
GENOMIC REGULATORY NETWORKS,

REDUCTION MAPPINGS AND CONTROL

A Dissertation

by

NOUSHIN GHAFFARI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2012

Major Subject: Computer Engineering

GENOMIC REGULATORY NETWORKS,

REDUCTION MAPPINGS AND CONTROL

A Dissertation

by

NOUSHIN GHAFFARI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Edward R. Dougherty
Committee Members, Ivan Ivanov

Aniruddha Datta
Byung-Jun Yoon

Head of Department, Costas N. Georghiades

May 2012

Major Subject: Computer Engineering

iii

ABSTRACT

Genomic Regulatory Networks,

Reduction Mappings and Control. (May 2012)

Noushin Ghaffari, B.S., Tehran Central Azad University;

M.S., University of Houston - Clear Lake

Chair of Advisory Committee: Dr. Edward R. Dougherty

All high-level living organisms are made of small cell units, containing DNA,

RNA, genes, proteins etc. Genes are important components of the cells and it is

necessary to understand the inter-gene relations, in order to comprehend, predict and

ultimately intervene in the cells’ dynamics. Genetic regulatory networks (GRN) rep-

resent the gene interactions that dictate the cell behavior. Translational genomics

aims to mathematically model GRNs and one of the main goals is to alter the net-

works’ behavior away from undesirable phenotypes such as cancer.

The mathematical framework that has been often used for modeling GRNs is the

probabilistic Boolean network (PBN), which is a collection of constituent Boolean net-

works with perturbation, BNp. This dissertation uses BNps, to model gene regulatory

networks with an intent of designing stationary control policies (CP) for the networks

to shift their dynamics toward more desirable states. Markov Chains (MC) are used

to represent the PBNs and stochastic control has been employed to find stationary

control policies to affect steady-state distribution of the MC. However, as the num-

ber of genes increases, it becomes computationally burdensome, or even infeasible, to

derive optimal or greedy intervention policies.

This dissertation considers the problem of modeling and intervening in large

GRNs. To overcome the computational challenges associated with large networks,

two approaches are proposed: first, a reduction mapping that deletes genes from the

iv

network; and second, a greedy control policy that can be directly designed on large

networks. Simulation results show that these methods achieve the goal of controlling

large networks by shifting the steady-state distribution of the networks toward more

desirable states.

Furthermore, a new inference method is used to derive a large 17-gene Boolean

network from microarray experiments on gastrointestinal cancer samples. The new

algorithm has similarities to a previously developed well-known inference method,

which uses seed genes to grow subnetworks, out of a large network; however, it has

major differences with that algorithm. Most importantly, the objective of the new

algorithm is to infer a network from a seed gene with an intention to derive the Gene

Activity Profile toward more desirable phenotypes. The newly introduced reduction

mappings approach is used to delete genes from the 17-gene GRN and when the

network is small enough, an intervention policy is designed for the reduced network

and induced back to the original network. In another experiment, the greedy control

policy approach is used to directly design an intervention policy on the large 17-gene

network to beneficially change the long-run behavior of the network.

Finally, a novel algorithm is developed for selecting only non-isomorphic BNs,

while generating synthetic networks, using a method that generates synthetic BNs,

with a prescribed set of attractors. The goal of the new method described in this

dissertation is to discard isomorphic networks.

v

To Love of My Life, Omid

vi

ACKNOWLEDGMENTS

My graduate studies at Texas A&M University have been a wonderful personal

and professional experience. I could not expect a mentor and advisor better than

Dr. Dougherty. His vast knowledge and experience, invaluable vision, careful obser-

vation of details, managing skills, support, personal attention to each individual, care

for goal-oriented thinking, intellectual guidance and generous time taught me more

than I can put in words. I deeply appreciate all I have learned from him about my

research interests and also about life. I would like to thank Dr. Ivanov for all his

guidance, support, advice, valuable suggestions and encouragement. He inspired me

tremendously through the preparation of my articles and dissertation. The fruitful

discussions with him greatly assisted me in developing my ideas.

I am very grateful to my committee members Dr. Datta and Dr. Yoon. Their

supports, encouragements, courses and advices improved my knowledge, and partic-

ularly enhanced my dissertation.

I extend many thanks to my colleagues at GSP lab. I also would like to thank

Dr. Charles D. Johnson at AgriLife Genomics and Bioinformatics Services for his

assistance, flexibility and support in the last year of my study in the PhD program.

I am in a life-long debt to my family, especially my parents, and my sister and

brother. I cannot thank them enough for their unconditional love, encouragement,

inspiration and support throughout my entire life.

Most importantly, I would like to express my deepest gratitude to my love, Omid.

He loved me and supported me in all the good/bad days. He believed in me and gave

me the strength to dream big. Without him, I could not complete my graduate

studies and achieve many other goals in my life. I dedicate this dissertation to him.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Translational genomics, toward personalized medicine . . . 1

B. Modeling genomic regulatory networks 3

C. Reduction mappings and control policy for large networks . 4

D. Avoiding isomorphic synthetic GRNs 6

E. Inference of GRNs, with an intent for intervention 7

II BACKGROUND . 9

1. Boolean Networks . 9

2. Coefficient of Determination (CoD) 11

3. Mean-first-passage-time control policy (MFPT-CP) . . 12

4. Steady-state distribution control policy (SSD-CP) . . 14

5. Growing subnetworks using Seed Genes 15

6. Generating Boolean networks from prescribed at-

tractor sets . 17

III REDUCTION MAPPINGS∗ . 20

A. Introduction . 20

B. Proposed method: CoD-Reduce 21

1. Selecting the Best Gene for Deletion 22

2. Reduction Mappings using Selection Policy 23

3. Inducement . 26

C. Discussion . 26

1. Relative effect . 28

2. Effects on the steady-state distribution 29

3. Randomly Generated Networks 30

D. Alternative Algorithm: CoD-Reduce II 35

1. Simulation Results . 36

E. Case study: A 4-gene BN and walk through of the concepts 37

1. Selecting best gene for deletion 41

2. Designing the Selection Policy 41

a. Proposed heuristic selection policy 42

3. Reducing the network, using selection policy 43

viii

CHAPTER Page

4. Inducing control policy designed on the reduced

network to the original network 44

5. Applying induced CP to the original network 45

IV GREEDY CONTROL POLICY∗ 48

A. Introduction . 48

B. Proposed methodology . 51

C. Performance Comparison 55

1. Run-time Comparison 56

2. Generating Synthetic Networks and Their Characteristics 58

3. Effect on the SSD of the networks 61

4. Effect of cyclic attractors and the selection of target-

control pairs . 62

5. Statistical Testing . 68

V ALGORITHMS FORGENERATIONOF SYNTHETIC BOOLEAN

NETWORKS AND NETWORKS ISOMORPHISMS 70

A. Introduction . 70

B. Isomorphism in the context of the Boolean networks 71

1. Definitions . 72

C. Discussion . 73

1. Isomorphism of k-BN-trees 74

2. An algorithm for avoiding isomorphic k-BN-trees . . . 77

3. Isomorphism for Boolean networks with cyclic attractors 79

VI AN INFERENCE METHOD WITH AN INTERVENTION

INTENT . 83

A. Introduction . 83

B. Proposed inference method 85

C. Discussion . 89

D. Gastrointestinal cancer network, OBSCN as the seed gene 91

1. Applying CoD-Reduce and CoD-CP 93

E. Gastrointestinal cancer network, C9orf65 as the seed gene . 94

REFERENCES . 97

APPENDIX A . 104

APPENDIX B . 105

ix

CHAPTER Page

VITA . 108

x

LIST OF TABLES

TABLE Page

I MAXCPD Table: the first three columns represent the binary

combinations of the three MAXCOD genes. The last two columns

are filled by summing up the SSD probabilities of states in each

corresponding block. 52

II Using a CoD-Strongly-Connected T-C pair : Comparing the MFPT-

CP and SSD-CP with the proposed CoD-CP. The absolute SSD

shift toward desirable states, averaged for 100BNps with 10 genes,

100 BNps with 9 genes, 100 BNps with 8 genes and 100 BNps

with 7 genes. Singleton attractors with perturbation probability

p = 0.1 . 62

III Randomly choosing the target and control genes: Comparing the

MFPT-CP and SSD-CP with the proposed CoD-CP. The absolute

SSD shift toward desirable states, averaged for 100 BNps with

10 genes, 100 BNps with 9 genes, 100 BNps with 8 genes and

100 BNps with 7 genes. Singleton attractors with perturbation

probability p = 0.1. 65

IV Using a CoD-Strongly-Connected T-C pair : Comparing the MFPT-

CP and SSD-CP with the proposed CoD-CP. The absolute SSD

shift toward desirable states, averaged for 100BNps with 10 genes,

100 BNps with 9 genes, 100 BNps with 8 genes and 100 BNps

with 7 genes. Cyclic attractors with perturbation probability p = 0.1 65

V Randomly choosing the target and control genes: Comparing the

MFPT-CP and SSD-CP with the proposed CoD-CP. The abso-

lute SSD shift toward desirable states, averaged for 100 BNps

with 10 genes, 100 BNps with 9 genes, 100 BNps with 8 genes

and 100 BNps with 7 genes. Cyclic attractors with perturbation

probability p = 0.1. 66

xi

TABLE Page

VI Using a CoD-Strongly-Connected T-C pair : Comparing the MFPT-

CP and SSD-CP with the proposed CoD-CP. The absolute SSD

shift toward desirable states, averaged for 100BNps with 10 genes,

100 BNps with 9 genes, 100 BNps with 8 genes and 100 BNps

with 7 genes. Singleton attractors with perturbation probability

p = 0.01 . 66

VII Randomly choosing the target and control genes: Comparing the

MFPT-CP and SSD-CP with the proposed CoD-CP. The absolute

SSD shift toward desirable states, averaged for 100 BNps with

10 genes, 100 BNps with 9 genes, 100 BNps with 8 genes and

100 BNps with 7 genes. Singleton attractors with perturbation

probability p = 0.01. 67

VIII Using a CoD-Strongly-Connected T-C pair : Comparing the MFPT-

CP and SSD-CP with the proposed CoD-CP. The absolute SSD

shift toward desirable states, averaged for 100BNps with 10 genes,

100 BNps with 9 genes, 100 BNps with 8 genes and 100 BNps

with 7 genes. Cyclic attractors with perturbation probability p = 0.01 67

IX Randomly choosing the target and control genes: Comparing the

MFPT-CP and SSD-CP with the proposed CoD-CP. The abso-

lute SSD shift toward desirable states, averaged for 100 BNps

with 10 genes, 100 BNps with 9 genes, 100 BNps with 8 genes

and 100 BNps with 7 genes. Cyclic attractors with perturbation

probability p = 0.01. 68

X Two networks with 7 genes and 128 states: 4-BN-tree (1) and

4-BN-tree (2), are semi-isomorphic. Four states are randomly

chosen to be the attractor states. The number of states within

the basin of attractors vary, but their partial order is the same. . . . 76

XI Conditional Probability Distribution (CPD) Table: the first two

columns represent the binary combinations of the 2 predictor

genes. The last two columns represents the proportions of the

frequencies of the target, conditioned on predictor 1 and predictor 2. 86

XII SSD shift toward the Desirable states in Gastrointestinal Cancer

Network, with C9orf65 as seed . 96

xii

LIST OF FIGURES

FIGURE Page

1 Personalized Medicine . 2

2 Selection policy. For the two states that only differ in the gene

for deletion, the one that has 1 in selction policy vector, defines

the structure of the reduced network. 25

3 The average shifts of the steady-state-distribution produced by

applying the original MFPT and the stationary induced control

policies, using different number of genes. The original MFPT con-

trol policies were obtained before any reductions. The induced

control policies were designed on the reduced networks after ap-

plying reduction several times and then inducing the control policy

of the reduced networks back to the original network. Each one

of the four sets of 100 BNps was generated using randomly gen-

erated attractor sets; attractors are evenly distributed between

desirable and undesirable states. 32

4 The average shifts of the steady-state-distribution produced by

applying the original SSD and the stationary induced control poli-

cies, using different number of genes. The original SSD control

policies were obtained before any reductions. The induced control

policies were designed on the reduced networks after applying re-

duction several times and then inducing the control policy of the

reduced networks back to the original network. Each one of the

four sets of 100 BNps was generated using randomly generated

attractor sets; attractors are evenly distributed between desirable

and undesirable states. 33

xiii

FIGURE Page

5 The average SSD shift toward Desirable states and the relative

effects on the control policies of successive reductions of 4 sets

of 100 BNp. Each set has randomly generated attractors which

constrained to be evenly distributed between the Desirable and

Undesirable states. At each step the MFPT-CP is designed on

the network and applied to itself. As the figure shows the effect

on the SSD is similar in the original and reduced networks by

applying their own control policies. Also, SSD shift and relative

effect curves follow inverse patterns. 34

6 The average SSD shift toward Desirable states and the relative

effects on the control policies of successive reductions averaged for

100 BNp, using CoD-Reduce II. At each step the control policy

is designed on the network and applied to itself. After deleting

each gene, the control policy designed on the reduced network and

induced back to its original network. SSD shift and relative effect

curves follow inverse patterns. 37

7 The average SSD shift toward Desirable states by applying the

original and induced control policies after each reduction, aver-

aged for 100 BNp, using CoD-Reduce II. At each step the control

policy is designed on the network and applied to itself. After

deleting each gene, the control policy designed on the reduced

network and induced back to its original network. SSD shift to-

ward Desirable states, generated by original and induced control

policies, have very similar effects on the networks. 38

8 The average SSD shift toward Desirable states by applying the

original and induced control policies after all the reduction steps

using CoD-Reduce II, averaged for 100 BNp. After deleting genes,

the control policy designed on the reduced network and induced

back to the original network. 39

9 The truth table of the 4-gene network. The states 2 and 12 are

the singleton attractors. 40

xiv

FIGURE Page

10 All 256 possible SPs for 4-gene network and their shift of steady-

state distribution toward more desirable states. Our heuristic SP

is among the 16 optimal SPs that have maximum SSD shift toward

desirable states. 42

11 The process for designing selection policy using the proposed

heuristic algorithm . 43

12 The truth table of the 3-gene network 44

13 The induction procedure. The color coding specifies the states

that collapse to one state in the reduced network It also displays

the duplication of the control actions during induction. 46

14 SSD shift before and after applying the induced MFPT CP 47

15 Deriving CoD-CP for a small 7-gene network. The x1 and x2 genes

are the T and C genes, respectively. x1 = 0 defines Desirable

states. The MAXCOD genes are: {x2, x3, x4}. The control action
for state s is 1 and the control action for state s̃c is 0, because

D(2) > D(1). 56

16 Comparing the average running times (in seconds) for designing

stationary control policy for 100 randomly generated 10-gene, 9-

gene, 8-gene and 7-gene BNps. Running time for CoD-CP algo-

rithm is always less than MFPT-CP and SSD-CP. The running

time grows exponentially as the number of genes increases. 57

17 Comparing original CoD-CP to the original and induced MFPT-

CP and SSD-CP for 100 randomly generated 10-gene BNps with

half of the attractors in D states. In the first set of bars, CoD-CP,

MFPT-CP and SSD-CP are designed on the 10-gene networks. In

the next sets, the CoD-CP was designed on the original 10-gene

networks and compared to the induced MFPT-CP and SSD-CP.

At each step, one gene was deleted, and then MFPT-CP and SSD-

CP were designed and induced back to the original network, until

each BNp had only 4 genes. The perturbation probability is 0.1. . . . 63

xv

FIGURE Page

18 Comparing original CoD-CP to the original induced MFPT-CP

and SSD-CP for 100 randomly generated 10-gene BNps with half

of the attractors in D states. In the first set of bars, CoD-CP,

MFPT-CP and SSD-CP are designed on the 10-gene networks. In

the next sets, the CoD-CP was designed on the original 10-gene

networks and compared to the induced MFPT-CP and SSD-CP.

At each step, one gene was deleted, and then MFPT-CP and SSD-

CP were designed and induced back to the original network, until

each BNp had only 4 genes. The perturbation probability is 0.01. . . 64

19 Two isomorphic 2-BN-trees. a) A Boolean network with two sin-

gleton attractors, states {0010, 1100}, represented as two BN-

trees called BN-tree 1 and BN-tree 2. b) A relabeling exchanges

columns one and three in the truth table; then the truth table

is re-ordered, creating a new 2-BN-tree, with attractors {1000,
0110}. The BN-tree 1 and BN-tree 2 in parts a and b, have a

common attractor structure and matching basin for their attrac-

tors, therefore, they are isomorphic. 75

20 Boolean network with 4 cyclic attractors. There exists 7 genes

and 128 states; therefore, the truth table consists of 128 rows.

Four states {17, 36, 42, 121} are the attractors. The cycle length
for each attractor is 2 for all 4 attractors. 80

21 Generating CPD tables from binarized microarry measurements . . . 87

22 17-gene Gastrointestinal Cancer Network 93

23 Comparing the total SSD shift for the Undesirable states, before

and after applying CoD-CP, Induced MFPT-CP and SSD-CP. The

CoD-CP is designed on the 17-gene Gastrointestinal cancer net-

work. The 17-gene network was reduced to 10 genes, the MFPT-

CP and SSD-CP were designed for it and then these control poli-

cies induced back and applied on the original 17-gene network.

The seed gene is OBSCN and p=0.1. 95

xvi

FIGURE Page

24 Comparing the total SSD shift for the Undesirable states, before

and after applying CoD-CP, Induced MFPT-CP and SSD-CP. The

CoD-CP is designed on the 17-gene Gastrointestinal cancer net-

work. The 17-gene network was reduced to 10 genes, the MFPT-

CP and SSD-CP were designed for it and then these control poli-

cies induced back and applied on the original 17-gene network.

The seed gene is OBSCN and p=0.01. 95

25 Procedure for selecting Target-Control pair with direct connection . . 104

1

CHAPTER I

INTRODUCTION

A. Translational genomics, toward personalized medicine

The building blocks of all living organisms are small units called cells. Cells are

very complex dynamical systems, much more complex than man-made systems, with

many components, inputs, outputs, feedback signals, stress management mechanisms

etc and cells’ components interact to carry out a variety of functionalities. One goal of

systems biology is to understand such a phenomenon, in particular, this field aims to

study the cells’ behavior with models that represent the cells’ dynamics closely, while

having tractable mathematical complexity. Genes play an important role in regulating

cells and it is important to understand their functions and interrelations. Genomic

Regulatory Networks (GRNs) model the interactions among genes that dynamically

determine the cell behavior. One of the main objectives of modeling GRNs is to alter

the behavior of the system toward more desirable phenotypes, i.e. disease-free stages.

The cells’ behavior is mainly determined by the time evolution of the their Gene

Activity Profile (GAP), i.e. the gene expression level of all the genes within the net-

work. In recent years, advancements in technologies such as microarrays and Next

Generation Sequencing (NGS), have made it possible to measure the expression lev-

els of thousands of genes simultaneously, with relatively low cost. Having a snapshot

of the genomic signals from the patient samples, provides the possibility of deliv-

ering personalized medicine. The field of translational genomics involves modeling

genomic systems with the ultimate goal of deriving therapeutic techniques. Figure

1 shows the key steps in deriving personalized treatment, based on an individual’s

The journal model is IEEE Transactions on Automatic Control.

2

Fig. 1. Personalized Medicine

measurements. The process starts by taking the samples from a patient, constructing

the model that represents his/her GRN relatively closely, deriving the personalized

intervention strategy and finally prescribing the appropriate treatment in terms of

medicine, chemo-therapy, radiation-therapy etc.

Constructing gene regulatory networks that represent the gene interactions inside

the cells is very important, because it is believed that the time evolution of GAPs

and phenotypes are related. As an example, a previous study discovered a two-gene

classifier that accurately identifies two different forms of sarcoma: gastrointestinal

stromal tumor (GIST) and leiomyosarcomas (LMSs) [1], based on the expression

level of genes OBSCN and C9orf65. The two different phenotypes require different

treatments, and thus, it is important to classify the patients’ samples correctly. Ad-

ditionally, in a recent work, the gene WNT5A that is known to be associated with

increased metastatic melanoma [2] was used in the respective model of the GRN

3

to shift the network toward a desired phenotype, which is down-regulated WNT5A,

using another gene: pirin that is a strong predictor of WNT5A expression.

B. Modeling genomic regulatory networks

One of the widely used mathematical frameworks for modeling GRNs is the Prob-

abilistic Boolean Networks [3]. Each PBN is a collection of Boolean Networks with

a perturbation, BNp, where the perturbation term p is a small probability of each

gene randomly flipping its value [3]. Gene expression levels inside the cells can be

coarsely quantified to be under/over expressed, represented as 0/1 in the PBN model.

The dynamics of a PBN are represented by its associated Markov Chain. The flipping

probability p makes the MC ergodic, and therefore its steady-state distribution (SSD)

exists. The ultimate goal of modelings GRNs via PBNs is to beneficially alter their

long-run behavior toward more desirable phenotypes such as cancer-free stages.

From a theoretical standpoint, to change the steady-state behavior of a PBN,

one can always derive the optimal control policy [4, 5], using dynamic programming

techniques. However, that task requires extensive computations [6, 7] and thus the

application of the optimal control policy is limited to networks with a small number

of genes. As an alternative to the optimal intervention, greedy control approaches

such as Mean-First-Passage-Time (MFPT-CP) and Steady-State Distribution (SSD-

CP) were proposed [8, 9]. They are often close approximations to the optimal policy.

However, as the number of genes increases in the network, even these greedy control

policies cannot be designed for the networks with many genes.

4

C. Reduction mappings and control policy for large networks

This dissertation focuses on the problem of modeling and intervening large BNps. Ap-

pendix B discusses reduction in other contexts and compares them with the proposed

methods. Herein, two major solutions are described for controlling large GRNs:

1. Reduction mappings by sequentially deleting genes from large networks and

then inducing the control policy designed on the reduced network back to the

original network

2. A procedure for designing control policy directly on large networks

In the first approach, a reduction mapping framework is designed for Boolean

network with perturbation. This algorithm employs the coefficient of determination

(CoD) [10] to choose genes for deletion, utilizes the collapsing heuristic to construct

the wiring of the reduced network, designs a control policy on the reduced network and

finishes with a procedure to induce that control policy on the original network. The

overall procedure is referred to as CoD-Reduce. The CoD measures how a set of ran-

dom variables improves the prediction of a target variable, relative to the best predic-

tion in the absence of any conditioning observation. The performance of the algorithm

is evaluated by its effects on the SSD of the network and on how well it approximates

the stationary control designed on the full network. The algorithm is formulated for

Boolean networks [11] with perturbation; however, since a binary context-senstive

probabilistic Boolean network (PBN) [12][13] is a of collection Boolean networks with

perturbation endowed with a selection probability structure (and a general PBN is a

collection of more finely quantized versions of BNs), the algorithm can be applied to

a PBN by applying it to each constituent Boolean network for the same gene, thereby

reducing the PBN. The efficacy of CoD-Reduce is demonstrated on networks of 10

5

genes or less, where it is possible to compare the steady-state shifts of the induced and

original policies (because the latter can be derived), and by applying it to a 17-gene

gastrointestinal network where it is shown that there is substantial beneficial steady-

state shift. The CoD-Reduce algorithm and the corresponding simulation studies are

provided in Chapter III.

As the second approach, a novel methodology is developed for deriving large

BNps toward more desirable states. The method relies on the predictive power of

a small group of genes, which includes the control gene, for predicting the target

gene and designs a stationary control policy that alters the SSD of the model. The

algorithm is designed for the specific class of networks where there is a path from

the control to the target gene - an assumption which has a natural interpretation in

terms of the biochemical regulatory pathways present in cells. This method simplifies

the procedure of designing the stationary control policy and eliminates the need to

have a complete knowledge about the state transition matrix of the Markov chain.

Most importantly, the new algorithm can be used to design a stationary control policy

directly on large networks without deleting any genes/states. This novel algorithm is

called CoD-CP because the CoD is the main tool and CP stands for control policy.

The CoD-CP uses the marginal probabilities of the individual genes obtained from the

SSD of the network to calculate the CoDs. Simulation experiments show that in small

networks, where it is possible to derive the currently available greedy MFPT-CP [8]

and SSD-CP [9] policies, CoD-CP achieves a similar performance. Most importantly,

when the size of the network is large and MFPT-CP or SSD-CP cannot be designed

directly on the original model, CoD-CP is easily constructed and applied to the

network without any reduction mappings and induction of the CP from the reduced

network back to the original model. Chapter IV discusses the CoD-CP algorithm

and its corresponding simulation results.

6

D. Avoiding isomorphic synthetic GRNs

In order to study different intervention approaches for GRNs, it is essential to gener-

ate synthetic networks to have large number of samples to study the properties of the

model. The synthetic networks are usually generated with a pre-specified set of crite-

ria, thus, their characteristics are known, which enables scientists to make meaningful

conclusions about the networks. It is important to select the major characteristics

of the real networks and generate the synthetic networks according to those speci-

fications. As an example, the attractors are important components of the networks

and play a crucial role in the long-run behavior of the system. A previous study,

developed a method for generating synthetic Boolean networks with a prescribed set

of attractors [14], in order to impose the attractor structure of a real network in

the generation of the synthetic networks. This algorithm is widely used for generat-

ing synthetic Boolean networks, mainly for studying the intervention approaches for

PBNs. One important issue while using this algorithm is the possibility of generating

isomorphic BNs. The input of the algorithm is a set of prescribed attractors and it

is possible that the output BNs can be mapped to one another by relabeling their

genes. These networks are called isomorphic. This dissertation proposes an algo-

rithm for eliminating isomorphic networks to ensure that all the synthetic networks

used in a study are non-isomorphic. The new algorithm highly relies on enforcing

restrictions on the attractor structure of the network and the states within a basin of

each attractor. Definition of the isomorphic BNs and related material are discussed

in Chapter V.

7

E. Inference of GRNs, with an intent for intervention

The main objective of the current dissertation is to control large GRNs. In order to

test the methods introduced for large networks, it was necessary to have a mecha-

nism to infer a large real-world derived Boolean network. This method needs to infer

the GRNs with an intention of intervening the networks’ behavior to avoid undesir-

able phenotypes. The problem of inferring networks had been previously studied by

Hashimoto et. al. with a method referred to as seed-growing algorithm [15]. The

objective of the seed-growing algorithm is to generate subnetworks with tight inter-

connection and outputs directed graphs. The idea behind this algorithm is to start

with a set of genes that are important for the phenotype of interest, called seed genes,

and adjoin genes sequentially to generate subnetworks that are strongly connected

within the subnetwork.

This dissertation introduces a new algorithm that infers networks form the gene

expression measurements with the ultimate goal of controlling the model’s dynamics.

The algorithm, similarly to the well-known seed-growing method, starts with a small

set of important genes, usually only the target gene, which is highly related to the

phenotype of interest. However, the main objective of the new algorithm is to infer

networks that can be controlled via available intervention policies, and thus, it differs

from the seed-growing algorithm in its steps and the output. The two components

of the method that are similar to the seed-growing algorithm are: first, starting

from an important seed gene(s), and second, incorporation of the strength of gene

connectivity into the inference method. This new algorithm is called CoD-Control-

Embedded-inference (CoD-CE-Inference), to reflect its similarity to the seed-growing

method in using CoD, and also emphasizing its intention of controlling the inferred

network. The CoD-CE-Inference starts by a target gene, then in each step, adds one

8

gene to the network that is strongly connected to at least one of the genes inside

the network. The CoD is used to measure the strength of gene connections. After

adding a new gene, the wiring of the network is updated using all the genes within

the network, including the recently added gene. And finally, the algorithm generates

the truth table of the network and updates it after addition of a new gene. In

summary, the seed-growing algorithm and the CoD-CE-Inference have four major

differences: first, CoD-CE-Inference considers the ultimate goal of controlling the

GRNs via a stationary control policy, therefore, each step of the process is designed

to assist in achieving this ultimate goal, while the seed-growing algorithm is more

concerned about the topology of the network in the context of graph-theory; second,

CoD-CE-Inference generates the truth table of the GRN; third, CoD-CE-Inference

re-wires the network after adding any new gene, meaning that adding each gene

can affect the entire network, by changing predictors of any given gene; and finally,

CoD-CE-Inference generates a unique BN , originated from the target gene, but the

seed-growing algorithm generates many networks that can be very similar or very

different.

The CoD-CE-Inference algorithm is used to infer two large 17-gene BN from

gastrointestinal cancer microarray dataset introduced in [1]. These network have

different seed genes and are used to demonstrate the methods described within this

dissertation for controlling large GRNs: CoD-Reduce and CoD-CP. The CoD-CE-

Inference algorithm and its related experiments are represented in Chapter VI.

9

CHAPTER II

BACKGROUND

This chapter provides the background material essential for understanding the meth-

ods developed by this dissertation. Boolean networks are chosen as the model for

representing genomic regulatory networks. The coefficient of determination is widely

used by the new methods, e.g. the reduction mappings and the greedy control policy

for large networks. A previously proposed method for generating Boolean networks

with prescribed attractor sets, ia used for generating synthetic networks; and one

chapter of this dissertation is dedicated to selecting non-isomorphic synthetic net-

works. Additionally, inferring GRNs from seed genes is previously addressed; and

this dissertation proposes a new method that is comparable with the seed-growing

algorithm. Finally, the two greedy control polices described in this chapter are used

for comparing the performance of the newly introduced algorithms.

1. Boolean Networks

A Boolean network (BN) with perturbation p, BNp = (V, f), on n genes is defined

by a set of nodes V = {x1, ..., xn} and a vector of Boolean functions f = [f 1, ..., fn].

The variable xi ∈ {0, 1} represents the expression level of gene i, with 1 representing

high and 0 representing low expression [3]. The regulatory rules between genes are

represented by f . At every time step, the value of xi is predicted by the values

of a set, W i, of genes at the previous time step, based on the regulatory function

f i. W i = {xi1 , ..., xiki} is called the predictor set and the function f i is called the

predictor function of xi. A state of the BNp at time t is a vector s = (x1(t), ..., xn(t)) ∈

{0, 1}n, also called Gene Activity Profile (GAP), and the state space of the BNp is

the collection S of all states of the network. The perturbation parameter p ∈ (0, 1]

10

models random gene mutations, i.e. at each time point there is a probability p of

any gene changing its value uniformly randomly. The underlying model of a BNp is

a finite Markov chain and its dynamics are completely described by its 2n × 2n state

transition matrix (STM), P = (p(si, sj))
2n

i,j=1, where p(si, sj) is the probability of the

chain undergoing the transition from the state si to the state sj. For n genes, the

Markov chain has N = 2n states and the collection of all the states is called State

Space: S. The perturbation probability p makes the chain ergodic and therefore it

possesses a steady-state probability distribution π which satisfies [16]:

π = πP (2.1)

The Truth table (TT) of the network is a N ×n matrix, where all the states ∈ S

are the rows and columns represent the predictor functions. The TT can be used to

derive the STM and SSD of the network. The Markov chain starts the transitions

from an initial state and continues to transition from a state to another state until

it eventually enters a set of states where it cycles forever. These set of states are

called attractors of the network. If there is only one state in the attractor set, then

it is called singleton attractor. If there are more than one state within the attractor

set, the network posses the cyclic attractor. Each network can have more than one

attractor set. Non-attractor states of the network are called transient states. Each

transient state belongs to one attractor set, because all the transitions eventually

end within an attractor. The number of transitions needed for a state to reach its

attractor set determines its level. In general the network can be partitioned using

these levels: all the states in a level need exactly the same number of transitions to

reach their corresponding attractor.

11

2. Coefficient of Determination (CoD)

The coefficient of determination (CoD) measures how a set of random variables im-

proves the prediction of a target variable, relative to the best prediction in the absence

of any conditioning observation [10]. Let X = (X1, X2, ..., Xn) be a vector of predic-

tor binary random variables, Y a binary target variable, and f a Boolean function

such that f(X) predicts Y . The Boolean case is represented and used in this dis-

sertation, however, the basic definition for CoDX(Y) is not so restricted [10]. The

mean-square error (MSE) of f(X) as a predictor of Y is the expected squared dif-

ference, E[|f(X) − Y |2]. Let εopt(Y,X) be the minimum MSE among all predictor

functions f(X) for Y and ε0(Y) be the error of the best estimate of Y without any

predictors. The CoD is defined as:

CoDX(Y) =
ε0(Y)− εopt(Y,X)

ε0(Y)
. (2.2)

Letting x1,x2, ...,x2n denote the 2n possible values for X, running from (0, 0, ..., 0) to

(1, 1, ..., 1), the relevant quantities are given by

εopt(Y,X) =
2n∑
j=1

P (X = xj)min[P (Y = 0|xj), P (Y = 1|xj)] (2.3)

and

ε0(Y) = min[P (Y = 0), P (Y = 1)] (2.4)

[10]. The CoD can be used to measure the strength of the connection between a target

gene and its predictors and has been used since the early days of DNA microarray

analysis to characterize the nonlinear multivariate interaction between genes [17].

More recently, CoD was used to characterize canalizing genes [18] and contextual

genomic regulation [19].

12

3. Mean-first-passage-time control policy (MFPT-CP)

For beneficially changing the long-run behavior of a GRN, optimal intervention is

usually formulated as an optimal stochastic control problem [6]. The intervention

is achieved by toggling the value of a single control gene g, and stationary control

policies µg : S → {0, 1} are based on g. The values 0/1 are interpreted as off/on for

the application of the control: 1 meaning that the current value of g is toggled, and

0 meaning that no control is applied.

The mean-first-passage-time (MFPT) policy is based on the comparison between

the MFPTs of a state s and its flipped state s̃g [8]. The flipped state s̃g has the same

binary values for all its genes, expect the value of gene g: if g = 0 in s, then g = 1 in

s̃g or vice versa. When considering intervention, the state space S can be partitioned

into desirable (D) and undesirable (U) states according to the expression values of

a given target gene x, that is the leftmost gene in the state’s binary representations,

i.e. x1 = x, s = (x, x2, ..., xn), and the desirable states correspond to the value x = 0.

With these assumptions, the state transition matrix P of the network can be written

as

P =

 PDD PDU

PUD PUU

 . (2.5)

Using this representation, one can compute the mean-first-passage-time vectors re-

quired for a state s to reach the boundary between desirable and undesirable states.

Computation of these average times is performed in the time scale used for the state

transitions of the network. If one uses the states of the network to index the compo-

nents of the vectors in the 2n dimensional Euclidean space R2n , then one can form the

vectors KU and KD that contain the mean-first-passage-times needed for the states

13

in D and U to reach the undesirable and the desirable states, respectively. The two

vectors KU and KD are of dimension 2n−1, and, according to a well-known result form

the theory of Markov chains [16], are given as solutions to the following system of

linear equations:

KU = e+ PDDKU (2.6)

KD = e+ PUUKD (2.7)

where e denotes the vector of dimension 2n−1 with all of its co-ordinates equal to 1.

To understand the intuition behind the MFPT-CP algorithm it is important to

notice that, because the control gene g is different from the target gene, every state

s belongs to the same class of states, D or U , as its flipped state s̃g. With this in

mind, if a desirable state s reaches U on average faster than s̃g, it is reasonable to

apply control and start the next network transition from its flipped state s̃g. Thus,

the design of the stationary MFPT-CP is based on the differences KD(s) − KD (̃s
g)

and KU (̃s
g) − KU(s). To avoid too frequent application of control, the MFPT-CP

algorithm uses a tuning parameter γ > 0, and these differences are compared to the

value of γ, which is related to the cost of applying control.

The MFPT concept could be used in two different ways to design the interven-

tion strategy. The first approach is called ”model-dependent” and needs the state

transition matrix of the Markov Chain. The time-course measurements can be used

to estimate the transition probabilities for all states. Then the STM is used to find

the KU and KD vectors to design the control policy. In the second approach, called

”model-free,” the MFPTs are directly estimated from the time-course data and the

inference of the STM is skipped. The model-dependent MFPT-CP is used in the

simulation studies of this dissertation. The synthetic networks are generated using

14

the method proposed in [14]. Using these networks, it is possible to generate the STM

of the networks and derive the KU and KD vectors.

4. Steady-state distribution control policy (SSD-CP)

The steady-state-distribution control policy (SSD-CP) [9] uses the steady-state distri-

bution of a perturbed Markov chain given in [20] to quantify the shift in the steady-

state mass after applying possible controls. A perturbation in the logic defining the

Boolean network changes the original transition probability matrix P and steady-

state distribution π to P̃ and π̃, respectively. In [20], the fundamental matrix, Z, is

used to represent π̃ in terms of π. Z = [I−P+eπT]−1, where T denotes transpose and

e is a column vector whose components are all unity [21]. For a rank-one perturbation,

the perturbed Markov chain has the transition matrix P̃ = P + abT , where a, b are

two arbitrary vectors satisfying bT e = 0, and abT represents a rank-one perturbation

to the original Markov chain P . In the special case where the transition mechanisms

before and after perturbation differ only in one state, say state k,

π̃T = πT +
πT e(k)

1− bTZe(k)
bTZ = πT +

π(k)

1− β(k)
βT (2.8)

where βT = bTZ and e(k) is the elementary vector with a 1 in the kth position and

0s elsewhere [20, 21, 22]. For the ith state,

π̃i = πi +
πkβi
1− βk

. (2.9)

The results for these special cases can be extended to arbitrary types of pertur-

bations so that it is possible to compute the steady-state distributions of arbitrarily

perturbed Markov chains in an iterative fashion [20]. Therefore, it is possible to use

the perturbed MC and its SSD to derive the SSD-CP. Let s̃g be the flipped state

(with respect to control gene g) corresponding to state s (as with MFPT-CP), let πU

15

be the original steady-state mass of the undesirable states and let π̃U(s) and π̃U (̃s
g)

denote the steady-state masses of the undesirable states resulting from altering the

original state transition matrix by changing the starting state for the next transition

from s to s̃g and from s̃g to s, respectively. The SSD-CP policy is defined on pairs of

states, s and s̃g, in the following manner: if both π̃U(s) and π̃U (̃s
g) are larger than

πU , then control is applied to neither; otherwise, if π̃U(s) ≤ π̃U (̃s
g), then control is

applied to s, and if π̃U(s) > π̃U (̃s
g), then control is applied to s̃g.

5. Growing subnetworks using Seed Genes

It is believed that a small number of genes are responsible for a set of function-

alities within a cell. Additionally, from the computation prospective, modeling a

network with a small number of genes is more feasible. These two reasons moti-

vated Hashimoto et. al [15] to develop an algorithm for growing relatively small

subnetworks, out of a large network. Their method is referred to as the seed-growing

algorithm, because it starts with a small set of genes called seed, consisting of one

or more genes that are known to be related to the phenotype of interest or are of

interest.

The seed-growing algorithm considers the following two criteria, referred to as

principles of autonomy, while growing subnetworks using gene expression measure-

ments: 1- generating small subnetworks, out of large networks, where genes interact

significantly 2- genes within a subnetwork, are not strongly conditioned by genes out-

side the network. The algorithm iteratively adjoins genes to the network to enhance

the autonomy; and finally when the stopping criterion is satisfied, the process stops.

The stopping criterion is usually the maximum number of genes that can be added

to the network.

The algorithm uses graph-theoretic context and models the GRN as a directed

16

graph, where X is a set of genes, Y is a gene, and the strength of connection from X to

Y is denoted by σX(Y), which is determined by either CoD (section 2), or influence.

The influence of a variable relative to a Boolean function is found by the partial

derivatives of the Boolean function [3]. This variable is among the Boolean variables

of the Boolean function. The partial derivative of f w.r.t the variable xj is 0 if toggling

the value of variable xj does not change the value of f , and 1 otherwise. The influence

of xj on f , is the expectation of the partial derivative w.r.t. the distribution of the

variables. The strength from a set X of genes to the target set Y = {Y1, Y2, ..., Ym}

of genes, is defined by:

σX(Y) = ψ[σX(Y1), σX(Y2), ..., σX(Ym)] (2.10)

where ψ is a function such as the sum, maximum or minimum.

The goal is to grow a subnetwork S that has a strong collective strength of

connections among the genes within S, and has the minimum collective strength of

the connections from outside the subnetwork. To achieve this goal, the following

definitions are used.

Let U be the set of all genes under study, and let the target set Y be such that

Y ̸∈ S. The equation 2.11 is defined to measure the sensitivity of Y from S, i.e. the

collective strength of connection from the network S to the target Y :

σfrom,S(Y) = σS(Y) (2.11)

and equation 2.12, measures the impact of Y to S, i.e. the strength of connection

from the target to the network:

σto,S(Y) = σ{Y }∪S(S) (2.12)

17

The strength of connection from genes external to S to Y is defined as:

σout,S(Y) = max
X⊂U−(S∪{Y }),∥X∥≤m

σX(Y) (2.13)

where m is the maximum number of genes allowed in the strength function.

The gene Ŷ , which most enhances the network autonomy, will be adjoined the

network. Ŷ satisfies:

Ŷ = argmax
Y ̸∈S

Ξ[σfrom,S(Y), σto,S(Y), σout,S(Y)] (2.14)

where Ξ is a function to return the collective value of three parameters: σfrom,S(Y)

and σto,S(Y) and σout,S(Y). Ŷ maximizes Ξ.

After a certain number of genes are added to the subnetwork(s), the algorithm

stops and returns a graph, representing the GRN [15].

6. Generating Boolean networks from prescribed attractor sets

Modeling GRNs with an intention to intervene in their long-run behavior is considered

the key problem for genomics [14]. In the opposite direction, synthetically generating

networks, which possess the key characteristics of the model, is another important

task. The synthetic networks can be used to examine the inference and intervention

of the GRNs. The inverse problem of generating networks, with a given set of char-

acteristics, is addressed by Pal et. al. [14]. This problem is ill-posed, meaning that

it is possible to generate many, or none, networks with the desired properties.

As provided earlier in this chapter, section 1, the transient states of the Markov

chain transition to one of the attractor states with j transitions and j defines the level

of the state. Attractors define the long-run behavior of the network. Considering these

facts, two algorithms are developed by [14] to generate Boolean networks. The first

18

algorithm works with truth table by incorporating the attractors structure, predictor

sets and the constraints on the levels in filling out the TT. The second algorithm

randomly generates a state transition diagram, which dynamically represents the

network, and then checks the validity of the constraints on the generated network.

The first algorithm is widely used in PBN modeling and is chosen as the method for

generating synthetic Boolean networks in this dissertation.

The method assumes for a given set V consisting of n genes, a family of n sub-

sets W1,W2, ...,Wn of V with cardinalities not less than m and not larger than M ,

0 < m ≤M , a set A containing k states, and two positive integers l ≤ L, accordingly

construct a BN with node set V , having predictor set W = (W1,W2, ...,Wn), possess-

ing attractor cycles A1, A2, ..., Ar, where A = ∪r
j=1Aj, and containing between l and

L level sets. Algorithm 1 starts by generating a set of k attractor states. Then, it

randomly picks a predictor set W , where m ≤ ∥Wi∥ ≤ M for all i. The next step is

to checks if the selected attractor set is compatible with W . The compatibility refers

to the matching of truth table entries for the set W with the state transition dia-

gram. It then, fills out the truth table entries for generated attractors. Afterwards, if

there exists any cyclic attractors, it goes back to the previous step. This is necessary

because this method generates BNs with singleton attractors. An extension to the

current algorithm is provided to generate networks with cyclic attractors. And finally,

the levels of the networks are checked to ensure that they meet the minimum and

maximum allowed levels.

It is claimed that most of microarry data represent the steady-state behavior.

The majority of the probability mass in the steady-state comes from the attractors

[13] and is it expected that modeling BNs, with a given attractor structure, represents

the models that possess the key components of the real networks. Assuming that the

sampling is coming from steady-state, checking the validity of the networks generated

19

by their proposed model [14] is done by checking the SSD mass in the observed

sample states. They showed that in the case of a well-studied WNT5A network, the

SSD probabilities of the model generated by the algorithm matches closely with the

frequencies observed form sampling the data.

20

CHAPTER III

REDUCTION MAPPINGS∗

A. Introduction

A key objective for modeling gene regulatory networks is to derive intervention strate-

gies for beneficially altering cell dynamics [5] toward more desired stages. To address

the issue of intervening in the long-run behavior, stochastic control has been used to

find stationary control policies that affect a network’s steady-state distribution [4].

However, optimal control policy methods are computationally complex [6, 7] and of-

ten it is not feasible to design optimal control policies for large networks. A possible

approach to complexity reduction in the finite-horizon model is to use a discrete lin-

ear model [23]; however, this dissertation focuses on the more general nonlinear and

infinite-horizon case where network dynamics are described by a Markov chain. Even

with the Boolean model, where gene states are binary, the state transition matrix

(STM) grows exponentially as the number of genes grow.

As a solution to handle the complex networks, approximation via re-inforcement

learning [24] and greedy-control methods [8, 9] are proposed, but they are restricted

in the size of networks they can handle. For instance, rather than doing a full opti-

mization relative to some objective function and face the “curse of dimensionality”

associated with dynamic programming, greedy methods utilize statistical character-

istics of the network, including MFPT-CP [8] and SSD-CP [9]. But these still require

∗ Part of this chapter is reprinted, with permission, from “A cod-based reduction
algorithm for designing stationary control policies on boolean networks”, N. Ghaffari,
I. Ivanov, X. Qian, and E. Dougherty, Bioinformatics, vol. 26, no. 12, pp. 1556-1563,
2010.

21

manipulating the state transition matrix, which effectively limits their use on large

networks working on the current computational power.

As a solution for working with large GRNs, this dissertation takes the approach of

reducing the size of the network, designing a control policy on the reduced network,

and then inducing that control policy on the full network. It is motivated by a

previously proposed network reduction algorithm that removes genes in such a way

that the deleted gene induces a specific collapsing of pairs of states from the state space

of the original network [25]. While other reduction algorithms have been developed

to obtain reduced models for Boolean or probabilistic Boolean networks to maintain

either the structural consistency [26] or the dynamical behavior of the original network

[27], the specific intent in the current method is to find a reduction strategy that

can provide beneficial stationary control policies for the original network. Boolean

networks with perturbation, BNps, are used to model gene regulatory networks. The

key point for choosing BNps is that their dynamics can be modeled using Markov

chains; thereby facilitating the development of control policies that can shift the

network steady-state distribution towards desirable states.

As typically formulated, the intervention is characterized by a target gene whose

expression is to be altered by the control policy and one control gene whose expressions

is altered by intervention. The control policy acts by observing the state of the

network at each time point and, based on the state, decides whether to alter the

value of the control gene.

B. Proposed method: CoD-Reduce

This section described a new method that focuses on large networks where it is not

possible to derive the optimal control policy. This method deletes one or more genes

22

from the network so that a policy on the reduced network can be designed, which

would induce a sub-optimal policy on the original network. There are four basic steps

in this procedure:

1. apply an algorithm to the network to select a gene for deletion

2. apply an algorithm to construct the gene logic for the reduced network

3. apply a control algorithm to the reduced network to derive a control policy on

the reduced network

4. induce a control policy on the original network based on the control policy

derived for the reduced network

The method proposed herein employs the coefficient of determination (CoD) [10]

to choose genes for deletion, adapts the collapsing heuristic of [25] to construct the

wiring of the reduced network, designs a control policy on the reduced network using

either the MFPT-CP [8] or SSD-CP [9], and finishes with a procedure to induce

a control policy on the original network. Performance of the CoD-based reduction

procedure is evaluated by its effects on the steady-state distribution to shift the

probability mass towards the desirable states. This shift is computed as the absolute

value of the difference between the steady-state distributions of the network before

and after applying the control policy. Additionally, the effects of the reduction on

the control is studied using a new measure called relative effect, which compares the

control policy designed on the original network with the control policy induced from

the reduced network.

1. Selecting the Best Gene for Deletion

The first step of the algorithm is to select the gene to be deleted, based on two criteria:

23

1. If there are genes isolated from the rest of the genes, then the algorithm ran-

domly selects one of them as the candidate for deletion. A gene is called isolated

if it does not predict any other genes and no other gene predicts it.

2. Otherwise, the combination of 3 genes that has the smallest steady-state CoD

in determining the target gene is found and the gene chosen for deletion is the

one with the weakest influence in terms of CoD value on the target gene from

that triple of genes.

The CoD is based on triples of genes because, as Kauffman points out, the

average connectivity of the model cannot be too high if its dynamics is not chaotic

[28], and 3-predictor connectivity is commonly assumed in Boolean network and PBN

modeling [26]. The procedure ensures that the candidate gene for deletion from the

network has small influence on the target gene if the model has reached its steady-

state distribution. The deletion procedure is described in detail in algorithm 1.

2. Reduction Mappings using Selection Policy

After selecting the gene for deletion, called d, a reduction mapping is used to define

the transition rules for states in the reduced network [27]. The design of the reduction

mapping is based on the notion of a selection policy [29]. A selection policy determines

the transitions for the states of the reduced network and is formally defined as:

Definition 1. A selection policy νd corresponding to the deleted gene d is a 2n di-

mensional vector, νd ∈ {0, 1}2n, indexed by the states of S and having components

equal to 1 at exactly one of the positions corresponding to each pair (s, s̃d), s ∈ S.

24

Algorithm 1 CoD-Reduce: Selecting Best Gene For Deletion

1: Create connectivity table of the BN on n genes

2: Exclude self-predictions from the connectivity table

3: Compute set C = {c1, c2, ..., cn}, where each ci is the total number of genes that

predict gi or being predicted by gi

4: Find all ci = 0 and put their corresponding gi in the constant gene set: CON-

STANT

5: if CONSTANT ̸= Ø then

6: GENE For DELETION ← randomly selected gene from the CONSTANT

7: else

8: Compute set COMBINATIONS : includes all 3-gene combinations, excluding

the target gene

9: for all the sets in COMBINATIONS do

10: Θj ← CoD of the 3-gene set j w.r.t. target gene

11: end for

12: Find a 3-gene combination with minimum Θj: MINCOD

13: GENE For DELETION ← gi ∈ MINCOD with minimum individual CoD

w.r.t target gene

14: end if

15: return (GENE For DELETION)

25

X
1

X
2

X
3

X
4

X
5

X
6

X
7

.

.

.

0 1 0 1 0 0 0

0 1 0 1 0 0 1

.

.

.

X1: Target

X2: Control

X7: Deletion

Selection

Policy

.

.

.

1

0

.

.

.

X
1

X
2

X
3

X
4

X
5

X
6

X
7

.

.

.

0 1 1 1 1 1 0

0 1 0 1 1 0 0

.

.

.

States Next States

X
1

X
2

X
3

X
4

X
5

X
6

.

.

.

0 1 0 1 0 0

.

.

.

X
1

X
2

X
3

X
4

X
5

X
6

.

.

.

0 1 1 1 1 1

.

.

.

States Next States

40

41
40

41

20

Fig. 2. Selection policy. For the two states that only differ in the gene for deletion, the

one that has 1 in selction policy vector, defines the structure of the reduced

network.

Finding an optimal selection policy would require testing each of the 22
n−1

possi-

ble reduced networks, which is computationally infeasible. In the present dissertation,

a heuristically chosen selection policy is combined with an inducement procedure to

design a control policy on the original network. The selection policy used here is

designed by considering the steady-state distribution of the network. The intuition

behind this approach relies on two facts: first, attractors are an essential part of the

network and therefore should be preserved during the reduction; second, states with

larger steady-state probability are more likely to be visited during the long run tran-

sitions of the network. Based on these considerations, the selection policy proceeds

as follows: for states s and s̃d that only differ in the deleted gene d, the functions

of the state possessing larger steady-state probability will be kept for the reduced

state, excluding its gene for deletion; however, if either s or s̃d is an attractor and the

26

other is not, then the attractor state is chosen to determine the function structure.

Algorithm 2 represents the steps of reduction mapping. This selection policy has 1

for the states whose functions are kept as the result of reduction and 0 for the rest.

Figure 2 represents the concept of selection policy graphically.

3. Inducement

Suppose the original network has n genes, the reduced network has m < n genes

based on n−m deletion-reduction applications, and, without loss of generality, sup-

pose the last n − m genes have been deleted. Then, for any state (x1, x2, ..., xm)

in the reduced network, there are 2n−m states in the original network of the form

(x1, ..., xm, z1, ..., zn−m). If µred is the control policy designed on the reduced network,

then the induced policy on the original network is defined by

µori(x1, ..., xm, z1, ..., zn−m) = µred(x1, x2, ..., xm) (3.1)

for any z1, ..., zn−m ∈ {0, 1}.

C. Discussion

Several simulations are carried out to study the performance of the CoD-Reduce algo-

rithm. Two approaches are used to measure the goodness of the reduction mappings:

first, the changes in the control policy of the network, and second, the shift of the

steady-state distribution towards the desired states. This section describes each ap-

proach and represents the results

27

Algorithm 2 CoD-Reduce: Reduction Mapping

1: Put all the attractor States in a set called: ATTRACTORS

2: Find the SSD of the network: π

3: for all the States s in the State space do

4: find its flipped State w.r.t. gene For deletion: s̃d

5: if ((s ∈ ATTRACTORS) & (̃sd /∈ ATTRACTORS)) then

6: Selection Policy (s) = 1

7: Selection Policy (s̃d) = 0

8: else if ((s /∈ ATTRACTORS) & (̃sd ∈ ATTRACTORS)) then

9: Selection Policy (s) = 0

10: Selection Policy (s̃d) = 1

11: else

12: if (π(s) > π(̃sd)) then

13: Selection Policy (s) = 1

14: Selection Policy (s̃d) = 0

15: else

16: Selection Policy (s) = 0

17: Selection Policy (s̃d) = 1

18: end if

19: end if

20: end for

21: for all the States s in the State space that have (Selection Policy (s) = 1) do

22: Keep the transitions of the s excluding the d coordinate as the

23: transitions of š: reduced State

24: end for

28

1. Relative effect

As the first measure, one can study the effects of the reduction mappings framework on

the control policy of the network. When interpreting the deletion of gene d as creation

of a latent, or non-observable, variable, it is desirable that there is a stationary control

policy µ̌g for the reduced network ˇBNp that is as close as possible to µg-the one

designed for the original network. In this way, one can achieve similar control actions

for every state s and its corresponding reduced state š. For example, if one considers

the action of a stationary control policy µ̌g on the state š in the reduced network

the similarity of control could be fully achieved only if µg(s) = µg (̃s
d). The following

two definitions set up the framework about how to measure the effects of a selection

policy-induced reduction mapping on a stationary control policy [29].

Definition 2. Given a stationary control policy µg and a gene d to be deleted from

the BNp, the policy µg is called d-inconsistent at the state s ∈ S if and only if

µg(s) ̸= µg (̃s
d). The state s is called µd

g-inconsistent. The ratio rdµg
of the number of

µd
g-inconsistent states s ∈ S to the total number of states in S is called the d-relative

inconsistency of the control policy µg.

As a consequence of this definition, one can measure the effects of a selection

policy-induced reduction mapping by comparing the control actions for the subset

Cd ⊆ S of states that are not d-inconsistent to the control actions for their corre-

sponding reduced states in the reduced network B̌Np.

Definition 3. Given a stationary control policy µg and a gene d to be deleted from

the BNp, the policy µg is called νd-affected at the state s ∈ Cd if and only if the

control action for the reduced state š ∈ Š is different from µg(s). The ratio εν
d

µg
of the

number of states s ∈ Cd where the control policy is νd-affected to the total number of

29

states in Cd is called the relative effect of the selection policy νd on the control policy

µg.

Because there is only a finite number of selection policies νd, there exists a

selection policy νd◦ that is optimal with regard to minimizing the relative effect εν
d

µg

among the all possible selection policies νd on the stationary control policy µg.

In general, the shift in the steady-state distribution and the relative effect of the

selection policy on the control policy follow inverse trends. This is to be expected

because a big relative effect on the control policy implies significant difference in the

control actions for the states on the larger network and their respective reduced states

in the smaller network which could ultimately lead to a significant difference in the

shifts induced by those control policies in the steady-state distributions of the models.

2. Effects on the steady-state distribution

This section represents the effects of reduction mappings on the SSD of the networks.

Letting πD = (πD1, πD2, ..., πDm) and ωD = (ωD1, ωD2, ..., ωDm) denote the probabil-

ity vectors composed of steady-state masses of the desirable states before and after

control, respectively, the shift is defined by

∆ =
m∑
k=1

ωDk − πDk (3.2)

∆ provides a measure of the effectiveness of the overall algorithm – deletion, reduction,

and inducement – the goal being to decrease the probability of being in undesirable

states and increase the probability of being in desirable states in the long-run. Also

the induced policies arising from reductions to n−1, n−2, ..., 4 genes are applied and

the mass shifts are computed.

30

3. Randomly Generated Networks

To study the performance of the CoD-Reduce algorithm,a simulation study is per-

formed on sets of 100 randomly generated Boolean networks with perturbation, with

7, 8, 9, and 10 genes. These have been generated using the algorithm developed in

[14], subject to the constraint that for each network half of its attractors are among

the desirable states. For each network of size n ∈ {7, 8, 9, 10} genes, the original

network is reduced to n − 1, n − 2, ..., 4 genes and for each reduction designed ei-

ther the MFPT-CP or SSD-CP on the reduced network and induced a policy on the

original network of size n. The networks are limited to 10 genes because the control

policy on each originally generated network needs to be computed in order to make

the comparisons. However, in general CoD-Reduce is not restricted to any number of

genes and can handle large networks, as long as the steady-state distribution is ob-

tainable. In such large networks CoD-Reduce is used to make reductions by deleting

genes until the point that it is feasible to compute the control policy of the reduced

network. Figure 3 shows, the average shift of the steady-state distribution under

the MFPT-CP on the original network and the average shift for the induced policies

arising from reductions to from n to n−1, n−2, ..., 4 genes. Figure 4 gives analogous

results using the SSD-CP. The salient point regarding the 9- and 10-gene networks is

that, after an initial drop off for a few-gene reduction, the shift tends to stabilize for

further reduction and, in all cases, the induced policy achieves significant beneficial

results.

Note that the beneficial steady-state-shift when designing the control policy on

the original network is, on average, slightly better for the SSD-CP in comparison to

the MFPT-CP, and that this agrees with the findings in [9]. On the other hand, the

induced policy arising from the MFPT-CP designed on the reduced network slightly

31

outperforms the induced policy arising from the SSD-CP designed on the reduced

network.

Another meaningful comparison between the original and reduced networks is

the effect of the reduction measured by relative effect. The expected behavior of

successful reduction is the inverse pattern for the SSD shift and the relative effect.

Figure 5 illustrates that CoD-Reduce does not have a significant effect on the

amount of the shift of the steady-state distribution of the network towards the de-

sirable states if a single gene is removed from the model. Similarly, there is a small

change (on average) in the relative effect of the selection policy on the MFPT control

policy when moving from a network to its reduced version. Thus on average, CoD-

Reduce does not have much of an impact on the controllability of the network when a

single gene is removed from it. However, the effects of reduction tend to accumulate

with the removal of more genes, and ultimately the reduction mappings produce poor

results when a very few genes remain in the network.

In random-network simulations one also has the issue of how to choose the target

gene, since the randomly generated networks are of a purely computational nature.

In practice, the target gene is chosen in such a way that its behavior is closely related

to the phenotype of interest and the control gene can either be selected via biological

knowledge or according to some criterion related to its ability to control the target

gene. Since methods described in this dissertation are interested in networks in which

the target gene is controllable, one needs to chose a target gene for which there exists

a non-target gene that can exercise control over it. A simple way to do that is to

consider all gene-to-gene CoDs and pick the control and target genes to be the two

genes possessing the largest gene-to-gene CoD, the former being the control gene and

the latter being the target gene. While it is true that this choice provides greater

controllability than would normally be expected in a real biological problem, it affords

32

a) 7 genes b) 8 genes

c) 9 genes

d) 10 genes

Fig. 3. The average shifts of the steady-state-distribution produced by applying the

original MFPT and the stationary induced control policies, using different num-

ber of genes. The original MFPT control policies were obtained before any re-

ductions. The induced control policies were designed on the reduced networks

after applying reduction several times and then inducing the control policy of

the reduced networks back to the original network. Each one of the four sets of

100 BNps was generated using randomly generated attractor sets; attractors

are evenly distributed between desirable and undesirable states.

33

a) 7 genes b) 8 genes

c) 9 genes

d) 10 genes

Fig. 4. The average shifts of the steady-state-distribution produced by applying the

original SSD and the stationary induced control policies, using different num-

ber of genes. The original SSD control policies were obtained before any re-

ductions. The induced control policies were designed on the reduced networks

after applying reduction several times and then inducing the control policy of

the reduced networks back to the original network. Each one of the four sets of

100 BNps was generated using randomly generated attractor sets; attractors

are evenly distributed between desirable and undesirable states.

34

a) 7 genes b) 8 genes

c) 9 genes

d) 10 genes

Fig. 5. The average SSD shift toward Desirable states and the relative effects on the

control policies of successive reductions of 4 sets of 100 BNp. Each set has ran-

domly generated attractors which constrained to be evenly distributed between

the Desirable and Undesirable states. At each step the MFPT-CP is designed

on the network and applied to itself. As the figure shows the effect on the SSD

is similar in the original and reduced networks by applying their own control

policies. Also, SSD shift and relative effect curves follow inverse patterns.

35

us the opportunity to get a good measure of the loss of controllability that results

from CoD-Reduce, that is, from deletion, reduction, and inducement. This implies

that the Target-Control pair needs a direct connection in the GRN. This condition

relaxed on the later experiments in Chapter IV. Appendix A provides a flowchart

that displays all the steps for the algorithm of selecting a Target-Control pair.

D. Alternative Algorithm: CoD-Reduce II

In order to simplify the method for reduction mappings, this section represents a

modified version of CoD-Reduce and calls it CoD-Reduce II. The main idea is that

after fixing the target and control genes, all the other genes in the network will be

considered as candidates for deletion and their corresponding CoD w.r.t target gene

is calculated. Using these CoDs, genes will be sorted in the ascending order and will

be deleted from the network. The procedure for finding the best target and control

genes is the same as CoD-Reduce.

The main difference between CoD-Reduce and CoD-Reduce II is the deletion

process. The CoD-Reduce algorithm finds all 3-gene sets predicting the target gene,

excluding control genes, and finds their CoDs w.r.t the target gene. Then, it finds

the 3- gene predictor set with minimum CoD predicting the target, and calculates

the individual CoDs of its genes w.r.t the target gene. The gene with minimum

individual CoD is set as the candidate gene for deletion. This procedure is repeated

in each reduction step. Therefore, for the reduction of a n-gene BN to a 2-gene

BN, this process needs to be done n − 2 times. On the other hand, CoD-Reduce II

initially finds the individual CoDs of all genes, excluding control gene, for predicting

the target. It then sorts the genes based on the their CoDs and in the reduction steps

deletes these genes accordingly. This way finding the best gene for deletion needs to

36

be done only once using the original network. Algorithm 3 represents the steps of the

CoD-Reduce II process.

Algorithm 3 CoD-Reduce II

1: Create connectivity table of the BN on n genes

2: Exclude self-predictions from the connectivity table

3: Set the control gene C and target gene T

4: for all the genes, except C do

5: Θi ←: CoD of the gene i For predicting target gene T

6: end for

7: Θj: Sort Θi by ascending order

8: Delete genes from Θj, until only T and C are left, or until a pre-specified number

of genes remain

1. Simulation Results

A simulation study is performed on the effects of the alternative selection-induced

reduction, CoD-Reduce II, on the SSD shift and the MFPT-CP. Using the algorithm

developed in [14], several sets of 100 BNps for n = 7 are randomly generated. Each

set shares a common set of attractor states with the restriction that they form only

singleton attractors. In addition, the number of predictor genes for each gene in the

network is restricted to be ≤ 3 to keep the networks away from being chaotic.

Figure 6 represents the averages (over one of the sets of 100 networks) of both the

SSD shift towards the desirable states and the relative effect of the respective selection

policies on the MFPT-CP, using CoD-Reduce II. Figures 7 and 8 show the effects

of applying the CoD-Reduce II on the SSD of the original network, after applying

control policies induced form the reduced networks compared with the control policies

37

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

comparing CP 7
to 6

comparing CP 6
to 5

comparing CP 5
to 4

comparing CP 4
to 3

comparing CP 3
to 2

S
S

D
 S

h
if

t

SSD shift vs. Relative Effect
Relative effect

SSD shift for applying original CP

Fig. 6. The average SSD shift toward Desirable states and the relative effects on the

control policies of successive reductions averaged for 100 BNp, using CoD-Re-

duce II. At each step the control policy is designed on the network and applied

to itself. After deleting each gene, the control policy designed on the reduced

network and induced back to its original network. SSD shift and relative effect

curves follow inverse patterns.

designed on the original networks.

These figures illustrate the typical performance of CoD-Reduce and its corre-

spondence CoD-Reduce II : the shift of the steady-state distribution varies very little

from a network to its reduced version. Moreover, the combination of selection poli-

cies based on the SSD and the CoD ranking of the genes provides us with reduction

mappings that have very small relative effect on the MFPT-CP. The algorithm’s per-

formance deteriorates significantly only when the size of the network becomes very

small (< 4) genes. This is to be expected because for small size networks removal of

even one gene can significantly damage the dynamical behavior of the model.

E. Case study: A 4-gene BN and walk through of the concepts

This section presents a numerical example that covers the steps of the proposed

algorithm, CoD-Reduce. The algorithm proposed by Pal et. al. [14] is used to

38

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

7 6 5 4 3

S
S

D
 S

h
if

t

Genes

Average SSD Shift for 100 BNs SSD shift for applying original CP

SSD shift for applying induced CP

Fig. 7. The average SSD shift toward Desirable states by applying the original and

induced control policies after each reduction, averaged for 100 BNp, using

CoD-Reduce II. At each step the control policy is designed on the network and

applied to itself. After deleting each gene, the control policy designed on the

reduced network and induced back to its original network. SSD shift toward

Desirable states, generated by original and induced control policies, have very

similar effects on the networks.

generate a 4-gene BNp. This synthetic network has 24 = 16 states. The corresponding

Truth Table (TT) that defines the rules for one step transitions is shown as Figure

9. The underlying model of a BNp is a finite Markov chain (MC) and its dynamics

are completely described by its 24×24 State Transition Matrix (STM) that is usually

represented by P. Also the perturbation probability p, the probability that each gene

can be randomly flipped, makes the chain ergodic and therefore it possesses a Steady-

State Distribution (SSD) that is represented by π. The SSD of the network is given

by the equation 2.1 and can be found as an eigenvector of the P.

In a BNp, the transition probability from state y to state x is given by the

following equation [9]:

Py(x) = 1[f(y)=x](1− p)n + 1[x̸=y]p
η(x,y)(1− p)n−η(x,y) (3.3)

39

Induced from
6 to 7

Induced from
5 to 7

Induced from
4 to 7

Induced from
3 to 7

Induced from
2 to 7

Average SSD shift by applying
Original CP in 7-ge nw

0.284272095 0.284272095 0.284272095 0.284272095 0.284272095

Average SSD shift by applying
induce CP in 7-ge nw

0.27782597 0.276306443 0.272002867 0.25332457 0.18650399

0

0.05

0.1

0.15

0.2

0.25

0.3

S
S

D
 S

h
if

t

Fig. 8. The average SSD shift toward Desirable states by applying the original and

induced control policies after all the reduction steps using CoD-Reduce II, av-

eraged for 100 BNp. After deleting genes, the control policy designed on the

reduced network and induced back to the original network.

40

Decimal representation (states) G1 G2 G3 G4 F1 F2 F3 F4

0 0 0 0 0 1 0 1 1

1 0 0 0 1 1 0 1 1

2 0 0 1 0 0 0 1 0 Singleton Attractor

3 0 0 1 1 0 0 1 0

4 0 1 0 0 1 1 0 0

5 0 1 0 1 1 1 1 0

6 0 1 1 0 0 1 0 0

7 0 1 1 1 0 1 1 0

8 1 0 0 0 1 0 1 1

9 1 0 0 1 1 0 1 1

10 1 0 1 0 0 0 1 0

11 1 0 1 1 0 0 1 0

12 1 1 0 0 1 1 0 0 Singleton Attractor

13 1 1 0 1 1 1 1 0

14 1 1 1 0 0 1 0 0

15 1 1 1 1 0 1 1 0

States Next States

Fig. 9. The truth table of the 4-gene network. The states 2 and 12 are the singleton

attractors.

where η(x, y) is the Hamming distance between x and y, and 1[f(y)=x is the indicator

function that equals to 1 if f(y) = x based on truth table, and 0 otherwise. The

transition probability for a singleton attractor to itself is: (1− p)n.

In this example, the first gene from the left hand side g1 is set to be the Target

(T) gene and g1 = 0 defines desirable states and g1 = 1 defines undesirable states.

The second gene from left hand side g2 is defined as Control (C) gene. After these

initial settings, the steps of CoD-Reduce are followed to reduce this network. A one

step reduction is done which will select the best gene for deletion, then deletes it.

After this deletion step, in the reduced 3-gene network a MFPT-CP is designed and

induced back to the original 4-gene network and the result of applying this induced

control policy is represented. The purpose of the current example is to demonstrate

the algorithm presented in the current chapter and therefore, applying one of the CPs

is sufficient for the reader to follow the details.

41

1. Selecting best gene for deletion

Initially, CoD-Reduce forms all possible 3-gene combinations that exclude the target

gene T. Since there are only 4 genes in this example, then the only possible triple that

excludes T is the set: g2, g3, g4. Since g2 is the control gene, therefore the candidate

gene for deletion should be selected between: g3 and g4. To decide which gene to

be deleted, the individual CoDs of g3 and g4 are needed. They are calculated as the

following:

• CoD of g3 w.r.t. T = 1

• CoD of g4 w.r.t. T = 0

Since g4 has the minimum individual CoD w.r.t T, so it is selected as the gene for

deletion. Hence, Gene for Deletion (D): g4

2. Designing the Selection Policy

After selecting the gene for deletion, next step is to define the Selection Policy (SP)

in order to reduce the network. For each candidate gene for deletion, there are

22
n−1

SPs where n is the number of genes. As n grows, in the cases of large n, it

is not computationally feasible to try all the possible SPs. Earlier in this chapter,

a heuristic approach for designing a SP is introduced, which is highly dependent

on the attractor structure and SSD probabilities of the network. This approach is

represented as algorithm 2. In this example, with 4 genes there are 256 possible SPs

which is a manageable number of possibilities. The effect of each one of these SPs on

the dynamic behavior of the network can and has been examined. All the possible

SPs are used to reduce the original network and then a CP is designed and applied

to the reduced network; the SPs that are used for constructing the reduced networks

42

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

S
P

1

S
P

6

S
P

1
1

S
P

1
6

S
P

2
1

S
P

2
6

S
P

3
1

S
P

3
6

S
P

4
1

S
P

4
6

S
P

5
1

S
P

5
6

S
P

6
1

S
P

6
6

S
P

7
1

S
P

7
6

S
P

8
1

S
P

8
6

S
P

9
1

S
P

9
6

S
P

1
0

1

S
P

1
0

6

S
P

1
1

1

S
P

1
1

6

S
P

1
2

1

S
P

1
2

6

S
P

1
3

1

S
P

1
3

6

S
P

1
4

1

S
P

1
4

6

S
P

1
5

1

S
P

1
5

6

S
P

1
6

1

S
P

1
6

6

S
P

1
7

1

S
P

1
7

6

S
P

1
8

1

S
P

1
8

6

S
P

1
9

1

S
P

1
9

6

S
P

2
0

1

S
P

2
0

6

S
P

2
1

1

S
P

2
1

6

S
P

2
2

1

S
P

2
2

6

S
P

2
3

1

S
P

2
3

6

S
P

2
4

1

S
P

2
4

6

S
P

2
5

1

S
P

2
5

6

S
S

D
 S

h
if

t
to

w
a

rd
 D

e
s

ir
a

b
le

 s
ta

te
s

Selection Policy

256 possible selection policies

Top 16 SPs set, includes our heuristic SP

Fig. 10. All 256 possible SPs for 4-gene network and their shift of steady-state dis-

tribution toward more desirable states. Our heuristic SP is among the 16

optimal SPs that have maximum SSD shift toward desirable states.

that have maximum shift in their SSD after applying control are called optimal SPs.

Figure 10 shows that our heuristic SP is among the 16 optimal SPs.

a. Proposed heuristic selection policy

A selection policy is a vector with the number of components = 2n, where 2n is

the number of the states of the original network and SP ∈ {0, 1}2n . It defines the

reduction mapping to construct the TT of the reduced network and for each two

states that differ only in the values of the gene for deletion, only one of them can

have the SP action equal to 1.

As it is described in the algorithm 2, first the SP actions for the attractors and

their flipped states w.r.t. the gene for deletion are defined; the attractor states get

43

States SSD SP

0000 0.0339 1

0001 0.011 0

0010 0.2859 Singleton Attractor 1

0011 0.0289 0

0100 0.0974 1

0101 0.0139 0

0110 0.0536 1

0111 0.0127 0

1000 0.0273 1

1001 0.0125 0

1010 0.0346 0

1011 0.0659 1

1100 0.233 Singleton Attractor 1

1101 0.0223 0

1110 0.0525 1

1111 0.0146 0

0.0339 > 0.011

Fig. 11. The process for designing selection policy using the proposed heuristic algo-

rithm

the SP equal to 1. Then steady-state probabilities are used to define the SP for the

other states; the heavier weight of a state implies setting of the respective entry in the

SP to 1. Each state is compared with the states that differ from it only in the value

of the gene for deletion: g4 for this example. Figure 11 graphically demonstrates the

process of designing the SP for our 4-gene network.

3. Reducing the network, using selection policy

The next step is to define the TT of the reduced network after deleting g4. For this

purpose, the SP designed above is used. For each 2 states that differ only in the value

of the gene for deletion, the state that has SP = 1 will be the one that defines the

transitions for the reduced state. As an example, the state 0100 transitions to 1100

according to the TT:

0100 −→ 1100

The state that differs with 0100 only in g4 is 0101 and the following is the rule

for its transition:

44

States Next States

0 0 0 1 0 1

0 0 1 0 0 1

0 1 0 1 1 0

0 1 1 0 1 0

1 0 0 1 0 1

1 0 1 0 0 1

1 1 0 1 1 0

1 1 1 0 1 0

Fig. 12. The truth table of the 3-gene network

0101 −→ 1110

On the other hand by looking at the SP vector, one can see that the entry in the

SP corresponding to the state 0100 has the value 1; therefore, following the deletion

procedure, the gene g4 is deleted from states 0100 and 0101 to form state 010 in the

reduced network and the transition is selected based on the transition of the state

0100 in the original network, excluding the 4th coordinate. The resulting rule is:

010 −→ 110

By repeating this procedure for all of the states one can make the TT of the

reduced network which has 3 genes. Figure 12 shows the resulting TT.

Up to this point, one gene is deleted from the network and the TT of the reduced

network is found, therefore, the state transition matrix and steady-state distribution

of the 3-gene network are obtainable. Using these items, one can design a control

policy on the reduced network and induce it back to the original network. The

following section explains this step.

4. Inducing control policy designed on the reduced network to the original network

After CoD-Reduce deletes a gene and constructs the TT of the reduced network, it

designs a MFPT-CP [8] on the reduced network. That MFPT-CP has 8 coordinates

which is the number of states in the 3-gene network. This CP has to be modified

45

to have the appropriate dimensions (vector of 16 control actions ∈ {0, 1}16) to be

applicable to the original network. One needs to notice that the example here has very

small number of genes and only one gene is deleted; in this case the MFPT-CP can

be designed on the original network even without any reductions. The cases of having

such small number of genes are not realistic. Therefore, the aim of this dissertation

is to propose a reduction algorithm, CoD-Reduce, that enables us to decrease the

complexity of large networks by sequentially deleting the genes. After deleting genes,

the control policy that is designed on the reduced network is not applicable to the

original network due to the different sizes. The induction of the control policy is the

solution for enabling us to apply the control policy of the reduced network on the

original network and examine its effects.

The definition for the induction procedure is given in this chapter, and here this

process is explained, using the above 4-gene network as an example. Each state in the

reduced 3-gene network, corresponds to two states in the original 4-gene network that

collapse together. After designing the CP and assigning the control actions to the

states of the 3-gene network, in the induction procedure, the control action of each

state in the 3-gene network will be duplicated as the control actions for its parent

states. For example, the states 0100 and 0101 of the original network form state

010 in the 3-gene network; if the control action of the control policy designed on the

reduced network assigns control action of 1 to the state 010, then in the induced

control policy, states 0100 and 0101 will have the control action of 1. Figure 13

represents the induction of MFPT-CP from 3-gene network to the 4-gene network.

5. Applying induced CP to the original network

After designing the CP on the 3-gene network and its induction to the 4-gene network,

this CP is applied to the network. Applying CP means: for each state, if its control

46

Induced CP CP reduced network

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1

0 0 1 0 0 1 0 1 0

0 0 1 1 0 1 0 1 1

0 1 0 0 1 0 1 0 0

0 1 0 1 1 0 1 0 1

0 1 1 0 1 1 1 1 0

0 1 1 1 1 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

States

Reduced networkOriginal network

States

Fig. 13. The induction procedure. The color coding specifies the states that collapse

to one state in the reduced network It also displays the duplication of the

control actions during induction.

action is 1, then its row in the original STM is replaced by the row corresponding to its

flipped state w.r.t. control gene. Following this procedure, the STM is changed and

ultimately the SSD of the 4-gene network will be different. The SSD of the network

is calculated again and the total probability mass for the desirable and undesirable

states of the network are found. By comparing the total SSD probability mass of the

desirable states before and after applying control, one can examine the effectiveness

of the induced CP. The amount of the changes in the total probability mass of the

desirable states is referred to as the shift of SSD toward desirable state. Figure 14

shows that after applying the induced CP, there is considerable shift (about 30%)

toward desirable states.

47

0.5 0.5

0.807888617

0.6

0.7

0.8

0.9

0.5 0.5

0.807888617

0.192111383

0 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.5 0.5

0.807888617

0.192111383

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Desirable States Undesirable States

Before Applying Control After Applying Control

Fig. 14. SSD shift before and after applying the induced MFPT CP

48

CHAPTER IV

GREEDY CONTROL POLICY∗

A. Introduction

To date, the majority of the research regarding intervention in GRNs has been carried

out in the context of probabilistic Boolean networks (PBNs) [2]. Assuming random

gene perturbation in a PBN, the associated Markov chain is ergodic, and thus it pos-

sesses a steady-state distribution (SSD), and theoretically one can always change the

long-run behavior using an optimal control policy derived via dynamic programming

[4, 5]. However, in practice, the computational requirements of dynamic program-

ming limit this approach to small networks [6, 7]. As an alternative to such optimal

intervention, greedy control approaches, e.g. MFPT-CP or SSD-CP have been pro-

posed [8, 9]; nonetheless, these algorithms have their own computational issues owing

to their need to use the state transition matrix (STM) of the Markov chain.

To overcome the computational problems associated with the design of control

policies for larger PBNs, Chapter III proposed reduction mappings that delete genes

sequentially from the network and finally induce the control policy designed on the

reduced network to the original network. However, reduction mappings themselves

are computationally demanding [30], [31], and consist of many steps. Additionally,

deletion of network components compresses large networks, but it could be at the

cost of information loss.

∗ Part of this chapter is reprinted, with permission, from “A cod-based station-
ary control policy for intervening in large gene regulatory networks”, N. Ghaffari, I.
Ivanov, X. Quian, and E. Dougherty, BMC Bioinformatics, vol. 12, no. S10, 2011.

49

As a solution, this chapter introduces a new greedy control policy method for

designing intervention directly on large Boolean networks. The new method utilizes

the CoD and SSD of the model. Thus, the proposed algorithm is called CoD-CP

because the CoD is the main tool and CP stands for Control Policy [32]. The main

advantage of CoD-CP in comparison with the previously proposed methods is that

it does not require any compression of the original model, and thus can be directly

designed on large networks.

The control approach taken in this chapter circumvents many of the computa-

tional impediments of previous methods by basing its intervention strategy directly on

inter-predictability among genes. Referring to a gene that characterizes a particular

phenotype as a Target (T) gene and a gene used to alter the long-run behavior of the

network by controlling the expression of T as a Control (C) gene, the method pro-

posed herein relies on the predictive power of a small group of genes, which includes

the control gene, and designs a stationary control policy that alters the steady-state

distribution of the model. The algorithm is designed for the specific class of networks

where there is a path from the C to T gene – an assumption having a natural interpre-

tation in terms of the biochemical regulatory pathways present in cells. This method

simplifies the procedure of designing the stationary control policy and eliminates the

need to have a complete knowledge about the STM. It only requires knowledge about

the SSD of the network which can be estimated without inferring the STM. The

coefficient of determination (CoD) is used for measuring the power of gene interac-

tions [10]. Thus, our new algorithm is optimized for and performs especially well on

network models that are inferred from data using CoD-based approaches, e.g. the

well-known seed-growing algorithm [15] or the method developed by Chapter VI in

this dissertation.

All of the previously proposed methods for working with large GRNs, e.g. CoD-

50

Reduce in Chapter III or state reduction [31], require ‘deletion’ of network components

to achieve a compressed model, which allows for the design of the control policy. An

induction step is then required in order to induce those control policies back to the

original networks. In general, the benefits of CoD-CP are the followings:

• Reduces the complexity of the CP design

• Does not need the state transition matrix of the Markov Chain

• Takes advantage of the power of CoD in measuring the influence of the genes

on each other

• Suitable for designing intervention policies in large networks

A series of simulation are performed to validate CoD-CP performance. These

experiments show that in small networks, where it is possible to derive the currently

available greedy MFPT-CP [8] and SSD-CP [9], CoD-CP achieves a similar perfor-

mance. Most importantly, when the size of the network is large and MFPT-CP or

SSD-CP cannot be designed directly on the original model, CoD-CP is easily con-

structed and applied to the network without any reduction mappings and induction

of the control policy. Section C describes the simulation results. When the network

is large, a reduction step is needed before designing the MFPT-CP or SSD-CP. In

these cases, CoD-CP can be designed directly on the large networks and performs

better than the induced MFPT-CP and SSD-CP on average for networks with sin-

gleton attractors only or models where cyclic attractors are allowed. The CoD-CP is

examined for two different perturbation probabilities and the results show consistent

patterns.

51

B. Proposed methodology

This section describes the new algorithm, CoD-CP. The algorithm takes advantage

of the predictive power of triplets of genes that include the control gene to predict

the expression of the target gene with a small estimated error. To achieve the best

performance of the algorithm, it is necessary to have a direct connection or a path

from the control gene to the target gene in the regulatory network. The algorithm

uses the CoD to measure that predictive power and to design a control policy.

CoD-CP is a greedy technique for designing a stationary control policy. The

target gene defines the phenotype and divides states into two mutually disjoint sets,

D (desirable) and U (undesirable). The gene with the most predictive power over T

among the genes connected with a path to T is used as the control gene. The goal

of the algorithm is to increase the total probability mass of desirable states in the

long-run by controlling C.

CoD-CP starts by generating all 3-gene combinations that include C. These

three genes are used for predicting T. CoD-CP uses the CoDs for determining the

strength of the connection between a target gene and its predictors. The CoDs are

calculated using the SSD of the network and the respective conditional probability

distribution (CPD) tables. After examining all 3-gene combinations, they are sorted

based on their CoDs. The triple that has the maximum CoD with respect to T and

its corresponding CPD is stored and used for designing the control policy. If there

is more than one such triple, one can uniformly randomly decide to use one of them.

This triple is referred to as MAXCOD and its CPD is called MAXCPD. Table I

represents an example of a MAXCPD table, where the first three columns contain

the binary combinations of the MAXCOD genes. Using T and the MAXCOD genes,

the state space of the network is broken down into blocks with 2n−4 states. All states

52

in a block share the same values for T and the MAXCOD genes. The details about

the entries of the MAXCPD table are given in the Example 1, part a.

Table I. MAXCPD Table: the first three columns represent the binary combinations

of the three MAXCOD genes. The last two columns are filled by summing

up the SSD probabilities of states in each corresponding block.

MAXCOD T

C Predictor 1 Predictor 2 0 1

row 1 0 0 0 P10 P11

row 2 0 0 1 P20 P21

row 3 0 1 0 P30 P31

row 4 0 1 1 P40 P41

row 5 1 0 0 P50 P51

row 6 1 0 1 P60 P61

row 7 1 1 0 P70 P71

row 8 1 1 1 P80 P81

Example 1, part a : This example explains the entries of the MAXCPD table

using a 7-gene network with 128 states. Without loss of generality, assume that x1 and

x2 are the T and C genes, respectively, and x1 = 0 defines the desirable states. After

examining all the triples, MAXCOD is found to be {x2, x3, x4}, which has maximum

CoD for predicting x1. The first three columns of the MAXCPD table contain 8

binary combinations of x2, x3 and x4, as Table I shows. The last two columns of the

table contain the summation of the SSD probabilities of the states with common value

for MAXCOD genes. The only difference in columns four and five is the value of the

53

T gene. The size of each block of states is 2n−4 = 23 = 8. The first block is Block(1) =

{0000000, 0000001, 0000010, 0000011, 0000100, 0000101, 0000110, 0000111}, where

all have {x2, x3, x4} = 000 and x1 = 0. The second block is Block(2) = {1000000,

1000001, 1000010, 1000011, 1000100, 1000101, 1000110, 1000111}, where {x2, x3,

x4} = 000 and x1 = 1. Each entry of the forth and fifth columns of the CPD table

are represented by Pij, where i ∈ {1, ..., 8} represents a row and j ∈ {0, 1} is the T

value. Each Pij is the summation of the SSD probabilities of the states in a block. For

columns four and five of the first row (i = 1), all the SSD probabilities for the states

in Block(1) are summed up to find P10. The summation of the SSD probabilities of

Block(2) forms P11. The rest of the Pijs are calculated similarly.

In the PBN setting, control of the network is achieved by toggling the value of

the control gene. The derivation of a stationary control policy, µ ∈ {0, 1}2n , means

defining control actions for each state s ∈ {StateSpace}. If the control action for the

state s is set to 1, it means that the network should transition from its flipped state

with respect to C : s̃c. Otherwise the network transitions as specified by its STM. The

CoD-CP algorithm finds the MAXCPD table in order to specify the control actions.

It uses the total probabilities Pij to define the control actions. Algorithm 4 details

all the steps of CoD-CP. In the binary representation of each state s, the values of

MAXCOD genes are found. The decimal conversion of the values of MAXCOD genes

determines the row of the MAXCPD table corresponding to state s. Then, the total

probabilities Pij are used to find D(.), as described by algorithm 4, where D(.) defines

the difference between the total probability of a block of states to be desirable from

that of being undesirable in the long run. Using this difference one can define the

control actions: if D(s) > D(̃sc), then flip the value of C in s̃c to start the transition

54

from s; otherwise, flip the value of C in s and start the next transition of the Markov

chain from s̃c. If D(s) = D(̃sc), then one can select one of them uniformly randomly.

Example 1, part b illustrates how control actions are assigned to the states.

Algorithm 4 CoD-CP - Part 1

1: Find MAXCOD genes and their corresponding MAXCPD table

2: for all the States s ∈ S, do

3: Find its flipped State w.r.t. C : s̃c

4: Find row i of MAXCPD by mapping MAXCOD genes in s to the MAXCPD

5: Find row k of MAXCPD by mapping MAXCOD genes in s̃c to the MAXCPD

6: if T = 0 defines Desirable States then

7: D(s) = Pi0 − Pi1

8: D (̃sc) = Pk0 − Pk1

9: else

10: D(s) = Pi1 − Pi0

11: D (̃sc) = Pk1 − Pk0

12: end if

13: if (D(s) > D(̃sc)) then

14: µ(s) = 0

15: µ(̃sc) = 1

16: else if (D(̃sc) > D(s)) then

17: µ(s) = 1

18: µ(̃sc) = 0

55

Algorithm 5 CoD-CP - Part 2

19: else

20: Uniformly randomly assign control actions For s and s̃c such that only

one has µ(.) = 1

21: end if

22: end for

23: return (µ)

Example 1, part b: Following the same 7-gene example, consider state s =

0000000. The D(s) = P10 − P11 is calculated. The flipped state with respect to

the control gene is s̃c = 0100000. Looking at the MAXCOD genes in the binary

representation of s̃c, one can see that {C = 1, P redictor1 = 0, P redictor2 = 0},

which maps to row 5 of the MAXCPD table. Similarly, D(̃sc) = P50 − P51. If

D(s) > D(̃sc), then it is beneficial to flip s̃c and force the Markov chain to start

the next transition from s, but if D(̃sc) > D(s), then it is better to start the next

transition from s̃c, in which case the control action for s is set to 1. For all the states

in Block(1) the same control action is applied. This greatly simplifies the design of

the control policy. Figure 15 shows a numerical example of how the CoD-CP can be

designed on this 7-gene example network.

C. Performance Comparison

This section compares the performances of CoD-CP, SSD-CP, and MFPT-CP, first

with respect to run time and then to shift of the steady-state distribution.

56

Highest CoD

triple:

G2, G3, G4 T C

G1 G2 G3 G4 G5 G6 G7

s 0 0 0 0 1 0 1

ŝ
c

0 1 0 0 1 0 1

Desirable Undesirable

G2 G3 G4 0 1

0 0 0 0 0.10195465 D1= 0 - 0.10195465

0 0 1 0 0.13656598 -0.10195465 CP

0 1 0 0 0.12166769 s 1

0 1 1 0 0.27253509 ŝ
c

0

1 0 0 0 0.040226 D2= 0 - 0.040226

1 0 1 0 0.03687279 -0.040226

1 1 0 0.1901106 0

1 1 1 0.1000672 0

G1

D2 > D1

Fig. 15. Deriving CoD-CP for a small 7-gene network. The x1 and x2 genes are the

T and C genes, respectively. x1 = 0 defines Desirable states. The MAXCOD

genes are: {x2, x3, x4}. The control action for state s is 1 and the control

action for state s̃c is 0, because D(2) > D(1).

1. Run-time Comparison

The dynamics of a GRN and its associated Markov chain are determined by its state

transition matrix. The STM provides the full knowledge about the states and their

transitions in the network; however, inferring the STM is difficult, especially when

available data about the network are limited or the size of the network is large. The

main advantage of the CoD-CP algorithm is that it can be directly designed on large

networks without inferring the STM and only needs an estimation of the SSD of the

Markov chain. This section provides a comparison of CoD-CP with MFPT-CP [8]

and SSD-CP [9].

The necessary reduction and induction steps increase the computational time as-

sociated with MFPT-CP and SSD-CP. To compare the three algorithms, the running

times needed for designing control policies are measured on gene networks containing

7, 8, 9, and 10 genes, averaged for 100 randomly designed BNps. For MFPT-CP and

57

SSD-CP, the best gene for deletion was selected and then the original network was

reduced by deleting that gene, according to the methodology introduced in Chapter

III. Consequently, the control policies were designed on the reduced networks and

then induced back to the original networks. CoD-CP was designed directly on the

original network as described by this chapter. All computations were performed on a

computer with 4GB of RAM and Intel(R) Core(TM) i5 CPU, 2.53 GHz. Figure 16

shows the average running times for 100 BNps in seconds. The running times tend

to grow exponentially as the number of genes increases.

0

60

120

180

240

300

360

420

7 genes 8 genes 9 genes 10 genes

R
u

n
n

in
g

 t
im

e
 (

in
 s

e
c

o
n

d
s

)

Origianl CoD-CP Induced SSD Induced MFPT

Fig. 16. Comparing the average running times (in seconds) for designing stationary

control policy for 100 randomly generated 10-gene, 9-gene, 8-gene and 7-gene

BNps. Running time for CoD-CP algorithm is always less than MFPT-CP

and SSD-CP. The running time grows exponentially as the number of genes

increases.

For comparing the performance of the three algorithms one needs to keep in mind

their important characteristics. The CoD-CP algorithm needs the SSD to design the

control policy. In cases when the SSD is known, one can directly proceed to the

CoD calculations and design the control policy for the network. When the SSD is

58

not known, it can be calculated using equation (2.1) or can be estimated by methods

described in [33]. The model-dependent version of the MFPT algorithm requires

an extra step to infer the STM. It then uses matrix inversion to find the mean-first-

passage-time vectorsKD andKU , this step having the same time complexity as finding

the SSD. The model-free version of MFPT-CP requires time-course measurements to

estimate the necessary mean-first-passage-time vectors. In such a case the algorithm

can skip the inference of the STM, and the complexity of estimating MFPT vectors is

constant with respect to the number of genes. However, the availability of time-course

data is very limited in practice. The other available greedy approach, SSD-CP, also

requires the SSD and STM of the network. Moreover, the SSD-CP algorithm needs

to find the perturbed SSD for each state, which increases the time spent for designing

the control policy.

As described in the section B, CoD-CP uses the MAXCPD table to design the

control policy, which divides the state space into blocks of size 2n−4. These blocks are

used to assign the same control actions to all of the states in a given block and the

complement control action for the block of flipped states. This significantly reduces

the complexity of the control policy design and leads to shorter run times.

2. Generating Synthetic Networks and Their Characteristics

This section provides simulation experiments to demonstrate the performance of the

CoD-CP algorithm with respect to its main goal, to shift undesirable steady-state

mass to desirable steady-state mass. The algorithm is applied to randomly generated

networks. CoD-CP has been designed for networks that are too large for direct

application of greedy algorithms such as MFPT-CP and SSD-CP while at the same

time not suffering from loss of information when designing control polices on reduced

networks and then inducing them to the corresponding original networks. Hence, the

59

desire is to demonstrate the improved performance of CoD-CP in comparison to the

induced greedy control policies when reduction-inducement is necessary; otherwise,

one can simply use the previously developed greedy policies directly. This section

discusses the results of a simulation study that compares the performance of CoD-

CP to MFPT-CP and SSD-CP on a set of BNps that are randomly generated using

the algorithm from [14], for two different perturbation probabilities: p = 0.1 and

p = 0.01. The latter probability is the one most commonly used in GRN control

studies [4, 34, 8, 9]; nevertheless, also p = 0.1 is used to see the effect, if any, of a less

stable network where less mass is concentrated in the attractors. In order to examine

how the attractor structure affects performance, the CoD-CP algorithm is tested on

two model classes:

1. networks with singleton attractors only

2. networks that allow cyclic attractors

In the first class, 100 unique attractor sets are chosen randomly for a different

number of genes n, where n ∈ {7, 8, 9, 10}. The attractor sets are restricted to be

evenly distributed between the desirable and undesirable states. In the second class,

the attractor sets are unique, but the criteria for evenly distribution between D and

U is no longer required and attractors are allowed to be cyclic and of unequal length.

The algorithm’s performance is measure by absolute shift of the SSD, defined by:

λ =
∑
d∈D

π̃d −
∑
d∈D

πd, (4.1)

where
∑

d∈D π̃d and
∑

d∈D πd are the total probability masses of the desirable states

after applying control and before applying any control, respectively, a larger λ being

desirable.

60

In real-world situations the target and control genes are often pre-selected by the

biologists/clinicians, the basis for choice being that a phenotypically related target is

to be up- or down-regulated and the control gene is known to be related to the target.

However, in the simulation studies, where knowledge about T and C does not exist,

a procedure is needed to identify reasonable target and control genes. The objective

of the procedure is to select a (C, T) pair such that there is a direct connection,

or path, from C to T, which would be a natural constraint in applications. The

strength of connection between C and T is measured by the CoD. The selected pair

is called CoD-strongly-connected pair. To select this pair, all two-gene combinations

are constructed such that each gene in a given pair is treated as both the candidate

target and candidate control gene, and the CoD of the candidate C for predicting

candidate T is calculated. The pair with the maximum CoD of C candidate for

predicting candidate T is picked. Then the algorithm checks if there is a path from C

to the T. If such a path exists, then the (C, T) pair is chosen. If no path exists, then

the pair is discarded and the next highest CoD pair is considered as the candidate

(C, T) pair.

For checking of the existence of a direct connection or path between candidate T

and C genes, the connectivity table of the network is used. This table is built using

the truth table of the BNp as follows: if toggling the value of a predictor gene affects

the value of a target gene, then the corresponding entry of the table has 1, otherwise

it has 0. Therefore, if there is a direct connection between C and T genes, then the

corresponding entry in the connectivity table has value 1. This implies that if for the

pair T-C, a path from C to T exists, it also means that control gene can affect the

target gene, based on the truth table.

If there is no connection between the T-C pair, there is still a possibility of

having a path which consist of more than these two genes. For checking the existence

61

of an indirect path(s), the Breadth-First-Search(BFS) algorithm [35] is used. The

BFS finds all the nodes that are reachable from the given source node.

This procedure is repeated until the CoD-Strongly-Connected T-C pair is found.

3. Effect on the SSD of the networks

To compare CoD-CP to the reduction-inducement versions of MFPT-CP and SSD-

CP, the reduction method in Chapter III and [30] is used, called CoD-Reduce. The

CoD-Reduce algorithm is designed for the networks with singleton attractors only

because its selection policy heuristically uses the singleton attractors to generate

the structure of the reduced network. Therefore, in this chapter, when reduction

of the network is needed for comparison of the control policies, the networks with

singleton attractors only are used. Figure 17 illustrates that the CoD-CP designed

on the original network outperforms the induced MFPT-CP and SSD-CP policies

when there is significant network reduction in the case of a 10-gene network and

p = 0.1. Each set of bars in the graph shows the average SSD shifts for the three

policies with different amounts of reduction for the MFPT-CP and SSD-CP policies,

beginning no reduction-induction, then reduction to 9 genes and induction back to 10,

and so on. The performance of CoD-CP is invariant because it is designed directly

from the original network. In the absence of reduction, the CoD-CP is outperformed

by the induced polices and continues to be outperformed with a 2-gene reduction.

But after that, for reductions of 3 ore more genes, CoD-CP outperforms the induced

policies, with its superiority increasing as the extent of the reduction grows. This

is precisely the desired behavior. While both the MFPT-CP and SSD-CP policies

can be used directly for 10-gene networks, they must be induced from reductions

for large networks and, as it is observed, the reduction-induction paradigm provides

decreasing SSD shift as the amount of reduction increases. Figure 18 shows a similar

62

Table II. Using a CoD-Strongly-Connected T-C pair : Comparing the MFPT-CP and

SSD-CP with the proposed CoD-CP. The absolute SSD shift toward desirable

states, averaged for 100 BNps with 10 genes, 100 BNps with 9 genes, 100

BNps with 8 genes and 100 BNps with 7 genes. Singleton attractors with

perturbation probability p = 0.1

Control Policy 7 genes 8 genes 9 genes 10 genes

CoD-CP 0.322014658 0.256250706 0.205475527 0.162102211

MFPT CP 0.323669615 0.278172941 0.235560338 0.215092042

SSD CP 0.31548592 0.274780118 0.235272982 0.217780913

phenomenon with p = 0.01.

4. Effect of cyclic attractors and the selection of target-control pairs

Having demonstrated the advantage of CoD-CP over the induced polices as the degree

of reduction (and, therefore, induction) increases, this section turns to two other

aspects of CoD-CP : the effect of cyclic attractors and the selection of target-control

pairs. For each issue, two cases are considered. For attractors, as previously noted,

there are two cases: (a) only singleton attractors and (b) cyclic attractors allowed.

Regarding target-control pairs, there are two possibilities: (a) CoD-strongly-connected

target-control pairs and (b) randomly selected target-control pairs. Combining these

choices, there are four factors to consider: network size (n), perturbation probability

(p), attractor structure, and target-control structure. Tables II, III, IV, V, VI, VII,

VIII, IX provide the SSD shifts for network size n ∈ {7, 8, 9, 10}, p ∈ {0.1, 0.01}, and

the two possibilities for attractors and target-control pairs.

The first point to recognize is that using CoD-strongly-connected target-control

pairs are more realistic because in practice one would control a target with a gene

63

0

0.05

0.1

0.15

0.2

0.25

Original 10-gene
network

9-gene to 10-
gene

8-gene to 10-
gene

7-gene to 10-
gene

6-gene to 10-
gene

5-gene to 10-
gene

4-gene to 10-
gene

A
v
e
ra

g
e
 S

S
D

 S
h

if
t

fo
r

1
0

0
 B

N
s

Original MFPT-CP Original SSD-CP

Induced MFPT-CP to the original netwrok Induced SSD-CP to the original netwrok

Original CoD-CP

Fig. 17. Comparing original CoD-CP to the original and induced MFPT-CP and SS-

D-CP for 100 randomly generated 10-gene BNps with half of the attractors

in D states. In the first set of bars, CoD-CP, MFPT-CP and SSD-CP are de-

signed on the 10-gene networks. In the next sets, the CoD-CP was designed

on the original 10-gene networks and compared to the induced MFPT-CP

and SSD-CP. At each step, one gene was deleted, and then MFPT-CP and

SSD-CP were designed and induced back to the original network, until each

BNp had only 4 genes. The perturbation probability is 0.1.

64

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Original 10-gene
network

9-gene to 10-
gene

8-gene to 10-
gene

7-gene to 10-
gene

6-gene to 10-
gene

5-gene to 10-
gene

4-gene to 10-
gene

A
v
e

r
a
g

e
 S

S
D

 S
h

if
t

fo
r

1
0

0
 B

N
s

Original MFPT-CP Original SSD-CP

Induced MFPT-CP to the original netwrok Induced SSD-CP to the original netwrok

Original CoD-CP

Fig. 18. Comparing original CoD-CP to the original induced MFPT-CP and SSD-CP

for 100 randomly generated 10-gene BNps with half of the attractors in D

states. In the first set of bars, CoD-CP, MFPT-CP and SSD-CP are designed

on the 10-gene networks. In the next sets, the CoD-CP was designed on

the original 10-gene networks and compared to the induced MFPT-CP and

SSD-CP. At each step, one gene was deleted, and then MFPT-CP and SSD-CP

were designed and induced back to the original network, until each BNp had

only 4 genes. The perturbation probability is 0.01.

65

Table III. Randomly choosing the target and control genes: Comparing the MFPT-CP

and SSD-CP with the proposed CoD-CP. The absolute SSD shift toward de-

sirable states, averaged for 100 BNps with 10 genes, 100 BNps with 9 genes,

100 BNps with 8 genes and 100 BNps with 7 genes. Singleton attractors

with perturbation probability p = 0.1.

Control Policy 7 genes 8 genes 9 genes 10 genes

CoD-CP 0.072929047 0.069787742 0.069085431 0.043901727

MFPT CP 0.108511867 0.119247253 0.125959351 0.125947219

SSD CP 0.116194205 0.133758479 0.142706132 0.141898815

Table IV. Using a CoD-Strongly-Connected T-C pair : Comparing the MFPT-CP and

SSD-CP with the proposed CoD-CP. The absolute SSD shift toward desir-

able states, averaged for 100 BNps with 10 genes, 100 BNps with 9 genes,

100 BNps with 8 genes and 100 BNps with 7 genes. Cyclic attractors with

perturbation probability p = 0.1

Control Policy 7 genes 8 genes 9 genes 10 genes

CoD-CP 0.315366842 0.237692755 0.191486782 0.132842645

MFPT CP 0.320002278 0.254221118 0.225470299 0.192352519

SSD CP 0.320124817 0.257447572 0.229185616 0.19785175

66

Table V. Randomly choosing the target and control genes: Comparing the MFPT-CP

and SSD-CP with the proposed CoD-CP. The absolute SSD shift toward

desirable states, averaged for 100 BNps with 10 genes, 100 BNps with 9

genes, 100 BNps with 8 genes and 100 BNps with 7 genes. Cyclic attractors

with perturbation probability p = 0.1.

Control Policy 7 genes 8 genes 9 genes 10 genes

CoD-CP 0.078443655 0.045092185 0.057163771 0.044105186

MFPT CP 0.110781996 0.091997738 0.116346892 0.124227404

SSD CP 0.124815432 0.114307555 0.136428735 0.141501075

Table VI. Using a CoD-Strongly-Connected T-C pair : Comparing the MFPT-CP and

SSD-CP with the proposed CoD-CP. The absolute SSD shift toward desir-

able states, averaged for 100 BNps with 10 genes, 100 BNps with 9 genes,

100 BNps with 8 genes and 100 BNps with 7 genes. Singleton attractors

with perturbation probability p = 0.01

Control Policy 7 genes 8 genes 9 genes 10 genes

CoD-CP 0.442813327 0.43722164 0.343500124 0.26431826

MFPT CP 0.444933823 0.474439814 0.417636081 0.391189057

SSD CP 0.429896505 0.431245347 0.368024051 0.337230131

67

Table VII. Randomly choosing the target and control genes: Comparing the MFP-

T-CP and SSD-CP with the proposed CoD-CP. The absolute SSD shift

toward desirable states, averaged for 100 BNps with 10 genes, 100 BNps

with 9 genes, 100 BNps with 8 genes and 100 BNps with 7 genes. Singleton

attractors with perturbation probability p = 0.01.

Control Policy 7 genes 8 genes 9 genes 10 genes

CoD-CP 0.117863711 0.148585675 0.160006514 0.102484183

MFPT CP 0.170811757 0.282492387 0.317528279 0.330404616

SSD CP 0.185170107 0.315283799 0.34151411 0.318055021

Table VIII. Using a CoD-Strongly-Connected T-C pair : Comparing the MFPT-CP

and SSD-CP with the proposed CoD-CP. The absolute SSD shift toward

desirable states, averaged for 100 BNps with 10 genes, 100 BNps with

9 genes, 100 BNps with 8 genes and 100 BNps with 7 genes. Cyclic

attractors with perturbation probability p = 0.01

Control Policy 7 genes 8 genes 9 genes 10 genes

CoD-CP 0.438436274 0.309464685 0.288786759 0.204716543

MFPT CP 0.451949369 0.341847358 0.353542661 0.324093223

SSD CP 0.42385878 0.299621849 0.288726556 0.265043692

68

Table IX. Randomly choosing the target and control genes: Comparing the MFPT-CP

and SSD-CP with the proposed CoD-CP. The absolute SSD shift toward

desirable states, averaged for 100 BNps with 10 genes, 100 BNps with 9

genes, 100 BNps with 8 genes and 100 BNps with 7 genes. Cyclic attractors

with perturbation probability p = 0.01.

Control Policy 7 genes 8 genes 9 genes 10 genes

CoD-CP 0.069442199 0.068265255 0.116798596 0.06892594

MFPT CP 0.175905537 0.202021369 0.26174396 0.265980677

SSD CP 0.196300574 0.233026013 0.274143933 0.265980677

that is strongly connected to it via prediction and the CoD is a measure of prediction.

On the other hand, one could hardly expect to achieve as good results by randomly

selecting targets and controls. In addition, as the tables show, using CoD-strongly-

connected target-control pairs results in decreasing SSD shift for increasing network

size, whereas this trend is replaced by sporadic behavior for randomly selected target-

control pairs. Finally, one can observe the better performance for p = 0.01 than for

p = 0.1. This reflects the more random network behavior for higher perturbation

probability because the control algorithm utilizes the predictive structure in the net-

work (as measured by the CoD) and this structure is less determinative when pertur-

bations are more likely. In this regard, it is noted that both MFPT-CP and SSD-CP

also perform better for p = 0.01 than for p = 0.1, in both their non-induced and

induced modes.

5. Statistical Testing

Furthermore, to examine the effects of the attractor structure of the network on the

performance of each control policy, the CoD-CP, MFPT-CP and SSD-CP are designed

69

for and applied to 100 randomly generated BNps with 10 genes. The two-sample t-test

assuming unequal variance is performed on the absolute SSD shift of the 100 networks

with two major classes of attractors and for two perturbation probabilities. These

tests show that the performances of all of the control policies are statistically different

(in the significance level of 0.05) for the networks with only singleton attractors from

the ones that permit cyclic attractors, for perturbation values p = 0.1 and p = 0.01.

In the case of perturbation value p = 0.1, the p-values for the CoD-CP, MFPT-CP

and SSD-CP are 4.8×10−4, 1.3×10−4 and 3.2×10−4, respectively. For p = 0.01, the

the p-values are 4.8×10−3, 1.1×10−5 and 1.4×10−8, for the CoD-CP, MFPT-CP and

SSD-CP respectively. Comparing the p-values illustrates that the performance of the

CoD-CP has the least change among the three policies when the attractor structure

of the networks changes. This means that the CoD-CP is more robust with respect

to the attractor structure of the network.

70

CHAPTER V

ALGORITHMS FOR GENERATION OF SYNTHETIC BOOLEAN NETWORKS

AND NETWORKS ISOMORPHISMS

A. Introduction

Representing GRNs via mathematical models with an ultimate intention of perturbing

the long-run behavior toward more desirable states is the main focus of translational

genomics. The mathematical models need to be constructed from the available data

such as microarray measurements. This approach is addressed in [15] and a new

inference method is proposed in Chapter VI of this dissertation. At the same time,

it is important to understand and study the properties of Boolean network model,

and the impact they might have on the process of designing control policies. In

this context, simulation studies based on synthetically generated BNs have attracted

significant research interest in recent years.

It is believed that the attractors play an important role in the the long-run

behavior of the network and the majority of the probability mass of the SSD is

concentrated in the attractors [13]. Considering this fact, Pal et. al [14] addressed

the problem of generating GRNs from a prescribed set of attractors. The algorithm

proposed in [14] generates synthetic Boolean networks with prescribed attractors,

while enforcing more constraints on the connectivity and structure of the networks.

They developed two algorithms:

1. Algorithm 1: randomly generates the truth table according to the prescribed set

of attractors and incorporates the compatibility between the attractors structure

and gene predictors. It also limits the minimum and maximum number of levels

in the networks, where the level is the distance of each state from the root.

71

2. Algorithm 2: randomly generates the state transition diagram, which dynami-

cally represents the states and their transitions, and then checks the validity of

the constraints on the generated network.

Algorithm 1 is widely used in studies that focus on large sets of synthetically

generated PBNs. However, this process could generate networks that have identical

dynamical structure, after mapping based relabelings of their genes. Thus, there is no

grantee that when one generates large sets of BNs with a given set of properties, one

will not bias that set toward a certain class of networks. It becomes important to find

sufficient conditions that allow an unbiased generation of sets of synthetic networks by

algorithm 1 in [14]. In this dissertation, two Boolean networks are called isomorphic

if there exists a gene relabeling that maps them to each other. This chapter is

dedicated to developing of sufficient conditions to avoid isomorphic networks, while

using algorithm 1 in [14].

The state transition diagram of a Boolean network is a graph and therefore,

BNs can be studied in the context of graph theory. This chapter starts by general

definitions of graphs and trees and adapts these concepts for Boolean networks. The

isomorphism in the context of Boolean networks is studied in section B, which also

introduces two new algorithms for discarding isomorphic BNs: 1- with singleton

attractors only; 2- with cyclic attractors.

B. Isomorphism in the context of the Boolean networks

This chapter studies isomorphisms in the context of Boolean networks, without being

concerned about gene perturbations. The state transition diagram of a BN is a

graph. The following section provides the general definitions of the graphs, trees and

isomorphisms between them. It utilizes these concepts to define the isomorphism of

72

Boolean networks.

1. Definitions

Definition 4. A directed graph G is a pair, (V,E), where V is a finite set and E is

a binary relation on V. The set V is called the vertex set of G, and its elements are

called vertices. The set E is called the edge set of G, and its elements are called

edges[35].

According to the above definition, the state transition diagram of a BN is a

directed graph, consisting of nodes that represent the states and edges that represent

the transitions.

Definition 5. Two graphs G = (V,E) and G′ = (V′,E′) are isomorphic if there

exists a bijection f : V→ V′ such that (u, v) ∈ E if and only if (f(u), f(v)) ∈ E ′[35].

Thus, the isomorphisms of graphs could be thought as a relabeling of vertices of

G, maintaining the corresponding edges in G and G′ [35].

Trees are special form of graphs and can be defined as:

Definition 6. A directed graph with no cycles is called a directed acyclic graph. A

(directed) tree (sometimes called a rooted tree), is a directed acyclic graph satisfying

the following properties[36]:

1. There is exactly one vertex, called the root, which no edges enter.

2. Every vertex except the root has exactly one entering edge.

3. There is a path (which is easily shown unique) from the root to each vertex.

Boolean networks can be divided into two classes, based on their attractor struc-

ture: 1- BNs with singleton attractors only; 2- BNs with cyclic attractors. Class 1 of

73

the BNs can be viewed as a collection of trees if the direction of each edge is reversed,

and the self-referencing attractor edges are removed. Therefore, in this dissertation,

a BN with singleton attractors only is referred to as a k-BN-tree.

For defining isomorphisms for k-BN-trees, let’s start by describing the general

tree isomorphisms. Aho et al. [36] define two trees to be isomorphic if one can map

a tree into the other by permuting the order of the sons of vertices. They developed

an algorithm that determines if two trees are isomorphic in O(n) time, where n is the

number of vertices [36]. The algorithm works through the trees level-by-level toward

the roots and assigns integers to vertices in two trees. The two trees are isomorphic

if and only if their roots have the same integer at the end of the process.

It is important to observe that this graph-theoretical definition of isomorphism

between trees has little to do with the dynamic of a BN as represented by its state

transition diagram. One has to keep in mind that k-BN-trees consist of vertices that

are the states of the respective Boolean network. In this dissertation, the concept

of isomorphism for k-BN-trees relates to the possibility of mapping one k-BN-tree

to another k-BN-tree, by a permutation of their gene labels, assuming that both

networks are defined on the same collection of genes. The following section discusses

this concept.

C. Discussion

In order to generate unbiased sets of the synthetically generated BNs, one needs to

ensure that the networks included in that set, cannot be mapped to each other by

relabeling their genes. This section starts by defining the isomorphism in the context

of k-BN-trees. Afterwards, it provides two algorithms that ensure that the sets of

synthetically generated BNs are unbiased in the sense that they do not contain any

74

isomorphic BNs.

1. Isomorphism of k-BN-trees

It is important to note that a gene relabeling not only changes the enumeration of

the states of a k-BN-tree, but can also move a state to a different basin of attraction,

or it can change the position of a state within the same basin of attraction; Figure 19

discusses such an example. Furthermore, while gene relabeling changes the enumera-

tion of the states, the attractor structure and the number of states within a basin of

an attractor will not change.

In Figure 19 two 2-BN-trees are mapped to each other by relabeling of their genes.

In part (a), a given BN and its corresponding state transition diagram are provided.

The relabeling is based on the following permutation: (1, 2, 3, 4) → (3, 2, 1, 4). The

state transition diagram shows that the network is essentially the same as the 2-BN-

tree in part a, in terms of attractor structure and the basin of the attractors.

The following definition provides the concept of isomorphic k-BN-trees:

Definition 7. Two k-BN-trees care called isomorphic if they can be mapped to each

other by a gene relabeling.

The objective of this section is to find sufficient conditions that allow for elim-

ination of isomorphic k-BN-trees, from a set of synthetically generated k-BN-trees

by algorithm 1 in [14]. In order to describe such sufficient conditions, the notion of

semi-isomorphism for k-BN-trees are introduced. The semi-isomorphism is used in a

novel algorithm that ensures that no isomorphic k-BN-trees remain in a set generated

by algorithm 1 in [14]. In what follows, it is assumed that the set of all k-BN-trees on

fixed number of genes, is partially ordered. In particular, a k-BN-tree has its attractor

states {S1, · · · Sk}, always ordered by non-decreasing cardinality of their respective

75

g1 g2 g3 g4 f1 f2 f3 f4
0 0 0 0 1 0 1 1
0 0 0 1 1 0 1 1
0 0 1 0 0 0 1 0
0 0 1 1 0 0 1 0
0 1 0 0 1 1 0 0
0 1 0 1 1 1 1 0
0 1 1 0 0 1 0 0
0 1 1 1 0 1 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 0 1 1
1 0 1 0 0 0 1 0
1 0 1 1 0 0 1 0
1 1 0 0 1 1 0 0
1 1 0 1 1 1 1 0
1 1 1 0 0 1 0 0
1 1 1 1 0 1 1 0

Relabeled Next States

g3 g2 g1 g4 f3 f2 f1 f4

0 0 0 0 1 0 1 1

0 0 0 1 1 0 1 1
0 0 1 0 1 0 1 1
0 0 1 1 1 0 1 1
0 1 0 0 0 1 1 0
0 1 0 1 1 1 1 0
0 1 1 0 0 1 1 0
0 1 1 1 1 1 1 0
1 0 0 0 1 0 0 0
1 0 0 1 1 0 0 0
1 0 1 0 1 0 0 0
1 0 1 1 1 0 0 0
1 1 0 0 0 1 0 0
1 1 0 1 1 1 0 0
1 1 1 0 0 1 0 0
1 1 1 1 1 1 0 0

BN-tree 1 BN-tree 2

BN-tree 1 BN-tree 2

a) Before relabeling

States Next States

b) After relabeling

Relabeled States

0010

0011 1010

00

0011

10

1010

1011

0010

1011

1000 1001

10

1000 1001

101110

1001 0000 0001

111011

00000000 00010000

001000100010 1100

0100

1100

010000

11001100

0110

01

0110

0111

0110

0111 1111

100110

111111

1110

0101

1110

0101 1101

101110

01 1101

1000

1001 1010

10

1001

00

1010

1011

1000

1011

0010 0011

10

0010 0011

101110

0011 0000 0001

111011

00000000 00010000

100010001000 0110

0100

0110

010000

01100110

1100

01

1100

1101

1100

1101 1111

001100

111111

1110

0111

1110

0111 0101

101110

11 0101

Fig. 19. Two isomorphic 2-BN-trees. a) A Boolean network with two singleton attrac-

tors, states {0010, 1100}, represented as two BN-trees called BN-tree 1 and

BN-tree 2. b) A relabeling exchanges columns one and three in the truth table;

then the truth table is re-ordered, creating a new 2-BN-tree, with attractors

{1000, 0110}. The BN-tree 1 and BN-tree 2 in parts a and b, have a common

attractor structure and matching basin for their attractors, therefore, they

are isomorphic.

76

basins {B1, · · · Bk}, i.e. ∥B1∥ ≤ ∥B2∥ ≤ ... ≤ ∥Bk∥. Under this convention, the

partial order is defined as: k-BN-tree(1) ≼ k-BN-tree(2) if ∥Bi(1)∥ ≤ ∥Bi(2)∥ for

i = 1, ..., k. The following defines the concept of semi-isomorphism for k-BN-trees:

Definition 8. Two k-BN-trees, k-BN-tree(1) and k-BN-tree(2) are semi-isomorphic

if ∥Bi(1)∥ = ∥Bi(2)∥, for i = 1, ..., k.

Table X represents two 4-BN-trees with semi-isomorphism. There are 7 genes and

128 states in each network and four states are randomly selected to be the attractor

states.

Table X. Two networks with 7 genes and 128 states: 4-BN-tree (1) and 4-BN-tree (2),

are semi-isomorphic. Four states are randomly chosen to be the attractor

states. The number of states within the basin of attractors vary, but their

partial order is the same.

Network Attractor Number of States within the Basin

4-BN-tree (1) 5 16

33 16

80 48

98 48

4-BN-tree (2) 3 48

46 16

77 48

112 16

The notion of semi-isomorphism provides sufficient condition to avoid isomor-

phic BNs, while generating synthetic networks using algorithm 1 outlined in [14].

It is important to note that if two k-BN-trees are isomorphic, then they are neces-

77

sary semi-isomorphic. This means that if the semi-isomorphic BNs are discarded, no

isomorphic networks are left in the set of synthetically generated BNs. As a conser-

vative approach, this dissertation proposes discarding one of the networks for every

semi-isomorphic pair of k-BN-trees. Section 2 provides more details.

2. An algorithm for avoiding isomorphic k-BN-trees

This section introduces an algorithm for avoiding synthetic isomorphic k-BN-trees,

generated by the method outlined in [14]. The notion of semi-isomorphism, defined

in this chapter, provides sufficient condition for avoiding the networks that can be

mapped to each other by a gene relabeling. Therefore, one can ensure that by fil-

tering out semi-isomorphic k-BN-trees, the remaining networks are non-isomorphic.

The algorithm conservatively eliminates one of the networks for every pair of semi-

isomorphic k-BN-trees, which makes the algorithm very fast and efficient.

Algorithm 6 provides the steps that are needed for ensuring the synthetically

generated k-BN-trees are non-isomorphic. In the case when N non-isomorphic BNs

are needed, nN networks are produced. This is necessary because for every pair

of networks that are semi-isomorphic, only one of them is saved and the other one

is discarded. The parameter n can be selected by the user, and should be at least

2. The total of nN k-BN-Trees are generated to expect that N networks will be

non-isomorphic. The algorithm starts by randomly generating nN sets of k non-

repeating numbers, where k is the number of prescribed singleton attractors. Then,

the algorithm in [14] is used to generate nN networks, using the sets of prescribed

attractors. In the next step, for every pair of semi-isomorphic networks, one of them

is discarded and the other one is saved. And finally, the algorithm ensures that

the total number of saved networks is more than or equal to the needed number of

networks. It is possible that even by generating nN k-BN-Trees, at least N non-

78

Algorithm 6 Discarding isomorphic Boolean networks with singleton attractors

1: Input N : total number of needed non-isomorphic BNs

2: Input M : total number of iterations

3: Input k: total number of attractor States for each BN

4: Input n

5: while M ̸= 0 do

6: Generate nN sets of numbers, where each set consists of exactly k non-

repeating numbers

7: BN-tree ← Generate nN networks by the algorithm outlined in [14], using the

sets with exactly k unique numbers as prescribed singleton attractors

8: BN-tree-UNIQUE ← For any two networks in BN-tree that are semi-

isomorphic, discard one of them

9: if |BN-tree-UNIQUE | ≥ N then

10: return(BN-tree-UNIQUE)

11: BREAK

12: else

13: M ← M - 1

14: end if

15: end while

79

isomorphic networks were not generated. Therefore, the process is repeatedM times.

However, if the total of at least N non-isomorphic networks are generated in any of

the iterations, then, the algorithm stops.

3. Isomorphism for Boolean networks with cyclic attractors

Boolean networks have another important class of attractor structure: cyclic attrac-

tors. In this class, the attractor sets of the networks consist of l states that can

transition to each other. If any of the l states has only self-referencing, then that

state is a singleton attractor. This section provides the conditions to verify isomor-

phic BNs with cyclic attractors, up to gene relabelings. Figure 20 shows an example

of a BN with cyclic attractors, where l = 4.

Clearly the Boolean networks with cyclic attractors, cannot be represented as

k-BN-trees. The general definition of the BNs, provided in section 1 of the Chapter

II, states that the BNs have sets of attractors, where the attractors can be cyclic,

singleton or a mixture of them. The Boolean networks with cyclic attractors are the

general case and their state transition diagram can be represented as a directed graph.

The definition of the partial order for k-BN-trees, defined in section 1 of this chapter,

easily extends to the case of Boolean networks with cyclic attractors. Similarly, the

notion of semi-isomorphism can be extended to any case of BNs. Attractors with

different lengths of cycles allows for stronger sufficient condition for eliminating semi-

isomorphism in the general case. This section provides an algorithm 7 that eliminates

semi-isomorphic Boolean networks with cyclic attractors, while generating networks

with algorithm 1 in [14].

The algorithm 7 takes a conservative approach by keeping only one network with

a given cycle length and partial order of basins. Similar to algorithm 6, nN networks

are generated to ensure that the process results in at leastN non-isomorphic networks.

80

The algorithm stops if: 1- in any of iterations, at least N non-isomorphic networks

are generated; 2- the algorithm is repeated for a total of M iterations.

The two algorithms presented in this chapter, are used in the simulation studies

of Chapters III and IV. These algorithms ensured that only non-isomorphic BNs are

used and thus, the sets of synthetically generated networks are not biased.

Attractor 17 36 42 121

Cycle

Length
2 2 2 2

42 17

43 16

17 42

16 43

!"

!"

!"

!"

!"

!"

121 36

88 37

36 121

37 88

!"

!"

!"

!"

!"

!"

Fig. 20. Boolean network with 4 cyclic attractors. There exists 7 genes and 128 states;

therefore, the truth table consists of 128 rows. Four states {17, 36, 42, 121}
are the attractors. The cycle length for each attractor is 2 for all 4 attractors.

81

Algorithm 7 Discarding isomorphic Boolean networks with cyclic attractors - Part

1
1: Input N : total number of needed non-isomorphic BNs

2: Input M : total number of iterations

3: Input l: total number of attractor States for each BN

4: Input n

5: while M ̸= 0 do

6: Generate nN sets of numbers, where each set consists of exactly l non-

repeating numbers

7: BN-Cyclic-Attractors ← Generate nN networks by the algorithm outlined in

[14], using the sets with exactly l unique numbers as prescribed cyclic attractors

8: for all the BN(i) ∈ BN-Cyclic-Attractors do

9: CycleLength(i)← Length of attractor cycles

10: BasinStructure(i) ← The number of States within the basin of each

attractor

11: if The first appearance of CycleLength(i) == True then

12: Add BN(i) to the BN-Cyclic-Attractors-UNIQUE set

13: else

14: if The first appearance of BasinStructure(i) == True then

15: Add BN(i) to the BN-Cyclic-Attractors-UNIQUE set

16: else

17: Discard the BN(i)

18: end if

19: end if

20: end for

82

Algorithm 8 Discarding isomorphic Boolean networks with cyclic attractors - Part

2
21: if |BN-Cyclic-Attractors-UNIQUE | ≥ N then

22: return(BN-Cyclic-Attractors-UNIQUE)

23: BREAK

24: else

25: M ← M -1

26: end if

27: end while

83

CHAPTER VI

AN INFERENCE METHOD WITH AN INTERVENTION INTENT

A. Introduction

One of the important goals of translational genomics is to model genomic regulatory

networks to alter the time evolution of their gene activity profile toward desired

states. Synthetically generated networks are widely used to model GRNs and study

the effects of available control mechanisms, [14] and Chapter V of this dissertation.

Another approach aims to infer gene regulatory networks using the measurements

from patients’ samples. This chapter introduces a new method that considers the

ultimate task of controlling, while inferring a Boolean network. This new algorithm

is called: CoD-Control-Embedded-inference (CoD-CE-Inference).

Previously, the inference of GRNs, from the experimental microarray measure-

ments, had been addressed by the well-known seed-growing algorithm [15]. The seed-

growing method starts by a set called seed, consisting of one or more genes. The

functionality/regulatory role of the seed genes is known or be simply of interest.

The objective of the algorithm is to grow subnetworks from the seed genes, that are

strongly connected and have weak impact from the rest of the genes. This method

remains in the context of graph theory and delivers directed graph, representing the

topology of the GRN. A brief review of this method is provided in Chapter II, section

5.

The CoD-CE-Inference is an inference procedure that generates networks from

gene expression measurements. It takes the a binarized input dataset in order to

infer a Boolean network with strong inter-gene connections. The CoD-CE-Inference

shares few similarities to the seed-growing method, such as using the seed gene and

84

adjoining genes sequentially. Nonetheless, it pursues a different goal and delivers

only one Boolean network. The main difference between CoD-CE-Inference and seed-

growing method is in their objective: while CoD-CE-Inference infers a BN with the

ultimate goal of controlling its long-run behavior via applying control policies, the

seed-growing algorithm is concerned with growing subnetworks in accordance with the

principles of autonomy [15]. The CoD-CE-Inference utilizes the CoD for measuring

the strength of gene connections; seed-growing algorithm uses CoD and Influence of

genes, Chapter II section 5, to measure the strength of connections.

The CoD-CE-Inference initiates by setting one gene as the seed, called target

(T) gene. This gene could be selected by a biologist/physician or could be a well-

known gene related to the phenotype of interest. Currently, the algorithm starts with

one gene as the target, but can be easily generalized to work with more genes. The

ultimate goal of controlling the inferred BN plays an important role in all of the

steps of the algorithm. It is known that for beneficially controlling the behavior of

the T, the expression level of another gene called control (C), needs to be altered.

The algorithm start growing a network by adding 2 genes that have strong CoD-

measured gene connection to the target gene. Genes that are tightly connected to T

measured by CoD, or to one of the other genes inside the growing-network are added

sequentially. This criterion provides an opportunity for selecting a good candidate

control gene, in the cases that this gene is not provided by prior knowledge. However,

in practice, the control gene is chosen by a biologist/domain expert. The truth table

of the inferred BN is constructed, based on the genes within the growing-network.

Section B of this chapter describes the algorithm in more details.

As an important property, the CoD-CE-Inference re-wires the network after

adding a new gene. Re-wiring means that the genes predicting any given gene, can

be changed after adding a new gene to the network. Therefore, adding each gene can

85

affect the dynamics of the network and its corresponding truth table.

In summary, the seed-growing algorithm and the CoD-CE-Inference have four

major differences:

1. CoD-CE-Inference aims to generate a network with the purpose of control,

whereas the seed-growing algorithm is concerned only with the topology of the

inferred subnetworks

2. CoD-CE-Inference generates the truth table of the GRN, however, the current

implementation of the seed-growing method does not generate the truth table

3. After adding any new gene, CoD-CE-Inference re-wires the network, as op-

posed to the seed-growing method that keeps the structure of currently inferred

subnetworks untouched

4. CoD-CE-Inference infers a unique BN , while the seed-growing algorithm gen-

erates many networks starting from the seed gene(s)

B. Proposed inference method

The CoD-CE-Inference algorithm grows a network by adjoining genes that are strong

predictors of the genes within the already inferred network. The genes within the

inferred network, including the C gene, are strong predictors of the T, therefore, al-

tering the behavior of the network toward more desirable states can be easily achieved

by using the available optimal/greedy control policy methods. This section provides

the details of the new algorithm.

The process initiates by selecting the T as the seed gene. For selecting the first

pair of genes to join the T, the 2-gene combinations of all of the available genes within

the input dataset, excluding the seed, are found. For each 2-gene combination, its

86

CoD for predicting the T is calculated. The combination that has the maximum

CoD w.r.t. T is added to the growing-network. In the next step, the the truth table

(TT) is constructed, using the conditional probability distribution (CPD) table of

the winning 2-gene combination. Table XI shows the general form of a CPD table.

In Chapter IV, section B, the triple with maximum CoD for predicting T is called

MAXCOD and the their corresponding CPD table is called MAXCPD. Herein, the

same terminology is used to refer ro the gene combination with maximum CoD for

predicting T and its CPD table. However, two genes are used to predict T, and

thus, the MAXCPD table has 4 rows. Also, the values in columns 3 and 4 are the

average frequencies (proportions) of the binary values of T, conditioned on the values

of MAXCOD genes.

Table XI. Conditional Probability Distribution (CPD) Table: the first two columns

represent the binary combinations of the 2 predictor genes. The last two

columns represents the proportions of the frequencies of the target, condi-

tioned on predictor 1 and predictor 2.

Predictor genes T

Predictor 1 Predictor 2 0 1

row 1 0 0 P10 P11

row 2 0 1 P20 P21

row 3 1 0 P30 P31

row 4 1 1 P40 P41

During the inference procedure, the steady-state distribution of the network is

not available. Therefore, for calculating the CoDs, the binarized gene expression

values are used. Figure 21 shows the process of generating the CPD tables from

87

the binarized gene expressions. A CPD table is generated, using a gene expression

dataset that is binarized, normalized and filtered, using the methods in [37], where:

1. The first 2 columns of the table represent the binary values of the two genes,

predicting the target gene.

2. For completing columns 3 and 4, the frequencies of the binary values of the T

across all samples, conditioned on the 2 predictor genes, are averaged. There-

fore, the values in these two columns represent the proportion of the T values,

conditioned on predictor 1 and predictor 2. If a binary combination of the 2

predictor genes is not observed in the data, then, its corresponding values in

columns 3 and 4 are set to zero.

Gene2 Gene5 Gene1

1 1 1

0 0 1

1 1 1

1 0 0

1 1 1

1 0 0

1 1 1

0 0 1

1 1 1

1 0 1

CPD Table

Predictor1 Predictor2 Target

Gene2 Gene5 Gene1

0 0 0 0.2

0 1 0 0

1 0 0.2 0.1

1 1 0 0.5

Predictor1 Predictor2 Target

Gene2 Gene5 Gene1

0 0 0 2

0 1 0 0

1 0 2 1

1 1 0 5

 Total: 10

Target Predictor 1 Predictor 2

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene 8 Gene 9 Gene 10 Gene 11 Gene 12

Sample 1 1 1 1 1 1 0 1 0 1 1 1 0

Sample 2 1 0 0 1 0 0 0 1 0 0 0 1

Sample 3 1 1 1 1 1 0 1 0 1 1 0 0

Sample 4 0 1 0 0 0 1 0 1 0 0 0 1

Sample 5 1 1 1 1 1 0 1 0 1 1 0 0

Sample 6 0 1 1 1 0 0 0 1 0 0 0 1

Sample 7 1 1 1 1 1 0 1 0 1 1 1 1

Sample 8 1 0 1 1 0 0 0 0 0 1 1 1

Sample 9 1 1 1 1 1 0 1 0 1 1 0 0

Sample 10 1 1 0 0 0 1 0 0 0 0 1 1

Fig. 21. Generating CPD tables from binarized microarry measurements

88

After adding the first 3 genes, the algorithm adds genes one by one to the growing-

network. In each step, to select a gene to be added, one of the genes, within the

growing-network, is set as the temporary target gene. Then, all possible 2-gene com-

binations are made such that one gene is from inside the growing-network and one

gene is from outside. The goal of this step is to combine a gene from outside, with a

gene from inside, to find a gene that can help in maintaining the strong CoD-measured

connections among genes within the growing-network. This method for selecting a

new gene differs the CoD-CE-Inference algorithm from the seed-growing algorithm.

As provided in Chapter II, section 5, seed-growing algorithm does not consider gene

combinations, instead it selects one gene form outside the growing subnetwork, where

it maximize the equation 2.14. The CoD-CE-Inference algorithm takes another ap-

proach: the gene to be added, is from outside the growing-network, where it has

maximum CoD for predicting the temporary target gene, when it is combined with a

gene inside the growing-network. The gene, from the not added genes, in the winning

2-gene combination will be added to the network. The following example explains

how the functions for the newly added gene will be completed. The algorithm 11

outlines the procedure for filling up the TT.

Example 1 : This example fills up a column of the truth table for a 7-gene

Boolean network with 128 states. The process goes through all the states of the

network. For deciding which row of the CPD table to use, one needs to look at the

values of the predictor genes in the state that is being considered. Without loss of

generality, assume that x2 and x3 are the predictor genes for the T, which is x1.

Considering the state s = 0010000, one can see that x2 = 0 and x3 = 1. This binary

value corresponds to the row 2 of the CPD table. Therefore, for filling up the a

89

column of truth table for x1, the row 2 of the CPD table is used. If P20 < P21, then,

the values of the T for the functions within the TT are set to be 0. If P20 > P21,

then, the T values are set to be 1. If none of these cases happen, it means P20 = P21,

therefore, on can choose the value uniformly randomly.

After choosing the gene to be added to the growing-network, the CoD-CE-

Inference re-wires the network. For predicting each gene within the growing network,

all of the other possible 2-gene combinations of the genes within the growing-network

are examined. Two genes that predict this gene with maximum CoD are selected as

its predictors. The CPDs and the strongest predictors for each gene are used to fill

up the TT, using the process explained by example 1 and algorithm 11. After this

step, the inferred network and its TT are completed. The procedure is represented

in algorithm 9. The algorithm stops when a pre-specified number of genes are added

to the network.

C. Discussion

This section uses the proposed CoD-CE-Inference method to infer Boolean networks

from gene expression measurements. The data is from a gastrointestinal cancer study,

where a 2-gene classifier is devised for accurately distinguishing the two types of the

disease [1]. To infer the BN , the microarray data were normalized, filtered and

binarized using methods from [37]. Two different networks were inferred, using two

seed genes. The Boolean networks have 17 genes, where the dimension of the state

transition matrix is 217 × 217. Due to the limited computational power, more genes

could not be added to the networks. However, there is no limit on the number of

genes that CoD-CE-Inference can adjoin to a network. The following two sections

provide more details about the two BNs that are inferred by CoD-CE-Inference.

90

Algorithm 9 CoD-CE-Inference, initiation and adjoining genes - Part 1

1: STEP 1: Initiation by Adding First 3 Genes

2: Input T

3: Input Max-Number-of-Genes

4: {POTENTIAL-GENES} ← all the genes, except T

5: Find the 2-gene combination ∈ POTENTIAL-GENES with maximum CoD For

predicting T : MAXCOD

6: Call the ’Fill-Out-TT’ function using T and MAXCOD

7: {ADDED-GENES} ← {T, MAXCOD}

8: Remove MAXCOD from POTENTIAL-GENES

9: TOTAL-GENES← 3

10: STEP 2: Adding More Genes

11: while TOTAL-GENES < Max-Number-of-Genes do

12: for all the genes xi ∈ ADDED-GENES do

13: Set xi as the TEMPORARY-T

14: Find the set MIXTURE : includes all 2-gene combinations y1y2, where

y1 ∈ POTENTIAL-GENES and y2 ∈ ADDED-GENES

15: for all the combinations ∈ MIXTURE do

16: Θiy1y2 ← CoD For predicting TEMPORARY-T

17: end for

18: end for

19: Find maximum Θiy1y2 and its corresponding 2-gene combinations y1y2

20: Call the ’Fill-Out-TT’ For y1

21: Add y1 to: ADDED-GENES

22: Remove y1 from: POTENTIAL-GENES

91

Algorithm 10 CoD-CE-Inference, initiation and adjoining genes - Part 2
23: TOTAL-GENES← TOTAL-GENES+ 1

24: for each gene within ∈ ADDED-GENES do

25: Find its MAXCOD, using the 2-gene combinations ∈ ADDED-GENES

26: Call the ’Fill-Out-TT’ function to complete TT

27: end for

28: end while

29: return (ADDED-GENES)

D. Gastrointestinal cancer network, OBSCN as the seed gene

The first network, presented in this section, uses the gene OBSCN as the seed gene.

This gene is one of two genes composing the best classifier in [1]. The network is

grown by adding genes that have strong connectivity to OBSCN, as measured by the

CoD. The seed gene, OBSCN, is set as the target gene and the second gene added

to the network, GREM2, is set as the control gene. Unless there is a biologically

known relation between a target gene and a particular phenotype, as in the case

of WNT5A and metastatic competence in melanoma, there is no standard way to

select a target and control gene pair; however, it is reasonable to expect that the

best 1-gene classifier, OBSCN, that discriminates between two types of cancer can

also be a potential target for a possible therapeutic intervention. GERM2 has the

strongest CoD connection to this gene and thus, could be viewed as a good candidate

for a control gene. At each iterative step, a gene from outside the growing-network

combined with a gene inside the network. The outside gene from the combination

that has the strongest connectivity, measured by the CoD, to one of the genes from

the current network is added to the network. Then, the network is re-wired taking

92

Algorithm 11 CoD-CE-Inference, Filling out the Truth Table, Fill-Out-TT

1: Input CPD table

2: Input TARGET-GENE

3: Input TOTAL-STATES as the total number of the States

4: Input Predictor1-COLUMN

5: Input Predictor2-COLUMN

6: TOTAL-ROWS-CPD ← 4

7: for i ≤ TOTAL-ROWS-CPD do

8: Predictor1-VALUE ← CPD(i,Column1)

9: Predictor2-VALUE ← CPD(i,Column2)

10: for j ≤ TOTAL-STATES do

11: if StateS (j,Predictor1-COLUMN) = Predictor1-VALUE &&

12: StateS (j,Predictor2-COLUMN) = Predictor2-VALUE then

13: if CPD(i,Pi0) < CPD(i,Pi1) then

14: FUNCTIONS (j,TARGET-GENE) ← 0

15: else if CPD(i,Pi0) > CPD(i,Pi1) then

16: FUNCTIONS (j,TARGET-GENE) ← 1

17: else

18: FUNCTIONS (j,TARGET-GENE) ← Randomly choose 0 or 1

19: end if

20: end if

21: end for

22: end for

23: return (FUNCTIONS)

93

OBSCN

GREM2

UCHL1

NLN

C20orf166

D90075

HSD11B1

COL1A1

BC042026

THC2123516

KUB3

TPM1

A_24_P920699

LOC441047

IBSP

BNC1

FMO3

Fig. 22. 17-gene Gastrointestinal Cancer Network, with OBSCN as the seed gene, [30],

[31]

into account that a new gene in the network can change the way genes influence

each other. The 17-gene network includes the following genes: OBSCN , GREM2,

HSD11B1, UCHL1, A 24 P920699, BNC1, FMO3, LOC441047, THC2123516,

NLN , COL1A1, IBSP , C20orf166,KUB3, TPM1,D90075 andBC042026. Figure

22 shows this network.

1. Applying CoD-Reduce and CoD-CP

To demonstrate the performance of the CoD-CP algorithm, the 17-gene inferred

network with OBSCN as the seed gene is used. The CoD-CP can be directly designed

94

on this large network, but MFPT-CP and SSD-CP cannot be derived. Therefore, the

CoD-Reduce is used to delete genes consecutively until only 10 genes are left in the

network: OBSCN , GREM2, HSD11B1, BNC1, LOC441047, NLN , C20orf166,

KUB3, D90075 and BC042026. At that point it is possible to design the MFPT-

CP and SSD-CP policies, after which they are induced back to the original 17-gene

network. The resulting performance comparison of the CoD-CP policy with the

induced MFPT-CP and SSD-CP policies is shown in Figure 23. The SSD shift for

the CoD-CP is better than the shift for the induced MFPT-CP and SSD-CP policies,

which are about the same. The perturbation probability used in this experiment is

p = 0.1. Figure 24 displays the results for p = 0.01. It is important to point out

that the small perturbation probability, p = 0.01, makes such a large network to be

very deterministic. Thus, all of the three control policies produce significant shifts

in the network SSD towards the desirable states. In addition, one can notice that

the CoD-CP performs extremely well which can be attributed to the use of CoD to

infer the network structure from data. This results illustrates the importance of the

proper combination of network inference and control policy design methods.

E. Gastrointestinal cancer network, C9orf65 as the seed gene

For furthure demonstration of the CoD-CE-Inference performance, another large 17-

gene network is generated using the gastrointestinal cancer data set from [1], and

uses C9orf65 gene as the seed gene. The total number of the genes in the fi-

nal network is 17: C9orf65, CXCL12, TK1, SOCS2, THC2168366, SEC61B,

ENST00000361295, KCNH2, ACTB, RPS18, RPS13, THC2199344, SNX26,

RPL26, SLC20A1, RPS11, THC2210612, THC2161967, IER2 and LAMP1. Gene

CXCL12 is set to be the control gene.

95

0

0.1

0.2

0.3

0.4

0.5

0.6

CoD-CP Induced MFPT-CP Induced SSD-CP

T
o

ta
l
P

ro
b

a
b

il
it

y
 m

a
s
s
 o

f
U

 s
ta

te
s

p = 0.1 Before control After Control

Fig. 23. Comparing the total SSD shift for the Undesirable states, before and after

applying CoD-CP, Induced MFPT-CP and SSD-CP. The CoD-CP is designed

on the 17-gene Gastrointestinal cancer network. The 17-gene network was

reduced to 10 genes, the MFPT-CP and SSD-CP were designed for it and

then these control policies induced back and applied on the original 17-gene

network. The seed gene is OBSCN and p=0.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

CoD-CP Induced MFPT-CP Induced SSD-CP

T
o

ta
l
P

ro
b

a
b

il
it

y
 m

a
s
s
 o

f
U

 s
ta

te
s

p = 0.01 Before control After Control

Fig. 24. Comparing the total SSD shift for the Undesirable states, before and after

applying CoD-CP, Induced MFPT-CP and SSD-CP. The CoD-CP is designed

on the 17-gene Gastrointestinal cancer network. The 17-gene network was

reduced to 10 genes, the MFPT-CP and SSD-CP were designed for it and

then these control policies induced back and applied on the original 17-gene

network. The seed gene is OBSCN and p=0.01.

96

The network is very large and MFPT-CP cannot be directly designed for it.

Therefore, initially the best gene for deletion is selected using CoD-Reduce and the

network is reduced by deleting one gene, then CoD-Reduce is applied consecutively

to reduce the network down to 10 genes: C9orf65, CXCL12, RPS18, RPS13,

THC2199344, SNX26, RPL26, SLC20A1, RPS11 and THC2210612. After reduc-

ing the original network down to 10 genes, the MFPT control policy for the reduced

network is designed and then induced back on the original 17-gene network. Table

XII shows the total probability mass of the desirable and undesirable states before

and after applying the induced control policy. As the table illustrates, there is about

13% shift in the steady-state distribution of the network toward more desirable states.

Table XII. SSD shift toward the Desirable states in Gastrointestinal Cancer Network,

with C9orf65 as seed

Total Probability mass of Desirable states, before control 0.594127833

Total Probability mass of Desirable states, after control 0.722673833

Total Probability mass of Undesirable states, before control 0.405872167

Total Probability mass of Undesirable states, after control 0.277326167

97

REFERENCES

[1] N. D. Price, J. Trent, A. K. El-Naggar, D. Cogdell, E. Taylor, K. K. Hunt, R. E.

Pollock, L. Hood, I. Shmulevich, and W. Zhang, “Highly accurate two-gene clas-

sifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas,”

Proceedings of the National Academy of Science, vol. 104, no. 9, pp. 3414–3419,

2007.

[2] I. Shmulevich and E. R. Dougherty, Probabilistic Boolean Networks: The Mod-

eling and Control of Gene Regulatory Networks. New York: SIAM Press, 2010.

[3] I. Shmulevich, E. Dougherty, S. Kim, and W. Zhang, “Probabilistic boolean

networks: a rule-based uncertainty model for gene regulatory networks,” Bioin-

formatics, vol. 18, no. 2, pp. 261 – 274, 2002.

[4] R. Pal, A. Datta, and E. Dougherty, “Optimal infinite-horizon control for proba-

bilistic boolean networks,” IEEE Tranactions on Signal Processing, vol. 54, no. 6,

pp. 2375 – 2387, 2006.

[5] A. Datta, R. Pal, A. Choudhary, and E. Dougherty, “Control approaches

for probabilistic gene regulatory networks,” IEEE Signal Processing Magazine,

vol. 24, no. 1, pp. 54 – 63, 2007.

[6] D. P. Bertsekas, Dynamic Programming and Optimal Control. Belmont, MA:

Athena Scientific, 2005.

[7] T. Akutsu, M. Hayashida, W.-K. Ching, and M. K. Ng, “Control of boolean

networks: Hardness results and algorithms for the tree structured nqtworks,”

Journal of Theoretical Biology, vol. 244, no. 4, pp. 670 – 677, 2007.

98

[8] G. Vahedi, B. Faryabi, J.-F. Chamberland, A. Data, and E. Dougherty, “In-

tervention in gene regulatory networks via a stationary mean-first-passage-time

control policy,” IEEE Transactions on Biomedical Engineering, pp. 2319–2331,

2008.

[9] X. Qian, I. Ivanov, N. Ghaffari, and E. R. Dougherty, “Intervention in gene

regulatory networks via greedy control policies based on long-run behavior,”

BMC Systems Biology, vol. 3, no. 61, 2009.

[10] E. Dougherty, S. Kim, and Y. Chen, “Coeffcient of determination in nonlinear

signal processing,” Signal Processing, vol. 80, pp. 2219–2235, 2000.

[11] S. A. Kauffman, “Metabolic stability and epigenesis in randomly constructed

genetic nets,” Journal of Theoretical Biology, vol. 22, pp. 437–467, 1969.

[12] I. Shmulevich, E. Dougherty, and W. Zhang, “From boolean to probabilistic

boolean networks as models of genetic regulatory networks,” Proceedings of

IEEE, vol. 90, no. 11, pp. 1778–1792, 2002.

[13] M. Brun, E. Dougherty, and I. Shmulevich, “Steady-state probabilities for at-

tractors in probabilistic boolean networks,” Signal Processing, vol. 85, no. 10,

pp. 1993 – 2013, 2005.

[14] R. Pal, I. Ivanov, A. Datta, and E. Dougherty, “Generating boolean networks

with a prescribed attractor structure,” Bioinformatics, vol. 54, no. 21, pp. 4021

– 4025, November 2005.

[15] R. Hashimoto, S. Kim, I. Shmulevich, W. Zhang, M. Bittner, and E. Dougherty,

“A directed-graph algorithm to grow genetic regulatory subnetworks from seed

99

genes based on strength of connection,” Bioinformatics, vol. 20, no. 8, pp. 1241–

1247, 2004.

[16] J. Norris, Markov Chains. Cambridge University Press, 1998.

[17] S. Kim, E. R. Dougherty, M. Bittner, Y. Chen, K. Sivakumar, P. Meltzer, and

J. M. Trent, “A general framework for the analysis of multivariate gene interac-

tion via expression arrays,” Biomedical Optic, vol. 5, no. 4, pp. 411–424, 2000.

[18] D. Martins, U. Braga-Neto, R. Hashimoto, M. Bittner, and E. R. Dougherty, “A

general framework for the analysis of multivariate gene interaction via expression

arrays,” IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 3, pp.

424–439, 2008.

[19] E. Dougherty, M. Brun, J. Trent, and M. L. Bittner, “A conditioning-based

model of contextual regulation,” IEEE/ACM Transactions on Computational

Biology and Bioinformatics, vol. 6, no. 2, pp. 310–320, 2009.

[20] X. Quian and E. Dougherty, “Effect of function perturbation on the steady-state

distribution of genetic regulatory networks: optimal structural intervention,”

IEEE Transactions on Signal Processing, vol. 56, no. 10, pp. 4966–4975, 2008.

[21] P. Schweitzer, “Perturbation theory and finite markov chains,” Journal of Ap-

plied Probability, vol. 5, pp. 401 – 413, 1968.

[22] J. Hunter, “Stationary distributions and mean first passage times of perturbed

markov chains,” Linear Algebra and its Applications, vol. 410, pp. 217 – 243,

2005.

[23] M. Ng, S.-Q. Zhang, W. Ching, and T. Akutsu, “A control model for markovian

genetic regulatory networks,” Transactions on Computional Systems Biology, pp.

100

36–48, 2006.

[24] B. Faryabi, A. Datta, and E. Dougherty, “On approximate stochastic control in

genetic regulatory networks,” IET Systems Biology, vol. 1, no. 6, pp. 361 – 368,

2007.

[25] I. Ivanov and E. Dougherty, “Reduction mappings between probabilistic boolean

networks,” EURASIP JASP, vol. 1, no. 1, pp. 125 – 131, 2004.

[26] I. Shmulevich and E. R. Dougherty, Genomic Signal Processing. Princeton:

Princeton University Press, 2007.

[27] I. Ivanov, R. Pal, and E. Dougherty, “Dynamics preserving size reduction map-

pings for probabilistic boolean networks,” IEEE Transactions on Signal Process-

ing, vol. 55, pp. 2310–2322, 2007.

[28] S. Kauffman, The Origins of Order: Self-Organization and Selection in Evolu-

tion. New York: Oxford University Press, 1993.

[29] I. Ivanov, P. Simeonov, N. Ghaffari, X. Quian, and E. Dougherty, “Selection

policy induced reduction mappings for boolean networks,” IEEE Transactions

on Signal Processing, vol. 58, no. 9, pp. 4871–4882, September 2010.

[30] N. Ghaffari, I. Ivanov, X. Qian, and E. Dougherty, “A cod-based reduction algo-

rithm for designing stationary control policies on boolean networks,” Bioinfor-

matics, vol. 26, no. 12, pp. 1556–1563, 2010.

[31] X. Qian, N. Ghaffari, I. Ivanov, and E. Dougherty, “State reduction for network

intervention with probabilistic boolean networks,” Bioinformatics, vol. 26, no. 24,

pp. 3098–3104, 2010.

101

[32] N. Ghaffari, I. Ivanov, X. Quian, and E. Dougherty, “A cod-based stationary

control policy for intervening in large gene regulatory networks,” BMC Bioin-

formatics, vol. 12, no. S10, 2011.

[33] S. Kim, H. Li, E. R. Dougherty, N. Chao, M. L. Bittner, and E. B. Suh, “Can

markov chain models mimic biological regulation,” Biological Systems, vol. 10,

pp. 447–458, 2002.

[34] R. Pal, A. Datta, and E. Dougherty, “Robust intervention in probabilistic

boolean networks,” IEEE Transactions on Signal Processing, vol. 56, no. 3, pp.

1280 – 1294, 2008.

[35] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms. MIT Press and McGraw-Hill, 2001.

[36] A. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer

Algorithms, 1974.

[37] I. Shmulevich and W. Zhang, “Binary analysis and optimization-based normal-

ization of gene expression data,” Bioinformatics, vol. 18, no. 4, pp. 555 – 565,

2002.

[38] A. Naldi, E. Remy, D. Thieffry, and C. Chaouiya, “A reduction method for logical

regulatory graphs preserving essential dynamical properties,” Lecture Notes in

Bioinformatics, vol. 5688, pp. 266–80, 2009.

[39] H. Conzelmann, J. Saez-Rodriguez, T. Sauter, E. Bullinger, F. Allgower, and

E. Gilles, “Reduction of mathematical models of signal transduction networks:

simulation-based approach applied to egf receptor signalling,” Systems Biology,

vol. 1, pp. 159–169, 2001.

102

[40] R. Wang, T. Zhou, Z. Jing, and L. Chen, “Modelling periodic oscillation of bio-

logical systems with multiple timescale networks,” IET Systems Biology Journal,

2004.

[41] P. Indic, K. Gurdziel, R. Kronauer, and E. Klerman, “Development of a two-

dimension manifold to represent high dimension mathematical models of the

intracellular mammalian circadian clock,” Journal of Biological Rhythms, vol. 21,

pp. 222–232, 2006.

[42] N. Borisov, N. Markevich, J. Hoek, and B. Kholodenko, “Signaling through

receptors and scaffolds: independent interactions reduce combinatorial complex-

ity,” Biophysical Journal, vol. 89, pp. 951–966, 2005.

[43] H. Conzelmann, J. Saez-Rodriguez, T. Sauter, B. Kholodenko, N, and E. Gilles,

“A domain-oriented approach to the reduction of combinatorial complexity in

signal transduction networks,” BMC Bioinformatics, vol. 7, no. 34, pp. 159–169,

2006.

[44] B. L. Clarke, “General method for simplifying chemical networks while preserv-

ing overall stoichiometry in reduced mechanisms,” Journal of Chemical Physics,

vol. 97, pp. 4066–4071, 1992.

[45] K. Ball, T. Kurtz, L. Popovic, and G. Rempala, “Asymptotic analysis of mul-

tiscale approximations to reaction networks,” Annals of Applied Probability,

vol. 16, no. 4, pp. 1925–1961, 2006.

[46] O. Radulescu, A. Gorban, A. Zinovyev, and A. Lilienbaum, “Robust simplifica-

tions of multiscale biochemical networks,” BMC Systems Biology, vol. 2, no. 86,

2008.

103

[47] L. Hartwell, J. Hopfield, S. Leibler, and A. Murray, “From molecular to modular

cell biology,” Nature, vol. 402, pp. 6761–supp, 1999.

[48] J. Saez-Rodriguez, A. Kremling, and E. Gilles, “Dissecting the puzzle of life:

modularization of signal transduction networks,” Computers and Chemical En-

gineering, vol. 29, pp. 619–629, 2005.

[49] A. Gorban, N. Kazantzis, I. Kevrekidis, H. ttinger, and C. Theodoropoulos,

Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena.

Springer, 2006.

104

APPENDIX A

FLOWCHART OF SELECTING TARGET-CONTROL GENE WITH DIRECT

CONNECTION

This appendix shows graphically the steps that are needed for selecting the Target-

Control pair with direct connection, according to the truth table of the network. The

requirement of the direct connection is relaxed in further experiments to be either

direct connection or a path between target and control genes.

Create a Connectivity Table for BN

Yes

Return current Target-

Control pair

Set a gene from the set of Candidate Target

Genes as a current candidate gene Exit

Find the genes that directly predict current

Target gene

Find individual CoDs for all genes that are

directly predicting current Candidate Target

Gene

Compare the individual CoDs with max CoD

Put genes with connectivity great than 1 inside a set as Candidate Target Genes

Set the maximum CoD = 0

Is the set of

Candidate Targets

empty?

No

Is the individual CoD

greater than max?

Yes

Keep the current Target-Control pair

Fig. 25. Procedure for selecting Target-Control pair with direct connection

105

APPENDIX B

REDUCTION IN OTHER CONTEXTS

Complexity reduction has been considered for other classes of models, including

discrete network models like Boolean networks [25, 27] or logical regulatory graphs

[38], and continuous biochemical networks [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49].

All past efforts focus on reducing the complexity while preserving network dynamics,

either by maintaining the attractor structures as in discrete mathematical frameworks

[27, 38] or partitioning large systems into smaller subsystems to enable better analysis

and understanding for continuous network models as in [39, 40, 41, 42, 43, 44, 45,

46, 47, 48, 49]. Although the literature mainly focuses on reduction of biochemical

networks in a continuous simulation framework [39, 43, 44, 46, 48, 49] while our work

models gene regulatory networks in a discrete mathematical framework, the idea

of partitioning large systems into multi-scale or hierarchical small subsystems could

be an interesting future research direction on model reduction for Boolean-network-

based gene regulatory networks if one can suitably abstract the relationships within

subnetworks.

The following three reviewed papers, consider the networks which are determinis-

tic. In comparison to the proposed methods, they do not consider stochastic networks

and therefore the steady-state distribution is not considered as a dynamical property

to be preserved after reduction. More importantly, the present dissertation has the

essential objective of deriving a reduction for preserving the performance of potential

intervention, while these do not.

Naldi, et. al. [38] implements a reduction algorithm to reduce the complexity of

a logical regulatory graph by making one node “implicit” in the graph. By removing

106

one node, the paper proposes to connect the predictors and targets of the removed

node and manipulate the regulatory functions to preserve the attractor structure as

much as possible. The paper also provides the proofs that the reduction preserves

the attractors in the original network but it can introduce spurious nontrivial attrac-

tors. In addition, state transition trajectories in the reduced model can be related to

trajectories in the original model while it may lose important information regarding

reachability properties. Due to these problems, it appears to be unclear whether there

is good theoretical performance guarantee for the preservation of dynamical proper-

ties (attractor structures) for the iterative algorithm of removing more nodes from

the graph. The proposed reduction is a kind of extension of the reduction mapping

algorithm for Boolean networks in [27] to finer quantified logical regulatory graphs.

In fact, both methods consider the preservation of attractor structures as important

dynamical properties.

Conzelmann et. al. [39] consider the reduction of biochemical networks in a

continuous simulation framework. The method first partitions large systems into

“retroactive-free modules.” It then studies each module by simulation and proposes

to use a simpler linear system as a reduced model to approximate the I/O behavior

of the original module. The partition of large systems into small modules in a hier-

archical fashion is a popular and promising direction for model reduction; however, if

the goal is to understand the original large system, then it is important to have ac-

curate abstraction of relationships within partitioned modules, which is still on-going

research.

Radulescu et. al. [46] and its references focus on understanding network dy-

namical behavior by finding small subsystems/modules to analyze their dynamical

behavior. In this paper, the authors are specifically interested in “dominant subsys-

tems,” subsystems with different time scales (as they study continuous biochemical

107

networks), and identification of critical parameters in ODEs. They implement al-

gorithms to reduce the complexity for both linear and nonlinear models. They also

provide a review for model reduction of continuous biochemical networks, includ-

ing trajectory-based techniques, singular perturbation techniques, and aggregation or

lumping techniques. Generally, these techniques are designed for continuous mod-

els and are not applicable for discrete mathematical frameworks such as Boolean

networks and logical regulatory graphs. However, it can be noted that, the idea of

partitioning large systems into multi-scale or hierarchical small subsystems could be

investigated further.

108

VITA

Noushin Ghaffari received her B.S. degree in software engineering from Tehran

Central Azad University in 2002 and her M.S. degree in computer information systems

from the University of Houston-Clear Lake, TX, in 2006. She finished her Ph.D. in

computer engineering at Texas A&M University, College Station, TX in December

2011. Prior to joining Texas A&M University, she worked at Exagen Diagnostics, Inc.

as a scientific software engineer.

Her research interests include genomic signal processing, systems biology, com-

putational biology, and bioinformatics. She is a member of IEEE and International

Society for Computational Biology (ISCB). She was a recipient of “Who’s Who among

American Universities and Colleges” in 2006 and the “Jesse H. and Mary Gibbs Jones

Scholarship,” University of Houston-Clear Lake, 2005-2006. She joined the bioinfor-

matics team at AgriLife Genetics & Bioinformatics Services during the last year of

her doctoral studies, starting October 2010.

She can be reached at “contact@noushinghaffari.com”, or

c/o Dr. Edward R. Dougherty

Department of Electrical and Computer Engineering

Texas A&M University

214 Zachry Engineering Center,

TAMU 3128

College Station, Texas 77843-3128

