossain Ahmed Tanvir, B.S., Bangladesh University of Engineering and Technology 

Chair of Advisory Committee: Dr. Gerald L. Morrison 

 

Labyrinth seals are often utilized in locations where contact seals cannot be utilized due 

to the large displacements of the rotating shaft. The performance evaluation of a 

labyrinth seal is very important to make sure that optimum performance of 

turbomachinery is attained. Performance parameters such as carryover coefficient, 

discharge coefficient were evaluated for a see through triangular tooth on stator labyrinth 

seal. This computational study investigates how flow conditions and seal parameter 

variations for see through tooth on stator triangular cavity labyrinth seals affect the value 

of the carryover coefficient and discharge coefficient. A Finite volume CFD commercial 

code was used to accomplish the above study. The influence of Reynolds number, 

rotational speed, seal radial clearance, pitch, tooth angle, tooth width are considered 

using the finite volume method of computational fluid dynamics. It was found that 

Reynolds number, high shaft speed and clearance have a significant effect on the 

carryover coefficient and the discharge coefficient. Clearance is the major influential 

parameter to be considered among all seal geometric parameters to optimize an ideal 

seal.  
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NOMENCLATURE 

 

A -   Clearance area , πDc 

D -   Shaft diameter, mm 

Wsh -   Shaft rotational speed, rad/sec 

c -   Clearance, mm 

h -   Tooth height, mm 

L -   Axial length of the seal, mm 

ሶ݉  -   Leakage mass flow rate , kg/s 

Pin -   Seal inlet pressure , Pa 

Pout -    Seal outlet pressure, Pa 

s -   Tooth pitch, mm 

B -   Tooth angle 

w -   Tooth width, mm 

β -   Divergence angle 

γ -   Kinetic energy carryover coefficient 

χ -   Fraction of kinetic energy carried over 

φ-   Expansion coefficient 

Re -   Reynolds number based on clearance, 
௠

గ஽ఓ
ሶ  

μ -   Dynamic viscosity, Pa/s 

CD -   Discharge coefficient 

pr -   Pressure ratio, Pout/Pin 
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T1 -   First tooth 

T2 -   Second tooth 

T3 -   Third tooth 

T4 -   Fourth tooth 

ρ    Fluid density at upstream 
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1 

 

1 INTRODUCTION 

 

1.1.  General Background 

 

Labyrinth seals are widely used in turbomachinery to block high pressure gas from 

flowing into a region of low pressure. Labyrinth seals are contactless type. Main 

objective of labyrinth seals are to prevent leakage of working fluid between rotating and 

stationary part of turbomachinery devices. A labyrinth seal consists of several cavities 

connected with small radial clearances. Fluid flow passes through small clearances of the 

seal and experiences large total pressure drop from upstream to downstream. Flow 

accelerates under each tooth due to the contraction then the kinetic energy is dissipated 

in the cavity.  

Correct prediction of leakage rate and control is very important for the economic 

operation of turbomachinery. This leakage rate is highly dependent on a wide variety of 

parameters such as geometry of the teeth, number of cavities, absolute pressure 

differences across the seal, temperature and type of fluid flow. To increase the flow 

resistance optimization of the above parameters is very important to obtain a good seal 

design.Stator and rotor are the main mounting location of labyrinth seal in a 

turbomachinery device.  

 

 

 

This thesis follows the style of Journal of Applied Mechanics. 
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On the basis of tooth location they are called tooth on stator or tooth on rotor 

labyrinth seals. Labyrinth seals can be classified into three main categories according to 

the arrangement of the teeth. See through labyrinth seals are simple in arrangement, the 

stepped labyrinth seal creates maze like channel, and finally the staggered labyrinth seal 

orientation maintain same seal clearances by introducing alternate teeth arrangement in 

rotor and stator. Schematic diagram of see through, stepped, staggered labyrinth seals are 

shown in Fig. 1.1, Fig. 1.2 and Fig. 1.3. 

 

 

 

 

Fig. 1.1.  See through labyrinth seal [1]. 
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Fig. 1.2.  Stepped labyrinth seal [1]. 
 

 

 

Fig. 1.3.  Staggered labyrinth seal configuration [1]. 
 

See through isosceles triangle and right angle tooth shapes labyrinth seals are 

commonly used in steam turbines. A generic schematic of the above two see through 

triangular shape tooth on stator labyrinth seal is given in Fig. 1.4 and Fig. 1.5.  
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1.3.  Research Methodology 

 

This study is completely based on computational results. The Step by step approach 

including geometry creation, mesh generation, definition of boundary conditions, 

execution of simulation is presented to complete one geometrical configuration  for 

incompressible and compressible flows. In the following context, a brief chronological 

order of research methodology are given to understand how evaluation are done for one 

seal geometry using CFD technique. 

A. Gambit software version 2.4.6 is used to generate the seal domain grid. 

B. CFD commercial software Fluent version 12.0.16 is used perform the 

simulation at different mass flow rate for a constant exit pressure of 1 atm. 

C. Tecplot 360 version 2009 is employed as a post processing tool to extract all 

the results from the executed simulation  

D. Discharge and carry over coefficient and compressibility factor are calculated 

for three cavities and four tooth respectively. Microsoft Excel is used to plot 

the above parameters as functions of shaft speed, axial Reynolds number and 

pressure ratio to evaluate the effect of different geometrical parameters. 

 

 

 

 



7 

 

1.4.  Computational Technique 

 

A finite volume computational fluid dynamics technique is adapted to perform 

simulation using Fluent version 12.0.16. This computer code is able to handle both 

structured and unstructured grid domains using pressure gradient adaptation for different 

flow and geometric conditions. Fluent uses the averaged Navier-Stokes and conservation 

of mass equations of fluid dynamics to simulate internal flow. Reynolds average energy 

equation and the ideal gas law equation are incorporated to consider the effect of 

compressibility in this study. Morrison and Ghasem [2] showed the k-ε model is the 

effective one among available turbulence model to avoid convergence problem. 

Enhanced wall treatment function is used under the k-ε model to obtain better 

convergence. Morrison and Ghasem [2] found that Y+ value below 10 yield good results 

and properly determine the flow field. Due to high sheared flow, wall treatment is a 

crucial factor to obtain accurate results. As a result, throughout this study, Y+ values are 

kept below 5 to obtain better result. 

 

1.5.  Seal Mesh 

 

Gambit version 2.4.6 is used to generate the grid domain of the labyrinth seal. In the 

entire study, seal is meshed using quad elements. For most of the cases, the initial mesh 

is generated with 50000 elements and later on pressure gradient adaptation technique is 

applied to obtain a grid independent result. The maximum number of nodes used is 



8 

 

1000000 by keeping refined threshold minimum as 1 for highest pressure differentials 

and rotational speed Near the wall, the mesh grid is kept tight to resolve the effect of the 

boundary layer formation. A typical mesh grid used in this study is given in Fig. 1.6. 

 

Fig. 1.6  

 
Fig. 1.6.  Mesh structure of seal geometry. 

 

A grid independency study is conducted to make sure that the results are 

independent of the mesh after certain mesh gridding. This study is performed by 

recording the absolute pressure differences across the seal for a given Reynolds number 

for various level of grid refinement.  In this study, near wall treatment is very important 

because of the high sheared flow. Initially most of the cases are started with 60000 

nodes. Y+ adaptation is used to refine the wall and the value kept below 5 to obtain 

accurate results. Pressure gradient based adaptation is used to refine the flow and  Y+ 
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1.6.  Seal Geometry 

 

Different seal geometries are investigated to evaluate the labyrinth seal performance for 

different geometric parameters such as pitch, width, angle, and clearances. A matrix of 

different geometries considered in this entire study is given in the Table 1.1 

 

Table 1.1. Labyrinth seal geometries. 
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1.7.  Flow Pattern in Labyrinth Seals 

 

It is very important to visualize the flow pattern inside of a labyrinth seal to understand 

the evaluation of the seal in terms of carryover coefficient, discharge coefficient and 

expansion factor. So in this section, details flow pattern of the labyrinth seal including 

isosceles and right angle tooth shape are shown for the different seal flow ( Re, Shaft 

speed ) and geometrical parameters ( c, s, w, h, B ).  

Fig. 1.8 shows the flow pattern for incompressible flow for case 1. This plot is 

showing the flow pattern inside the first cavity. Flow pattern inside the first cavity is 

shown in Fig. 1.9 for compressible flow. This flow is generated for case 1. 

For compressible flow, the Fig. 1.10 shows the primary vortex pattern inside the 

first cavity of a isosceles tooth shape labyrinth seal. There are no secondary recirculation 

zone observed at high shaft speed inside the cavity for both of the cases.  
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Fig. 1.8.  Flow pattern inside the labyrinth seal cavities for incompressible flow 

(case 1, c=0.05, s=3, B=7°, w=0, cavity 1). 
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Fig. 1.9.  Flow pattern inside the labyrinth seal cavities for compressible flow ( case 
1, c=0.05, s=3, b=7°, w=0, cavity 1). 
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Fig. 1.10.  Stream traces inside the labyrinth seal cavities for compressible flow 

(case 3, c=0.05, s=3, b=7°, cavity 1). 
 

 

The figure shown in Fig. 1.11 represents a general view of fluid flow inside the cavity of 

the right angle tooth shape labyrinth seal at different Reynolds number. This figure is 

representing case 11. 
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In this study secondary recirculation zone inception is observed inside the cavity 

at low Reynolds number and maximum shaft speed for the incompressible flow and 

wider tooth seal geometry. The figure shown in Fig. 1.12  represent the recirculation 

zone for incompressible flow for wider tooth. This figure is generated for case 8. 

 

 

 
Fig. 1.11.  Stream traces in different cavities at zero shaft speed ( case 11, right 

angle tooth, incompressible flow ). 
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The result in Fig. 1.13 shown that there is no recirculation zone present at low 

Reynolds number and maximum shaft speed for compressible flow and wider tooth seal 

geometry. Secondary recirculation zone was observed only in incompressible flow cases. 

 

 

 
Fig. 1.12.  Flow pattern for wider tooth ( case 8 , w=1, incompressible flow ). 
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Fig. 1.13.  Flow pattern for wider tooth ( case 8 , w=1, compressible flow)  
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Fluid flow pattern inside the cavity of the case 9 is shown in Fig. 1.14. Secondary 

recirculation zone is not present in this case. Finally it can be said  that after a critical 

w/s ratio, inception of secondary recirculation is observed at low Reynolds number with 

shaft speed for incompressible flow. 

 

 

 
Fig. 1.14.  Stream traces pattern inside the seal cavity ( for case 9, w=0.5, 

incompressible flow ). 
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2 LITERATURE REVIEW 

 

The main purpose of designing any seal is to minimize leakage of the working fluid used 

in the system. Therefore, understanding the seals working principle is a very important 

issue. A seal has different geometrical parameters and these parameters play a vital role 

for the efficient and economic operations of turbomachinery devices. See through 

isosceles triangular tooth labyrinth seal is the seal type under study. This is a modern 

seal type used in steam turbine Very few data are available regarding leakage rate and 

design parameters in the open literature.  

Sneck [3] 1974 generated a background of the labyrinth seal theory and design 

from the thermodynamic and fluid mechanics point of view. In 1939 C.A.Parsons [4] 

first introduced the labyrinth seal along with his development of the steam turbine. Later 

on, staggered and step labyrinth seals were proposed on the basis Parson’s design as a 

modification. Becker [5] developed a model to analyze the flow through labyrinth seal as 

Poiseuille flow and calculated the friction coefficient. Martin [6], using, the for an ideal 

gas for an isothermal flow neglected the energy carryover from one orifice to another. 

Martin [6] demonstrated fluid flow through labyrinth seal using the concept of flow 

through series of orifices. Stodola [7] compared his data with Martin’s work using 

experimental data and 14% leakage different was found. The following equation was 

developed by Martin using the above assumptions. 
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 ݉	 ൌ 	
ܣ పܲ

ඥܴ పܶ

ሶ
ඪ
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௜ܲ
ሻ
 (2-1) 

The importance of the kinetic energy carryover between orifices was first 

demonstrated by Grecke [8]. He considered the effect of kinetic energy carryover in his 

study between orifices whereas Martin didn’t consider the above effect in his study. Egli 

[9] performed an analytical and empirical modified method to analyze labyrinth leakage 

which is still a very effective way to predict leakage using kinetic energy carryover. He 

generated a leakage equation for straight through and staggered type labyrinth seals. He 

added two factor in his approximate equation, one for carryover energy and the other 

flow coefficient to compensate for the fluid flow friction effect due to orifice as a 

function of throttle number, clearance to pitch ratio, tooth thickness and pressure ratio. 

His leakage equation is given by: 

 ሶ݉ ൌ ௜ߩඥߛψߙܣ ௜ܲ (2-2) 

 ߰ ൌ ඪ
1 െ ሺ ௘ܲ

௜ܲ
ሻଶ

݊ െ ݈݊ሺ ௘ܲ

௜ܲ
ሻ
 (2-3) 

Hodkinson [10] developed a formula to calculate energy carryover fraction and 

carryover coefficient using the flows divergence angle. His equation is given by: 

ݔ  ൌ ቀ
ܿ

ܿ ൅ ݏ tan ߠ
ቁ (2-4) 
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ଶߛ  ൌ ൬
1

1 െ ݔ
൰ (2-5) 

Hodkinson [10] assumed that the stream spreads uniformly at an angle θ to a total width 

ሺܿ ൅ ݏ tan  as in Fig. 2.1, and neglected the effect of any vena contracta. In the current (ߠ

study radial clearance defined as c instead of δ which is shown in Fig. 2.1. 

 

 

 
Fig. 2.1.  Energy carryover fraction [10] 

 

Zabriskie and Sternlicht [11] developed a general leakage equation considering 

seal geometrical parameters (tooth width, upstream angle, cavity size and clearance). 

They concluded that the leakage rate can be minimized by optimizing the tooth depth to 

pitch ratio, tooth width to clearance ratio and upstream angle of tooth with respect to 

flow direction. Heffner [12] developed a correlation using experimental data to predict 

the leakage rate of straight through labyrinth seal excluding rotational effect. A 

contraction coefficient was calculated using experimental data and is a function of seal 

geometry and pressure ratio. Later he modeled the leakage phenomena for the entire seal 
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with a specific number of teeth and clearances as a function of expansion factor 

described by Egli [9]. 

Prasad [13] et al. performed an experimental investigation using straight tooth 

labyrinth seal excluding rotation for different pressure ratio and radial clearances. They 

compared their results with a finite volume commercial code using standard k-ε model A 

variation of 8.6% was observed between experimental and CFD results. This finding is 

very important for the current study as in this study a similar analysis approach is 

adapted. Rhode and Hibbs [14] developed a finite difference code by solving the 

Reynolds Averaged Navier Stokes equations using a k-ε model to predict leakage 

phenomena for both annular and straight through rectangular labyrinth seal. They 

defined the inlet and outlet pressure condition in the simulated flow. Their prediction 

was in line with Prasad et al. in terms of an 8% difference between experimental and 

CFD values. Rhodes and Hibbs [14] also concluded with an important finding that 

labyrinth seal leakage rate is 20% less than annular seals. Witting [15] et al investigated 

pressure ratio and Reynolds number effects on straight–through labyrinth seals. He 

plotted the nondimensional discharge coefficient against the overall pressure ratio in 

different scales and concluded that this effect is more acute for small clearances. 

Willenborg [16] investigated the effect of pressure ratio and Reynolds number using 

stepped labyrinth seal for different seal parameters such as radial clearances, tooth tip. 

He mentioned that the above parameters are a governing factor of leakage rate. Finally 

he made a conclusion that the pressure ratio and seal clearance are proportional with 

flow coefficient.  
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Some researchers have studied the effect of shaft rotation in addition to varying 

geometrical parameters. Komotori and Miyake [17] investigated a straight through 

labyrinth seal tooth on rotor to develop a theoretical model to predict leakage rate. In this 

study they considered seal clearances (0.2-0.36mm), tooth number (1-12), tooth 

thickness (1-6mm) and performed the test for 250 m/s shaft speed along with different 

pressure ratios Finally they compared tooth on stator and tooth on rotor and concluded 

that rotation has minimal effect on tooth on stator case. Stocker investigated a staggered 

labyrinth seal with different clearance, tooth width, pitch in order to minimize leakage 

rate by incorporating more turbulence inside the cavities. He generated a plot of non-

dimensional flow coefficient against different pressure ratio. In the boundary conditions 

he used a maximum inlet pressure of 2.5 atm and considered rotational maximum speed 

of 240 m/s. His advanced design ended up with 10-25% less leakage reduction. Finally 

he concluded that rotational speed had less effect in leakage rate which is approximately 

0-3%.  

Waschka [18] et al. investigated leakage rate rpm effect up to 10000 for tooth on 

rotor for a straight see through labyrinth seal for different radial clearances and pressure 

ratios. In their study they concluded rotation effect is acute when Ta/Re >0.2. The Taylor 

number, Ta and the Reynolds number, Re definition are shown in eqn. ( 2-7 ) and ( 2-8 ) 

Beyond this ratio discharge coefficient decrease with increasing rotational speed. In this 

study discharge coefficient is given: 

ௗሶܥ  ൌ
ሶ݉ ௠௘௔௦

ሶ݉ ௜ௗ௘௔௟
 (2-6) 
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 ܴ݁ ൌ
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ߤ ∗ ߨ ∗ ௪ݎ
 ( 2-8 ) 

   

Zimmerman and Wolff’s [19] concluded in their study with different seal 

geometries for straight through and stepped labyrinth seal that beyond Re>10000 point 

rotation effect is negligible. They defined discharge coefficient as a function of axial 

Reynolds number. 

Demko [20] et al. studied the incompressible flow for straight through labyrinth 

seal including rotating effect at very low leakage rates. This study showed secondary 

recirculation zone formed when Taylor number increased beyond the ratio Ta/Re>0.45. 

This finding is very important for effective seal design. Secondary recirculation zone 

formation increase the seal performance by introducing more pressure drop and 

frictional losses. 

Saikishan [21] investigated the see through rectangular tooth on stator labyrinth 

seal. In his study, he showed that carryover coefficient is a function of Re and seal 

geometries. His study was based on incompressible flows. Saikishan [22] also showed 

that flow pattern and carryover over coefficient is similar within all cavities of multiple 

cavities labyrinth seals. Also he identified that carry over coefficient is independent of 

shaft rotation. He developed a model for thin tooth to show the relationship between 

carryover coefficient and Re which is given in eq. ( 2-9 ) 
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Later on Saikishan [23] modified his earlier model of the carryover coefficient 

which is shown in eq. ( 2-9 ) and his modified model is given in eq.  
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( 2-10 ) 

where  
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( 2-11 ) 
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3 CARRYOVER COEFFICIENT 

 

3.1.  Definition of Carryover Coefficient 

 

The main objective of the labyrinth seal is to dissipate kinetic energy in the cavities 

using the concept of fluid flow through orifices. Carryover coefficient is the standard 

non dimensional parameter to evaluate the energy dissipation in cavities. This non 

dimensional parameter value should be 1 for any ideal seal. This value indicate that the 

kinetic energy of the working fluid is dissipated completely inside the cavity by vortices. 

Carryover coefficients above 1 indicate a larger fraction of energy is carried over to the 

next cavity without being dissipated. So this is a very crucial parameter to evaluate seal 

design and performance. 

 

3.2.  Carryover Coefficient Calculation 

 

The carryover coefficient in this study is calculated according to the method described 

by Hodkinson [10]. According to his study, the carryover coefficient is a function of the 

divergence angle, β. The following two empirical relations are used to the calculate the 

carryover over coefficient throughout the entire study.  

ଶߛ  ൌ
1

1 െ ߯
 ( 3-1 ) 

 



27 

 

ߚ݊ܽݐ  ൌ ܿ ൬
1 െ ߯
߯ ∗ ݏ

൰ ( 3-2 ) 

The divergence angle is calculated on the basis of the streamline that separates the main 

recirculating vortex flow region and the main streamline escaping under the orifice. This 

streamline pattern for zero shaft speed is illustrated in Fig. 3.1 for cavity 1. 

 

 
 

Fig. 3.1.  Stream traces in cavity 1 (case 1, re 500, c/s=0.0167, s=3, wsh=0, s/h=1, 
incompressible flow ). 

 

The separating stream line is shown more closely in Fig. 3.2 
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Fig. 3.2.  Separating Stream traces enlarged view for Fig. 3.1. 
 

The divergence angle, β, is formed by constructing a line from upstream tooth lip 

to the stagnation point on downstream tooth. Identification of this stagnation point is the 

main key feature to calculate the divergence angle. This point is found on the 

downstream tooth by identifying the location of zero radial velocity in the Y direction. 

For better understanding a schematic diagram is shown in Fig. 3.3. Point B in Fig. 3.3 is 

the stagnation point where the radial velocity contour is zero at intersection point on the 

downstream tooth. Tecplot 360 post processing commercial tool is used for this analysis. 

After picking all the three points ( A, B, C ), the trigonometric relation in Eq. ( 3-3)  is 

used to obtain the divergence angle, β. 

ߚ݊ܽݐ  ൌሶ
ܻ2 െ ܻ3
ܺ3 െ ܺ1

 ( 3-3 ) 
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Fig. 3.3.  Divergence angle calculation schematic. 
 

In section ( 3-1 ) it is mentioned that for an ideal seal carryover coefficient should be 1. 

Equation ( 3-1 ) shows, the relation between kinetic energy carryover, χ, and carryover 

coefficient, γ. This relation is  given in Fig. 3.4. The higher carryover coefficient, γ, 

means less effective cavity design in terms of the kinetic energy dissipation. 
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Fig. 3.4.  Relationship between γ and χ [24]. 
 

3.3.  Evaluation of Carryover Coefficient 

 

In this study, the carryover coefficient is evaluated for the isosceles and right angle tooth 

on stator labyrinth seal. The carryover coefficient is investigated in this study for 

different tooth geometries such as radial clearance, pitch, clearance over pitch ratio, 

tooth tip width, width over pitch ratio and flow parameters such as different mass flow 

rates. Also this study investigated the effect of shaft speed on the carryover coefficient, γ 

at different Reynolds numbers. In the following sections, the effect of the above 

parameters on the carryover coefficient is described with visuals and proper reasoning. 
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3.3.1. Effect of Reynolds Number 

 

The influence of mass flow rate on the carryover coefficient is described using the non 

dimensional parameter Reynolds number for both compressible and incompressible 

flow. To investigate the carryover coefficient for the isosceles triangle tooth, case 1 and 

case 4 geometries are considered for the Reynolds number range of 500 to 10000. In this 

study, Reynolds number is the ratio of jet inertia force approaching under tooth to the 

viscous force of flow under the same tooth. So the inertia force is larger compare to the 

viscous force in the labyrinth seal at higher Reynolds number. The Fig. 3.5  shows that 

the association between the carryover coefficient of air and water as a function of Re for 

the same geometric configurations. The results show that at higher Reynolds numbers 

the carryover coefficient, γ, increases up to 1.7 for case 4. For the lower Reynolds 

number this value is  close to 1 for both air and water in Case 1. It can be concluded 

easily that at higher Reynolds number working fluid dissipate less kinetic energy inside 

the cavity and carries more energy to the next one. This is a notification of less 

effectiveness of seal at the higher Reynolds number. Also from Fig. 3.5, it is obvious 

from the plot that isosceles triangle can be utilized for both incompressible and 

compressible working fluid as the carryover coefficient value is almost identical as a 

function of Re. 
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in the Fig. 3.8. For instance of case 1 and case 11 at Re of 1000, it is found that the 

carryover coefficient is 2.54 % less for isosceles triangle tooth over right angle tooth 

labyrinth seal for the both compressible and incompressible fluid. This deviation is 

attributed relatively large radial velocity for the isosceles triangle tooth.. 

 

 

 

Fig. 3.6.  Radial velocity contour for Isosceles triangle for Re 1000 ( case 1, water ) 
 

 

 

Fig. 3.7.  Radial velocity contour of Right angle tooth for Re 1000 ( case 11, water ). 
 

The relationship of the carryover coefficient with Reynolds number can also be 

explained using divergence angle, β. At the higher Reynolds number working fluid has 

high inertia force and escaping under the tooth without being dissipated into the cavity 
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[10] used the dimensionless parameter c/s in his study to show the effect of clearance in 

labyrinth seal performance investigation. Different c/s ratio applied for constant pitch, 

height and tooth angle are used to explore the effect of clearances for both 

incompressible and compressible fluid. 

The result shows in Fig. 3.9 demonstrate the evaluation of carryover coefficient, 

γ, for incompressible flow as a function of Re for different c/s ratio such as 0.0167 (Case 

1 ), 0.033 ( Case 3 ), 0.05 ( Case 4 ), 0.066 ( Case 6 ) where the other parameters like 

pitch, angle, height, are kept constant. This plot is generated for the isosceles triangle 

tooth shape labyrinth seal. It can be concluded from the Fig. 3.9 that the carryover 

coefficient is strongly dependent on the clearance over pitch ratio. The carryover 

coefficient increase rapidly for the higher c/s ratio. It is observed that lowering the c/s 

from 0.0333 to 0.0167 ( factor of 2 ) reduces the carryover coefficient, γ, by 10% at Re 

1000 This observation agrees with Saikishan’s [22] results for the rectangular tooth. At 

Re = 3000, the carryover coefficient increases by 58% as of c/s increases from 0.0167 to 

0.066. 
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In the previous paragraph, carryover coefficient dependence on c/s ratio is 

described for the isosceles triangle tooth. For the right angle tooth, the carryover 

coefficient dependence on c/s ratio is evaluated in Fig. 3.10 for the case 11 and case 12. 

The two c/s ratios ( 0.0166 , 0.033 ) are considered for this investigation. The Right 

angle tooth posseses similar behavior like the isosceles triangle tooth which is shown in 

the Fig. 3.10. At low Reynolds number, Re 300, a 9% reduction of carryover coefficient 

was obtained with the clearance value from 0.1 to 0.05 mm. Both type of the tooth show 

similar dependency for the carryover coefficient as a function Re for different c/s ratios.  

This phenomenon can be described alternatively by using the velocity 

components and divergence angle. The radial velocity contour and stream traces of case 

1  are shown in Fig. 3.11 for the isosceles triangle tooth at Re 3000 ( Incompressible 

fluid ). The streamlines presented in Fig. 3.11 and Fig. 3.12 help to explain the affect. 

The higher clearance causes larger amounts of mass flow rate to pass under the tooth 

compared to smaller clearance. From the simulation results, large differences are 

observed in the radial velocity between case 1 and case 6. Case 1 shows the radial 

velocity contour near the downstream tooth of value 30 m/s whereas 10 m/s observed for 

case 6. This velocity difference causes the divergence angle deviation between two 

cases. Divergence angle is found 1.92° and 1.38° for case 1 and case 6 respectively. This 

deviation can also be explained by considering the vena contracta effect. For the higher 

clearances, less vena contracta effect is observed compare to the smaller clearances.  
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Fig. 3.11.  Radial velocity contour and stream traces for case 1 ( water, re 3000, c/s 
=  0.0167 ). 

 

 

 

Fig. 3.12.  Radial velocity contour and stream traces for case 6 ( water, re 3000, 
c/s=0.066 ). 
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It is obvious from the above results that carryover coefficient is a strong function 

of c/s ratio. It is also concluded that the small clearances are effective for both isosceles 

and right angle tooth labyrinth seal at constant pitch 

 

3.3.3. Effect of Tooth Width 

 

The evaluation of carryover coefficient for different tooth width is investigated for case 

1, 8, 9, 11, 13, 16. These cases are listed in Table 1.1. Both the isosceles and right angle 

tooth shapes are considered in this investigation. In the above cases, w/s ratios of as 

0.16, and 0.33 are considered for constant clearance, c, of 0.05 mm and pitch, s, of 3 

mm.  

This study considered Reynolds number 500,1000,2000,3000 to investigate the 

behavior of the carryover efficient, γ, as a function of w/s for the isosceles triangular 

tooth for incompressible flow. From the results shown in Fig. 3.13, it is observed that the 

carryover coefficient association with the w/s ratio is insignificant up to Reynolds 

number 2000. Higher tooth width, w, increases the carryover coefficients slightly 

beyond Re = 2000. At Re = 4000, the carryover coefficient increased by 2.5% for the 

100% increment of  the w/s ratio. This can be attributed to the divergence angle of the 

flow. At Re = 4000, the difference between the divergence angle of w=1 & w=0.5 is  

0.145°. Higher divergence angle is observed for the case with lower tooth width. As a 

result the geometry with the lower tooth width gives slightly lower carryover coefficient. 
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3.3.4. Effect of Pitch 

 

The effect of pitch on the carryover coefficient, γ, is investigated by simulating case 1, 7, 

10, 11, 15. The details of the cases are given in Table 1.1.  Both the isosceles ( Case 1, 7, 

10 ) and right angle tooth ( Case 11, 15 ) shape are considered to compare the effect of 

pitch, s, on the carryover coefficient, γ, for different tooth shape. In the entire study, the 

pitch over tooth height ratio is considered 1. Saikishan [23] showed that tooth height, h, 

has no effect on kinetic carryover coefficient, γ, and this assumption is valid when h/s 

value of the cavity is close to or greater than 1. 

 

 

 

Fig. 3.16.  Distribution of stream traces and radial velocity contour for 
incompressible flow at Re2000 ( clockwise case 9, 13, 16, 8). 
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s=3 

 

s=4 

 

s=5 

 
Fig. 3.18.  Axial velocity contour and stream traces distribution for s=3, 4, 5 at Re 

2000 ( incompressible flow, cavity 1, case 1, case 7, case 10 ). 
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The radial velocity contours in Fig. 3.20 illustrates that the radial velocity has 

higher ranges for isosceles at the near wall of downstream tooth. The divergence angle is 

higher for the higher radial velocity contour near the downstream tooth wall. This is the 

reason for the lower carryover coefficient value for the isosceles triangle compare to 

right angle tooth. 

 

 

 
Fig. 3.20.  Stream traces and radial velocity contour at Re 2000 ( incompressible 

flow, case 7, case 15 ). 
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Fig.  3.21 shows that for a constant clearance, c =0.05, the carryover coefficient 

is higher for right angle tooth for same pitch compare to isosceles triangle for 

compressible flow. 

 

 

 

Fig.  3.21. Comparison of pitch effect on the γ ( for compressible flow, isosceles and 
right angle tooth, case 1, case 7, case 10, case 11, case 15 ). 
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coefficient. For the right angle tooth, increasing the tooth angle has no effect on 

approach angle of stream line as a result divergence angle remains same for both of the 

cases in Fig. 3.25 (c ) & (d). 

 

 
 

Fig. 3.25.  Stream traces and axial velocity distribution of isosceles and right angle 
tooth for B=7, 14 degree tooth angle , Re 2000, incompressible 

flow ( case 1, case 2, case 11, case 14 ). 
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3.3.6. Effect of Shaft Speed 

 

Introducing rotation in the shaft may change the flow behavior within the seal due to the 

presence of swirl velocity. This swirl velocity might influence the carryover coefficient. 

Simulations are performed for a given flow and seal geometry at different shaft speeds 

such as 1000, 2000, 3000, 4000, 5000, 6000, 7000 rad/sec. Both incompressible and 

compressible flow are considered to analyze this effect. Shaft rotation is applied to 

different seal geometries including c, s, w, B. In this section, association of the carryover 

coefficient and shaft speed is analyzed for different seal geometries. 

 

3.3.6.1 Effect of Shaft Speed on γ for Different Clearances 

 

In the earlier section, 3.3.2. , it is shown that the clearance pitch ratio, c/s, has a 

significant effect on the carryover coefficient, γ, at zero shaft rotation. To analyze the 

effect of shaft rotation, swirl velocity is applied on the isosceles triangle tooth shape 

labyrinth seal. In the simulation, the moving wall boundary condition is applied in the 

rotor.  

The results, as seen from Fig. 3.27 , shows that the carryover coefficient is not 

strongly dependent of shaft rotation for compressible flow. This study is performed for 

different Reynolds numbers and c/s ratios ( 0.0167, 0.033, 0.05, 0.066 ) with the 

rotational speed of shaft varies from 1000 to 7000 rad/sec. It has to be noted that this 

study deals with tooth on stator labyrinth seals. 
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rotation on the carryover coefficient for incompressible flow at Re 1000 and c/s ratios of 

0.0167, 0.033, 0.05. 

 

 

 

Fig. 3.28.  Association of γ with Wsh for different clearances ( compressible flow,  
c= 0.05 and 0.1 mm, cavity 1, case 1, case 3 ). 

 

 

500
600

700
800

900
1000

0

2000

4000

6000

8000
0.05

0.06

0.07

0.08

0.09

0.1

 

 

c

ReShaft Speed ( rps )
1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

Carryover coefficient



 

as 

eff

fro

F

 

The com

a 3D plot in

fect is insign

m 1.3 to 1.1

 

Fig. 3.29.  Va

mbined effec

n the Fig. 3

nificant but f

8. This varia

ariation of γ

ct of the sha

.30. It is als

for higher cl

ation is 10%

γ with shaft 

aft speed and

so evident f

learance, c=

% which is lar

 

speed (Re 1
incomp

d clearance o

from the Fig

0.1 the carry

rger for high

1000, case 1
pressible flow

on the carryo

g. 3.30 that 

yover coeffi

her Reynolds

1, case 3, cas
w ). 

over coeffici

for c=0.05 

icient, γ, var

s number. 

 

se 4, cavity 

58 

ient 

the 

ries 

1, 



59 

 

 

 
Fig. 3.30.  Association of γ with Wsh for different clearances ( incompressible flow, 

cavity 1, case 1, case 3 ). 
 

 

Fig. 3.31 shows the effect of the shaft speed on the carryover coefficient on the 3 

cavities for case 1. The results shows that variations of the carryover coefficient for shaft 

speed as a function of Re are similar for all 3 cavities.  
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Fig. 3.31.  Carryover coefficient distribution in different cavities( incompressible 

flow, case 1 ). 
 

 

It seems from the Fig. 3.32 at Re 1000 that axial velocity is decreasing while 

shaft speed is increasing. And reverse phenomenon is observed for the case of radial 

velocity. Swirl effect near the wall of rotor is the reason which reducing the axial 

velocity. 
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(a) Re 500, Wsh =0 
 

 

(b) Re 500, Wsh = 7000 

 

(c) Re 3000, Wsh = 0           (d) Re 3000, Wsh = 7000 

 
Fig. 3.36.  Flow pattern inside cavity at lowest and highest shaft speed ( for 

incompressible flow, Re 500 and 3000, c =0.05, s=3, case 1 ). 
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Fig. 3.39.  Combined effect of s, Re and Wsh on γ ( cavity 1, incompressible flow , 

case 1, case 10). 
 

 

Fig. 3.40 shows the combined effect of Wsh, Re, s on the carryover coefficient for 

incompressible flow. From the 3D plot it is observed that at higher pitch, lower 

carryover coefficient values were obtained at higher shaft speed compare to lower pitch. 

But this effect is not very intense. 
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Fig. 3.40.  Combined effect of s, Re and Wsh on γ( for all cavities, incompressible 

flow , case 10, s=5). 
 

 

 

For the compressible flow, a similar investigation is performed. Shaft rotation effect is 

evaluated only at Reynolds number, Re 1000. From the Fig. 3.41, it is observed that 

shaft rotation effect as a function of pitch is slight, 5% different. 
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(a) Re 500, Wsh = 0 rps 
 

 

(b) Re 500, Wsh = 7000 rps 
 

 

( c ) Re 2000, Wsh = 7000 rps 
 

 
Fig. 3.43.  Flow pattern for shaft speed at W=0.5 ( for incompressible flow, case 9 ). 



73 

 

 

           (a ) Re 500, Wsh = 0 rps 
 

 

(b) Re 500, Wsh = 7000 rps 

 

(c) Re 2000, Wsh = 7000 rps 
 

 
Fig. 3.44.  Shaft speed effect on flow pattern for w =1 ( incompressible, case 8 ). 
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Fig. 3.45 shows the combined effect of shaft speed, flow parameter, and tooth width on 

the carryover coefficient. This 3D plot is for second cavity. For water, Fig. 3.45 shows 

that for larger tooth width at maximum shaft speed ( Wsh = 7000 rps ), γ decrease as Re 

increase. Again for short tooth, γ increase as Re increase at maximum shaft speed. 

 

 

Fig. 3.45.  Combined effect of Re, Wsh, w, on the carryover coefficient ( for 
incompressible flow, case 1, case 8, case 9 ). 

 

For air, Fig. 3.46 shows that at Re = 500, the carryover coefficient decreases as Wsh 
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shaft speed is introduced. Secondary recirculation zone is large at maximum shaft speed 

for large tooth width whereas less presence of secondary flow zone is observed for small 

tooth width. This secondary flow zone is more visible in low Reynolds number and at 

shaft speed is reducing axial flow under the tooth as a result high tangential radial 

velocity increase in the cavity due to centrifugal acceleration. This is the reason to obtain 

low carryover coefficient in the cavity for large tooth width.  

 

 

 
Fig. 3.46.  Combined effect of Re, Wsh, w on the carryover coefficient. ( air, case 1, 

case 9 ). 
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3.3.6.5 Effect of Shaft Speed on γ for Tooth Angle 

 

The 3D plot shown in Fig. 3.47 illustrates that at low Reynolds number ( Re = 500 ) and 

maximum shaft speed ( wsh = 7000 rps ), large tooth angle ( B= 14 degree ) provides low 

carryover coefficient compare to tooth angle B = 7 degree for compressible flow.  

For the incompressible flow, Fig. 3.48 show that at maximum shaft speed wsh = 

7000 rps, the carryover coefficient decreases with increasing Reynolds number for both 

tooth angle, B =7 and 14 degree. It is also evident from the Fig. 3.48 that at maximum 

shaft speed large tooth angle provide low carryover coefficient at maximum shaft speed. 

At maximum shaft speed and low Reynolds number, higher tooth angle creates 

secondary recirculation zone inside the cavities. This secondary recirculation zone 

provides additional flow resistance results in higher divergence angle. This higher 

divergence angle r4esults in low carryover coefficient. 
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Fig. 3.47.  Combined effect of Re, Wsh, B, on the carryover coefficient. ( air, case 1, 

case 2 ). 
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Fig. 3.48.  Combined effect of Re, Wsh, B, on the carryover coefficient. ( water, case 

1, case 2 ).  
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4 DISCHARGE COEFFICIENT 

 

4.1.  Definition of Discharge Coefficient 

 

Discharge coefficient, Cd, is a dimensionless parameter. Throughout this study, the 

“discharge coefficient” term means the total absolute pressure losses that occur due to 

the fluid flows through the labyrinth seal cavity and under the tooth. Discharge 

coefficient is a term that explains the effect of energy dissipation in the labyrinth seal 

cavity and  the frictional losses that occur at the tooth. The discharge coefficient is 

defined as  

ௗܥ  ൌ
ሶ݉

ሺߩඥ2ܣ ௜ܲ െ ௘ܲሻ
                ( 4-1 ) 

It is possible to calculate the overall leakage mass flow rate based on the overall pressure 

difference across the seal if the discharge coefficient, Cd, is known for the entire 

labyrinth seal. In the above equation ( 4-1 ), Pi and Pe are the inlet and exit pressures 

across a tooth and ρ is the density of upstream of the tooth so Cd is for a single tooth 

used in this study. 

  

4.2.   Discharge Coefficient Calculation 

 

The computational results used to analyze the carryover coefficient are used here to 

analyze the discharge coefficient. The discharge coefficient is a very important 
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4.3.  Evaluation of Discharge Coefficient 

 

The discharge coefficient is evaluated on the basis of the flow and geometric parameters. 

Throughout the study Reynolds number, Re, and shaft speed, Wsh, are defined as flow 

parameters. The geometric parameters are defined as clearance, c, pitch, s, tooth angle, 

B, and tooth width, w. The effect of geometric and flow parameters upon the discharge 

coefficient, Cd, is evaluated in the same manner as the carryover coefficient. This 

evaluation is performed on the isosceles and right tooth shape labyrinth seal for both 

incompressible and compressible flow. 

 

4.3.1. Effect of Reynolds Number 

 

The effect of Reynolds number upon the discharge coefficient is investigated for a given 

geometry for both compressible and incompressible flow. The effect of Reynolds 

number is analyzed for both isosceles and right angle tooth shape.  

The result shown in Fig. 4.2 illustrate that the discharge coefficient variation with 

Re for compressible flow is insignificant except for the fourth tooth. The discharge 

coefficient value at four teeth locations is almost similar for increasing Reynolds 

number. For this study, Re 300, 500, 1000 are applied to evaluate the effect of flow 

parameter on Reynolds number.  
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Fig. 4.3.  Discharge coefficient at different tooth position for different Re 
(c=0.05,s=3,compressibile flow, isosceles triangle tooth, case 1 ). 

 

 

The discharge coefficient dependence on Reynolds number for a given geometry 

with four right angle teeth is shown in Fig. 4.4 for compressible flow. The discharge 

coefficient for this case is not a strong function of the flow parameter, Re.  
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(a ) T1 

 

( f ) T1 

 

( b ) T2 

 

( g ) T2 

 

( c ) T3 

 

( h ) T3

 

( d ) T4

 

( i ) T4
 

Fig. 4.5.  Streamlines and axial velocity distribution in four teeth  
( for 1st column isosceles, 2nd column right angle, Re 150, compressible flow ). 
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It can be concluded from the Fig. 4.6 and Fig. 4.7 that the discharge coefficient 

of 2nd,3rd and 4th tooth location is a strong function of Reynolds number. The main 

reason is due to the flow deformation taking place inside the seal cavity upstream of the 

subsequent teeth. The first tooth generates a wall jet along the shaft. This jet 

concentrates the fluid flow in the clearance area of the downstream tooth resulting in a 

smaller pressure drop since the flow is already partially contracted to pass under the 

tooth. 

 

 

 

Fig. 4.7.  Deviation of Cd values at different tooth position for Re  
( incompressible flow , isosceles triangle shape, case1). 
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4.3.2. Effect of Clearances 

 

To analyze the effect of clearances, simulations were performed for different radial 

clearances such as 0.05, 0.1, 0.15, 0.2 mm. In this study, the effect of clearance on 

discharge coefficient is investigated for isosceles and right angle tooth shape labyrinth 

seal  for both compressible and incompressible flow. 

First in this section, the effect of clearance on discharge coefficient is discussed 

for compressible flow. Result in Fig. 4.9 shows the association of discharge coefficient 

with the Reynolds number for different clearances. The results as seen in the Fig. 4.9 

shows that the discharge coefficient variation with Re for different clearance is 

insignificant for 1st tooth whereas it is increasing for 2nd, 3rd, 4th tooth of the seal.  Cd
 

increases more rapidly as c increases. Dependence on Re about the same for all c. 

Therefore should be able to compensate for c as Saikishan’s [22] showed c/s important. 

For the case of right angle tooth shape, the clearance has similar effect on the 

discharge coefficient as the isosceles triangle. The results are shown in Fig. 4.10. The 

investigation on right angle tooth is done for two clearances ( c=0.05, 0.1 mm ). 

It can be concluded from the above figures that at different clearances, the flow 

parameter has no effect on the discharge coefficient of  first tooth of the seal for both 

isosceles and right angle shape  
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For the incompressible flow and isosceles triangle shape tooth, it is observed 

from the result of Fig. 4.11 that variation of the discharge coefficient is significant in 

2nd,3rd and 4th tooth at different clearances with the Reynolds number. For the 

incompressible flow and isosceles tooth shape the discharge coefficient variation at 

different clearances with Re is significant for 2nd,3rd and 4th tooth. The change of the Cd 

at 1st tooth position is insignificant with Re at different clearances. The results obtained 

in Fig. 4.11 shows that at Re 1000 and 2nd tooth, 6% higher change in Cd for air compare 

to water is found with an increment of clearance from 0.05 t0 0.15 mm. Similar 

investigation shows that for 3rd tooth, this change was obtained 5%.  At higher Reynolds 

number (Re 2000 ), the discharge coefficient change with Re is insignificant. So it can 

be concluded that less compressibility effect was observed when clearance increase up to 

a certain limit.Similar result is shown in Fig. 4.12 for incompressible flow for right angle 

tooth shape. 

It is found in the result that Cd increases more rapidly as c increases. Dependence 

on Reynolds number is same for all c. Therefore should be able to compensate for c as 

Saikishan showed c/s important.  
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( a ) c= 0.05, 1st tooth 
 

 

( b ) c= 0.05, 2nd  tooth 
 

 

( c ) c= 0.1, 1st tooth 
 

 

( d ) c= 0.1, 2nd tooth 
 

 
Fig. 4.13.  Axial velocity contour variation with clearance at Re 500 ( for 

incompressible flow, case 1, case 3 ). 
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Fig. 4.14.  Pressure drop across the tooth of the seal ( incompressible flow, case 1, 

case 3). 
 

For the higher clearance, the axial velocity decreases for a given Reynolds 

number compared to a small clearance. From the Fig. 4.14, it is observed that at lower 

clearances the pressure drop is higher for a given Reynolds number. As a result, the 

discharge coefficient value decreases whereas for the higher clearance, it is vice versa.  
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So far in the previous section all the analysis are executed for zero tooth width. 

From the Fig. 4.15, it is evident that tooth width has significant effect on discharge 

coefficient at first tooth. So it is very important to see the effect on tooth on the rest of 

the seal teeth.  

Fig. 4.16 shows the association of the discharge coefficient with Re for different 

tooth width ( w=0, 0.5, 1 ) at four teeth locations. This graph is plotted includes all four 

tooth to provide information on the effect of tooth width at each tooth location. The 

results show w=0 gives the lower Cd value compare to w=0.5, 1 at higher Reynolds 

number for zero shaft speed. This result is true for all of the isosceles teeth in the 

labyrinth seal. Fig. 4.16 show, at smaller Reynolds number ( Re 500 ), larger tooth width 

( w =1 ) provides low discharge coefficient compare to zero tooth width. 

For the right angle tooth shape seal, similar dependence of Cd is found at the 

same geometric and flow parameters for the incompressible flow. Fig. 4.17 shows the 

effect of tooth width on discharge coefficient for all four teeth of the seal. For the right 

angle tooth, the tooth width has significant effect on discharge coefficient.  

Finally it can be concluded from the above investigation that for a given 

Reynolds number, the zero tooth width produces a lower discharge coefficient for both 

isosceles and right angle tooth shape seal for the incompressible flow without shaft 

rotation. 
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In the section 3.3.4. , it is shown that higher pitch values produce lower carryover 

coefficients for a given Reynolds number. Higher pitch means a larger distance between 

two adjacent teeth and more cavity space. This increase in distance results in higher 

viscous resistance to the flow. Further, as the fluid flow moves under the tooth the 

pressure head is converted to kinetic energy head. This causes additional pressure loss 

downstream of the tooth. This is the physics which is causing reduction in the discharge 

coefficient for higher pitch values at given Reynolds number. 

Fig. 4.24 shows the pressure losses between the adjacent teeth of the labyrinth 

seal for different pitch values s=3,4 and 5 mm. It is evident from the graph that at the 

higher pitch value, the pressure loss across each tooth is higher which results in lower 

discharge coefficients, Cd.  

From the above discussion it can be concluded that higher pitch value produces 

lower discharge coefficient for incompressible flow at a given Reynolds number. 
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Fig. 4.23.  Flow pattern in four teeth for different pitch values ( 1st column s=3, 2nd 

column s=5 , incompressible flow , Re 2000, c=0.05, B=7°). 
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It is observed from the Fig. 4.31 that at higher upstream angle, the pattern of 

vena contracta is similar compare to lower upstream angle. This similar vena contracta 

pattern is the reason which is making marginal impact of tooth angle on the Cd. 

 

 

( a ) Water, B = 7 

 

( b ) Water, B = 14 

 

( c ) Air, B = 7 

 

( d ) Air, B=14 

 
Fig. 4.31.  Vena contracta effect for B = 7 and 14 deg  ( Wsh = 0, Re 500, cavity 2, 

isosceles tooth shape, case 1, case 2 ). 
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4.3.6. Effect of Shaft Speed 

 

The CFD simulations using axisymmetric swirl are performed for different shaft RPS 

and Reynolds number. For all of the simulations, shaft speed, Wsh, is employed from 

1000 -7000 RPS range. The effect of shaft speed on discharge coefficient is evaluated 

for fixed geometry including pitch, radial clearances, upstream angle, and tooth width. 

This investigation is performed for the isosceles triangle tooth shape seal for both 

compressible and incompressible flow. In this section the shaft speed effect is discussed 

for geometric parameters such as radial clearances, c,  pitch, s, upstream angle, B and 

tooth width individually and the flow parameter Reynolds number. Previous studies [18] 

show that shaft rotation has a significant effect on discharge coefficient at low axial 

Reynolds number for rectangular straight through labyrinth seals.  

 

4.3.6.1 Effect of Shaft Speed on Cd for Re 

 

Form the result of the Fig. 4.32, it is found that at low Reynolds number ( Re 500 ), the 

discharge coefficient , Cd reducing from 0.627 to 0.319 ( 49% reduction ) as Wsh is 

increased from 0 to 7000 rps. As the Reynolds number increases the difference decreases 

to zero at Re 3000. So it can be concluded that the shaft speed effect is insignificant at 

higher Reynolds number. This plot only shows the effect on 1st tooth.. Fig. 4.32 and Fig. 

4.33 show the influence of shaft speed, Wsh, on the discharge coefficient as a function of 

the Reynolds number. The effect of rotational speeds for all teeth is shown in Fig. 4.33. 
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Fig. 4.38, Fig. 4.39, Fig. 4.40 and Fig. 4.41 are plotted to explain the combined 

effect of Wsh, c, Re on the discharge coefficient. Fig. 4.39, Fig. 4.40 and Fig. 4.41 shows 

the combined effect of Wsh, Re  for a given clearance on the discharge coefficient of four 

teeth.. The results in Fig. 4.38 show that Cd  decreases as Re decreases and Wsh 

increases. Again from same plot for c =0.15 mm, it is observed that Cd decreases more 

compare to 0.05 mm as Wsh increases. It is evident from the figure that shaft speed has a 

significant effect on the Cd  for maximum shaft speed. For example, at c = 0.05 and Re 

500, a 33% reduction of Cd with maximum speed was obtained. Also it is evident from 

the result that shaft speed has significant effect at low Reynolds number for all four tooth 

of the seal. 

 

Fig. 4.38.  Combined effect of Wsh, Re, c on discharge coefficient ( for 
incompressible flow , 1st tooth, case 1, case 3 ). 
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Fig. 4.39.  Combined effect on the discharge coefficient ( for incompressible, all 
teeth, c =0.15, s=3, case 4). 
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Fig. 4.40.  Combined effect on the discharge coefficient ( incompressible, all teeth, 
c= 0.05, s=3, case 1). 
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Fig. 4.41.  Combined effect on the discharge coefficient ( incompressible, all teeth, 
c= 0.1, s=3, case 3 ). 
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Fig. 4.43.  Combined effect on the discharge coefficient ( compressible flow, 1st 

tooth, case 1, case 3 ). 

 

 
Fig. 4.44.  Combined effect on the discharge coefficient ( compressible flow, 2nd 

tooth, case 1, case 3 ) 
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Fig. 4.45.  Combined effect on the discharge coefficient (compressible flow, 3rd 

tooth, case 1, case 3). 
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Fig. 4.46.  Combined effect on the discharge coefficient  

( compressible flow, 4th tooth, case 1, case 3 ). 
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4.3.6.3 Effect of Shaft Speed on Cd for Tooth Width 

 

Earlier in the section 4.3.3. it was shown that at zero shaft speed, the discharge 

coefficient is decreases with the increasing. tooth width for incompressible flow. Fig. 

4.47 shows the shaft speed effect as a function of tooth width, w= 0, 0.5, and 1 mm. for 

Re 500,1000 and 2000.It is observed from the plot that at smallest Reynolds number ( Re 

= 500 ) and higher shaft speed ( Wsh=7000 rps ) a 10% reduction in the discharge 

coefficient was obtained for the wider tooth. The shaft speed has less effect as a function 

of tooth width  at high Reynolds number, Re 2000.  

This result in Fig. 4.48 shows the combined effect of shaft rotation, w and Re on 

the Cd for incompressible flow. It is observed that shaft rotation has significant effect on 

wider tooth at low Reynolds number. So it can be concluded that for the laminar flow at 

high shaft speed wider tooth provides lower discharge coefficient. The physics behind 

this is that at low Reynolds number the peripheral momentum dominates the axial 

momentum which originates a secondary vortex in the cavity as a result additional flow 

resistance causing more pressure drop across the tooth. 
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Fig. 4.48.  Combined effect of Wsh, Re and w ( for incompressible flow , 1st tooth, 
case 1, case 8 ). 

 

 

Combined effect of Reynolds number, shaft speed on the discharge coefficient of four 

teeth for zero tooth width is shown in Fig. 4.49. A Similar plot is generated in Fig. 4.50 

for tooth width of 1 mm for incompressible flow. 
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Fig. 4.49.  Combined effect of Wsh, Re and w ( for incompressible flow , w=0, 4 teeth 
, c=0.05, case 1 ). 
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Fig. 4.50.  Combined effect on the discharge coefficient ( incompressible, w =1 mm, 
all teeth, c =0.05, case 8, ). 

 
 

Fig. 4.51 shows the effect of shaft rotation at different tooth locations for w= 0, 

0.5 and 1 mm for low Reynolds number, Re 500. At all four teeth location the shaft 

speed effect seems consistent at Re 500. So it can be concluded that for the smallest 

Reynolds number, the discharge coefficient is decreasing for higher shaft speed at all 

teeth locations. For compressible flow it is observed that the smallest Reynolds number ( 

Re = 500 ), the effect of shaft rotation is insignificant on the discharge coefficient  For 

all of the teeth, this result is shown in Fig. 4.52. 
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pressure drop. In another way this phenomenon can be explained by flow through 

channel. Higher channel length cause higher pressure drop for laminar flow. 

 

 

w=0, 0 rps 

 

w= 0, 7000 rps 

 

w= 0.5, 0 rps 

 

w = 0.5, 7000 rps 

 

w = 1, 0 rps 

 

w=1, 7000 rps 

 
Fig. 4.53.  Vena contracta effect for different tooth width ( incompressible flow, Re 

500, case 1, case 8, case 9 ). 
 

 



 

 

De

two

fou

ma

for

 

 

4.3.6.4 

ependence of

o different p

ur teeth of th

aximum shaf

r 100% incre

Fig. 4.54.  

Effect of Sh

f shaft rotati

pitch value, 

he seal. It is 

ft speed, 700

ease in Reyn

( a ) Too

( c ) Too

Shaft speed

haft Speed o

ion effects a

s=3 and 5 m

observed fr

00 rps. 90% 

olds number

oth 1 

oth 3 

d as function
tria

on Cd for Pi

as a function

mm. Fig. 4.5

rom the plot 

decrease of 

r.  

 
n of pitch ( f
angle shape 

itch 

n pitch is inv

54 shows th

that at high

the discharg

( b ) 

( d ) 

for incompr
tooth, case 

vestigated in

he shaft spee

her pitch valu

ge coefficien

Tooth 2 

Tooth 4 

ressible flow
1, case 5 ). 

1

n this study 

ed effect on 

ue ( s =5 ) a

nt was obtain

 

 

w, isosceles 

139 

for 

all 

and 

ned 



140 

 

For the seal with higher pitch ( s=5 ) and  at higher shaft speed ( Wsh ) secondary 

vortices inception was noticed in the cavity. This secondary vortices is creating 

additional flow resistance due to the domination of swirl velocity. As a result discharge 

coefficient is decreasing. This result is shown in the Fig. 4.55. 

. 

      Re 500, Wsh=0 rps 
        Re 500, Wsh = 7000 rps 

     Re 1000, Wsh= 0 rps        Re 1000, Wsh= 7000 rps 

 

Fig. 4.55.  Flow pattern in 1st and 2nd cavity for higher pith ( incompressible flow, 
c=0.05, s=5, case 10 ). 
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Combined effects of the shaft speed, pitch and Reynolds number on the discharge 

coefficient is shown as a 3D plot in Fig. 4.56 to Fig. 4.59 for all four teeth. From the 3D 

plots, it is found that at higher shaft speed, higher pitch results lower discharge 

coefficient at small Reynolds number. This is true for all of the tooth in the seal. It is 

concluded that for this small Re range, Cd independent of Re and function of only Wsh 

 

.  

 

Fig. 4.56.  Combined effect of Re, Wsh, on discharge coefficient of 1st tooth ( for 
incompressible flow ). 
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Fig. 4.57.  Combined effect of Re, Wsh, on discharge coefficient of 2nd tooth ( for 

incompressible flow ). 

 

 
Fig. 4.58.  Combined effect of Re, Wsh, on discharge coefficient of 3rd tooth ( for 

incompressible flow ). 
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Fig. 4.59.  Combined effect of Re, Wsh, on discharge coefficient of 4th tooth ( for 

incompressible flow ). 
 

The combines effect of Reynolds number, pitch and shaft speed on the discharge 

coefficient are shown in Fig. 4.60 and Fig. 4.61 for compressible flow for first and 

second tooth respectively. It is evident from the figures that shat rotation has 

insignificant effect on the discharge coefficient.  
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Fig. 4.60.  Combined effect of Re, Wsh, on the discharge coefficient of 1st tooth ( 

compressible flow ). 

 

 
Fig. 4.61.  Combined effect of Re, Wsh, on the discharge coefficient of 2nd tooth ( 

compressible flow ). 
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It is also observed that 1st,2nd and 3rd tooth of the seal provides the similar effect on the 

Cd. It is very important to understand flow pattern inside the cavity for two different 

cases of upstream angle. Flow pattern is the key physics to explain the variation of the 

discharge coefficient for different tooth angle. It is observed from the Fig. 4.63 that at 

B=14° and maximum shaft speed ( 7000 rps ), secondary flow vortices inception is 

occurred at incompressible flow. This secondary recirculation zone is responsible for 

additional flow resistance and this additional resistance results in additional pressure 

drop which causes lower discharge coefficient. 

For the lower tooth angle, it seems from the plot that there are no secondary 

recirculation zone. The absence of the secondary vortices resulting higher discharge 

coefficient compare to higher tooth angle. 

 Fig. 4.64 to Fig. 4.67 are plotted to show the combined effect of the Wsh, Re, B 

on the discharge coefficient. From the 3D plots it is observed that at higher shaft speed, 

1st and 4th tooth have more effect on the discharge coefficient at low Reynolds number 

compare to 2nd and 3rd. At the first tooth, higher upstream angle creates higher approach 

flow angle which gives higher vena contracta effect compare to intermediate teeth 

positions. It can be concluded that higher tooth angle has more effect on the Cd  at low 

Reynolds number and maximum shaft speed. 
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B=14°, Wsh=0 

 

B=7°
, Wsh=0 

B=14°, Wsh=3000 

 

B=7°, Wsh=3000 

B=14°, Wsh=7000 
B=7°, Wsh=7000 

 
Fig. 4.63.  Comparison of flow pattern between B=7° and 14° ( for incompressible 

flow, case 1, case 2 ). 
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Fig. 4.64.  Combined effect on 1st tooth ( incompressible, case 1, case 2 ). 

 

 

 
Fig. 4.65  Combined effect on 2nd tooth ( incompressible, case 1, case 2 ). 
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Fig. 4.66  Combined effect on 3rd tooth ( incompressible flow ). 

 

 

 
Fig. 4.67  Combined effect on 4th tooth ( incompressible flow ). 
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Fig. 4.69.  Combined effect on 2nd tooth ( Air , case 1, case 2) 

 

 

 
Fig. 4.70.  Combined effect on 3rd tooth ( Air , case 1, case 2). 
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5 EXPANSION FACTOR 

 

5.1.  Definition of Expansion Factor 

 

Expansion factor is a dimensionless parameter which relates the carryover and discharge 

coefficient parameters of compressible and incompressible flow. In another way, the 

expansion factor is a measurement for compressibility effect on the carryover and 

discharge coefficient. The expansion factor can be utilized to visualize the 

compressibility effect by multiplying this factor with Cd or γ which are obtained from a 

incompressible flow simulation. Similar axisymmetric simulation is performed for 

different flow and seal geometry to evaluate the expansion factor. 

 

5.2.  Expansion Factor Calculation 

 

Expansion factor is defined in this section as a function of pressure ratio, pr for a given 

Reynolds number. This pressure ratio is defined as follows: 

ݎ݌  ൌ ௢ܲ௨௧

௜ܲ௡
 

               ( 5-1 ) 

 

where Pin and Pout are defined as the upstream and downstream pressure across the tooth 

for a given Reynolds number. This pressure ratio is obtained across the tooth of the seal 

for compressible flow ( air ).  
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So expansion factor is calculated on the basis of pressure ratio across the tooth of 

compressible flow. In this study the compressible flow is defined as the flow of air. In 

this section, φγ  is defined as carryover coefficient expansion factor and φcd is defined as 

discharge coefficient expansion factor. Following two equations are used in the study to 

calculate the expansion factor for the carryover and discharge coefficient.  

 ߮ఊ ൌሶ
௔௜௥ߛ
௪௔௧௘௥ߛ

                ( 5-2 ) 

 

 ߮௖ௗ ൌ
ௗௗ௜௥ܥ
ௗ௪௔௧௘௥ܥ

                ( 5-3 ) 

 

If the above ratio is 1 then it can be said that there is no effect for the 

compressibility. If the goes above 1 then it is understandable that air is leaking more 

than water for the seal at respective Reynolds number. And the last if goes below 1 then 

it means there is a effect of compressibility for a given Reynolds number.  

 

5.3.  Evaluation of Expansion Factor 

 

Similar computational technique used for the carryover coefficient and discharge 

coefficient is applied to investigate the expansion factor. This evaluation is done for flow 

parameter like Reynolds number and seal geometric parameters such as clearance, tooth 

width, pitch and upstream angle. 
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5.3.1. Effect of Reynolds Number 

 

The Effect of Reynolds number on the expansion factor is investigated for the instance 

of Re 300, 500 and 1000. The radial clearance, c =0.05 is considered for this study. 

Isosceles profile is evaluated in this study.  

Fig. 5.1 and Fig. 5.2 shows the expansion factor distribution for four teeth as a 

function of pressure ratio, pr. It is observed from the figure that for all of the teeth, 

expansion factor is decreasing with increasing pressure ratio. Higher pressure ratio is 

obtained for higher Reynolds number. It can concluded from the plot that the expansion 

factor is decreasing with increasing pressure ratio.  

It is also observed from the Fig. 5.1and Fig. 5.2 that expansion falls in a linear 

relationship with pressure ratio. So it can be concluded that expansion factor is a 

function of pressure ratio and Reynolds number.  
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Fig. 5.1.  Expansion factor as a function of pr for discharge coefficient ( isosceles 

tooth , case 1, Re 300, 500 and 1000, Wsh = 0 ). 
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5.3.2. Effect of Shaft Speed 

 

The shaft rotation effect is investigated for isosceles triangle tooth shape labyrinth seal. 

axisymmetric simulation with moving boundary rotor wall condition is executed to 

evaluate the shaft speed, Wsh, effect on expansion factor for both carryover and 

discharge coefficient. This evaluation is done for geometric parameters such as 

clearance, tooth width and pitch. of the seal. The effect of shaft rotation as a function of 

clearance is evaluated for Re 500 ,1000 and c = 0.05,0.1. This investigation shows that at 

a given Reynolds number, Re 500 and maximum shaft speed ( Wsh=7000 ), 78% 

increment in the expansion factor with 100% increment of clearance was obtained. This 

result is shown in the Fig. 5.4. This figure shows the effect of shaft rotation and Re on 

the expansion factor of all teeth. 

It is evident from the above discussion that clearance has significant effect on the 

discharge coefficient expansion factor. At higher rotor speed, air is leaking more than 

water at higher clearance that which is found from above investigation. 

 



 

Fig

 

 

g. 5.4.  Expa

( a ) Tooth 

( c ) Tooth 

ansion facto

1 

3 

or effect as a
(

 

 

 
a function o
( all four tee

( 

( 

of clearance
eth , case 1, 

b ) Tooth 2 

d ) Tooth 4 

e for dischar
case 3). 

1

rge coefficie

159 

 

 

ent 



160 

 

6 SUMMARY AND CONCLUSIONS 

 

6.1.  Carryover Coefficient 

 

Carryover coefficient, γ, is a dimensionless parameter which explains the energy 

dissipation of the working fluid inside the cavity of the seal. It is calculated using two 

equations ( 3-1) and ( 3-2) based on Hodkinson’s [10] definition. This coefficient was 

evaluated for different seal geometry ( c, s, B, w ) and flow parameters ( Reynolds 

number, Re and shaft speed, Wsh ). Evaluation of the carryover coefficient is conducted 

for both compressible and incompressible flow. 

Evaluation based on seal geometric parameters is discussed in this section. It is 

found that the effect of tooth position on the carryover coefficient is insignificant. 

Clearance has major impact on the carryover coefficient among all parameters. To 

investigate the effect of clearance, rests of the parameters are kept constant. Clearance 

values of c = 0.05, 0.1, 0.15 and 0.2 mm are considered to evaluate the effect of the 

carryover coefficient at constant pitch, s=3 mm. It is found from the section 3.3.2. that 

higher clearance value produces higher carryover coefficient. At small clearance, 

c=0.05, the carryover coefficient value is found close to 1 which means better energy 

dissipation inside the cavity. 

Evaluation of the tooth width is carried out for w =0, 0.5 and 1 mm. In this 

investigation the clearance and pitch values are kept constant (c=0.05, s=3 ). It is 

observed in section 3.3.3. that wider tooth provides higher carryover coefficient. Pitch 
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effect on the carryover coefficient is evaluated for s= 3, 4, 5 mm and the clearance value 

is kept constant value of c =0.05 mm. From the section 3.3.4. , it is found that large pitch 

value gives better energy dissipation inside the cavity. As a result, large seal provide low 

carryover coefficient. For the low pitch value, it is vice versa. 

Evaluation of upstream angle effect on the carryover coefficient is discussed in 

section 3.3.5. It is found that upstream angle has significant impact on the carryover 

coefficient for both isosceles and right angle tooth. This evaluation is conducted for both 

compressible and incompressible flow. This effect was evaluated by varying B = 7 to 14 

degree for constant clearance, c= 0.05 and pitch , s =3 mm. It can be concluded from the 

evaluation that higher tooth angle gives lower carryover coefficient. 

Flow parameters have significant effect on the carryover coefficient. The 

carryover coefficient increases when the Reynolds number increases. It is observed that 

after certain Reynolds number the carryover coefficient increase is marginal due to the 

maximum pressure difference. Low carryover coefficient is observed at higher shaft 

speed compare to zero shaft speed. 

 

6.2.  Discharge Coefficient 

 

The discharge coefficient, Cd, is a representation of seal overall efficiency in terms of 

pressure drop while the carryover coefficient shows the effectiveness of a seal cavity  in 

terms of energy dissipation. In the entire study the discharge coefficient is calculated by 

using equation ( 4-1 ) in section 4.1.  
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Similar approach is applied as carryover coefficient to evaluate the discharge 

coefficient for seal geometric and flow parameters. It is found that small clearance, c, 

gives lower discharge coefficient. When clearance increases, accordingly the discharge 

coefficient is increases. For the carryover coefficient it is found that the tooth position 

has no effect. Tooth position has significant effect on the discharge coefficient for both 

compressible and incompressible flow. First tooth has no impact on the discharge 

coefficient as a function of clearance. But 2nd,3rd and 4th tooth have significant effect on 

the discharge coefficient.  

In the earlier discussion in section 4.3.3.  it is found that the wider tooth gives 

higher carryover coefficient. From the analysis it is found that wider tooth provides low 

discharge coefficient. Evaluation of pitch effect showed that higher pitch provides lower 

discharge coefficient for incompressible flow. This effect is not very significant compare 

to clearance. It is also observed that pitch variation has less effect on first tooth compare 

to 2nd, 3rd and 4th tooth. Pitch effect is insignificant for compressible flow. 

Tooth angle evaluation shows that it has no effect on the discharge coefficient for 

both compressible and incompressible flow. This evaluation is done for both isosceles 

and right angle tooth shape labyrinth seal. 

It is observed that flow parameters have significant effect on the discharge 

coefficient. The downstream teeth have more effect on the discharge coefficient compare 

to first tooth. The coefficient of discharge increase with the increase of Reynolds number 

This is observed for both compressible and incompressible flow. In the case of shaft 

speed, in overall it is found that the discharge coefficient is decrease as the shaft speed 
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increase. Also it is observed that at low Reynolds number, shaft speed effect is very 

significant compare to high Reynolds number. For the compressible flow, the shaft 

speed effect is insignificant on the discharge coefficient. 

 

6.3.  Expansion Factor 

 

Expansion factor IS calculated for a given Reynolds number, shaft speed and tooth 

position. In this study the expansion is defined for discharge coefficient and carryover 

coefficient. These two expansion factor were calculated by using equation ( 5-2) and ( 

5-3 ). It is observed that the tooth position has significant effect on the expansion factor. 

Downstream tooth in the seal has lower expansion factor compare to upstream tooth. 

This means more compressibility effect is observed at downstream tooth. From the 

evaluation, it is found that geometric and flow parameters have no impact on the 

carryover coefficient expansion factor. So it can be concluded that there is no 

compressibility effect on the carryover coefficient. 

 It is found that at small clearance, the expansion factor is decreases with 

increasing pressure ratio. But for the carryover coefficient expansion factor , the effect of 

clearance is found insignificant. There is no compressibility effect on the carry over 

coefficient for large clearances. It is found that shaft speed has significant effect on the 

expansion factor. The expansion factor increases when the shaft speed increases. Finally 

it is found that expansion factor is a function of pressure ratio and Reynolds number. 
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6.4.  Evaluation Summary 

 

The main objective of this study is to evaluate the effect of geometric and flow 

parameters on the discharge coefficient, Cd, carryover coefficient, γ, and expansion 

factor, φ. This evaluation is performed for both compressible and incompressible flow.  

Table 6.1 and Table 6.2 show the summary of the above mentioned evaluation for 

compressible and incompressible flow. In this entire research, evaluation of the 

triangular tooth on stator seal is conducted by using  sixteen cases and these case details 

are given in seal geometries matrix. 

 

 
Table 6.1. Evaluation summary ( incompressible flow ). 

 

Increases	 γ	 Cd	

c	 Increases increases 

s	 Decreases decreases 

w	 Increases decreases 

B	 Decreases insignificant 

Re	 Increases increases 

Wsh	 Decreases decreases 

 

 

 



165 

 

Table 6.2. Evaluation summary (compressible flow ). 
 

Increases	 γ	 Cd	

c	 Increases increases 

s	 Decreases decreases 

w	 Increases decreases 

B	 Decreases insignificant 

Re	 increases increases 

Wsh	 decreases insignificant 

 
 

So far based on the above evaluation, it was found that the clearance, c is the 

most important geometric parameter which affects the carryover and discharge 

coefficient most compare to other parameters. Pitch, p and width, w, are the next two 

parameters followed by clearance which affect the performance of the seal.  

It was found that for a constant pitch value, when clearance decreases the 

carryover and discharge coefficient are decreasing. Again for constant clearance, the 

higher pitch value gives lower discharge and carryover coefficient. It is evident from the 

study that wider tooth gives lower discharge compare to thinner tooth. But for the 

carryover coefficient this result is found opposite. 

Upstream angle has no effect on the discharge coefficient. But the carryover 

coefficient decreases when upstream angle increases. It was found that flow parameters 

have significant effect on the carryover and the discharge coefficient. When Reynolds 
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number increases both the carryover and discharge coefficient increases significantly. 

Shaft rotation has significant effect on the carryover and discharge coefficient. When 

shaft speed is increases both of the parameters are decreases. But for compressible flow, 

shaft speed has insignificant effect on the discharge coefficient. 

So to design an ideal triangular tooth on stator seal it is very to make an 

optimization of clearance, pitch and tooth width. Based on 17 cases in this study, it was 

found that Case 8 is the best seal for both compressible and incompressible flow in terms 

low Cd ( based on 1st tooth ) and γ. Case 8  showed the presence of secondary 

recirculation zone at low Reynolds number and high shaft speed  This SRZ is the main 

reason for this case to be provide better sealing in terms of the carryover and discharge 

coefficient. 
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7 RECOMMENDED FUTURE WORK 

 

The main objective of this study was to investigate the effects of flow and seal geometric 

parameters on the seal performance. Seal performance was evaluated based on three 

major parameters such as carryover coefficient, discharge coefficient and expansion 

factor. It was concluded that clearance, pitch and tooth width are the three major 

influential parameters among all geometric parameters which dominate the seal 

performance. This study was done for only triangular see through labyrinth seal. There 

are plenty of other seal geometry can be modeled for future work. In the following lists 

of paragraph, possible future research scopes are listed. 

1. This whole study was investigated for the Newtonian fluid. In future it is 

recommended to evaluate the seal performance for non-newtonian fluid. 

2. In this entire study shaft diameter of the rotor was kept constant. So there 

is a scope to study the evaluate the effect of shaft diameter on the seal 

performance  

3. Two types of triangular teeth( isosceles, right angle ) were investigated in 

this study. But for isosceles triangle tooth, shaft speed was introduced to 

evaluate the effect on the seal performance. In future study, right angle 

tooth shape can be investigated for high shaft speed effect to evaluate the 

discharge coefficient. 

4. This investigation was executed for see through arrangement. So there is 

an opportunity in future to investigate the staggered arrangement. 
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5. It was found from the evaluation that for compressible flow, effect of 

shaft rotation is marginal on the discharge coefficient. In future this can 

be validated by using different Air model. In this study Air was modeled 

as an ideal gas. 

6. It seems from current study that both flow and geometric parameters have 

no effect on the carryover expansion factor In this study outlet boundary 

condition was defined as 1 atm for all of the simulations. So it is highly 

recommended to run for different outlet pressure to validate the results of 

the carryover and discharge coefficient expansion factor. 

7. The pitch over height ratio in this study was kept 1. So in future, there is a 

scope to vary this ratio to see the effect on the seal performance. 
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APPENDIX A 

 

STANDARD k-ϵ TURBULENCE MODEL 

 

The k-ϵ model is the most popular model now a days to complete turbulence model. This 

model is used in commercial CFD packages to solve turbulence in the flow field. In this 

model two turbulence quantities ( k and ϵ ) are used to solve the model transport 

equations. A length scale ( L = k3/2/ϵ ), a time scale ( τ = k/ϵ ), a quantity of dimension νT 

( k2/ϵ) can be formed from these two quantities. As a result two –equations model can be 

completed without flow dependent specification lm (x). Along with turbulent viscosity 

hypothesis, the k-ϵ model consists of  

1. Model transport equation for k  
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2. The model transport equation for ϵ 

3. Specification of the turbulent viscosity as  
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where Cμ = 0.09 is one of five model constant 

In simple turbulent shear flow , the model yields [25] 
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