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ABSTRACT

Statistical Methods for the Analysis of Mass Spectrometry-based Proteomics Data.

(May 2012)

Xuan Wang, B.S., University of Science and Technology of China, Anhui, China;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Alan R. Dabney

Proteomics serves an important role at the systems-level in understanding of

biological functioning. Mass spectrometry proteomics has become the tool of choice

for identifying and quantifying the proteome of an organism. In the most widely used

bottom-up approach to MS-based high-throughput quantitative proteomics, complex

mixtures of proteins are first subjected to enzymatic cleavage, the resulting peptide

products are separated based on chemical or physical properties and then analyzed

using a mass spectrometer. The three fundamental challenges in the analysis of

bottom-up MS-based proteomics are as follows: (i) Identifying the proteins that

are present in a sample, (ii) Aligning different samples on elution (retention) time,

mass, peak area (intensity) and etc, (iii) Quantifying the abundance levels of the

identified proteins after alignment. Each of these challenges requires knowledge of

the biological and technological context that give rise to the observed data, as well

as the application of sound statistical principles for estimation and inference. In this

dissertation, we present a set of statistical methods in bottom-up proteomics towards

protein identification, alignment and quantification.

We describe a fully Bayesian hierarchical modeling approach to peptide and pro-

tein identification on the basis of MS/MS fragmentation patterns in a unified frame-

work. Our major contribution is to allow for dependence among the list of top

candidate PSMs, which we accomplish with a Bayesian multiple component mixture
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model incorporating decoy search results and joint estimation of the accuracy of a list

of peptide identifications for each MS/MS fragmentation spectrum. We also propose

an objective criteria for the evaluation of the False Discovery Rate (FDR) associated

with a list of identifications at both peptide level, which results in more accurate

FDR estimates than existing methods like PeptideProphet.

Several alignment algorithms have been developed using different warping func-

tions. However, all the existing alignment approaches suffer from a useful metric

for scoring an alignment between two data sets and hence lack a quantitative score

for how good an alignment is. Our alignment approach uses “Anchor points” found

to align all the individual scan in the target sample and provides a framework to

quantitify the alignment, that is, assigning a p-value to a set of aligned LC-MS runs

to assess the correctness of alignment. After alignment using our algorithm, the p-

values from Wilcoxon signed-rank test on elution (retention) time, M/Z, peak area

successfully turn into non-significant values.

Quantitative mass spectrometry-based proteomics involves statistical inference

on protein abundance, based on the intensities of each protein’s associated spec-

tral peaks. However, typical mass spectrometry-based proteomics data sets have

substantial proportions of missing observations, due at least in part to censoring of

low intensities. This complicates intensity-based differential expression analysis. We

outline a statistical method for protein differential expression, based on a simple

Binomial likelihood. By modeling peak intensities as binary, in terms of “presence /

absence”, we enable the selection of proteins not typically amendable to quantitative

analysis; e.g., “one-state” proteins that are present in one condition but absent in

another. In addition, we present an analysis protocol that combines quantitative and

presence / absence analysis of a given data set in a principled way, resulting in a

single list of selected proteins with a single associated FDR.
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1. INTRODUCTION

1.1 General Background

Proteins Proteins are the the main component of physiological metabolic path-

ways of cells. Proteomics serves a important role in a systems-level understanding of

biological systems since it is the large-scale study of proteins, particularly their struc-

tures and functions. Mass spectrometry proteomics has become the tool of choice

for qualitative and quantitative study of the proteome of an organism. Fundamental

challenges in Mass spectrometry based proteomics include (i) Identification of the

peptide / proteins that are present in a sample, (ii) Aligning different samples on

Mass, elution time, intensity and etc. and (iii) Quantifying the abundance levels of

the identified proteins after alignment. We note that protein identification and quan-

titation are complementary exercises. Unidentified proteins cannot be quantified, and

the confidence with which a protein was identified should perhaps be incorporated

into that protein abundance estimate. All of these challenges require understanding

of the biological and technological perspective as well as the development of novel

statistical inference methodology.

The difficulty of protein level identification is generally caused by widespread

missingness, peptide degeneracy and misidentification. The limitation of existing

alignment algorithms include the lack of automated framework or quantitative sta-

tistical assessment. Large-scale missingness due in part to low abundance expression

contributes to the complexity of intensity-based protein quantitation. We describe

a fully Bayesian hierarchical modeling approach to peptide and protein identifica-

tion with False Discovery Rate constructed in a unified framework. Across different

experiment samples with identified peptide/protein, “Anchor Points” are defined and

This dissertation follows the style of IEEE Transactions on Very Large Scale Integration (VLSI)

Systems.
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used to align each identified peptide automatically and a p-value is assigned to a set

of aligned LC-MS runs to quantify the alignment performance. A statistical method

for protein differential expression is outlined on converted presence/absence data

based on a simple Binomial likelihood and a hybrid protocol is proposed to combines

quantitative and presence / absence analysis and result in a single list of selected

proteins with a single associated FDR.

1.2 LC-MS Proteomics

LC-MS refers to liquid-chromatography mass-spectrometry. Liquid chromatog-

raphy is a technique that could be used in protein differential expression studies by

separating peptides into multiple MS scans. This enables higher-resolution analysis

of the resulting mass spectra. Mass spectrometry is a tool for measuring mass-to-

charge ratios (M/Z) of ions.

The key components of a mass spectrometer are the ion source, mass analyzer,

and ion detector (Figure 1.1). The ion source is responsible for assigning charge to

each molecule. Mass analyzer measures the mass-to-charge(M/Z) ratio of each ion.

The detector captures the ions and measures the intensity of each ion species. In

terms of a mass spectrum, the mass analyzer is responsible for the m/z informa-

tion on the x-axis and the detector is responsible for the peak intensity information

on the y-axis. In recent years tremendous improvement in instrument performance

and computational tools are used. Several MS methods for interrogating the pro-

teome have been developed: Surface Enhanced Laser Desorption Ionization (SELDI)

[1], Matrix Assisted Laser Desorption Ionization (MALDI) [2] coupled with time-of-

flight (TOF) or other instruments, and gas chromatography MS (GC-MS) or liquid

chromatography MS (LC-MS). Since GC-MS and LC-MS allow for online separation

of complex samples and thus they are much more widely used in high-throughput

quantitative proteomics.
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Fig. 1.1. Mass spectrometry. The mass spectrometer consists of an
ion source, responsible for ionizing peptides, the mass analyzer and
the detector, responsible for recording m/z values and intensities,
respectively, for each ion species. Each MS scan results in a mass
spectrum, and a single sample may be subjected to thousands of
scans.
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Fig. 1.2. Sample preparation. Complex biological samples are first
processed to extract proteins. Proteins are typically fractionated to
eliminate high-abundance proteins or other proteins that are not of
interest. The remaining proteins are then digested into peptides,
which are commonly introduced to a liquid chromatography column
for separation. Upon eluting from the LC column, peptides are ion-
ized.
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Here we focus on the most widely-used bottom-up approach to quantitative MS-

based proteomics, LC-MS, which has become the tool of choice for identifying and

quantifying the proteome of an organism. A LC-MS-based proteomic experiment

requires several steps of sample preparation (Figure 1.2), including (i) cell lysis to

break cells apart and protein extraction, (ii) protein separation to spread out the

collection of protein into more homogenous groups, i.e. remove contaminants and

proteins that are not of interest, especially high abundance house-keeping proteins

that are not usually indicative of the disease being studied, (iii) protein digestion to

break intact proteins into more manageable peptide components. Once this is com-

plete, peptides are further separated into a more homogeneous mixture to be ionized

and introduced into the mass spectrometer. In tandem mass spectrometry (denoted

by MS/MS), several of the most intense (high abundance) peaks from a parent MS

(MS1) scan are automatically selected and the corresponding ions are subjected to

further fragmentation and scanning. This process is repeated until all candidate

peaks of a parent scan are exhausted [3], [4]. This results in a fragmentation pattern

for each selected peptide, providing detailed information on the chemical makeup of

the peptide.

MS/MS is preceded by LC separation and can more accurately be denoted by

LC-MS/MS. High-resolution LC-MS instruments (e.g., FTICR) are very fast and can

achieve mass measurements that are sufficiently accurate for identification purposes

by comparing the fragmentation patterns to fragmentation spectra in a database,

using software. Alignment on the scans is prerequisite for downstream quantita-

tive analysis since day-to-day and run-to-run variation in the complex experimental

equipment can create systematic biases. With identified peptide/protein informa-

tion as well as aligned elution time, m/z and peak intensity, it is possible to proceed

to the quantification of the abundance level of those proteins present. Each step

contributes to the overall variation in the estimation and inference of the MS based

proteomics.
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1.3 Peptide/Protein Identification

To facilitate protein identification, proteins are usually separated, cleaved/digested

chemically or enzymatically into fragments. Digestion overcomes many of the chal-

lenges associated with the complex structural characteristics of proteins, as the re-

sulting peptide fragments are more tractable chemically, and their reduced size, com-

pared to proteins, makes them more amenable to MS analysis.

The first step in protein identification is the identification of the constituent pep-

tides. Multiple distinct peptides can have very similar or identical molecular masses

and thus produce a single intense peak in the initial MS (MS1) spectrum, making it

difficult to identify the overlapping peptides. The use of separation techniques not

only increases the overall dynamic range of measurements (i.e., the range of relative

peptide abundances) but also greatly reduces the cases of coincident peptide masses

simultaneously introduced into the mass spectrometer.

In tandem mass spectrometry (denoted by MS/MS), a parent ion possibly cor-

responding to a separated peptide is selected in MS1 for further fragmentation in

MS2. Resulting fragmentation spectra are compared to fragmentation spectra in a

database, using software like SEQUEST [5], Mascot [6] or X!Tandem [7], see Fig-

ure 1.3. PeptideProphet [8] is a widely-used for peptide identification by modeling

a collection of database match scores as a mixture of a correct-match distribution

and an incorrect-match distribution. The confidence of each match is assessed by its

estimated posterior probability of having come from the correct-match distribution,

conditional on its observed score. Improvements have been made to PeptideProphet

to avoid fixed coefficients in computation of discriminant search score and utilization

of only one top scoring peptide assignment per spectrum [9].

Protein identification can be carried out by rolling up peptide-level identification

confidence levels to the protein level, a process that is associated with a host of issues

and complexities [8]. The goal of the identification process is generally to identify

as many proteins as possible, while controlling the number of false identifications at
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Fig. 1.3. Peptide/protein identification. Peptide and protein identi-
fication is most commonly accomplished by matching observed spec-
tral measurements to theoretical or previously-observed measure-
ments in a database. In LC-MS/MS, measurements consist of frag-
mentation spectra, whereas mass and elution time alone are used in
high-resolution LC-MS. Once a best match is found, one of the fol-
lowing methods for assessing confidence in the match is employed:
decoy databases, empirical Bayes, or expectation values.
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a tolerable level. There are a myriad of options for the exact identification method

used, including (i) the choice of a statistic for scoring the similarity between an

observed spectral pattern and a database entry [7], [6], and (ii) the choice of how to

model the null distribution of the similarity metric [10], [11].

In each of the above approaches, there is a statistical problem of assessing confi-

dence in database matches. This is typically dealt with in one of two ways. The first

involves modeling a collection of database match scores as a mixture of a correct-

match distribution and an incorrect-match distribution. The confidence of each

match is assessed by its estimated posterior probability of having come from the

correct-match distribution, conditional on its observed score [12];

The second approach to assessing identification confidence involves the use of a

so-called “decoy database. A decoy database is created by scrambling the search

database so that any matches to the decoy database can be assumed to be false [13],

[12]. The distribution of decoy matches is then used as the null distribution for the

observed scores for matches to the search database, and p-values are computed as

simple proportions of decoy matches as strong or stronger than the observed matches

from the search database. A hybrid approach that combines mixture models with

decoy database search can also be used [13].

There are several limitations of current methods. First, many current methods

are designed to evaluate the top 1 ranked PSM returned by a database searching

application; this discard potential correct match that does not rank the first but

among the top several highest match score. Second, recent published work [14], [15],

[9] has extended the analysis from the top-ranked peptide per spectrum to a list of

candidate PSMs per spectrum with independent assumption which is against the un-

derlying truth that at most one PSM being correct. In Section 2, we describe a fully

Bayesian hierarchical modeling approach to peptide and protein identification on the

basis of MS/MS fragmentation patterns in a unified framework. Our major contri-

bution is to allow for dependence among the list of top candidate PSMs, which we
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accomplish with a Bayesian multiple component mixture model incorporating decoy

search results and joint estimation of the accuracy of a list of peptide identifications

for each MS/MS fragmentation spectrum. Peptide and protein network structure is

modeled in the latent stages of the hierarchical model. We also implement a novel

approach to the normalization of database searching scores to scores obtained from

decoy databases, which is demonstrated to greatly improve the peptide identification

performance. Finally, we propose an objective criteria for the evaluation of the FDR

associated with a list of identifications at both peptide level and protein level. Using

this criteria, our method is found to result in more accurate FDR estimates than

existing methods like Peptide Prophet [8].

1.4 Alignment

Peptides could also be identified on the basis of extremely accurate mass mea-

surements and LC elution times as the output of high-resolution LC-MS instruments.

When analyzing two independent samples, peptides elution times are affected by

shifts relative to instrumentation effects and it is common to observe systematic dif-

ferences in the elution times of similar samples on difference columns. However, the

LC-MS data have added dimension of m/z and intensity information, which makes

it not sufficient to provide alignment for individual peptides by only mapping the

retention time coordinates between two LC-MS samples. The goal of alignment is

then to match corresponding peptide features in terms of elution time, m/z and peak

intensity (see Figure 1.4) from different experiment samples so that the downstream

quantitation could be effectively employed.

A time warping method based on raw spectrum for alignment of LC-MS data was

introduced by Bylund and others [16], which is a modification of the original corre-

lated optimized warping algorithm [17]. Wang and others, implemented a dynamic

time warping algorithm allowing every Retention Time (RT) to be moved. Jaitly,

et al. [18] introduced a non-linear alignment technique that uses a dynamic time
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Fig. 1.4. Two sample of scans before alignment, red dots represent
sample 1 and green dots represent sample 2. X axis is ScanNum
(equivalent to elution time), Y axis is M/Z and Z axis is Log (Peak
intensity).
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warping approach at a feature level. Radulovic and others [19] performed alignment

based on (m/z,RT) values of detected features by dividing the m/z domain into sev-

eral intervals and fitting different piece-wise linear time warping functions for each

m/z interval and then applying a “wobble” function to peaks and allow peaks to

move. Palmblad, et al. [20] applied a genetic algorithm to establish an alignment

warping function by using peptide elution times from MASCOT output to define

anchor points between two datasets.

All of these alignment techniques still suffer from either not taking m/z and peak

intensity information into account or manually inappropriate division of m/z domain

or incorrect parameterization of warping function as well as lacking a useful metric

for scoring an alignment between two datasets. To score alignments, a ground truth

is required to assess the accuracy of an alignment by establishing links between

datasets via database searches to find the same peptide present in two datastes.

(Simply matching two features based on mass and elution time alone is not very

supportive).

Our approach in Section 3 uses “Anchor points” found between two samples

to align all the individual scan in the second sample and provides a framework to

quantitify the alignment, that is, assigning a p-value to a set of aligned LC-MS runs

to assess correctness of alignment. In our method, for different experiments, we have

the elution time, mass over charge (m/z) value, peak intensities, peptide information

for each of the thousands of scans in the SEQUEST search output. A feature is

treated as an “anchor point” if it corresponds to very high confidence identification

to the same peptide in all samples (in addition to meeting other quality standards).

The anchors can be relied upon with very high confidence as being paired across

samples. As such, they can be used as the basis of an alignment algorithm, as well

as for assessing the performance of an alignment algorithm.
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Fig. 1.5. Overview of LC-MS-based proteomics. Proteins are ex-
tracted from biological sam- ples, then digested and ionized prior to
introduction to the mass spectrometer. Each MS scan results in a
mass spectrum, measuring m/z values and peak intensities. Based
on observed spectral information, database searching is typically em-
ployed to identify the pep- tides most likely responsible for high-
abundance peaks. Finally, peptide information is rolled up to the
protein level, and protein abundance is quantified using either peak
intensities or spectral counts
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Fig. 1.6. Protein quantitation. The left panel shows the proportion
of missing values in an example data set as a function of the mean of
the observed intensities for each pep- tide. There is a strong inverse
relationship between these, suggesting that many missing intensities
have been censored. The right panel shows an example protein found
to be differentially expressed in a two-class human study. The pro-
tein had 6 peptides that were identified, although two were filtered
out due to too many missing values (peptides 1 and 2, as indicated by
the vertical shaded lines). Estimated protein abundances and confi-
dence intervals are constructed from the peptide-level intensities by
a censored likelihood model [21].
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1.5 Protein Quantitation

Quantitative proteomics is concerned with quantifying and comparing protein

abundances in different conditions (Figure 1.5). Once a list has been constructed of

the proteins believed to be present in the sample and the peak intensity is aligned,

the next task is to quantify the abundance of the proteins. Protein abundance infor-

mation is contained in the set of peaks that correspond to the protein’s component

peptides. Peak height or area is a function of the number of ions detected for a par-

ticular peptide, and is related to peptide abundance [22]. Regardless of the specific

technology used to quantify peptide abundances, statistical models are required to

roll peptide level abundance estimates up to the protein level. Intensity based pro-

cedures for differential protein expression are naturally constructed in the context of

regression or ANOVA, or as a “rollup” problem [23].

However, intensity-based procedures are challenged by the presence of widespread

missing intensities, which are prevalent in MS-based proteomic data. In fact, it is

common to have 20% -40% of all attempted intensity measures missing. Abundance

measurements are missed if, for example, a peptide was identified in some samples

but not in others, see Figure 1.6. This can happen partially due to the low abun-

dances of present peptides, which is essentially a censoring mechanism [24]. With

standard regression or ANOVA procedures, peptides with missing values must either

be removed from the analysis, or their missing values must be imputed. There will

typically be very few peptides with no missing values, so filtering peptides in this

way results in a much less informative data set. The simple imputation routines

are not appropriate [25] since the vast majority of missing values are the results

of censoring of absent or low-abundance peptides. This complicates intensity-based

quantitation, as simple solutions will tend to be biased. For example, analysis of

only the observed intensities will tend to overestimate abundances and underesti-

mate variances. Simple imputation routines like row-means or k-nearest-neighbors

suffer from similar limitations. Parametric imputation and other specialized method-
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ology can be employed to enable intensity-based inference with lessened information

loss [21]. However, some information loss is inevitable. In particular, “one-state” (or

nearly so) peptides, those for which there are many observed intensities in one com-

parison group but few in another comparison group, are of great biological interest

but not amenable to an intensity-based analysis and filtered out in intensity-based

analysis. Statistical models are needed to address these issues, as well as to handle

the peptide-to-protein rollup [21], [26], see Figure 1.5.

In Section 4, we propose a “presence / absence” analysis, in which peak intensities

are digitized into binary measurements depending on whether a peak was observed

or not. Data collected in our laboratory does not necessarily have MS/MS frag-

mentation data associated with it, instead being obtained according to the Accurate

Mass and Time (AMT) tag pipeline [27]. We also present a hybrid analysis protocol

that consists of two stages: (i) intensity-based analysis, and (ii) a presence / absence

analysis. The results of each are merged to create a single collection of “interest-

ing” proteins, to which we use novel methodology to apply a single FDR. For the

proposed hybrid analysis protocol, we demonstrate the following: (i) Resulting FDR

estimates are conservative, (ii) One-state proteins are consistently selected as differ-

entially expressed, and (iii) The number of differentially expressed proteins selected

at a specified FDR exceeds that either intensity-based or presence / absence analysis

alone.
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2. A BAYESIAN HIERARCHICAL MODEL FOR PEPTIDE / PROTEIN

IDENTIFICATION BY LC-MS/MS.

2.1 Introduction

A fundamental challenge in quantitative mass spectrometry (MS)-based pro-

teomics is the identification of peptides and proteins that are present in a sample.

This is typically carried out by comparing observed features to entries in a database

of theoretical or previously-identified peptides (figure on page 7). In tandem mass

spectrometry (denoted by MS/MS or MSn), fragmentation spectra are obtained for

each subset of observed high-intensity peaks and compared to fragmentation spec-

tra in a database, using software like SEQUEST [5], Mascot [6], or X!Tandem [7].

Alternatively, high-resolution MS instruments can be used to obtain extremely ac-

curate mass and time (AMT) measurements, and these can be compared to AMT

measurements in a database [28]. In either case, a statistical assessment of the level

of confidence for each identification is desired; for the purposes of this section, we fo-

cus on peptide-spectrum matches (PSMs) and MS/MS. Protein identification can be

carried out by rolling up peptide-level identification confidence levels to the protein

level [8], or by the simultaneous modeling of peptides and proteins using hierarchical

models [29]. The goal of the identification process is generally to identify as many

features as possible, while controlling the number of false identifications at a toler-

able level. There are a myriad of options for the exact identification method used,

including (i) The choice of a statistic for scoring the similarity between an observed

spectral pattern and a database entry, and (ii) The choice of how to model the null

distribution of the similarity metric [10], [11].

There are several limitations of current methods. First, many current methods

are designed to evaluate the top 1 ranked PSM returned by a database searching
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application. Recent published work [14], [15], [9] have extended the analysis from

the top 1 ranked peptide per spectrum to a list of candidate PSMs per spectrum.

But existing approaches have made the assumption that multiple PSMs in the list of

candidate matches are independent. In complex samples, it is possible that multiple

peptides may give rise to very similar fragmentation patterns. However, it is reason-

able to expect that there is only one correct database entry that matches a specific

fragmentation pattern, in which case the PSMs in a list of top candidate matches

will not be independent. Our experiments suggest that the independence assump-

tion may lead to underestimated false discovery rates among identified peptides, see

figure on p. 36 in section 2.3.

In this section, we describe a fully Bayesian hierarchical modeling approach to

peptide and protein identification on the basis of MS/MS fragmentation patterns in a

unified framework. Our major contribution is to allow for dependence among the list

of top candidate PSMs, which we accomplish with a Bayesian multiple component

mixture model incorporating decoy search results and joint estimation of the accuracy

of a list of peptide identifications for each MS/MS fragmentation spectrum. Peptide

and protein network structure is modeled in the latent stages of the hierarchical

model. Our model can incorporate arbitrary collections of discriminant features for

quantifying match quality; examples include scores from different search applications

like XCorr and Sp from SEQUEST, hyperscore and E-value from X!tandem, and

other auxiliary discriminant information. We also implement a novel approach to

the normalization of database searching scores by utilizing scores obtained from

decoy databases, which is demonstrated to greatly reduce the dependency among

discriminant features, see figure on page 21. Finally, we propose an objective criteria

for the evaluation of the FDR associated with a list of identifications at peptide level.

Using this criteria, our method is found to result in more accurate FDR estimates

than existing methods like PeptideProphet [11].
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2.2 Methods

2.2.1 Experiments

The data we used came from 5 quality-control LC-MS/MS runs of Shewanella

oneidensis, prepared by and run at the Pacific Northwest National Laboratory. For

each sample, we have SEQUEST output for use in the peptide and protein identifi-

cation process.

2.2.2 Peptide and Protein Identification by Database Search

The identification of peptide assignments to MS/MS spectra is primarily based

on database search scores computed by different search engines together with var-

ious peptide-specific properties. Most database search approaches employ a score

function to measure the similarity between peptide MS/MS spectra and theoreti-

cal spectra constructed for each peptide in the searched protein sequence database.

Different search engines such as SEQUEST [5], X!tandem [7] and Mascot [6] adopt

different scoring systems. For example, SEQUEST computes a correlation score be-

tween a normalized MS/MS spectrum and a unit-intensity fragmentation model and

corrects it by an estimation of the background. X! Tandem defines a score function

based on the shared peak count approach and calculates an “expectation value” for

each peptide assignment. Mascot computes a probability-based score called the ion

score (often referred to simply as Mascot score) using the Mowse scoring algorithm.

Other than database search scores, some additional measurements might also contain

useful discrimination information, such as the difference (dT) between the observed

and predicted elution time (such as the “Normalized Elution Time” (NET) [30]),

the difference between the measured and calculated peptide mass (dM), the frac-

tional difference between current and second best Xcorr δCn , the Number of Tryptic

Ends (NTE), the Number of Missed Cleavage Sites (NMC), the peptide degeneracy
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measurement “multi-protein”. All these features are potentially informative for dis-

tinguishing between correct and incorrect PSMs. Ideally, incorporating all available

discriminant features should greatly improve tandem mass spectrum identification.

In this section, we consider a target-decoy search strategy, which has been used

successfully in peptide and protein identification analysis [10]. Decoy databases are

usually created by reversing or randomly shuffling the target peptide sequences. The

distributions of some PSM attributes (e.g., peptide length, elution time, charge state,

database search score) from a decoy database search are assumed to be the same as

those of false identifications from target database search. And incorrect PSMs from

decoy sequences are assumed to be equally as likely as those from target sequences.

Based on these assumptions, target-decoy search strategies have been successfully

used to distinguish correct identifications from incorrect ones [14], [31] and estimate

confidence levels for peptide assignments [32].

In some cases, database search scores should be transformed prior to analysis.

For example, consider the SEQUEST primary score, XCorr, a measure of the cor-

relation between observed and theoretical fragmentation spectra. XCorr is highly

dependent on peptide length and precursor ion charge state (see, e.g., [11] and [33]).

In particular, long peptides tend to have higher XCorr values than short peptides,

due simply to more frequent random matching of observed and theoretical spectral

features. Precursor ions with different charge states also have different probabili-

ties of having random hits, yielding shifts in the distributions of XCorr scores. To

alleviate this problem, PeptideProphet normalizes XCorr based on a deterministic

transformation, which is a function of peptide length. The transformed XCorr is

denoted as XCorr′. Due to the existence of charge state effects in the transformed

XCorr, PeptideProphet models each charge state separately.

We propose a novel approach to the normalization of discriminant scores, utilizing

the scores observed for matching to the decoy database. As an example, assuming

the top R ranked decoy XCorr scores for each spectrum are available, we normal-
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ize the target XCorr scores by subtracting the average XCorr scores for the top R

ranked decoy PSMs. In what follows, we let XCorr∗ denote the decoy-normalized

version of XCorr. The underlying assumption of this transformation is that peptide

length dependence and charge state dependence in decoy XCorr scores can be used

to approximate the corresponding dependencies in target XCorr scores.

This transformation is easy to implement yet effective to reduce the sequence

length dependence and charge state dependence. Figure 2.1 clearly suggests that

the distribution of the normalized XCorr score shows much weaker dependence on

peptide length and charge state. In addition, XCorr∗ is by nature a measurement of

relative XCorr score defined for the top R ranked target PSMs. XCorr∗ alone offers

comparable discrimination information with both XCorr
′

and δCn . Because of these

desired properties, we employ XCorr∗ as a primary SEQUEST searching score in the

subsequent analysis.

When multiple (transformed) discriminant features are available, one common

strategy is to combine (a subset of) them into a single discriminant score for simplifi-

cation purposes, which can greatly relieve the complexity of the subsequent mixture

distribution specification. There are many dimension reduction and classification

tools to choose from, including linear discriminant analysis (LDA), principle com-

ponent analysis (PCA), logistic regression and support vector machines (SVM). For

example, PeptideProphet employs LDA to derive a scaler score “fval” from a num-

ber of database search scores. All other information together with “fval” is modeled

in an unsupervised or semi-supervised fashion at subsequent steps [11], [31], [13].

Percolator uses a semi-supervised machine learning method that iteratively trains a

SVM classifier containing all discriminant features [14], where each PSM is assigned

a decision score.

In this section, we employ a similar approach as Percolator, using a radial basis

function (RBF) as the kernel function to train a semi-supervised SVM in a dynamic

fashion. The top 1 ranked target and all decoy discriminant features are used as
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Fig. 2.1. Scatter plot of normalized Xcorr vs peptide length and
charge state. The top left panel (green) is the scatter plot of Xcorr
vs Peptide length before normalization and reveals a positive corre-
lation by the fitted lowess curve. The top right panel (red) is the
scatter plot of Xcorr vs Peptide length after normalization. The
lowess curve fitted is essentially flat, indicating a much weaker de-
pendency on peptide length. The bottom left panel (green) is the
scatter plot of Xcorr vs charge state before normalization and re-
veals a positive correlation by the fitted lowess curve. The bottom
right panel (red) is the scatter plot of Xcorr vs charge state after
normalization with the fitted lowess curve relatively flat, indicating
a much weaker dependency on charge state after normalization.
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the training dataset, and the combined discriminant score is then calculated for all

of the top R target PSMs using the SVM function derived by the training dataset.

Figure 2.2 shows the distributions of target and decoy SVM scores. The bi-modality

of the distribution of target scores clearly suggests that target PSMs are comprised

of a mixture of correct and incorrect PSMs, suggesting the use of mixture modeling.

Also, the distribution of scores assigned to decoy PSMs is very similar to the distri-

bution for incorrect target scores. We note that SVM is primarily used as for scoring

purposes, rather than as an ultimate classifier or validation tool in the identification

process. There are many other scoring approaches for classification tools that might

achieve better combined discriminant scores. It is also possible to apply SVM to

database search scores only and then specify a multivariate mixture distribution for

the database search score combined with other discriminant information. However,

it is beyond the scope of this section to discuss and compare all of these possibilities.

2.2.3 Model

Many existing approaches to peptide identification are designed to model the top

1 scoring PSM for each spectrum only (ranked according to a certain scoring cri-

terion). The combined discriminant score (or multiple discriminant scores) can be

modeled as a parametric or semi-parametric mixture distribution with two compo-

nents representing correct and incorrect identifications, respectively. In a Bayesian

framework, the posterior probability that a PSM belongs to the correct-match dis-

tribution can be used as a statistical measure of confidence.

In this section, we present a model that accommodates a list of potential matches

(PM) for each spectrum. We might, for instance, wish to use the top 10 ranked PSMs

returned by a particular searching application, or a list of unique top 1 ranked PSMs

based on multiple search algorithms. In practice, it is expected that many correct

peptide assignments are ranked slightly lower than the top 1 ranked PSM based on

an algorithm-derived score. Our goal is to take advantage of the information for all



23

Fig. 2.2. SVM scores. The histograms and density curves of target
and decoy SVM scores. The left panel with green curves is the distri-
bution of the decoy SVM score and the right panel with red curves is
the distribution of the target SVM score. The decoy histogram and
density curve have similar shape to the incorrect SVM score in target
PSMs.
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available discriminant features and peptide protein grouping information to bump

correct PSMs up the ranking list. This would enable us to discover more correct

PSMs than approaches based on single best PSM scores alone.

In this approach, database search algorithms such as SEQUEST are employed

to filter out a list of candidate PSMs and calculate their corresponding discriminant

features. The subsequent statistical analysis serves as a second search step to find

the most likely match within the candidate list based on their estimated confidence

levels. Although several existing approaches also consider multiple peptide assign-

ments per spectrum [14] and [15], they typically impose independence assumption

in the correctness for PSMs in the same candidate list. However, this assumption

may not hold in practice and could render higher false discovery rate. For example,

given that one candidate PSM has a significantly higher chance to be correct, the

probability that other candidates are also correct should be low.

We relax the independence assumption in our approach. A multiple component

mixture model is proposed in the first stage to jointly infer the correctness of every

candidate PSM for each spectrum based on the combined discriminant score. Since

the prior probabilities of being correct matches are connected to the unobserved pres-

ence/absence of peptides and proteins. We employ a Bayesian hierarchical modeling

approach that models peptide and protein network information in the latent layers.

Some common complexities in peptide/protein identifications are also addressed in

our model.

The First Stage: a Multi-component Mixture Model for Discriminant Scores

We introduce some notations first. Assume we have K experimental spectra, each

of which is assigned a PM list with Rk PSMs, e.g., the top R ranked PSMs from

SEQUEST. Let srk denote the combined discriminant score of the rth match for spec-

trum k, r = 1, · · · , Rk, k = 1, ..., K. Let sk,1:Rk
= (sk,1, sk,2, ..., sk,Rk

) denote a vector
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containing scores for those R matches, s1:Rk\r = (sk,1, sk,2, ..., sr−1, sr+1, ..., sk,Rk
),

denote a vector containing scores for all candidates except for the rth match.

We introduce a Rk + 1 dimensional component label vector Zk, where the rth

element of Zk, Zk,r = (Zk)r, is a binary indicator. We assume there is at most

one correct PSM in the PM list for each spectrum. Zk,Rk+1 = 1 indicates none

of the Rk matches in the PM list being correct. For r from 1 to Rk, Zk,r = 1

indicates the rth PSM is the only correct match in the PM list for spectrum k.

Define pk = (pk,1, ...., pk,Rk+1)
′
, where pk,r = Pr(Zk,r = 1). Then

∑Rk+1
r=1 pk,r =

1. The imposition of this restriction connects the probabilities of being correct for

multiple PSMs assigned to the same spectrum. It enables us to compute the peptide

probabilities for one candidates while taking into account information from other

matches in the same PM list.

Let f1 denote the density function for score with correct-match and f0 denote

the density function for score with incorrect-match. Conditional on the label vector

Zk, discriminant scores are assumed to be independently following the distribution

shown below,

Pr(sk|Zk) =

Rk∏
r=1

f1(sk,r)
I(Zk,r=1)f0(sk,r)

I(Zk,r=0)

Integrating out the latent label vector Z, it yields a mixture distribution with Rk +1

components for target discriminant scores.

s
(target)
k,1:Rk

∼
Rk∑
r=1

I(Zk,r = 1)f1(s
(target)
k,r )f0(s

(target)
k,{1:Rk}\r) + I(Zk,Rk+1 = 1)f0(s

(target)
k,1:Rk

)

∼
Rk∑
r=1

pk,rf1(s
(target)
k,r )f0(s

(target)
k,1:Rk\r) + pk,0f0(s

(target)
k,{1:Rk})

Recall that distribution of decoy scores provides a satisfying approximation to

the distribution of scores from incorrect target matches. Incorporating decoy scores
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in the model could obtain improved robustness in the estimation of f0 and hence

better discrimination for target PSMs. The model is:

sk,1:R
(incorrect) ∼ f0(s

(decoy)
k,1:R ) (2.1)

The choice of functional forms for f0 and f1 will depend on the specific method

used to derive the combined database search score. In our case, we used Xcorr,

Rank Sp, NTE, “multi-protein” and charge state as the covariates for the combined

SVM score, which greatly simplifies the task of mixture distribution specification.

We model f0 using the generalized extreme value (GEV) distribution with location

parameter µ0, scale parameter σ0 and shape parameter ξ0. The GEV distribution is

the limit distribution of properly normalized maxima of a sequence of independent

and identically distributed random variables. It is commonly used as an approxima-

tion to model the maxima of long (finite) sequences of random variables. In our case,

the combined scores for PSMs in the PM list are among the highest of the entire

database, making GEV distribution a natural choice for f0. The diagnostic analysis

also showed that the GEV distribution can describe the shape of combined discrimi-

nant score well, see Figure 2.3. Similarly, empirical exploration study suggests using

a GEV density to model f1 rather than a normal density, with location paramter µ1,

scale parameter σ1 and shape parameter σ0 to be estimated, see Figure 2.4.

Latent Stages: Prior Models for Peptide and Protein Network

In tandem MS/MS dataset, peptide level and protein level information are nat-

urally connected in a hierarchical structure. Figure on page 29 briefly illustrates

the work flow of the LC-MS/MS experiment and the peptide and protein network

information. As is shown in this figure, each protein can generate a list of peptides

and some peptides can be generated by multiple proteins. If peptide j is correctly

identified and unique to protein i, then protein i must be present in the sample,
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Fig. 2.3. Diagnostic of GEV fit on f0, the density of incorrect match-
ing scores. Left panel is quantile plot, the blue line is diagonal line.
Right panel is density curve vs histogram.
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Fig. 2.4. Diagnostic of GEV fit on f1, the density of correct match-
ing scores. Upper Left panel is GEV quantile plot, the blue line is
diagonal line. Upper right panel is Normal quantile plot, the blue
line is fitted QQ-line. Bottom left panel is GEV density curve vs his-
togram and bottom right panel is normal density curve vs histogram
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which in turn implies higher chance of detecting the sibling peptides of peptide j in

the experiment.

Many conventional approaches follow a two step procedure to assess peptide and

protein confidence levels, in which peptide confidence levels are obtained from a like-

lihood model for discriminant score(s) in the first step and protein confidence levels

are estimated based on the peptide-level results. Apparently, by borrowing strength

from peptide/protein grouping information, an integrated analysis can produce more

accurate assessment for peptide and protein identification [29].

There are two major complexities that need to be addressed in modeling peptide

and protein network. The first complexity is called “degeneracy” problem [11]. If a

peptide can be generated by multiple proteins, then it adds ambiguity into protein

identification since we only know at least one of these proteins must be present. Few

work has been done to address this problem. Another common complexity is that

multiple spectra with different scores can be assigned to the same peptide, again,

adding ambiguity in assessing confidence levels for peptides with multiple spectra.

This complexity primarily arise from two different situations: i) tandem MS/MS

technique can generate repeated fragment ion spectra [34], which are mostly likely

to be assigned to the same peptide; ii) a false identified peptide can be assigned to

multiple spectra due to random matches. Many conventional approaches only keep

the maximum score for analysis, leading to two potential limits. First, it ignores

information from other spectra that may help with peptide identification. For exam-

ple, if multiple PSMs associated with the same peptide are due to repeated spectra,

larger number of repeated spectra should imply higher peptide confidence level. Sec-

ond, if multiple PSMs associated with the same peptide are due to random matches,

ignoring information from lower scores can possibly yield overestimated peptide con-

fidence level since a false identified peptide can be assigned with a high score by

chance. Apparently, modeling multiple PSMs to the same peptide would require

distinguishing those two situations. Frank etal. [34] propose a clustering approach
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Fig. 2.5. Simplified outline of the experimental steps and work flow
of the data in a typical high-throughput MS-based analysis of com-
plex protein mixtures. Each sample protein (open circle) is cleaved
into smaller peptides (open squares), which can be unique to that
protein or shared with other sample proteins (indicated by dashed
arrows). Peptides are then ionized and selected ions fragmented to
produce MS/MS spectra. Some peptides are selected for fragmen-
tation multiple times (dotted arrows) while some are not selected
even once. Each acquired MS/MS spectrum is searched against a
sequence database and assigned a best matching peptide, which may
be correct (open square) or incorrect (black square). Database search
results are then manually or statistically validated. The list of identi-
fied peptides is used to infer which proteins are present in the original
sample (open circles) and which are false identifications (black cir-
cles) corresponding to incorrect peptide assignments. The process of
inferring protein identities is complicated by the presence of degener-
ate peptides corresponding to more than a single entry in the protein
sequence database (dashed arrows) [8]
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to identify redundant spectra and replace each cluster with a single representative

spectrum. We believe this clustering type of approaches followed by database search

applications can greatly reduce the number of repeated spectra. However, it may

not be able to find all redundant spectra.

Bayesian hierarchical model is a convenient choice that allows us to incorporate

different levels of information in a unified framework. We describe models with

multiple latent layers to describe peptide and protein network. Models at latent

stage is connected to the mixture model in the first stage through the prior model

for pZ|Y . In this section, we describe a model based approach to address the two

major complexities discussed above.

We first introduce peptide level indicator and protein level indicator. Let Xi

denote a binary indicator such that Xi = 1 if protein i is present in the sample

and detected, and 0 otherwise. Let Yj be a binary indicator such that Yj = 1 if

peptide j is present in the digested sample and detected, and 0 otherwise. Let

pep(k, r) denote the peptide index number of the rth PSM for spectrum k. Recall

Z is a Rk + 1 dimensional component label vector Zk, where the rth element of Zk

indicating whether the rth match is correct for r ≤ Rk. Conditional on peptide

indicator Y , PSM indicators Z and protein indicators X are independent. Based on

peptide and protein network information, we build three models in the latent stages,

Pr(Z|Y ), Pr(Y |X) and Pr(X) respectively.

The Second Stage: Pr(Z|Y)

Conditional on a peptide is absent, it is reasonable to assume that all PSMs

that are matched to this peptide are incorrect. If a peptide is correctly detected

and only one PSM is matched to it, we assume that PSM is correct. If a peptide

is correctly detected but have multiple hits, it is possible that some hits are due to



32

random matching. Those assumptions become the major guideline for us to model

the conditional probability, Pr(Z|Y ).

Pr(Z|Y ) = Pr(Zk,r = 1|Ypep(k,r)) =
τk,r Ypep(k,r)=1

0 Ypep(k,r)=0

(2.2)

where τk,r is the conditional probability that the rth match for spectrum k is correct

given peptide pep(k, r) is present. As we discussed above, if multiple PSMs assigned

to the same peptide originate from repeated spectra, we expect their conditional

probabilities of being correct are consistently close to 1. If PSMs are assigned to

the same peptide by random chance, we expect their conditional probabilities of

being correct take a much smaller value than 1. We use DM , the difference between

observed Mass and theoretical Mass as a major covariate to distinguish between

repeated spectra and random matches. When a PSM is unique to a peptide, DM = 0.

We expect its conditional probability to be 1 or close to 1. In other cases, we expect

that the larger the absolute deviation is, the more likely the PSM is assigned due

to random matching. A logistic regression or Probit model using DM as covariate

information is desired to model the conditional probability τk,r. For simplicity, we

pick a threshold C for DMk,r and assume a prior model for τk,r as follows:

τk,r =
1 |DMk,r| ≤ C

τ |DMk,r| > C
(2.3)

Based on exploratory data analysis on previously observed NET combined with

expertise’s suggestion, we choose C = 0.5 as a threshold. τ is an unknown parame-

ter. We assign a prior distribution on this parameter and estimate it using MCMC

approach (see Appendix for details).

The Third Stage: Pr(Y|X)

If a protein is absent, it is reasonable to assume that none of its constituent

peptides can be correctly detected. If a protein is present, it is common that only
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a subset of its constituent peptides can be correctly identified. In the case of ’de-

generacy’, a peptide can be generated by different proteins. Again, we follow those

information to specify the conditional probability model for peptide indicators Y

given protein indicators X.

We let πi,j = Pr(Yj = 1|Xi = 1) denote the probability that peptide j is correctly

identified conditional on its parent protein i being present. Let Cj denote the set of

proteins that could potentially generate peptide j. Notice that the probability that

peptide j is present in the digested sample is equal to the probability that at least

one protein in Cj generates it.

We have

Pr(Yj|X) = 1−
∏
i∈Cj

(1− πi,j)Xi (2.4)

This conditional probability πi,j might depend on certain peptide sequence spe-

cific information, such as amino acid content, charge, hydrophobicity and polarity

(see [29]). Ideally, incorporating those covariates that contain information about

the observability of peptides can help us accurately estimate peptide and protein

probabilities. Again, a logistic regression or Probit model can be a natural choice

to incorporate those relevant explanatory variables in a prior model for πi,j. Due to

the lack of those measurements in our data, we simply assume πi,j = π, a constant

unknown parameter which has prior information assigned before MCMC steps.

The Fourth Stage: Pr(X)

Finally, we assume the prior model for the presence of protein i is a Bernoulli

distribution, i.e., P (Xi = 1) = qi. Here qi is the prior probability that protein

i is present. Again, prior knowledge on the presence/absence status of proteins

can be naturally incorporated in the prior model for qi. For example, if organism

level information is available, we can further specify another layer of model in the
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hierarchical framework that reflects protein/organism grouping information. Again,

due to the lack of this information in our study, we simply assume qi = q, a constant

unknown parameter that has prior information assigned before MCMC steps.

2.2.4 Bayesian Implementation and Bayesian False Discovery Rate

We employ MCMC methods to do the model fitting. We begin with prior spec-

ifications for the parameters. Recall that we have unknown parameters (µ0, σ0, ξ0)

in the GEV distribution f0, (µ1, σ1, ξ1) in the GEV distribution f1, τ , π and q in

the latent stage models. Vague normal priors are assigned to the location parameter

µ0, µ1, shape parameter ξ0, ξ1, and an inverse gamma priors are assigned to σ0, σ1.

We also assign Beta(1, 1), i.e., uniform distribution on [0, 1], to the parameters π, τ

and q.

Posterior inference for the model parameters is completed using Gibbs sampling

[35] with Metropolis-Hastings updating [36]. With the above hierarchical model

and prior setup, all the conditional distributions turn out to be of known standard

except for the GEV parameters in f0 and f1. (µ0, σ0, ξ0), (µ1, σ1, ξ1) are then updated

using Metropolis steps. Typically, random walk Metropolis with normal proposals is

adopted. The detailed MCMC steps are given in Appendix.

In particular, we collect posterior samples of the latent peptide indicators Yj.

The posterior correctness probability for each peptide is estimated by the posterior

sample proportion of Yj. The correctness probability for each protein is obtained in a

similar way. The associated posterior error probability (PEP, also referred to as local

false discovery rate) is defined as the probability of being incorrect, simply calculated

by subtracting posterior probability from one. For a given probability threshold pc,

peptides with PEPs lower than pc are decided to be positive identifications. The

Bayesian FDR (see [37] and [32]) associated with the above decision is estimated by

the average PEPs that are below pc.
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FDR(pc) =

∑
PEP<pc

PEP

#{PEP < pc}

A similar approach is easy to be applied to protein posterior PEPs. The Bayesian

FDR could be used to assess the protein level identifications by our approach.

2.3 Results

Our identification approach is applied to the SEQUEST output on the Shewanella

data described in section 2.1. The independence assumption among PSMs causes un-

derestimated FDR, i.e. over-estimated number of identification at a specific FDR

cutoff, which confronts with the rule of conservative estimation. Figure 2.6 shows

that, compared with the true FDR lower bound, there are more identified pep-

tides at the same Bayesian FDR estimated under PSMs independence assumption

(red curve), which obeys the conservative rule for FDR estimation. Meanwhile, the

Bayesian FDR estimated under PSMs dependence assumption (green curve) shows

its conservative character.

The number of PSMs incorporated into the model–R has an impact on peptide

identification. Figure 2.7 shows the positive trend between the number of identified

peptides versus R–the number of top PSMs candidates utilized in the model, at a

specific FDR cutoff 0.05. The same trend maintains at different FDR cutoffs.

Our approach that models the top 10 PSMs, which identifies more peptide fea-

tures than PeptideProphet under most of the circumstances except for estimated

FDR below 0.02, see Figure 2.8.
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Fig. 2.6. The effect of independence assumption towards FDR esti-
mation. Red curve is estimated Bayesian FDR under independence
assumption of PSMs on the same peptide, green curve is estimated
Bayesian FDR under dependence PSMs assumption of PSMs on the
same peptide, black curve is the true FDR lower bound.
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Fig. 2.7. The number of peptide identification vs the number of
PSMs used in the model at 0.05 FDR cutoff.
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Fig. 2.8. The number of peptide identification vs estimated FDR
using top 10 PSMs candidates. The green curve is generated by our
approach and the blue curve is given by PeptideProphet. The black
curve is associated with the true FDR lower bound
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2.4 Discussion

In our framework, protein level posterior probability could be estimated one layer

after obtaining peptide level posterior probability estimation. Hence protein level

inference such as PEP, Bayesian FDR and the comparison with empirical lower bound

FDR could be done in a similar way. However, due to the lack of result from other

protein level identification algorithms on this Shewanella dataset, no comparison is

carried on in the same fashion as comparison at peptide level with PeptideProphet.

Our model could also be applied to the AMT tag approach, where we would have

both MS/MS data as well as hi-resolution mass and elution time measurements.

The MS data with AMT tag could also be searched against AMT database with

matching scores returned. We need to normalize matching scores and model the

distribution of the correct and incorrect normalized matching scores as well as other

informative covariates. Four layers need to be constructed for score—AMT match,

AMT match—peptide, peptide—protein and protein. In order to run MCMC, prior

information also need to be determined for the parameters in each layer as well as in

the model of matching scores. After the simulation, posterior probability at peptide

level and protein level could be inference by sample proportion and then produce

Bayesian FDR estimation.
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3. A STATISTICAL APPROACH TO THE ALIGNMENT OF LC-MS/MS

SAMPLES

3.1 Introduction

3.1.1 Background

In LC-MS, each sample may have thousands of scans, each containing a mass

spectrum. The mass spectrum for a single MS scan can be summarized by a plot of

M/Z values versus peak area values. These data contains signals that are specific to

individual peptide. As a first step towards quantifying these peptides, features need

to be distinguished from background noise. One simple method is to employ a filter

on the peak’s signal-to-noise ratio relative to its local background. Each peptide

gives an envelope of peaks due to a peptide’s constituent amino acids. The presence

of a peptide can be characterized by the M/Z value corresponding to the peak arising

from the most common isotope, referred to the mono-isotopic mass.

3.1.2 Existing Alignment Methods

The goal of alignment is to match corresponding peptide features in the Scan

Number vs M/Z plot (see figure on p. 49 in section 3.3.2) from different experi-

ments. A time warping method based on raw spectrum for alignment of LC-MS

data was introduced by Bylund and others [16], which is a modification of the origi-

nal correlated optimized warping algorithm [17]. Wang and others [38] implemented

a dynamic time warping algorithm allowing every Retention Time (RT) point to be

moved. However, the LC-MS data have added dimension of mass spectral informa-

tion, so only mapping the retention time coordinates between two LC-MS files is not
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sufficient to provide alignment for individual peptide. Radulovic and others [19] per-

formed alignment based on (M/Z,RT) values of detected features. Their method first

divides the M/Z domain into several intervals and fitted different piece-wise linear

time warping functions for each M/Z interval. After the time warping, they applied

a “wobble” function to peaks and allow peaks to move (1-2% of total scan range) in

order to match with the nearest adjacent peaks in another file. Their method relies

on the (M/Z,RT) values of detected peptide features, it fails to take advantage of

other information in the raw image. Wang and others [38] proposed an alignment

algorithm, PETAL, for LC-MS data. It uses both the raw spectrum data and the

information of the detected peak features for peptide alignment.

In Section 3, two Shewanella data sets are obtained from Pacific Northwest Na-

tional Laboratory (PNNL) and were analyzed by SEQUEST on different days. SE-

QUEST correlates uninterpreted tandem mass spectra of peptides with amino acid

sequences from protein and nucleotide databases, which determines the amino acid

sequence and thus the protein(s) and organism(s) that correspond to the mass spec-

trum being analyzed. Based on the SEQUEST output files, each sample has thou-

sands of scans, and M/Z, peak areas and peptide identification information associ-

ated. It’s obvious that there’s some systematic error between the the two data sets

before alignment.

In this study, we first applied some filter criteria to choose data points matched

in both samples with high confidence, which are called “Anchor points”. We then

use these “Anchor points” in sample one as the baseline and modify the data points

in sample two, to make the “Anchor points” between the two samples aligned to-

gether, which means after alignment the “Anchor points” in both samples show up

at the same locations. The alignment algorithm is then generated to all the other

data points in sample two. Finally, statistical measurements of the performance of

alignment are given on sample level and regional level.
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In future study, we hope this alignment method can be applied to several samples

of one organism, and as a guide to justify the points with same peptide information

in different samples.

3.2 Methods

3.2.1 Anchor Points

In our method, for different experiments, we have the raw data analyzed by

SEQUEST. Based on the SEQUEST output files, each sample has thousands of

scans, M/Z, peak areas and peptide information. A sample record of data is given

in Table 3.1. Define a point with high probability that its peptide shows up in

SEQUEST output files as “Anchor points”.

Table 3.1
A sample record of SEQUEST output.

ScanNum MZ PeakArea NTE PassFilt SignalToNoiseRatio

8239 826.4 4.98E+06 2 1 25.1

ChargeState Xcorr DelCN RankXc Reference Peptide

3 7.9171 0 1 SO 2336 K.LA...GYVHA

In LC-MS, we need to distinguish the peptide features from the background

noise, the first step for doing this is MS peak detection. We employ a simple filter

routine on the Signal-to-Noise Ratio of a peak relative to its local background. In our

approach, in order to find peptides that exist in both samples with high confidence,

three filtering criteria are applied. The first criterion is PassFilt equaling to 1, the

second criterion is Number of Tryptic Ends (NTE) equaling to 2 and the third

criterion is Signal-to-Noise Ratio being greater than 10. PassFilt is a score that does

not come from by SEQUEST but is calculated from syn-fht summary generator using



43

Xcorr, δCn , RankXc and the number of tryptic termini (NTT), where NTT is the

number of termini that conforms to the expected cleavage behavior of trypsin (i.e.

C-terminal to R and K). Note that K-P and R-P do not qualify as tryptic cleavages

because of the proline rule. However, the protein N-terminus and protein C-terminus

do count as tryptic cleavage sites. Values can be 0, 1, 2 with 2 = fully tryptic; 1 =

partially tryptic; 0 = Non tryptic. Any point associated with the same peptide in

both samples satisfied these three criteria is called “Anchor point”, see Figure 3.1.

3.2.2 Alignment Algorithm

“Anchor points” found from both samples differ on “Scan Number”, which repre-

sent elution (retention) time, on which we need to find some algorithm to make these

points in the two samples aligned, as well as on M/Z and Peak Area. Since the range

of Peak Area is not as the same magnitude as Scan Number or M/Z, a logarithm

transformation is applied. Let Si be the Scan Number for peak i, Mi be M/Z for peak

i, and Pi be the log(peak Area) for peak i. The data is normalized to zero-to-one

range by dividing normalization factors of Scan Number, M/Z, and log(Peak Area),

denoted as RX , RM and RP , which are the maxima of Scan Number, M/Z, and

log(Peak Area) across the two samples. The reason why we do normalization is that

due to the different scales of Scan Number, M/Z and log(Peak Area), the distances

can not be equally measured, for example, the scan number is very large compared

to the M/Z. The normalization could transform the three dimensional measurement

under the same scale and thus give equal weighting to all of them. The alignment

algorithm uses both the raw spectrum analyzed by SEQUEST and the detected peak

features for peptide alignment. Although in the two samples, the peaks with same

identified peptide information appear in different scan numbers due to systematic

bias, we assume that the scan numbers, M/Z and log(Peak Area) should not differ

much within the paired peaks.
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Fig. 3.1. Plot of anchor points embedded in both samples. Left
panel is for sample one and right panel for sample two.
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With the pool of “Anchor points” found between sample one and sample two,

we are able to locate the K nearest anchor points for peak i in sample two, where

the distance is defined by Euclidean metric considering the three dimensions of nor-

malized Scan Number, M/Z and log(PeakArea). With the defined metric, let Dij be

the distance between peak i and an arbitrary “Anchor point” j in the sample two,

Dij = (((Si − Sj)/RS)2 + (Mi −Mj)/RM)2 + (Pi − Pj)/RP )2.

Since each “Anchor point” in sample two is paired with an “Anchor point” in

sample one, let ∆S be be the averaged scan number differences across the K nearest

“Anchor point” pairs; let ∆M be the averaged M/Z differences across peak i’s K

nearest “Anchor points” pairs; and let ∆P be the averaged log(peak Area) differences.

Then we use the differences to modify peak i in sample two by adding (∆S,∆M ,∆P )

to (Si,Mi, Pi). ∆S = Si.1 − Si.2, ∆M = M i.1 −M i.2, ∆P = P i.1 − P i.2, where Si.1 is

the average over Scan Number of K “Anchor points” in sample one.

3.3 Real Data Example

3.3.1 Visualization of Alignment

In the Shewanella datasets, RS = 10606, RM = 1519.48, RP = 10.08476. The

data is firstly normalized with RS, RM and RP and then searched for “Anchor

points”. There are systematic bias between the differences on Scan number, M/Z

and log(Peak Area) of “Anchor points” from both samples before alignment. After

alignment, the differences should be randomly distributed around 0. We draw his-

tograms to compare the distance of “Anchor points” between the two samples before

and after alignment. Figures 3.2 and 3.3 are the histogram of Scan Number and

M/Z. The histogram of log (Peak Area) is shown in Figure 3.4 on page 48. The

histograms show that, after alignment, the differences on Scan Number, M/Z and

log (Peak Area) between the two samples are mostly around 0.
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Fig. 3.2. Histograms of Scan Number of anchor points. Left panel
is for before alignment and right panel for after alignment.
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Fig. 3.3. Histograms of M/Z of anchor points. Left panel is for
before alignment and right panel for after alignment.
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Fig. 3.4. Histograms of Log(Peak Area) of anchor points. Left panel
is for before alignment and right panel for after alignment.
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Fig. 3.5. Scatter plot of Scan Number vs. M/Z on all data points.
Left panel is for before alignment and right panel for after alignment.

To visualize the alignment, scatters plots of Scan Number versus M/Z and Scan

Number log (Peak Area) on “Anchor points” before and after alignment are given

as Figures 3.5 and 3.6.

3.3.2 Global P-value for Alignment Performance

It is important to perform a statistical test to justify that after alignment, there

is no systematic difference across all the ”Anchor points” between the two samples.

Wilcoxon signed-rank test is applied on the differences on Scan Number, M/Z and

log(Peak Area) of the “Anchor points” between the two samples, before and after
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Fig. 3.6. Scatter plot of Scan Number vs Log (Peak Area) on all
data points. Left panel is for before alignment and right panel for
after alignment.
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alignment with K = 5. The null hypothesis is that the true location shift is equal to

0 while the alternative hypothesis is the true location shift is not equal to 0.

We have the following results: Before alignment Wilcoxon signed-rank test on

Scan Number of anchor point with continuity correction W = 537733, p-value ≤

2.2e − 16. After alignment Wilcoxon signed-rank test on Scan Number of anchor

point with continuity correction W = 2932224, p-value = 0.0986.

Before alignment Wilcoxon signed-rank test on M/Z of anchor points with con-

tinuity correction W = 142212, p-value = 0.1091. After alignment Wilcoxon signed-

rank test on M/Z of anchor point with continuity correction W = 265884, p-value

= 0.9049.

Before alignment Wilcoxon signed-rank test on log(Peak Area) of anchor point

with continuity correction W = 336362, p-value= 1.655e − 09. After alignment

Wilcoxon signed-rank test on log(Peak Area) of anchor point with continuity correc-

tion W = 281910, p-value = 0.6141.

So we conclude that the difference on Scan Number, M/Z and log(Peak Area)

of “Anchor points” after alignment in two samples has a common median 0, which

indicates our alignment approach is valid and effective to fulfill the alignment task.

3.3.3 Local P-values for Alignment Performance

We then generalize the single global p-value on the whole data set to local p-

values, realized by Wilcoxon sum rank test. For example, the entire span of Scan

Number versus Log (Peak Area) are divided into, for example, 10 X 10 small rect-

angular, the cutoffs on the margins are the 10%, 20%, · · · , 90% quantiles of Scan

Number and Log (Peak Area). Take a single rectangular for example, Wilcoxon sum

rank test is applied on Scan Numbers that fall into that single rectangular before

and after alignment and hence gives a p-value for that region. We repeat this on the

other 99 rectangular and obtain 100 p-values in total. The p-values on Log (Peak

Area) are calculated in a similar way. Figure 3.7 displays the histogram of the 100
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Fig. 3.7. Histogram of regional p-values on Scan number. Left panel
is for before alignment and right panel for after alignment.

p-values on Scan Number and Log (Peak Area). We can see that there are fewer

small p-values on Scan Number after alignment. The heat map on Scan Number

confirms that since there are less red but more yellow rectangular after alignment,

shown as in Figure 3.8

The regional division could be realized in three dimensional fashion, but due to

the limitation of data size, there would not be enough peaks in a large proportion

of three-dimensional cubes to do the Wilcoxon sum rank test. However, if the data

size is sufficient, the localization of p-value would be more precise and valuable to

evaluate the effectiveness of the alignment algorithm.
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Fig. 3.8. Heat map of regional p-values on Scan number. Left panel
is for before alignment and right panel for after alignment.
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3.4 Discussion

One advantage of our method is that it allows statistical assessment of alignment

performance. We could statistically evaluate the performance of our methodology

with other alignment algorithms on some data set that has peptide identification

with high confidence.

The statistical confidence measure of our method was given on sample level. We

expanded it to region level and the future work would be developing peptide level

statistical confidence measure and pass it to downstream quantitative analysis.
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4. A HYBRID APPROACH TO PROTEIN DIFFERENTIAL EXPRESSION IN

MASS SPECTROMETRY-BASED PROTEOMICS

4.1 Introduction

A key goal of quantitative mass spectrometry-basad proteomics is statistical in-

ference on differential protein expression. Quantitative information is derived froe

spectral peak intensities that are identified as having come from one of a protein’s

constituent peptides. Statistical procedures for differential protein expression are

naturally constructed in the context of regression or ANOVA [39], or as a “rollup”

problem [23].

However, intensity-based procedures are challenged by the presence of widespread

missing intensities. It is typical for 20-40% of the total collection of attempted

measurements to be missing; that is, in a matrix with all identified peptides in the

rows, samples in the columns, 20-40% of the matrix cell entries are empty. With

standard regression or ANOVA procedures, peptides with missing values must either

be removed from the analysis, or their missing values must be imputed. There will

typically be very few peptides with no missing values, so filtering peptides in this

way results in a much less informative data set. Furthermore, previously-published

reports indicate that the vast majority of missing values are the results of censoring of

absent or low-abundance peptides [24]. This means that simple imputation routines

are not appropriate [25].

Parametric imputation and other specialized methodology can be employed to

enable intensity-based inference with lessened information loss. However, some in-

formation loss is inevitable. In particular, “one-state” (or nearly so) peptides, those

for which there are many observed intensities in one comparison group but few in

another comparison group, are not amenable to an intensity-based analysis; not lim-
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ited to the two-class problem. As a result, such peptides are typically filtered out

of an intensity-based analysis. A protein that is always present in a diseased state,

say, and never in the healthy state would be of great biological interest, so it is

unfortunate if our statistical methodology can not identify such a protein.

An alternative to an intensity-based analysis is a “presence / absence” analysis, in

which peak intensities are digitized into binary measurements depending on whether

a peak was observed or not. This is analogous to the spectral counting approach in

MS/MS studies [40], where a peptide is quantified by the number of fragmentation

spectra assigned to it. Data collected in our laboratory does not necessarily have

MS/MS fragmentation data associated with at, instead being obtained according to

the Accurate Mass and Time (AMT) tag pipeline [18]. Still, we have information on

whether or not a particular peptide was measured in each sample.

While presence / absence analysis is better-suited to finding one-state proteins, it

necessarily has less statistical power to detect abundance differences in proteins with

little to moderate missingness. Ideally, protein differential expression analysis would

simultaneously target proteins of both types, resulting in a single list of differentially

expressed proteins, with a single associated false discovery rate (FDR). A hierarchical

Bayesian model would be well-suited to this purpose, but such techniques are com-

plex, computationally intensive, and hence amenable to high-throughput pipelines.

We present a hybrid analysis protocol that consists of two stages: (i) intensity-

based analysis, and (ii) a presence / absence analysis. The results of each are merge‘

to create a single collection of “interesting proteins” po which we use novel method-

ology to apply a single FDR. This enables the researcher to detect more information

from a quantitative proteomic data set than would be achievable by either approach

alone, while still maintaining an interpretable measure of overall statistical confi-

dence. For the proposed hybrid analysis protocol, we demonstrate the following: (a)

Resulting FDR estimates are conservative, (b) One-state proteins are consistently

selected as differentially expressed, and (c) The number of differentially expressed
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proteins selected at a specified FDR exceeds that either intensity-based or presence

/ absence analysis alone.

4.2 Methods

4.2.1 Data

Diabetes

These data are as previously described [21]. In order to minimize the number of

sibling peptides with large missingness proportion differences, we use PeptideSieve

[41] to filter peptides whose amino acid sequences are unlikely to be detected by MS.

554 peptides are filtered out before carrying on any further analysis.

Simulation

We carried out simulation studies as follows, to investigate the operating charac-

teristics of our methodology at both peptide and protein levels. Peptide-level data

were generated from a Binomial model, under the same conditions as the diabetes

data (two comparison groups with 10 samples in each). Presence probabilities in

group one took the values on p1 = 0.2, 0.3, 0.4, 0.5. Half of the group-two peptides

were assigned the same presence probabilities as their group-one counterparts. In

the other half, differential presence probabilities were created, with probability dif-

ferences (comparing group two to group one) of pd = p2− p1 = 0.1, 0.2, · · · , 0.9− p1.

Separate simulations were carried out for each of the group-one presence probability

values with even replications on different pd settings. Similarly, for protein-level data,

the number of peptides per protein was randomly selected to range between 1 and

30. Protein-level presence probabilities also took the values p1 = 0.2, 0.3, 0.4, 0.5 and

pd = p2 − p1 = 0.1, 0.2, · · · , 0.9 − p1. For each constituent peptide, the group-one

peptide-level presence probability equaled the protein-level probability multiplied
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by a randomly-selected number between 0 and 1 (to allow for different levels of

detectability for peptides of the same protein). Peptide-level differential presence

probabilities were handled as described for the peptide-level simulation above. Fi-

nally, to simulate data for use by the hybrid method, with both peak intensities

and presence / absence indicators, we randomly generated intensities from a Nor-

mal distribution with parameters chosen to mimic the diabetes data. Missingness

proportions took the values 10%, 20%, 30%, and 40%, with missingness created

by censoring the lowest corresponding percentages of peptide intensities. As in the

above simulations, half of the peptides / proteins were given differential expression,

now defined in terms of mean intensity levels. Differential intensity magnitudes took

both low-magnitude values of 1, 2, as well as high-magnitude values of 5, 10, all on

the log scale.

4.2.2 Logistic Model for Protein Presence / Absence

Logistic regression is a natural analysis method for presence / absence data, given

their binary nature. Specifically, let Yijkl be the indicator for whether a peak was

observed for peptide j of protein i in comparison group k and sample l. Then, we can

say Yijkl ∼ Binomial(1, pijk) for l = 1, 2, . . . , nk, where nk is the number of samples

in comparison group k. A simple logistic regression model would then be

logit(pijk) = Proti + Pepij + Grpik. (4.1)

Here, Proti represents the overall (across all comparison groups) log odds of peak

presence for protein i, Pepij is the effect of peptide j of protein i (assumed to be

the same across all k comparison groups), and Grpik is the protein-level effect of

comparison group k in protein i. Usual sum-to-zero constraints apply; namely,∑mi

j=1 Pepij = 0 and
∑K

k=1 Grpik = 0 for i = 1, 2, . . . ,M , where M is the total

number of proteins in the data.
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For the purposes of comparing protein presence probabilities across comparison

groups, the parameters of interest are the Grpik, i = 1, 2, . . . ,M . For example, in

the diabetes data, K = 2, with k = 1, 2 corresponding to the diabetic and control

groups, respectively. Hence, Grpi1−Grpi2 is the log odds ratio for protein i, comparing

diabetics to controls. Testing for a difference in presence probabilities corresponds

to testing the null hypothesis that Grpi1 − Grpi2 = 0; given the model’s sum-to-

zero constraints, this is equivalent to the null hypothesis that Grpi1 = Grpi2 = 0.

Of course, the model is not restricted to the two-class case and can naturally be

generalized to the K-class case, in which the corresponding null hypothesis is that

Grpi1 = Grpi2 = · · · = GrpiK .

Unfortunately, logistic regression is not well-suited in practice to the analysis of

presence / absence data. In particular, biologically-interesting proteins are liable to

be missed entirely, due to inherent limitations of the methodology. Consider a “one-

state” protein, present in all samples for one comparison group, absent in all samples

for the other comparison groups. From a biological perspective, this would be a very

interesting protein. However, in logistic model, the p-value for such a protein will

tend to be reported as nearly equal to one, meaning that the protein would not be

selected as differentially expressed under any reasonable criteria.

A simple scenario illustrates this problem. Consider a “one-state” protein with

just a single peptide. In logistic regression, the assumed variance-covariance matrix

for regression coefficients is (X ′WX)−1, where X is the model matrix, and W is

diagonal with entries pk(1 − pk), with pk the presence probability in comparison

group k, k = 1, 2. For comparison groups in which no peaks were observed, the

estimated value of pk is zero, making the corresponding entry in W equal to zero.

This results in an overestimation of the standard error for the group effect model

term, hence an understatement of statistical significance for that protein’s group

effect. In the diabetes data, for example, “one-state” proteins are assigned p-values

of one.
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4.2.3 Peptide-level Exact Test

In light of the logistic regression limitations, we propose an exact procedure for

testing for differences in presence / absence between two comparison groups. Let

yjk · =
∑n

l=1 yjkl be the number of observed peaks for peptide j in comparison k,

k = 1, 2. We use Tj = |yj1 · − yj2 · | as the peptide-level test statistic. Based on

the Binomial probability model, the exact sampling distribution of Tj under the null

hypothesis H0 of no difference in presence probabilities can be written as

PrH0(Tj = t) =

n1−t∑
m1=0

n2∑
m2=m1+t

B(m1;n1, pj0)×B(m2;n2, pj0)

+

n2−t∑
m2=0

n1∑
m1=m2+t

B(m1;n1, pj0)×B(m2;n2, pj0)

where B(m;n, p) is the Binomial PMF at m, with n trials and probability of success

p, and pj0 is the shared probability of peak presence for both groups. Thus, based

on an observed statistic of tj, the p-value is
∑

t≥t PrH0(Tj = t). In practice, we need

only to estimate the shared presence probability under the null hypothesis, pj0, in

order to approximate the p-value for a given peptide. We estimate pj0 with a pooled

sample proportion, resulting in p̂j0 =
∑

k nk ˆpjk∑
k nk

, where p̂jk = yjk · /nk, K = 2.

As an example, consider a “one-state” peptide, present in all samples of one

group but in no samples of the other group, in the diabetes data. Whereas logistic

regression reports a p-value of one, the exact test correctly highlights the peptide as

statistically significant. Specifically, the test statistic Tj equals 10, and p̂j0 = 0.5, so

the p-value is computed as 2×B(10; 10, 0.5)×B(0; 10, 0.5) < 0.0001
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4.2.4 Protein-level Bootstrap Test

For inference at the protein level, there is the added challenge of multiple peptides

belonging to the same peptide. To incorporate all sibling peptides into a single test

for differential presence probabilities, we use the following test statistic:

TMi =

∣∣∣∣ ∑
j=1,...,mi

κij (yij1 · − yij2 · )
∣∣∣∣ (4.2)

where i is protein index, j is peptide index, and k is comparison group index, i =

1, 2, . . . ,M , j = 1, 2, . . . ,mi, k = 1, · · · , K, K = 2. The statistic in (4.2) is a

weighted average of observed presence difference on each sibling peptide. For the

weighting term κij, we use κij = yij · · /
∑

j yij · ·
A parametric bootstrap procedure [42] is used to approximate the sampling dis-

tribution of the TMi under null hypothesis setting as follows. Firstly the Binomial

parameters pijk are estimated, for which two approaches are considered. The first

approach simply uses the sample proportion for peptide j of protein i in compari-

son group k being present, which needs 2 × mi parameter estimation per protein.

Alternatively, we approaching the problem by inducing some structure between the

pijk, assuming that pijk = pik × dij, where pik is the overall presence probability

for protein i in comparison group k, and dij is the “detectability” probability (the

probability that a particular ion species is detected by the LC-MS instrument) for

peptide j of protein i. This assumption of structure translates to an assumption

that the detectability of a peptide does not differ between comparison groups. Since

detectability is a function of chemical composition rather than abundance [41], this

seems a reasonable assumption. After introducing the structure assumption the

number of parameters per protein to be estimated reduces from K ×mi to K +mi.
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With the second approach, the presence probability pik of protein i in group k

is estimated by averaging the presence proportion of its top 10% most prevalent

peptides.

p̂ik =
∑

j∈{top10%}

p̂ijk/#{top 10% peptides }

The rationale here is that, for these most prevalent peptides, the detectability

probability will be close to one, making pijk ≈ pik. Then p̂ik is used to estimate dij

as d̂ij = 1
K

(
ˆpij1
p̂i1

+ · · ·+ ˆpijk
ˆpik

)
, where p̂ijk and p̂ik are the sample presence proportions.

Since we have p̂ik and d̂ij, according to the equation pijk = pik×dij, the null sam-

pling distribution of our test statistic could be generated by parametric bootstrap.

Under the null hypothesis setting, the presence probabilities of protein i across K

comparison groups are the same and set to be pi0. In two group case, pi0 = pi1 = pi2

and p̂i0 = pi1+pi2
2

. Thus, for peptide j of protein i in group k, nk zeroes or ones are

generated from the Binomial distribution with probability p̂ijk = p̂ik × d̂ij, k = 1, 2.

We run B bootstrap iterations and compute the test statistic (4.2), TMb in each

iteration. The p-value is then computed as the proportion of bootstrap test statistic

values being as or more extreme as our observed TMi value:

p-value =
# {TMb ≥ TMi}

B
.

4.2.5 False Discovery Rate (FDR) Estimation

The false discovery rate (FDR) associated with a list of features selected at a

p-value cutoff cp [43] is the expected number of false positives F out of the total

number of selected features S:

FDR(cp) = E

[
Fcp
Scp

]
≈

E
[
Fcp
]

E
[
Scp
] (4.3)

The denominator can be replaced simply with the observed number of selected

features. The traditional approach to estimate the numerator is to exploit the ex-

pected uniform sampling distribution of the null p-values [43]. In particular, we can
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estimate E
[
Fcp
]

by M × π̂0 × cp, where M is the total number of features and π̂0

is the estimated proportion of null features out of the total M features. However,

as our test statistic is discrete, its null sampling distribution is not necessarily Uni-

form. As an example, Figure 4.1 shows a simulated null sampling distribution for

peptide-level test statistics, in which the shape of the null sampling distribution is

quite non-Uniform and could depend on many factors, including the number of pep-

tides of a protein, the sample size of each comparison group and the overall number

of observed peaks of a protein.

Peptide-level FDR Estimation

An alternative way to estimate the numerator in equation (4.3) is as a weighted

summation over all peptides on their estimated null right-tail probabilities at p-value

cutoff cp:

Ê[Fcp ] =
∑
j

wjĈDFj0(cp)

where wj is a weight (number between 0 and 1) constructed to be close to one for

null peptides. If we assign all wj with value 1, i.e. each peptide is given weight 1,

the corresponding FDR estimation is called “unweighted” estimation. ˆCDFj0 is the

estimated null p-value cumulative distribution function (CDF) for peptide j. The

estimate of CDFj0 is derived from an estimate of the null probability mass function

(PMF) for peptide j:

P̂MFj0(cp) = P̂ r0(Tj = Tj(cp))

=
∑

Tj=Tj(cp)

Pr(Yj1|p̂j0)× Pr(Yj2|p̂j0)

where p̂j0 = (Yj1 + Yj2)/(n1 + n2).

For the wj, we use

wj =

 1 if P̂MFj0(cp) ≥ P̂MFj1(cp)

0 if otherwise
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Fig. 4.1. P-value histograms of simulated null peptides with
shared presence probabilities of 0.2, 0.3, 0.4, 0.5 across each compari-
son group.The null sampling distribution is non-uniform, due to the
discrete nature of the test statistic.

We therefore estimate the peptide-level FDR as

F̂DRpep(cp) =

∑
j wjĈDFj0(Tj(cp))

# {p− value ≤ cp}
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Protein-level FDR Estimation

Our simulation studies indicate that for most settings, the p-value of the test

statistic for multi-peptide protein (4.2) is approximately uniformly distributed under

null hypothesis setting, especially when there are moderate overall levels of presence

(data not shown) and moderate number of sibling peptides in a protein. Because of

this, we use the standard [43] method for FDR estimation. Namely, at p-value cutoff

cp, we estimate the FDR as

F̂DRpro(cp) =
M × π̂0 × cp

# {p-values ≤ cp}

where M is the total number of proteins, and π̂0 is the estimated proportion of null

proteins, which could also be seen as a uniform weight across proteins wj = M × π̂0
across all proteins”. We estimate π0 by fitting a smooth lowess curve to the values

of π̂0(λ) = #{p−values>λ}
M(1−λ) as λ→ 1 [43].

Figure 4.2 shows the histogram of p-values from bootstrap on simulated mixed

null and alternative five-peptide proteins, which has a uniform shape right tail that

indicates the appropriateness of using the standard method (2003) to estimate FDR.

Mixed Single-peptide and Multi-peptide Protein Level FDR Estimation

In practice, both single-peptide proteins and multi-peptide proteins are usually

mixed in a data set, for which we’ve developed p-value and FDR estimation sepa-

rately. The two sets of p-value are left as is while a unified FDR estimate needs to be

generated based on the pooled set of p-values. The numerator of FDR for mixed case

is given by summing up the estimation of expected number of false positive features

for single-peptide protein and multi-peptide proteins, as indicated in the above two

sections, and the denominator is the number of selected features based on the p-value

pool.
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Fig. 4.2. P-value histograms of simulated null peptides with
shared presence probabilities of 0.2, 0.3, 0.4, 0.5 across each compari-
son group.The null sampling distribution is non-uniform, due to the
discrete nature of the test statistic.
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F̂DRmix(cp) =
E(#{FPIcp})

#{p-value ≤ cp}

=

∑
j wjĈDFj0(Tj(cp)) +M × π̂0 × cp

#{p-valuess ≤ cp or p-valuesm ≤ cp}

where p-valuess are the p-values for single peptide proteins and p-valuesm are those

for multi-peptide protein

4.2.6 Hybrid Analysis Incorporating Both Presence / Absence and Intensity

Measurements

The above methodology has dealt only with presence / absence data, from which

peak intensity measurements are excluded. The rationale for simplifying peak in-

tensity measurements to presence / absence is that it better enables discovery of

“one-state” (or similar) proteins. However, statistical information is lost by throw-

ing out intensity measurements, which would translate to decreased statistical power

to detect differentially expressed proteins that differ in terms of abundance but not

presence / absence. Thus, we would ideally incorporate both peak intensity and

presence / absence information into a differential expression analysis. One simple

way to do this is to carry out separate intensity-based and presence / absence-based

analysis, select proteins at a specified FDR from each analysis, then report the union

of the two resulting protein lists. However, while we might intuitively expect a small

FDR for the resulting list of proteins, we will not generally be able to assign an ac-

tual FDR estimate. In what follows, we derive a FDR estimate for the union list of

differentially expressed proteins. Thus, taken together, the methodology presented

here allows the researcher to select a list of differentially expressed proteins, some

based on intensity and others based on presence / absence, to which an overall FDR

estimate can be assigned.
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We use a single p-value threshold cp for both intensity measurements and pres-

ence / absence; so, a protein is selected if either of its intensity-based and presence

/ absence p-values are less than cp. Intensity-based p-values are derived from re-

gression models and censored likelihoods from our prior work [21]. Let p-valueb and

p-valuep correspond to the binary presence / absence and peak intensity measure-

ments, respectively. The FDR for a hybrid analysis can then be estimated by

ˆFDRh(cp) =

∑
iwiP̂ r0

(
p-valuebi ≤ cp ∪ p-valuepi ≤ cp

)
# {p-valuesb ≤ cp or p-valuesp ≤ cp}

=

∑
iwiP̂ r0

[
cp + (1− cp)P̂ r (TMi

≥ TMi
(cp))

]
# {p-valuesb ≤ cp or p-valuesp ≤ cp}

We set the weight wi equal to the average of the binary weight and the uniform

weight derived from Storey and Tibishirani’s FDR estimation scheme in the intensity-

based method [21].

4.3 Results

4.3.1 Peptide-level Simulation Result

Figure 4.3 shows the number of significant single-peptide proteins versus FDR,

based on the proposed peptide-level presence / absence methodology. The particular

simulation scenario displayed in the figure has p1 = 0.3, with a random mixture of

differential presence / absence, ranging over pd = 0.1, 0.2, . . . , 0.6. The unweighted

FDR estimate is very conservative, resulting in many fewer significant peptides at a

given FDR estimate, relative to the true FDR curve. The binary weighting improves

this somewhat, resulting in greater power while maintaining conservative FDR esti-

mate. Results for other values of p1 are similar (data not shown). Table 4.1 shows

Type I error and power for the proposed presence / absence methodology applied

to simulated single-peptide and 5-peptide proteins. As would be expected, we have
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Fig. 4.3. Numbers of significant single-peptide proteins versus FDR
for the proposed protein-level methodology, on simulated data with
p1 = 0.3 and a mixture of differential presence / absence levels. The
weighted FDR estimate is conservative.
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greater power to detect differential expression when there are multiple peptides in a

protein.

Table 4.1
Peptide-level error rates and power with p1 = 0.2, 0.3, 0.4, 0.5 and
pd = 0.0, 0.1, . . . , 0.7.

pd = p2 − p1 p1 = .2 p1 = .3 p1 = .4 p1 = .5

pd=0.0 0.053 0.051 0.050 0.047

pd=0.1 0.069 0.065 0.058 0.048

pd=0.2 0.133 0.122 0.120 0.110

pd=0.3 0.240 0.232 0.210 0.182

pd=0.4 0.381 0.365 0.353 0.348

pd=0.5 0.512 0.461 0.430 *

pd=0.6 0.720 0.677 * *

pd=0.7 0.874 * * *

4.3.2 Protein-level Simulation Result

Figure 4.4 shows the number of significant five-peptide proteins versus FDR,

based on the proposed protein-level presence / absence methodology. The simula-

tion scenario in this figure is similar to that in Figure 4.3, now with each protein

having 5 constituent peptides. In this case, ”weighting” is carried out using the

standard π̂0 estimate, again resulting in conservative FDR estimate. The pictures

for different values of p1, as well as for different numbers of constituent peptides, are

not qualitatively different (data not shown).

Table 4.2 shows Type I error and power for the proposed presence / absence

methodology applied to simulated five-peptide proteins. As would be expected, we

have greater power to detect differential expression when there are multiple peptides



71

Fig. 4.4. Numbers of significant five-peptide proteins versus FDR
for the proposed protein-level methodology, on simulated data with
p1 = 0.3 and a mixture of differential presence / absence levels. The
weighted FDR estimate is conservative.
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in a protein.The pool of number of peptides of a protein is 5, 10, 15, 20, 25, the pres-

ence probability of proteins take value among p1 = 0.2, 0.3, 0.4, 0.5 and pd = p2−p1 =

0.1, · · · , 0.9− p1, peptide detectablity is set to vary among 0.9, 0.7, 0.5, 0.1, 0.01.

Table 4.2
Protein-level error rates and power with p1 = 0.2, 0.3, 0.4, 0.5 and
pd = 0.0, 0.1, . . . , 0.7.

pd = p2 − p1 p1 = .2 p1 = .3 p1 = .4 p1 = .5

#pep=5

pd=0.0 0.051 0.052 0.050 0.054

pd=0.1 0.196 0.158 0.136 0.096

pd=0.2 0.486 0.404 0.388 0.352

pd=0.3 0.778 0.734 0.710 0.692

pd=0.4 0.960 0.924 0.910 0.908

pd=0.5 0.994 0.990 0.990 *

pd=0.6 1.000 1.000 * *

pd=0.7 1.000 * * *

4.3.3 Mixed Single-peptide Protein and Multi-peptide Protein Simulation Result

Figure 4.5 shows the number of significant mixed proteins versus FDR, based on

the proposed protein-level presence / absence methodology. The simulation scenario

in this figure is similar to that in Figure 4.4, now with proteins having 1, 2, · · · , 5

constituent peptides. In this case, ”weighting” is borrowing the single-peptide weight

and multi-peptide weight for the corresponding proteins, again resulting in conser-

vative FDR estimate. The pictures for different values of p1, as well as for different

numbers of constituent peptides, are not qualitatively different (data not shown).
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Fig. 4.5. Numbers of significant mixed proteins versus FDR for the
proposed protein-level methodology, on simulated data with p1 = 0.3
and a mixture of differential presence / absence levels. Constituent
peptide number varies from one to five. The weighted FDR estimate
is conservative.
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4.3.4 Hybrid Approach Simulation Result

Our final simulation contains a combination of single- and multi-peptide proteins,

a variety of differential expression magnitudes, with a sample size of 10 in each of

the two comparison groups. In this case, peak intensities were simulated, from which

presence / absence data were obtained, to reflect the intended real-world setting in

which both intensity-based and binary presence / absence information is available.

Figure 4.6 compares the proposed hybrid approach with both our “qualitative” (pres-

ence / absence-based) and previously-published “quantitative” (intensity-based) [21]

methodology. All FDR estimates are conservative, and the hybrid approach results

in greater numbers of significant proteins, at a given FDR, than either of the presence

/ absence- or intensity-based approaches. Table 4.3 lists the number of differentially

expressed proteins at an estimated FDR cutoff of 0.05, for a variety of simulation

settings (varying the proportion of missing data as well as the amount and magnitude

of differential expression). The results are consistent with those shown in Figure 4.6.

Thus, by combining a traditional intensity-based analysis with a presence / absence

analysis, we are able to supplement our findings with additional proteins of interest;

these would potentially include “one-state” proteins.

4.3.5 Diabetes Data

We found substantial differential expression overall in the diabetes experiment.

The original data set is comprised of 177 proteins containing 1396 peptides.In binary-

based method, after initial filtering, we were left with 841 peptides and all the 177

proteins, among which there are 105 multi-peptide proteins and 72 single peptide

proteins. In intensity-based method, 44 proteins are filtered out. On the 133 proteins

that have p-values from both methods, 76 are identified by intensity-based algorithm,

55 are identified by binary-based algorithm and 88 are identified by hybrid method,

at estimated FDR 0.05. At estimated FDR 0.10, 89 are identified by intensity-based



75

Fig. 4.6. Numbers of significant peptides versus FDR for the pro-
posed peptide-level methodology, on simulated data with p1 = 0.3
and a mixture of differential presence / absence. The weighted FDR
estimate is conservative.
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Table 4.3
Number of identified features at estimated FDR level of 0.05 ob-
tained from binary-based method, intensity-based method and hy-
brid method under a variety of simulation settings. The hybrid ap-
proach consistently results in greater numbers of differentially ex-
pressed proteins.

Low mag. 25% dif 50% dif

Method/Miss 10% 20% 30% 40% 10% 20% 30% 40%

Quantitative 313 313 166 174 697 630 488 136

Qualitative 218 263 301 299 490 587 612 641

Hybrid 358 387 326 356 743 685 657 609

High mag.

Quantitative 422 349 281 114 1010 900 668 547

Qualitative 491 514 530 519 812 998 1011 1033

Hybrid 525 537 539 503 1036 1080 1055 1084

algorithm, 64 are identified by binary-based algorithm and 100 are identified by

hybrid method

Figure 4.7 compares the proposed hybrid approach with both presence / absence-

based and intensity-based methodology on the diabetes data set. The X axis is FDR

estimate and the y axis is the number of identified proteins at corresponding FDR.

the hybrid approach results in greater numbers of significant proteins, at a given

FDR, than either of the presence / absence- or intensity-based approaches.

4.4 Discussion

The proposed presence / absence-based methodology is designed to enable the

detection of “one-state” (or similar) proteins that are not amenable to traditional

intensity-based methods. Furthermore, we have proposed a hybrid approach that
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Fig. 4.7. Numbers of significant proteins versus FDR estimates on
diabetes dataset by presence/absence based method, intensity based
method and hybrid method
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combines both intensity- and presence / absence-based analysis of a data set, together

with FDR estimation of the combined list of differentially expressed proteins. The

proposed hybrid approach was demonstrated to outperform either of the intensity-

or presence / absence-based methods alone.

An obvious limitation to our work is its applicability to only two comparison

groups. A regression-based implementation would be more generalizable, and we

intend to pursue this in our future work. The choices of weights in the peptide-level

and hybrid methods could undoubtedly be improved upon as well; all FDR estimates

are quite conservative.
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5. SUMMARY

In the Section 2, the fully Bayesian hierarchical modeling successfully identifies

peptide and protein in a unified framework and detect more peptides than Peptide-

Prophet at most of the FDR cutoff values. This is owe to modeling the top R ranked

peptide spectrum matches to a MS fragmentation pattern with a collections of dis-

criminant features, allowing for dependence among the list candidates, incorporating

decoy search results to normalize target search score and selecting objective criteria

for the evaluation of the FDR at peptide level.

In the Section 3, one advantage of our algorithm is that it allows statistical assess-

ment of alignment performance on elution time, peak intensity and M/Z values uti-

lizing highly-confidently identified peptide information located as “Anchor points”.

The statistical confidence of our method is measured on sample level, generalized to

region level and then passed to downstream quantitative analysis. The future work

is to localize statistical confidence measurement to peptide level.

In the Section 4, the proposed presence / absence-based methodology is designed

to enable the detection of “one-state” (or similar) proteins that are not amenable to

traditional intensity-based methods partially due to large scale of missingness that

can’t be solved by traditional imputation. Furthermore, we have proposed a hybrid

approach that combines both intensity- and presence / absence-based analysis of a

data set, together with FDR estimation of the combined list of differentially expressed

proteins. The proposed hybrid approach was demonstrated to outperform either of

the intensity- or presence / absence-based methods alone.



80

REFERENCES

[1] P. T. N. Tang and S. R. Weinberger, “Current developments in SELDI affinity

technology.,” Mass Spectrometry Reviews, vol. 23, no. 1, pp. 33–34, 2004.

[2] M. Karas, D. Bachman, U. Bahr, and F. Hillenkamp, “Matrix-assisted ultravio-

let laser desorption of non-volatile compounds.,” International Journal of Mass

Spectrometry and Ion Processes, vol. 78, pp. 53–68, 1987.

[3] B. Domon and R. Aebersold, “Mass spectrometry and protein analysis.,” Sci-

ence, vol. 312, pp. 212–217, 2006.

[4] H. Zhang, E. C. Yi, X. J. Li, P. Mallick, K. S. Kelly-Spratt, C. D. Masselon, D. G.

Camp, R. D. Smith, J. K. Christopher, and R. Aebersold, “High throughput

quantitative analysis of serum proteins using glycopeptide capture and liquid

chromatography mass spectrometry.,” Molecular & Cellular Proteomics, vol. 1,

pp. 144–155, 2005.

[5] J. Eng, A. Mcormack, and J. R. Yates, “An approach to correlate tandem mass

spectral data of peptides with amino acid sequences in a protein database,”

Journal of the American Society for Mass Spectrometry, vol. 5, pp. 976–989,

1994.

[6] D. Perkins, D. Pappin, D. Creasy, and J. Cottrell, “Probability-based protein

identification by searching sequence databases using mass spectrometry data,”

Electrophoresis, vol. 20, pp. 3551–3567, 1999.

[7] R. Craig and R. Beavis, “TANDEM: Matching proteins with tandem mass spec-

tra,” Bioinformatics, vol. 20, pp. 1466–1467, 2004.



81

[8] A. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold, “A statistical model

for identifying proteins by tandem mass spectrometry,” Analytical Chemistry,

vol. 75, pp. 4646–4658, 2003.

[9] Y. Ding, H. Choi, and A. I. Nesvizhskii, “Adaptive discriminant function analy-

sis and reranking of MS/MS database search results for improved peptide iden-

tification in shotgun proteomics,” Journal of Proteome Research, vol. 7, no. 11,

pp. 4878–4889, 2008.

[10] J. Elias and S. Gygi, “Target-decoy search strategy for increased confidence

in large-scale protein identifications by mass spectrometry,” Nature Methods,

vol. 4, pp. 207–214, 2007.

[11] A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold, “Empirical statistical

model to estimate the accuracy of peptide identifications made by MS/MS and

database search,” Analytical Chemistry, vol. 74, no. 20, pp. 5383–5392, 2002.

[12] L. Käll, J. D. Storey, M. J. MacCoss, and W. S. Noble, “Assigning significance

to peptides identified by tandem mass spectrometry using decoy databases.,”

Journal of Proteome Research, vol. 7, pp. 29–34, 2008.

[13] H. Choi, D. Ghosh, and A. I. Nesvizhskii, “Statistical validation of peptide

identifications in large-scale proteomics using the target-decoy database search

strategy and flexible mixture modeling,” Journal of Proteome Research, vol. 7,

no. 01, pp. 286–292, 2007.

[14] L. Käll, J. Canterbury, J. Weston, W. S. Noble, and M. J. MacCoss, “Semi-

supervised learning for peptide identification from shotgun proteomics datasets,”

Nature Methods, vol. 4, no. 11, pp. 923–926, 2007.



82

[15] B. C. Searle, M. Turner, and A. Nesvizhskii, “Improving sensitivity by prob-

abilistically combining results from multiple MS/MS search methodologies,”

Journal of Proteome Research, vol. 7, no. 1, pp. 245–253, 2008.

[16] D. Bylund, R. Danielsson, G. Malmquist, and K. Markides., “Chromatographic

alignment by warping and dynamic programming as a pre-processing tool for

parafac modelling of liquid chromatography-mass spectrometry data. ,” Journal

of Chromatography, vol. A 961, pp. 237–244, 2002.

[17] P. Nielsen, J. M. Carstensen, and J. Smedsgaard, “Aligning of single and mul-

tiple wave length chromatographic profiles for chemometric data analysis using

correlation optimised warping.,” Bioinformatics, vol. A 805, pp. 17–35, 1998.

[18] G. Kiebel, K. Auberry, N. Jaitly, D. Clark, M. Monroe, E. Peterson, T. Nikola,

G. Anderson, and R. Smith, “PRISM: A data management system for high-

throughput proteomics,” Proteomics, vol. 6, pp. 1783–1790, 2006.

[19] D. Radulovic, S. Jelveh, S. Ryu, T. G. Hamilton, E. Foss, Y. Mao, and A. Emili,

“Informatics platform for global proteomic profiling and biomarker discovery

using liquid-chromatography-tandem mass spectrometry.,” Molecular & Cellular

Proteomics, vol. 3, pp. 984–97, 2004.

[20] M. Palmblad, M. Ramstrom, K. E. Markides, P. Hakansson, and J. Bergquist.,

“Prediction of chromatographic retention and protein identification in liquid

chromatography/mass spectrometry.,” Analytical Chemistry, vol. 74, pp. 5826–

5830, 2002.

[21] Y. V. Karpievitch, J. S. J, T. Taverner, J. Huang, J. Adkins, C. Ansong,

F. Hefron, T. Metz, W. J. Qian, H. Yoon, R. D. Smith, and A. R. Dabney,



83

“A statistical framework for protein quantitation in bottom-up ms-based pro-

teomics,” Bioinformatics, vol. 25, pp. 2028–2034, 2009.

[22] W. M. Old, K. Meyer-Arend, L. Aveline-Wolf, K. G. Pierce, A. Mendoza, J. R.

Sevinsky, K. A. Resing, and N. G. Ahn, “Comparison of label-free methods

for quantifying human proteins by shotgun proteomics,” Molecular & Cellular

Proteomics, vol. 4, pp. 1487–1502, 2005.

[23] A. D. Polpitiya, W. J. Qian, J. Navdeep, A. P. Vladislav, N. A. Joshua, D. G. C.

II, G. A., and R. D. Smith, “DAnTE: a statistical tool for quantitative analysis

of proteomics data,” Bioinformatics, vol. 24, pp. 1556–1558, 2008.

[24] W. Wang, H. Zhou, H. Lin, S. Roy, T. A. Shaler, L. R. Hill, S. Norton, P. Kumar,

M. Anderle, and C. H. Becker, “Quantification of proteins and metabolites by

mass spectrometry without isotopic labeling or spiked standards,” Analytical

Chemistry, vol. 75, pp. 4818–4826, 2003.

[25] R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data. New

Jersey: John Wiley & Sons, 2002.

[26] H. Wang, W. Qian, M. Chin, V. Petyuk, R. Barry, T. Liu, M. Gritsenko, H. Mot-

taz, R. Moore, D. C. II, A. Khan, D. Smith, and R. Smith, “Characterization of

the mouse brain proteome using global proteomic analysis complemented with

cysteinyl-peptide enrichment,” Journal of Proteome Research, vol. 5, pp. 361–

369, 2006.

[27] J. Zimmer, M. Monroe, W. Qian, and R. Smith, “Advances in proteomics data

analysis and display using an accurate mass and time tag approach,” Mass

Spectrometry Reviews, vol. 23, pp. 450–482, 2006.



84

[28] L. Pasa-Tolic, C. Masselon, R. Barry, Y.Shen, and R. Smith, “Proteomic anal-

yses using an accurate mass and time tag strategy,” BioTechniques, vol. 37,

pp. 621–636, 2004.

[29] C. Shen, Z. Wang, G. Shankar, X. Zhang, and L. Li, “A hierarchical statistical

model to assess the confidence of peptides and proteins inferred from tandem

mass spectrometry,” Bioinformatics, vol. 24, no. 2, p. 202, 2008.

[30] K. Petritis, L. Kangas, B. Yan, M. Monroe, E. Strittmatter, W. Qian, J. Adkins,

R. Moore, Y. Xu, M. Lipton, D. C. II, and R. Smith, “Improved peptide elution

time prediction for reversed-phase liquid chromatography-MS by incorporating

peptide sequence information,” Analytical Chemistry, vol. 78, pp. 5026–5039,

2006.

[31] H. Choi and A. I. Nesvizhskii, “Semisupervised model-based validation of pep-

tide identifications in mass spectrometry-based proteomics,” Journal of Pro-

teome Research, vol. 7, no. 01, pp. 254–265, 2007.

[32] L. Käll, J. D. Storey, M. J. MacCoss, and W. S. Noble, “Posterior error probabil-

ities and false discovery rates: Two sides of the same coin,” Journal of Proteome

Research, vol. 7, no. 01, pp. 40–44, 2007.

[33] S. Martinez-Bartolome, P. Navarro, F. Martin-Maroto, D. Lopez-Ferrer,

A. Ramos-Fernandez, M. Villar, J. P. Garcia-Ruiz, and J. Vazquez, “Proper-

ties of average score distributions of SEQUEST: the Probability Ratio method,”

Molecular & Cellular Proteomics, vol. 7, no. 6, p. 1135, 2008.

[34] A. M. Frank, N. Bandeira, Z. Shen, S. Tanner, S. P. Briggs, R. D. Smith,

and P. A. Pevzner, “Clustering millions of tandem mass spectra,” Journal of

Proteome Research, vol. 7, no. 01, pp. 113–122, 2007.



85

[35] A. E. Gelfand and A. Smith, “Sampling-based approaches to calculating

marginal densities,” Journal of the American Statistical Association, vol. 85,

no. 410, pp. 398–409, 1990.

[36] A. Gelman, Bayesian Data Analysis. Boca Raton, FL: Chapman & Hall/CRC,

2004.

[37] B. Efron and R. Tibshirani, “Empirical Bayes methods and false discovery rates

for microarrays,” Genetic Epidemiology, vol. 23, no. 1, pp. 70–86, 2002.

[38] P. Wang, M. P. F. H. Tang, M. Mcintosh, M. Coram, H. Zhang, E. YI, and

R. Aebersold, “A statistical method for chromatographic alignment of LC-MS

data,” Biostatistics, vol. 8 2, pp. 357–367, 2007.

[39] R. Fisher, The Design of Experiments. New York: Hafner Press, 1935.

[40] B. Zybailov, M. K. Coleman, L. Florens, and M. P. Washburn, “Correlation

of relative abundance ratios derived from peptide ion chromatograms and spec-

trum counting for quantitative proteomic analysis using stable isotope labeling,”

Analytical Chemistry, vol. 77, pp. 6218–6224, 2005.

[41] P. Mallick, M. Schirle, S. S. Chen, M. R. Flory, H. Lee, D. Martin, J. Ranish,

B. Raught, R. Schmitt, T. Werner, B. Kuster, and R. Aebersold, “Computa-

tional prediction of proteotypic peptides for quantitative proteomics,” Nature

Biotechnology, vol. 25, pp. 125–131, 2007.

[42] B. Efron and R. Tibshirani, An Introduction to the Bootstrap. Boca Raton, FL:

Chapman & Hall/CRC, 1993.



86

[43] J. D. Storey and R. Tibshirani, “Statistical significance for genome-wide stud-

ies,” Proceedings of the National Academy of Sciences, vol. 100, pp. 9440–9445,

2003.



87

APPENDIX A

Bayesian Implementation:

• WX
i : a latent variable such that P (Xi = 1) = Φ(WX

i > 0)

• W π
i,j: a latent variable such that P (Yj = 1|Xi = 1) = πi,j = Φ(W π

i,j > 0)

• WZ
k,r: a latent variable such that P (Zk,r = 1|Ypep(k,r) = 1) = Φ(WZ

k,r) > 0

• The first stage: a multi-component mixture model for discriminant

scores

Sample Zk from 1, · · · , Rk + 1 with probability (pk,1, · · · , pk,Rk+1),

where pk,r =
ppriork,r f1(sk,r)f0(sk,r)∑Rk

r=1 p
prior
k,r f1(sk,r)f0(sk,r)+p

prior
k,0 f0(sk)

for r = 1, · · · , Rk and pk,Rk+1 =

1−
∑Rk

r=1 pk,r. Zk,r is obtained directly given the sample of Zk

• The second stage: Pr(Z|Y)

If for any r ≤ Rk, Zk,r = 1, let Ypep(k,r) = 1, draw a positive W π
pro(k,r),pep(k,r)

from a truncated normal with mean µy and SD = σy and draw a positive

WZ
k,r from a truncated normal with mean µz and SD = σz.

Else if for any r ≤ Rk, Zk,r = 0, sample r from 1, · · · , Rk + 1 with probability

Pr(pep(k, r) = 1|Zk,r = 0) =
Pr(Ypep(k,r)=1)∗(1−τ)

Pr(Ypep(k,r)=1)∗(1−τ)+1−Pr(Ypep(k,r)=1)
when r ≤

Rk, and Pr(pep(k,Rk+1) = 1|Zk,r = 0) = 1−
∑Rk

r=1 Pr(pep(k, r) = 1|Zk,r =

0).

– If the sampled r ≤ Rk, draw a positive W π
pro(k,r),pep(k,r) from a truncated

normal with mean µy and SD = σy, draw a negative WZ
k,r from the

truncated normal with mean µz and SD = σz and set the corresponding

Ypep(k,r) = 1.

– Otherwise draw negative WZ
k,r for r in 1, · · · , Rk + 1 from a truncated

normal with mean µz and SD = σz, set Ypep(k,r) = 0 for all r in

1, · · · , Rk.
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• The third and fourth stage: Pr(Y|X) and Pr(X)

Let j = pep(k, r), search for the indices of proteins Ij that could produce Yj.

If there is only one protein in Ij, substitute Ij with i.

– If Yj = 1, let Xi = 1, draw a positive WX
i from a truncated normal

with mean µx and SD = σx.

– Else sample Xi from 0, 1 with probability Pr(Xi)(1− πi,j), 1− Pr(Xi)

since P (Xi = 1|Yj = 0) =
P (Xi)(1−πi,j)
P (Yj=0)

, P (Xi = 0|Yj = 0) = 1−P (Xi)
P (Yj=0)

,

where P (Xi) and πi,j have prior information and are updated through

WXi
i and W π

i,j in each MCMC iteration.

If Xi = 1, draw a negative W π
i,j from a truncated normal with µy and σy,

otherwise, keep W π
i,j un-updated

If there are nj > 1 proteins in Ij, list all the 2nj possible combinations of the

proteins and their probability of generating peptide Yj. For 1 ≤ l ≤ 2nj ,

take Cjl , the l th combination of Ij for example.

P (XiεCjl |Yj = 1)

=
P (Yj = 1, XiεCjl)

P (Yj = 1)

=
P (Cjl)P (Yj = 1|Cjl)

P (Yj = 1)

∝
[ ∏
iεCjl

P (Xi)
∏

iεIj\Cjl

(
1− P (Xi)

)
−
∏
iεCjl

P (Xi)(1− πi,j)
] ∏
iεIj\Cjl

1− P (Xi)

Pr(XiεCjl |Yj = 0)

=
Pr(Yj = 0, XiεCjl)

Pr(Yj = 0)

=
Pr(Cjl)Pr(Yj = 0|Cjl)

Pr(Yj = 0)

=

∏
iεCjl

Pr(Xi)(1− πi,j)
∏

iεIj\Cjl
(1− Pr(Xi))

Pr(Yj = 0)

∝
∏
iεCjl

Pr(Xi)(1− πi,j)
∏

iεIj\Cjl

(1− Pr(Xi))
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– If Yj = 1, each combination’s probability conditional on peptide Yj

being present is proportional to its numerator in the above formula,

based on which one combination Cjl is sampled with probability

(
∏
iεCjl

P (Xi)
∏

iεIj\Cjl

(1− P (Xi))−
∏
iεCjl

P (Xi)(1− πi,j))
∏

iεIj\Cjl

1− P (Xi)

For each protein Xi in the sampled combination Cjl , set Xi = 1, draw

positive WXi
i for from truncated normal with mean µx and SD = σx.

For each protein XiεIj\Cjl , set Xi = 0, draw negative WXi
i for from the

same distribution.

– If Yj = 0, randomly sample one combination Cjl out of the 2nj com-

binations with probability
∏

iεCjl
Pr(Xi)(1− πi,j)

∏
iεIj\Cjl

(1−Pr(Xi))

For each protein Xi in the sampled combination Cjl , set Xi = 1, draw

negative WXi
i for from truncated normal with µx and SD = σx, draw

positive W π
i,j from a truncated normal with µy and SD = σy. For

each protein XiεIj\Cjl , set Xi = 0, draw negative WXi
i from the same

truncated normal, keep W π
i,j unchanged.

• q = pnorm(µx), π = pnorm(µy), τ = pnorm(µz) are assigned normal priors and

are updated with the MCMC sample mean of WX
i ,W

π
i,j,W

Z
k,r. σx, σy, σz are

assigned inverse-gamma prior and are updated with sample standard deviation

of WX
i ,W

π
i,j,W

Z
k,r.

After sufficient rounds of iterations, the posterior probability of peptide j could

be estimated by the sample proportion of Yj and the posterior probability of protein

i could be inferred by the sample proportion of Xi or by the posterior sample mean

of Pr(WX
i > 0).
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