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ABSTRACT 

 

Genetic Engineering of Beta-Carotene Production in Honeydew Melons (Cucumis Melo 

L. inodorus). (December 2011) 

Yan Ren, B.A.G., Shanghai Jiaotong University, China; M.A.G., Zhejiang University, 

China 

Co-Chairs of Advisory Committee: Dr. Kevin M. Crosby 
                                                                   Dr. Bhimanagouda S. Patil 

 

 

Genetic transformation is a useful tool to incorporate novel genes, potentially allowing 

sexual incompatibility and interspecific barriers to be circumvented. The purpose of this 

study was to improve β-carotene levels in melon fruits by transferring a phytoene 

synthase (PSY) gene. At present, there are not sufficient regeneration and transformation 

studies reported on two commercially important melon types - western shipper 

cantaloupe and honeydew.  

To establish a high efficiency shoot regeneration system, we evaluated three 

types of explants in our elite breeding lines. A shoot tip with a hypocotyl and cotyledon 

fragments, regenerated shoots whereas a shoot tip with a hypocotyl without cotyledon, 

did not produce regenerants. Murashige & Skoog (MS) basal medium with 1 mg l-1 

benzyladenine (BA), 0.26 mg l-1 abscisic acid (ABA) and 0.8 mg l-1 indole-3-acetic acid 

(IAA) was the best for regeneration from cotyledon explants in cantaloupe ‗F39‘. MS 

basal medium with 1 mg l-1 BA and 0.26 mg l-1 ABA was chosen for honeydew ‗150‘ to 
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solve a curving-up problem of explants. Fifty to sixty percent of regenerants were found 

to be polyploids.  

To establish a reliable Agrobacterium-mediated transformation protocol, 

kanamycin sensitivity as well as Timentin™ and Clavamox® were evaluated. Kanamycin 

200 and 150 mg l-1 were chosen as the threshold levels for ‗F39‘ and ‗150‘ respectively. 

No significant differences were found between Timentin™ and Clavamox® in ‗F39‘; 

however, Clavamox® reduced the incidence of vitrification and increased the frequency 

of shoot elongation in ‗150‘. A. tumefaciens strain EHA105, harboring pCNL56 carrying 

nptII and gusA genes, was used to establish a transformation protocol. The 

transformation efficiency was 0.3% from ‗F39‘ and 0.5% from ‗150‘. 

We introduced a watermelon PSY-C gene under the control of a fruit-specific 

promoter of a polygalacturonase gene into ‗150‘. All the transgenic plants were 

tetraploids based on flow cytometry assays. Up to 32-fold of β-carotene was elevated in 

the rind tissue of transgenic honeydew including phytoene increase. This is a very 

promising result for a further investigation to increase β-carotene level in flesh tissue 

using the PSY-C gene with an appropriate promoter.  

 

http://www.molecular-plant-biotechnology.info/gene-transfer-methods-in-plants/neomycin-phosphotransferase-gene-npt-II.htm
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NOMENCLATURE 

 

 

ABA Abscisic acid 

BA 6-Benzyladenine 

HPLC                          High performance liquid chromatography 

IAA  Indole-3-acetic acid  

MS                              Murashige and Skoog  

NAA                           Naphthaleneacetic acid 

nptII  Neomycin phosphotransferase II 

PCR Polymerase chain reaction 

GUS                            β-Glucuronidase 

http://www.molecular-plant-biotechnology.info/gene-transfer-methods-in-plants/neomycin-phosphotransferase-gene-npt-II.htm
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

Melon (Cucumis melo L.) is a group of high-value crops including cantaloupe 

(muskmelon), honeydew and casaba melon. This species has seven botanical variants: 

cantalupensis, reticulatus, inodorus, flexuosus, conomon, chito and dudaim. Only 

reticulatus and inodorus variants are commercially important in the United States. 

Cantaloupe is one of the most-consumed melons in the USA (about 50 kg per person per 

year (Flores 2005). Western-shipper cantaloupe (Cucumis melo var. reticulatus) refers to 

the type of cantaloupes originally grown in western states and shipped throughout the 

country. They usually have uniformly netted rinds, orange flesh and lack sutures. 

Nowadays, they are already adapted and grown all over the United States (Boyhan et al. 

2009). Honeydews (Cucumis melo var. inodorus) usually have green or cream-colored 

rinds with pale-green flesh, and have been widely grown in the USA. New varieties of 

honeydews with orange flesh, which were created from a cross between netted orange-

fleshed cantaloupe and non-netted green-fleshed honeydew, have been less popular in 

melon production (Lester 2008; Hodges and Lester 2006). As a large producer and 

consumer of melon, the United States has been involved in the improvement of melon  

 

____________ 
This dissertation follows the style of Plant Cell, Tissue and Organ Culture. 

 

http://www.caes.uga.edu/Applications/Personnel/profile.cfm?ID=5771
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quality to help increase melon profits and achieve more nutritional value for consumers.  

Cantaloupe and orange-fleshed honeydew are good sources of β-carotene, potassium and 

vitamin C. Pale green-fleshed honeydew lacks β-carotene but is rich in potassium, 

vitamin C and folate (data from online USDA National Nutrient Database for Standard 

Reference). In the past few years, melon breeders have worked on improving the 

nutritional quality of melon. ―Consumers will get not only a better tasting, sweeter 

melon, but one that can help boost their intake of β-carotene and vitamin C,‖ said Dr. 

Gene Lester, who has been working at the USDA in Weslaco since 1983 (Flores, 2005). 

Generally, β-carotene is the prevalent carotene in yellow, orange, and green leafy 

fruits and vegetables, such as carrots, pumpkin, spinach, lettuce, pepper, sweet potatoes, 

broccoli, muskmelon, citrus, oranges, and winter squash (USDA National Nutrient 

Database for Standard Reference, Release 21). β-carotene is a natural food source of pro-

vitamin A which may contribute to the prevention of some diseases such as eye 

problems, cardiovascular disease, and several cancers (Fraser et al. 2004). Heart disease 

and cancer have been identified as the top two diseases causing death in Americans. 

Therefore, consumption of foods rich in β -carotene is being recommended by the US 

National Cancer Institute and the USDA.  

Although β-carotene accounts for 90% of the carotenoids found in orange-

fleshed cantaloupe fruit (Karvouni et al. 1995), compared with other vegetables and 

fruits, its β-carotene content (20.2 µg g-1 FW) is not considered to be very high. 

Moreover, pale green-flesh honeydew‘s β-carotene content is very low (0.3 µg  g-1 FW). 

Conventional plant breeding has been very successful at increasing productivity but has 

http://en.wikipedia.org/wiki/Yellow
http://en.wikipedia.org/wiki/Orange_%28colour%29
http://en.wikipedia.org/wiki/Green
http://en.wikipedia.org/wiki/Fruit
http://en.wikipedia.org/wiki/Vegetable
http://en.wikipedia.org/wiki/Spinach
http://en.wikipedia.org/wiki/Lettuce
http://en.wikipedia.org/wiki/Sweet_potato
http://en.wikipedia.org/wiki/Broccoli
http://en.wikipedia.org/wiki/Cantaloupe
http://en.wikipedia.org/wiki/Orange_%28fruit%29
http://en.wikipedia.org/wiki/Squash_%28fruit%29
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focused less on improving the levels of health-promoting phytochemicals such as 

carotenoids. Genetic engineering (often termed genetic modification or genetic 

manipulation) is a faster and targeted method to transfer gene(s) compared with 

conventional breeding (Fraser et al. 2004). It is a useful procedure to incorporate novel 

genes within and across plant species. Sexual incompatibility and interspecific barriers 

to traditional plant breeding can therefore be circumvented. Several successful genetic 

engineering attempts to enhance carotenoids have been reported in crop plants including 

tomato (Fraser et al. 2001; 2002; Romer et al. 2000; Rosati et al. 2000; Ronen et al. 

2000; Ralley et al. 2004; D'Ambrosio et al. 2004), carrot (reviewed from Fraser and 

Bramley 2004), rice (Ye et al. 2000; Paine et al. 2005), canola (Shewmaker et al. 1999), 

tobacco (Misawa et al. 1994; Ralley et al. 2004; Mann et al. 2000),  lotus (Suzuki et al. 

2007), Arabidposis seeds (Lindgren et al. 2003;  Stalberg et al. 2003) and potato (Lopez 

et al. 2008; Diretto et al. 2007; Gerjets and Sandmann 2006; Ducreux et al. 2005). This 

study was undertaken to investigate the possibility of elevating β-carotene levels in 

commercially valuable melons via genetic transformation.  

 

 

Literature Review 

Melon in vitro culture 

In vitro melon regeneration protocols have been reported in the past 25 years. Several 

factors impact regeneration efficiency, including genotype, explant type, and plant 

growth regulators (reviewed by Nuňez-Palenius et al. 2008). The main regeneration 
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pathways are adventitious shoot organogenesis and somatic embryogenesis. 

Adventitious shoot organogenesis has been used most often in tissue culture. The highest 

regeneration frequency of melon cotyledon can reach 100% (Ficcadenti and Rotino 

1995). In the last decade, somatic embryogenesis has become a popular method for in 

vitro culture because it solved the problem of obtaining chimeric transformants 

(Akasaka-Kennedy et al. 2004), and it is an efficient method for production of diploid 

plants (Guis et al. 1997a). Akasaka-Kennedy et al. (2004) reported that an average of 

116.7 and 130 of embryos were induced from each seed of Vedrantais and Earl‘s 

Favourite Fuyu A melon, respectively. Two weeks after being transferred to liquid MS 

medium without plant growth regulators, 75.9% and 23.3% of the embryos germinated 

to produce plants with shoots and roots.  

Genotype is the most important determinant of melon regeneration ability. 

Galperin et al. (2003) screened 30 genotypes on 3 different media, including wild 

landraces, breeding lines and commercial cultivars. Twenty four out of 30 genotypes 

regenerated abnormal shoots while 5 genotypes had low frequency of regeneration. Only 

one genotype ‗BU-21‘ showed a distinguished 100% regeneration frequency 

accompanied by normal shoot development. Gray et al. (1993) used 51 commercial 

varieties to test embryogenic regeneration frequency of cotyledons. The highest 

responding varieties reached 100% regeneration efficiency with 20 embryos per explant, 

while regeneration in the lowest responding varieties was only 5% with 0.1 embryos per 

explant. This genotype-dependence phenomenon is normal for melon in vitro culture, 



 5 

therefore establishing an efficient regeneration system for genetic transformation of a 

specific melon cultivar is a necessary and important step. 

Plant growth regulators have been used in melon tissue culture to optimize shoot 

regeneration. Both auxins and cytokinins are known to be essential for bud/shoot 

induction and the optimal auxin/cytokinin levels, critical for recovery of plants, are often 

genotype specific. The auxin indole-3-acetic acid (IAA) and cytokinin 6-benzyladenine 

(BA) are commonly used in organogenesis studies. The synthetic auxin 2,4-

dichlorophenoxyacetic acid has been widely used to induce somatic embryogenesis 

(Akasaka-Kennedy et al. 2004; Gray et al. 1993; Guis et al. 1997a; Kintzios et al. 2004; 

Kintzios and Taravira 1997; Oridate and Oosawa 1986).  In addition, 6-(γ,γ-

dimethylallylamino)-purine (2iP), gibberellic acid (GA3), kinetin, thidiazuron and -

naphthaleneacetic acid (NAA) have been used in melon culture (Fang and Grumet 1990; 

Ficcadenti and Rotino 1995; Guis et al. 2000; Souza et al. 2006; Yadav et al. 1996). The 

effects of these growth regulators on melon regeneration differed depending on plant 

genotype, explant type and culture conditions. Other media components also affect 

melon regeneration efficiency. For example, abscisic acid (ABA) and sucrose have been 

shown to enhance somatic embryogenesis in melon (Nakagawa et al. 2001). The anti-

gibberellin analogue, ancymidol, was reported to promote shoot regeneration from 

cotyledonary explants of ‗Galia‘ melon in combination with a low concentration of BA 

(0.44 µM), while the addition of GA3 to this medium reduced the regeneration frequency 

12-fold after 13 d of treatment (Gaba et al. 1996). 
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Different explant types have been used in melon regeneration including mature 

seed, cotyledon, hypocotyl, proximal zone of the hypocotyls, petiole, leaf, root, 

protoplast and shoot tip. All these explants proved to be able to regenerate shoots 

through either organogenesis or somatic embryogenesis. Cotyledon is the most-widely-

used explant type for melon regeneration and transformation. Explants were excised 

from cotyledons at different ages such as unexpanded cotyledons on immature seeds 

(Adelberg et al. 1994) and mature seeds (Ezura and Oosawa 1994), as well as expanded 

cotyledons on seedlings. Age of the seedlings also varied from 2-day-old to 2-week-old 

(Nunez-Palenius et al., 2008). Usually, physiologically younger tissues were preferred 

for in vitro culture (Smith 2000). Molina and Nuez (1995) compared regeneration 

abilities from leaf, cotyledon and hypocotyl explants in three melon populations. They 

concluded that different types of explants had different regeneration capacities, which is 

controlled by a common genetic system. In their research, cotyledon and leaf explants 

had a similar regeneration frequency which was always higher than hypocotyl explants.  

Shoot tip can be considered as an alternative explant type for melon regeneration 

(Ezura et al. 1997b) and transformation for three reasons. First, the shoot apical 

meristem is a potential target for direct gene transfer. Second, compared to plant 

regeneration from protoplasts, callus cultures, or directly from the explants via 

adventitious organogenesis or somatic embryogenesis, shoot apex has the potential to 

maintain cultivar integrity by escaping from culture-induced mutations (Park et al., 

1998). Third, melon plants regenerated from cotyledons have a high tendency 

(approximately 80%) towards tetraploidy in tissue culture and genetic transformation of 
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melon using cotyledonary explants (approximate 80%) (Guis et al. 2000; Nuňez-

Palenius et al. 2006 and 2008). On the other hand, plant regenerated from shoot 

primordium had a much lower frequency of tetraploidy (4%) (Ezura et al. 1992 and 

1997b). Shoot primordium culture might be critical for shoot apex transformation. 

Tylicki et al. (2007) and Ogawa et al. (1997) indicated shoot primordia culture was an 

efficient system for maintaining genetic stability and a good system for transformation in 

melon. 

Polyploidy is a common problem in melon in vitro culture. More than 80% of 

melon plants regenerated from 2-day-old cotyledon explants were tetraploids, whereas 

only 15% of the regenerated plants from leaf explants were tetraploids. Tetraploid melon 

has some phenotypic changes including short internodes, smaller fruit size, flatness of 

fruit and reduced productivity, which impede marketability due to the low fruit quality 

(Guis et al. 2000). Compared with plants regenerated from somatic embryos and 

adventitious shoots via nodes of elongated seedlings, those regenerated from shoot 

primordia had a much lower frequency of tetraploidy: somatic embryo 31%, adventitious 

shoots 30%, shoot primordial 4%; and the clonally propagated plants from axillary buds 

didn‘t produce tetraploidy (Ezura et al. 1992), which indicated the explant source as an 

important factor in reducing the number of tetraploid plants obtained from melon in vitro 

culture. Ezura et al. (1997b) examined the ploidy levels of shoot primordium cells and 

plants regenerated from the shoot tips. Both tissues were very stable in terms of ploidy, 

and the culture time (from 1 to 6 years) did not affect ploidy level. But Kathal et al. 

(1992) found that the polyploidy percentage of melon plants regenerated from leaf 
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explants increased as the time of in vitro culture increased. These opposing results 

indicate that polyploidy in tissue culture could be induced by many unknown factors. 

Further research on this phenomenon will be necessary to reduce this problem in melon 

in vitro culture. 

In Chapters II and III, we evaluated the responsiveness of different explant types 

of our elite breeding lines on different regeneration media which have been reported to 

be optimal for different melon genotypes. Then we calculated the percentage of 

polyploidy in honeydew ‗150‘ regenerants, and observed the corresponding 

morphologies. 

 

Genetic transformation in melons 

In the past 20 years, melon transformation research has been mainly focused on two C. 

melo variants (cantalupensis and reticulatus) for disease resistance and longer shelf life. 

The genes used for these purposes included cucumber mosaic virus (CMV), zucchini 

yellow mosaic virus (ZYMV) and watermelon mosaic virus (WMV) coat protein genes 

(Yoshioka et al. 1992; Fang and Grumet, 1993; Gonsalves et al. 1994; Clough and Ham, 

1995; Fuchs et al. 1997; Yalçın-Mendi et al. 2004; Wu et al. 2009); and an antisense 

ACC oxidase gene (Ayub et al. 1996; Clendennen et al. 1999; Ezura et al. 1997a; Guis et 

al. 1997b, 2000; Shellie, 2001; Silva et al. 2004; Nuňez-Palenius et al. 2006; Hao et al., 

2011). Increasing sugar content is another target trait for genetic engineering of melon. 

Two genes have been studied for regulating sucrose biosynthesis, which were an 

antisense acid invertase gene (anti-MAI1) (Fan et al. 2007) and an antisense sucrose 
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phosphate synthase gene (Tian et al. 2010). Yalçın-Mendi et al (2004) reported an 

Agrobacterium-mediated transfer of a ZYMV coat protein gene to a Turkey inodorus 

variant melon, cultivar ―Kirkagac 637‖. They identified the frequency of gene escape 

and fruit quality characteristics from two transgenic lines (Yalçın-Mendi et al. 2010).  

Despite the development of genetic transformation protocols for melon reported 

in the last two decades, transformation remains genotype-dependent and efficiencies are 

relatively low (0-12.5%) (Nuňez-Palenius et al. 2006; 2008). To date, the most 

successful methods for producing transgenic melon have been achieved in French (Fang 

and Grumet 1990), Israeli (Nuňez-Palenius et al. 2006) and Asian germplasm (Dong et 

al. 1991; Wu et al. 2009), which constitute a low percentage of the US consumer market. 

Successful transformation protocols are needed for improvement of commercial 

genotypes grown in the US, especially the western shipper cantaloupe (C. melo var. 

reticulatus) and honeydew (C. melo var. inodorus).  

A review of pertinent literature reveals only a few studies on the tissue culture or 

transformation of western shipper and honeydew melons. At this writing, there were no 

transformation studies available for honeydew melon; however, a number of studies on 

shoot regeneration in culture have been reported (Ficcadenti and Rotino 1995; Keng and 

Hoong 2005; Kintzios and Taravira 1997; Oridate et al. 1992; Orts et al. 1987). In 

western shipper cantaloupe, only one microprojectile mediated transformation 

(Gonsalves et al. 1994) and two Agrobacterium-mediated transformations (Clough and 

Ham 1995; Fuchs et al. 1997) were reported.  
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A. tumefaciens-mediated transformation has become the method of choice for 

melon transformation (Nuňez-Palenius et al. 2008). We opted to use Agrobacterium due 

to reports of low copy gene transfers, which help to reduce the chances of multi-gene 

triggered silencing in the transgenic plants. Unfortunately, previously reported 

procedures provided insufficient detail for us to replicate. Though various A. tumefaciens 

strains are available such as LBA4404, EHA105, ABI, C58B707, C58C1Rif® and 

GV3111SE, the strain LBA4404 was used in nearly half of melon transformation reports 

(Fang and Grumet 1990; Yoshioka et al. 1992; Fang and Grumet 1993; Vallés and Lasa 

1994; Ayub et al. 1996; Bordas et al. 1997; Guis et al. 2000; Silva et al. 2004; Taler et al. 

2004). In this study, we compared strains LBA4404 and EHA105 for their 

transformation efficiency. 

Based on the regeneration system established for cantaloupe ‗F39‘ and honeydew 

‗150‘, we conducted kanamycin sensitivity assays to determine the concentration of the 

antibiotic for selecting transformed shoots. Furthermore, the effects of two antibiotics, 

Clavamox® and Timentin™, were compared on shoot regeneration. In the optimization of 

producing transformed shoots, we have studied the effect of light condition during co-

cultivation. This has been neglected in designing transformation systems in melon but 

has proven to be important in other plant species such as Phaseolus acutifolius and 

Arabidopsis thaliana (Zambre et al. 2003). In addition, two strains of A. tumefaciens, 

EHA105 (Hood et al. 1993) and LBA4404 (Hoekema et al. 1983), were tested to see 

whether there were differences in their efficiency in producing transformed plants. 

Melon regeneration and transformation are still considered to be difficult due to several 
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factors such as: strong genotype dependence, a high percentage of polyploidy, high rates 

of ‗escapes‘ and aberrant shoot development (Castelblanque et al. 2008; Chovelon et al. 

2008; Dong et al. 1991; Akasaka-Kennedy et al. 2004; Wu et al. 2009). The content of 

Chapter IV describes establishment of a reliable genetic transformation system in these 

two elite breeding lines with commercial qualities. 

 

Carotenoid biosynthesis and regulation in plants 

Carotenoids are pigments de novo synthesized by all photosynthetic organisms (higher 

plants and algae) and many non-photosynthetic organisms (some bacteria and fungi) 

(Bartley and Scolnik 1994). There are a series of gene expressions related to carotenoid 

biosynthesis controlling carotenoid accumulation. These gene expressions occur in the 

chloroplasts (photosynthetic tissues such as leaves) and in chromoplasts 

(nonphotosynthetic plant tissues such as fruits and flowers). Carotenoids in plants are 

isoprenoids formed from isopentenyl diphosphate (IPP) via the mevalonate-independent 

(MVA-independent) pathway in the plastid (Li et al. 2006). Figure 1 shows that 

Geranylgeranyl diphosphate (GGPP) deriving from IPP is the precursor of carotenoids. 

Phytoene synthase (PSY) catalyzes the conversion of GGPP to phytoene which is the 

first step in carotenoid biosynthesis. PSY enzyme, therefore, becomes the first key 

enzyme in this pathway. Lycopene, imparting a red or red-orange color to some fruits 

and vegetables, has dual roles in humans and plants as a free-radical scavenger (Collins 

et al. 2006). It is derived from phytoene in a series of dehydrogenation reactions, which 

is catalyzed by phytoene desaturase (PDS) and δ-carotene desaturase (ZDS). Lycopene is 
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then converted to β-carotene and α-carotene by lycopene β-cyclase (Lcy-b) and lycopene 

ε-cyclase (Lcy-e), respectively (Fig. 1).  

Although the carotenoid biosynthetic pathway in plants was elucidated in the 

1950s and 1960s, the regulation of carotenoid biosynthesis at the gene and enzyme level 

is still poorly understood. Cauliflower Or gene (Li et al. 2001) and the apricot (Ap) 

tomato mutant have been identified, but no regulatory genes involved in carotenoid 

formation have been isolated yet. Since carotenoids play a central role in plant 

development and adaptation, their synthesis is consequently considered to be 

coordinated with other developmental processes such as plastid formation, flowering and 

fruit development. The partial knowledge of pathway regulation is responsible for the 

practical difficulties of working with carotenoids and their biosynthetic enzymes. It is 

believed that a single regulatory process is unlikely to control a branched pathway such 

as that of carotenoid formation from isoprenoid precursors. In contrast, each branch 

point is likely to be a control point and probably regulated on both transcriptional and 

post transcriptional levels (Fraser and Bramley 2004). 

 

Transcriptional Regulation 

Plastid differentiation, the development of chromoplasts and de novo carotenoid 

formation are processes which occur during tomato and pepper fruit ripening and flower 

development in daffodil, tomato and marigold (Tagetes erecta). Carotenoid formation is 

regulated by carotenoid genes, which have both up- and down-regulation of 

transcription. For example, expression of PSY-1 and PDS is increased while LCY-B and  
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LCY-E mRNAs are decreased during tomato fruit ripening (Ronen et al. 1999; Fraser et 

al. 1994). Enzyme activities in ripe fruit are also affected by these gene expression 

IPP 

DMAPP 

GGPP 

Phytoene 

δ-Carotene 

Lycopene 

γ-Carotene 

β-Carotene 

Zeaxanthin 

Ipi 

Ggps 

Psy 

Pds 

Zds 

Lcy-b Cyc-B 

δ-Carotene 

α-Carotene 

Lutein 

Lcy-e (CtrL-e) 

Cyc-B 

CrtR-

b 

Lcy-b (CtrL-

b) 

 CrtR-b (CrtR-e) 

Fig. 1    Carotenoid biosynthesis pathway in plants (Li et al. 2006) 
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changes. PSY-1 enzyme exerts the greatest control over pathway flux. The up-regulation 

of this synthase leads to the increase of acyclic carotenes and prevents the formation of 

the end products at the cyclization step, consequently it results in the accumulation of 

large amounts of lycopene in ripe tomato fruit. The elucidation of regulatory 

mechanisms of fruit ripening has progressed in tomato with color mutants and transgenic 

varieties (Ronen et al. 1999; Fray and Grierson 1993). There may be feedback inhibition 

that could operate within the pathway either from β-carotene or from a product of β-

carotene according to the pigment analysis of the crtI transgenic tomato variety along 

with Lcy-b mutant Og, Ogc and high-beta. In contrast, phytoene-accumulating immutans 

mutant has no feedback inhibition of PDS gene expression (Fraser and Bramley, 2004). 

Increased enzyme activities resulting from transcriptional regulation have also been 

reported when pepper fruit is ripening (Römer et al. 1993).  

Oxidative stress was reported as ―a novel class of second messengers that 

mediates intense carotenoid synthesis during chromoplast differentiation‖ to up-regulate 

expression of carotenoid genes (Bouvier et al. 1998). Carotenoid gene expression is also 

up-regulated during flower development of daffodil (Schledz et al. 1996) and marigold 

(Moehs et al. 2001) as well as melon (Karvouni et al. 1995) and citrus fruit (Ikoma et al. 

2001) development and ripening (Fraser and Bramley 2004). 

Light intensity seems to be another factor which increases the expression of 

certain carotenoid biosynthetic genes to alter carotenoid formation. PSY expression of 

developing seedlings of white mustard (Sinapis alba L.) is upregulated with light while 

PDS and GGPS expression levels remain constant. PSY expression of Arabidopsis 
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thaliana also increased with both far-red and red light. PSY regulation is involved in 

both light-labile and light-stable phytochromes (Von Lintig et al. 1997). A 5-fold 

increase in the ratio between levels of LCY-B and LCY-E mRNAs in both Arabidopsis 

thaliana and tomato leaves was observed when plants were shifted from low light to 

strong light (Hirschberg, 2001).  

 

Post-transcriptional Regulation  

Fraser and Bramley (2004) mentioned that the key regulatory issue in the carotenoid 

biosynthesis pathway is what mechanisms control the partitioning of precursors into the 

branches of the pathway. The discovery of multigene families in the pathway has 

supported the theory of metabolic channeling between each branch in the pathway. The 

corresponding enzymes have been found in tomato (Fraser et al. 2000), pepper (Dogbo 

et al. 1987) and daffodil (Lützow and Beyer 1988). The metabolic branches are believed 

to be relatively independent from each other since there are relatively small changes of 

isoprenoids in transgenic plants in spite of increased enzyme activities. However, 

metabolite precursor pools such as GGPP pool can be diverted from one branch to the 

next (Fray et al. 1995). The fact that constitutive expression of PSY-1 caused dwarfism 

of tomato by redirecting metabolite availability shows metabolic cross talk does exist. 

PSY and PDS were post-transcriptionally regulated in chromoplasts of daffodil 

membrane association. In addition, light-induced membrane association and substrate 

specificity are also believed to regulate carotenoid biosynthesis. 
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Carotenoid Sequestration Regulation 

This is a common form of regulation but differs in the way of sequestering the end-

product carotenoids between chloroplasts and chromoplasts. Esterification of carotenoids 

was considered to be the mechanism of sequestration regulation in pepper, tomato and 

canola, and seems to be an effective method used by many flowers such as sunflower, 

daffodil and marigold (Fraser and Bramley 2004). 

 

Genetic engineering to enhance carotenoids in crop plants  

Genetic engineering of carotenoids in crops for nutritional enhancement has been 

studied for more than a decade. The first committed step in carotenoid biosynthesis is 

catalyzed by phytoene synthase (PSY), which converts GGPP into phytoene 

(Cunningham and Gantt 1998; Li et al. 2006). The overexpression of this gene, 

combined with or without the downstream pathway genes (PDS and Lcy-b), have 

enhanced carotenoids in crops such as tomato (Fraser et al. 2001; 2002), carrot 

(reviewed by Fraser and Bramley 2004), canola (Shewmaker et al. 2004), rice (Ye et al. 

1999: ‗Golden Rice‘; Paine et al. 2005: ‗Gold Rice 2‘), potato (Diretto et al. 2007; 

Ducreux et al. 2005) and maize (Aluru et al. 2008). According to these reports, the total 

carotenoids of the transgenic crops have been increased by 2 to 50 folds in different 

species with 1.6 to 3600 folds in beta-carotene level, which resulted in the color changes 

to yellow or orange. So far, ―Golden Rice‖ and ―Golden Potato‖ are the best 

demonstrations for PSY gene function in carotenoid biosynthesis (Ye et al. 1999; Paine 

et al. 2005; Diretto et al. 2007).  
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Tomato 

Tomato has become the most intensively studied crop in carotenoid metabolism 

engineering since its fruit and products represent an important source of carotenoids 

among diets. Phytoene synthase (PSY) is the most important rate-limiting enzyme 

manipulated by genetic engineering to regulate β-carotene levels in plants. The 

bacterium Erwinia uredovora phytoene synthase (crtB) gene has been over-expressed in 

tomato fruits. Total carotenoids of the transgenic tomatoes exhibited a 2- to 4-fold 

increase over the control: 2.4-fold (n=3) in phytoene, 1.8-fold (n=6) in lycopene and 2.2-

fold (n=5) in β-carotene levels. Biochemical analysis showed that catalytically active 

CRTB protein was plastid-located with 5- to 10-fold (n=4) higher levels (Fraser et al. 

2002). However, the additional PSY reduced the regulatory influence of this step over 

the pathway flux, which was suggested by Fraser and Bramley (2004). 

Phytoene desaturation is another possible step that modifies carotenoid 

biosynthesis. An Erwinia uredovora PDS gene (crtI) with the CaMV 35S promoter has 

been transferred to tomato (CV. Ailsa Craig) plants (Römer et al. 2000). Total carotenoid 

levels were not changed in the transgenic tomatoes, but the β-carotene content increased 

about 3-fold (n=17), up to 45% of the total carotenoid content. The expression of the 

endogenous carotenoid genes behind PDS (ZDS, LCY-B) was also increased, but the PSY 

gene which is prior to PDS was decreased. Besides β-carotene, the content of other 

downstream pathway carotenoids such as neoxanthin, antheraxanthin, lutein, and 

zeaxanthin were increased. In contrast, the content of carotenoids prior to β-carotene such 

as phytoene, lycopene, γ- carotene and δ-carotene decreased. As a consequence, the total 
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amount of carotenoids decreased. The enhancement of PDS activity did not lead to the 

increase of lycopene. It was suggested that this result was due to crtI over-expression in 

tomato, which reduced the content of compounds prior to phytoene desaturation and 

induced endogenous lycopene cyclisation (Fraser and Bramley 2004). This phenotype of 

modified carotenoids has been found to be stable and reproducible over at least four 

generations. 

Lycopene is a large precursor pool for β-carotene synthesis in ripe tomato fruit. 

Over-expression of the Arabidopsis thaliana lycopene β-cyclase (β-Lcy) in tomato fruit 

under the control of a fruit-specific promoter PDS has been achieved (Rosati et al. 

2000), making lycopene convert into β-carotene. Transformants aimed at up-regulating 

β-Lcy gene expression exhibited a 5-fold increase in β-carotene. Other carotenoids were 

not changed in both fruits and leaf tissues, and endogenous carotenoid gene expression 

was not significantly changed. In contrast, transformants aimed at down-regulating β-

Lcy gene showed up to 50% down-regulation of β-Lcy expression in ripe fruit, and 

consequently their lycopene content was slightly increased. 

 

Carrot  

Fraser and Bramley (2004) reported that the Erwinia herbicola crt genes were over-

expressed in carrot, causing β-carotene levels to increase 2-5-fold in the root. 
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Canola  

 So far, the most dramatic increase in carotenoid levels was produced in transgenic 

canola. An Erwinia uredovora phytoene synthase gene crtB was over-expressed in a 

seed-specific manner. A 50-fold increase of carotenoids was found in the transgenic 

plant seeds (Shewmaker et al. 1999). The seed-specific expression of crtB leads to 

orange embryos in transgenic canola, predominantly containing α-carotene and β-

carotene. 

 

Rice 

Rice is a staple food in most developing countries, however, it lacks β-carotene (pro-

vitamin A). The first generation of the ‗Gold Rice‘ (Golden Rice 1) was reported (Ye et 

al. 2000). Three biosynthetic genes were co-transformed via two vectors to enable the 

metabolism from GGPP to β-carotene. The PSY and lycopene β-cyclase cDNAs from 

daffodil (Narcissus pseudonarcissus) were expressed under the control of endosperm-

specific glutelin promoter, and the E. uredovora phytoene desaturase gene crtI under the 

control of constitutive CaMV 35S promoter. As a result, total carotenoids accumulated 

to 1.6 μg g-1 in endosperm (n=50). However, the limited production of β-carotene cannot 

be a solution for the vitamin A deficiency. Paine et al. (2005) launched the genetic 

engineering of a second generation of ‗Golden Rice‘ (Golden Rice 2) by replacing the 

daffodil PSY with maize PSY, in combination with the E. uredovora phytoene desaturase 

gene crtI. The total carotenoids were increased to a maximum of 37 μg g-1 with 86-89% 
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of β-carotene. In their study, PSY was found to still be the limiting step in the 

accumulation of carotenoids. 

 

Tobacco 

The E. uredovora phytoene desaturase (crtI) overexpression in tobacco plants led to a 

large amount of the CRTI proteins which correlates with the crtI mRNA levels produced 

in the transformants. Carotenoid analysis of transgenic tobacco leaves suggested changes 

in the composition of leaf carotenoids. β-carotene levels were increased and the level of 

lutein was reduced, while the total amount of carotenoids was not significantly altered 

(Misawa et al. 1994).  

 

Potato 

In recent years, genetic manipulation of carotenoids has been addressed in potato. 

Ducreux et al. (2003) over-expressed E. uredovora phytoene synthase gene crtB in 

potato tubers, which increased carotenoids from 5.6 μg g-1 to 35 μg g
-1 in the potato 

tubers, and their β-carotene reached to 11 μg g
-1  compared to negligible amounts in the 

controls. Later on, Diretto et al. (2007) reported ‗Golden Potato‘ with 114 μg g
-1  of 

carotenoids and 47 μg g
-1  of β-carotene in the tubers by introducing three pathway genes 

(crtB, crtI and crtY) from E. uredovora together. Lopez et al. (2008) incorporated a non-

pathway gene Or, isolated from an orange cauliflower mutant, into potato genome. This 

transgene elevated carotenoids to 31 μg g
-1 and β-carotene to 4-5 μg g

-1 in the potato 

tubers. 
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Phytoene synthase gene (PSY) 

 A PSY gene family with at least two genes (PSY1 and PSY2) has been identified in C. 

melo (Qin et al. 2011; Karvouni et al. 1995). Controversial results on melon PSY1 

expression during fruit ripening have been reported. Qin et al. (2011) compared the gene 

expressions between CmPSY1 and CmPSY2 in cantaloupe melon tissues. CmPSY1 

expressed in most tissues (leaf, stem, flower and fruit) except the root where only 

CmPSY2 was present. The highest expression of CmPSY1 in the fruits was at 40 DAP, 

which was consistent with the previous report from Karvouni et al. (1995) that the 

expression of melon PSY1 (MEL5) mRNA dramatically increased and reached its 

highest level during the period when cantaloupe melon flesh color changed from green 

to orange, which was assumed to coincide with the increase in carotenoid and beta-

carotene accumulation. However, Aggelis et al. (1997) examined four ripening-related 

mRNAs including MEL5 identified by Karvouni et al. (1995), in seven varieties 

exhibiting differences in their ripening behavior. MEL5 mRNA level was lower than 

other ripening-related mRNAs (MEL1, MEL2 and MEL7), and its expression pattern 

during ripening varied in different varieties. MEL5 decreased (from 100% to less than 

20% of maximum signal) in an inodorus casaba melon ‗Marygold‘ (green-flesh, very 

slow ripening); stayed unchanged in the cantalupensis melons ‗Delada‘ (green flesh, 

long shelf-life), ‗Viva‘ (orange flesh, normal shelf-life) and ‗Alpha‘ (orange flesh, 

normal ripening); increased till 40 days after anthesis (DPA) and decreased significantly 

afterwards in cantalupensis melons ‗Tornado‘ and ‗Sirio‘ (both were orange flesh and 

slow ripening); and continuously increased in cantalupensis melon ‗Topper‘ (orange 
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flesh, long shelf-life). These results suggested that PSY1 (MEL5) expression was not 

necessarily correlated with melon fruit color change. It is possible that coordination of 

multiple genes regulated carotenoid accumulation leading to the color change, or other 

functional PSY gene(s) existed in melons like the PSY gene families in tomato, maize, 

sorghum and rice (Fray and Grierson, 1993; Gallagher et al. 2004; Li et al. 2008). 

Melon PSY1 (MEL5) was homologous to the PSY clones in tomato, pepper and 

Arabidposis (Karvouni et al. 1995). Bang et al. (2006) identified a PSY gene family 

(PSY-A, PSY-B and PSY-C) in red-fleshed watermelon and found that PSY-C had the 

highest homology to tomato PSY1. Both nucleotide and amino acid sequences of PSY-C 

(unpublished data) showed 94% similarity to C. melo PSY1 (GenBank: Z37543). It was 

presumed that PSY-C may have a critical function in the watermelon carotenoid pathway 

converting GGPP to phytoene as compared to PSY-A and PSY-B. Therefore, we have 

selected this gene to study how carotenoid compositions in honeydew melon are 

regulated by the transgene PSY-C; and moreover, to gain a novel genotype of honeydew. 
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CHAPTER II 

ESTABLISHMENT OF REGENERATION SYSTEMS FOR  

CANTALOUPE AND CASABA MELONS* 

 

Materials and Methods 

Plant material 

Three melon breeding lines, ‗F39‘, ‗141‘ and ‗TMS‘ were initially selected to test 

published melon regeneration protocols. ‗F39‘ and ‗141‘ are inbred lines of western 

shipper cantaloupe (C. melo var. reticulatus), which produce high quality orange-fleshed 

fruits with netted surface and have been inbred for over 10 generations at Texas AgriLife 

Research Center, Weslaco, TX. In addition, ‗F39‘ has medium to high resistances to 

multiple diseases. ‗TMS‘ is an elite white-fleshed casaba melon (C. melo var. inodorus) 

with smooth surface. 

 

Explant preparation 

Seeds were surface sterilized in a 50% commercial bleach solution (3% sodium  

hypochlorite) containing a drop of Tween-20 for 30 min and rinsed three times with  

 

 
                                                 

* Part of this chapter is reprinted with permission from ―Agrobacterium -mediated transformation and 
shoot regeneration in elite breeding lines of western shipper cantaloupe and honeydew melons (Cucumis 

melo L.)" by Ren Y, Bang H, Curtis IS, Gould G, Patil BS, Crosby KM (2011) Plant Cell Tiss Organ Cult 
Online First™, 8 Sep 2011 , Copyrigtht 2011 by Springer. 
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sterile water. After soaking seeds in sterile water for 4-8 h, the seed coats were removed  

to expose each embryo. De-coated embryos were sterilized in 70% ethanol for 30 s 

followed by a 5% commercial bleach solution (0.3% sodium hypochlorite) containing a 

drop of Tween-20 for 10 min. Embryos were rinsed three times with sterile water and 

cultured in the dark on a germination medium, consisting of Murashige and Skoog (MS) 

(1962) salts medium supplemented with 30 g l-1 sucrose and solidified by 5 g l-1 agar, pH 

5.7-5.8. Three explants types were prepared for regeneration experiments as follows. 

 

Cotyledonary explants 

Seven days later, cotyledons were excised 2 mm from the cotyledonary nodes 

(conjunction sites between cotyledons and hypocotyls). Each cotyledon was then cut into 

6 equally-sized explants of approximately 3 mm  2 mm, and was placed adaxially on a 

regeneration medium in a 100 mm ×15 mm Petri dish (12 explants/dish, 5 

replicates/treatment).  

 

Shoot tip with hypocotyl and cotyledon explant (STHC) vs. shoot tip with hypocotyl 

explant (STH) 

After cotyledonary explants were removed from the 7-day-old seedlings, the rest of the 

tissue, a shoot tip connected with 2 mm-long proximal part of cotyledons and a 3 mm-

long hypocotyl (Fig. 2a and b), were longitudinally bisected into two halves (Fig. 2c and 

d). This explant type was named shoot tip with hypocotyl and cotyledon (STHC). 

Explant type shoot tip with hypocotyl (STH) referred to STHC without cotyledon  
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A C

B

 

Fig. 2   Preparation of a shoot tip with hypocotyl and cotyledon (STHC) explant. a A 7-
day-old seedling removed from medium, b a STHC explant consisting of a shoot tip 
attached with 2 mm-long proximal part of cotyledons and a 3 mm-long hypocotyl, c 
bisected STHC explants, d enlarged look of a bisected STHC explant  
 
 
 
fragments attached (cotyledons were removed from STHC). Explants were then placed 

into 100 mm × 15 mm Petri dishes (STHC: 6 explants/dish, 4 replicates/treatment; STH: 

6 explants/dish, 2 replicates/treatment). 

 

 

Shoot tip explant 

2-3 mm-long shoot tips were isolated from 5-day-old seedlings and placed into 100×15 

mm Petri dishes (6 explants/dish, 2 replicates/treatment). For bisected shoot apical 

explants, three- to five-day pre-cultured intact shoot tips were longitudinally (from apex 

to base) split into two asymmetrical tissues by a sterile blade, and the bisected shoot tips 

were then placed back onto 100×15 mm Petri dishes (6 explants/dish, 4 

replicates/treatment).  
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D 



 26 

Shoot regenerations 

Six regeneration media, RM1 (Ficcadenti and Rotino 1995), RM2 (Guis et al. 2000), 

RM3 (Yadav et al. 1996), RM4 (Fang and Grumet 1990), RM5 (Souza et al. 2006), and 

RM6 (Bordas et al. 1997), were evaluated with the cotyledonary explants of ‗141‘, ‗F39‘ 

and ‗TMS‘ (Table 1). Each medium represented the optimal composition that resulted in 

the highest regeneration frequency in each study reported. All media were based on MS 

salts supplemented with 30 g l-1 sucrose and various combinations of plant growth 

regulators (BA, ABA, IAA, 2iP and kinetin). Media were solidified using agar 7 g l-1 

except in RM3 where agar was replaced by 2.6 g l-1 Phytagel™.  

Liquid shoot primoridum induction media, SPI1 and SPI2 (Table 1), were 

reported to induce shoot primordium aggregates and shoot proliferation from C. melo 

‗Prince‘, respectively (Ezura et al. 1997b). In our study, we evaluated shoot regeneration 

of both intact and bisected shoot tip explants of ‗141‘, ‗F39‘ and ‗TMS‘ on the solidified 

media SPI1 and SPI2 by adding 8 mg l-1 agar. 

 

Table 1   Evaluation of six media on the regeneration of melon ‗141‘, ‗F39‘ and ‗TMS‘ 
Medium MS 

vitamins 
Myo-
inositol IAA BA   2iP Kinetin ABA AgNO3 CuSO45H2O NAA Ref. 

RM1 -   0.63   0.26    Ficcadenti and 
Rotino 1995 

RM2 -   0.20 0.20      Guis et al. 2000 
RM3 +  0.80 1.00   0.26 5.40   Yadav et al. 1996 

RM4 +  0.88 1.13   0.26    Fang and Grumet 
1990 

RM5 - 100 1.50 1.00     1.00  Souza et al. 2006 
RM6 - 100 1.50   6.00   1.00  Bordas et al. 1997 
SPI1 +   1.00      0.01 Ezura et al. 1997b 
SPI2 +   1.00       Ezura et al. 1997b 
Basal medium was Murashige and Skoog (1962) salts. Data is presented as mg l-1 
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Tissue cultures were placed in a room maintained at 25±2 ºC under cool white 

fluorescent lights with 16 h light/8 h dark photoperiod and 60-80 µmol m-2 s-1 light 

intensity. After 4 weeks, the induction of calli and shoot primordia was recorded and 

scored from 0 to 100% (Table 2). 

 

 

 

Table 2   Scoring method used to estimate callus and shoot primordium induction from 
cotyledonary explants of melon ‗141‘, ‗F39‘ and ‗TMS‘ 
Score Responding area of total cut surfaces of an explant (%)* 
0 
0.125 
0.25 
0.50 
1 

0 
<12.5 
12.6-25 
26-50 
51-100 

* Cut surfaces produced calli and/or shoot primordia. See Fig. 2 
 
 
 
Shoot elongation and rooting 

Shoots or shoot primordia regenerated from cotyledonary explants were transferred to 

shoot elongation medium, which consisted of MS basal medium supplemented with 30 g 

l-1 sucrose, 8 g l-1 agar and BA at different concentrations (0, 0.01, 0.025, 0.05 and 0.1 

mg l-1). Shoots that failed to root on elongation medium were transferred to a rooting 

medium (MS basal medium supplemented with 30 g l-1 sucrose and 8 g l-1 agar). 

 

Statistical analysis 

Cotyledon regeneration experiments were conducted with two factors (genotype  

medium) in a randomized complete block design (12 explants/dish; 5 

replicates/treatment) and analyzed by two-way analysis of variance (ANOVA). Shoot 
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apex regeneration experiments were conducted with three factors (genotype  medium  

bisection) in a randomized complete block design (6 explants/dish; 2 or 3 

replicates/treatment) and analyzed by generalized linear model. Cotyledonary-node 

regeneration experiments were conducted with one-way ANOVA. Differences between 

the means were performed using Duncan‘s Multiple Range Test where the 5% 

probability level was considered significant. Kanamycin sensitivity was tested in a 

randomized complete block design (4 explants/dish; 8 replicates/treatment) and analyzed 

by one-way analysis of variance. Each dish was considered as a replicate in all the 

experimental designs. 

 

 

Results and Discussion 

Plant regeneration 

Cotyledonary explants 

Six media, previously reported to be effective from other melon regeneration and/or 

transformation protocols, were screened for our three different genotypes (Fig. 3). Calli 

and shoot primordia were usually formed within 3-4 weeks on the initial regeneration 

media. Shoots developed from shoot primordia approximately 2-3 weeks later. 

Significant differences appeared in the frequency of explants producing calli and shoot 

primordia on the various media, and an interaction between genotype and medium 

composition was also observed (Table 3). Overall, media RM3, RM4 and RM1 were 

best for shoot regeneration in ‗141‘, ‗F39‘ and ‗TMS‘, respectively (Fig. 4a, b and c).  
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Fig. 3   Effect of six different media (RM1-RM6) on the production of calli and shoot 
primordia from cotyledonary explants of three melon genotypes ‗141, ‗F39‖ and ‗TMS‘. 

a The frequency of explants producing calli, b the frequency of explants producing shoot 
primordia. Bars with same letters are not significantly different by Duncan‘s Multiple 

Range Test at 5% probability level. Vertical bars show standard errors 
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RM3 and RM4 induced the highest frequency of both callus and shoot primordium 

regeneration in ‗F39‘; however, RM4 performed better in terms of producing fewer 

vitrified shoots (Fig. 4d and e).  

 
 
 

A B C

D

E

 

Fig. 4   Callus production and shoot regeneration on the optimal medium from 
cotyledonary explants of three different melon genotypes after four weeks of culture. a 
‗141‘ on RM3 [MS basal supplemented with 1mg l-1 BA, 0.26 mg l-1 ABA, 0.8 mg l-1 
IAA and 5.4 mg l-1 AgNO3], b ‗F39‘ on RM4 [MS basal supplemented with 1.13 mg l

-1 
BA, 0.26 mg l-1 ABA and 0.88 mg l-1 IAA], c ‗TMS‘ on RM1 [MS salt supplemented 

with 0.63 mg l-1 BA and 0.26 mg l-1 ABA], d ‗F39‘ on RM4 (less vitrification), e ‗F39‘ 

on RM3 (more vitrification) (bars = 1cm) 
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Subsequently, we compared shoot primordium regeneration efficiency from each 

region of the cotyledonary explants: proximal, middle and distal.  No significant 

differences were detected (data not shown), which was not in accord with the results 

reported by Gonsalves et al. (1994). Their research showed that regeneration frequency 

of the proximal side of the melon explant was significantly higher than that of the distal 

region.  

Regenerated shoots proliferated but did not elongate on MS basal medium 

supplemented with BA levels higher than 0.1 mg l-1. A series of low BA concentrations, 

0, 0.01, 0.025, 0.05 and 0.1 mg l-1
, was examined on ‗F39‘ for shoot elongation. Low  
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Fig. 5   Multiple shoot regeneration, shoot elongation and rooting of melon ‗F39‘ on MS 
basal medium supplemented with various BA concentrations. a Multiple shoot 
regeneration on BA 0, 0.01, 0.025, 0.05 and 0.1 mg l-1, b shoot elongation on BA 0, 
0.01, 0.025, 0.05 and 0.1 mg l-1, c rooting on BA 0.1 mg l-1 
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levels of BA (0 and 0.01 mg l-1) treatments reduced the prevalence of multiple shoots 

(Fig. 5a) and allowed shoots to elongate and produce roots (Fig. 5 b and c).  

 

Shoot tip explants 

Shoot primordium induction (SPI) media, SPI1 and SPI2, were compared between intact 

shoot tips and bisected shoot tips of our three genotypes (Table 3). Shoot primordia 

and/or shoots were formed within 4 weeks on both media. Overall, both media can 

induce shoot primordia and shoots from both shoot tip explant types; however, SPI2 was 

better for developing normal shoots. Genotypic differences were shown in shoot 

primordium induction, where ‗141‘ responded best while ‗TMS‘ had the lowest 

response. An interaction between medium composition and genotype was also observed 

in shoot primordium and/or shoot induction. For ‗141‘, no significant differences were 

found in media and explant types. SPI2 performed better than SPI1 to induce shoot 

primordia and/or shoots in ‗F39‘. Bisection of shoot tips did not significantly affect 

shoot regeneration in ‗141‘ and ‗F39‘ but in ‗TMS‘. Bisection of shoot tips exposes 

shoot apical meristem to Agrobacterium to facilitate inoculation, which will improve the 

Agrobacterium –mediated transformation efficiency (personal communication with Dr. 

Jean Gould). Based on our result, bisected shoot tips could be considered as an explant 

type for Agrobacterium-mediated transformation in ‗141‘ and ‗F39‘. 
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Table 3   Regeneration of shoot primordia and shoots from shoot tip explants of ‗141‘, 

‗F39‘ and ‗TMS‘ 

 
Values are presented as means ± SE, where n=4. Means within the same columns within 
each genotype followed by same letters are not significantly different by Duncan‘s 

Multiple Range Test at 5% probability level. The percentage data were transformed by 
an arcsin function before analysis to normalize the distribution. NS No significant 
difference. *** , **, * Significant at 0.1%, 1% and 5% probability level, respectively. Data 
were recorded after 4 weeks of culture 
 
 
 
 
Shoot tip with hypocotyl and cotyledon (STHC) explants vs. shoot tip with hypocotyls 

(STH) 

Preliminary tests showed that explant STHC of ‗F39‘ responded better than that of ‗141‘ 

and ‗TMS‘ on the six media (data not shown). Thus, ‗F39‘ was tested for shoot 

regeneration from STHC and STH explants (Figs. 6 and 7). Two types of shoots 

regenerated from STHC, primary shoots and adventitious shoots, which emerged from 

the first week and the second week of the culture, respectively. Significant differences 

Genotype Medium Shoot tip 
type 

Shoot primordium 
induction percentage (%) 

Shoot regeneration 
percentage (%) 

Average number of 
shoots/explant 

141 SPI1 Intact 91.7±8.3 60.0±27.3  1.5±1.1  
  Bisected 95.0±5.0 40.0±0  0.6±0.1 
 SPI2 Intact 70.2±13.1 63.1±20.2  2.0±0.3  
  Bisected 65.0±12.6 NS 55.0±9.6 NS 3.7±1.5 NS 
F39 SPI1 Intact 63.3±1.7 b 53.3±6.7 ab 1.2±0.3 
  Bisected 50.0±11.8 b 12.5±7.9 b 0.3±0.2 
 SPI2 Intact 100.0±0.0 a 66.7±8.3 a 1.6±0.2 
  Bisected 62.5±14.2 ab 58.3±10.8 a 1.8±0.7 NS 
TMS SPI1 Intact 29.8±13.1 76.2±9.5 a 1.1±0.1 a 
  Bisected 19.7±8.5 20.1±3.4 b 0.3±0.1 b 
 SPI2 Intact 39.3±10.7 61.9±4.8 a 0.8±0.2 ab 
  Bisected 25.0±6.8 NS 16.9±8.3 b 0.3±0.1 b 
Genotype *** NS * 
Medium NS NS * 
Shoot tip type NS *** NS 
Genotype × Medium ** * NS 
Medium × Shoot tip type NS NS NS 
Genotype × Shoot tip type NS NS NS 
Genotype × Medium × Shoot tip type NS NS NS 
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were found in the frequencies of primary and adventitious shoot regenerations on 

various media (Fig. 6a and c; Fig. 7a). Medium RM3 produced the most primary shoots 

(83%) but the least adventitious shoots (8%) while medium RM4 induced the most 

adventitious shoots (90%). This indicated that BA and IAA were necessary for 

adventitious shoot induction but the addition of AgNO3 severely inhibited adventitious 

shoot regeneration from this type of explant. Although less STHC explants produced 

primary shoots on medium RM2 (46%), these primary shoots grew faster and 

regenerated more axillary shoots than other media. Average length of the primary shoots 

was more than 2.5 cm, and the average number of the axillary shoots grown on the 

primary shoots was six (Fig. 6e-f). Axillary shoots were reported to be used as another 

good explant type to maintain original ploidy in melon in vitro culture (Ezura et al. 

1992). Therefore, RM2 and RM4 are considered to be a good medium for primary shoot 

regeneration and adventitious shoot regeneration, respectively.  

An interesting phenomenon was observed: very few primary and adventitious 

shoots regenerated and could not normally grow when cotyledon fragments were 

removed from STHC explants (Fig. 6b and d; Fig. 7b). Similar results were reported in 

Vigna (Sen and Guha-Mukherjee 1998), melon (Curuk et al. 2002) and squash 

(Ananthakrishnan et al. 2003). The hypocotyl explant with a fragment of cotyledon 

attached could produce a high percentage of regenerated shoots while removal of 

cotyledons caused either zero or a very low frequency of shoot regeneration. The 

plausible reason could be the loss of certain signals and / or hormones existing in  
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Fig. 6   Shoot regeneration and development from shoot tip with hypocotyl and 
cotyledon fragments explants (A, C, E and F) as well as shoot tip with hypocotyl 
explants (B and D) of melon ‗F39‘ on six different media (RM1-RM6)  
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Fig. 7   Comparison of shoot regeneration from shoot tip with hypocotyl and cotyledon 
explants (A) as well as shoot tip with hypocotyl explants (B) of melon ‗F39‘ on six 

different media (RM1-RM6) 
 
 
 



 37 

cotyledons for shoot regeneration, which was also supported by other authors (Sen and 

Guha-Mukherjee 1998; Curuk et al. 2002).   

 

 

Conclusion 

We tested shoot regeneration ability with three different explant types of our elite 

breeding cantaloupe lines, ‗141‘ and ‗F39‘, as well as casaba melon line ‗TMS‘, on the 

previously reported media. Each type of explant had a high efficiency of regeneration on 

its optimal medium. Interaction between melon genotype and medium composition was 

found in all the regeneration experiments. Medium RM4 is the best medium for shoot 

regeneration from cotyledonary explants of ‗F39‘. Bisected shoot tip and bisected shoot 

tip with hypocotyl and cotyledons are also good explant sources for regeneration and 

transformation in ‗F39‘. Thus, our research proceeded to establish a transformation 

protocol for cantaloupe ‗F39‘ based on the high efficiency shoot regeneration systems. 
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CHAPTER III 

SHOOT REGENERATION AND PLOIDY VARIATION IN  

TISSUE CULTURE OF HONEYDEW MELON 

 

Materials and Methods 

Plant material  

Honeydew (C. melo var. inodorus) ‗150‘ is an elite inbred line with pale green flesh and 

smooth rind surface, which has been inbred for more than 10 generations at Texas 

AgriLife Research Center, Weslaco, TX.  

 

Plant regeneration 

Preliminary tests showed that the frequency of regeneration in ‗150‘ was very high on 

the medium RM4 (MS basal+1.13 mg l-1 BA+0.26 mg l-1 ABA+0.88 mg l-1 IAA+30 g l-1 

sucrose +8 g l-1 agar). A regeneration medium test was then conducted based on this 

result. All four media were prepared by MS basal supplemented with 30 g l-1 sucrose, 8 

g l-1 agar, and additions of different combinations of 1 mg l-1 BA, 0.26 mg l-1 ABA and 

0.8 mg l-1 IAA (pH 5.8) (Table 4). Cotyledonary explants were prepared as for other 

melons described in Chapter II.  

 

Shoot elongation and rooting 

The culture procedure was the same as the ―Shoot elongation and rooting‖ described in 

Materials and Methods in Chapter II. 
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Table 4    Evaluation of four media for shoot regeneration of honeydew ‗150‘ 
Medium 1 mg l-1 BA 0.26 mg l-1 ABA 0.8 mg l-1 IAA 
M1 + - - 
M2 + + - 
M3 + - + 
M4 + + + 
Basal medium was Murashige and Skoog (1962) basal 
 
 
 
Ploidy determination 

Ploidy level was determined by flow cytometry. Samples were prepared from the third 

leaf below shoot apex of plants acclimatized in pots using a commercial kit CyStain PI 

absolute P (PATTEC, Germany) following the manufacturer‘s instruction. Plant nuclei 

were analyzed on a FASCSalibur (Becton Dickinson Immunocytometry System, San 

Jose, CA) flow cytometer, equipped with a 15mW air-cooled argonlaser, using 

CellQuest (Becton Dickinson) acquisition software. Propidium iodide fluorescence was 

collected through a 585/42-nm bandpass filter. A minimum of 5,000 events, defined by a 

region for single nuclei in a plot of propidium iodide area versus width, were measured 

for each sample. Data analysis was performed in FlowJo (version 8.8.7, Treestar, Inc., 

Ashland, OR).  

 

Statistical analysis 

Regeneration was conducted with one factor (medium composition) in a randomized 

complete block design (4 explants/dish; 6 replicates/treatment) and analyzed by one-way 

analysis of variance. Each dish was considered as a replicate. Mean separations were 
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performed using Duncan‘s Multiple Range Test, and differences at the 5% probability 

level were considered significant.  

 

 

Results and Discussion 

Medium optimization for shoot regeneration 

Shoot regeneration has been previously tested on medium M4 which was an optimal 

regeneration medium reported by Fang and Grumet (1990). The regeneration was highly 

efficient on this medium (Ren et al. 2011). However, we observed that the cotyledonary 

explants kept curving up away from the medium surface no matter which side of the 

explant was in touch with the medium. This would cause the ‗escape‘ problem on the 

selection medium for transformation (Ren et al. 2011). Therefore, efforts have been 

made to solve this problem. 

Based on the result of the addition of NAA into the best medium for multiple 

shoot induction (MS + 8 mg l-1 BA), Keng and Hoong (2006) indicated that NAA was 

not necessary for multiple shoot induction from the nodal segments of honeydew. 

Ficcadenti and Rotino (1995) did a massive screening of multiple melon genotypes 

including inodorus variants across MS and B5 medium supplemented with BA, ABA 

and TDZ (thidiazuron). They reported that BA can produced shoots in honeydew, but the 

combination of BA and ABA significantly increased the number of shoots regenerated 

from cotyledonary explants regardless of genotypes. To solve the curving problem as 

well as investigate the effects of plant growth regulators BA, ABA and IAA on shoot 
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regeneration from cotyledonary explants of our honeydew genotype, we conducted a 

regeneration test with four different combinations of BA, ABA and IAA in MS basal 

medium (Table 4).  

On the media without IAA (M1 and M2), cotyledonary explants did not curve up 

from the medium surface, which would help to increase the efficiency of kanamycin 

selection to prevent false positive shoots from regenerating on selection medium. Media 

with ABA (M2 and M4) had produced more shoots than media without ABA (M1 and 

M3). This result was in agreement with Ficcadenti and Rotino (1995) that addition of 

ABA remarkably induced more shoots regeneration from cotyledons. Furthermore, 

addition of IAA increased formation of white friable callus which hampered shoot 

regeneration and effective selection by kanamycin due to thickened explants (Table 5 

and Fig. 8). 

 

 

 

Table 5   The frequency of initial shoot regeneration in the first 3 weeks on the different 
media and the polyploidy estimation of the regenerants 

Mediumz 

No. of 
the 
explant 
tested 

Percentage of 
responding 
explant 

No. of shoots 
per 
responding 
explant  

Percentage of 
white friable 
callus on explants 

No. of the 
shoots 
tested for 
ploidy 

Percentage of 
tetraploidy or 
mixoploidy  

M1 24 75 b 2.4 b 62.5 bc 7 57.1 
M2 24 95.8 a 15.1 a 33.3 c 12 50.0 
M3 24 91.7 ab 5.9 b 95.8 a 5 60.0 
M4 24 100 a 13.4 a 79.2 ab 8 50.0 
z M1 (MS basal+1 mg l-1 BA), M2 (MS basal+1 mg l-1 BA+0.26 mg l-1 ABA), M3 (MS 
basal+1 mg l-1 BA+0.8 mg l-1 IAA) and M4 (MS basal+1 mg l-1 BA+0.26 mg l-1 
ABA+0.8 mg l-1 IAA) 
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Fig. 8    Shoot regeneration on four different media: M1 - M4. a M1 (MS basal+1 mg l-1 
BA), b M2 (MS basal+1 mg l-1 BA+0.26 mg l-1 ABA), c M3 (MS basal+1 mg l-1 
BA+0.8 mg l-1 IAA), d M4 (MS basal+1 mg l-1 BA+0.26 mg l-1 ABA+0.8 mg l-1 IAA) 
 
 
 
Shoot elongation and rooting 

Like cantaloupe ‗F39‘, regenerated shoots of honeydew ‗150‘ on medium M4 

also proliferated but did not elongate on MS basal medium supplemented with BA levels 

higher than 0.1 mg l-1 (see Chapter II). The same series of low BA concentrations, 0, 

0.01, 0.025, 0.05 and 0.1 mg l-1
, was examined on ‗150‘ for shoot elongation. 

Treatments below 0.1 mg l-1 of BA prohibited the regeneration of multiple shoots. BA 

0.01 mg l-1 allowed shoots to elongate (Fig. 9) and produce roots in 2-3 weeks. 
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Fig. 9   Shoot elongation and rooting of melon ‗150‘ on MS basal medium supplemented 
with various BA concentrations. a Multiple shoot regeneration on BA 0, 0.01, 0.025, 
0.05 and 0.1 mg l-1, b shoot elongation on BA 0, 0.01, 0.025, 0.05 and 0.1 mg l-1 
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Fig. 9   Continued 
 
 

 

Ploidy determination of regenerants 

Polyploidy was a common problem of plants regenerated from cotyledon explants of 

diploid melon from in vitro culture. After acclimatizing the regenerated plants in soils, 

we randomly chose 32 plants to analyze their ploidy levels using flow cytometry. Fifty 

to sixty percent of regenerants from each medium treatment were polyploid (Table 5). 

Overall, only 15 (46.9%) regenerants identified as a diploid and the rest 17 (53.1%) 

plants appeared to be a tetraploid or a mixoploid (diploid+tetraploid or 

tetraploid+octoploid) (Fig. 10). A diploid histogram was identical to a seed-grown 

diploid control plant having more than 50% of diploid cells (Fig. 11a-b). A tetraploid 

was scored when having more than 50% of tetraploid cells (Fig. 11c). Mixoploid was 

determined by the percentage of diploid, tetraploid and octoploid cells (Fig. 11d-e). The 

4C peak in a diploid (Fig. 11a-b) probably represented the dividing 2C cells; the 8C 

peaks in a tetraploid and a mixoploid (2C+4C) (Fig. 11c-d) were possibly from dividing 

4C cells. To confirm the ploidy level of a mixoploid (4C+8C) sample, the cytometry was 

reset to detect higher ploidy peaks (Fig. 11e). No 16C peak was found in this sample 

(Fig. 11f). 
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Fig. 10   The polyploidy percentage of plants regenerated from cotyledonary explants of 
honeydew ‗150‘ 
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Fig. 11   Flow cytometry histograms of leaf tissues from in vitro regenerated honeydew 
‗150‘ plants. a Diploid from seed-grown plant, b diploid, c tetraploid,  d 2C+4C 
mixoploid, e 4C+8C mixoploid, f reset cytometry to detect 16C cells in the 4C+8C 
mixoploid  
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Higher polyploidy percentage in melon regenerants was reported by Guis et al. 

(2000). Plants regenerated from 2-day-old cotyledon explants of Cucumis melo L. var. 

Cantalupensis (cv. Védrantais) had more than 80% of tetraploids. Compared with plants 

regenerated from somatic embryos and adventitious shoots, those regenerated from shoot 

primordia had a much lower frequency of tetraploidy: somatic embryo 31%, adventitious 

shoots 30%, and shoot primordia 4% (Ezura et al. 1992 and 1997b). Our results showed 

that cotyledon tissue of honeydew melon also has a high tendency to induce polyploid 

shoots during the tissue culture process. To maintain ploidy stability, shoot tip as another 

explant type for honeydew regeneration needs to be investigated. 

 

Morphology of polyploid regenerants  

Extreme morphologic changes didn‘t occur in the polyploid plants except that thickened 

leaves have been observed from some of them (Table 6 and Fig. 12). Nuňez-Palenius et 

al. (2008) described many characteristics that appeared in tetraploid melon plants, such 

as ―large male and hermaphrodite flowers, protruding stigmas, thickend and leathery 

leaves, short internodes, flat fruits‖. In our study, large flowers and protruding stigmas 

appeared on both tetraploid and diploid regenerated plants as well as diploid seed-grown 

control plants, which may be caused by the environment. We found a high percentage of 

empty-embryo seeds (80-90%) formed in the fruits from both diploid and polyploid 

regenerated plants but not from the seed-grown control plant.  The polyploid fruits‘ 

shape, size and total soluble solid (TSS) contents were similar to diploid fruits (Table 6 

and Fig. 12b). Round-shaped seeds were observed in both diploid and polyploid  
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Table 6   Morphological characteristics of diploid, tetraploid and mixoploid regenerants 
of honeydew ‗150‘ 

Ploidy 
No. of the 
plants 
observed 

No. of plants 
having 
thickened 
leaves 

No. of 
plants 
having 
large 
flowers 

No. of the 
fruits 
observed 

No. of 
fruits 
having 
round 
seeds 
 

TSS range 
(Brix) 
[means] 

Diploid 15 0 7 13 2 7.5 - 13.5  
[10.4] 

Tetraploid 7 3 2 6 3 8.5 - 11.0 
[9.9] 

Mixoploid 
(2C+4C and 
4C+8C) 

8 1 0 8 3 6.5 - 13.0 
[9.9] 
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Fig. 12   Morphological characteristics of polyploid regenerants, their fruits and seeds. a 
Regenerated plants growing in a greenhouse, b a fruit harvested from a diploid plant 
(left) and a tetraploid plant (right), c seeds harvested from a diploid plant (left) and 
regenerated plants (right). CK (2n) is diploid seed-grown plant as a control 
 
 
 
regenerated plants (Fig. 12c), which was possibly due to the tissue culture process and/or 

environments. Normal fruit characteristics of polyploid honeydew may help their 
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acceptability in the market, not like other polyploid C. melo variants having reduced 

productivity and impeded marketability due to the low fruit quality (Guis et al. 2000).   

 

 

Conclusion 

We solved the curving problem of cotyledonary explants during tissue culture by 

removing IAA from the medium without reducing the frequency of regeneration. Thus, 

an optimal regeneration system has been established for honeydew ‗150‘. Our research 

proceeded to develop a transformation protocol for honeydew ‘150‘ based on this high 

efficiency shoot regeneration system. In addition, we observed the ploidy level of the 

regenerated plants and the morphologies of polyploid plants. Although 50-60% of 

regenerated plants has an increased ploidy level, no extremely aberrant morphology was 

found to impact the growth and development of polyploid plants. Further studies are 

needed to maintain ploidy level in honeydew regeneration by using other types of 

explants.  
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CHAPTER IV 

ESTABLISHMENT OF TRANSFORMATION SYSTEMS FOR  

CANTALOUPE LINE ‗F39‘ AND HONEYDEW LINE ‗150‘
* 

 

Materials and Methods  

Plant materials and explant preparation 

Genotypes and their cotyledonary explants were prepared by the same method described 

in Chapter II. 

 

Preparation of Agrobacterium tumefaciens  

A.tumefaciens strains EHA105 and LBA4404 carrying pCNL56, harboring a CaMV 35S 

promoter for constitutive gene expression of neomycin phosphotransferase II (nptII) and 

gusA/intron genes (Li et al. 1992), as well as A.tumefaciens strain EHA105 carrying 

pBI121, harboring a CaMV 35S promoter for constitutive gene expression of neomycin 

phosphotransferase II (nptII) and gusA genes (Clontech), were both used in  

transformation studies. A single colony of A. tumefaciens was inoculated in 3 ml of YEP  

liquid medium supplemented with 50 mg l-1 kanamycin and 20 mg l-1 rifampicin and  

                                                 

*  Part of this chapter is reprinted with permission from ―Agrobacterium -mediated transformation and 
shoot regeneration in elite breeding lines of western shipper cantaloupe and honeydew melons (Cucumis 

melo L.)" by Ren Y, Bang H, Curtis IS, Gould G, Patil BS, Crosby KM (2011) Plant Cell Tiss Organ Cult 
Online First™, 8 Sep 2011 , Copyrigtht 2011 by Springer. 
 

http://www.molecular-plant-biotechnology.info/gene-transfer-methods-in-plants/neomycin-phosphotransferase-gene-npt-II.htm
http://www.molecular-plant-biotechnology.info/gene-transfer-methods-in-plants/neomycin-phosphotransferase-gene-npt-II.htm
http://www.molecular-plant-biotechnology.info/gene-transfer-methods-in-plants/neomycin-phosphotransferase-gene-npt-II.htm
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grown at 200 rpm at 28 ºC for 24 h. The 3 ml culture was added to 20 ml of YEP liquid 

medium supplemented with the same concentrations of antibiotics and cultured for 3 to 5 

h until an OD600 reached between 0.7 and 1.0. Bacterial cells were collected using 

centrifugation at 4000 rpm for 10 min at room temperature and then re-suspended in 

liquid RM4 medium supplemented with 100 µM acetosyringone.  

 

Inoculation, co-cultivation and light test 

Cotyledonary explants were pre-cultured on RM4 medium for 2 d and then inoculated by 

immersion in the A. tumefaciens suspension for 10 min. They were removed from the 

suspension, dried on sterile filter paper and then transferred to RM4 medium 

supplemented with 100 µM acetosyringone (pH 5.5). The effect of light during co-

cultivation was compared by maintaining inoculated explants on co-cultivation medium 

for 3 d in dark (22 ºC) or for 3 d in light (24 ºC, fluorescent desk lamp). Seven days after 

inoculation, GUS transient expression in cotyledonary explants was assessed. 

 

Antibiotic testing and plant regeneration 

To determine sensitivity of cotyledonary explants to kanamycin, both cantaloupe ‗F39‘ 

and honeydew ‗150‘ genotypes were tested in RM4 medium with various kanamycin 

concentrations: 0, 100, 125, 150, 175 and 200 mg l-1. Appropriate concentrations were 

determined for each genotype. To eliminate A. tumefaciens overgrowth during selection, 

the effects of Clavamox® (amoxicillin trihydrate/clavulanate potassium tablets, Pfizer 

Animal Health) and Timentin™ (ticarcillin disodium/potassium clavulanate powders, 
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Duchefa Direct, St. Louis) on the regeneration of both genotypes were compared by 

supplementing media with 250 mg l-1 Clavamox® or 300 mg l-1 Timentin™ throughout 

the regeneration process (shoot regeneration, shoot elongation and rooting).  

After co-cultivation at 22 ºC in the dark for 3 d, explants were transferred to 

medium RM4 containing kanamycin and 250 mg l-1 Clavamox®, and sub-cultured every 

14 d. Three to four weeks later, regenerated shoot primordium aggregates were excised 

into small pieces (3 mm  3 mm) and transferred onto shoot elongation medium 

supplemented with 50 mg l-1 kanamycin and 250 mg l-1 Clavamox®. Some elongated 

shoots produced roots in 14 to 28 d on this medium. Large shoots that failed to produce 

roots were transferred to rooting medium supplemented with 50 mg l-1 kanamycin as 

described by Compton et al. (2004). When root systems were well developed, plants 

were transferred to soil and acclimatized in the tissue culture room (24 ± 2 ºC, 16 h 

light/8 h dark photoperiod).  Plants were then transferred to a greenhouse where they 

were allowed to grow to maturity.  

 

Histochemical GUS assay, PCR and Southern blot analyses 

To examine the expression of the gusA gene in putative transformed regenerants, tissues 

were incubated in 5-bromo-4-chloro-3-indolyl glucuronide (X-gluc) staining solution at 

37 ºC overnight followed by washing with 95% ethanol to remove chlorophyll (Jefferson 

et al. 1987). 

Genomic DNA was isolated from leaf tissues of wild type and putative 

transformants by the method of Skroch and Nienhuis (1995). As an initial screen for 
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presence of the transferred gene, PCR primers were designed to amplify fragments from 

nptII under the following conditions: forward and reverse primers were 5‘-CCC GGT 

TCT TTT TGT CAA GAC CGA CCT-3‘ and 5‘-GTT TGC GCG CTA TAT TTT GTT 

TTC TAT CGC-3‘, respectively. The PCR reaction mixture contained 50 ng of genomic 

DNA, 1× PCR buffer, 200 M dNTP, 0.2 M forward and reverse primers and 1 l of 

polymerase mix (Clontech Laboratories, Inc. Mountain View, CA, USA) in a total 

volume of 50 l. The reaction consisted of an initial denaturation at 94 ºC for 3 min, 

followed by 30 cycles of denaturation at 94 ºC for 30 s, annealing at 68 ºC for 30 s, and 

elongation at 72 ºC for 2 min, and a final elongation at 72 ºC for 10 min. Amplified 

products were visualized on 1% (w/v) agarose gels. 

Twenty micrograms of genomic DNA was digested with EcoRI at 37 ºC 

overnight and separated by electrophoresis on a 1% (w/v) agarose gel at 24 V overnight. 

DNA fragments were then denatured and transferred onto an N+ Hybond nylon 

membrane (Amersham Hybond™ -N, GE Healthcare Life Sciences). A gusA probe was 

labeled using the PCR DIG Probe Synthesis Kit (Roche Applied Science, Mannheim, 

Germany). The membrane was then hybridized with the DIG-labeled probe in DIG Easy 

Hyb solution (Roche Applied Science, Mannheim, Germany) at 45 ºC overnight. DIG-

labeled nucleic acids were detected with CDP-Star (Roche Applied Science, Mannheim, 

Germany) by exposing the membrane under a LAS-4000 Chemiluminescent Image 

System (Fuji Film Life Science, USA). Probe labeling, hybridization, washing and 

detection were conducted according to the manufacturer‘s instruction.  
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Statistical analysis 

Differences between the means were identified using Duncan‘s Multiple Range Test 

where the 5% probability level was considered significant. Kanamycin sensitivity was 

tested in a randomized complete block design (4 explants/dish; 8 replicates/treatment) 

and analyzed by one-way analysis of variance. Each dish was considered as a replicate in 

all the experimental designs. 

 

 

Results and Discussion 

Selection for transformation 

To determine the concentration of kanamycin for the selection of transformed shoots, 

explants were cultured on regeneration media containing a range of antibiotic 

concentrations (Fig. 13). In vitro shoot regeneration frequencies of both genotypes were 

approximately 90% in medium RM4 without kanamycin. Some tissues produced calli 

and shoot primordia on 100-150 mg l-1 kanamycin, but failed to develop normal shoots. 

In ‗F39‘ and ‗150‘, shoot regeneration was completely inhibited on 200 and 150 mg l
-1 

kanamycin, respectively. These two concentrations were chosen as the selection 

thresholds for those genotypes.  
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Fig. 13   Kanamycin sensitivity assay to determine selection thresholds using non-
inoculated explants of melon ‗F39‘ and ‗150‘. Vertical bars show standard errors 
 
 
 

The beta-lactam antibiotics are used to eliminate A. tumefaciens from inoculated 

tissues. Timentin™ is one of the most expensive antibiotics used widely in 

transformation studies (Ieamkhang et al 2005; Slater et al 2011; Thiruvengadam et al 

2011). Clavamox® is relatively inexpensive and appears to work effectively at a low 

dose (250 mg l-1). Even a high one time dose of 10,000 mg l-1 was reported to be non-

toxic to plant tissues (Gould and Magallens-Cedeno 1998). Clavamox® tablets are sterile 

and individually packaged. The antibiotic is stable in this form and convenient to use 

since there is no need to prepare a stock solution. Cheng et al. (1998) reported that 

Timentin™ stock solution was stable only for four weeks at -20 °C or -80 °C, which is 

another disadvantage compared to Clavamox®. Our results indicated that Clavamox® 

was superior to Timentin™ with regard to the impact on tissue regeneration efficiency. 

Clavamox® has been compared with two other commonly used beta-lactam antibiotics, 
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carbenicillin and cefotaxime, on the growth of A. tumefaciens strain LBA4404 and the 

shoot regeneration of tomato. No significant differences were found (Hussain et al. 

2008).  

Clavamox® and Timentin™ were tested on non-inoculated explants of ‗F39‘ and 

‗150‘ to examine possible adverse effects on plant regeneration. In ‗150‘, no significant 

differences were detected during the early stages of shoot regeneration (first four weeks); 

however, inclusion of Timentin™ resulted in vitrification and/or aberrant morphology in 

70% of the shoots over time (Fig. 14 and Table 7).  This vitrification severely reduced 

shoot elongation frequency and ability to produce roots. In contrast, only 5% of the 

shoots cultured on the medium containing Clavamox® became vitrified and/or abnormal. 

This result was similar to results seen in the non-antibiotic treatments. For ‗F39‘, 

Clavamox® and Timentin™ treatments failed to show any significant differences in shoot 

regeneration and production of abnormal types, suggesting the effects of these 

antibiotics could be genotype-dependent. 

 
 
 

 
Fig. 14   Effects of Clavamox® and Timentin™ on the regeneration of non-inoculated 
explants of honeydew ‗150‘ after 75 days of culture. a & b Shoot growth and rooting on 
the regeneration medium supplemented with 250 mg l-1 Clavamox®, c with 300 mg l-1 
Timentin™ 
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Table 7   Effects of Clavamox® and Timentin™ on shoot development and elongation of 
non-inoculated explants of melon ‗F39‘ and ‗150‘ 

Genotype Antibiotic No. of 
explants 

Regeneration 
frequency 
(%) 

No. of 
shoots  
per explant 

Percentage of 
elongated 
/rooted shoots (%) 

Aberrant 
/vitrified shoot  
(%) 

‗F39‘ Clavamox® 16 97.5 a 4.6 b 31.1 a 40.0 a 
 Timentin™ 16 90.0 a 11.4 a 30.0 a 34.4 a 
‗150‘ Clavamox® 40 62.5 a 6.8 a 40.0 a 5.0 b 
 Timentin™ 40 56.3 a 8.2 a 5.0 b 70.0 a 
Means within the same columns within each genotype followed by different letters are 
significantly different by Duncan‘s Multiple Range Test at 5% probability level. The percentage 
data were transformed by an arcsin function before analysis to normalize the distribution  
 
 

 
Like many other melon transformation reports (Dong et al. 1991; Akasaka-

Kennedy et al. 2004; Wu et al. 2009), the common problem of ‗escapes‘ was also 

identified in our study. By reducing explant size (6 explants per cotyledon, 3 mm  2 

mm) and increasing the volume of selection medium per Petri dish (45 ml), we were able 

to reduce the curling of cotyledonary explants and the incidence of ‗escapes‘. A similar 

result was obtained by Wu et al. (2009) in oriental melon transformation.  

 

Inoculation and co-cultivation 

Initially, A. tumefaciens strains LBA4404 and EHA105 were tested for their ability to 

transform explants based on GUS histochemical staining. Both strains showed fairly 

good inoculation efficiencies demonstrated by GUS assays (Fig. 15). EHA105 was used 

in subsequent studies as it was reported to be more efficient in producing stable 

transformants compared to LBA4404 (Galperin et al. 2003). 
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Fig. 15   Transient GUS expression of explants inoculated with different Agrobacterium 

tumefaciens strains carrying pCNL56, 7 days after inoculation. a strain EHA105, b strain 
LBA4404 
 
 
 

Previous reports of melon transformation indicated optimal inoculation times of 

20 sec to 30 min (Ayub et al. 1996; Guis et al. 2000; Vallés and Lasa 1994) depending 

on the Agrobacterium strain used, concentration of the bacterial suspension, plant 

species, explant size and thickness. We evaluated 10, 15 and 20 min inoculation times. 

Three days after inoculation, the explants inoculated for 10 min remained healthy, but 

the longer inoculation treatments resulted in the explants becoming brown or necrotic in 

some cases (data not shown). Therefore, an inoculation period of 10 min was adopted. 

Co-cultivation is one of the most important steps in a transformation procedure. 

Factors during co-cultivation can enhance transformation efficiency, i.e., temperature 

(Fullner and Nester 1996; Yasmin and Debener 2010; Sharma et al. 2011; Seo et al. 

2011), lighting conditions (Zambre et al. 2003), co-cultivation period (Fang and Grumet 

1990; Shilpa et al. 2010; Seo et al. 2011), addition of acetosyringone (Costa et al. 2006; 

Afroz et al. 2010; Sharma et al. 2011) and antioxidants (Dan et al. 2009; Olhoft and 

Somers 2001; Ostergaard and Yanofsky 2004; Toldi et al. 2002; Zheng et al. 2005; 

Kumar et al. 2011; Dutt et al. 2011). Co-cultivation periods of 2 to 6 d were reported to 

be optimal for melons (Galperin et al. 2003; Vallés and Lasa 1994; Akasaka-Kennedy et 



 57 

al. 2004; Dong et al. 1991). Under our co-cultivation conditions at 22 ºC, A. tumefaciens 

strain EHA105 began to overgrow the explant 3 d following the inoculation (data not 

shown).  

Zambre et al. (2003) reported a positive effect of light on gene transfer from A. 

tumefaciens to callus explants of Phaseolus acutifolius (tepary bean) and root explants of 

Arabidopsis thaliana. Our results showed there were no significant differences in 

transformation rates between light and dark treatments (P  0.05) during co-cultivation 

(Table 8). Plausible reasons for this result may be: 1) the light/dark influence on 

Agrobacterium-mediated transformation may be genotype dependent; 2) the light/dark 

influence may depend on explant types (callus and/or root); 3) the co-cultivation 

temperatures of our light and dark treatments of 24 °C and 22 °C respectively, may have 

influenced our results. Temperatures of 19-22 ºC have been reported to be critical for 

high efficiency of Agrobacterium-mediated transformation while temperatures higher 

than 22 ºC dramatically decreased this efficiency (Fullner and Nester 1996). 

 

 

 

Table 8   Effect of light condition on GUS transient expression during the co-cultivation 
period in cotyledonary explants of ‗F39‘ and ‗150‘ 

Genotype Light 
condition No. of explants analyzed No. of explants stained blue GUS 

positives (%) 
‗F39‘ Light 80 18 22.8 a 
 Dark 80 30 38.5 a 
‗150‘ Light 80 74 92.5 a 
 Dark 80 70 87.5 a 
Means within the same columns within each genotype followed by same letters are not 
significantly different by Duncan‘s Multiple Range Test at 5% probability level. The percentage 

data were transformed by an arcsin function before analysis to normalize the distribution 
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GUS staining, PCR and Southern blot analyses 

Cotyledonary explants were inoculated with A. tumefaciens strain EHA105. A total of 

1075 explants of ‗F39' (from two experiments) and 1205 explants of ‗150‘ (from three 

experiments) were used. GUS histochemical analysis was conducted throughout the 

selection procedure to identify putative transformants, as well as non-transformed or  

 
 
 

A B C

D

E F

 

Fig. 16   Callus and shoot development from explants and GUS histochemical assay. a & 
c a regenerated shoot of cantaloupe ‗F39‘ before (a) and after (c) GUS staining, b & d a 
cotyledonary explant with callus producing shoot primordia of honeydew ‗150‘ before 

(b) and after (d) GUS staining, e an apical shoot of a GUS-positive plant of ‗150‘, f GUS 
expression in roots of a kanamycin-resistant plant of ‗150‘ 
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chimeric tissues. Isolated pieces of leaf tissue from regenerating shoots were examined 

for GUS activity (Figs. 16a-d). All GUS positive tissues were then analyzed further for 

expression of the GUS gene in apical shoots (Fig. 16e) and roots (Fig. 16f). During large 

scale GUS assays, we found a large proportion of chimeras in both genotypes (9 out of 

12 samples of ‗F39‘ and 9 out of 13 samples of ‗150‘). Chimeric shoots exhibited blue 

sectors of various sizes following GUS histochemical staining as reported in other crop 

species (Moore 1995; Mollel et al. 2004; Kathiravan et al. 2006). Most chimeric shoots  

did not survive kanamycin selection and died before or during rooting. 

The binary plasmid pCNL56 harbors both nptII and gusA genes. All GUS-

positive plants that rooted on media containing kanamycin were selected for PCR 

analysis to screen for the presence of nptII.  Genomic DNA from all rooted GUS-

positive plants yielded a 1.2-kb fragment identical to the expected fragment amplified 

from the nptII gene (Fig. 17a). Plants regenerated from non-inoculated explants failed to 

produce a fragment. Most non-transformed shoots were killed by kanamycin selection 

during regeneration, elongation and rooting. Although some shoots survived kanamycin 

(150 and 200 mg l-1), many failed to root in the rooting medium containing 50 mg l-1 

kanamycin.  Based on PCR analysis, we found only one ‗F39‘ and two ‗150‘ regenerated 

plants to be non-transgenic escapes. 

Southern blot analysis was performed on all PCR-positive plants to identify 

genomic integration of gusA (Fig. 17b).  Transformation efficiency was estimated using 

the total number of plants exhibiting genomic incorporation, divided by the total number 

of inoculated explants. The transformation efficiency for ‗F39‘ ranged between 0.2% 



 60 

and 0.4% (average efficiency was 0.3 ± 0.1%), and for ‗150‘ the range was between 

0.2% and 0.8% (average was 0.5 ± 0.3%).   

 
 
 

 
Fig. 17   PCR and southern blot analyses of putative transformants. a preliminary screen 
for detecting the presence of the nptII gene in putative transformants using PCR. Lane 1: 
100-bp ladder; lane 2: pCNL56 (positive control); lane 3: wild type honeydew ‗150‘ 

(negative control); lanes 4-8: GUS-positive plants of honeydew ‗150‘; lane 9: wild type 
cantaloupe ‗F39‘ (negative control); lanes 10-12: GUS-positive plants of cantaloupe 
‗F39‘, b integration of the gusA gene as detected by Southern blotting. Lane 1: pCNL56 
(positive control); lane 2: wild type honeydew ‗150‘ (negative control); lanes 3-7: PCR-
positive plants of honeydew ‗150‘; lane 8: wild type cantaloupe ‗F39‘ (negative control); 

lanes 9-11: PCR-positive plants of cantaloupe ‗F39‘ 
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Phenotypes of regenerated transformants 

Abnormal morphological characteristics were observed in the transgenic melon plants 

(Fig. 18a-g). The most severe phenotype was a lack of apical dominance (Fig. 18a)  

 
 
 

H
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Fig. 18   Morphological characteristics of transgenic melon plants. a transgenic 
honeydew line ‗090129‘ showing a lack of apical dominance, b wild type honeydew 
‗150‘, c wild type cantaloupe ‗F39‘, d transgenic cantaloupe line ‗082417‘, e a leaf of 
wild type cantaloupe ‗F39‘, f a leaf of transgenic cantaloupe line ‗082417‘, g transgenic 
honeydew line ‗081105‘, h male flowers of wild type (left) and transgenic (right) 
honeydew ‗150‘, i perfect flowers of wild type (left) and transgenic (right) honeydew 
‗150‘, j transgenic melon plants in the greenhouse 
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resulting in abnormal growth. Other aberrant morphologies included shorter (Fig. 18d) 

and longer (Fig. 18g) internodal growth and irregular leaf shapes (Fig. 18f). Plants 

exhibiting lack of apical dominance and shorter/longer internodes died prematurely in 

the greenhouse. Morphologically normal transgenic plants produced both male (Fig. 18h) 

and perfect (Fig. 18i) flowers.  

Similar abnormalities reported in western shipper melon ‗Topmark‘ and other 

melon types were suggested to be caused by a high kanamycin concentration (150 mg l-1) 

in the selection medium (Gonsalves et al. 1994). In our study, kanamycin at 200 and 150 

mg l-1 was used for in vitro selection of ‗F39‘ and ‗150‘ respectively, similar to the 

levels reported by Gonsalves et al. (1994). However, in our study, abnormal in vitro 

regenerated wild-type plants were also observed in the absence of kanamycin (data not 

shown). This observation suggests that the tissue culture process and plant growth 

regulator effects may induce aberrant morphology in regenerated melon shoots (Larkin 

and Scowcroft 1981).  

 

Pre-culture test with pBI121 

We used EHA105 harboring the binary vector pCNL56 for the protocol development. 

However, the gene of interest for our future study was cloned into the binary vector 

pBI121 harbored by EHA105. By testing the protocol with this construct, we found that 

GUS transient expression levels in both melon lines were much lower than those 

inoculated with pCNL56 (Fig. 19a-b). Similar results were reported for Agrobacterium-

mediated transformation in finger millet (Sharma et al. 2010). To adjust our protocol for  
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Fig 19   Transient GUS expression of cotyledonary explants of ‗F39‘ and ‗150‘ 

inoculated with Agrobacterium tumefaciens strain EHA105 carrying two different 
plasmids. Data was recorded 8 days after inoculation. a Plasmid pCNL56 vs. pBI121 in 
‗F39‘, b plasmid pCNL56 vs. pBI121 in ‗150‘, c ‗F39‘ inoculated with pBI121 for 4 h, 1 
d and 2 d, d ‗150‘ inoculated with pBI121 for 4 h, 1 d and 2 d 
 
 



 64 

pBI121 use, different pre-culture conditions were tested using cotyledonary explants of 

both lines: 1 d hardening (growing the seedlings under lights on the germination medium 

for 1 d before preparing cotyledonary explants) + 4 h on liquid RM4 medium, 1 d and 2 

d on solid RM4. Based on the degree of the GUS transient expression (Fig. 20), 4 h pre-

culture was remarkably better than 1 d and 2 d pre-cultures for ‗F39‘ (Fig. 19c), but 1 d 

was better than 4 h and 2 d treatments for ‗150‘ (Fig. 19d and Table 9). Overall, GUS 

transient expression level in ‗150‘ was higher than that in ‗F39‘ when inoculated with 

EHA105 carrying both plasmids pCNL56 and pBI121 (Fig. 19). This result indicated 

binary vector, plant genotype and pre-culture condition could also significantly affect 

melon transformation efficiency. In addition, ‗F39‘ is a climacteric type while ‗150‘ is a 

non-climacteric type. Low inoculation efficiency of A. tumefaciens may be due to 

ethylene production in wounded tissues of ‗F39‘ (Nonaka et al. 2008). 

 

 
Fig. 20   Evaluation of the degree of GUS transient expression in cotyledonary explants 
of ‗F39‘. Degree index: 0-5 
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Table 9   Effects of different pre-culture periods on GUS transient expression in 
cotyledonary explants of ‗150‘ 

Pre-
culture 
period 

No. of 
explants 
examined 

No. of GUS-
positive 
explants 

No. of the explants 
showing GUS 
expression Infection 

frequency (%) 
Infection 
indexy 

0 1 2 3 4 5 

4 h 24 23 1 2 1 5 7 8 96 3.63 
1d 26 26 0 1 0 2 8 15 100 4.38 
2d 21 20 1 3 4 5 4 4 95 2.95 
z The intensity of GUS transient expression was categorized into 5 classes (see Fig 20): 
degree index 0, explants without a blue area on cut surface; index 1, explants with blue 
dots on cut surface; index 2, explants with small blue spots on cut surface; index 3, 
explants with blue patches on cut surface; index 4, explants of which the entire cut 
surface was stained blue; index 5, explant of which the entire cut surface was strongly 
stained blue. GUS staining was scored only in the cutting region. y The infection index 
was calculated by the formula: [Σ (No. of the infected explants × their corresponding 
degree of GUS expression)] / No. of GUS-positive explants 
 
 

 

 

Conclusion 

We developed a genetic transformation protocol for two elite breeding lines of melon: 

western shipper cantaloupe ‗F39‘ and honeydew ‗150‘. The protocol developed here 

served to initiate a successful transformation of ‗150‘ with a phytoene synthase gene to 

increase β-carotene concentration in fruit. However, the protocol presented here cannot 

be considered routine. Further studies are needed to minimize the incidence of chimeras 

and abnormal plant development. 
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CHAPTER V 

GENETIC ENGINEERING OF BETA-CAROTENE PRODUCTION IN HONEYDEW 

 

Materials and Methods 

Agrobacterium inoculation and plant transformation 

Agrobacterium tumefaciens strain EHA105 carrying a binary vector, PSYC/pRD12, 

harboring an nptII and a PSY-C genes was used. We isolated a PSY-C gene from a 

watermelon flesh and ligated into pRD12 having a 4.8-kb polygalacturonase (PG) 

promoter and a 1.8-kb PG terminator isolated from ripe tomato fruits (Lau et al. 2009, 

GenBank: FJ465170.1). The binary vector pRD12 was provided by Dr. Jim Giovannoni 

at Cornell University (Fig. 21).  
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Fig. 21   T-DNA region of binary vector PSYC/pRD12 
 
 
 
Ploidy determination 

Ploidy level was determined by flow cytometry. Broccoli leaf sample was used as an 

internal control. Samples were prepared from the third leaf below shoot apex of 

acclimatized plants in pots using a commercial kit CyStain PI absolute P (PATTEC, 

Germany). Plant nuclei were analyzed on a FASCSalibur (Becton Dickinson 

Immunocytometry System, San Jose, CA) flow cytometer, equipped with a 15mW air-
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cooled argonlaser, using CellQuest (Becton Dickinson) acquisition software. Propidium 

iodide fluorescence was collected through a 585/42-nm bandpass filter. A minimum of 

5,000 events, defined by a region for single nuclei in a plot of propidium iodide area 

versus width, were measured for each sample. Data analysis was performed in FlowJo 

(version 8.8.7, Treestar, Inc., Ashland, OR).  

 

Phytoene and β-carotene extraction and analysis 

Carotenoid profile was analyzed by HPLC. Rind, flesh and placental tissues were frozen 

at -80 °C before analysis. Approximately 50 g of frozen tissue were pulverized with a 

rubber mallet and mixed thoroughly while the tissue remained frozen. Two to three gram 

slurries were ground to fine powders in a mortar and pestle with liquid nitrogen. 

Powders were washed with acetone on filter paper until tissues became colorless. 

Hexane (30 ml) was added to the acetone extracts and distilled water was added to 

separate the hexane layer from the acetone/water layer. All carotenoids were collected in 

the hexane layer and stored at -80 °C. Hexane extracts (15ml) were evaporated with a 

stream of nitrogen in darkness and replenished with 1 ml acetone for HPLC analysis.  

Carotenoids were analyzed using a Perkin Elmer HPLC system (Shelton, CT) 

equipped with a Series 200 pump, autosampler, and diode array detector. An analytical 

Spheriosorb ODS2 column (Waters, 4.6  250 mm, 5 µm) was used with a guard 

cartridge. Solvents A and B were acetonitrile:water (9:1, v/v) and ethylacetate, 

respectively, both containing 1% triethylamine. The solvent was programmed as an 

isocratic condition (A:B, 7:3) for 40 min at a flow rate of 1 ml/min and flushed with 
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100% solvent A for 5 min. A 40 µl sample was injected. Chromatographic detection was 

set at 280 nm and 475 nm, and spectral data were simultaneously collected from 200 to 

700 nm. Phytoene (CaroteNature, Lupsingen, Switzerland) and β-carotene (Sigma-

Aldrich, St. Louis, USA) standards of predetermined concentration were used to 

quantify phytoene and β-carotene in samples. 

 

PCR and Southern blots 

Genomic DNA was isolated from leaf tissue of wild type and putative transformants by 

the method of Skroch and Nienhuis (1995). To determine if transgenes were integrated, 

primers were designed to amplify fragments from PG promoter and PSY-C genes under 

the following conditions. Primers PGF02 (forward) and PSYCR02 (reverse) were 5'-

TGA GAC GGG AGA AGA CAA GCC AGA CAA A-3' and 5'-CCG TTT TAC CAA 

AGC CGC CTG TTT CAT-3', respectively. The PCR reaction mixture contained 50 ng 

of genomic DNA, 1x PCR buffer, 200 M dNTP, 0.2 M forward and reverse primers 

and 1 l Advantage2 polymerase mix (Clontech Laboratories, Inc. Mountain View, CA, 

USA) in a total volume of 50 l. The reaction consisted of an initial denaturation at 94 

ºC for 3 min, followed by 35 cycles of denaturation at 94 ºC for 30 s, annealing at 68 ºC 

for 30 s, and elongation at 72 ºC for 2 min, and a final elongation at 72 ºC for 10 min. 

Amplified products were visualized on 1% (w/v) agarose gels. 

Twenty micrograms of genomic DNA was digested with HindIII and AvaII at 37 

ºC overnight and then electrophoresed on a 1% (w/v) agarose gel at 24 V overnight, 

respectively. DNA fragments were then transferred onto an N+ Hybond nylon membrane 
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(Amersham Hybond™) by alkaline transfer. A probe covering partial segments of the PG 

promoter and PSY-C gene was labeled using PCR DIG probe synthesis kit (Roche 

Applied Science, Mannheim, Germany). The membrane was then hybridized with the 

DIG-labeled probe in DIG Easy Hyb solution at 45 ºC overnight. DIG-labeled nucleic 

acids were then detected with CDP-Star (Roche Applied Science, Mannheim, Germany) 

by exposing the membrane under a LAS-4000 Chemiluminescent Image System (Fuji 

Film Life Science, USA). Probe labeling, hybridization, washing and detection were 

conducted according to the manufacturer‘s instruction.  

 

RNA extraction and reverse transcription polymerase chain reaction (RT-PCR) 

Total RNA was isolated from rind, flesh and placenta tissues of wild type, vector control 

and transgenic melon fruits with RNeasy® Plant Mini Kit (Qiagen, Valencia, CA, USA, 

Catalog No. 74904) according to the manufacturer‘s instruction. Then RNA was 

immediately converted into cDNA by priming with oligo (dT) using Advantage™ RT-

for-PCR Kit (BD Biosciences Clontech, Palo Alto, CA, USA, Catalog No. 639505).  

To detect PSY-C transcript, primers were designed to amplify the PSY-C under 

the following conditions. Forward and reverse primers were 5'-ACT GAG AAC CGC 

CGG AGA ATT GGA TGT-3' and 5'-TGA AGG GCC AAG GAG AGA CCT TGC 

ATA-3', respectively. The RT-PCR reaction mixture contained 50 ng of cDNA, 1x PCR 

buffer, 200 M dNTP, 0.2 M forward and reverse primers and 1 l Advantage2 

polymerase mix (Clontech Laboratories, Inc. Mountain View, CA, USA) in a total 

volume of 50 l. The reaction consisted of an initial denaturation at 94 ºC for 3 min, 
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followed by 30 cycles of denaturation at 94 ºC for 30 s, annealing at 68 ºC for 30 s, and 

elongation at 72 ºC for 2 min, and a final elongation at 72 ºC for 10 min. Amplified 

products were visualized on 1% (w/v) agarose gels. 

 

Segregation analysis 

Segregation of the PSY-C transgene and its inheritance were analyzed by germinating 

the seeds of T1 progenies of three transgenic lines, 042201, 071506_3 and 071506_4, on 

the seed germination medium containing 200 mg l-1 kanamycin. DNA was extracted 

from the kanamycin-survived seedlings, and then examined by PCR with primers 

PGF02/PSYCR02 under the conditions described before. Amplified products were 

visualized on 1% (w/v) agarose gels. Chi-square test was conducted to estimate the 

segregation ratio. 

 

 

Results and Discussion 

Generation of transgenic plants 

Cotyledonary explants were inoculated with A. tumefaciens strain EHA105 carrying 

PSYC/pRD12. All regenerated plants that rooted on media containing 50 mg l-1 

kanamycin were selected for PCR analysis to screen for the presence of the PSY-C. 

Genomic DNA from all rooted kanamycin-resistant plants yielded a 500-bp fragment 

identical to the expected fragment amplified from the PSY-C gene (Fig. 22a).  
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Genomic DNA from wild type and all PCR-positive plants (Fig. 22a) were 

digested by restriction endonucleases HindIII and AvaII, respectively, and then 

subjected to Southern blot analysis to determine the number of copies of the PSY-C gene 

and identify where the transferred genes were incorporated into the plant‘s genome (Fig. 

22b-c). Three sites of HindIII and two sites of AvaII were found on the plasmid (Fig. 

22d). A 1.8-kb band appeared only in transgenic plants and plasmid control 

PSYC/pRD12 digested with HindIII, and a 9.4-kb fragment showed only in transgenic 

plants and plasmid control PSYC/pRD12 digested with AvaII. These two bands 

confirmed that PSY-C has been integrated into melon genomic DNA (Fig. 22b-c). 

Interestingly, an approximate 6.5-kb fragment was identified in transgenic plants (line 

071506) digested with AvaII. It suggested that there may be an internal deletion 

occurred in the promoter region because they were kanamycin resistant indicating the 

region of nptII may be intact. Further investigations are needed to determine if there may 

be any other reasons to result in unexpected size of T-DNA insertion. The largest band 

appeared in line 042201 may indicate a different location of PSY-C integration in the 

melon genome (Fig. 22c).  

A total of 2804 explants of ‗150‘ (from 11 experiments) were used to regenerate 

eight plants from four explants, becoming four transgenic lines 042201, 071503, 071506 

and 071519. Lines 071503, 071506 and 071519 revealed a single copy of the PSY-C 

integrated into the genome of each plant. Two copies of the PSY-C exhibited in the 

genome of line 042201. A 6-kb band in all samples digested with HindIII and a 3-kb 

band in all samples digested with AvaII were detected. Based on the sequence  

http://en.wikipedia.org/wiki/Endonuclease
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Fig. 22   PCR and southern blot analyses of putative transformants. a Preliminary screen 
for detecting the presence of the PSY-C gene in putative transformants using PCR 
analysis. Lane 1: 100-bp ladder; lane 2: PSYC/pRD12 (positive control); lane 3: wild 
type honeydew ‗150‘ (negative control); lanes 4-10: kanamycin-resistant plants of 
honeydew ‗150‘, b and c integration of the PSY-C gene as detected by Southern blot 
analysis of HindIII-digested (b) and AvaII-digested (c) genomic DNA from PCR-
positive plants. Lane 1: digoxigenin-labeled DNA molecular weight marker II; lane 2: 
PSYC/pRD12 in a wild type honeydew ‗150‘ (positive control); lane 3: wild type 
honeydew ‗150‘ (negative control); lanes 4: line 042201; lane 5-7: line 071503 
(071503_2, -71503_3 and 071503_4); lane 8-10: line 071506 (071506_2, 071506_3 and 
071506_4); lane 11: line 071519, d restriction map of the T-DNA 
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Fig. 22    Continued 
 

 

 
 
 
information and similarity, it was assumed to be melon PSY (GenBank: Z37543) which 

was 94% homologous to watermelon PSY-C. 

 

Ploidy and morphology of transgenic plants and their fruit harvest 

Flow cytometry was conducted to analyze ploidy level of transgenic melons using a 

broccoli leaf tissue as an internal control. In the histograms (Fig. 23), peak ‗broccoli-G1‘ 

between two ‗melon‘ peaks represented diploid broccoli cells whose genome size is 
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similar to triploid melon genome size. All the transgenic plants had over 50% of 

tetraploid cells (peak ―melon-2‖ on 400 PI-Area) while the diploid control plant had 

more than 50% of diploid cells (peak ―melon-1‖ on 200 PI-Area). Thus, 100% of the 

transgenic plants are tetraploids (Fig. 23b-e). The peak ‗melon-2‘ in diploid represented 

the dividing melon diploid cells; the peaks on 800 PI-Area in tetraploid were from 

dividing melon tetraploid cells; the peaks ‗broccoli-G2‘ on 600 PI-Area indicated 

dividing diploid broccoli cells. 

 
 
 

A

F

B C
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Fig. 23   Flow cytometry histograms of leaf tissues from honeydew ‗150‘ transgenic 

lines. a A diploid from seed-grown plant, b 042201, c 071503,  d 071506, e 071519  
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Our previous study showed the percentage of polyploids regenerated from 

cotyledonary explants of ‗150‘ through in vitro culture was 50-60% (see Chapter III). 

This higher frequency of tetraploids that occurred in transformants was unexpected; 

however, except line 071519 (Fig. 24c, left), other tetraploid transgenic honeydew plants 

can still grow and develop normally, which was in agreement with our early observation 

in non-transgenic honeydew ‗150‘ (Chapter III). 

Irregular leaf shape happened in the early stage of line 042201 and 071503 (Fig. 

24a), but it did not affect plant growth, flowering, fruiting and seeding. Plant size of line 

071519 was smaller than those of other lines. This line grew slower on the elongation/ 

rooting medium containing 50 mg l-1 kanamycin and cannot produce normal healthy 

roots compared to other transgenic plants. It had smaller but longer leaves and shorter 

internodes (Fig. 24b-c) during all the life stages and did not produce fruit. Seeds of the 

transgenic fruits were bigger and round compared to those of wild type, but they can 

normally germinate and grow to plants (Fig. 24d-e). The different shape of the seeds was 

also observed in non-transgenic tetraploid honeydew ‗150‘ regenerated from in vitro 

culture (see in Chapter III). No abnormal morphologies have been found in the progeny 

of line 042201 (Fig. 24b-c, right; Fig. 24e).  
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Fig. 24   Morphologies of transgenic plants and their T1 progenies. a Leaves of wild type 
‗150‘ (left) and transgenic line 042201(middle) and 071503 (right), b leaves of line 
071519 (left) and line 042201‘s progeny (right) , c line 071519 (left) and line 042201‘s 

progeny (right), d seeds of wild type ‗150‘ (left) and transgenic line 071506 (right), e 
progeny seedlings of line 042201 
 
 

Fully mature fruits were harvested from non-transgenic and transgenic plants 

during 34-41 days after pollination (DAP); however, the fruit harvested from transgenic 

071506_4 was 42 DAP but had to be cut from vine prior to color break due to an 

unhealthy condition. When harvested, the fruit rind was still creamy color but the area 

around the blossom end began to turn orange (Fig. 25). To let it reach the same ripening 

stage as other normally harvested fruits, the fruit was stored in a warm room (25±2 ºC 

under cool white fluorescent lights with 16 h light/8 h dark photoperiod and 60-80 µmol 
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m-2 s-1 light intensity) for 2 weeks before being processed for HPLC analysis and mRNA 

extraction.  

 

Fruit colors and their related carotenoids  

Fruit 042201 (34 DAP) had a orange-color rind and green-color flesh; fruit 071506_3 

(35 DAP) had a pale orange-color rind and green-color flesh. After storing for two 

weeks, the rind color of fruit 071506_4 still remained creamy but the orange area around 

the blossom end extended a little. Wild type and vector control fruits exhibited cream-

color rinds and green-color flesh (Fig. 25).  

 The concentrations of phytoene and β-carotene in all the tissue samples 

extracted from transgenic and non-transgenic melons were analyzed by HPLC (Figs. 26-

28). The peaks of both phytoene and β-carotene were detected in the rind tissue of 

transgenic fruits; however, only trace volumes were found in the rind tissues of non-

transgenic fruits and the flesh tissues of all melons. Similar peaks of β-carotene were 

shown in the placental tissues of transgenic and non-transgenic fruits. 

Based on the calculation of HPLC data (Table 10), phytoene and β-carotene 

levels were similar in the flesh and placental tissues between the transgenic and non-

transgenic fruits. However, the rind tissues of the transgenic fruits had remarkably 

higher concentrations of phytoene and β-carotene than those of wild type and vector 

control fruits. The highest concentrations existed in fruit 042201 rind tissue, which is in 

accordance with the bright orange color. In this fruit rind tissue, the phytoene content 

was approximately 2-fold higher than that of other transgenic fruits, and no phytoene 
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was detected in wild type and vector control fruits; the β-carotene dramatically increased 

approximately 32 fold compared to wild type, It was also 2- to 3-fold higher than other 

transgenic lines. Fruit 071506_3 and 071506_4 rind β-carotene contents were 

approximately 11- and 9-time higher than wild type, respectively. 

 
 
 

CA B

 Fig. 25   Fruits from wild type (a), vector control (b) and transgenic plants (c-e) of 
honeydew ‗150‘.  c 042201, d 071506_3, e 071506_4 
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D E  
Fig. 25   Continued 
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Fig. 26   HPLC separation of carotenoids in rind tissue extractions from wild type (WT), 
vector control (VC) and transgenic line 042201 of honeydew ‗150‘ 
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Fig. 27   HPLC separation of carotenoids in flesh tissue extractions from wild type 
(WT), vector control (VC) and transgenic line 042201 of honeydew ‗150‘ 
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Fig. 28   HPLC separation of carotenoids in placenta tissue extractions from wild type 
(WT), vector control (VC) and transgenic line 042201 of honeydew ‗150‘ 
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Table 10   HPLC analysis of phytoene and β-carotene concentrations in rind, flesh and 
placenta tissues and the corresponding colors of transgenic honeydew ‗150‘ 

Tissue Genotype Phytoene 
(µg g-1 FW) 

β-carotene 
(µg g-1 FW) Color 

Rind Wide type  - 0.480 Creamy 
 Vector control - trace Creamy 
 042201 10.985 15.124 Orange 
 071506_3 4.364 5.614 Pale orange  
 071506_4 (whole)  4.005 4.389 Mixed color 
 071506_4 (around stem end) - 1.908 Creamy 

 071506_4 (around blossom 
end) 5.567 7.740 Pale orange 

Flesh Wide type - 0.393 Green  
 Vector control - 0.257 Green  
 042201 - trace Green  
 071506_3 - 0.729 Green  
 071506_4 - 0.891 Pale orange  
Placenta Wide type - 6.762 Orange  
 Vector control - 5.547 Orange  
 042201 - 2.855 Orange  
 071506_3 - 3.598   Orange  
 071506_4 - 2.698 Orange  
 
 
 
Expression of PSY-C transgene 

Total RNA was extracted from rind, flesh and placental tissues of wild type, vector 

control and transgenic fruits, and then cDNA was immediately synthesized from the 

RNA. PSY-C transgene transcription was examined using RT-PCR (Fig. 29). Transcript 

was not detected in wild type and vector control but was detected in transgenic fruits. 

Fruit 042201had stronger expression of PSY-C than others in the rind tissue, which is in 

accordance with the dramatic increase of β-carotene level (Table 10). PSY-C expression 

levels in the flesh and placental tissues were lower than those in the rind tissues. No 

correlation was found between PSY-C expression level and carotenoid contents. 
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Phytoene is a direct product of phytoene synthase catalyzation in the carotenoid 

biosynthesis pathway (Cunningham and Gantt 1998). Therefore, change of phytoene 

levels in transgenic melons is an important indicator of PSY-C transgene functioning in 

this study. Phytoene was detected only in the rind tissues (Fig. 26) but not flesh and 

placenta of the transgenic fruits (Figs. 27-28 and Table 10); however, the RT-PCR 

results indicated that the PSY-C transgene expressed in all the tissues. Thus, we assume 

that post-transcriptional mechanisms of the PSY-C in the flesh and placental tissues were 

inhibited. The 4.8-kb PG promoter used in this study contains four regulatory regions 

which control temporal and spatial transcription of its ligated functional gene described 

by Montgomery et al. (1993), Nicholass et al. (1995) and Lau et al. (2009). According to 

these reports, the interaction of these regulatory regions directed ripening-specific 

expression in outer pericarp only in ripe tomato fruit. In contrast, our results showed PG 

promoter induced PSY-C expression in all the tissues (outer and inner pericarps). Further 

studies will be needed to explain whether the PG promoter caused exclusive change of 

β-carotene in the rind tissues. Another possibility of inhibited accumulation of β-

carotene in the flesh and placental tissues might be related to PSY-C tissue-specific 

function. The accumulation of phytoene only happened in the rind but not the flesh and 

placental tissues while PSY-C expression was detected in all the tissues. This 

inexplicable result indicates that different mechanisms of carotenoid accumulation may 

exist in different tissues of honeydew due to different metabolite precursor pools in 

different tissues. 
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Fig. 29   RT-PCR analysis of PSY-C transgene expression in transgenic honeydew ‗150‘. 
a PSY-C transcript in different tissues of wild type, vector control and transgenic fruits 
(042201, 071506_3 and 071506_4), b 18S rRNA used as an internal control. Lane 1-5: 
rind tissue; lane 6-10: flesh tissue, lane 11-15: placental tissue  
 
 
 
Segregation and inheritance in the T1 progenies of the transformants 

PCR analysis was used to detect the presence of PSY-C in the T1 progeny of each 

transgenic fruit (Fig. 30). PCR results revealed single locus segregation in genotypes 

042201 and 071506_3 (Table 11). However, transgenic genotype 071506_4 showed a 

low possibility of Mendelian segregation probably due to the early harvest and abnormal 

seed development.  

To confirm the PCR results, we compared PCR-positive/negative individuals 

with their corresponding kanamycin sensitive/resistant seedlings growing on the 

selection medium containing 200 mg l-1 kanamycin. Like wild type (Fig. 31a), 

kanamycin sensitive seedlings‘ root development was inhibited while kanaymcin 

resistant seedlings developed normal healthy roots on the medium (Fig. 31b). Although 

kanamycin sensitivitive seedlings elongated and cotyledons opened, their true leaves 
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were smaller than those on kanamycin resistant seedlings (Fig. 31c-d), and further 

development was restrained. Eventually the true leaves failed to expand and were 

bleached out resulting in the plants‘ death. Based on the comparison of results, most of 

the kanamycin resistant seedlings were PCR positive and most of the kanamycin 

sensitive seedlings were PCR negative. For the seedlings having controversial results, 

we re-extracted DNA and re-did PCR analysis to assure the PSY-C presence. 
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Fig. 30   PCR analysis to determine the segregation of PSY-C transgene in the T1 
progeny of transgenic honeydew ‗150‘. Lane 1, 100-bp ladder; lane 2, PSYC/pRD12 
(positive control); lane 3, wild type honeydew ‗150‘ (negative control); lanes 4-7, PCR-
positive T1 progeny; lanes 8-11, PCR-negative T1 progeny 
 
 
 
Table 11   Segregation ratio of PSY-C transgene in T1 progeny of transgenic honeydew 
‗150‘  

Genotype 
Total 
number 
of seeds 

PCR 
positive 

PCR 
negative 

Transgene 
segregation 
ratio 

Probable 
PSY-C 
locus 

χ
2a P 

042201 58 42 16 3:1 1 0.207 0.6491 
071506_3 35 27 8 3:1 1 0.086 0.7693 
071506_4 51 29 22 3:1 1 8.948 0.0027 
a Chi-square value is calculated based on the hypothesis of 3:1 segregation ratio 
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Fig. 31   Seed germination of wild type and transgenic progeny of honeydew ‗150‘ on 

the selection medium containing 200 mg l-1 kanamycin. a-b Root development of wild 
type (a) and transgenic progeny (b), c-d cotyledon and true leaf development of wild 
type (c) and transgenic progeny (d) 
 

 

Conclusion 

We transferred a watermelon PSY-C gene with a fruit-specific PG promoter into our elite 

honeydew breeding line ‗150‘. Two transgenic lines having normal morphologies have 

been generated with up to 32-fold higher β-carotene in fruit rind tissue than wild type 

honeydew. It was postulated that elevating β-carotene in the rind tissue may be related to 

the fact that PG promoter was found to express only in outer pericarp in tomato fruit 

depending on regulatory elements (Montgomery et al. 1993). This indicated that the 

watermelon PSY-C gene may have a potential to increase β-carotene level in fruit flesh 

tissue if a different promoter is used. Further studies will be needed to help understand 

the mechanism of β-carotene accumulation in different tissues of melons as an essential 

solution to improve carotenoid in melons. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

To genetically manipulate β-carotene level in melon fruits, two elite breeding lines, 

western shipper cantaloupe ‗F39‘ and honeydew ‗150‘, were used to establish 

regeneration and transformation systems. Six media were examined to evaluate the 

capability of shoot regeneration from different explants types. Each explant type showed 

a great potential to produce shoots. MS basal medium supplemented with 1 mg l-1 BA, 

0.26 mg l-1 ABA and 0.8 mg l-1 IAA induced highest frequency of shoot regeneration 

from cotyledonary explants in both ‗F39‘ and ‗150‘. Removal of IAA from this medium 

solved a curving-up problem of cotyledonary explants in ‗150‘.  

Our study then proceeded to establish an Agrobacterium-mediated 

transformation protocol for both lines based on the optimal regeneration system. Several 

factors have been tested to optimize the protocol, such as A. tumefaciens strains, 

inoculation time, co-cultivation conditions, kanamycin concentrations and antibiotics. A. 

tumefaciens strain EHA105, carrying pCNL56 containing nptII and gusA genes, was 

selected to develop the protocol. Putative transformants were evaluated using GUS 

histochemical assay, PCR and Southern blot analyses. Based on these parameters, 

0.3±0.1% of the cotyledonary explants regenerated transgenic plants in ‗F39‘; and 

0.5±0.3% of the cotyleondary explants produced transgenic plants in ‗150‘. 

Whereafter, a watermelon PSY-C gene, under the control of a fruit-specific 

promoter of PG gene, was transferred into honeydew ‗150‘. Putative transformants were 
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evaluated using PCR and Southern blot analyses. PSY-C transgene was expressed in all 

the tissues of the transgenic fruits according to RT-PCR results. Changes of phytoene 

and β-carotene concentrations were detected in the transgenic fruits using HPLC 

analysis. Transgenic lines produced up to 32-fold higher β-carotene in their rind tissues 

than the wild type.  

In this study, we observed several problems in regeneration and transformation 

of melons: 1) high percentage (50-60%) of polyploid shoots regenerated from 

cotyledons; 2) chimeras and abnormal plants produced through transformation; 3) low 

transformation efficiency; and 4) tissue-specific accumulation of β-carotene in 

honeydew melons. Further studies are needed to reduce or solve these problems, and to 

elevate β-carotene level in flesh tissue of melons. 
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