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ABSTRACT

Evolution of Memory in Reactive Artificial Neural Networks.

(May 2012)

Ji Ryang Chung, B.S., Seoul National University

Chair of Advisory Committee: Dr. Yoonsuck Choe

In the neuronal circuits of natural and artificial agents, memory is usually imple-

mented with recurrent connections, since recurrence allows past agent state to affect

the present, on-going behavior. Here, an interesting question arises in the context

of evolution: how reactive agents could have evolved into cognitive ones with inter-

nalized memory? This study strives to find an answer to the question by simulating

neuroevolution on artificial neural networks, with the hypothesis that internalization

of external material interaction can be a plausible evolutionary path leading to a fully

internalized memory system.

A series of computational experiments were performed to gradually verify the

above hypothesis. The first experiment demonstrated the possibility that external

materials can be used as memory-aids for a memoryless reactive artificial agents in a

simple 1-dimensional environment. Here, the reactive artificial agents used environ-

mental markers as memory references to be successful in the ball-catching task that

requires memory.

Motivated by the result of the first experiment, an extended experiment was

conducted to tackle a more complex memory problem using the same principle of

external material interaction. This time, the reactive artificial agents are tasked to

remember the locations of food items and the nest in a 2-dimensional environment.

Such path-following behavior is a trivial foraging strategy of various lower animals

such as ants and fish.
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The final experiment was designed to show the evolution of internal recurrence.

In this experiment, I showed the evolutionary advantage of external material inter-

action by comparing the results from neural network topology evolution algorithms

with and without the material interaction mechanism. The result confirmed that the

agents with external material interaction learned to solve the memory task faster and

more accurately.

The results of the experiments provide insights on the possible evolutionary route

to an internalized memory. The use of external material interaction can help reac-

tive artificial agents to go beyond the functionality restricted by their simple network

structure. Moreover, it allows much faster convergence with higher accuracy than

the topological evolution of the artificial agents. These results suggest one plausible

evolutionary path from reactive, through external material interaction, to recurrent

structure.
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CHAPTER I

INTRODUCTION

A. Motivation

Artificial Intelligence (AI) was born in the summer of 1956 at the Dartmouth Con-

ference [1]. Since then, reconstructing human-level intelligence has been its ultimate

goal [2, 3, 4, 5]. However, even after a half-century of effort, reaching this goal seems

difficult. There are two main reasons for this: (1) the drastically high complexity

of the brain, the organ of intelligence; (2) unclear framework to understand intelli-

gence. Before proceeding further, I feel obliged to clarify the place of my dissertation

work in AI research, and to explain how I will tackle these problems to justify the

methodology of my dissertation research.

1. Artificial Evolution

Until 1980’s, AI showed a certain amount of success especially in various expert sys-

tems. This success was limited because designing such systems require considerable

amount of human expertise and complete knowledge about input/output and the

domain itself. Traditional AI tried to infer logical rules from an existing intelligent

system. However, even a simple animal behavior involves intricate sensorimotor coor-

dination and it is impossible for a designer to come up with all the rules for the kind

of behavior. Moreover, because the brain is a product of continuous adaptations to

The journal model is IEEE Transactions on Automatic Control.
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an ever-changing environment, the resulting structure is not guaranteed to be optimal

(see e.g. [6]). This suboptimality makes it even more difficult to deduce the brain

structure. Therefore, from the late 1980’s, AI researchers started to think of the brain

as a subsystem within a larger system of dynamic nature. In “bottom-up” approach,

they advocated the importance of embodiment to show real intelligence, because sen-

sorimotor skills are essential to higher level skills. This emergentism requires a system

with basic elements that evolve to best suit its environment [7, 8, 9]. This artificial

evolution approach is particularly useful in investigating the human brain and intel-

ligence not only because the human brain is a result of biological evolution, but also

because it allows us the control over the complexity.

2. Memory

AI, or intelligence in general is an extremely broad topic. It is not just about problem

solving but includes various mental functions for learning, understanding, and inter-

acting with the environment. One plausible definition of intelligence is that it is the

capability of a system to achieve a set of goals in a variety of environments [10, 11].

However, such broad definition makes the attempt to build an intelligent system too

audacious. Instead of such a broad definition of intelligence, this dissertation focuses

on its better-defined subfunction, memory. Even though intelligence and memory

are not identical, they are closely interdependent on each other [12, 13]. Memory is

at the core of almost all cognitive functions, thus it has an extremely broad role. In

neural networks, memory is usually implemented with recurrent feedback connections
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(Figure 1). This unique structural requirement provides us with a clear distinction

between memoryless and memory-equipped systems.

With the above in mind, I will attempt to show the emergence of memory in

artificial neural networks through artificial evolution, the AI version of the emergence

of a key component of intelligence in animal brain throughout natural evolution. I

hope this effort can contribute to our understanding of human intelligence.

O(IT)

I X(A) → TR

FA

FR

Fig. 1. Piaget and Inhelder’s Memory Model. I = input(entry); O = organiza-

tion (system of internal transformations); X(A) = output or actions leading to

TR = transformations of reality; FR = feedbacks based on the results of TR;

FA = feedbacks based on X(A). Redrawn from [13].

B. Main Research Question

In the neuronal networks of natural or artificial agents, memory is usually imple-

mented with recurrent connections. It is well established that for a neural network

to show some level of memory, it needs recurrent connections [14, 15]. Also, the

brain does not have a strictly hierarchical organization: it has rich sets of reciprocal
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projections and loops (see e.g. [16]).

However, the nervous system of primitive creatures may have been limited to a

feedforward topology, thus exhibiting only reactive (reflexive) behavior [17, 18]. How

could this kind of primitive nervous system evolve to be equipped with a full memory

system, conferring the agent the ability to perform cognitive tasks? A clue to this

question can be found in the olfactory system. The most immediate sensory infor-

mation that led to internalized memory may have been olfaction, or chemoreception.

It is one of the most fundamental capacities already existing in the simplest early

animals [19]. Also, even the earliest creatures must have had chemical dropping be-

havior in the form of secretion or excretion because these are natural bi-product of

metabolism [20]. Combined, the two functions could have led to a memory capacity.

Wadhams and Armitage showed that a highly specialized chemotaxis sytem exists

in primitive creatures like the bacteria, which can distinguish more than 50 different

types of proteins and a large portion of their genome is dedicated to the encoding

in the chemotaxis system [21]. Furthermore, Tang-Martinez proposed the possibility

that self-generated olfactory cues could have been used to develop elementary intel-

ligence to recognize kin by phenotype matching [22]. Because this discrimination of

kinship is essential for the survival of the organism, even sea squirts without brain can

identify their kins using similar chemical cues [23]. Kin recognition does not require

any long term memory: simple genetic encoding will suffice (e.g., the MHC-based

recognition in mice and tadpoles). It is also suggested that chemical cues may have

evolved into communication signals [24, 25]. Sorensen and Stacey(1999) and Wy-
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att(2003) contemplated that leaking hormones or other metabolites could have been

the origin of pheromone. Furthermore, cognitive uses of such chemical signal could

have evolved into internalized neuromodulators (cf. [26]). These studies support the

biological feasibility of the two functions discussed above; olfaction and secretion.

C. Approach

To investigate the possibility of olfaction as the evolutionary origin of memory in arti-

ficial neural networks, I adopted two memory tasks: (1) ball catching task (Chapters

III and V); (2) food foraging task (Chapter IV). In the tasks, I will compare the

performances of two types of agents: (1) recurrent neural network; (2) feedforward

neural network with olfactory signaling/sensing capability (dropper network). Drop-

per network and recurrent network represent the brain before and after the evolution

of memory function (Figure 2). Comparable performance between these two types of

agents will attest that memory can be formed via external (chemical) material inter-

action, without internalized recurrent connections. Moreover, demonstrating higher

evolutionary benefit of the dropper agents will further fortify the possibility that the

external material interaction can indeed be the evolutionary origin of memory.

D. Outline

This dissertation will be organized as follows. Chapter II will introduce the back-

ground of my research. Then, two artificial evolution simulations on memory tasks

with increasing difficulties will follow (Chapters III and IV). These chapters will show
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A. Recurrent Animal B. Dropper Animal

Fig. 2. Conceptual Basal Animals Implementing Recurrent Neural Network

and Dropper Network. A. Animal with recurrent neural network. B. An-

imal with dropper network. ch. chemicals in the environment. s. sensory

system. m motor system. ex excretory system. The key differences between

the two animals are in their neural structure and the motor control of the

excretory system (see Chapter II).

the emergence of memory-like behavior in the memoryless dropper network. The next

chapter (Chapter V) will contain an artificial evolution simulation demonstrating the

evolutionary advantage of the dropper network over the recurrent one. Finally, Chap-

ter VI concludes the whole dissertation with general discussions and future directions.
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CHAPTER II

BACKGROUND AND RELATED WORK

A. Olfaction and Memory

In this chapter, I will introduce existing research from related disciplines supporting

the relationship between olfaction and memory.

1. Evolutionary Relationship between Olfaction and Memory

Olfaction is known to be the earliest sense because of the primitiveness of the sensor

and the universality in the animal phyla [19, 27]. Evolution brought animals from

water to land [28]. Coupled with the evolution of the animal brain, and hence their

intelligence, the change of environment in evolution suggests something important.

Unlike ground-based animals rely mostly on volatile chemicals transmitted via air,

water is a better medium for chemical communication as it delivers much heavier

odor cues. This environmental change forced more evolved animals to less rely on

the olfaction [29]. Niimura and Nei (2005) showed that the diversity of olfactory

receptor genes has been reduced as animals evolve from fish to amphibians, and

from amphibians to mammals and avians. Such deterioration of olfactory system

continued in mammalian evolution [30]. Nature selects based on adaptability, which

affects survival. If olfactory sense is not beneficial, it is meant to die out. However,

olfaction has a unique characteristic that can greatly benefit one’s survival. Unlike

other sensory signals, odor cues can last and “transmit into the future” [31]. This
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temporal aspect allows animals to access past odor signals, which is the very function

of memory. Researchers including Moulton and Giland et al. noticed the relationship

between the reduction of olfactory system and positive evolution in other brain areas

[32, 33]. Because both olfaction and memory share temporal function, I believe

that the deterioration in olfactory system has been compensated by memory system

throughout evolution. Indeed, there exist a host of findings from various research

domains suggesting close relationship between olfaction and memory.

2. Neurophysiological Relationship between Olfaction and Memory

An interesting connection between olfaction and memory can be found in the rela-

tionship between the olfactory system and the hippocampus in the mammalian brain.

Researchers including [27, 34] have shown the anatomical and functional proximities

between the olfactory bulb and the hippocampus. The olfactory bulb is a structure

in mammalian forebrain where the olfactory pathway starts, and the hippocampus

is a brain region involved in spatial memory. Anatomically, the olfactory bulb is lo-

cated only a couple of synapses away from the hippocampus. Moreover, unlike other

senses, olfactory sense bypasses the thalamus and directly feeds into the limbic system

which includes the hippocampus (Figure 3). Because of these facts, hippocampus was

once believed to be part of the olfactory system. Moreover, unlike any other sensory

neurons, olfactory neurons are unmyelinated, thus making olfaction the slowest sense

[27]. This provides olfactory sense a temporal aspect, like memory does, because it

persist the longest in the brain.
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A.Limbic System

MOB

EC

HC
TH

HTH

PC

A

B. Major Olfactory Signal Pathway

Fig. 3. Olfactory System. A. Limbic system is shown. Olfactory bulb is located

proximal to the Amygdala and Hippocampus. Adapted from [35]. B. Ma-

jor olfactory signal pathway. Red arrows indicate the main olfactory pathway

and blue arrows intracortical projections. Abbreviations: MOB, main olfactory

bulb; PC, piriform cortex; A, amygdala; EC, entorhinal cortex; HC, hippocam-

pus; TH, thalamus; HTH, hypothalamus.
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3. Functional Relationship between Olfaction and Memory

This unique adjacency between the olfactory and the memory system is further em-

phasized in Proustian retrieval of autobiographical memory [36, 37, 38]. This is a

phenomenon that autobiographical memory can be best retrieved by olfactory cues.

Researchers believe that the possible involvement of the olfactory bulb in memory

consolidation, due to its anatomical closeness to the amygdala and the hippocam-

pus, makes olfaction also involved in memory formation [39]. Moreover, researchers

have shown that the memory system related to olfaction is separate from the memory

system for other sensory modalities [40, 27, 41].

4. Embryological Relationship between Olfaction and Memory

In addition, embryological evidence suggests a genetic kinship between the olfactory

bulb and the hippocampus. In an effort to show that neurogenesis is not restricted to

the embryonic period but also occurs in the adult mammalian nervous system, Altman

et al. and Frisén et al. found that neurogenesis in adults is most often observed in

the olfactory bulb and the hippocampus, but rarely elsewhere [42, 43]. Machold et al.

and Palma et al. tested the requirement for hedgehog signaling in the telencephalon

and the subventricular zone [44, 45]. They mutated the Sonic hedgehog (Shh) gene,

a ligand in the hedgehog signaling pathway regulating vertebrate organogenesis, to

examine the resulting postnatal abnormalities. They found that Shh mutation af-

fected the hippocampus but surprisingly it also affected the olfactory bulb. These

results altogether imply a close genetic relationship between the olfactory bulb and
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the hippocampus.

B. Related Works

This dissertation is related to a wide range of literatures such as robotics, machine

learning, and artificial life. This section presents an overview of the work in these

related fields. Reviewing these fields also identifies the limitations in the current

approaches.

1. Robotics

Two streams of biologically inspired robotics research are related: behavior-based

robotics and evolutionary robotics. Here, I provide a brief summary and evaluation.

a. Behavior-based Robotics

Mataric provides a good overview of the concept of behavior-based robotics [46].

Behavior-based robotics is a branch of robotics with reactive controllers consisting of

a set of simple behavioral primitives. The states represented in behaviors enable the

behavior-based system to generate practical artificial behaviors. Instead of nonin-

trinsic computations used in conventional robotics, this behavior-based methodology

exploits the principle of stigmergy in a sense that the current behavior is affected

by previous ones. The simplicity makes behavior-based robots better candidates for

computationaly expensive tasks in dynamic environments [47]. However, this method

requires designer’s intuition to define the behavioral architecture. This approach is

biologically implausible, since the designer’s intuition cannot be always correct and it
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can block the chance for agents to develop unexpected yet effective behavior(cf. [48]

on the emergence of unexpected strategy.) This might be the reason why behavior-

based systems have difficulty scaling up to handle complex problems. Also, they lack

the explanation on how the behavioral architecture is learned or developed.

b. Evolutionary Robotics

Unlike behavior-based robotics that requires designer’s intrusion to set up basic be-

haviors, desired behaviors are acquired in a self-organizing manner in evolutionary

robotics [49]. Mimicking biological evolution, it follows the Darwinian principle of se-

lective reproduction of the fittest. Randomly created initial population with different

genotypes of control system (usually neural networks) are evaluated by fitness score

and those with higher scores are selected to produce offsprings via crossover and mu-

tation. This process is repeated until desired progress in the fitness is reached. This

methodology requires less human intervention and results in the evolution of adap-

tive agents with emergent behaviors/strategies [50]. This method is commonly used

for evolving memory-like behavior in feed-forward, thus reactive agents. However,

learning is constrained by the preset phenotype in conventional simulated evolution

and this is not enough to show how intelligent agents are evolved to equip feed-back

connections, the internalized memory.

2. Topological Evolution

To cope with the structural constraints of neural network, methods evolving both

neural network topologies and weights have been developed [51, 52, 53, 54]. Evolv-
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ing neural network topologies can overcome the functionality limitation and result

in significant performance gain. Amongst many, Stanley and Miikkulainen argued

that their NeuroEvolution of Augmenting Topologies (NEAT) can solve the problems

inherent to topological evolution while maintaining minimal dimensionality [54].

Complex tasks are not easy to solve using typical neuroevolution because the

search space can be too large and defining fitness functions becomes too difficult. An

effective strategy for such case is to decompose the global task into multiple subtasks

and to let the agents to learn each subtask one after another [55, 56]. However because

the network size in NEAT or other topological evolution methods keeps increasing,

the final network structure after learning all the subtasks can be unnecessarily large

with superfluous connections [57]. Moreover, because each subtask can generate dis-

tinct network topology [58], different sequences of subtasks will yield totally different

network topology at the end, even though their functions are the same.

3. Pheromone Agents

Using pheromone as a communication medium is an effective strategy proven by na-

ture. From the fact that pheromones are used more by insects than by higher animals,

we can infer that it can be used to increase the capacity of the simple brain. Inspired

by this, numerous studies have been performed with swarms of simple agents using

virtual pheromone [59, 60, 61, 62, 63, 64]. However, they fail to address a substantial

property of the pheromone. Pheromones have two important properties: spatial and

temporal. The location and time of a pheromone drop denote the locus and instant of
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importance respectively. Nontheless, most studies on pheromone agents overlook the

temporal property by making the agents throw pheromone unconditionally. More-

over, their investigations are limited to social learning. Pheromone can indeed serve

as a medium of communication between or among multiple agents. However, a per-

spective lacking in the existing studies is that it also enables an agent to communicate

with oneself in different points of time, just like in memory.

Sorensen and Stacey (1999) suggested an interesting model for the evolution of

pheromone communication [24] (Figure 4). In the model, it requires two optimization

stages, one for the receiver and the other for the doner of the pheromone. The mutual

benefit from communication requires co-evolution of both doner and receiver. As

memory can be thought of as a communication with oneself in different points of time,

the self-communication of the dropper network with dropper/detector mechanisms

can be seen as almost a single party version of this model (Figure 5).

C. Summary

In this chapter, I introduced existing research motivating this dissertation. Also

introduced are the researches that share common grounds with the current work.

These evidence, relevance, and methodologies necessitate the study on the evolution

of memory. In the following chapters, I will introduce a series of experiments that

possibly enlighten the evolutionary origin of memory.
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Receiver Doner

Hormonal Product

A. Preadaptation

Receiver (learning) Doner

Pheromonal Cue

B. Spying

Receiver (learning) Doner (learning)

Pheromonal Signal

Response

C. Communication

Fig. 4. Evolutionary Model for Pheromone Communication. A. Hormonal

product released from the doner, but there is no mechanisms for detection

or response in the receiver yet. B. Receiver’s olfactory function evolves to de-

tect/respond to the pheromonal cue from doner. Receiver benefits and release

of hormonal product is not changed yet. C. Doner’s pheromone production

evolved to optimize its benefit from the receiver’s response. Adapted and from

[24].
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Secretory Product

Doner: Past-Self
Receiver: Present-Self

A. Preadaptation

Secretory Cue

Doner: Past-Self
Receiver: Present-Self (learning in Detector mechanism)

Secretory Signal

Doner: Past-Self
Receiver: Present-Self (learning in Dropper mechanism)

Response

B. Spying & Communication

Fig. 5. Evolutionary Model of Memory (Self-communication). A. Preadapta-

tion: Secretory product released. B. Spying (left) and Communication (right)

concurrently evolves.
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CHAPTER III

TASK I: CATCHING FALLING BALLS IN 1D

A. Task Description

In order to test if the use of external markers can work as well as the use of recurrent

memory, I used a delayed-response task inspired by [65, 66] (Figure 6). An agent

controlled by a neural network moves horizontally at the bottom of the 2D environ-

ment while trying to catch falling balls (the movement is in 1D). The environment

size was 400×400. The agent had an array of five range sensors with limited radius

(=200). Two balls are dropped from the top at different speeds. They can be sensed

if they come into contact with the range sensors. The goal of the agent is to catch

both balls. The initial position of the balls can vary within the range of the agent’s

sensors, with two constraints: first, they are to be located on the two different sides

(left and right) of the agent’s initial position and they must also be horizontally sep-

arated far enough to meet the memory requirement of the task (if the balls are too

close, they will remain within the sensor range at all times). Memory is necessary to

be successful in this task, as can be seen in Figure 6.

B. Methods

Three agents, each controlled by a different type of neural network, were used in

the experiment: (1) feedforward network, (2) recurrent network, and (3) feedforward

network with external marker dropper/detector (“dropper network”).
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A
B C

D E

B1

speed = 1

B2

speed = 2

agent

5 distance sensors

θ

Fig. 6. Ball Catching Task. The task illustrates a scenario where memory may

be needed. A. The agent is initially placed at the horizontal center of the

environment. Two balls are falling at different speeds (the right ball is faster

in this example). B. When the agent moves to catch the faster ball, the slower

one goes out of the agent’s view. C. The agent catches the first ball. D. The

agent must move back to the slower ball without any input from the range

sensors (this will require memory of where the other ball was when the agent

lost contact of it). E. The agent catches the second ball.

1. Feedforward Network

The first controller is made of a simple fully connected feedforward neural network

containing three layers - input, hidden, and output (Figure 7). Five inputs of the

input layer were from five sensors. Sensor inputs were inversely proportional to the

distance between the agent and the ball detected by the sensor:

Ii = 1−Disti/Lengthi (3.1)
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where Lengthi denotes the length of the range sensors which was set to 200 for all 5

sensors and Disti is the distance between the agent and the ball detected by the i-th

sensor. Disti was 200 when no ball is detected, which makes Ii = 0. The input values

are propagated to the hidden layer and then to the output layer. (Note that bias units

were not used [in all three agents] to avoid default behavior that can artificially crank

up the performance.) Activation values of the two outputs (O1 and O2 in Figure 7)

decide the movement of the agent (the horizontal location in the next time step, Loc).

The agent takes a unit-sized step to its left if O1 > O2, to the right if O1 < O2, and

stays if O1 = O2. The speed of the agent is fixed to a unit distance per time step.

The equations for this baseline agent take the following standard form (see e.g., [67]):

Hj = σ

Nin∑
i=1

vjiIi

 j = 1, ..., Nhid

Ok = σ

Nhid∑
j=1

wkjHj

 k = 1, ..., Nout

Loc(t+ 1) =


Loc(t)− 1 O1(t) > O2(t)

Loc(t) + 1 O1(t) < O2(t)

Loc(t) O1(t) = O2(t)

(3.2)

where Ii, Hj and Ok are the activations of the i-th input, j-th hidden, and k-th output

neurons; vji the input-to-hidden weights and wkj the hidden-to-output weights; σ(·)

the sigmoid activation function; and Nin, Nhid, and Nout are the number of input,

hidden, and output neurons whose values were 5, 3, and 2 respectively. The unit-

distance of the movement of the agent was set to 1.

This agent is expected to fail in the given task because it cannot remember the
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existence of the slower ball at the time it catches the faster one. Right after catching

the faster ball, the agent receives no input to drive further movement (Figure 6C).

The purpose of showing this agent is just to provide the basic structure for the other

agents and establish baseline performance.

input neurons

hidden neurons

output neurons

I
1

I
2

I
3

I
4

I
5

H
1

H
2

H
3

O
1

O
2

Fig. 7. Baseline Feedforward Agent.

2. Recurrent Network

A memory mechanism is built into the second agent by recurrent connections feeding

previous hidden states back to the hidden layer (Figure 8). This type of recurrent

neural network known as Elman Tower is an extension of the basic Elman network,

which is one of the most commonly referenced recurrent networks [15]. Also, other re-

searchers used recurrent networks to model the hippocampus (see e.g. [68]). Because

it is one of the simplest recurrent networks, the Elman network is a good candidate for

an immediate descendent of feedforward networks, as a possible first step in evolution
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from a memoryless to a memory-capable system. Usually the more the number of

hidden state feedbacks from the past, the more powerful the network is. The number

of hidden state feedbacks was either 3 or 7, depending on the experiment. Recurrent

connections can be defined as in the equation below:

z −1

ujl

ujl

ujlI(t)

H(t)

O(t)

 . . . 

H(t−2)

vji

w
λ

λ

λ

H(t−1) kj

H(t−N    )mem

I1 I3 I4I2 I5

O 1 O 2

H 1 H 2 H 3

H 1 H 2 H 3

H 1 H 2 H 3

H 1 H 2 H 3

Fig. 8. Memory-equipped Recurrent Agent. Nmem previous hidden state vectors

are fed back to the hidden layer (filled arrows). The open arrows indicate a

1-step delayed copying operation (λ indicates the decay rate). Hidden-to-out-

put connection is the same as that of the baseline agent. See the text for the

definition of other terms.

Hj(t) = σ

Nin∑
i=1

vjiIi(t)

+
Nmem∑
m=1

Nhid∑
l=1

λmujl(m)Hl(t−m)


j = 1, ..., Nhid

(3.3)
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where ujl(m) is the recurrent connection weight from the m-th previous hidden state

vector Hl(t − m). A constant decay rate (λ = 0.7) was used to penalize the effect

of older state vectors, that is, H(t − m) = λH(t − (m − 1)). All other terms were

identical to those explained above.

3. Dropper Network (Feedforward Network with Dropper/Detector)

I
1

if O3 > θ,

DropMarker = True (1)

else,

DropMarker = False             (2)

(1) (2)

I
2

I
3

I
4

I
5

I
6

I
7

H
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H
2

H
3

O
1

O
2

O
3

Fig. 9. Feedforward Agent with External Marker Dropper/Detector

(“Dropper Network”). The architecture is identical to the feedforward

agent, with the difference being the two additional inputs to detect the ex-

ternal markers (I6:left, I7:right) , and an added output for dropping markers

(O3).

Finally, the last one, the one of my interest, is the agent using external markers

(imagine leaving a bread-crumb trail). The underlying neural network is a feedfor-
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ward network, identical to the baseline agent. The only difference is that it has two

more inputs and it has one more output (Figure 9). The additional inputs are from

supplementary sensors which can detect external markers (I6 [marker detected on the

left] and I7 [marker detected on the right] in Figure 9). The additional output (O3)

is for the motor action to drop a marker in the environment. Because the primitive

animal this agent is modeling already has external sensors, there is no evolutionary

overhead to have additional mechanisms like these. That is, primitive animals may

use already existing sensors to sense external markers in the environment. Throwing

markers is a mere modeling of a behavior they may already have, e.g., excretion.

Below is how this additional output works:

DropMarker =


True if O3 > θ

False otherwise
(3.4)

If the value of O3 is greater than the threshold θ, the agent drops a marker in its

current position before it moves to the next position. This threshold is not fixed but

is also learned through genetic search. Note that this whole scheme could be seen

as just another round-about way of adding recurrence, however it is a simulation of

an indirect external loop and thus is different from direct, internal, recurrent neural

circuits. The recurrence created by the dropper network is indirect because it does

not use the dynamics of the network, but uses sensory-motor interaction, and is thus

second-hand. Moreover, while it is true that I6 or I7 activates as O3 goes on, O3’s

on/off condition is relative to an evolved threshold value, and the dropping event also

specifies the location of the marker in the environment (this latter aspect is more
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prominent in the foraging task). Therefore, this is indirect, different from the direct

neuronal relay in a recurrent network architecture.

C. Experiments and Results

The learning of connection weights of the agents is achieved through genetic search

(neuroevolution). The fitness for an agent is set inversely proportional to the sum of

the horizontal separations between itself and each ball when the balls hit the ground.

The tasks were given to each agent 12 times (24 balls), where the ball to the right

of the agent is falling faster in the first 6 tasks and vice versa for the 6 latter tasks.

Fitness values of the 12 tasks are added to form the overall fitness for the agent.

Best performing agents of the population in the current generation survive to the

next generation. One-point crossover with probability 0.9 and mutation with rate

0.04 was applied to these best-performing agents to modify the connection weights of

the current population. The halting criterion of the evolution was when any single

agent in the current population is successful in catching more than 23 balls out of

24 (about 96% success rate). When the evolution step reaches a preset maximum, a

fresh new agent pool was created by randomizing their weights and a new evolution

process initiated.

In addition to the initial comparison of the performance between the three agent

types, I wanted to know the effect of the capacity of the external marker detectors on

the performance of the external-marker-using agent. Therefore, two external-marker-

using agents with different marker detector range (one with the same length as the
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distance sensors, the other with 1/4 the length) have been tested. For fair comparison,

I also varied the capacity of the memory-equipped agent (one with the memory order

Nmem [the number of hidden state vector feedbacks] set to 3, and the other to 7).

As expected, the baseline agent in Figure 7 could never succeed in the task. It

could catch only one of the balls (i.e., success rate was 50% at best). The agent

stops upon catching the first ball because it does not receive any further input at

that point (Figure 6C). Because this agent was tested only to emphasize the memory

requirement of this delayed-memory task, I will not show the detailed result here.

The following results are from 4 groups of agents (2 network types × 2 capacity

differences). Table I summarizes the 4 groups.

Table I. Ball-catching Task Experiment Description
Agent Mechanism Capacity/Range
SM (Short Memory) Recurrent Network Low
LM (Long Memory) Recurrent Network High
SS (Short Sensor) Dropper Network Low
LS (Long Sensor) Dropper Network High

Figures 10 and 11 show the agents’ trajectories in the four experiments. In the

figures, the y-axis represents time and the x-axis relative horizontal location (0 marks

the initial position of the agent, and - and + the right and the left of that position).

The balls on the left falls faster in the first 6 tests and the balls on the right falls

faster in the 6 remaining tests. All the agents in the 4 different groups were successful

in catching all 12 pairs of balls.

I compared the performance by running 200 pairs of the balls (100 in each faster-

left and faster-right ball cases) for 5 agents in each experiment. Results show that all
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Fig. 10. Trajectories of the Agents with Short Capacity/Range. The trajec-

tories of the recurrent agents with low memory capacity (red curve) and the

dropper agents with short marker sensor range (blue curve) are shown. Six

trials are shown, with three “fast left ball” (marked Left 1 to 3) and three

“fast right ball” conditions (marked Right 1 to 3) for 200 time steps. Agents

using external markers (SS) always slightly overshoot (few examples marked

by →) the horizontal position of the first ball they catch (blue curves).



27

Fig. 11. Trajectories of the Agents with Long Capacity/Range. The trajecto-

ries of the recurrent agents with high memory capacity (red curve) and the

dropper agents with long marker sensor range (blue curve) are shown. Again,

agents using external markers (LS) always slightly overshoot (few examples

marked by→) the horizontal position of the first ball they catch (blue curves).

See Figure 10 for plotting convention.
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four types of agents were successful in solving the task with a success rate of at least

91.5%. Figure 12 summarizes the results. In the figure, the average performance of

the agents under faster left ball and faster right ball conditions are shown. Recurrent

network and dropper network both show above 90% performance in all cases (both

fast-left and fast-right conditions, and for both high/long [red bars] and low/short

capacities [blue bars]).

Between-group performance comparison reveals the recurrent network’s slight

performance superiority over the dropper network (Figure 13). Nevertheless, what

is important here is that the dropper networks show much higher performance than

the baseline feedforward networks. Feedforward networks only showed near 50%

performance when both fast-left and fast-right conditions are averaged: only catch

left ball, catch left and right ball with equal probability, or only catch right ball (data

not shown).

How did the feedforward agents using external markers become almost as suc-

cessful as the recurrent agents? To answer this question, I analyzed the behavior of

the feedforward agent to see how they use external markers as a memory-aid. The

strategy they used is illustrated in Figure 14. As described in the figure, feedforward

agents overshoot the position of the faster-falling balls and then begin to throw ex-

ternal markers. This overshooting patterns of the agents using external markers are

clearly observed in their trajectories in Figures 10 and 11. When there is no input

from the distance sensors after they catch the ball, they use the external markers in

an aversive manner to track back away from the markers until the slower-ball gets
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A. Recurrent (LM & SM)

B. Dropper (LS & SS)

Fig. 12. Average Performance Comparison of the Agents. The recurrent and

the dropper networks show above 90% performance (high capacity/range [red],

low capacity/range [blue]).
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Recurrent (LM & SM) Dropper (LS & SS)

Fig. 13. Performance Comparison between Recurrent and Dropper Net-

works. Average catch performances are plotted. Recurrent networks

(M=0.969) show a catch performance greater than dropper networks

(M=0.935). The difference between two networks is significant (p<.001,

n=4000).

detected by their distance sensors.

To see how the use of external markers is related to memory, I looked at the hid-

den state activations of the agents. Figure 15 shows example (LS) of the hidden state

activations of the dropper networks throughout the task. We can discriminate the

hidden states in “ball-driven” movements from those in “marker-driven” movements.

However, the distinction between faster-left-ball and faster-right-ball cases were am-

biguous. I further compared the hidden state activations for all four cases (SM, LM,

SS, and LS) when the agents are moving back to the second ball after catching the

first one because those are the times memory is being used for the recurrent network

agents. Figures 16 and 17 plot the hidden state activations in this phase in grayscale
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intensities and in line charts.

A. Detecting First Ball D. Catching Fast-falling Ball

B. Ball-driven Movement E. Marker-driven Movement

C. Losing View of Slow-falling Ball F. Catching Slow-falling Ball

Fig. 14. Dropper Strategy. A sketch is shown of a typical evolved strategy observed

in dropper agents (SS) in the faster right ball case. A. Agent detects the

faster ball first. B. Agent detects both balls while moving toward the faster

one. C. The slower ball goes out of the agent’s range sensor’s scope. D. Agent

overshoots the ball and starts to drop markers. E. The markers repel the

agent away until the slower ball is detected by the sensor. F. The slower ball

comes within the range sensor’s scope and the agent catches it.

For the memory-equipped agents using recurrent networks, the difference in the

activation patterns of hidden neurons between Case A (faster left ball) and Case B

(faster right ball) is evident. For example, in the recurrent network agents (Figures
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A. Faster Left Ball

B. Faster Right Ball

Fig. 15. Example of Hidden States Activation in LS Experiment. The hid-

den states for “ball-driven” movements (A-(1) and B-(1)) and for “marker–

driven” movements (A-(2) and B-(2)) are distinctive. Ball-catching moments

are marked by →.
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Fig. 16. Hidden State After First Ball is Caught. Case A: faster left ball. Case

B: faster right ball. SM, LM, SS, and LS mean Short Memory, Long Memory,

Short Sensor, Long Sensor, respectively (Table I). H1, H2, and H3 show the

hidden layer activation level.
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Fig. 17. Line Chart of the Hidden State After First Ball is Caught. Line

chart of the hidden states in Figure 16. Recurrent networks have distinct

internal representations for faster left (Case A) and faster right ball (Case B).

However, the two cases are less distinctive in the internal representations of

the dropper. SM, LM, SS, and LS mean Short Memory, Long Memory, Short

Sensor, Long Sensor, respectively (Table I). H1, H2, and H3 show the hidden

layer activation level.
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16 and 17, rows LM and SM), the hidden state activation patterns in Case A are

near inverse of those in Case B (compare the average activation plot to the right).

This hidden unit representation is the internal state of the agent (see e.g. [15]), and

since they show distinct states, I can say that the recurrent agents indeed remember

the location of the ball (left or right) distinctively. However for the dropper network

agents (rows LS and SS), the activation patterns are similar in both Case A and B.

This is because the distinction is already presented by the location of the self-dropped

markers in the environment (markers on the left-side of the agent in Case A and the

right-side of the agent in Case B) and does not need to be represented internally.

Thus, the spatial information required to solve the task is located in two different

places–inside the brain for the recurrent network or in the environment in the form

of external markers for the dropper network.

D. Discussion and Conclusion

In this chapter, I showed how recollection can evolve in neural circuits, thus linking

the organism to its past. The results here suggest an interesting linkage between

external memory and internalized memory. For example, humans and many other

animals use external objects or certain substances excreted into the environment as a

means for spatial memory (see [69] for theoretical insights on the benefit of the use of

inert matter for cognition). The next chapter (Chapter IV) will extend this model in

a more complex memory task of foraging. Because foraging is a behavior critical for

the survival of natural agents, this simulation will provide extendibility and biological
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plausibility of the dropper network model proposed in this chapter.



37

CHAPTER IV

TASK II: FORAGING FOOD IN 2D

To test if the dropper network’s performance can be generalized beyond a simple

memory task, I extended the task domain to a 2D map. As the task environment be-

comes more complex, the agent must be able to express richer context. This task was

a biologically plausible food-foraging task (Figure 18). Same as with the ball-catching

task, I tested recurrent and the dropper networks and compared their performance.

I left out the feedforward network since its performance only established the baseline

in the previous section.

A. Task Description

Three food items were located in an environment of size 300×300, and the agent

starts from the nest location and explores for food. The goal is to consume all three

food items in the environment. When a food item is found, the agent needs to find

its way back to the nest to consume the food item (The agent has limited food

delivery capacity that it can carry only one food at a time). This type of behavior

is often observed in animals because they feed the young, cache food for later use,

or avoid competition by not consuming the food on-site [70, 71, 72]. The agent has

sensors with a limited range of 40, whose inputs are calculated in the same manner as

Equation 3.1. The memory requirement of the task is imposed as follows. From the

nest, the agent can only detect food#1 (Figure 18B). When it moves close to food#1,
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Agent (circle)
Nest (filled ‘X’)
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A. Task Setup B. Agent at Initial Location
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Food #3
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Food #3
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C. Agent Getting Food]1 D. Agent Getting Food]2

Fig. 18. Food Foraging Task Definition. A. Agent’s initial location (gray X de-

notes nest location and blank X’s denote food locations). B-D. Shaded area

denotes the agent’s sensor range. Agent’s location is indicated by a circle.
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then food#2 comes within its sight (Figure 18C). However, it needs to come back to

the nest to consume food#1 and this makes food#2 invisible again. Therefore, the

agent needs to memorize where the next food item was (in this example, food#2).

The same applies to food#3 (Figure 18D) and the agent has to move back and forth

between the food item and the nest at least three times. Moreover, the nest does not

generate any sensory cue at all, thus the nest location also needs to be remembered

by default. The agent has a limited life span which increases only when it successfully

consumes a food item.

B. Methods

The agent model used in this task is illustrated in Figure 19. The agent interacts

with the environment with 8 pairs of sensors distributed uniformly around the center

at an interval of 45◦, 8 of which are receptors sensitive to the external markers the

agent drops. The other 8 are distance sensors sensitive to food items. Both types of

sensors are limited in range subject to the constraint mentioned in the foraging task

description, and the magnitude of the sensor signal is inversely proportional to the

distance to the detected object.

Recurrent and dropper networks used in this task have similar topologies as

described in the ball-catching task, with minor differences in the number of input

and output units. Three network outputs (O1, O2, and O3) indicate x-, y-, and

orientation offsets, which determine the next location and orientation of the agents:

θ(t+ 1) = θ(t) + 180◦×O3(t) (4.1)
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External Marker
Food

Fig. 19. Agent Model. Simple agent with directional/ranged sensors for food and

external markers.

x(t+ 1) = x(t)

+ Speed×O1(t)× cos(θ(t+ 1))

+ Speed×O2(t)× cos(θ(t+ 1) + 90◦)

(4.2)

y(t+ 1) = y(t)

+ Speed×O1(t)× sin(θ(t+ 1))

+ Speed×O2(t)× sin(θ(t+ 1) + 90◦)

(4.3)

where θ(t), x(t), and y(t) are the orientation and xy location of the agent at time t

(Figure 20). Speed, the speed of the agent, was set to 3. The agent can freely navigate

within the environment while bouncing off when it comes into contact with the wall

(Figure 21). As in the previous task, default movements are blocked by removing the
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bias units so that the agent does not move without sensory input. This is intended

to maximize the memory requirement of the task. Also, one more output unit is

added to a typical feedforward network to allow marker dropping behavior (Figure

22). To analyze the effect of ‘forgetfulness’ of the memory, three different memory

decay rates were tested for both the recurrent and the dropper networks. Table II

summarizes the experimental setup. I tried three different memory decay rates of the

recurrent network (λ=1.0, 0.99, and 0.7). For each of them, three previous hidden

state vector sizes (Nmem=5, 10, and 20, see Equation 3.3 and Figure 8) were tested

to identify their effects on the performance. The evaporation rate (ρ) of the chemical

markers used by the dropper network was also varied as the memory decay rate of

the recurrent networks: M(t) = ρM(t− 1), where ρ=1.0, 0.99, and 0.7, and M(t) is

the marker strength at time t. Volatility is a natural property of chemicals analogous

to the recency effect (forgetfulness) of internal memory. If so, using this property can

increase performance by prioritizing newer events, as the recency effect does [73]. The

same genetic algorithm discussed in the above section was used to train the networks.

Table II. Food Foraging Task Experiment Description

Memory Decay Agent
Recurrent Dropper

0% loss per step λ=1.0
Nmem=5

ρ=1.0Nmem=10
Nmem=20

1% loss per step λ=0.99
Nmem=5

ρ=0.99Nmem=10
Nmem=20

30% loss per step λ=0.7
Nmem=5

ρ=0.7Nmem=10
Nmem=20
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Equation (7)Equation (6)

Equation (5)

Agent(t){Ɵ(t), x(t), y(t)}

Agent(t+1){Ɵ(t+1), x(t+1), y(t+1)}

Fig. 20. Agent Movement. Agent(t) denotes the agent’s orientation and location at

time t. It turns and moves according to Equation(5), (6), and (7).
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Ɵ Ɵ 

wall

Agent(t)

Agent(t+1)＇

Agent(t+1)

Fig. 21. Agent Bounces off the Wall. Agent(t+ 1)′ denotes the agent’s next loca-

tion calculated using Equation (5), (6), and (7). As the agent contacts a wall

on its way to Agent(t + 1)′, it bounces off the wall and the next location is

changed to Agent(t+ 1).
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I1 I2 I3 I8 I9 I10 I11 I16

H1 H2 H3 H4 H5 H6 H7

O1 O2 O3 O4

if O4 > θ,
DropMarker = True (1)

else,
DropMarker = False (2)

Example of case (1)

… …

8 Food Sensor Signals 8 Marker Sensor Signals
: marker

: agent

Fig. 22. Neural Network of the Dropper Agent. An output unit (O4) is added to

the typical feedforward network to allow external marker dropping behavior.

The box shows an example of leaving external markers when the agent moves

to a next location. The recurrent network counterpart had a similar structure

as Figure 8, with no external marker sensors.

C. Experiments and Results

A total of 30 evolutionary trials were given to each type of network controller. A

trial is recorded as successful if the agent consumes all three food items in the en-

vironment. Figures 23 and 24 show the quantitative results of the experiment. It

is clear that the growing number of hidden state feedback degrades the performance

of the recurrent networks (Figure 23A). This is because of the additional parame-

ters that the recurrent agents have to tune. For example, the recurrent agent with

5 hidden state feedbacks has 8×7 (input to hidden weights)+5×7×7 (hidden feed-
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back weights)+7×3 (hidden to output weights)=322 parameters while the dropper

agent has only 16×7 (input to hidden weights)+7×4 (hidden to output weights)+1

(threshold for O4)=141 parameters. When the number of hidden state feedback is

20 for the recurrent agent, the number of parameters grows to 1057. Comparing the

success rates between λ=1.0 and λ=0.99, small memory decay did not seem to have

a significant impact for the performances of the recurrent networks. Only the success

rate of the one with 5 hidden states feedbacks slightly grew as λ changes from 1.0 to

0.99. Inverse correlation is observed between the success rate and the travel distance

when λ = 1.0. However, such correlation is not observed when λ = 0.7 (Figure 23B).

When the memory decay was 30% per step, no recurrent network was successful.

On the other hand, the performances of the dropper networks grew once I let the

markers evaporate (Figure 24). The dropper networks show fairly high (80%) success

rate even with high marker evaporation rate (ρ=0.7). No agent with random network

weights in either network type (recurrent and dropper) was found successful (data not

shown). For the traveled distances, the recurrent networks moved longer distances

than the dropper networks, regardless of the different memory decay rate (Figures

23B and 24B). When the evaporation rate changed from ρ=0.99 to ρ=0.7, the travel

distance of the dropper network increased and fewer markers were dropped. Further

qualitative analysis elucidates the quantitative differences.

Figures 25 and 26 plot the traces of successful recurrent agents with two different

memory decay rates (λ=1.0 and 0.99). The agents do not have explicit knowledge

about the nest location, because the nest does not radiate any information and the
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A. Success Rate
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B. Distance Traveled

Fig. 23. Quantitative Data of the Successful Recurrent Networks. Colors

indicate different sizes of the hidden state feedback (red: Nmem=5; green:

Nmem=10; blue: Nmem=20, see Equation 3.3 and Figure 8). A. Performance

degrades as the number of hidden states feedback grows. B. Distance metric

is a ratio of the distance traveled and the minimum distance needed to reach

a goal. Overall, the succesful recurrent networks traveled long distances (min

avg.=5.249 with λ=0.99, Nmem=10; max avg.=6.277 with λ=1.0, Nmem=20).
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Fig. 24. Quantitative Data of Successful Dropper Agents. A. Large difference

in success rate is observed once markers evaporate (14/30 for ρ=1.0; 23/30 for

ρ=0.99; 24/30 for ρ=0.7). B and C. Agent moved significantly longer distance

and dropped less number of chemical markers when evaporation rate was the

highest (ρ=0.7). For the distance metric used in B, see Figure 23B.



48

agents do not have a mechanism to change their states based on whether they visited

the nest or not. Moreover, the hidden state feedbacks affect the movements of the

recurrent agents, regardless of their current locations. Therefore, it is difficult for the

recurrent agents to change their states to turn abruptly at the nest location. Under

this condition, the fittest strategy found by artificial evolution for the recurrent agents

was a repeated circular movement. Even though this strategy enabled the agent to

be successful in the task, the qualities of the solutions were poor, as can be seen from

the behavioral trajectories shown in Figures 25 and 26. As we can see in these plots,

the agents seemed to blindly scan through the task arena repeatedly drawing circles.

The solutions they found almost seemed to be out of pure luck, since the trajectories

do not show any goal-directedness. As a result, the orders of the food items found by

this strategy were often different from the order that the food items were presented

(1-2-3). For example, the order that the food items were found in the 4th panel of

Figure 25 and in the 2nd panel of Figure 26 is 2-1-3.

Figures 27, 28, and 29 plot the traces of the dropper agents with three different

marker evaporation rates (ρ = 1.0, 0.99, and 0.7 respectively). For the dropper agents,

this task is not too difficult because the markers explicitly contain spatial information.

For example, after foraging a food item, the dropper agents are guaranteed to get to

the nest just by following the marker trail. Also, the memory source is local and

thus dependent on the current location of the agents because they can sense only

the markers within their sensor radius. Regardless of their current location and

orientation, the dropper agents only need to evolve their connection weights between
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70 100 130 160 190 220Fig. 25. Trajectories of Successful Recurrent Agents with λ = 1.0. Agents are

moving in circles to get to the food items and the nest. In general, the trajec-

tories do not show any goal-directedness (move directly toward food or toward

nest). The gray diamonds at the bottom of each panel indicate the nest and

the gray circles denote food items. The grayscale intensity of the line denotes

the temporal order of each trajectory (the darker, the more recent). The

line type (solid/dashed) distinguishes between the nest-to-food/food-to-nest

trajectories.
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Fig. 26. Trajectories of Successful Recurrent Agents with λ = 0.99. Similar to

the case with λ = 1.0, agents are again moving in circles without goal-direct-

edness. See Figure 25 for plotting conventions.
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their sensors and actuators (input and output neurons) to generate movement so that

they can maintain the distance to keep some of the markers still visible at the next

location. As a result, only few repeating circular movements are observed, and the

dropper agents usually came back to the nest with a food item once they were out for

foraging. Compared to the trajectories of recurrent networks (Figures 25 and 26), the

trajectories of the dropper agents are more goal-directed and this is why the average

travel distance of the dropper agents is much shorter than that of the recurrent agents.

When ρ=0.7, the markers evaporate too fast and the dropper agents can use the most

recent markers only (Figure 29). The limited marker information made the dropper

agents to generate wiggling trajectories, thus requiring longer travel distance. To

fully account for the effect of evaporating markers, I compared the dropper agents

with ρ=1.0 (Figure 27) and ρ=0.99 (Figure 28). These two ρ values were selected

because their qualitative results showed the most difference.

Even though both types of dropper agents ( learned similar circular movement

in general, the dropper agents in the E group show much more compact trajectories

(Figures 27, 28, and 29), and this can be the explanation for the difference in the travel

distance in Figure 24. This compact trajectories made the markers dropped closer to

the locations of importance. Figure 30 plots the result of k-means clustering (k=4)

applied to the set of all markers dropped by successful dropper agents in both groups.

Clusters of non-evaporating markers do not match the food items and nest locations,

whereas evaporating markers are dropped in correspondence with these locations. To

fully account for the reason for such differences in trajectories and the number of
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Fig. 27. Trajectories of the Successful Dropper Agents with ρ = 1.0. When

the markers do not evaporate (ρ =1.0), the dropper networks move in circles

with growing radius. See Figure 25 for plotting conventions.
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70 100 130 160 190 220 250Fig. 28. Trajectories of the Successful Dropper Agents with ρ = 0.99. Tempo-

ral information in evaporative markers (ρ =0.99) enabled the dropper agents

to generate very compact trajectories. See Figure 25 for plotting conventions.
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Fig. 29. Trajectories of the Successful Dropper Agents with ρ = 0.7. The drop-

per agents show ‘wiggling’ trajectories with greater memory decay (ρ =0.7).

As the markers are too volatile, the dropper agents can utilize the most re-

cent markers only. As a result, they end up with extensive search of the

environment. See Figure 25 for plotting conventions.
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markers thrown, I performed a detailed comparison between the best dropper agents

in each group. Dropper agents with the shortest step size in both groups were selected

as being the best because they have the most economical strategy among their group

members in solving the same task.

One-to-one comparisons of the strategy and the trajectory between the best-

performing agents in each marker evaporation rate show divergence in the evolved

behaviors. Figures 31 and 32 confirmed more compact trajectory developed by agents

using evaporating markers (Figure 31-(1) vs. Figure 32-(1)). (2) and (3) of Figure 32

show the evaporation of chemical markers in fading color. As the chemicals evaporate,

their sensitivity fades and the attraction toward the non-existing (already-consumed)

food becomes weaker and less competitive than the attraction to the remaining food.

Because of the difference in the volatile characteristic of markers, the two groups

developed different strategies for the task. The strategies are summerized below:

• Dropper networks using non-evaporating markers (ρ=1.0)

1. Approach food item from right to left (Figure 31-(1)).

2. Follow markers laid on its left side (Figure 31-(1)).

3. If food item is detected,

(a) If marker is detected rather far, follow the food item while throwing

markers (Figure 31-(2)).

(b) If marker is detected very near, follow the marker without throwing

another one (Figure 31-(3)).
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A. Non-Evaporating Chemical

B. Evaporating Chemical

Fig. 30. Cluster of Chemical Markers. K-means clustering (k=4) is applied to the

chemical markers to show the relationship between the markers and points

necessary to remember for the task (food&nest).
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• Dropper networks using evaporating markers (ρ=0.99)

1. Always throw markers (Figure 32-(1)).

2. If food item is detected,

(a) If marker signal is week (far or old), follow the food item (Figure

32-(2)).

(b) If marker signal is strong (close and recent), follow the marker (Figure

32-(3)).

The strategies laid out above show that agents using non-evaporating mark-

ers (ρ=1.0) evolved additional rules to drop/detect markers in a particular direction

(left side in this example), whereas the agents using evaporative markers has simpler

drop/detect rule. This is due to the evaporating property of the markers. Because

the evaporative markers contain temporal information, it does not have to develop

additional rules to avoid conflicts among the markers. As the markers evaporate, their

sensitivity fades and the attraction toward the non-existing (already-consumed) food

item becomes weaker than the attraction to the remaining food item. However, be-

cause the non-evaporating markers cannot encode the passage of time, a tie-breaking

function for conflicting markers had to be developed by the agent. To summarize,

utilizing self-generated olfactory-like cues enables the agent to exploit the volatility

of markers, a natural property of chemical markers. As a result, the dropper agent

can distribute, in the environment, information necessary to solve a task, and its

interaction with the environment enables it to communicate with itself in the past.
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Fig. 31. Agent Trajectory and Non-evaporative Chemical Trails (solid: nest–

to-food, dashed: food-to-nest trajectory). Agents using non-evaporat-

ing chemical markers developed more complex set of rules.
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Fig. 32. Agent Trajectory and Evaporative Chemical Trails (solid: nest–

to-food, dashed: food-to-nest trajectory). Agents using evaporative

chemical markers developed simpler set of rules.
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This kind of stigmergy lowers the complexity of the solution.

I again took a look at the dropper agent’s hidden state activations. Figure

33 shows the hidden state activations of the best agent using evaporative markers.

We can observe significantly more fluctuations in the hidden states activations when

the agent is generating “food-driven” movement (red-marked area). I measured the

degree of fluctuation using a simple metric:

Fluctuation =
Nt∑
i=2

Nhid∑
j=1

abs(Hi,j −Hi−1,j)/Nt (4.4)

where Hi,j is the activation value of jth hidden neuron at time i, Nt is the maximum

step size, and Nhid is the number of hidden neurons. abs(·) is the absolute value

function. The difference in the fluctuation amount in “food-driven” and “marker-

driven” movements is shown in Figure 34. To see this difference from a different

perspective, Figure 33C-(2) was replotted as a line chart (Figure 34B). Even though it

is hard to tell the details of the detected markers, the agent’s internal states can show

visible distinction during different behaviors (“food-driven” vs. “marker-driven”),

which is similar to the previous result in the ball-catching task.

An interesting insight arises when I compare the external and internal implemen-

tation of memory. External memory is more persistent, while internal memory is more

transient due to its dynamic nature so each may have specialized in the respective

kinds of tasks. Probably this is why both systems are preserved in modern animals.

Therefore, it would be interesting to observe the evolution of hybrid networks with

both recurrent connection and marker dropping/detecting ability. In fact, the results
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Fig. 33. Hidden State Activations. (1) Same as Figure 32. (2) Areas bounded by

the red box denote the hidden state activation during “food-driven” move-

ments, where hidden states fluctuate more vigorously.
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Fig. 34. Difference in Hidden State Activation. A. Amount of fluctuation is

calculated according to the equation 3.4. B. Line chart of Figure 33C-(2).

Area marked in red denotes the same area in Figure 33C-(2).
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suggest that a hybrid can outperform the non-hybrid versions (Figure 35). Note that

the performances of the recurrent and the dropper networks are not directly compa-

rable because the parameters used in each network type were arbitrarily chosen and

not optimal. However, it is meaningful to compare the recurrent or the dropper to the

hybrid network to see how one type of memory is reinforced by the other, and it will

be an intriguing future work to analyze if there exists a certain condition that makes

one type of memory (external or internal) more preferable to the other. Finally, the

low performance of recurrent agents may also be due to the difficulty of evolving

networks with a huge number of tunable parameters (the connection weights). The

dropper network is architecturally almost the same as the feedforward network, while

the function is much more advanced. This kind of economy could surely have been

exploited by the process of evolution.

One possible criticism is that the tasks themselves do not require elaborate spatial

memory, and can be tackled with taxon navigation. Taxon navigation uses a reactive

stimulus-response strategy, with which agents generate direct homing onto landmarks.

Taxon navigation requires a visible landmark at all times, whereas in my tasks, due to

the limited sensor range, landmarks (or objects other than the self-generated markers)

are not always visible, thus the task itself requires spatial memory. However, it is

still possible that my agents used taxon navigation since all three food items were

always at the same location throughout trials. To exclude this possibility, I evolved my

dropper agent by varying the food item locations. The initial results were encouraging

(Figure 36), where the same evolved agent was able to solve all four different food
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Fig. 35. Preliminary Result of Hybrid Networks. A. Success rate comparison.

Colors indicate different network types (red: recurrent; green: dropper; blue:

hybrid). The best performing configuration of each network is shown (recur-

rent: λ=0.99, Nmem=5; dropper: ρ=0.7; hybrid: λ=0.99, Nmem=5, ρ=0.7).

See Figures 23 and 24 for details. B. Trajectory of a sampled hybrid network.

See Figure 25 for plotting conventions.



65

item configurations, thus showing the agent’s spatial memory function. The reactive

part of the agent indeed employs a taxon navigation strategy, but the landmarks in

this case are both food items and agent-generated markers. Thus, as a whole (i.e.,

including the marker dropper/sensing capability), the agent cannot be said to be

following a taxon-based strategy.

D. Discussion and Conclusion

Combined with the results in the previous chapter (Chapter III), I have shown that

reactive feedforward neural network can exhibit behavior requiring memory when

coupled with a simple external material interaction mechanism. It is surprising that

feedforward networks can decide when to drop the external marker, and what to do

when a marker is detected, thus using the environment as an open canvas. This

external material interaction mechanism could have indeed been used by memoryless

basal animals to increase their survival. I strongly believe such external material

interaction is a necessary intermediate step for the evolution of memory, from external

to fully internal. The following chapter (Chapter V) will examine that passing through

such an intermediate step has evolutionary advantage over bypassing the step.
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Fig. 36. Trajectories of A Successful Dropper Agent in Multiple Tasks. A

single dropper agent throwing markers evaporative markers (ρ =0.99) was

successful in solving multiple tasks with various food locations. See Figure 25

for plotting conventions.
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CHAPTER V

TASK III: TOPOLOGICAL NEUROEVOLUTION

A. Task Description

In the previous two experiments (Chapters III and IV), I have shown that external

material interaction can represent spatial memory by creating an external recurrence.

This suggests that it is viable that primitive animals without internal recurrence in

the brain could have used such a marker dropping/detecting mechanism to meet their

needs for memory. However, the results so far can only show what the primitive ani-

mals could have used in place of memory but not whether it was necessary. To answer

this question, I need to prove the necessity of the use of environmental markers. Evo-

lutionary advantage can mean the necessity of a mechanism in the evolution because

what provides faster and higher adaptability will have higher chances for nature’s

selection. If external material interaction was indeed a necessary evolutionary step

toward a fully internalized memory, it should have higher chances of being selected

over direct evolution of recurrent connections bypassing this stage. Also, to have

higher selection chance, it needs to have faster and higher adaptability.

The experiment in the current chapter will focus on showing the evolutionary

advantage of the dropper/detector mechanism over the direct memoryless (feedfor-

ward) to memory-equipped (recurrent) evolution. Because this experiment involves

the emergence of recurrent connection from feedforward network, a topological evolu-

tion algorithm is required instead of traditional neuroevolution methods that evolves
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only the weights on a fixed-topology. Before proceeding, I would like to present a

little more detailed overview of the topological neuroevolution method I will use.

B. NEAT

Topological neuroevolution methods evolve both topology and weights of neural net-

works. Because natural evolution includes changes in the network topology in the

brain, they mimic the natural evolution better than traditional weight-only neu-

roevolution methods. Moreover because the functionality of a neural network can

be constrained by its topology, allowing the topology to evolve will set free the struc-

tural constraints and result in significant performance gain. Amongst many variation

of such an approach, I chose NeuroEvolution of Augmenting Topologies (NEAT) be-

cause of its advantages over other topological evolution methods [51, 52, 53, 54].

Historical marking is the core of the NEAT algorithm. By enumerating each

innovations, NEAT solves competing conventions problem, which is one of the main

problems in neuroevolution [51, 54]. The crossover operation in NEAT happens be-

tween two genomes with identical historical marking or “innovation number”, regard-

less of their locations and sizes. Moreover, NEAT keeps the size of resulting network

from growing explosively by starting with the initial populations with the minimal

structure. Figure 37 demonstrates the essence of the NEAT algorithm. It encodes

the genome in two linear representations, node genes and connection genes (Figure

37-A). “Innovation number” is assigned to each connection genes according to the

order of its appearance throughout the evolutionary mutation (Figure 37-B).



69

A. Genetic encoding

B. Mutation example

Fig. 37. Neuroevolution of Augmenting Topologies (NEAT). A. Genotype-phe-

notype matching in NEAT. NEAT uses “innovation numbers” to phenotypes

in chromosomes. Regardless of their phenotypical representations, connec-

tions in two different individuals can be swapped during crossover. B. How

“augmentation” happens is illustrated. Either connections (top) or nodes

(bottom) can be added freely, hence the chromosome representation is vari-

able length. Adapted from [54].



70

C. Methods

The memory task used in this experiment is identical to that in Chapter III. A

small difference is that the agents are given only two pairs of falling balls (a total

of 4 balls): one left-fast and one right-fast. Here, I compared the results of running

NEAT algorithm on the initial neural networks with and without the dropper/detector

mechanism. As mentioned earlier, the initial populations of NEAT need to have

minimal structure. Figure 38 shows the initial topologies of the two types of networks.

In the beginning, all populations have these identically minimal network topologies.

As the evolution progresses, the population will diversify according to the NEAT

topological mutation method (Figure 37-C).

D. Experiments and Results

30 evolutionary trials were performed on plain and dropper networks. As mentioned

earlier, 2 pairs of balls with different falling speeds were given (pair 1: fast left and

slow right, pair2: fast right and slow left). If an agent catches all 4 balls before the

evolution reaches the preset maximum (500 generations), the trial is marked success-

ful and the evolution is stopped. Fitness is identical to the previous ball-catching

task in Chapter III. There are some NEAT-specific parameters worth mentioning.

NEAT uses “speciation” to protect new topological innovations. Because topological

mutation (add node or add connections) can cause a temporal decrease in the fitness

score, it is unlikely for the newly evolved topology to be selected and survive to the

next generation. Therefore, it is important to provide the new niches a time to opti-
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I1 I2 I3 I4 I5

A. Initial topology of plain neural network

I1 I2 I3 I4 I5

O1 O2

I6 I7

O3

B. Initial topology of dropper network

Fig. 38. Initial Network Topologies for NEAT. A. The initial topology of plain

neural network only contains input and output layers of Figure 7. B. Initial

dropper network for NEAT does not include the hidden layer. Similar to

Figure 9, dropper/detector mechanism is implemented as additional inputs

(I6 and I7 for detecting environmental markers) and an output (O3 is for

dropping environmental markers) units.
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Fig. 39. Gene Matching in NEAT. Genomes with different topology can line up

together according to their innovation numbers (shown at the top of each

gene). Disjoint genes are those that do not match in the middle (genes of

Parent 1 with innovation number 8 and of Parent 2 with innovation number

6 and 7), and excess genes are those that do not match at the end (genes of

Parent 2 with innovation number 9 and 10). Remainings are matching genes

(genes with innovation number 1-5 of both Parent 1 and 2). Adapted from

[54].
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mize, and NEAT solves this problem by allowing the competition for selection only

among similar topologies. The equation below describes the measure of compatibility

between two genomes:

δ = c1E/N + c2D/N + c3W̄ (5.1)

where δ is the compatibility measure, E is the number of excess genes, D is the

number of disjoint genes, and W̄ is the average weight differences of matching genes

between the two genomes (see Figure 39). Table III lists the NEAT parameters used

in my experiments.

Table III. Parameters for NEAT Algorithm
Parameter Value
Maximum number of generations 500
Compatibility coefficient for excess genes(c1 in 5.1) 1.0
Compatibility coefficient for disjoint genes(c2 in 5.1) 1.0
Compatibility coefficient for weight differences of match-
ing genes(c3 in 5.1)

4.0

Compatibility threshold (δt) 3.0
General mutation rate 0.2
Add connection probability 0.07
Add recurrent connection probability 0.2
Add node probability 0.04
Crossover rate 0.7

Surprisingly, the result turned out that dropper network has an evolutionary po-

tential much greater than the plain network without a dropping mechanism. While

plain networks could not find a topology to solve the given task, dropper networks

showed a fairly high success rate of 80.0% (24 out of 30). Moreover, dropper networks

did not need much topological change to catch all 4 balls. As shown in the Table III,

NEAT prefers to tune the weights of the current network to the topological mutation

(probabilities of add-node and add-connection are only 0.04 and 0.07 respectively).
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It turns out that the marker dropping/detecting mechanism is powerful enough to

solve the ball-catching task with only a small number of topological mutation (or,

sometimes with no topological mutation at all). Figure 40 shows the number of evo-

lutionary steps required for the dropper networks to solve the task. On average,

successful droppers required 38.67 topological evolutions. Figure 41 compares the

convergence trends in the number of balls caught by both type of networks (plain and

dropper) up to 300 evolutionary generations. Unlike the average number of catches

in plain networks being stuck at around 2.75, the dropper networks show gradual in-

crease in the number. The average numbers of active nodes, active connections, and

active species of successful droppers were 10.7, 21.44, and 3.4 respectively. Consid-

ering that their initial values were 10, 21, and 1, successful droppers did not require

much topological change to perform the given task.

Figure 42 shows the trajectories of top performances from each network type. The

strategy used by typical successful dropper is shown in Figure 43. Usually, successful

droppers have initial output O3 (see Figure 38-B) greater than its randomly chosen

marker threshold value. As a result, they begin to drop markers as soon as a ball is

detected in either its left or right. The markers now denotes the previous movements.

First, they tune network weights to respond to the falling ball. This way, they soon

become able to catch 2 balls. Then, they tune network weights to adjust their response

to the marker they throw.

The plain network evolved to catch only three balls whereas dropper network

caught all four balls. The plain network uses the strategy of “default behavior”.
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Fig. 40. Number of Evolutions Required for Successful Dropper Networks.

Out of 30 trials, dropper networks solved the task 24 times (success rate

80.0%). The numbers of evolutionary steps for 24 successful droppers net-

work are plotted. On the average, dropper networks required 38.67 steps of

topological evolutions to find solutions. Compared to the topological evolu-

tion of plain networks which did not find a solution at all in 500 evolutionary

steps, the dropper networks shows significantly higher success rate.
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Fig. 41. Performance Comparision in Topological Evolution. X-axis denotes

the evolutionary generations and y-axis denotes the average number of balls

caught by the population. While the performance of plain network was stuck

at about 2.75, the performance of dropper network keeps increasing. Dashed

line denotes the average number of generations when dropper networks find

solutions to catch all four balls (38.67).
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Fig. 42. Agent Trajectories. Two pairs of balls are fallen (fast-left & slow-right and

fast-right & slow-left). Plain network successfully catches 3 balls and misses

the slow-right ball in the first pair (red). Dropper network catches all 4 balls

(blue).
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A. Initial Location D. Marker-driven Movement

B. Ball-driven Movement E. Ball-driven Movement

C. Catch Fast-falling Ball F. Catch Slow-falling Ball

Fig. 43. Dropper Strategy. Detailed strategy for catching a pair of balls. A. Initial

setting. B. Dropper agent starts to throw markers as it follows the fast-falling

ball. C. Dropper agent catches fast-falling ball. D. As there is no input

from ball, dropper agent follows markers until the slow-falling ball becomes

detected again. E. Now that the slow-falling ball is detected, dropper agent

generates ball-driven movement. Note that it begins to throw markers again.

F. Dropper agent catches the slow-falling ball. This figure shows left-fast case

only. Right-fast case is symmetrical.
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When a ball is detected, it follows the ball. This way, it successfully catches the fast-

falling balls in both pair. However when there is no input, it moves to one direction (in

this case, left) rather than using the memory of the slow-falling balls. This strategy

turns out to be successful at least half of the cases (fast-right & slow-left case). Recall

that the reason the bias units are removed in the entire simulations is to stop such

default behavior. It seems that this strategy using default behavior is very easy to

learn (see the steep initial performance gain of plain networks in Figure 41), but it

creates a “deep” local minimum, from which plain networks cannot escape with the

current NEAT algorithm.

Another reason for the failure is the transience of internal recurrence. Whereas

successful dropper networks have not evolved their topologies much (Figure 44), the

resulting topologies of plain networks show much frequent internal recurrences created

by NEAT (Figure 45). However, the number of recurrent connection is still very small

compared to the recurrent network in Chapters III and IV. The fully-connected Elman

tower contains N2
hid×Nmem recurrent connections, where Nhid is the number of hidden

neurons and Nmem is memory order (tower height). Moreover, the extended input-to-

output path exponentially weakens the effect of memory because distant inputs pass

through more number of sigmoidal functions. Figure 46 examplifies the number of

sigmoidal functions that signal of 8 step past in the first input node has to pass in

a recurrent network created by NEAT (Figure 45). Note that in the Elman tower in

Chapters III and IV, there is no sigmoidal function in the signal transition between

memory units (from H(t − 1) to H(t − Nmem) in Figure 8). Indeed, the intuition
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behind the choice of the Elman tower as a representative of recurrent network in

previous experiments was to guarantee that the memory capacity is powerful enough

for the given memory tasks.

Fig. 44. Topological Evolution of Dropper Networks. A-D. Results of the topo-

logical evolution after solutions are found (500 generations) from the initial

structure in Figure 38-B. Recurrent connections are highlighted in red.

E. Discussion and Conclusion

To summarize, the results of the experiment in this chapter showed that using envi-

ronmental markers has benefit to the survival of the agents much higher than those

without such mechanism. It showed that evolution of a complex internal memory

capacity can be very difficult, but the marker dropping/detecting mechanism can

make this evolutionary load very simple. Considering that the marker dropping and

detecting capabilities are already given in primitive animals, it is likely that evolution
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Fig. 45. Topological Evolution of Plain Networks. A-D. Results of the topolog-

ical evolution after 500 generations from the initial structure in Figure 38-A.

Recurrent connections are highlighted in red.
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sigmoid x 1 sigmoid x 2 sigmoid x 3 sigmoid x 4

sigmoid x 5 sigmoid x 6 sigmoid x 7 sigmoid x 7

Fig. 46. Number of Sigmoidal Functions in Input-to-output Pathway. In one

of the NEAT-generated recurrent network in Figure 45, inputs of 8 steps ahead

needs to go by 7 sigmoidal functions. Signal transitions going by sigmoidal

function is marked in red arrow. In Elman tower with memory order 7, inputs

of 8 steps ahead only require two sigmoidal functions.

preferred marker interaction over direct internal recurrence in the process of memory

development.
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CHAPTER VI

DISCUSSION AND CONCLUSION

A. General Discussion

In search for the evolution of memory, I noticed the intricate relationship between

memory and olfaction and hypothesized that self-generated olfactory cues could have

served as external spatial memory. Using artificial evolution simulations, I have

shown: (1) external material interaction generates performance comparable to that

of internalized memory in a simple memory task (Chapter III); (2) external mate-

rial interaction produces comparable or even more powerful performance when the

volatile property of olfactory cue is called into play in a task critical for the survival

of natural agent (Chapter IV); and (3) external marker interaction has clear evolu-

tionary advantage and can be a must-taken step to an efficient internalized memory

(Chapter V).

There are several existing works that share key mechanisms presented in my work,

but there are important differences. Below, I will review three prominent approaches,

(1) epistemic structures, (2) behavior-based robotics, and (3) ant colony optimization

(and the use of artificial pheromones in general), and discuss how my work provides

unique contributions.

The most notable is the work by Chandrasekharan and Stewart [61, 74] where

“epistemic structures” (similar to pheromones) are dynamically deposited in the en-

vironment by agents, controlled by genetic algorithms or by Q-learning. In this case,
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the goal was to reduce “tiredness” (cognitive load), so an explicit link to memory was

not made. Furthermore, the task itself only contained one nest and one food source,

thus memory capacity was not directly tested (see [75] for an extension of this to mul-

tiple food sources). Despite these differences, my work and that of Chandrasekharan

and Stewart share the important concept that external markers can contribute to

cognitive function even in reactive agents.

One tenet of behavior-based robotics is that instead of internalized representa-

tions, the environment itself can be used as a representation [7]. This allows the

agents to adapt to environmental changes. I share this view, but go one step further.

In behavior-based robotics, dynamic environment is usually viewed as an obstacle to

solve, whereas in my work, the agent, although reactive in itself, purposefully alters

the environment and utilizes the dynamics. It is only through this agent-environment

coupling that the agent can break away from simple reactive behavior. Braitenberg

and many other researchers have studied the importance of sensory-motor interaction

between the agent and its environment in behavioral modification [76, 77, 49, 78]. It

seems like it is only through this agent-environment coupling that the agent can break

away from simple reactive behavior.

Another existing work with strong similarity to my work is the active field of ant

colony optimization [59, 60, 62, 63, 64]. Ant colony optimization commonly uses ar-

tificial pheromone-like markers just like my dropper network does, and has been used

successfully in many tough optimization tasks. However, the main use of pheromones

in ant colony optimization is for social function (i.e., to enable communication among



85

different individuals in the swarm). This is in contrast with my own work presented

in this paper where the pheromones (markers) are used for the agent’s own individ-

ual purpose. Moreover, existing ant colony optimization works did not address a

substantial property of the pheromone. Pheromones have two important properties:

spatial and temporal. The location and time of a pheromone drop denote the lo-

cus and instant of importance, respectively. Nontheless, most studies on pheromone

agents overlooked the temporal property by predetermining the pheromone deposition

rules. Their agents throw pheromone unconditionally either at each state transition

(online step-by-step pheromone trail update) or as they trace back their path after

the solution is found (online delayed pheromone trail update) [79, 80]. If traditional

pheromone agent with unconditional marker throwing behavior is used in the foraging

task, the increased number of markers will create ambiguities. Similar to what the

dropper networks with non-evaporative markers did to resolve ambiguity, they may

also have to evolve more difficult strategies with additional rules. Therefore, it would

be an interesting direction for future work to compare the performance between self-

conditioned and unconditional marker throwing behaviors. Moreover, because the

external markers with richer information can lower the complexity of the evolved

strategy, it will also be interesting to confirm whether the strategy also gets simpler

with additional types of markers.
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B. Future Work

1. Linking with Neuroscience

As I briefly mentioned in the introduction, my work has strong implications on un-

derstanding the relationship between the olfactory system, the hippocampus, and

the neuromodulator networks. In my view, olfaction is a form of external memory

(dropper/detector network), while the hippocampus is a form of internal memory

(recurrent network). Neuromodulators can be seen as an intermediate step between

external and internal memory, where markers (neuromodulators) can be thought of as

being dropped inside the brain, rather than outside, without explicit recurrent neu-

ronal linkage (cf. [26]). Theoretical work also indicates that the boundary between

the internal and the external can be blurred [81] (note: in this case, the main focus

is on the reward structure).

2. Measuring Information Flow

Another line of future work is to gain insights on the exact computational nature of my

dropper/detector agents by measuring the information flow in the sensorimotor loop,

borrowing from [82]. Results in Figures 15, 16, 33, and 34 suggest that distributed

memory can be reflected in the internal representation of dropper networks, which is

similar to emergent meta-level cognition in dynamical systems [83, 65, 84]. My work

shares a common view with these earlier works that embodiment plays an important

role in forming such internally represented cognition. I will also scale up the memory

capacity by introducing different types of markers and detectors, and to have multiple
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agents interact with each other using these markers.

3. From External to Internal Memory

Figure 47 demonstrates the overall amplitude of the investigation of the evolutionary

emergence of memory, which can be divided into the following three major steps:

1. Evolution of external memory use in reactive neural networks: Feed-forward

networks only support reactive behavior. Memory-like behavior is expected

through a minimal extension to this architecture to allow dropping and detecting

environmental markers [48, 85, 86]. This type of agent-environment interaction

is analogous to olfaction.

2. Internalized marker interaction: Once external markers are found to be effec-

tive in implementing memory, the next step is to test if such external marker

interaction can be internalized, without introducing recurrent circuits. This

could be analogous to the neuromodulatory system (see [26] for a review of the

neuromodulatory system).

3. From internal marker interaction to recurrent circuits that support fully dy-

namic internal memory, such as in the hippocampus (cf. [87, 88]).

a. Evolution of Memory in Reactive Neural Networks with Dropper/Detector

The scope of the current dissertation encompasses the transition from the first to

second panel of the big picture. This dissertation showed that interacting with self-

produced external olfactory cues have higher evolutionary merit and it can be the
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Fig. 47. From the Present to the Past, and Forward to the Future. Initially,

only reactive behavior mediated by feedforward networks may have existed

(left-most panel). (Note: “No memory” here means that the network is obliv-

ious of its past input patterns.) By evolving external dropper/detector ca-

pability while maintaining the feedforward topology, simple memory function

may have emerged (second panel), reminiscent of olfaction. Then, this kind

of dropper/detector mechanism could have been internalized (third panel),

leading to a full-blown recurrent architecture (fourth panel).

step for ancient animals to take to boost up their initial survival rate. To complete

the quest to understand the full evolutionary path to the current, fully-internalized

memory system, a series of research needs to be followed with a step-by-step progres-

sion.

b. Internalization of Marker Interaction

While external material interaction can be a good model for primitive animals, de-

pendence on such dropping/detecting behavior may decrease as the animal becomes

more advanced. The most advanced form would be where memory is implemented in

recurrent circuits. However, a jump from a feedforward architecture to a heavily re-

current architecture could be very difficult. What could be a reasonable intermediate

stage? My view is that the neuromodulatory system, with its broad diffuse targeting
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and large variety of signaling molecules, can serve as a possible intermediate stage

(for reviews, see [26, 89]), where neuromodulator secretion within the brain can serve

as a surrogate of external marker dropping.

One possible necessity for this internalization can be found in the pheromonal

communication process in Figure 4. Because olfactory cues are secreted in an open

environment, they can potentially be detected by many different species as well as the

conspecifics or the dropper themselves. When the eavesdroppers are heterospecifics,

the pheromones are called Kairomone. In nature, there exist many cases of single-

sided pheromone communication which only benefits the receiver (in this case, the

evolution of pheromonal communication stops at “Spying” stage in Figure 4). Some-

times the eavesdroppers are benign or mutually beneficial to the pheromone droppers

(in the latter case, the pheromone is also called Synomone), but sometimes predators

can pry into them ([90, 25]). Then, the external material interaction becomes baleful

to oneself, and could have driven its internalization.

In this step, an internal map that loosely models hippocampal place cells ([91,

92]) can serve as an internal, relative map of the external space, and mimic the

neuromodulatory system to generate traces within the grid. ACh-like action will be

used to direct attention on the internal grid as a feedforward neural network controller

behaves in the 2D foraging task from Chapter IV. Recent findings suggest that this

kind of attention is necessary for stable representation in the hippocampus ([93, 94]

for an overview). Figure 48 shows an overview of the model. Note that the food

sensors and marker sensors are not segregated rather than sharing the same space as
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in Chapter IV.

Fig. 48. Neuromodulator-based Attention and Marking. A feedforward net-

work controller for the 2D foraging task is shown. It is the same as the one

in Figure 22, except for an added internal map and attentional mechanism.

Note that the internal map can be significantly smaller than the external

environment it is modeling.

c. Evolution of Internal Recurrence

Once the pheromone dropping is internalized, generating internal recurrence from the

internal dropper mechanism will be the last step to model the emergence of memory.

Chapter V showed that plain NEAT cannot evolve the recurrent topology compatible

to the dropper mechanism. Therefore, a significant extension is required on the

original NEAT. One possibility is to introduce new genetic encoding elements besides

nodes and connections. Then with new forms of mutation, the extended NEAT will

switch between the loop created by internal marker dropping mechanism and direct

recurrent connections. It is likely that a single recurrent connection will not suffice to

substitute the neuromodulatory loop. Therefore, identification of the compatibility

between the neuromodulatory loop and direct recurrent connection must be studied
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as well.

It is also notable that recurrent neural architectures generally associated with

memory of the past have the potential to evolve predictive internal dynamics project-

ing into the future needs [48, 95, 96].

C. Conclusion

In sum, the role and evolutionary benefit of the olfactory external material interaction

has been studied in three artificial evolution simulations. This study can help us

in understanding how the current animal brain came to be equipped with memory

capability in a fully internalized form. Further research on the internalization of

marker interaction and the establishment of internal recurrence can further elucidate

a potential evolutionary route from memoryless to memory-equipped brain.
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