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ABSTRACT 
 
 
  

Effects of 28 Days of Beta-Alanine and Creatine Monohydrate Supplementation on 

Muscle Carnosine, Body Composition and Exercise Performance in Recreationally 

Active Females. (May 2012) 

Julie Yong Kresta, B.A., DePauw University; 

M.S., University of Texas at Arlington 

Chair of Advisory Committee: Dr. Richard Kreider 

 

Early research with beta-alanine (β-ALA) supplementation has shown increases 

in muscle carnosine as well as improvements in body composition, exercise performance 

and blood lactate levels. Creatine monohydrate supplementation has been extensively 

researched for its effects on anaerobic exercise performance. Recently, a new line of 

studies have examined the combined effects β-ALA and creatine supplementation on 

anaerobic exercise performance and lactate threshold. The purpose of the present study 

is to examine the acute and chronic effects of β-ALA supplementation with and without 

creatine monohydrate on body composition, aerobic and anaerobic exercise 

performance, and muscle carnosine and phosphagen levels in college-aged recreationally 

active females.  

Thirty-two females were randomized in a double-blind placebo controlled 

manner into one of four supplementation groups including β-ALA only, creatine only, β-

ALA and creatine combined and placebo. Participants supplemented for four weeks and 
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reported for testing at baseline, day 7 and day 28. Testing sessions consisted of a resting 

muscle biopsy of the vastus lateralis, body composition measurements, a graded exercise 

test on the cycle ergometer for VO2max and lactate threshold, and multiple Wingate tests 

for anaerobic exercise performance.  

Results showed all supplementation strategies increasing muscle carnosine levels 

over placebo after four weeks, but not between groups. Muscle creatine increased for all 

groups after four weeks, but not between groups. There were improvements for all 

groups with body composition after four weeks, despite the present study not including a 

specific training protocol. There were no group differences observed for aerobic 

exercise, blood lactate levels, lactate threshold, ventilatory threshold, peak power, mean 

power, total work or rate of fatigue. There were some trends for anaerobic exercise 

indicating groups supplementing with creatine may have greater improvements, 

however, these findings were not statistically significant.  

The present study failed to show any additive effects of β-ALA and creatine 

supplementation for body composition, aerobic exercise, lactate threshold or anaerobic 

exercise measures. This could be due to the small sample size resulting in low power and 

effect sizes. Previous research has demonstrated that four weeks of β-ALA and creatine 

supplementation was enough time to increase muscle carnosine and phosphagen levels. 

However, perhaps more time is needed for performance adaptations to occur, especially 

without the addition of an exercise training component. 
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NOMENCLATURE 

 
 

β-ALA – beta-alanine 

LT – lactate threshold 

MP – mean power 

PCr – phosphocreatine 

PP – peak power 

PWCFT – physical working capacity at the fatigue threshold 

TBW – total body water 

TTE – time to exhaustion  

TW – total work 

VT – ventilatory threshold 

VO2max – highest oxygen consumption attained during a graded exercise test 
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CHAPTER I
 

INTRODUCTION AND RATIONALE 

 Previous studies with beta-alanine (β-ALA) supplementation have shown 

increases in muscle carnosine levels as early as 2 weeks, with greater increases as the 

duration of supplementation increases. The amount of carnosine elevation ranges from 

around 34% after two weeks [1],  up to 80.1% after ten weeks [2]. A recent study 

examined the effects of three weeks of supplementation on power athletes, but failed to 

note any significant increases in anaerobic performance as a result of the β-ALA 

supplementation [3]. They suggested the 4.5 g/day dose used may have been too low for 

the population studied and duration of the study. Therefore, the proposed study will use 

a more individualized dosing strategy to elicit effects on muscle carnosine. This dose 

will be 0.1 g/kg of body weight. This value was calculated from previous studies that 

showed significant increases in muscle carnosine using males [2, 4, 5] so each person 

will be receiving a more standardized amount of the supplement.  

 Additionally, the effects of creatine have been extensively researched in recent 

years regarding its effects on anaerobic exercise performance. High intensity exercise 

bouts require a faster rate of ATP resynthesis, which is most quickly attained by 

breaking down phosphocreatine (PCr) [6, 7]. PCr is stored in limited amounts in the 

skeletal muscle, however supplementation has been shown to increase these muscle 

stores to aid in ATP resynthesis during high intensity exercise [8].  

This dissertation follows the style of The Journal of the International Society of Sports 

Nutrition. 
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Recently, studies have been examining the combined effects of creatine and β-

ALA supplementation on anaerobic performance and muscle carnosine levels. Results 

have shown improvements in performance variables such as VO2peak, lactate threshold 

and time to exhaustion with the combined supplementation [9]. The acute effects of the 

combined supplementation has not yet been examined for its effects on anaerobic 

performance, short term recovery or muscle carnosine concentrations. Creatine 

monohydrate is typically supplemented using a loading phase between five to seven days 

of a larger dose around 20 g/day followed by a maintenance load of a smaller amount 

[10]. Since β-ALA supplementation is a relatively new field of research in regards to 

exercise performance, there has not been a standard supplementation protocol 

developed. Typically, the β-ALA dose ranges from 3.2 g/day to 6.4 g/day for anywhere 

between two to ten weeks of supplementation. Previous studies have tapered and/or 

increased the dose as the duration increased. The present study will utilize the loading 

phase dose of creatine with an individualized dose of 0.1 g/kg body weight for β-ALA 

for four weeks.  

 There is also a lack of research related to this supplementation method in females 

as most studies direct their focus to males. Thus, the present study will examine the 

effects of four weeks of supplementation in college-aged females.  

Statement of the Problem 

Will four weeks of supplementation with β-ALA alone, creatine alone, 

combination of β-ALA and creatine or placebo supplementation exhibit effects on 
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muscle carnosine or anaerobic power markers in college aged, recreationally active 

females?  

Purpose 

The purpose of this study is to examine the acute and chronic effects of β-ALA 

and creatine supplementation on body composition, aerobic capacity, lactate threshold, 

ventilatory threshold, total body water, muscle carnosine, creatine, and phosphocreatine 

levels, anaerobic exercise markers and short term recovery for multiple sprint 

performances in college-aged, recreationally active females. 

General Study Overview 

 This study will be a randomized, double-blind placebo controlled trial. This study 

will include four supplementation groups including β-ALA only (BA), β-ALA plus 

creatine monohydrate (BC), creatine monohydrate only (CR) and a placebo (PL). Each 

group will supplement for 28 days with muscle creatine and carnosine being assessed at 

baseline and days 7 and 28 to determine acute and chronic effects. In addition, lactate 

threshold and anaerobic power variables will be assessed and compared between groups 

using a graded exercise test on the cycle ergometer as well as a multiple sprint and time 

trial protocol also on the cycle ergometer at the same time points.  

Hypotheses 

Ho1: Muscle carnosine concentration will be significantly greater with β-ALA 

supplementation  

Ho2: Muscle creatine and phosphagen stores will be significantly greater with creatine 

supplementation.  
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Ho3: Anaerobic power will be significantly greater with β-ALA and creatine 

supplementation.  

Ho4: There will be no significant difference observed for muscle carnosine, creatine or 

phosphagen stores for combined supplementation of β-ALA and creatine.  

Ho5: There will be no significant difference observed in anaerobic power for the 

combined supplementation compared to the other supplementation groups with multiple 

maximal sprints.  

Ho6: There will be no significant improvements observed in fat mass (FM) or fat-free 

mass (FFM) for β-ALA alone, creatine alone or the combined supplementation.  

Ho7: There will be no significant difference observed in VO2max on the cycle ergometer 

for β-ALA alone, creatine alone or the combined supplementation. 

Ho8: There will be no significant difference observed in resting or post-exercise blood 

lactate for β-ALA alone, creatine alone or the combined supplementation. 

Ho9: There will be no significant difference observed for ventilatory threshold (VT) or 

lactate threshold (LT) as measured by percent VO2max for β-ALA alone, creatine alone 

or the combined supplementation.  

Ho10: There will be no significant difference observed for total body water (TBW) as 

determined by BIA for β-ALA alone, creatine alone or the combined supplementation. 

Delimitations 

The study will be conducted under the following guidelines: 
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1. 60 recreationally active females between the ages of 18 and 30 years will be 

recruited from the Texas A&M University and the College Station community to 

participate. 

2. Eligible participants will take part in a familiarization session where they will be 

informed of all testing protocols and requirements, complete paperwork 

including an informed consent and be scheduled for testing. 

3. Participants will refrain from strenuous exercise for 24 hours prior to baseline 

testing.  

4. Participants will not have consumed any nutritional supplementation that may 

affect muscle mass or metabolism for at least three months prior to the start of 

the study.  

5. Participants will not have participated in an anaerobic training program for at 

least three months prior to the start of the study.  

Limitations 

1. The participants will be individuals of the Texas A&M University and College 

Station community that respond to advertisements and therefore the selection 

process will not be truly random. This may affect the generalizability of the 

results to the general population.  

2. There may be variations in testing times, dietary intake and hormonal status in 

the participants that are unavoidable.  

3. There are innate limitations of the laboratory equipment that will be used for data 

collection and analysis.  
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Assumptions 

1. Participants will be fasted for the 8 hours prior to testing on each of the testing 

days.  

2. Participants accurately answered the entrance criteria screening questions and the 

health and activity history form.  

3. Participants adhere to all of the regulations during the study involving the 

supplementation and exercise. 

4. All laboratory equipment will be calibrated and functioning properly for all 

testing sessions.  

5. The population, which the sample is drawn from, is normally distributed.  

6. The variability among the samples will be approximately equal.  

7. The sample will be randomly selected and assigned into the different supplement 

groups.  

Definition of Terms 

1. Peak Power (PP) – the highest mechanical power achieved during any stage of 

the Wingate test. This represents the explosiveness of an individual’s muscle 

power. 

2. Mean Power (MP) – the average local muscle endurance throughout the entire 30 

second Wingate test. 

3. Rate of Fatigue – the drop in power from peak power to the lowest power. This is 

expressed as a percent.  
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4. Anaerobic Capacity – calculation of adding each 5-second peak power output 

over the entire 30 second exercise test, expressed as kg-J. 

5. Ventilatory Threshold (VT) – The point during the graded exercise test in which 

ventilation increases at a disproportional rate compared to oxygen uptake.  

6. Lactate Threshold (LT) – the point during the graded exercise test in which the 

blood lactate levels increase non-linearly and lactate begins to accumulate in the 

blood. Expressed as percent VO2max. 

7. Onset of Blood Lactate (OBLA) – the point during the graded exercise test in 

which blood lactate levels are ≥ 4.0. Expressed as percent VO2max. 

8. Wingate Anaerobic Capacity Test – a 30 second supermaximal exercise test on a 

cycle ergometer against a set resistance of 0.075 kg per kg of body mass. The 

participant will continue to pedal at a maximal rate throughout the entire test. 
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CHAPTER II 

REVIEW OF LITERATURE 

Introduction 

During moderate to high-intensity exercise, hydrogen ions (H+) begin to 

accumulate leading to a drop in intramuscular pH and ultimately influencing muscle 

performance [11]. The greater the reliance on glycolysis as the primary energy system 

(as seen with high-intensity exercise), the greater production of lactic acid and H+, thus 

leading to further decreases in intramuscular pH. This decrease in intramuscular pH has 

been suggested to be linked to fatigue-induced increases in muscle activation and 

electromyographic (EMG) amplitude [12, 13]. Thus, if the intramuscular pH decline can 

be prevented or delayed, the fatigue induced EMG increase may also be delayed [14]. β-

ALA supplementation has been shown to increase muscle carnosine levels, which can 

act as a buffer to reduce the acidity in the active muscles during high-intensity exercise 

[2, 4, 5]. β-ALA supplementation has been shown to have beneficial effects on exercise 

performance variables such as cycling capacity [2], ventilatory threshold, and time to 

exhaustion [15]. For this reason, β-ALA has become a widely used nutritional 

supplement for improving high-intensity exercise performance [2, 4, 9, 14, 16]. Creatine 

monohydrate supplementation has also been shown to have ergogenic effects by 

increasing the availability of PCr and total creatine concentrations in the muscle and 

improving high-intensity exercise performance, and training adaptations [17]. For this 

reason, several studies have assessed whether co-ingesting β-ALA with creatine may 
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have synergistic and/or additive effects on exercise capacity and/or training adaptations 

[9, 14, 18].   

 Carnosine 

Carnosine (β-alanyl-L-histidine) is a naturally-occurring histidine-containing 

compound found in many animal tissues including skeletal muscle, which is the most 

abundant source. Carnosine is a multifunctional dipeptide with many roles including 

buffering [19, 20], fighting free radicals [21, 22], enzyme regulation [23] and 

sarcoplasmic reticulum calcium (Ca2+) regulation [24, 25]. Carnosine is broken down in 

the body by carnosinase, which is found in most tissues except skeletal muscle, partially 

explaining why carnosine concentrations are highest in this tissue [25]. Figure 1 shows 

the chemical structure of carnosine.  

 

 

Figure 1: Chemical structure of carnosine 

 

The development of dipeptides, such as carnosine, occurs in the body’s muscle 

tissue soon after birth, but at differing rates between species. It appears to follow a 

similar timeline as the development of the skeletal muscles under nervous control [26].  

It can be synthesized from muscle and nerve tissues in the body from the precursors β-
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ALA and histidine with the assistance of the enzyme carnosine synthetase [26]. The 

chemical reaction responsible for the production of carnosine is as follows: [27] 

ATP + L-histidine + beta-alanine ↔ AMP + diphosphate + carnosine. 

Carnosinase is an enzyme involved in cleaving carnosine into β-ALA and 

histidine; however, the exact role remains unclear. It is mainly found in the kidney, liver 

and blood serum. Carnosinase is actually a group of intra- and extracellular dipeptidases 

that are part of a large family of metalloproteases. Human tissue carnosinase performs as 

a non-specific dipeptidase [28]. 

The mechanisms explaining the protective effects of carnosine are still being 

established. In vitro studies have shown that carnosine is able to prevent membrane 

damage when related to lipid peroxidation. It also protects the functionality of the 

sarcoplasmic reticulum against oxidative damage [29, 30]. One study showed that at a 

carnosine concentration of 10 mM, which is typical for the muscle cytoplasm, the rate of 

peroxidation is significantly reduced. When concentrations are raised to 50 mM, 

oxidation is almost completely stopped. Other studies relate peroxidation to the 

inactivation of the calcium pump in the sarcoplasmic reticulum membrane. When 

carnosine was present, it prevented the accumulation of thiobarbituric acid-reactive 

products, thus ultimately preventing the inhibition of the calcium pump [26]. 

Carnosine in human skeletal muscle generally ranges between 5-10 mM wet 

weight or 15-40 mmol/kg dry weight [4]. Concentrations differ among animal species, in 

part due to the differences in muscle mass [26]. For example, horses have been reported 

to have higher carnosine concentrations than Greyhound dogs [31]. Carnosine levels are 
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typically higher in fast-twitch muscle fibers compared to slow-twitch, which corresponds 

to the observation that animals exposed to frequent sprints, explosive flight behaviors 

and prolonged hypoxic dives have higher initial carnosine concentrations [4, 31, 32]. 

Humans athletes involved in anaerobic sports such as sprinters [33, 34] and bodybuilders 

[35] have also been found to have  higher concentrations of carnosine. Exercise training 

has been reported to increase resting muscle carnosine concentrations in these athlete 

types. For example, Gardner and colleagues [36] reported that exercise training 

increased plasma carnosinase activity and decreased carnosine excretion leading to 

greater muscle carnosine concentrations [36]. Moreover, Suzuki and colleagues [37] 

examined the effects of sprint training on muscle carnosine concentrations. Six male 

subjects performed sprint training twice a week for a total of 16 training sessions. Each 

session involved either single (for weeks one and two) or a double (for weeks three 

through eight) bout of 30 seconds of maximal sprinting on a cycle ergometer with 20 

minutes of rest between sprints on the double bout days. Muscle samples were collected 

from the vastus lateralis one week before training and again two days following the 

training protocol. Results revealed that muscle carnosine content and mean power output 

significantly increased after the eight weeks of training [37]. Tallon and coworkers [35] 

suggested the greater muscle carnosine content in bodybuilders may be due to the 

chronic exposure to lower pH environments due to their training, differences in their diet 

such as increased protein intake where carnosine can be found, supplementation use, 

and/or possible anabolic androgenic steroid use [35]. 
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Effect of Carnosine as an Intracellular Buffer 

Carnosine was first discovered as an intracellular pH buffer in 1953 by Severin 

and colleagues [38] using frog muscle tissue. Subsequent studies examining this 

relationship in human muscle tissue followed thereafter [19, 20, 39-42]. When skeletal 

muscles are involved in moderate to intense exercise, there is typically a generation of 

lactic acid and subsequent dissociation into lactate and H+, which can alter the pH 

levels. It had previously been reported that the majority of protons produced during 

exercise in the blood were buffered by the bicarbonate buffering system [43]. The pKa 

of this system is 6.1, which is less than that of carnosine (pKa of 6.83), and thus a 

greater pH change is needed to elicit benefits from this system. Since the pKa of 

carnosine is closer to the physiological pH, it is likely that this is utilized sooner as a 

buffer during high-intensity exercise [11]. The imidazole group on the histidine 

containing molecules, such as carnosine, makes it especially effective as a buffer. This 

group has a pKa value close to that of the intracellular pH, therefore one of the nitrogens 

from the imidazole ring can be used to accept a proton [44]. 

 Early studies examined the role of carnosine in animal models. One study, 

utilizing chromatography methodology to analyze rabbit and pigeon muscle samples, 

reported muscle dipeptides (mainly carnosine and anserine) accounted for approximately 

40% of the pH buffering capability in skeletal muscle [19]. Later, Bump and colleagues 

[45] examined the carnosine concentrations in different breeds of horses. They compared 

Quarter horses (QH), Thoroughbreds (TB) and Standardbreds (SB) in order to correlate 

buffering capabilities of the muscle to fiber type composition. The QH demonstrated less 
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slow-twitch muscle fibers, greater fast-twitch glycolytic fibers, and fewer fast-twitch 

oxidative muscle fibers compared to the other horses. Results showed QH had 

significantly greater amounts of carnosine in their muscle. The researchers reported a 

positive correlation between carnosine concentrations and fast-twitch glycolytic fibers 

and a negative correlation between carnosine and fast-twitch oxidative fibers. The 

investigators inferred that intramuscular carnosine acted as an intracellular buffer, 

although this was not directly measured. A later study conducted by Sewell and 

associates [46] specifically examined the buffering capability of carnosine in different 

fiber types of horses. These researchers found that carnosine contributed about 20% of 

the buffering in type I fibers, and up to 46% in Type IIb fibers. These findings are 

consistent with the findings that less lactic acid is accumulated in Type I fibers due to 

the lower intensity muscle activity involved with this fiber type. 

An early study in humans utilizing carnosine supplementation by Kraemer and 

associates [47] reported no effect on acid-base status or exercise performance using four 

subsequent 30 second Wingate tests with only two minutes of rest between exercise 

bouts. In this regard, the researchers evaluated ten trained and ten untrained males who 

consumed a total of 15 capsules of a supplement containing 1000 mg dibasic sodium 

phosphate, 204 mg potassium bicarbonate and 12.5 mg L-carnosine over a 3.5 day 

period. Placebo capsules were matched in sodium and potassium content. Blood samples 

were taken at baseline prior to any exercise, immediately after each Wingate test, and at 

three minutes after all exercise was completed. Though intramuscular carnosine levels 

were not measured, the authors suggested that the amount of carnosine provided to 
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subjects (about 185 mg) may have been too low to have an impact on intramuscular 

carnosine levels [36, 48, 49] particularly since previous animal studies had shown 

increases following a daily dose between 50-200 mg/kg of body weight [50, 51]. 

Human studies have shown that lowered pH levels can also negatively affect the 

excitation-contraction coupling in the skeletal muscle [48, 52]. The buffer efficacy in 

human muscle was examined by calculating the buffering ability over the physiological 

pH range of 7.1 – 6.5. This study involved 50 healthy active individuals who underwent 

a muscle biopsy from the lateral portion of the quadriceps femoris muscle. Anserine and 

carnosine were analyzed in neutralized perchloric acid extracts using high-performance 

liquid chromatography (HPLC) methods. The Henderson-Hasselbach equation was then 

used to indirectly calculate the buffer contribution across the pH range of 7.1 to 6.5. It 

was estimated that carnosine was able to buffer between 2.4 and 10.1 mmol H+
∙kg

-1 dry 

mass, which corresponded to about 7% of the total muscle buffering [16]. Therefore, 

these results indicated that carnosine played a minimal role in buffering pH. 

Suzuki and coworkers [53] examined the effects of the nonbicarbonate buffers 

carnosine and anserine. They had eight active males supplement with either a placebo or 

chicken breast extract (CBEX) soup that contained 1.5 g carnosine and anserine. 

Subjects then performed ten sets of five second maximal cycle sprints at 7.5% of their 

body weight as resistance. Blood samples were collected at rest, one minute before 

exercise, after each exercise set, and immediately after the intervals to measure blood-

gas parameters, blood lactate and concentrations of carnosine and anserine. The 

researchers found that supplementing the diet with CBEX delayed the decrease in 
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bicarbonate during intense exercise, but did not improve performance. These results 

support the initial use of carnosine as a buffer instead of the bicarbonate system [53]. 

Early studies with carnosine supplementation noted plasma carnosine levels 

failed to elevate due to the high activity of carnosinase [36]. The researchers were able 

to measure only 14% of the ingested carnosine in urine suggesting this was due to the 

absorption in the gastrointestinal tract [36]. Later, research pointed towards 

supplementing with β-ALA and L-histidine instead to raise carnosine levels since these 

are the precursors to carnosine. Dunnett and Harris [20] discovered that β-ALA was able 

to increase carnosine in muscle tissue. In their study, they supplemented horses with 

both β-ALA and L-histidine and found β-ALA to have an additive response suggested to 

be due to the increase in β-amino acid transport across the gastrointestinal tract. This was 

not observed for L-histidine, thus speaking to the efficacy of β-ALA instead to increase 

carnosine levels [20]. However, Tamaki et al. [54] was able to show an increase in 

carnosine with histidine in rats [54].  

Aside from buffering effects, carnosine has shown to have other physiological 

roles, including that of an effective antioxidant against oxidative stress [55]. Reactive 

oxygen species (ROS) can arise from exercise in several proposed mechanisms 

including: an increase flow of electrons in the electron transport system from increased 

respiration [56] or a decrease in pH can lead to oxygen being released from hemoglobin 

and a subsequent increase in pO2 in the tissues [57]. Some believe the development of 

ROS to be related to muscle fatigue during activity [58, 59].  
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Carnosine is also linked to enzyme regulation related to activation of myosin 

ATPase, which is used to help maintain ATP stores [60]. Finally, carnosine has been 

noted to have a role in electron-contraction (E-C) coupling in skeletal muscle. An early 

study by Lamont and Miller [61] showed 15 mM of carnosine resulted in a significant 

increase in Ca2+ sensitivity in muscle fibers of Rana temporaria [61]. More recently, 

Dutka and Lamb [62] examined if carnosine affects E-C coupling in functional fibers 

under physiological conditions. They used mechanically skinned rat extensor digitorum 

longus muscle fibers. Their results showed that carnosine did not affect Ca2+ release 

from the sarcoplasmic reticulum; however, carnosine was able to increase the Ca2+ 

sensitivity of the contractile components of the muscle fibers. Authors suggested the 

assistance in Ca2+ sensitivity could help maintain force production in the later stages of 

fatigue once Ca2+ release begins to decrease. Therefore, higher levels of carnosine can 

help offset the decrease in Ca2+ as well as the accumulation of H+ ions during high-

intensity exercise [62].  

Since carnosine has a number of physiological roles, there are many future 

research opportunities available. Specifically, the exact mechanism of carnosine in its 

role to improve exercise performance and/or reduce muscular fatigue needs to be 

studied. It will also be important to examine how different nutritional strategies to 

increase carnosine levels in the muscle may optimize physiological activity and/or 

exercise capacity.  
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Beta-Alanine 

 β-ALA is a naturally occurring amino acid that is one of the precursors to 

carnosine, along with L-histidine. Carnosine synthetase is the enzyme used to synthesize 

carnosine from β-ALA and L-histidine. β-ALA is also likely to be the rate limiting step 

in the synthesis of carnosine [20, 63, 64]. Carnosinase is the enzyme present in cells and 

serum that breaks down carnosine into β-ALA and L-histidine [28].  

 β-ALA supplementation in doses greater than 10 mg/kg of body weight has 

shown to cause a short period of paraesthesia with increasing severity as the dose 

increases. However, when a large dose around 40 mg/kg of body weight is ingested with 

CBEX, the paraesthesia did not occur. It is hypothesized that this side effect is a result of 

the rapid high peak blood plasma concentrations of β-ALA with supplementation alone, 

since it is not experienced when β-ALA is ingested through the diet with histidine 

containing dipeptides such as carnosine in meat products [5].  

Beta-Alanine and Muscle Carnosine  

As previously mentioned, β-ALA supplementation has recently been shown to 

significantly increase intramuscular carnosine levels, which then corresponds to 

improvements in exercise performance [15]. Harris and colleagues [5] examined the 

effects of β-ALA supplementation on human skeletal muscle carnosine concentration in 

a series of studies. In one study, investigators examined the effects of four weeks of β-

ALA or carnosine supplementation on muscle carnosine concentrations. The 

supplementation protocol included consuming 800 mg of β-ALA four times a day 

(average 2.3 g/day) for a total intake of approximately 90 g over the four week period 
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(group I) or increasing doses of β-ALA through the supplementation period (average 6.4 

g/day) for a total intake of about 146 g over the four week period (group II). The 

carnosine supplementation group involved consuming increasing doses of L-carnosine 

through the supplementation period for a total intake of 364 g of L-carnosine over the 

four week period, which corresponded to an intake of about 143 g of β-ALA. A final 

group supplemented with maltodextrin as a placebo in the same frequency as the β-ALA 

and L-carnosine supplementation groups. A muscle biopsy was taken before and after 

supplementation. Results revealed that each supplement group showed significant 

increases in carnosine content. Mean carnosine content increase (measured in mmol∙kg
-

1dm) was greatest with L-carnosine and was followed by groups II and I of β-ALA with 

values of 16.37±3.03 (p<0.05), 11.04±2.68 (p<0.05) and 7.80±0.36 (p<0.05) mmol∙kg-

1dm, respectively. There was no change in the placebo group (1.87±1.73, p<0.05 

mmol∙kg
-1dm). This corresponded to percent changes of 66%, 64%, 42% and 10% for L-

carnosine, group II, group I and placebo group, respectively. They also indirectly 

calculated the contribution of carnosine to buffing capacity between pH levels of 7.1 and 

6.5 using the Henderson-Hasselbach equation. They found that after four weeks of 

supplementation, carnosine accounted for 14.2%, 14.3% and 12.6% of the total muscle 

buffering capacity in L-carnosine, and groups II and I, respectively [5]. 

Studies have also suggested that there does not appear to be an upper limit on 

increasing muscle carnosine concentrations. For example, Derave and colleagues [4] 

supplemented trained male sprinters with β-ALA or placebo (maltodextrin) for four to 

five weeks. The supplementation protocol included six daily doses of 400 mg capsules 
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of either β-ALA or maltodextrin totaling 2.4 g/day for the first four days, 3.6 g/day for 

the next four days, and 4.8 g/day for the duration of the study. Interesting, muscle 

carnosine levels were increased even in individuals with high resting muscle carnosine 

concentrations [4].  

While β-ALA and carnosine supplementation have been reported to increase 

muscle carnosine levels, less is known about the time course of carnosine degradation. 

Carnosinase is responsible for the hydrolyzation of carnosine and is mainly present in 

human plasma, which is why carnosine levels are much lower in the blood than in 

skeletal muscle, where this enzyme is not present (26). β-ALA supplementation in doses 

of 4-6 g/day over time has been shown to increase carnosine by 20-30% after two weeks, 

by 40-60% after four weeks, and up to 80% by ten weeks [2, 65]. A study by Baguet and 

colleagues [66] sought to determine the loading phase of carnosine and the time course 

of removal. They included 20 males who supplemented with either β-ALA or 

maltodextrin as a placebo for five to six weeks. The investigators provided doses of 2.4 

g/day for days one and two, 3.6 g/day for days three and four, and 4.8 g/day for the 

remainder of the study duration. Using a proton magnetic resonance spectroscopy 

(MRS), they measured the carnosine content in three different muscles (soleus, tibialis 

anterior and gastrocnemius) at four time points (pre-supplementation, during the last 

week of supplementation and at weeks three and nine following the cessation of 

supplementation). They determined that carnosine elimination occurs relatively slowly 

and in a linear pattern at an average rate of 0.21 mM/week in both type I and II fibers. 

Authors suggest the slow clearance of carnosine is indicative of the high stability of the 
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metabolite [66]. Table 1 provides a summary of recent studies examining the effects of 

β-ALA supplementation on carnosine concentrations.  

 

Table 1: Summary of the effects of β-ALA supplementation on muscle carnosine 

concentrations 

Authors Population Supplementation 

Protocol 

Muscle Carnosine 

Concentration 

Effects 

Performance 

Results 

Baguet et 
al., 2009 
[66] 

20 
physically 
active males 

 5-6 weeks of β-
ALA or placebo 
(maltodextrin) 

 2.4 g/day – first 2 
days 

 3.6 g/day – days 3-
4 

 4.8 g/day to end of 
study 

  
  

 Soleus: carnosine 
↑ 30% (p=0.003) 

with β-ALA; 
remained stable 
with placebo 
(p=0.867) 

 Tibialis anterior: 
carnosine ↑ 27% 
(p=0.005) with β-
ALA; ↓ 17% 
(p=0.05) with 
placebo 

 Gastrocnemius: 
carnosine ↑ 23% 
(p=0.038) and did 
not change with 
placebo (p=0.740). 

 Carnosine 
elimination was 
measured at 3 and 
9 weeks after 
supplementation  

 At 3 weeks, only 
26.1% (soleus), 
20.1% (tibialis 
anterior) and 
44.7% 
(gastrocnemius) of 
the increase had 
disappeared. There  

 None 
measured  
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Table 1: Continued 
 
Authors Population Supplementation 

Protocol 

Muscle Carnosine 

Concentration 

Effects 

Performance 

Results 

   was no difference 
between β-ALA 
and placebo at this 
point (p=0.431) 

 At 9 weeks, 
carnosine levels in 
all 3 muscles 
returned to initial 
values 

 

Harris et 
al., 2006 
[5] 

Study 3: 
21 
physically 
active males 
Ages 
26.1±5.6 yrs 

 4 weeks, 4 groups 
(I – IV): 
 I)  800mg β-ALA x 
4   
    daily (avg. 3.2g 
daily     
    and 89.6g 4wk 
total) 
II) 8 daily doses of  
    either 400 or 
800mg  
    β-ALA (avg. 
6.4g  
    daily and 145.6g 
4wk  
    total) 
III) 8 daily doses of  
    1000 or 2000 mg 
L- 
    carnosine (364g 
4wk  
    total L-carnosine,  
    corresponding to  
    143.3g β-ALA) 
IV) Placebo of  
    maltodextrin at    
    doses to match     
    groups II  and III 

 ↑ in carnosine 
concentration 
greatest with 
carnosine 
supplementation, 
followed by group 
II, then group II β-
ALA protocols.  

 Mean ↑ over 4 
weeks (mmol·kg-

1dm) 
        I) 7.80±.36 
(p<.05) 
        II) 11.04±2.68 
(p<.05) 
        III) 16.37±3.03 
(p<.05) 
        IV) 1.87±1.73 
(p>.05) 

None 
measured 
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Table 1: Continued 

Authors Population Supplementation 

Protocol 

Muscle Carnosine 

Concentration 

Effects 

Performance 

Results 

Derave et 
al., 2007 
[4] 

15 male 
track 
athletes 
(sprinters) 
18-24 yrs 

4-5 weeks β-ALA 
or placebo 
(maltodextrin) 
2.4 g/day – first 4 
days 
3.6 g/day – days 5-
8 
4.8 g/day to end of 
study 
 

Soleus: 
    ↑ 47% with  β-

ALA  
    No change with 

placebo 
Gastrocnemius: 
    ↑ 37% with β-

ALA 
    No change with 

placebo 
 

No difference 
between 
groups for 
400m running 
performance 

Hill et al., 
2007 [2] 

25 
physically 
active males 

10 weeks 
β-ALA: 

 4 g/day – wk 1 
 4.8 g/day – wk 2 
 5.6 g/day – wk 3 

6.4 g/day – wk 4-10 

 β-ALA group, ↑ 

from 19.0 to 30.1 
mmol/kg (58.8%) 
at 4 weeks and up 
to 34.7 mmol/kg 
(80.1%) at 10 
weeks 

 Not significant 
between weeks 4 
and 10 

 

 No effect on 
body mass 

 ↑cycling   

capacity time 
at 110% with  
β-ALA 

 

Beta-Alanine and Exercise Performance 

Increases in muscle carnosine due to β-ALA supplementation have resulted in 

significant effects on several variables related to exercise performance.  Some of these 

include improved time to fatigue on a maximal cycle test [2], increased ability to sustain 

power output in the final ten seconds of the Wingate test [42], delayed onset of 

neuromuscular fatigue during incremental cycle ergometry tests as noted by increased 

physical working capacity (PWCFT), increased ventilatory threshold (VT) and time to 
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exhaustion (TTE) [15], and improvements in muscle torque during repeated bouts of 

intense dynamic contractions [4]. 

Since studies have reported that muscle carnosine levels are typically higher in 

fast-twitch muscle fibers, which are most predominantly used in high-intensity anaerobic 

exercise bouts, it has been hypothesized that β-ALA supplementation could aid in 

anaerobic performance.  In 2002, Suzuki and colleagues [42] performed a study that did 

not involve any nutritional supplementation, but simply analyzed muscle biopsy samples 

from the vastus lateralis before and after a 30-second maximal cycle sprint Wingate test. 

The muscle samples were analyzed for carnosine content. Analysis showed a direct 

relationship between carnosine concentration in skeletal muscle and performance on the 

30 second Wingate exercise test. This relationship lends itself to the question of efficacy 

of β-ALA supplementation in further improving anaerobic exercise performance.  

Hill and coworkers [2] examined the effects of four and ten weeks of β-ALA 

supplementation on muscle carnosine concentration and high-intensity cycling capacity.  

They also sought to discover whether the effects were muscle type specific.  Physically 

active males supplemented with either β-ALA or maltodextrin as a placebo.  β-ALA was 

given in eight doses per day with increasing dose amounts during the first four weeks 

ranging from 250-750 mg per dose.  Subjects underwent muscle biopsies and maximal 

cycle performance tests at various points during the study.  The group supplementing 

with β-ALA had significantly greater muscle carnosine concentrations at four and ten 

weeks from 19.9±1.9 to 30.1±2.3 (30.4%) and 34.7±3.7 (35.1%) mmol∙kg
-1dm. There 

was no significant change with placebo.  The change between four and ten weeks with β-
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ALA was not significant despite the small increase (p~0.07).  The results also indicated 

no difference between fiber types, in that each showed similar increases in carnosine as 

measured by HPLC with fluorescence detection.  The authors suggested that the possible 

benefits from β-ALA supplementation may be limited to four weeks, which is in 

agreement with previous findings by Suzuki and coworkers [42] who showed an 

increase in the ability to sustain power output after four weeks of supplementation with 

no additional benefits observed at ten weeks [42].   

Limited research has examined the effects of β-ALA on sport-specific anaerobic 

performances. Derave and colleagues [4] studied the effects of a four week 

supplementation period on athletic performance, using a 400 m running race time trial.  

The researchers found no significant differences in performance after supplementation, 

but suggested this may have been due to the short time period of supplementation since 

it takes several weeks to induce carnosine loading.  Using a proton MRS to detect 

muscle carnosine concentrations, investigators showed an increase in carnosine 

concentrations of 47% in the soleus muscle after β-ALA supplementation with no 

significant increase after placebo supplementation (8%).  Both groups showed 

significant increases in carnosine concentrations in the gastrocnemius, but subjects 

supplementing their diet with β-ALA observed a greater increase (37% versus 16%) [4].  

This is in contrast to the previously discussed study that reported performance 

improvements after four weeks of supplementation [2]. The researchers suggested that 

this may be due to the possibility that in trained athletes, a 400 m running performance is 

not necessarily limited by the intracellular pH decrease, and therefore the buffering 
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capabilities of the increased carnosine concentrations would not be as critical of a 

component [4].  

Another recent study sought to determine whether β-ALA supplementation 

would affect endurance cycling performance.  Van Thienen and colleagues [67] 

evaluated whether β-ALA supplementation would enhance the final sprint performance 

during endurance cycling since many competitions are won in the final seconds of the 

race after an all-out sprint.  They studied 21 trained males who supplemented their diet 

with either β-ALA or a maltodextrin placebo for eight weeks. The dose gradually 

increased from 2 g/day for the first two weeks, 3 g/day for weeks three and four, to 4 

g/day for weeks five to eight.  The exercise test involved 110 minutes of cycling in ten 

minute stages with increasing intensity between 50-90%. Following this, the subjects 

performed a 30 second all-out sprint. The researchers reported that β-ALA 

supplementation increased sprint peak power after a two hour endurance exercise bout 

by 11 – 15% (p=0.0001) and mean power output by 5 – 8% (p=0.005) [67]. 

In contrast to trained individuals, Smith and colleagues [68] recently examined 

the combined effects of six weeks of β-ALA supplementation and high-intensity interval 

training on endurance performance in recreationally active males.  In this study, 46 

participants were randomly assigned to either β-ALA or placebo supplementation 

groups.  Both groups trained at 90-110% of their peak oxygen utilization (VO2peak) for 

the first three weeks, followed by three weeks of training at 115 %VO2peak.  During the 

training, they continually supplemented with 6 g/day of β-ALA or a dextrose placebo for 

the first three weeks and 3 g/day for the second three weeks.  They showed increases in 



26 
 

 

both groups for VO2peak, time to reach VO2peak, and total work done.  However, the 

group ingesting β-ALA observed a greater increase in VO2peak and time to reach 

VO2peak during the second three weeks of the training protocol (p<0.05), with no 

change in the placebo group.  They also noted a significant increase in lean body mass 

for the β-ALA group after the first three weeks.  These results suggest that β-ALA 

supplementation may enhance the effects of high-intensity interval training and improve 

endurance performance in untrained individuals.  Additionally, Smith and colleagues 

[69] examined the effects of the same high-intensity interval training and β-ALA 

supplementation protocol described above on neuromuscular fatigue and function. The 

researchers reported that three weeks of the interval training was sufficient to result in a 

significant increase in the EMG fatigue threshold (EMGFT).  However, β-ALA 

supplementation did not promote greater benefits [69].  Table 2 presents a summary of 

recent studies examining the effect of β-ALA supplementation and carnosine loading on 

exercise performance.  

 
 
Table 2: Summary of recent β-ALA supplementation and exercise performance studies 
 
Authors Population Supplementation 

Protocol 

Exercise 

Testing 

Protocol 

Performance 

Results 

Baguet 
et al., 
2009 
[70] 

14 
physically 
active males 

 4 weeks of β-ALA 
or placebo 
(maltodextrin) 

 2.4 g/day – first 2 
days 

 3.6 g/day –days 3-4 
 4.8 g/day to end of  

 

Maximal ramp 
exercise test on 
cycle ergometer 
to determine 
VO2peak, VT 
and gas 
exchange 
threshold 
 

 Exercise-
induced acidosis 
was 19% lower 
with β-ALA  

 No difference in 
VO2 throughout 
exercise before 
or after 
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Table 2: Continued 
 
Authors Population Supplementation 

Protocol 

Exercise 

Testing 

Protocol 

Performance 

Results 

  study Pre and Post 
supplementatio
n: 3 x 6min 
cycle exercise 
bouts at 50% ∆ 

power output 

supplementation in 
either group 
 Time delay in the 

fast component 
was significantly 
shorter with β-
ALA than 
placebo 

 Does not support 
a role for acidosis 
in O2 deficit or 
the slow 
component of 
VO2 kinetics 

 
Stout et 
al., 2006 
[14] 

51 males 4 groups: 
 Placebo – 34 g 

dextrose 
 Creatine – 5.25 

g creatine 
monohydrate 
and 34 g 
dextrose 

 β-ALA – 1.6 g 
β-ALA plus 34 
g dextrose 

 β-LA+Creatine 
– 5.35 g creatine 
monohydrate, 
1.6 g β-ALA 
and 34 g 
dextrose 

28 days of 
supplementation: 
 4 doses/day - 

days 1-6 
 2 doses/day - 

days 7-28 

PWCFT test 
with EMG 
measurements 
on a cycle 
ergometer 

 β-ALA may 
delay the onset of 
neuromuscular 
fatigue, but no 
additive effects 
of creatine 

 Significant 
increase in 
PWCFT with β-
ALA (14.5%) 
and creatine plus 
β-ALA (11%) 
compared to 
placebo 
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Table 2: Continued 
 
Authors Population Supplementation 

Protocol 

Exercise 

Testing 

Protocol 

Performance 

Results 

Stout et 
al., 2007 
[15] 

22 females 
Ages: 
28.9±8.1 yrs 
(β-ALA) 
25.8±4.0 yrs 
(placebo) 

 4 weeks β-ALA 
or placebo 

 4 divided 
doses/day for 
totals of: 

 3.2 g/day–wk 1 
 6.4 g/day–wk 2-4 

Continuous 
graded exercise 
test on cycle 
ergometer for 
VO2max, VT, 
PWCFT and 
TTE  

β-ALA delays onset 
of NMF during 
incremental cycle 
ergometry (↑ 

PWCFT, ↑VT, 

↑TTE) 

Stout et 
al., 2008 
[71] 

26 elderly 
males and 
females 

90 days 
supplementation 
with β-ALA or 
placebo 
(microcrystalline 
cellulose) 
3 doses/day of: 
2.4 g β-ALA or 
2.4 g placebo 

Continuous 
graded exercise 
test on cycle 
ergometer for 
PWCFT with 
EMG 
measurements  

 28.5% increase in 
PWCFT after 90 
days of β-ALA 

Sweeney 
et al., 
2009 [72] 

19 
physically 
active 
college-
aged males  

5 weeks β-ALA or 
placebo (rice flour) 
 4 g/day – week 1 
 6 g/day – weeks 

2-5 

2 sets of 5x5-
sec sprints with 
45- sec 
recovery 
between sprints 
and 2 min 
between sets 
performed on 
non-motorized 
treadmill at 
15% body 
weight as 
resistance  

 No between 
group difference 
for peak or mean 
horizontal power 

 No difference in 
% fatigue 

 No difference in 
blood lactate pre- 
and post-testing 
between groups 

 

Van 
Thienen 
et al., 
[67]  

17 healthy 
young males 

8 weeks β-ALA or 
placebo 
(maltodextrin) 
 2 g/day – wks 1-2 
 3 g/day – wks 3-4 
 4 g/day – wks 5-8 

Simulated road 
race of 110 min 
intermittent 
endurance with 
intensity 
between 50% 
and 90% of the 
maximal lactate 
steady state 

 β-ALA enhanced 
sprint power 
output at the end 
of the endurance 
race compared to 
placebo 
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Table 2: Continued 
 
Authors Population Supplementation 

Protocol 

Exercise 

Testing 

Protocol 

Performance 

Results 

   (MLSS) in 10 
minute stages. 
Immediately 
after this, they 
started a 10 
minute time 
trial at 100% 
MLSS with 
voluntary 
increase of 
intensity at each 
minute. 

 

Zoeller et 
al., 2007 
[9] 

55 males 
ages 
24.5±5.3 yrs 

4 weeks, 4 groups 
(4 doses/day for 
first 6 days, then 2 
doses/day 
 Placebo – 34 g 

dextrose 
 Creatine – 5.25 g 

creatine 
monohydrate and 
34g dextrose 

 β-ALA – 1.6 g β-
alanine and 34 g 
dextrose 

 β-ALA plus 
Creatine – 5.25 g 
creatine 
monohydrate,    
1.6 g β-ALA and 
34 g dextrose 

Continuous 
graded exercise 
test on cycle 
ergometer  

 ↑ in 5 cardio-
respiratory 
endurance 
variables with 
creatine + β-ALA 

 Combined 
supplementation 
may delay the 
onset of VT and 
lactate threshold 
during 
incremental cycle 
exercise 

 

Beta-Alanine and Exercise Training 

 Many athletes incorporate resistance exercise as part of their training.  

Resistance-exercise has been reported to lower pH levels to around 6.8 during an 
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exercise session [73, 74].  Thus, β-ALA supplementation may provide ergogenic value 

to athletes engaged in resistance training due to the heavy reliance on glycolytic systems 

in the exercises [16].  Several recent studies have examined this hypothesis.  For 

example, Kendrick and coworkers [16] examined the effects of ten weeks of resistance 

training with and without β-ALA supplementation on muscle carnosine concentration 

and performance measures.  Subjects consumed 6.4 g/day of β-ALA or a maltodextrin 

placebo for ten weeks.  Results revealed that β-ALA supplementation increased muscle 

carnosine levels by 12.8±8 mmol/kg dry muscle weight in agreement with previous 

research [2, 5].  However, the researchers reported that β-ALA supplementation had no 

effects on whole body strength, isokinetic force production, muscular endurance, or 

body composition [16].   

In a follow-up study, Kendrick and colleagues [75] examined the effects of four 

weeks of β-ALA supplementation on isokinetic training adaptations and muscle 

carnosine content in type I and II fibers.  Fourteen male subjects were divided into two 

supplementation groups.  Subjects ingested 800 mg of β-ALA or a maltodextrin placebo 

eight times per day for four weeks (6.4 g/day).  Subjects trained three times a week for 

the first two weeks and four times a week for weeks three and four.  Each session 

consisted of ten sets of ten maximal 90° knee extension and flexion contractions at 

180°/sec on the right leg using a Kin-Com isokinetic dynamometer with one minute of 

rest between sets.  The left leg acted as the untrained control.  Muscle biopsies were 

obtained from the trained and untrained legs prior to and following the training and 

supplementation period.  Results revealed that carnosine content was increased in the 
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trained (9.6±3.9 mmol/kg dry muscle) and untrained legs (6.6±2.4 mmol/kg dry muscle) 

with no significant differences observed between groups. In addition, no significant 

differences were observed between carnosine concentrations in type I and type II fiber 

types.  The researchers concluded that four weeks of isokinetic training is not effective 

in increasing carnosine content and that β-ALA supplementation serves to increase 

muscle carnosine concentration in both untrained and trained type I and type II muscle 

fibers [75].  Other recent studies support contentions that β-ALA supplementation can 

enhance training adaptations [18, 68, 69].  Table 3 provides a summary of recent studies 

on β-ALA supplementation and exercise training.  

 
 
Table 3: Summary of recent β-ALA supplementation and exercise training studies 
 
Authors Population Supplemen-

tation 

Protocol 

Exercise 

Protocol 

Muscle 

Carnosine 

Concentration 

Effects 

Perfor-

mance 

Results 

Hoffman 
et al., 
2006 
[18] 

33 male 
strength 
power 
athletes 

 10 weeks 
 Creatine β-

ALA (CA) 
– 10.5 
g/day 
creatine 
monohydrat
e and 
3.2g/day β-
ALA 

 Creatine 
(C) – 10.5 
g/day 

 Placebo (P) 
– 10.5 
g/day 
dextrose 

Resistance 
training 
program 4 
days/week 
for 10 
weeks 

Not measured  ↓ fatigue 
rate in 
CA 

 ↑ ∆ lean 

body 
mass and 
% body 
fat 

 No 
change in 
power 
measures 

 ↑ training 

volume 
in CA 
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Table 3: Continued 
 

Authors Population Supplemen-

tation 

Protocol 

Exercise 

Protocol 

Muscle 

Carnosine 

Concentration 

Effects 

Perfor-

mance 

Results 

Kendrick 
et al., 
2008 
[16] 

26 healthy 
males, 19-
24 yrs 

800 mg x 
8/day for 4 
weeks of β-
ALA or 
placebo 
(maltodextrin) 

Resistance 
training 
4days/wk 
for 10 
weeks 

 β-ALA – 
23.96 ± 5.94 
to 36.77 ± 
8.26 
(p<0.0001) 

 Placebo – 
29.17 ± 9.82 
to 27.29 ± 
9.52 (p 
>0.05) 

No 
difference in 
whole body 
strength or 
isokinetic 
force 

Kendrick 
et al., 
2009 
[75] 

14 Vietna-
mese 
college 
aged 
students 

4 weeks β-
ALA or 
placebo 
(maltodextrin) 
800 mg x 
8/day 

Single 
legged 
isokinetic 
training  
3 sessions:  
weeks 1-2 
4 sessions: 
weeks 3-4 
10 x 10 
maximal 
90° 
extension 
and 
flexion 
contractio
ns at 
180°/sec 
on Kin-
Com 
 

 Carnosine ↑ 

in both 
trained and 
untrained legs 
with β-ALA 

 Training 
alone had no 
effect on 
carnosine 
levels 

None 
measured  

Smith et 
al., 
2009[69] 

46 
recreation-
ally active 
young 
males 

6 g/day for 3 
weeks, then 3 
g/day for 2nd 3 
weeks of β-
ALA or 
placebo 
(dextrose) 
 

High 
intensity 
interval 
training 

Not measured Training 
increased 
EMGFT, no 
additive 
effect with 
β-ALA 
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Table 3: Continued 
 

Authors Population Supplemen-

tation 

Protocol 

Exercise 

Protocol 

Muscle 

Carnosine 

Concentrati

on Effects 

Perfor-

mance 

Results 

Smith et al., 
2009 [68] 

46 
recreation-
ally active 
young males 

6 g/day for 3 
weeks, then 
3 g/day for 
2nd 3 weeks 
of β-ALA or 
placebo 
(dextrose) 

High 
intensity 
interval 
training 

Not 
measured 

 ↑ 

VO2peak 
and time 
to reach 
VO2peak 
with β-
ALA 

 ↑ lean 

body 
mass with 
β-ALA 

 
 
 

Beta-Alanine and Muscular Fatigue 

 There are several factors that play a role in muscular fatigue with high-intensity 

exercise.  Some common theories include a disruption of the neuromuscular junction; a 

decrease in Ca2+ release and uptake leading to the inability of muscles to contract; a 

depletion of fuel stores such as ATP;  production of free radicals due to oxidative stress; 

and, the accumulation of metabolites such as H+ [48].  Carnosine has been implicated to 

play a role in each of these proposed mechanisms of fatigue, but is most commonly 

researched for its effect on metabolite accumulation as a buffer.   

The previously mentioned study by Derave et al. [4] also examined the effects of 

β-ALA supplementation on isokinetic and isometric fatigue.  The isokinetic protocol 

involved performing five sets of 30 maximal voluntary isokinetic knee extensions at 

180°/sec with one minute of recovery between sets on the right leg.  The isometric 
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protocol was performed on the left leg and involved a maximal static voluntary 

contraction (MVC) at 45°.  Once the MVC was determined, subjects performed 

isometric contractions at 45 % of the MVC for as long as possible.  Results indicated 

that carnosine loading significantly improved the latter stages of exercise (sets four and 

five of the isokinetic test).  The researchers noted that the observed response with β-

ALA supplementation had similar results as muscle creatine loading on muscle fatigue 

[76].  The authors also suggested the increase in carnosine attenuated fatigue by not only 

its buffering capacities, but also by its ability to improve myofibrilar Ca2+ sensitivity.  

Neuromuscular fatigue is defined as an increase in electrical activity of a 

working muscle over time [77-79].  The increase in electrical activity is observed by the 

increase in EMG amplitude and is indicative of the recruitment of more motor units 

and/or the increase in firing rate of the active motor units in order to attempt and sustain 

the given activity [79].  The accumulation of H+ ions is one possible explanation for this 

EMG response.  Other possible explanations include depleted energy stores and 

impaired regulation of muscle cations [12, 80].  deVries and coworkers [77] developed a 

protocol to assess neuromuscular fatigue threshold.   It was termed the PWCFT and 

examines the relationship between EMG amplitude and fatigue during cycle ergometry. 

This specifically measures the power output at the point of neuromuscular fatigue [15].  

Subsequent studies have shown relationships between PWCFT and VT as well [79, 81].  

Since it has been established in previous research that β-ALA supplementation 

has enhanced buffering capabilities during exercise by the subsequent increase in muscle 

carnosine content  [2, 4, 5, 16, 42], it has been hypothesized that β-ALA 
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supplementation may delay fatigue [15]. Until recently, this had only been shown in 

trained and untrained men [5].   Stout and coworkers [15] examined the effects of 28 

days of β-ALA supplementation in women on PWCFT, VT, VO2max, and TTE during a 

cycle ergometry protocol. Subjects were assigned to supplement with either β-ALA or 

placebo (maltodextrin) in doses of 3.2 g daily for days one through seven and 6.4 g daily 

for days eight through 28. Subjects were tested prior to and following supplementation.  

Results showed β-ALA supplementation increased PWCFT by 12.6%, VT by 13.9% and 

time to exhaustion by 2.5%.   

Stout and colleagues [71] also recently examined the effects of three months of 

β-ALA supplementation on PWCFT in elderly men and women.  Participants 

supplemented with either 2.4 g β-ALA or placebo (microcrystalline cellulose) three 

times per day for the duration of the study. Results revealed that β-ALA supplementation 

increased physical working capacity in an elderly population by 28.5%. The researchers 

attributed these findings to an increase in muscle carnosine concentrations leading to an 

enhanced buffering capacity, although carnosine was not directly measured in this study 

[71].  The data related to by β-ALA and muscular fatigue show promise for 

improvements with supplementation, but still requires future research. 

Creatine Monohydrate 

Approximately 95% of the total creatine found in the body is located in skeletal 

muscles, of which 40% is free creatine and 60% is phosphorylated creatine [82]. 

Creatine has several roles in the body during exercise, with one of the most important 

being as an energy source for high-intensity exercise bouts. Performances that require 
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immediate energy (such as maximal sprints) utilize high energy phosphate, ATP and PCr 

that are stored in the muscles. The reversible reaction in which this energy is released is: 

PCr + ADP  creatine kinase  ATP + creatine [83]. Creatine supplementation 

enhances the initial stores and availability of PCr and therefore, theoretically would 

enhance mechanisms of the phosphagen system used in high-intensity exercise and 

improve the shuttling of high-energy phosphates in the creatine phosphate shuttle that 

may potentially improve anaerobic and aerobic capacity [84, 85].  

During short duration high-intensity exercise, ATP is rapidly consumed to 

provide energy for the given activity. In order to continue at the same intensity, the body 

must quickly resynthesize ATP from its byproducts. At maximal intensities, this is 

primarily achieved by anaerobic degradation of PCr and glycogen. The main function of 

PCr breakdown in this case is to act as an initial buffer and delay the reliance on 

glycogenolysis [76]. The decrease in maximal force production has been linked to PCr 

stores in a direct relationship [86]. Creatine supplementation in doses of 20-30 g/day 

have shown to increase skeletal creatine content by about 20% where 20-30% of this is 

as PCr [87]. Creatine supplementation also shows to speed the PCr resynthesis within 

the first minute of recovery from intense muscular activity [88].  

Creatine supplementation has been extensively studied and is known to have 

ergogenic properties in power and strength athletes, with recent studies showing 

supplementation resulting in increases in muscular strength, anaerobic power, and body 

mass [10, 76, 89, 90]. In fact, the majority of long term training studies with creatine 

suggests an ergogenic effect with supplementation in a variety of populations including 
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trained adolescents, adults and the elderly [17]. For example, Kreider and colleagues 

[91] examined the effects of 28 days of creatine supplementation during training for 

college football players. Subjects supplemented their diet with either a carbohydrate 

electrolyte placebo or this same supplement containing 15.75 g/day creatine 

monohydrate for 28 days while engaged in resistance-training and agility exercises. The 

researchers reported that the group supplementing with creatine had greater gains in fat 

free mass, bench press lifting volume and repetitive sprint performance on a cycle 

ergometer compared to the placebo [91].  

Creatine supplementation has several proposed physiological mechanisms of 

action. It increases the PCr concentrations in the skeletal muscle, which is used during 

recovery to rephosphorylate ADP back into ATP via the creatine kinase (CK) reaction 

[10, 92-95]. Creatine can also improve the capacity for high-energy phosphate diffusion 

between the myosin heads and mitochondria, which aids in the binding during the cross-

bridge cycle [10, 92, 96, 97]. Another function of creatine supplementation is its action 

as a buffer against the increased acidosis during exercise. Creatine uses the hydrogen 

ions during the CK reaction and rephosphorylation of ADP to ATP to improve cellular 

homeostasis [92, 96]. A final mechanism for creatine is to increase the rate of glycolysis 

to raise the production of ATP. Declining levels of PCr increases the need for 

rephosphorylation, thus stimulating phosphofructokinase (PFK), which is the rate 

limiting enzyme for glycolysis. Therefore, supplementation increases the PCr levels and 

prevents the stimulation of PFK [92, 96]. 



38 
 

 

When PCr levels are elevated, it has been shown to improve PCr resynthesis 

during exercise recovery, thus improving successive exercise bouts [76, 88, 98-100]. 

Greenhaff and colleagues examined the effects of creatine supplementation on muscle 

PCr resynthesis after an electrical stimulation of the muscle to deplete PCr. Participants 

underwent electrical stimulation of the thigh muscles with blood occluded to the limb, 

which has been shown to degrade PCr stores. They then had muscle biopsies at 20, 60 

and 120 seconds after stimulation. The participants supplemented with 20 g daily of 

creatine monohydrate before retuning to the lab for the post-supplementation testing. 

Their results indicated that for the participants with increased creatine uptake from 

supplementation, there was also accelerated rates of PCr resynthesis after 60 seconds of 

recovery [88]. Another study examined the effects of creatine supplementation on 

multiple six second running sprints with 30 seconds rest. They found supplementation to 

significantly improve sprints four through six in regards to work capacity [98].  The 

authors of this study suggested that due to supplementation, the PCr levels were at a 

higher level, thus delaying complete depletion during exercise. PCr resynthesis during 

exercise recovery is somewhat aided by creatine kinase (CK), which would link 

oxidative ATP production with PCr resynthesis [101-103]. Therefore due to their 

necessity in maintaining CK equilibrium, the factors that influence this resynthesis rate 

include free ATP, SDP, H+ and creatine concentrations [104]. 

There are conflicting results regarding the acute effects of creatine monohydrate. 

Some studies do not show the same effects as previously described. Green et al.  

examined the effects of creatine supplementation on consecutive upper and lower body 
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Wingate tests with two minutes of recovery between tests. Participants supplemented 

with either 20 g daily of creatine or a placebo of sucrose and maltodextrin for six days. 

They observed no difference in mean power between pre- and post-testing during any of 

the Wingates for either group, therefore suggesting no benefit from the creatine 

supplementation. There was also no difference seen for peak power between the groups 

[105].  

An earlier study also sought the effects of creatine monohydrate supplementation 

on muscular power and strength in weight trained male subjects. They again looked at 

anaerobic performance measures with the Wingate test. Participants supplemented for 28 

days, but performed the Wingate test at baseline, day 14 and day 28. After day 14, there 

was already a significant increase in total anaerobic work for the Wingate test in the 

creatine group compared to a glucose placebo [99]. 

 Creatine and Beta-Alanine Supplementation 

Recently, creatine supplementation has been shown to increase skeletal muscle 

carnosine levels in 25-week old mice. Derave and colleagues [106] examined the 

relationship between creatine supplementation and histidine-containing dipeptide 

(carnosine and anserine) concentrations as well as the contribution to contractile fatigue 

and recovery from muscle contractions. The mice received a dose of 2% creatine in their 

food pellets for 15 weeks, which resulted in an 88% increase in carnosine concentration 

compared to the age-matched controls. They proposed two explanations for this increase. 

First, there could be an increased level of β-ALA already in circulation. Second, creatine 

could play a role in suppressing the degradation of carnosine by acting as an antioxidant. 
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The present study also showed attenuation of fatigue with creatine supplementation. 

They suggested this is due to the increase in carnosine resulting from the 

supplementation causing an increase in the Ca2+ sensitivity in the muscle in addition to 

the buffering capabilities. 

More recently, studies have examined the effects of supplementing the diet with 

creatine monohydrate and β-ALA on exercise performance and training adaptations. 

Since β-ALA has been shown to have buffering capabilities in skeletal muscle, the 

addition of creatine may increase the ergogenic benefit by potentially withstanding the 

fatigue of high-intensity anaerobic exercise bouts.  

A study by Hoffman and colleagues [18] used male power athletes and 

supplemented with creatine or a combination of both β-ALA and creatine. The 

supplementation doses were 10.5 g daily of creatine monohydrate; 10.5 g daily of 

creatine monohydrate in combination with 3.2 g daily of β-ALA; or 10.5 g daily of 

dextrose as a placebo. In addition to supplementation, subjects were also involved in a 

ten week detailed resistance training program with workouts four days a week. The 

researchers reported significant improvements in body composition after ten weeks of 

the combined supplementation of β-ALA and creatine in conjunction with resistance 

training compared to creatine alone or placebo. Additionally, they showed the addition 

of β-ALA to creatine was able to reduce fatigue rates during training compared to 

creatine alone. These findings suggest that there may be additive effects of 

supplementation of creatine and β-ALA [18]. 
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Stout and coworkers [14] examined the effects of 28 days of β-ALA and creatine 

supplementation on neuromuscular fatigue and PWCFT. In the study, 51 men 

supplemented their diet with either 34 g of a dextrose placebo; 5.25 g of creatine with 34 

g of dextrose; 1.6 g of β-ALA with 34 g of dextrose; or, 1.6 g of β-ALA with 5.25 g of 

creatine and 34 g of dextrose. Subjects ingested this dose four times a day for the first 

six days, and then only twice a day for the remainder of the study. Results revealed that 

PWCFT increased in the β-ALA group, with no additive effect of creatine. The 

researchers suggested that 28 days of β-ALA supplementation was able to delay 

neuromuscular fatigue during incremental cycling, but this was independent of the 

inclusion of creatine [14]. 

A study by Zoeller and associates [9], examined the effects of four weeks of 

creatine and β-ALA supplementation on VO2peak, LT, VT and TTE. This study had four 

supplementation groups including a placebo of 34 g dextrose; 5.25 g creatine 

monohydrate plus 34 g dextrose; 1.6 g β-ALA plus 34 g dextrose; and, a combination of 

5.35 g creatine monohydrate and 1.6 g β-ALA plus 34 g dextrose. Subjects ingested 

these supplements four times a day for six days and then twice a day for the duration of 

the study. The combined creatine and β-ALA supplementation resulted in significant 

increases in five of the eight cardiorespiratory endurance variables tested (VO2 and 

power output at LT and VT, and percent VO2peak at VT). Individually, results revealed 

improvements in power output at VT and total TTE for creatine alone, and 

improvements in power output at LT for β-ALA alone. However, no significant effects 

were noted between groups. Therefore, it was concluded that the combination of creatine 
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and β-ALA supplementation may potentially be beneficial in improving submaximal 

performance when measured at the lactate and ventilatory thresholds [9]. Collectively, 

these findings suggest that there may be benefit of supplementing the diet with creatine 

and β-ALA, but it is unclear whether these benefits are independent or additive in nature.  

Summary of Beta-Alanine Supplementation 

 The use of β-ALA in recent research has shown to increase muscle carnosine 

concentrations in as short as two weeks, with increasing levels with longer 

supplementation periods [2, 65]. However, although there is strong support that β-ALA 

supplementation during training possesses ergogenic value, the specific mechanism of 

action and ergogenic value remains to be fully examined.  Some studies show that β-

ALA supplementation can improve high intensity exercise capacity, delay VT and/or 

neuromuscular fatigue, promoted greater gains in lean body mass during training, and 

increase VO2peak or time to exhaustion.  On the other hand, other studies show limited 

effects of β-ALA supplementation on exercise performance.  The combination of β-ALA 

and creatine monohydrate supplementation is still a new field of research with 

conflicting results.  Additive effects were shown in one study for improving fatigue rates 

with a resistance training program as well as for increasing lean body mass [18]. 

Combined supplementation was also shown to improve VT and LT during incremental 

cycle exercise [9]. Other studies failed to show additive effects for variables such as 

anaerobic power [18] and PWCFT [14].  However, dosing patterns differed in these 

studies so it is difficult to draw definitive conclusions. 

 



43 
 

 

Future Directions 

Future research is needed to examine the effects of β-ALA supplementation on 

muscle carnosine concentrations as well as the physiological effects of increasing muscle 

carnosine.  In this regard, more research should be conducted to understand the effects of 

β-ALA supplementation and corresponding increases in muscle carnosine concentrations 

on muscle buffering capacity, antioxidant properties, enzyme regulation, calcium 

regulation, exercise capacity, performance outcomes, and neuromuscular fatigue.  An 

important direction for future research is the determination of an optimal dosing strategy 

of β-ALA in order to optimize increases in muscle carnosine concentrations, 

physiological adaptations, and performance. The current literature shows many 

variations in the amount and length of β-ALA supplementation; therefore, a standard 

strategy is still pending.  Studies should also examine whether different types of exercise 

training may influence muscle carnosine to a greater degree in order to determine the 

most effective method of raising carnosine levels.  Determining the correct combination 

of training and supplementation dose may be especially important in the athletic 

populations.  It will also be important to study the long-term safety and efficacy of β-

ALA supplementation.   

Further research is clearly warranted to assess the efficacy of β-ALA and other 

ergogenic nutrients such as creatine. Creatine loading significantly increases muscle 

phosphagen levels within a few days whereas it has been determined that β-ALA 

supplementation takes several weeks to increase muscle carnosine concentrations.  

Therefore, future research should examine effective dosing strategies to optimize the 



44 
 

 

benefits of both supplements. It is also possible that different types of athletes may 

benefit from both β-ALA and creatine supplementation.  Therefore, studies need to be 

conducted to examine the potential ergogenic value in trained athletes with 

supplementation.  In addition, studies examining the effects on exercise recovery may be 

useful since β-ALA and creatine supplementation has been reported to delay fatigue.  

The majority of current research has focused on the effects in young men, with the 

exception of the studies by Stout and associates [15, 71] which examined the effects in 

women and the elderly.  Nevertheless, additional research is needed to examine whether 

age and/or gender may influence results.  Another area that should be investigated is 

supplementing the diet with β-ALA may provide some therapeutic benefit for patients 

with various neuromuscular and/or muscle wasting diseases as has been reported with 

creatine supplementation.  Finally, additional research should examine the possible 

synergistic effects of β-ALA with other nutrients. 

Experimental Techniques 

Wingate Anaerobic Test 

 The Wingate anaerobic test is a well established and validated measure of 

anaerobic capacity. Results from this test have been correlated with metabolic variables 

such as oxygen debt and lactate concentration [107].  The Wingate is also highly 

correlated with the proportion of type IIa and IIb muscle fibers [108]. This test is 

typically 30 seconds in duration, which has been correlated with anaerobic work 

capacity in well trained sprint and endurance athletes [109]. Several previous studies 

have utilized a protocol with repeated Wingate tests to examine recovery and anaerobic 
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capacity. The test has shown to be a valid measure of anaerobic capacity compared to 

several anaerobic performances in the field and laboratory, yielding an r value of 0.75 or 

more in most cases [110].  

 Multiple sprints are often used to measure fatigue and recovery rates. Short term 

recovery is measured with a protocol of multiple Wingate tests with minimal rest 

between tests. A previous study utilized two Wingate tests with three minutes of rest 

between tests, which served as the model for the present study protocol [111]. Results 

from this study showed this protocol was able to inducing fatigue. Subjects had a 

decreased power output of 60-73% between tests and a decrease in total work of 23-25% 

between sprints. In addition, blood lactate increased six fold [111].  

Biochemistry Methods 

 Muscle carnosine will be measured in the present study to show the effects of 

supplementation. Most studies have shown an increase with supplementation as 

explained earlier, however to ensure the efficacy of the supplementation protocol as well 

as to examine the difference between types of supplementation, the carnosine 

concentration will be directly measured from muscle samples. It is determined using 

high-performance liquid chromatography (HPLC). The method developed by Dunnett 

and Harris [112] explained in the subsequent chapter has been utilized by several 

research groups thereafter to measure muscle carnosine concentrations [2, 5].  

 Muscle phosphagens (PCr and creatine) will also be measured in the current 

study in order to determine the effects of the supplementation protocol. The dose of 

creatine supplementation to be used in the present study (20 g/day) has been shown 
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previously to increase ATP, PCr and creatine levels, however in order to ensure the 

efficacy of the current supplementation, these variables will be directly measured from 

muscle biopsy samples using techniques utilized by previous researchers [113-115].   

Summary 

As it has been discussed, β-ALA supplementation is a relatively recent and 

growing area of research. It carries beneficial effects with high intensity exercise 

including anaerobic sprints and resistance training, especially when combined with 

creatine monohydrate. Future research will help to further explain the exact effects of β-

ALA and muscle carnosine on the buffering capabilities as well as improvement in 

athletic performance under a variety of conditions in both men and women. Most of the 

research has focused on the effects in young males, with the exception of the studies by 

Stout et al. [15, 71], which examined the effects in females. This can potentially open the 

door to more research of the effects in females. Another area that can be further 

examined is the potential difference in effects with varying baseline physical activity 

status of the participants. The future of β-ALA may potentially open the door to further 

improvements in high intensity exercise and sport performance in a wide range of 

individuals. 
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CHAPTER III 

METHODS 

Participants 

Thirty-two apparently healthy, moderately active females between the ages of 18 

and 35 years were recruited to participate in this study.  They were recreationally active 

and had not been involved in an anaerobic exercise training program for at least the last 

three months. They were asked to not change their current diet or physical activity level 

during the course of the study, to consume 8 glasses of water per day, and refrain from 

any caffeine or other nutritional supplements from the 24 hours prior to the start of the 

study and throughout the duration of their participation. Subjects were not allowed to 

participate if they had taken ergogenic levels of nutritional supplements that may have 

affected muscle mass or anaerobic exercise capacity (i.e. creatine, beta alanine, 

ergogenic levels of caffeine, HMB, etc.), anabolic/catabolic hormone levels (i.e. 

androstenedione, DHEA, etc.), or weight loss (i.e. ephedra, thermogenics, etc.) for at 

least three months prior to the start of the study. Subjects meeting entrance criteria 

signed informed consent statements in compliance with the Human Subjects Guidelines 

of the Texas A&M University and the American College of Sports Medicine.  

Study Site 

 All testing took place in either the Exercise and Sport Nutrition Laboratory or the 

Human Countermeasures Laboratory in the Department of Health and Kinesiology at 

Texas A&M University in College Station, Texas.  
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Experimental Design 

 Table 4 shows the research design for the participants in this study. They were 

randomly assigned to one of four supplementation groups in a double-blind manner. 

They followed the schedule described in the table on each of the testing days. Figure 2 

shows the time course for each muscle biopsy (days 0, 6 and 27) and full testing session 

on days 1, 7 and 28. All participants underwent the same procedures, regardless of their 

assigned supplementation group.  

 

Table 4: Experimental schedule  

FAM  
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Figure 2: Testing session timeline – days 0, 7 and 28 
 

 

Independent and Dependent Variables  

The independent variable throughout the study is the supplementation group of 

either β-ALA only, creatine only, β-ALA combined with creatine, or placebo.   

The dependent variables measured include: muscle carnosine concentration,  

creatine and PCr concentration, whole body fat mass, whole body fat free mass, TBW, 

VO2max, blood lactate, VT, LT, and anaerobic power measures (PP, MP, rate of fatigue 

and TW) from each of the Wingate exercise bouts.  
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Entry and Familiarization Session 

Participants expressing interest in the study were interviewed to determine if they 

were qualified to participate. Participants meeting eligibility criteria attended a 

familiarization session with the study investigator. During this session, participants 

signed informed consent statements and completed activity and medical histories. 

Participants were then familiarized to the study protocol by verbal and written 

explanation outlining the study design and requirements. This included the 

supplementation and exercise protocol and an introduction to the tests and equipment 

used. They were weighed using a standing scale and practiced the exercise tests that 

were part of each of their testing sessions. They were asked to refrain from any vigorous 

physical activity during the non-testing days of the study, but encouraged to continue 

with their regular exercise routine. They were given guidelines to follow regarding 

appropriate physical activity to engage in for the duration of the study. They remained 

recreationally active and continued their normal activity without beginning any new 

exercise or diet regime.   

Pre-Supplementation / Baseline Testing 

Prior to the pre-supplementation and baseline testing, participants were asked to 

abstain from exercise for 24 hours and fast for at least eight hours. They were asked to 

record their exercise activity and food intake for the five days prior to testing. 

Participants reported to the Human Countermeasures Lab the day before exercise testing 

to receive a percutaneous muscle biopsy obtained from the vastus lateralis muscle of the 

right leg using standard procedures for the Bergstrom method [104]. Muscle samples 
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were immediately frozen at -80°C until assayed. Muscle creatine, PCr and carnosine 

concentrations were determined from samples.  

The morning after the biopsy, participants were asked to fast for at least eight 

hours before reporting to the Exercise and Sport Nutrition Lab where they will be 

provided with a standard meal replacement drink four hours prior to the start of testing to 

control for nutrition for a total of 12 hours prior to testing.  Participants then reported 

back to the Exercise and Sport Nutrition Lab for the initial exercise testing. They were 

first be weighed using a free standing scale and had body composition determined by a 

Dual Energy X-ray Absorptiometer (DEXA) (Discovery QDR Series, Hologic Inc., 

Waltham, MA). This involved the participant lying on their back on the exam table for 

approximately six minutes. A low dose x-ray radiation scanned the entire body to 

determine the amount of fat mass, lean mass and bone density. The participants then had 

their total body water measured using bioelectrical impedance analysis.  

Following resting measures, the participant was prepped for exercise testing. 

They first performed a maximal graded exercise test (GXT) using an incremental 

protocol on the Lode Excalibur Sport 925900 cycle ergometer (Lode BV, Groningen, 

The Netherlands) with metabolic measurements recorded on the ParvoMedics True One 

2400 Metabolic System (ParvoMedics, Sandy, Utah). The protocol began at 50 W while 

maintaining 70 rpm.  The intensity increased by 25 W every three minutes until a 

pedaling rate of 70 rpm could no longer be maintained. During this test, the participant 

wore a Polar heart rate monitor. Heart rate at each stage was recorded. This test was used 

to determine their VO2max, VT and LT. Blood samples were taken from the fingertips in 
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the final minute of each stage of exercise and 5 minutes into recovery to determine the 

LT. Lactate was determined using a Lactate Scout (Sports Resource Group, USA) 

handheld analysis device. The LT was defined as the point where the blood lactate 

concentration rises more than 1.0 mM/l from the previous recorded value. LT was 

reported as a percent of the VO2max [83].  The onset of blood lactate accumulation 

(OBLA) was also noted as a secondary method of determining LT. This is the point in 

which blood lactate concentrations are equal to or greater than 4.0 mM [83]. Ventilatory 

threshold was defined as the point during the incremental exercise test where pulmonary 

ventilation increased at a disproportional rate with VO2. This was also recorded as a 

percent of VO2max [83].   

The participants then rested passively for 30 minutes upon completion of the 

maximal test. Following recovery, the multiple sprints protocol was performed to assess 

anaerobic power variables such as PP, MP, TW and rate of fatigue. This involved two 

Wingate Anaerobic Tests with a 3 minute passive rest between tests. The Wingate is a 

30 second sprint on a cycle ergometer to measure anaerobic capacity. This test was also 

performed on the Lode Excalibur Sport 925900 cycle ergometer (Lode BV, Groningen, 

The Netherlands) at a standardized work rate of 7.5 J/kg/rev. The seat position was 

standardized between trials. Data was collected and downloaded using the Lode 

Ergometry Manager Expansion Module Software. Following a short five minute warm 

up period, the first test began and the participant was asked to pedal as fast as possible 

for the entire 30 seconds. Pedal revolutions were recorded in five second intervals to 

determine work performed, which was then used to determine power for the entire 30 
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seconds as well as each five second interval.  The participant performed two 30 second 

Wingate tests with three minutes of passive rest between tests. They also had 400-500 μl 

of blood taken before the start of Wingate 1, immediately post Wingate 1, immediately 

after Wingate 2, again five minutes after the after the 2nd Wingate. This was used to 

measure lactate concentrations.   

Supplementation Protocol 

The supplementation protocol was modified from that used by Hoffman et al. in 

2006[18] and Zoeller et al. in 2007[9]. Participants were randomly assigned to one of 

four supplementation groups. The first group (BA, n=8) received β-ALA alone in a dose 

of 0.1g/kg body weight per day for the 28 days with 0.3 g/kg/day of dextrose for week 1 

and 0.1 g/kg/day of dextrose for weeks 2-4, the second group (BAC, n=9) consumed a 

combined β-ALA and creatine supplementation in the dose of 0.1 g/kg body weight per 

day of β-ALA with 0.3 g/kg/day of creatine for week 1 and 0.1 g/kg/day of creatine for 

weeks 2-4, and 0.3 g/kg/day of dextrose for week 1 and 0.1 g/kg/day dextrose for weeks 

2-4, the third group (CRE, n=8) received creatine alone in a dose of 0.3 g/k/day of 

creatine and dextrose for week 1 and 0.1 g/kg/day for weeks 2-4 with 0.1 g/kg/day 

maltodextrin for the 28 days, the final group (PLA, n=9) was given 0.1 g/kg/day of 

maltodextrin for all 28 days, and 0.3 g/kg/day of dextrose for week 1 and 0.1 g/kg/day 

for weeks 2-4 as a placebo. The β-ALA dose and matched maltodextrin placebo was 

rounded to the nearest 800mg amount to correspond to the supplement capsules. The 

table below explains the supplementation protocol. Subjects were provided enough of 

their designated supplement at each testing session. They were asked to take a 
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supplement dose four times a day for the entire 28 days as close to the times of 8:00am, 

12:00pm, 4:00pm and 8:00pm as possible. The β-ALA supplement was in the form of 

capsules identical in appearance, and was taken with water. The creatine was a powder 

that was mixed with water for consumption. They returned the empty supplement 

containers to ensure compliance as well as completed a daily supplementation log. At 

this time, they also reported any side effects or problems with the supplementation, if 

applicable. Table 5 shows the dosing strategy for each of the groups. 

 

Table 5: Dosing strategy for each supplement group 

Supplement 

Group 

Dosing Schedule Total Daily Dose 

β-ALA (BA) 

n=8 

4 x 0.025 g/kg – β-ALA 
4 x 5 g - Dextrose 

0.1 g/kg/day β-ALA 
0.3 g/kg/day Dextrose (wk 1) 

0.1 g/kg/day Dextrose (wks 2-4) 
β-ALA + 

Creatine (BAC) 

n=9 

4 x 0.025 g/kg – β-ALA 
4 x 0.75 g/kg – Creatine 

(wk 1) 
4 x 0.025 g/kg –

Creatine (wks 2-4) 
4 x 5 g - Dextrose 

0.1 g/kg/day–β-ALA 
0.3 g/kg/day Creatine (wk 1) 

0.1 g/kg/day Creatine (wks 2-4) 
0.3 g/kg/day Dextrose (wk 1) 

0.1 g/kg/day Dextrose (wks 2-4) 

Creatine (CRE) 

n=8 

4 x 0.75 g/kg – Creatine 
(wk 1) 

4 x 0.025 g/kg –
Creatine (wks 2-4) 
4 x 0.025 g/kg – 

Maltodextrin 
4 x 5 g – Dextrose 

0.1 g/kg/day Maltodextrin 
0.3 g/kg/day Creatine (wk 1) 

0.1 g/kg/day Creatine (wks 2-4) 
0.3 g/kg/day Dextrose (wk 1) 

0.1 g/kg/day Dextrose (wks 2-4) 

Placebo (PLA) 

n=7 

4 x 0.025 g/kg – 
Maltodextrin 

4 x 5  g – Dextrose  

0.1 g/kg/day Maltodextrin 
0.3 g/kg/day Dextrose (wk 1) 

0.1 g/kg/day Dextrose (wks 2-4) 
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Week 1 and Post Supplementation Testing 

Participants returned to the lab for testing at one week (day 7) and on day 28 at 

the completion of the study at the same time of day as the previous testing sessions. 

Testing followed the same procedures as the baseline testing days. Participants came in 

fasted for at least eight hours before having a muscle biopsy on alternating legs. They 

then consumed the standard meal replacement drink at four hours prior to testing. They 

again recorded their dietary intake for the previous 5 days.  The testing session began 

with resting measures of body weight, body composition on the DEXA and total body 

water with the BIA.  

Following resting measures, the participants performed the same exercise tests as 

before. They began with a maximal GXT on the cycle ergometer using an incremental 

protocol to determine VO2max, VT and LT. Blood samples were taken from their 

fingertips each minute of testing to determine lactate levels. Metabolic data was 

collected in order to determine VO2max and VT values.  

Next, the participant passively rested for 30 minutes before performing two 

subsequent Wingate tests with three minutes of passive rest between. They also had 

blood taken at the same time points to be analyzed for lactate.  

Muscle Biopsies 

Three resting muscle biopsies were taken on the majority of the subjects, one 

during their baseline testing on day 0, another on day 6, and the final at the start of the 

post-supplementation testing session on day 27.  
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In this procedure, a small piece of muscle less than the size of a pea (60-100 

milligrams) was taken from the large outside (lateral) muscle of the thigh (vastus 

lateralis).  The actual site was midway between the patella and the greater trochanter, at 

the anterior border of the iliotibial band.  The subjects were asked to contract their thigh 

to assist in identifying this location.  The muscle biopsy procedure was done with a 

special needle designed for obtaining a small piece of muscle.  In order to perform the 

biopsy procedure, the subject was asked to lie in a supine (on back) position for 

sampling the thigh on a padded examination table.  When the vastus lateralis was 

biopsied, the leg remained straight and relaxed.  This position releases the tightness in 

the muscles and permits optimal relaxation.   

After the area of the skin above the muscle to be biopsied was identified, it was 

shaved if necessary and then the skin area was cleaned by iodine sterilization. After 

cleaning, the skin area over the muscle was numbed with the anesthetic xylocaine.  This 

was done by injecting a small amount (3 ml) of the anesthetic approximately 1.5 cm 

under the skin and 1.5 cm above the muscle fascia.  During this part of the procedure, 

the subject probably felt a slight burning sensation as the anesthetic entered the skin and 

the area under the skin just above the muscle.  Following injection of the anesthetic, the 

injected biopsy area on the skin was further cleaned by application of a fluid antiseptic 

(Betadine) and the cleansed area was enlarged by swabbing the antiseptic several 

centimeters around the anesthetic injection site in a circular fashion.  When the injected 

area over the muscle was numb (after five to ten minutes), a small incision (about the 

width of the end of the fingernail on your little finger, approximately 1 cm or a little over 
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one quarter inch) was made with the pointed end of a #11 scalpel.  The incision was 

made down through the skin and slightly through the covering (fascia) of the muscle.  

Since the area had been numbed, the subject should not have felt any pain (there are no 

sensory pain endings in the muscle covering or muscle itself).  Because the sensory 

endings in the skin had been numbed, the subject was likely to experience only slight 

pressure against the skin.   

After this preparation, the subject was instructed to relax the muscle to be 

biopsied and try to relax all over. The biopsy needle was then slipped through the small 

opening in the muscle's skin and fascia covering prepared by the incision.  Following a 

brief suction applied to the upper outer-end of the biopsy needle, a small piece of muscle 

was cut off, and this piece was removed as the needle was withdrawn. This takes 5-15 

seconds.  During insertion of the needle into the muscle and cutting the small piece from 

it, the subject may have experienced some moderate pressure, but usually no pain.  In 

addition slight localized cramping followed by brief and minor aching may have been 

experienced by the subject, but these symptoms usually went away when the needle was 

withdrawn.  Frequently, subjects felt little or no sensation at all.  It must be remembered, 

however, that skeletal muscle tissue is electrically excitable and that when an object is 

inserted it responds by contracting or shortening, thus the cramping and mild aching.   

After the needle was withdrawn, pressure was applied to the site of the incision 

to prevent any unwarranted bleeding (there is usually little bleeding). The muscle sample 

was then be placed into a small, pre-labeled storage container and rapidly frozen in 

liquid nitrogen and subsequently stored in a freezer at -80°C for future analysis.  
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 The subject was continuously informed of the specific procedures during the 

progress of the biopsy.  The incision was then closed with a band-aid applied in a special 

way.  Written instructions for post-biopsy care were given to each subject.  The subject 

was instructed to leave the pressure bandages in place for the remainder of the day and 

report back to the laboratory within 24 hours. At this time, the incision will be inspected, 

and new Band-Aid applied for three days.  The subject was advised against all vigorous 

activity during the first 48 hours post-biopsy and not to shower or get the incision wet 

during this time period.   These suggestions should minimize pain and unwarranted 

bleeding.  If localized post-biopsy pain should occur, it was advised to apply ice to the 

area by means of a plastic bag while keeping the bandages intact.  Taking a mild non-

prescription pain medication such as Tylenol, providing the subject can tolerate this 

medication, was also recommended for pain.  Medications such as aspirin, Nuprin, 

Bufferin, or Advil were not recommended since they may contribute to bleeding and/or 

bruising during the post-biopsy period.  After the biopsy, the muscle was likely to be 

moderately sore for about 24 hours, similar to muscle soreness following unusually 

vigorous exercise or a muscle injury especially if muscle is compressed against a bone 

(e.g., "charley horse").  Subjects would naturally feel nervous before this procedure and 

were probably apprehensive of any pain or discomfort associated with it.   

Complications accompanying this procedure are rare.  The primary concern 

would be prolonged bleeding which could produce a bruise in the area.  This would 

extend the period of muscle soreness, but is adequately treated with rest, ice, 

compression, and elevation.  Although the muscle selected for biopsying (vastus 
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lateralis) has no major blood vessels or nerves in the areas where the biopsy needle will 

be inserted, there is the rare occurrence of compressing or cutting small nerve branches 

which can sometimes cause temporary tingling and numbness in the skin.  These 

responses, when they have occurred, have dissipated in a few days or weeks.  In all these 

procedures, care is taken to employ special precautions to avoid infection, including the 

"universal precautions" for the handling of blood and infectious materials [104, 116-

121]. 

Lactate Analysis 

Blood lactate was analyzed at rest, at the end of each stage and at VO2max 

during the incremental cycle ergometer test. Blood lactate was taken prior to the 

Wingate protocol, immediately after Wingate 1, immediately after Wingate 2, and after 

five minutes of rest.  

The lactate was analyzed using a handheld Lactate Scout analyzer. At each time 

point, a technician punctured the top of the participant’s finger and collected about 0.5-

0.7 μl of blood that was directly placed onto a lactate strip and analyzed by the Lactate 

Scout.  

Biochemical Analysis for Muscle Creatine and Phosphocreatine 

The following procedures were followed to determine muscle creatine and PCr 

levels based on previous studies [113-115]. Once the biopsy was taken, it was frozen in 

liquid nitrogen and stored at -80°C until analysis. The sample was then freeze dried and 

crushed between tweezers and repeatedly rubbed together to pulverize the muscle into a 

fine powder. It was observed to ensure all visible connective tissue was removed. Five to 
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10mg of powder will be weighed out into a 1.5 mL polyethylene tube, for perchloric acid 

extraction. Muscle metabolites will be extracted using 0.5 M perchloric acid containing 

1mM EDTA at a ratio of 800 μL to every 10mg of powder for five minutes on ice while 

periodically vortexing. They were then centrifuged for 5 minutes at 7000 rpm and 

neutralized using 2M KHCO3 for five minutes while periodically vortexing. After a final 

15 minute centrifuge at 7000 rpm, the supernatant will be stored in a 1.5 mL 

polyethylene tube at -50°C.  

 The PCr assays were done in the presence of 50 mM Tris buffer, pH 7.4; 1 mM 

magnesium chloride, 0.5 mM dithiothreitol, 100 μM glucose, 50 μM NADP+, 350 U/mL 

glucose-6-phosphate dehydrogenase. The assay was carried out in 13 x 75 glass screw-

top tubes using 10 μL of sample to 1mL of reagent. The reactant solution was vortexed 

and read using a fluorometer with an excitation wavelength of 360 nm and an emission 

wavelength of 460 nm. 25 mL of hexokinase solution was added to 1 mL of reagent and 

stabilized. For PCr, 20 μL of CK/SDP solution was added to the tubes, vortexed and 

incubated in the dark at room temperature for 60 minutes when samples were read again. 

All results were expressed as mmol/kg dry mass (dm). 

 For the creatine analysis, samples were assayed in the presence of 50 mM 

imidazole buffer, pH 7.4; 5 mM magnesium chloride; 30 mM potassium chloride; 25 μM 

phosphoenolpyruvate; 200 μM ATP; 45 μM NADH; 1250 U/m: lactate dehydrogenase; 

2000 U/mL pyruvate kinase. 5 mg CK (25 u/mg) was added to 1 mL of the above buffer 

and stabilized using 10% bovine serum albumin. Assay was carried out in 13 x 75 glass 

screw-top tubes using 10 μL of sample in 1 mL of reagent. After the sample was added 
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to the reagent, the reactant solution was vortexed, incubated at room temperature in the 

dark for 15 minutes, and read in the fluorometer. Creatine kinase buffer solution (25 μL) 

was added to the sample, vortexed, and incubated at room temperature in the dark for 30 

minutes and read again on the fluorometer.  

Biochemical Analysis for Muscle Carnosine 

Muscle carnosine was analyzed using the HPLC procedures developed by 

Dunnett and Harris [112]. Chromatography was performed using a Thermo Scientific 

Hypersil ODS (150 mm x 4.6 mm ID) analytical column protected by a Hypersil ODS 

guard column. Solvents were filtered to 0.45 µm. Compounds were eluted using a 

solvent gradient at ambient temperature with the following mobile phases: LINE A: 

Solvent A:20 mM Phosphate buffer [(20 mM Na2HPO4 (2.84g/l) + 20 mM 

NaH2PO4.2H2O (3.12g/l)] , pH 6.8 – tetrahydrofuran (995:5  v/v); LINE B: Solvent B: 

20 mM Phosphate buffer, pH 6.8 – methanol - acetonitrile (500:350:150, v/v); LINE C: 

100% methanol; LINE D: 100% water; 2 litres 20 mM Na2HPO4 = 5.68g; 2 litres 20 mM 

NaH2PO4.2H2O = 6.24 g.  Table 6 shows the current method of chromatography at a 

flow rate of 0.8 ml∙min
-1. 

 

 

 

 

 

 



62 
 

 

Table 6: Current method of carnosine chromatography 

Time A B C D 

0-3 min 100%    
3-35 min linear change to 50% 50%   
35-39 min linear change to  100%   

39-39.5 min  100%   
39.5- 41 min linear change to  50% 50%  

41-43 min   100%  
43-45 min linear change to  50% 50%  
45-46 min linear change to  100%   
46-47 min linear change to 50% 50%   
47-49 min linear change to 100%    

50 min 100%    
 
 
 
For the utilization of HPLC to determine muscle carnosine concentrations, there 

needed to be an inclusion of an internal standard. This was used to compensate for 

variations in injection volume and derivitisation. Beta-alanine can be used as the internal 

standard with human and murine muscle since it runs in an area beyond carnosine, and 

these species do not contain beta-alanine. A solution of 100 uM of β-ALA was prepared. 

The target was 30.3 mg/l, 15.15 mg/500 ml or 7.58 mg/250 ml. The appropriate weight 

was measured in a flask. This was not exactly equal the target but the exact weight was 

known and recorded.  The beta-alanine was dissolved in the appropriate volume of 

water.  1.8 ml Flip top Eppendorf tubes were filled to 30 – 50 ml.  They were then 

bagged and frozen.  This served as the internal standard for the next 6-12 months. 

When running the carnosine analysis, the following solutions were added (in this 

order): 

63 ul extract or standard or 90 ul of either 
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7 ul β-ALA   or 10 ul of β-ALA 

70 ul OPA   or 100 ul OPA 

The same pipette was used for the β-ALA standard (suggest the 10 ul 

Finnpipette).  It was not important that the volume added is exactly 7 or 10 ul, only that 

the volume was always the same.  When plotting the standard curve, it was read off the 

areas and those of the internal beta-alanine standard and the plot AreaTau / AreaBal vs. 

concentration was completed.  Areas on sample chromatograms were divided by AreaBal 

generated from the internal standard.  By referring everything to the internal standard 

then variations in injection volume were compensated for. For plasma, carnosine can 

also be used as the internal standard. The extracts and standards were filtered through a 

0.2 µm centrifugal filter (Nanosep MS 0.2 µm, Pall Life Sciences). 

Statistics  

All data was analyzed using SPSS 16.0 software. A 4 x 3 (supplement x time) 

repeated measures multivariate analysis of variance (MANOVA) was used to analyze all 

muscle phosphagens, body composition, aerobic exercise variables, blood lactate related 

variables and VT. Baseline demographics were analyzed with a one-way analysis of 

variance (ANOVA). Total body water was analyzed using a 4 x 3 (supplement x time) 

repeated measures ANOVA. Muscle carnosine content was analyzed using a 4 x 2 

(supplement by time) repeated measures ANOVA. The anaerobic exercise variables 

were analyzed with a 4 x 3 x 2 (supplement x time x Wingate test) repeated measures 

MANOVA. If significant interactions or main effects existed, Tukey’s least significant 

difference post hoc analyses were performed. A significance level of 0.05 was accepted 
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for all analyses.  Cohen’s d calculations for effect size were performed on select 

variables with large mean differences, but non-significant results. Missing data for 

performance variables was treated using the previously recorded value. The sample 

mean was used to replace missing data for the muscle related variables. Delta values 

were calculated and analyzed on select variables by repeated measures ANOVAs to 

determine changes from baseline.  
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CHAPTER IV 

STUDY OUTCOME 

Introduction 

Early research with beta-alanine (β-ALA) supplementation has shown increases 

in muscle carnosine levels as early as two weeks, with greater increases as the duration 

of supplementation increases. The amount of carnosine elevation ranges from around 

34% after two weeks [1] to around 80% after ten weeks [2]. Recent studies have also 

sought to examine the relationship of β-ALA supplementation on exercise performance. 

The results have leaned towards a beneficial effect of β-ALA on body composition [68], 

anaerobic exercise markers such as ventilatory threshold [15], as well as blood lactate 

levels [9].  

The effects of creatine monohydrate have been extensively researched over 

recent years regarding the effects on anaerobic exercise performance. High intensity 

exercise bouts require a faster rate of ATP resynthesis, which is most quickly attained by 

breaking down phosphocreatine (PCr) [6, 7]. PCr is stored in limited amounts in skeletal 

muscle, however supplementation with creatine monohydrate has been shown to 

increase the muscle stores to assist in ATP resynthesis during high intensity exercise [8]. 

More recently, a new line of studies have examined the combined effects of 

creatine monohydrate and β-ALA supplementation on anaerobic exercise performance 

and muscle carnosine levels. Results have shown improvements in exercise performance 

variables such as VO2peak, lactate threshold and time to exhaustion with a combined 

supplementation strategy [9]. The acute effects of the combined supplementation has not 
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yet been examined for its affects on anaerobic performance, short term recovery or 

muscle carnosine concentrations. Creatine monohydrate is typically supplemented using 

a loading phase between five and seven days of a larger dose around 20 g/day followed 

by a maintenance phase of a smaller amount [10]. Since β-ALA supplementation is a 

relatively new line of research in regards to exercise performance, there has not been a 

standard supplementation strategy developed. Typically, the β-ALA dose ranges from 

3.2 g/day to 6.4 g/day for anywhere between two and ten weeks of continuous 

supplementation. Previous studies have tapered and/or increased the dose as the duration 

increased. The present study utilized a loading and maintenance phase dosing strategy 

for creatine monohydrate with an individualized dose of 0.1 g/kg body weight of β-ALA 

for four weeks. 

The purpose of this study is to examine the acute and chronic effects of β-ALA 

supplementation with and without creatine monohydrate on body composition, aerobic 

and anaerobic exercise performance, and muscle carnosine and phosphagen levels in 

college-aged recreationally active females.  

Methods 

The present study is a randomized, double-blind placebo controlled trial that 

recruited apparently healthy, moderately active females between the ages of 18 and 35 

years to participate in the study. Subjects were not allowed to participate if they had 

taken ergogenic levels of nutritional supplements that may have affected muscle mass or 

anaerobic exercise capacity (i.e. creatine, beta-alanine, ergogenic levels of nutritional 

caffeine, HMB, etc.) for at least three months prior to the start of the study. Subjects 
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meeting the entrance criteria signed informed consent statements in compliance with the 

Human Subjects Guidelines of Texas A&M University and the American College of 

Sports Medicine. Participants were randomly assigned to one of four supplementation 

groups following a familiarization session. 

Familiarization Session 

Prior to beginning the study, all participants met with the principal investigator to 

obtain information about the study and all testing procedures. They then signed informed 

consent statements and completed activity and medical histories. Participants were 

familiarized to the study protocol with verbal and written explanations of the study 

requirements. They were also weighed using a standing scaled and asked to perform a 

practice Wingate exercise test on the cycle ergometer. They were given guidelines to 

follow for physical activity during their involvements in the study and scheduled for all 

subsequent testing sessions.  

Resting and Exercise Testing 

 Resting and exercise testing was performed at baseline prior to any 

supplementation, at one week of supplementation, and after four weeks at the 

completion of the study. Subjects were asked to abstain from exercise for 24 hours and 

fast for at least 8 hours prior to baseline testing. One day prior to exercise testing, 

participants received a percutaneous muscle biopsy from the vastus lateralis muscle of 

the right leg using standard procedures for the Bergstrom method [104]. Muscle sample 

were immediately frozen at -80° until analyzed.  
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 The morning after the biopsy, participants were asked to fast for at least eight 

hours before being asked to consume a standard meal replacement drink and report to 

the lab four hours later to begin exercise testing. They were weighed using a free 

standing scale and had body composition determined using a Dual Energy X-Ray 

Absorptiometer (DEXA) (Discovery QDR Series, Hologic Inc., Waltham, MA). They 

then had their total body water measured using bioelectrical impedance analysis. 

Following the resting measures, participants began exercise testing starting with a 

maximal graded exercise test (GXT) using an incremental protocol on the Lode 

Excaliber Sport 925900 cycle ergometer (Lode BV, Groningen, The Netherlands) with 

metabolic measurements recorded on the ParvoMedics True One 2400 Metabolic 

System (ParvoMedics, Sandy, Utah. The protocol began at 50 W maintaining 70 rpm 

and the intensity was increased by 25 W every three minutes until a pedaling rate of 70 

rpm was no longer maintained. Blood samples were taken from the fingertips in the final 

minute of each stage of exercise and five minutes into the recovery to determine lactate 

threshold (LT). Lactate was determined using a Lactate Scout (Sports Resource Group, 

USA) handheld analysis device. The LT was calculated two different ways including the 

point at which blood lactate concentrations rises more than 1.0 mM/l from the previously 

recorded value (LT) and the point at which blood lactate level was greater than or equal 

to 4.0 (also termed the onset of blood lactate, OBLA). All values were reported as a 

percent of the VO2max [83]. Ventilatory threshold was determined as the point during 

the GXT where pulmonary ventilation increased at a disproportional rate with VO2, and 

was also recorded as a percent of VO2max. Following the GXT, participants rested 
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passively for 30 minutes and then performed two Wingate Anaerobic Tests with 3 

minutes of passive rest in between. Blood was taken from the fingertips before the start 

of Wingate 1, immediately post Wingate 1 and 2, and finally after 5 minutes of passive 

recovery following the completion of both Wingates.  

Supplementation Protocol 

 The supplementation protocol was modified from those used by Hoffman et al. in 

2006 [18] and Zoeller et al. in 2007 [9]. The creatine monohydrate (Creapure®, 

AlzChem Trostberg GmbH, Germany) supplementation was provided in the form of a 

powder that the subjects were instructed to mix with water. Individual doses were 

rounded to the nearest 0.1 g. The β-ALA (CarnoSyn®, Natural Alternatives 

International, Inc., San Marcos, CA) came in the form of 800 mg capsules that subjects 

were instructed to take at 4 intervals throughout the day with water and/or food, as close 

to 8:00am, 12:00pm, 4:00pm and 8:00pm. Individual doses were rounded to the nearest 

800 mg for β-ALA. The four groups included β-ALA alone (BA, n=8), creatine alone 

(CRE, n=8), a combination of creatine and β-ALA (BAC, n=9), and placebo (PLA, n=7). 

The dosing strategy is depicted in Table 7. The β-ALA only group received a dose of 0.1 

g/kg body weight per day for the entire 28 days with 0.3 g/kg/day of dextrose for week 1 

and 0.1 g/kg/day of dextrose for weeks 2-4. The creatine only group was given a dose of 

0.3 g/kg/day of creatine for week 1 and 0.1 g/kg/day for weeks 2-4, with 0.1 g/day 

maltodextrin for the 28 days. The β-ALA  and creatine combined group consumed a 0.1 

g/kg/day of β-ALA for the entire 28 days with 0.3 g/kg/day of creatine for week 1 and 

0.1 g/kg/day of creatine for weeks 2-4. Finally, the placebo group was given 0.1 
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g/kg/day of maltodextrin for all 28 days with 0.3 g/kg/day of dextrose for week 1 and 0.1 

g/kg/day for weeks 2-4 as a placebo. The β-ALA and matched placebo doses were 

rounded to the nearest 800 mg capsule. The creatine and matched placebo doses were 

rounded to the nearest 0.1 g. Participants were given supplements one week at a time and 

were asked to return the empty containers to ensure compliance. They also completed 

supplementation logs each week to monitor compliance of supplementation.  

 

Table 7: Supplementation protocol for each group  

Supplement 

Group 

Dosing Schedule Total Daily Dose 

β-ALA (BA) 

n=8 

4 x 0.025 g/kg – β-ALA 
4 x 5 g - Dextrose 

0.1 g/kg/day β-ALA 
0.3 g/kg/day Dextrose (wk 1) 

0.1 g/kg/day Dextrose (wks 2-4) 
β-ALA + 

Creatine (BAC) 

n=9 

4 x 0.025 g/kg – β-ALA 
4 x 0.75 g/kg – Creatine 

(wk 1) 
4 x 0.025 g/kg –

Creatine (wks 2-4) 
4 x 5 g - Dextrose 

0.1 g/kg/day–β-ALA 
0.3 g/kg/day Creatine (wk 1) 

0.1 g/kg/day Creatine (wks 2-4) 
0.3 g/kg/day Dextrose (wk 1) 

0.1 g/kg/day Dextrose (wks 2-4) 

Creatine (CRE) 

n=8 

4 x 0.75 g/kg – Creatine 
(wk 1) 

4 x 0.025 g/kg –
Creatine (wks 2-4) 
4 x 0.025 g/kg – 

Maltodextrin 
4 x 5 g – Dextrose 

0.1 g/kg/day Maltodextrin 
0.3 g/kg/day Creatine (wk 1) 

0.1 g/kg/day Creatine (wks 2-4) 
0.3 g/kg/day Dextrose (wk 1) 

0.1 g/kg/day Dextrose (wks 2-4) 

Placebo (PLA) 

n=7 

4 x 0.025 g/kg – 
Maltodextrin 

4 x 5  g – Dextrose  

0.1 g/kg/day Maltodextrin 
0.3 g/kg/day Dextrose (wk 1) 

0.1 g/kg/day Dextrose (wks 2-4) 
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Muscle Analysis 

 The muscle samples from the biopsies were analyzed for creatine, PCr and 

carnosine levels. The creatine and PCr procedures were based on those from previous 

studies [113-115]. Once the biopsy was taken, the sample was immediately frozen in 

liquid nitrogen and stored at -80° until assayed. Upon time to prepare the muscle for 

analysis, they were freeze dried and crushed to pulverize the muscle into a powder. Five 

to 10 mg of powder was weighed out for perchloric acid extraction. Muscle metabolites 

were extracted using 0.5 M perchloric acid containing 1 mM EDTA at a ratio of 800 μL 

to every 10 mg of powder for five minutes on ice while periodically vortexing. They 

were then centrifuged for 5 minutes at 7000 rpm and neutralized using 2M KHCO3 for 

five minutes while periodically vortexing. After a final 15 minute centrifuge at 7000 

rpm, the supernatant was stored in a 1.5 mL polyethylene tube at -50°C.  The PCr assays 

were done in the presence of 50 mM Tris buffer, pH 7.4; 1 mM magnesium chloride, 0.5 

mM dithiothreitol, 100 μM glucose, 50 μM NADP+, 350 U/mL glucose-6-phosphate 

dehydrogenase. The assay was carried out in 13 x 75 glass screw-top tubes using 10 μL 

of sample to 1mL of reagent. The reactant solution was vortexed and read using a 

fluorometer with an excitation wavelength of 360 nm and an emission wavelength of 

460 nm. 25 mL of hexokinase solution was added to 1 mL of reagent and stabilized. For 

PCr, 20 μL of CK/SDP solution was added to the tubes, vortexed and incubated in the 

dark at room temperature for 60 minutes when samples were read again. All results were 

expressed as mmol/kg dry mass (dm). 
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 For the creatine analysis, samples were assayed in the presence of 50 mM 

imidazole buffer, pH 7.4; 5 mM magnesium chloride; 30 mM potassium chloride; 25 μM 

phosphoenolpyruvate; 200 μM ATP; 45 μM NADH; 1250 U/m: lactate dehydrogenase; 

2000 U/mL pyruvate kinase. 5 mg CK (25 u/mg) was added to 1 mL of the above buffer 

and stabilized using 10% bovine serum albumin. Assay was carried out in 13 x 75 glass 

screw-top tubes using 10 μL of sample in 1 mL of reagent. After the sample was added 

to the reagent, the reactant solution was vortexed, incubated at room temperature in the 

dark for 15 minutes, and read in the fluorometer. Creatine kinase buffer solution (25 μL) 

was added to the sample, vortexed, and incubated at room temperature in the dark for 30 

minutes and read again on the fluorometer. Creatine and phosphagens were analyzed 

using a SpectraMax 250 (Molecular Devices, Sunnyvale, CA).   

Muscle carnosine was analyzed using the HPLC procedures developed by 

Dunnett and Harris [112].  The muscle samples were prepared using the same drying 

methods as before. Muscle was analyzed using an Aquity-UPLC system (Waters, 

Milford, MA). Chromatography was performed using a Thermo Scientific Hypersil ODS 

(150 mm x 4.6 mm ID) analytical column protected by a Hypersil ODS guard column. 

Solvents were filtered to 0.45 µm. Compounds were eluted using a solvent gradient at 

ambient temperature with the following mobile phases: LINE A: Solvent A:20 mM 

Phosphate buffer [(20 mM Na2HPO4 (2.84g/l) + 20 mM NaH2PO4.2H2O (3.12g/l)] , pH 

6.8 – tetrahydrofuran (995:5  v/v); LINE B: Solvent B: 20 mM Phosphate buffer, pH 6.8 

– methanol - acetonitrile (500:350:150, v/v); LINE C: 100% methanol; LINE D: 100% 

water; 2 litres 20 mM Na2HPO4 = 5.68g; 2 litres 20 mM NaH2PO4.2H2O = 6.24g. 
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Statistical Analysis 

 All data was analyzed using SPSS 16.0 software. A 4 x 3 (supplement x time) 

repeated measures multivariate analysis of variance (MANOVA) was used to analyze all 

muscle phosphagens, body composition, aerobic exercise variables, blood lactate related 

variables and ventilatory threshold. Baseline demographics were analyzed with a one-

way analysis of variance (ANOVA). Total body water was analyzed using a 4 x 3 

(supplement x time) repeated measures ANOVA. Muscle carnosine content was 

analyzed using a 4 x 2 (supplement by time) repeated measures ANOVA. The anaerobic 

exercise variables were analyzed with a 4 x 3 x 2 (supplement x time x Wingate test) 

repeated measures MANOVA. If significant interactions or main effects existed, 

Tukey’s least significant difference post hoc analyses were performed. A significance 

level of 0.05 was accepted for all analyses.  Cohen’s d calculations for effect size were 

performed on select variables with large mean differences, but non-significant results. 

Missing data for performance variables was treated using the previously recorded value. 

The sample mean was used to replace missing data for the muscle related variables. 

Delta values were calculated and analyzed on select variables by repeated measures 

ANOVAs to determine changes from baseline.   

Results 

A total of 32 apparently healthy, recreationally active females completed the 

protocol for the present study (age 21.42±2.77 years, height 65.35±2.31 inches, weight 

60.82±6.21 kg, lean mass 38.55±3.64 kg, and percent body fat 26.96±5.94 %). There 
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were no significant differences between groups at baseline for age, initial weight, lean 

mass or initial body fat percentage.    

Muscle Biochemistry    

 Muscle samples were obtained from 31 total participants.  There was sufficient 

sample to analyze 27 samples for carnosine and 19 samples for phosphagen levels.  

Table 8 shows the results from analyses of both phosphagens and carnosine. Cohen’s d 

effect size calculations were performed to compare supplementation group means to 

placebo at week four after participants had completed all supplementation and 

differences were expected to be seen. The results of these calculations are seen in Table 

9. Unfortunately, the sample sizes for the muscle analyses were very small resulting in 

low power values. A larger sample size would be needed to have more accurate 

comparisons.   

Table 8: Muscle biochemistry results 

 

P Value 
Carnosine ( m mol/g muscle) 

Baseline 19.74 ± 8.69 20.81 ± 7.66 20.80 ± 2.81 15.70 ± 4.70 19.58 ± 6.50 T=0.224 
4 Weeks 23.68 ± 1.56 24.23 ± 4.09 21.04 ± 7.00 16.53 ± 4.80 21.83 ± 5.31 G=0.042 a 

T x G=0.817 
P Value 

Creatine (mmol/kg DW) 
Baseline 47.13 ± 19.88 59.82 ± 37.37 72.96 ± 29.59 59.85 ± 7.79 59.92 ± 27.60 T=0.191 
1 Week 50.73 ± 26.83 65.49 ± 15.25 88.55 ± 38.72 68.17 ± 7.74 76.80 ± 24.90 G=0.136 
4 Weeks 42.33 ± 16.24 59.90 ± 9.77 67.72 ± 15.94 57.19 ± 8.07 57.28 ± 14.34 T x G=0.980 

Phosphocreatine (mmol/kg DW) 
Baseline 22.18 ± 4.28 22.94 ± 18.02 31.69 ± 16.54 21.35 ± 4.44 24.29 ± 13.26 T=0.134 
1 Week 25.91 ± 9.88 32.61 ± 19.62 23.43 ± 4.40 24.08 ± 4.23 27.47 ± 12.96 G=0.976 
4 Weeks 34.75 ± 7.38 26.87 ± 7.04 30.51 ± 6.26 31.43 ± 9.39 30.25 ± 7.49 T x G=0.250 

Total Creatine (mmol/kg DW) 
Baseline 63.04 ± 22.30 82.75 ± 37.19 105.11 ± 26.57 80.76 ± 11.18 82.89 ± 29.81 T=0.724 
1 Week 59.47 ± 27.07 94.79 ± 8.30 111.98 ± 37.99 85.53 ± 4.39 89.02 ± 26.75 G=0.021 b 
4 Weeks 74.28 ± 11.40 88.89 ± 5.32 84.66 ± 13.41 85.91 ± 18.07 84.66 ± 13.41 T x G=0.733 

Data are means ± SD. BA significies beta-alanine only group; BAC is beta-alanine and creatine combined supplementation group;  
CRE is creatine only group; and PLA is placebo. 
a  PLA significantly lower than BA (p=0.019), BAC (p=0.007) and CRE (p=0.042) 
b  PLA significantly greater than BA (p=0.003) 

    
BA (n=4) BAC (n=7) CRE (n=4) PLA (n=4) Total (All Groups) 

Total (All Groups) BA (n=7) BAC (n=8) CRE (n=7) PLA (n=5) 
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Table 9: Effect size and magnitude calculations for select muscle biochemistry variables 

Creatine 1.16 (large) -0.30 (low) -0.83 (large)

Phosphocreatine -0.39 (low) 0.55 (low) 0.12 (low)

Total Creatine 0.77 (moderate) -0.22 (low) 0.08 (low)

Carnosine -2.00 (large) -1.73 (large) -0.75 (moderate)

Cohen's d calculations compared each group mean to PLA.

All calculations used data from week 4.

BA BAC CRE

  

 

Carnosine did not show any time x group interaction or time effect, but there was 

a significant group effect (p=0.042). Post hoc analysis showed the placebo group to have 

lower concentrations than β-ALA alone (p=0.019), β-ALA and creatine combined 

(p=0.007) and creatine alone (p=0.042). After four weeks of supplementation, the groups 

receiving β-ALA showed trends of more increases in carnosine than the groups without 

β-ALA (3.93±9.10 μmol/g muscle for β-ALA alone and 3.41±10.50 μmol/g muscle for 

β-ALA and creatine combined vs. 0.24±5.84 μmol/g muscle for creatine alone and 

0.83±7.60 μmol/g muscle for placebo). The percent change values for each group after 

four weeks were 35.3±44.8% for β-ALA only, 42.5±99.3% for β-ALA and creatine 

combined, 0.7±27.1% for creatine only and 13.9±44.0% for placebo. This change in 

carnosine content was not significant, which is likely a result of the large variation and 

small sample size again. The effect sizes were large enough to imply the differences seen 

between groups may be large enough to counteract the small sample size and these 

results may better reflect the outcomes for the larger population. Hypothesis 1 stated that 

carnosine would be greater with β-ALA supplementation; therefore, with the present 
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study results, this hypothesis is accepted as it was greater than placebo, just not the other 

supplementation groups. 

Muscle creatine did not show any significant time x group interaction, time effect 

or group effect. Although not significant, after the first week’s loading phase of 

supplementation, the group taking creatine alone showed trends towards having the 

greatest increase in muscle creatine compared to β-ALA only, β-ALA and creatine 

combined and placebo (15.59±14.85 mmol/kg DW vs. 3.59±15.58 mmol/kg DW, 

5.67±31.67 mmol/kg DW and 8.32±12.75 mmol/kg DW, respectively). This relationship 

was not maintained after four weeks however. The percent change in muscle creatine 

after four weeks for each group was 4.6±71.4% for β-ALA only, 154.0±375.0% for β-

ALA and creatine combined, 1.7±41.6% for creatine only and -4.1±10.9% for placebo. 

The effect size calculations showed large values for β-ALA only and creatine only 

supplementation groups compared to placebo, indicating those relationships are strong 

based on the present data.  

 Phosphocreatine did not show any time x group interaction, time effect or group 

effect. The effect size calculations were low for all groups compared to placebo, 

therefore the relationship between groups is quite weak in this case. The delta values in 

this case did show a trend in the β-ALA and creatine combined group with greater PCr 

values after the first week of supplementation (9.67±6.69 mmol/kg DW vs. 3.73±12.09 

mmol/kg DW for β-ALA alone, -8.27±12.74 mmol/kg DW for creatine alone and 

2.73±1.70 mmol/kg DW for placebo). This relationship did not hold up after four weeks. 

The percent change for each group after the first week was 22.4±56.1% for β-ALA only, 
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77.9±119.7% for β-ALA and creatine combined, -17.7±24.7% for creatine only and 

13.7±11.2% for placebo. The percent change after four weeks for PCr in each group was 

61.9±48.0% for β-ALA only, 77.0±149.2% for β-ALA and creatine combined, 

13.0±53.5% for creatine only and 51.5±46.5% for placebo. The variation seen in the 

standard deviations are large for each group, which may have affected the group 

differences from being significant. Larger sample sizes may have helped show more 

significant results.   

 Total creatine also did not show any time x group interaction or time effect; 

however, it did show a significant group effect (p=0.021). The post hoc analysis for total 

creatine indicated that the β-ALA and creatine combined group was greater than β-ALA 

only (p=0.043) and creatine only is greater than β-ALA only (p=0.003). In examining 

the delta values, the groups receiving creatine showed trends of greater increases in total 

creatine after week one, but not after four weeks (12.04±36.01 mmol/kg DW for β-ALA 

and creatine combined and 6.83±26.03 mmol/kg DW for creatine only vs. -3.57±31.09 

mmol/kg DW for β-ALA alone and 4.76±7.94 mmol/kg DW for placebo). The percent 

change for each group after the first week of supplementation was 5.9±67.7% in β-ALA 

only, 103.5±258.2% in β-ALA and creatine combined, 7.1±24.1% in creatine only and 

6.9±10.0% in placebo. The percent change for each group after four weeks was 

27.3±35.3% for β-ALA only, 80.5±233.5% for β-ALA  and creatine combined, -

3.4±28.7% for creatine only and 6.4±15.4% for placebo. Note the standard deviations 

are very large, which may have affected these results from being significant like the 

overall group effect explained earlier. The effect sizes for total creatine between groups 
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were mostly low, indicating a small and weak relationship between the groups. A larger 

sample size may have been necessary to improve effect size and show more significant 

relationships. 

The creatine results failed to accept Hypothesis 2, which stated that creatine and 

phosphagen stores would be greater with creatine supplementation. The results from all 

muscle analyses led to accepting the null Hypothesis 4 that stated that there would be no 

differences seen in carnosine, creatine or phosphagen stores for the combined β-ALA 

and creatine supplementation group.  

Body Composition  

The body composition variables included in the MANOVA analysis included 

body weight (kg), fat mass (kg), fat free mass (kg) and percent body fat. Total body 

water was analyzed separately. Table 10 shows the results from all body composition 

variables. Cohen’s d effect sizes were calculated to compare groups, which are shown in 

Table 11. The majority of the effect sizes were low, indicating a low relationship 

between the present results and what would be expected in a larger population. Perhaps a 

larger sample size would have allowed for or significant results and larger effect sizes. 
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Table 10: Body composition results 

P Value

Baseline 63.16 ± 7.48 60.23 ± 6.08 61.15 ± 5.68 58.60 ± 5.81 60.82 ± 6.21 T=0.021

1 Week 63.33 ± 7.30 60.37 ± 5.98 61.38 ± 5.94 59.22 ± 6.07 61.09 ± 6.21 G=0.605

4 Weeks 63.60 ± 7.28 61.11 ± 5.61 61.40 ± 6.00 59.44 ± 5.88 61.40 ± 6.00* T x G=0.629

Fat Mass (kg)

Baseline 16.49 ± 4.93 14.92 ± 4.03 14.30 ± 4.88 14.76 ± 3.94 15.12 ± 4.32 T=0.033

1 Week 15.52 ± 4.30 14.08 ± 3.77 13.86 ± 4.79 13.84 ± 4.07 14.32 ± 4.08* G=0.672

4 Weeks 16.59 ± 4.67 13.92 ± 4.08 13.44 ± 3.00 14.02 ± 4.39 14.47 ± 4.07 T x G=0.675

Fat Free Mass (kg)

Baseline 39.35 ± 4.02 38.26 ± 4.05 39.55 ± 3.25 36.87 ± 3.06 38.55 ± 3.64 T=0.000

1 Week 40.45 ± 3.47 39.25 ± 4.23 40.26 ± 3.12 38.34 ± 3.26 39.59 ± 3.53* G=0.625

4 Weeks 39.68 ± 4.20 40.01 ± 4.04 40.72 ± 3.73 38.38 ± 2.96 39.76 ± 3.72* T x G=0.335

Percent Fat (%)

Baseline 28.23 ± 6.72 26.94 ± 5.71 25.25 ± 6.62 27.51 ± 5.34 26.36 ± 5.94 T=0.011

1 Week 26.51 ± 5.08 25.47 ± 5.47 24.34 ± 6.52 23.46 ± 5.23 25.45 ± 5.39* G=0.722

4 Weeks 28.25 ± 6.34 24.89 ± 6.03 23.88 ± 4.11 25.60 ± 5.94 25.61 ± 5.66* T x G=0.635

Total Body Water (%)

Baseline 51.31 ± 4.09 52.88 ± 6.72 48.86 ± 5.48 50.90 ± 4.48 51.11 ± 5.34 T=0.841

1 Week 51.27 ± 3.83 51.79 ± 4.58 50.53 ± 3.61 50.01 ± 3.39 50.96 ± 3.80 G=0.593

4 Weeks 50.61 ± 3.06 52.47 ± 4.51 48.80 ± 10.08 50.53 ± 3.08 50.73 ± 5.69 T x G=0.876

Data are means ± SD. BA significies beta-alanine only group; BAC is beta-alanine and creatine combined supplementation group; 

CRE is creatine only group; and PLA is placebo.

*Significantly different from baseline. 

PLA (n=7) Total (All Groups)

Body Weight (kg)

BA (n=8) BAC (n=10) CRE (n=8)

 

 

Table 11: Effect size and magnitude calculations for select body composition variables 

Body Weight -0.63 (moderate) -0.29 (low) -0.33 (low)

Fat Mass -0.37 (low) 0.02 (low) 0.15 (low)

Fat Free Mass -0.36 (low) -0.46 (low) -0.69 (moderate)

Percent Fat -0.43 (low) 0.12 (low) 0.34 (low)

Cohen's d calculations compared each group mean to PLA.

All calculations used data from week 4.

BA BAC CRE

 

 

Body weight did not show any time x group interaction or group effects. There 

was a significant time effect seen for weight (p=0.021) with values increasing over time. 

There were trends of increasing weight through the course of the four week 

supplementation protocol in all groups when comparing delta values (0.66±2.74 kg for 
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β-ALA only, 0.98±1.23 kg for β-ALA and creatine combined, 0.11±0.69 kg for creatine 

only and 0.92±2.03 kg for placebo). The effect sizes for all groups compared to placebo 

were low, indicating a weak relationship.  

There were no significant time x group interactions or group effects for fat mass. 

There was however, a significant time effect (p=0.033). Fat mass tended to decrease 

over time for most groups with the greatest reduction seen in the β-ALA and creatine 

combination supplementation strategy (-1.11±1.61 kg vs. -0.86±2.70 kg in creatine only, 

2.25±5.92 kg in β-ALA only and -0.40±1.25 kg in placebo). The effect sizes for each 

group compared to placebo are low, thus indicating a weak relationship for this variable. 

Larger sample sizes may have been helpful in resulting in more significant results.  

Fat free mass showed a similar trend as fat mass in that there was only a 

significant time effect (p=0.000) and no time x group interaction or group effect. When 

examining delta values, it shows trends towards more improvement after four weeks in 

the β-ALA and creatine combined group (1.94±1.32 kg vs. 1.16±1.85 kg in creatine 

only, -0.32±1.13 kg in β-ALA only and 1.51±1.33 kg in the placebo group. The effect 

sizes were low for the groups supplementing with β-ALA, indicating weak relationships. 

There was a moderate relationship seen with the effect size for the creatine only group 

compared to placebo. These results allow for the failure to reject the null for Hypothesis 

6, which stated there would be no improvement in fat mass or fat free mass with 

supplementation.  

There were no time x group interactions or group effects for percent body fat 

either. The time effect was significant (p-0.011). Looking at the delta values, there 
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shows to be a trend with the β-ALA and creatine combined group having greater 

reductions compared to creatine only, β-ALA only and placebo (-2.3±2.6%, -1.4±4.5%, 

0.2±1.8% and -1.3±2.2%, respectively). The group trends are not statistically significant 

however, which may be due to the large variation depicted in the standard deviations, 

and the small sample sizes.  

The results of the ANOVA for total body water showed no time x group 

interactions, group effects or time effects. There were no trends seen between groups 

when examining delta values either. These results led to the acceptance of the null for 

Hypothesis 10 stating supplementation will not elicit a difference in total body water 

between groups.  

Aerobic Exercise Performance 

 Table 12 shows the results from the MANOVA that included VO2max, time to 

VO2max, maximal METs achieved and ventilatory threshold. Table 13 depicts select 

effect size calculations for non-significant group effects. It also interprets the values, 

which in this case are almost all low. This indicates most likely the sample size used for 

this study was too small to decipher significance since the relationship of the data to the 

population is low in this case.  
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Table 12: Aerobic performance results 

P Value

Baseline 41.50 ± 5.60 39.43 ± 7.79 34.20 ± 5.73 35.88 ± 9.65 37.93 ± 7.44 T=0.527

1 Week 41.58 ± 5.96 38.58 ± 8.14 36.10 ± 6.04 33.75 ± 10.49 37.78 ± 7.80 G=0.274

4 Weeks 41.53 ± 6.12 38.10 ± 7.51 35.34 ± 2.98 37.90 ± 9.03 38.23 ± 6.68 T x G=0.093

Max Time (sec)

Baseline 1249.38 ± 209.64 1143.11 ± 310.88 962.88 ± 289.05 1093.00 ± 324.22 1114.32 ± 290.45 T=0.093

1 Week 1293.88 ± 246.16 1152.67 ± 361.05 1019.75 ± 251.49 1031.83 ± 313.61 1131.42 ± 304.19 G=0.275

4 Weeks 1293.38 ± 240.11 1132.11 ± 322.62 1045.88 ± 198.35 1083.00 ± 310.06 1141.97 ± 275.16 T x G=0.324

MET

Baseline 11.88 ± 1.60 11.23 ± 2.23 9.79 ± 1.64 10.27 ± 2.77 10.84 ± 2.13 T=0.274

1 Week 11.88 ± 1.70 11.03 ± 2.34 10.31 ± 1.74 9.63 ± 3.00 10.79 ± 2.24 G=0.277

4 Weeks 11.85 ± 1.74 10.89 ± 2.15 10.09 ± 0.85 10.83 ± 2.58 10.92 ± 1.91 T x G=0.095

Ventilatory Threshold

(%VO2max) Baseline 86.81 ± 8.73 87.19 ± 10.29 77.01 ± 6.46 85.78 ± 10.64 84.19 ± 9.66 T=0.001

1 Week 84.06 ± 7.34 86.22 ± 10.14 78.61 ± 10.53 85.78 ± 11.03 83.62 ± 9.79 G=0.351

4 Weeks 78.59 ± 9.75 79.92 ± 13.15 76.50 ± 11.21 75.30 ± 9.63 77.80 ± 10.78*† T x G=0.539

Data are means ± SD. BA significies beta-alanine only group; BAC is beta-alanine and creatine combined supplementation group; 

CRE is creatine only group; and PLA is placebo.

* Significantly different from baseline. † Significantly different from 1 week. 

VO2max (ml/kg/min)

Total (All Groups)BA (n=8) BAC (n=9) CRE (n=8) PLA (n=6)

 

 

Table 13: Effect size and magnitude calculations for select aerobic performance 

variables 

VO2max -0.47 (low) -0.02 (low) 0.38 (low)

MaxTime -0.76 (moderate) -0.16 (low) 0.14 (low)

Ventilatory Threshold -0.34 (low) -0.4 (low) -0.11 (low)

Cohen's d calculations compared each group mean to PLA.

All calculations used data from week 4.

BA BAC CRE

 

 

 VO2max showed no significant time x group interaction, group effect or time 

effect. There was a trend for the time x group interaction (p=0.093) that may suggest 

some effect of the supplementation. However, the power and effect sizes are quite low, 

which may have affected this trend not being significant. In examining the delta values 

for VO2max, participants in the creatine only group showed trends towards 
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improvements after one week of supplementation compared to β-ALA only, β-ALA and 

creatine combined and placebo, who all showed slight decreases (1.90±1.87 ml/kg/min 

vs. -0.01±3.30 ml/kg/min, -0.96±3.84 ml/kg/min and -2.13±5.14 ml/kg/min, 

respectively). At four weeks, this relationship still exists with the exception of the 

placebo group that seemed to show greater trends towards improvement (1.14±4.48 

ml/kg/min for creatine only, -0.07±4.18 ml/kg/min for β-ALA only, -1.50±3.79 

ml/kg/min for β-ALA and creatine combined and 2.02±1.78 ml/kg/min for placebo).  

 Time to VO2max did not result in a significant time x group interaction, group 

effect or time effect. There was a trend for the time effect (p=0.093), however, low 

statistical power and wide variation within the data may have affected significance. The 

effect sizes were also low for this variable indicating a weak relationship and low 

strength of the data. In looking at delta values, the creatine group showed the greatest 

change towards improvement over the four weeks compared to other groups 

(83.00±125.17 sec vs. 41.14±110.51 sec for β-ALA only, -12.38±77.16 sec for β-ALA 

and creatine combined and -10.00±224.61 sec for placebo). This trend was not 

significant however, possibly due to the large standard deviation values associated with 

each group’s data.  

 There was no significant time x group interaction, group effect or time effect for 

the maximal MET units achieved during the GXT. The time x group interaction shows a 

slight trend in the data (p=0.095), but with the small sample size and large variation 

within the data, significance was not reached.  
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 Ventilatory threshold showed to have a significant time effect (p=0.001), but no 

group effect or time x group interaction. The direction of this result was not expected in 

that there was actually a decrease in ventilatory threshold over the four weeks of 

supplementation in each group (-9.77±7.85 %VO2max for β-ALA only, -8.18±5.29 

%VO2max for β-ALA and creatine combined, -0.51±9.04 %VO2max for creatine only 

and -10.48±13.27 %VO2max for placebo. There is large variation within each group, 

which could explain the lack of significance and low effect size between groups.  

 The present results led to accepting Hypothesis 7, which stated there would be no 

difference in VO2max levels between groups. Results also led to accepting Hypothesis 9 

stating no differences would be seen in ventilatory threshold between groups.  

Blood Lactate and Lactate Threshold 

 Table 14 reports the results from the MANOVA that included resting lactate, 

peak lactate, lactate threshold, OBLA and the difference in blood lactate between resting 

and maximal effort on the GXT. The power analysis showed low power values for most 

variables, thus making the interpretations of the statistics difficult. Because of this, effect 

size calculations were performed on select variables. Table 15 shows the results of the 

effect size calculations.  
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Table 14: Blood lactate and lactate threshold results 

P Value

Baseline 1.44 ± 0.64 1.46 ± 0.45 1.33 ± 0.24 2.03 ± 0.96 1.54 ± 0.63 T=0.503

1 Week 1.60 ± 0.61 1.39 ± 0.56 1.18 ± 0.28 1.54 ± 0.46 1.42 ± 0.50 G=0.124

4 Weeks 1.58 ± 0.43 1.32 ± 0.47 1.53 ± 0.47 1.66 ± 0.45 1.50 ± 0.45 T x G=0.448

Peak Lactate (mmol/L)

Baseline 12.91 ± 4.48 8.21 ± 3.43 9.71 ± 1.83 7.54 ± 2.26 9.57 ± 3.70 T=0.177

1 Week 10.43 ± 2.27 8.48 ± 3.33 9.20 ± 2.15 8.76 ± 1.25 9.18 ± 2.48 G=0.051

4 Weeks 9.85 ± 1.89 7.68 ± 2.70 8.99 ± 1.46 8.64 ± 2.28 8.73 ± 2.23 T x G=0.043a

Lactate Threshold (%VO2max)

Baseline 73.05 ± 8.44 79.05 ± 16.53 82.08 ± 8.55 79.59 ± 11.13 78.44 ± 11.94 T=0.825

1 Week 77.70 ± 10.16 80.64 ± 10.78 77.49 ± 8.95 72.26 ± 10.51 77.38 ± 10.13 G=0.665

4 Weeks 76.59 ± 4.69 77.71 ± 14.48 79.16 ± 11.59 76.13 ± 10.32 77.45 ± 10.70 T x G=0.655

Onset of Blood Lactate (%VO2max)

Baseline 77.50 ± 9.89 84.51 ± 11.37 81.71 ± 8.82 83.81 ± 8.82 81.98 ± 9.85 T=0.139

1 Week 78.50 ± 10.11 86.27 ± 9.78 83.48 ± 7.67 75.17 ± 17.43 81.35 ± 11.75 G=0.363

4 Weeks 84.14 ± 8.35 87.87 ± 8.86 83.76 ± 11.68 84.77 ± 11.93 85.31 ± 9.84 T x G=0.578

Blood Lactate Difference Baseline to Max (mmol/L)

Baseline 11.48 ± 4.19 6.73 ± 3.52 8.39 ± 1.75 5.51 ± 2.15 8.02 ± 3.71 T=0.143

1 Week 8.83 ± 2.64 7.03 ± 3.37 8.03 ± 2.03 7.20 ± 1.59 7.74 ± 2.57 G=0.045b

4 Weeks 8.28 ± 1.88 6.29 ± 2.76 7.46 ± 1.26 6.81 ± 2.25 7.17 ± 2.19 T x G=0.014c

Data are means ± SD. BA significies beta-alanine only group; BAC is beta-alanine and creatine combined supplementation group; 

CRE is creatine only group; and PLA is placebo.
a BAC significantly greater than BA (p=0.010); BA significantly greater than PLA (p=0.026)
b BA significantly greater than BAC (p=0.014)
c BA significantly greater than PLA (0.016)

Resting Blood Lactate (mmol/L)

Total (All Groups)BA (n=8) BAC (n=10) CRE (n=8) PLA (n=7)

 

 

Table 15: Effect size and magnitude calculations for select blood lactate variables 

Peak Lactate -0.58 (moderate) 0.38 (low) -0.18 (low)

Lactate Threshold -0.05 (low) -0.12 (low) -0.28 (low)

Cohen's d calculations compared each group mean to PLA.

All calculations used data from week 4.

CREBACBA

 

 

 Results showed no time x group interaction, group effect or time effect for 

resting blood lactate. There were no trends seen when examining the delta values either. 

This led to accepting the first part of Hypothesis 8, which states there would be no 

difference in resting lactate between groups.  
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 Peak lactate showed a significant time x group interaction (p=0.043) and a trend 

for a group effect (p=0.051). Post hoc analyses indicated that β-ALA supplementation 

alone had a lower peak lactate than the group supplementing with β-ALA and creatine 

combined (p=0.010) and a greater peak lactate than placebo (p=0.026). There was no 

time effect seen for peak lactate. In looking at delta values, the β-ALA only group 

seemed to show the greatest trend towards improvement with lower peak lactate values 

compared to the other groups after four weeks (-3.54±4.20 mmol/L vs. -0.59±2.36 

mmol/L for β-ALA and creatine combined, -0.73±1.62 mmol/L in creatine only and 

0.72±1.89 mmol/L in placebo). The effect sizes for each group compared to placebo 

were mostly low, indicating a weak relationship with this data. Increasing the sample 

size may help decrease the variation within each group, which may also help increase 

effect sizes and statistical power. These results led to accepting the latter part of 

Hypothesis 8, which states there would be no difference in peak lactate between groups.  

 There was no significant time x group interaction, group effect or time effect for 

lactate threshold after four weeks of supplementation. When looking at delta values after 

four weeks, the β-ALA only group shows a trend towards increasing lactate threshold 

over the other groups (4.6±10.38 %VO2max vs. -1.49±15.06 %VO2max for β-ALA and 

creatine combined, -2.91±13.96 %VO2max in creatine only and -1.77±14.18 %VO2max 

in placebo). The trend was not significant, which may be due to the large standard 

deviation values or small effect sizes noted between groups. Statistical power was also 

low, which may have been improved with larger sample sizes. These results led to 

accepting Hypothesis 9, stating no difference in lactate threshold between groups.  
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 The onset of blood lactate did not result in a significant time x group interaction, 

group effect or time effect either. However, when looking at delta values after four 

weeks of supplementation, there was a similar trend to peak lactate with the β-ALA only 

group showing a greater difference in %VO2max compared to other groups (8.91±13.97 

%VO2max vs. 3.73±8.09 %VO2max in β-ALA and creatine combined, 2.05±14.18 

%VO2max in creatine only and 3.98±7.95 %VO2max in placebo). Again, the standard 

deviations are quite large, which may be a factor as to why these relationships are not 

significant.  

 The final blood lactate variable examined was the difference in blood lactate 

between maximal effort on the GXT and baseline levels. Results showed a significant 

time x group interaction (p=0.014) and group effect (p=0.045) with post hoc analyses 

indicating that this lactate difference was larger in the β-ALA only group compared to 

placebo. There were no time effects for this variable. When comparing delta values after 

four weeks of supplementation, the β-ALA only group also showed trends towards 

greatest improvement by lowering this difference compared to other groups (-3.2±3.69 

mmol/L vs. -0.44±1.91 mmol/L in β-ALA and creatine combined, -0.93±1.65 mmol/L in 

creatine only and 1.30±2.63 mmol/L in placebo). This relationship was not significant 

though, perhaps due to the large variation noted in the standard deviations and small 

sample sizes.  
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Anaerobic Exercise Performance 

 Table 16 shows the results of the MANOVA that included peak power, mean 

power, total work and rate of fatigue. Due to low statistical power values for group 

comparisons, effect size calculations were performed with results shown in Table 17. 

Table 16: Anaerobic exercise performance results 

P Value

Wingate 1 Baseline 947 ± 359 895 ± 378 908 ± 210 651 ± 163 858 ± 283 T=0.297

1 Week 986 ± 232 840 ± 177 891 ± 155 800 ± 169 881 ± 190 G=0.417

4 Weeks 938 ± 142 796 ± 213 823 ± 178 851 ± 307 850 ± 211 T x G=0.60

W=0.202

Wingate 2 Baseline 857 ± 162 796 ± 186 773 ± 191 804 ± 211 807 ± 181 W x G=0.480

1 Week 938 ± 65 905 ± 235 815 ± 215 755 ± 223 849 ± 191 T x W x G=0.037

4 Weeks 869 ± 125 832 ± 245 946 ± 288 750 ± 170 852 ± 220

Wingate 1 Baseline 282 ± 35 349 ± 50 359 ± 47 318 ± 75 353 ± 55 T=0.368

1 Week 393 ± 48 357 ± 51 369 ± 58 319 ± 47 361 ± 55 G=0.282

4 Weeks 383 ± 48 352 ± 41 348 ± 69 338 ± 57 356 ± 54 T x G=0.592

W=0.000§

Wingate 2 Baseline 352 ± 62 329 ± 56 318 ± 41 298 ± 60 325 ± 56 W x G=0.390

1 Week 345 ± 59 333 ± 54 330 ± 54 307 ± 56 330 ± 54 T x W x G=0.396

4 Weeks 334 ± 59 328 ± 44 318 ± 52 306 ± 68 322 ± 54

Wingate 1 Baseline 11467 ± 1048 10476 ± 1499 10764 ± 1420 9541 ± 2262 10591 ± 1653 T=0.368

1 Week 11793 ± 1438 10719 ± 1531 11081 ± 1726 9566 ± 1422 10826 ± 1660 G=0.282

4 Weeks 11494 ± 1430 10561 ± 1223 10437 ± 2071 10152 ± 1698 10674 ± 1621 T x G=0.592

W=0.000§

Wingate 2 Baseline 10565 ± 1862 9878 ± 1678 9545 ± 1235 8939 ± 1800 9761 ± 1678 W x G=0.390

1 Week 10363 ± 1767 9986 ± 1617 9903 ± 1605 9220 ± 1673 9892 ± 1633 T x W x G=0.396

4 Weeks 10019 ± 1785 9835 ± 1320 9548 ± 1556 9168 ± 2041 9663 ± 1619

Wingate 1 Baseline 107.37 ± 13.86 104.05 ± 14.32 103.74 ± 21.01 92.42 ± 9.35 102.26 ± 15.59 T=0.609

1 Week 105.84 ± 14.05 102.00 ± 9.94 96.20 ± 16.62 108.42 ± 9.43 102.91 ± 13.06 G=0.199

4 Weeks 109.84 ± 10.88 103.39 ± 10.34 104.20 ± 15.92 93.08 ± 12.40 102.70 ± 13.14 T x G=0.231

W=0.015§

Wingate 2 Baseline 91.65 ± 12.01 101.87 ± 11.38 95.99 ± 14.84 92.89 ± 13.68 95.88 ± 13.00 W x G=0.925

1 Week 102.42 ± 9.53 97.87 ± 13.45 99.56 ± 11.22 90.30 ± 20.99 97.77 ± 14.14 T x W x G=0.113

4 Weeks 108.52 ± 13.81 95.25 ± 16.57 99.56 ± 15.89 92.81 ± 11.12 99.11 ± 15.20

Data are means ± SD. BA significies beta-alanine only group; BAC is beta-alanine and creatine combined supplementation group; 

CRE is creatine only group; and PLA is placebo.

§ Wingate #1 significantly greater than Wingate #2

Rate of Fatigue (%)

Peak Power (W)

Total (All Groups)

Mean Power (W)

Total Work (J)

BA (n=8) BAC (n=9) CRE (n=8) PLA

 

 

 Peak power did not show any time x group interaction, time x Wingate 

interaction, time effect, group effect or Wingate effect. There was however, a significant 

time x group x Wingate interaction noted (p=0.037). The creatine only group showed a 

trend towards improvement over other groups during the second Wingate test after four 
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weeks (138±14 W vs. 38±123 W in β-ALA alone, 41±131 W in β-ALA and creatine 

combined and -61±114 W in placebo). The effect sizes were low for most peak power 

group comparisons indicate weak relationship within the data. This could be due to the 

wide variation noted or small sample sizes for each group. When comparing delta values 

for the differences between the two Wingates at each testing session, the creatine only 

group also showed trends towards greater improvements as seen by a smaller gap 

between peak power values compared to other groups after four weeks (-258±177 W vs. 

-22±461 W in β-ALA alone, -135±379 W for β-ALA and creatine combined and 

254±253 W in placebo). This relationship is not significant due to the large variation 

within groups. These results led to the failure to accepted Hypothesis 3, which states that 

power will be greater with β-ALA alone and creatine alone supplementation strategies. 

These results also allowed for the acceptance of Hypothesis 5 that stated there would be 

no difference in power with the combined β-ALA and creatine supplementation protocol 

compared to the other groups.  

 There were no time x group x Wingate or Wingate x group interactions for mean 

power. There were also no significant time or group effects. There was a significant 

Wingate effect (p=0.000) with the first Wingate having greater values than the second, 

which is to be expected. When comparing the change over time for the differences in 

mean power between Wingates, the creatine group shows trends of the most 

improvement over four weeks compared to other groups (-11±28 W vs. 19±39 W in β-

ALA alone, 4±28 W in β-ALA and creatine combined and 13±38 W in placebo). This 
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relationship was not significant, possibly due to the large standard deviations within each 

group.  

 Total work showed no time x Wingate x group, time x group or Wingate x group 

interactions, and no time or group effects. There was only a significant Wingate effect 

(p=0.000) with the first test having higher values than the second, which is again 

expected. In looking at the delta values for the difference between Wingates, the creatine 

group showed trends towards greatest improvement by decreasing the difference in total 

work after four weeks (-331±835 J vs. 573±1168 J in β-ALA alone, 127±856 J in β-ALA 

and creatine combined and 382±1140 J in placebo). This relationship was not significant 

though, most likely due to the large standard deviations within groups and low effect 

sizes for most group comparisons.  

 Rate of fatigue on the Wingates did not elicit any time x Wingate x group, time x 

group or Wingate by group interactions. It also did not show any group effects or time 

effects. There was only a Wingate effect (p=0.015) with the first test being greater than 

the second. The delta values show the β-ALA and creatine combined supplementation 

group having a trend towards improvement after four weeks on the second Wingate 

compared to other groups (-15.8±30.7% vs. 18.0±15.1% in the β-ALA only group, 

3.2±11.9% in the creatine group and 3.0±10.9% in the placebo group). The effect size 

calculations indicated strong values for the β-ALA only and β-ALA and creatine 

combined groups, therefore suggesting a strong relationship with the data for those 

groups.  
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The effect size calculations shown in Table 17 compared group means at week 

four to the placebo group. The effect sizes were mostly low in magnitude. However, a 

few were moderate to large, indicating reliable results from the MANOVA with the 

given sample size. 

 

Table 17: Effect size and magnitude calculations for select anaerobic performance 

variables 

Peak Power Wingate 1 -0.36 (low) 0.21 (low) 0.11 (low)

Peak Power Wingate 2 -0.80 (moderate) -0.39 (low) -0.83 (moderate)

Total Work Wingate 1 -0.85 (large) -0.28 (low) 0.15 (low)

Total Work Wingate 2 -0.44 (low) -0.39 (low) -0.21 (low)

Rate of Fatigue Wingate 1 -1.44 (large) -0.90 (large) -0.78 (low)

Rate of Fatigue Wingate 2 -1.25 (large) -0.17 (low) -0.49 (low)

Cohen's d calculations compared each group mean to PLA.

All calculations used data from week 4.

BA BAC CRE
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CHAPTER V 

DISCUSSION AND CONCLUSION 

 The present study sought to examine the effects of β-ALA and creatine 

monohydrate supplementation on body composition, aerobic and anaerobic exercise 

performance and muscle carnosine and phosphagen levels in recreationally active 

females. The results did not show many differences between supplementation protocols 

for the majority of body composition, exercise performance or muscle biochemistry 

variables. However, there were trends in the data that implied some possible positive 

effects of β-ALA and creatine supplementation in this given population. The details of 

the findings are explained in the subsequent sections.  

Muscle Biochemistry 

The present study showed a significant difference in muscle carnosine content 

between supplementation groups, all being greater than the placebo group. This is an 

expected result based on previous studies of similar β-ALA supplementation strategies 

and muscle carnosine content.  Harris et al. [5] showed an increase of about 42% after 

four weeks with a supplementation protocol of 3.2 g/day of β-ALA. The present study 

showed an increase of about 35% in the β-ALA alone group and an increase of about 

42% in the β-ALA and creatine combined group with an average dose of 6.1±0.7 g/day 

of β-ALA. The present study used an individualized dosing strategy that corresponded to 

0.1 g/kg/day for the entire four weeks. Other studies have used a supplementation 

strategy that increased in dose over the course of the study to 4.8 g/day [4], or 6.4 g/day 

[2, 75] and have shown greater increases in muscle carnosine levels of about 47% [4], 
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52% [75] and 59% [2]. Longer supplementation protocols of up to 10 weeks have also 

shown significantly greater increases in carnosine content of about 80% over baseline 

values [2]. Currently, there are no studies that have looked at the effects on muscle 

carnosine content with a combined supplementation protocol of β-ALA and creatine. 

The present study directly compared these supplementation strategies; however, there 

was no significant difference seen between the two groups, despite the combined 

strategy showing a slightly greater increase in carnosine levels. Although there was an 

increase in muscle carnosine, this did not translate into improved performance measures 

as a result of supplementation, as will be discussed in subsequent sections.  

There were some differences between groups observed for muscle creatine over 

the four weeks as well with the two groups with creatine having greater values than the 

β-ALA only group. It is important to note that the sample size for muscle creatine and 

phosphagens was quite small due to prioritizing muscle carnosine assays as well as some 

samples not being large enough to run the appropriate assays. The present study did not 

show significant differences between groups for muscle creatine variables; however, 

there were some trends after the first week of loading with creatine monohydrate in the 

creatine and β-ALA plus creatine supplementation groups. This agrees with previous 

studies that indicate significant increases in muscle creatine after a loading phase [10]. 

Previous studies have reported that the typical loading phase of creatine supplementation 

(20 g/day for 5 days) results in an increase in PCr of about 10-40% [122-124]. The 

present study showed conflicting results after one week of supplementation with percent 

changes for PCr of about -18% with creatine supplementation alone and about 78% 
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when creatine was combined with β-ALA. The combined supplementation group 

showed the greatest increase in PCr after the first week, implying there may be a 

synergistic effect of the two supplements. It is unknown why the creatine group in this 

study reported the lowest percent change of all the groups. When examining the raw 

data, the creatine group did have the highest PCr levels at baseline, although not 

statistically different from the other groups, which may have played a role in not seeing 

as much of an increase with supplementation. However, this does not explain the 

negative percent change after one week of loading. After four weeks, the percent change 

increased, but was still the lowest of the four groups. Granted, the large variation within 

each group is also a factor that must be noted as this may affect the significance of the 

data. The literature has also reported increases in total creatine of around 10-30% [122-

124]. These values again do not agree with previously reported results in the literature 

since creatine supplementation alone only increased levels by about 7% and the 

combined supplementation with β-ALA increased levels by about 104%. Like with PCr, 

the combined supplementation group had the greatest increase after one week, however 

with such a large standard deviation (±258.2), this result may not be accurate to 

interpret. 

Although the present study failed to show significant increases in muscle creatine 

or phosphagens as a result of four weeks of supplementation, it is well reported in the 

literature that this relationship does exist for creatine monohydrate supplementation after 

four weeks [91, 125]. Since there were increases after the first week of loading with 

creatine, which were not seen after four weeks, it may be safe to say that the 
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supplementation was adequate for loading, but the maintenance dose was not sufficient 

to maintain the levels statistically. Vandenberghe and colleagues [90] examined the 

effects of creatine supplementation after 10 weeks in women with a loading dose for the 

first four days and a maintenance dose of 5 g/day for 65 days. He reported a significant 

increase in PCr over baseline levels with supplementation over placebo of 5.2%. 

Another study by Volek and colleagues [126] however, failed to show that a longer 

duration of lower amounts of supplementation maintained increases in muscle creatine 

and PCr levels. This study examined the effects of supplementation after 12 weeks and 

reported increases in PCr and total creatine of approximately 5.3% and 10.6%, 

respectively, but these were not significant compared to baseline. The present study did 

use an individualized supplementation strategy of 0.3 g/kg/day for the loading phase in 

week one followed by 0.1 g/kg/day for the following three weeks. This corresponded to 

an average of 18.3±2.0 g/day for the loading phase and 6.1±0.7 g/day for the 

maintenance phase of the study. Despite the trends towards increased muscle creatine 

levels seen in the first week of supplementation, this did not seem to correspond to 

performance improvements as will be discussed in later sections.   

This study also examined the effect of supplementation in females, which is 

different from most studies pertaining to β-ALA and creatine supplementation. Most 

studies have examined the effects of β-ALA in males and/or trained athletic populations. 

β-ALA is a supplement suggested for more athletic populations due to the potential 

performance enhancing benefits; therefore, the population of the present study may not 

have been the optimal target for this specific supplementation protocol. Also, there is 
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little information comparing gender differences and β-ALA supplementation. The data is 

undecided as to whether there is a difference in carnosine, creatine and PCr levels 

between men and women. Fosberg and colleagues [127] showed females to have greater 

total creatine amounts relative to tissue weight; however other studies show there is no 

difference between genders [128].  

There is also the issue of responders and non-responders in relation to creatine 

supplementation as well as β-ALA supplementation. According to Greenhaff et al., [88], 

an increase in total creatine of at least 20 mmol/kg DW is needed in order to see 

ergogenic effects in exercise performance. The present study did not show that any 

group had that great of an increase after four weeks of supplementation, which may 

explain the lack of performance related effects in the present study. There is less 

evidence supporting the issue of responders and non-responders for muscle carnosine as 

a result of β-ALA supplementation, however, the concept may be similar to creatine, 

thus partially explaining the lack of ergogenic responses in the present study.  

Body Composition 

The results of the present study agreed with previous studies showing body 

composition measures of body weight, fat mass, fat free mass and percent fat improving 

over time. However, in the present study, this could not be directly attributed to the 

supplementation protocol since there were no group differences. Therefore, the reason 

for these improvements in body composition is in question since the protocol did not 

involve an exercise training program. The participants were all recreationally active and 

maintaining their own exercise program from before the start of the study. The addition 
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of the supplementation may have allowed for improved workouts, which may in turn 

affect their body composition. In a study by Hoffman et al. [3], it was reported that 

training volume was improved with β-ALA supplementation in college football players. 

Although the present study included only moderately active females, the same may have 

been the case with supplementation, although this was not directly measured and only 

trends were found with improvements between supplementation groups.  Hoffman and 

colleagues [18] showed an increase in lean body mass and decrease in percent body fat 

over the course of 10 weeks of supplementation with a combination of β-ALA and 

creatine compared to placebo. Their supplementation strategy was similar to the present 

study, but included male strength power athletes who continued with their strength 

training routine during the study. Smith and colleagues [68] found an increase in lean 

body mass with β-ALA supplementation compared to placebo in recreationally active 

males. This study included a high intensity interval training protocol in addition to the 

supplementation, which may have contributed to the differences in body composition. 

The present study focused on the influence of supplementation alone, as participants 

were not involved in any exercise training as part of the study design, only asked to 

continue their normal exercise routine under specific guidelines.  

Total body water was also examined in this study and reported to have not 

changed over the course of the four weeks of supplementation for any group. This 

suggests that any gains in fat free mass were not due to hyperhydration.   
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Aerobic Exercise Performance 

β-ALA and creatine supplementation are believed to have a mild effect on 

aerobic exercise markers, although the literature is torn on this relationship. The results 

of the present study are in line with most studies in that there did not seem to be any 

improvements with four weeks of supplementation. There are not many studies that 

examine VO2 variables with β-ALA and creatine, as they are known more for their 

anaerobic effects. However, Baguet et al. [70], used a similar supplementation protocol 

for β-ALA as the present study with physically active males and did not show any 

differences in VO2 throughout exercise as a result of supplementation. On the other 

hand, Smith and colleagues [68] reported significant differences in VO2peak and time to 

reach VO2peak as a result of β-ALA supplementation for six weeks in recreationally 

active males. This study however, included a high intensity interval training program, 

which may have played a role in seeing significant performance differences.  Zoeller et 

al. [9] examined the effects of β-ALA and creatine supplementation on aerobic exercise 

performance and was able to show that the combined supplementation strategy 

significantly improved five markers of cardiorespiratory endurance including: VO2 and 

power output at lactate threshold and ventilatory threshold, and percent VO2peak at 

ventilatory threshold. When compared to creatine only, there was only an improvement 

in time to exhaustion and power output at ventilatory threshold for this group.  

Stout and colleagues [15] measured the effects of β-ALA supplementation on 

ventilatory threshold in females. They supplemented for 28 days and found that 

ventilatory threshold and time to exhaustion were increased in the β-ALA group. The 
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present study was unable to show similar results with β-ALA supplementation groups. 

There was a slight trend with the creatine only group towards improvement in time to 

VO2max, but this was not significant. The lack of significance in the present study is 

partially due to the low power and effect size of the data, which may have been 

improved with a larger sample size. The ventilatory threshold values of the present study 

actually decreased over time for all groups, which is difficult to explain aside from there 

being a familiarity effect to the GXT or large variation in the data resulting in unreliable 

statistics for this variable. It is unlikely that familiarity was a major factor as all 

participants underwent familiarization tests on the cycle ergometer prior to starting the 

study protocol.  

Blood Lactate and Lactate Threshold 

The increase in muscle carnosine following supplementation would theoretically 

affect blood lactate levels and lactate threshold since one of the main functions of 

carnosine is as an intramuscular pH buffer. The present study was able to show a 

significant difference in peak lactate achieved during the maximal aerobic capacity test 

for the group supplementing with β-ALA over the combined supplementation and 

placebo. However, the study failed to show any differences with lactate threshold 

between the groups, only a trend of β-ALA supplementation improving levels after four 

weeks.  

Previous studies have reported mixed results pertaining to the effect of β-ALA 

and creatine supplementation on blood lactate accumulation and lactate threshold. Van 

Thienen and colleagues [67] reported no difference between groups in blood lactate 
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levels in healthy males after an incremental maximal cycle ergometer test followed by a 

30 second all out sprint after eight weeks of supplementation with β-ALA or placebo. 

Zoeller et al. [9] studied 55 men who supplemented with β-ALA, creatine, a combination 

or placebo for 28 days and reported a greater VO2 at lactate threshold for the combined 

supplementation group, suggesting that this supplementation protocol may delay the 

onset of lactate threshold during incremental exercise. 

Stoud and colleagues [129] examined the change in blood lactate levels during a 

GXT on the treadmill with creatine supplementation and found no change in blood 

lactate concentrations as a result of a loading phase of five days of 20 g/day of creatine. 

Greenhaff et al. [76] also reported no difference between creatine and placebo 

supplementation groups for blood lactate accumulation with an isokinetic exercise 

protocol of 5 x 30 maximal voluntary unilateral knee extensions at 180°/s.  

The present study may have failed to show improvements in lactate accumulation 

and lactate threshold with β-ALA alone or the combined β-ALA and creatine 

supplementation strategy, despite the increase in muscle carnosine content that was 

observed, for various reasons. First, the power analysis and effect size calculations were 

low, which indicates the strength of the data could be improved, possibly with a larger 

sample size. Also, the present study examined the effects of supplementation in 

recreationally active females, who did not engage in a training program during the four 

weeks of the study.  Perhaps with a training program, like one seen in other studies, there 

may have been training effects seen for lactate variables.  
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Anaerobic Exercise Performance 

The present study failed to show any significant differences between groups for 

peak power, mean power, total work rate of fatigue. However, there were trends in the 

data that suggest creatine only supplementation may have led to greater improvements in 

peak power, mean power and total work. Another trend suggested that the combined β-

ALA and creatine supplementation may have led to an improvement in rate of fatigue 

after four weeks.  

The support for creatine supplementation is greater than β-ALA since it has been 

more extensively researched. Van Thienen et al [67] showed a significant increase in 

mean power with β-ALA supplementation during a 30 second all out sprint on the cycle 

ergometer after eight weeks of supplementation. Wiroth and colleagues [130] showed 

creatine supplementation improved maximal power and work during a set of 5 x 10 

second sprints on the cycle ergometer. Green and colleagues [105] specifically examined 

the effect of creatine supplementation of 20 g/day for six days on peak power, mean 

power and percentage decline during multiple leg and arm Wingate tests. They were able 

to conclude that peak power increased with creatine supplementation during the first arm 

Wingate test, and percentage decline was lower with supplementation after the second 

leg Wingate test. Ziegenfuss et al. [131] also showed that creatine supplementation in 

college athletes resulted in increased total work and peak power during multiple 

maximal 10-sec sprints on a cycle ergometer.  

The literature for β-ALA supplementation and anaerobic measures is not as 

available, and actually tends to lean towards a lack of differences between groups.  



102 
 

 

Hoffman et al. [3] studied the effects of 3 weeks of β-ALA supplementation in college 

football players. They used a modified 60 second Wingate anaerobic test and did not 

show any difference between supplementation groups for peak power, mean power or 

total work. They showed a trend with rate of fatigue that suggested β-ALA 

supplementation may have improved values over placebo. The authors suggested that the 

supplementation protocol may not have led to a great enough increase in muscle 

carnosine to cause performance effects in this group of highly trained athletes. Another 

study by this group examined the effects of creatine alone, β-ALA and creatine 

combined and placebo supplementation in strength power athletes. This study did not 

show any improvement for any supplementation group with the Wingate test, and no 

differences were observed between groups [18]. Although these results are similar to the 

present study, the reasoning could be somewhat opposite since the present study 

included only recreationally active females instead of trained athletes. The participants 

in the present study may not have shown any improvements due to the lack of training 

associated with their supplementation.   

Although these studies have not shown significant improvements with β-ALA 

supplementation and power measures, β-ALA has been linked to strength gains [16] and 

improved training volume [3]. Therefore, there is a definite need for more research in 

this area.  

Conclusion 

The results of the current study showed increases in muscle carnosine and 

phosphagen levels with supplementation compared to placebo, but not between specific 
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supplementation strategies. These overall increases with supplementation in the muscle 

were not associated with improved body composition or exercise performance, therefore 

failing to show beneficial outcomes of β-ALA and creatine supplementation. 

The present study failed to show any additive effects of creatine and β-ALA 

supplementation for body composition, aerobic exercise, lactate thresholds or anaerobic 

exercise measures. This could be due to the small sample size of the present study 

resulting in low power and effect sizes. Previous research has demonstrated that four 

weeks of creatine and β-ALA supplementation was sufficient to increase muscle 

carnosine and phosphagen levels. However, perhaps more time is needed for 

performance adaptations to occur, especially without the addition of an exercise training 

component. Also, both of these supplements may have had a greater effect on a more 

trained population, or if combined with a specific anaerobic training program, since 

previous research has shown success when taken alongside a training program.  

This is one of the first studies to use an individualized dosing strategy for β-ALA 

supplementation instead of a standardized amount for all participants. This may have 

also played a role in the lack of significant findings between groups in that there may be 

a gender effect with females needing a different amount compared to males to elicit 

performance effects. The current study utilized physically active females who had an 

average intake of 6.1 g/day, compared to other studies that supplement with up to 6.4 

g/day mostly in males, that corresponded to approximately 0.1 g/kg/day in most studies, 

which was the amount utilized in the present study as well. However, there may be 
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gender differences in the storage or utilization of carnosine once in the muscle that 

prevented the present study from seeing more significant results.  

Despite the results of the present study, it is still believed that β-ALA and 

creatine play a role in improving anaerobic exercise markers, lactate threshold as well as 

body composition when combined with an exercise program. Further studies should be 

conducted to show the potential effects of a combined supplementation strategy in 

athletic populations. Additionally, future studies should examine the effects of combined 

supplementation on muscle carnosine and phosphagen levels in a larger and/or more 

active population.  
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