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ABSTRACT 

 

Surface Water Chemistry in White Oak Creek, North-East Texas:  Effect of Land Use. 

(December 2011) 

Eliza Watson, B.A., New York University 

Chair of Advisory Committee: Dr. Jacqueline A. Aitkenhead-Peterson 

 

Over the last few decades increasing attention has been paid to the effects of land 

use activities and land management on stream water quality.  Recent research has largely 

focused on dominant land uses such as urban development and agricultural cropland.   

The relative effect of land use activities and management on stream chemistry in sub-

tropical rangeland ecosystems, where much of the land use is converted to pasture and 

agriculture is largely unknown.  This study examined stream water quality and land use 

in a sub-tropical watershed in Northeast Texas largely dominated by rangeland.  The 

study site, White Oak Creek Watershed located in the Sulphur River Basin, has been 

identified as an impaired stream due to low dissolved oxygen concentrations and 

subsequently listed on the Texas Commission for Environmental Quality’s 303d list 

(TCEQ).  In an attempt to determine potential sources of the low dissolved oxygen 

concentrations, twenty different chemical constituents were analyzed at 18 different 

sample sites in the tributaries of White Oak Creek and also along the main stem from 

April 2010 to March 2011.  Dissolved oxygen concentrations over the study period were 

consistently above the minimum standard required by TCEQ and showed no indication 
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of impairment.   Correlation analysis did not show any clear correlation between 

dissolved oxygen and any specific land use, or any chemical constituent. Some nutrients 

and suspended sediment concentrations were significantly different among the sub-

catchments of White Oak Creek. Urban land uses were significantly and positively 

correlated to electrical conductivity, ammonium-N, magnesium, calcium, and dissolved 

organic carbon.  Agricultural land use was significantly and positively correlated to 

orthophosphate-P, dissolved organic nitrogen, total suspended solids, and turbidity. 

Forests were inversely and significantly related to nitrate-N, orthophosphate-P, sulfate, 

dissolved organic carbon, total suspended solids, and turbidity.  The study suggested that 

by maintaining a relatively high proportion of forested land in a watershed that water 

quality can be improved. 
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1. INTRODUCTION 

 

 

 

Rural watersheds are becoming increasingly threatened by diffuse sources of 

pollution and degraded water quality in much the same way that urban watersheds have.  

While much attention has recently focused on urban watersheds because of population 

density,  point source pollutants, and runoff from impervious services, rural watersheds 

have been relatively neglected yet they face similar challenges as a result of nonpoint 

source pollution from activities such as extraction of natural resources, compromised 

septic systems, and agricultural practices. This thesis sought to understand the extent of 

the impacts to rural watersheds, specifically focusing on a rural northeastern Texas 

watershed. By examining linkages between rural stream water chemistry and land uses, 

the potential threats to a rural watershed’s stream chemistry can be identified for 

watershed management and adoption of best management practices (BMPs). 

 

1.1 Sediment Transport to Streams 

Sedimentation of streams and its adverse affect on water quality is a result of 

both anthropogenic and natural causes resulting from increased watershed runoff and 

stream bank erosion and consequently leading to higher sediment loads.  Problems 

associated with high sediment concentrations and loading include increased turbidity and 

higher nutrient loads leading to low dissolved oxygen concentrations, habitat destruction 

for benthic organisms, reduced habitat for fish spawning, and overall trophic disruptions  

    

This thesis follows the style of Environmental Monitoring and Assessment. 
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(Nelson and Booth 2002; Zimmerman et al. 2003). It is commonly observed and 

reported that the effect of one conditional characteristic from sediment transport and  

sedimentation leads to additional associated problems, as is the case with both turbidity 

and dissolved oxygen concentrations. 

The two largest direct contributors of sediment to the stream system are through 

1) erosion processes and failing stream banks associated with watershed land use, and 2) 

runoff or overland flow occurring after intense rainfall events.    These two processes 

transport material into streams that can come in primarily two forms:  as solid material 

or a solute.  Each of these two forms can contain organic or inorganic components.  The 

solid load can be further divided into bedload and suspended load.  The type of load is 

largely dependent upon the relationship between flow conditions and the structure, 

density and size of the material (Owens et al. 2005).  The suspended load is usually 

comprised of finer or less dense materials.  In many stream systems, much of the 

suspended sediment is <2mm (sand size or less), with the large proportion of this being 

<63 m (silt and clay size).    The <63 m size, fine-grained sediment, is an important 

fraction of the sediment within stream systems as it is the most chemically active 

component of the solid load due to its greater specific surface area and can therefore 

contain and transport both contaminants and nutrients (Owens et al. 2005).  This fine-

grained sediment load is generally cohesive and transported in the streams as aggregated 

particles.  While bedload and coarse-grained sediment does not contribute to major water 

chemistry concerns, it can cause channel aggradations, reducing flow capacity that can 
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lead to flooding, navigational problems, and channel instability (Nelson and Booth 

2002). 

 One critical impact of sediment influx to streams is the increase in turbidity. A 

study conducted by the California Department of Fish and Game highlighted the effects 

of stream bank erosion on turbidity and the productivity of the affected streams 

(Cordone and Kelley 1961).  The department noted that increased turbidity from erosion 

led to an overall reduction in light penetration into the water, thereby limiting the growth 

of phytoplankton and other aquatic plants by disrupting photosynthetic processes.  Both 

plants and phytoplankton play a critical role in the basic food chain for aquatic animals, 

and also as producers of oxygen.  The limited photosynthetic processes are disruptive to 

natural stream re-aeration and purification processes, which involve the functioning of 

aquatic plants and plankton (Cordone and Kelley 1961).  Increased turbidity from 

erosion and sedimentation affects aquatic animals through reducing the feeding 

efficiency of visual predators and filter feeders, again disrupting the natural food chain 

in streams.  Sediments can also cause physical damage to aquatic invertebrates by 

clogging their gill surfaces and lowering their respiratory capacity (Department of 

Natural Resources, Wisconsin 2005). 

Land use activities have been linked to increased concentrations and loads of 

sediments and the associated negative impacts of such in our surface waters.  Research 

conducted on sediment transport to the Issaquah creek watershed in Washington state 

concluded that sediment transported to channels from urban areas, construction sites, 

agriculture areas, and road-surface erosion can reach the channel network only by 
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transport in suspension and therefore are largely fine-grained in particle size.  On the 

other hand, bank erosion and landslides contributed to the mixed sediment fractions with 

particle sizes both ‘fine’ and ‘coarse’ grained (Nelson and Booth 2002). Other land use 

studies have been conducted on the effects of agricultural practices and their implication 

for stream sediment loads.  For example, a study was completed in Pennsylvania on 29 

impaired and unimpaired streams using sediment as the indicator factor. The researchers 

compared forested land cover with agriculture land and showed that nutrient and 

sediment concentrations and loads were positively correlated with the magnitude of 

development and agricultural practices within the watersheds.  Forested land cover in 

their watersheds exported very low loads of pollutants in comparison with loads from 

agricultural land cover (Sheeder and Evans 2004).   

Livestock grazing in riparian zones has been shown to increase the potential for 

stream sediment transport and associated effects on water quality.  Stream and riparian 

ecosystems were studied in the western United States to understand the influence of 

cattle grazing on riparian habitats. The study concluded that significant disturbances 

from cattle in riparian zones lead to greater erosion and soil loss into streams, increasing 

bacteria and nutrients in stream channels from their adsorption to soil particles, and 

increases in runoff due to loss of infiltration capacity as a result of compaction (Belsky 

et al. 1999). 
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1.2 Nitrogen 

Understanding the pathways in which inorganic forms of nitrogen are transported 

to watersheds is crucial for the evaluation and amelioration of land management 

practices to improve aquatic ecosystem health.  Excess nitrogen concentrations in 

surface waters have been linked to eutrophication of coastal waters such as the 

Chesapeake Bay and the Gulf of Mexico (Goolsby et al. 2001; Shields et al. 2010; Brush 

2009).   The nitrification process in soils is critical to understanding the mobility of 

nitrate.  Ammonium ions, a common fertilizer contribution, are transformed to nitrite 

and nitrate ions through oxidation by nitrifying bacteria.  Transformation from a 

positively charged ion, which can be bound by negatively charged clay particles, to a 

negatively charged ion, allows for greater mobility in soil water (Atlas and Bartha 1987).  

Nitrate in the soil is readily available and utilized by plants; however this form of 

nitrogen can also be readily leached from the soil matrix into groundwater or flushed 

from watershed soil as through flow or Hortonion overland flow to surface waters during 

rain events.  Research conducted in undisturbed forest watersheds has also revealed that 

riparian zones can serve as a source of nitrate due to the flushing effect of subsurface 

storage during rainstorms and snowmelts (Ranalli and Macalady 2010; Poor and 

McDonnell 2006). Many studies have shown that a large proportion of the nitrate found 

in agricultural streams is associated with baseflow (Wagner et al. 2008; Poor and 

McDonnell 2006; Daniel et al. 2009) and this is likely due to long term fertilization with 

nitrate reaching the groundwater table.  A study in Eagle Creek Watershed in Central 

Indiana on an agricultural watershed and a mixed land use watershed showed differences 
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in nitrate flowpaths between the two watersheds.  The agricultural watershed pre-storm 

event median nitrate concentration at baseflow was 5.9 mg/L while the pre-storm event 

median nitrate concentration for the mixed land use watershed was 0.7 mg/L.  Following 

three storm events, mean concentrations for the agricultural watershed were 3.90 mg/L, 

6.22 mg/L, and 4.40 mg/L with nitrate concentrations consistently peaking on the rising 

limb of the hydrograph.  While the mixed land use watershed had mean nitrate 

concentrations of 0.55 mg/L, 1.52 mg/L, and 1.21 mg/L with nitrate concentrations 

consistently peaking on the falling limb of the hydrograph.  This data suggests that an 

overall dilution effect is occurring on the existing nitrate concentrations in the baseflow 

of the agriculture watershed, while in contrast, a contribution of nitrate from upper soil 

horizons is occurring from the mixed land use watershed (Wagner et al. 2008).    

 Seasonal trends in an agricultural catchment were apparent in a study by Poor 

and McDonnell (2006) on three sub-catchments of the Oak Creek Watershed in Oregon.  

The sub-catchments:  forested, agricultural, and residential showed varied nitrate 

concentration data in each of the catchments.  The nitrate concentrations in the forested 

catchment were consistently low through all seasons while the agricultural catchment 

displayed seasonal variation with concentrations high in fall after fertilizer application, 

and subsequent dilution to medium concentrations in winter, and low in spring and a dry 

streambed during the summer months.  Nitrate concentrations were consistently high in 

the residential catchment and were accredited to high flow rates with a constant source 

of nitrate (Poor and McDonnell 2006).   
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Isotopic composition of nitrate has emerged as a tool to identify sources of nitrate in 

a watershed.  Barnes and Raymond (2010) studied seasonality and nitrate sources in 

fifteen headwater catchments within the Farmington River, Hockanum River, and Broad 

Brook Watersheds in Connecticut and Massachusetts using isotopic composition of 

nitrate.  The watersheds, draining agriculture, urban, and forested land, had mean NO3
-
-

N concentrations of 3.47 mg/L, 1.93 mg/L, and 0.01 mg/L, respectively.  Agricultural 

watersheds had the highest nitrate-N concentrations, as well as exhibiting seasonal 

variations with higher NO3-N concentrations in August, and lowest in October.  

Studying the isotopic composition of the nitrate for each of the land uses revealed 

different sources.  Agricultural sites had higher N enriched sites, consistent with the type 

of sources from manure waste.  Urban streams signified a varying degree of N sources, 

implying that no one nitrogen source dominated, which the researchers determined was 

typical of septic waste.  Forested watersheds did not contain the isotopic composition of 

dominant anthropogenic nitrogen sources to the system (Barnes and Raymond 2010). 

 

1.3 Phosphorus 

 Phosphorus is another necessary nutrient for plant growth in both terrestrial and 

aquatic ecosystems.  The over-application of phosphorus can however lead to negative 

water quality impacts, and possibly eutrophication, if excess phosphorus is transported 

into surface waters and it is the limiting nutrient.  Eutrophication restricts water use 

activities and can be fatal to aquatic life due to the excessive growth of algae and aquatic 

weeds that occur with accumulation of agricultural run-off to surface waters.  The 
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decomposition of excess aquatic plant growth creates a hypoxic environment that is 

unsuitable for native aquatic life.  Phosphorus concentrations that can cause 

eutrophication typically range from 0.01 to 0.03 mg/L (Sharpley et al. 1996). Sharpley et 

al. (2001) concluded through ongoing research that most P exported from agricultural 

watersheds originates from only a small portion of the landscape where the 

concentrations of soil-P are very high.  These ‘critical source areas’ are vulnerable to P 

loss via surface runoff and are dependent on contributing transport characteristics of the 

landscape as well as site management factors. Critical transport factors have been 

identified as erosion, surface runoff, subsurface flow, and connectivity of the site to the 

stream channel.  Site management factors that influence P export to surface waters 

include high soil test P concentrations, and the rate, type and method of P application. 

 A study conducted by Ballantine et al. (2009) indicated that different land uses 

affected the P content of deposited sediment in streams in two lowland agricultural 

catchments in Dorset, U.K.  One of the catchments was >80% pasture land, while the 

other was >80% cereal cultivation.  Their results showed that greater P enrichment of the 

soils in surface runoff came from the cultivated land, even though total P content was 

greater in the pasture source soils than the cultivated source soils.  Furthermore when 

they examined sediment in surface runoff it showed a greater degree of finer particles 

associated with sediment in runoff transported from cultivated land.  Ballantine et al. 

(2009) concluded that regular and intensive application of fertilizers on cultivated land 

contributed to the higher P content in these soils, while higher organic matter content in 
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the pasture soils allowed for greater incorporation and retention in soils, and hence less 

mobility. 

Banner et al. (2009) showed that in twenty-five Kansas streams large exports of 

phosphorus occur during high-discharge events.  Their research showed that an average 

of 88% of the total annual P load occurred during flows that occur only 10% of the time.  

Overall, median concentrations for total phosphorus ranged from 0.05 mg/L to 0.33 

mg/L with the greatest median concentrations occurring in the spring, and the lowest in 

winter.  Furthermore their study indicated that the percentage of cropland alongside the 

streams which were within riparian zones, were generally the strongest predictor across 

seasons of median total P concentrations. 

 

1.4 Cations  

Increased concentrations of major base cations (sodium, potassium, calcium, 

magnesium) have been recorded from a large array of activities. A study conducted in 

the Muskegon River Watershed in Michigan compared land uses with export of major 

ions to streams.  They concluded, that all the major cations were observed to be higher in 

surface waters draining watersheds having a large proportion of urban and agricultural 

land uses relative to watersheds with a large proportion of forests.   Urban watersheds 

had higher concentrations of Na
+
 and K

+
 than agricultural watersheds, while agricultural 

watersheds had higher Ca
2+

 and Mg
2+

 than urban watersheds (Ray et al. 2010). High 

potassium concentrations were most strongly associated with urban and agricultural land 

uses in a Massachusetts watershed (Dow et al. 2006; Williams et al. 2005). Increased 
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cation concentrations have been consistently observed in urban streams across the 

United States (Paul and Meyer 2001; McConnell 1980; Smart et al. 1985).  A recent 

study suggested that increased carbonic acid (H2CO3) as a result of increased 

atmospheric CO2 is likely responsible for release of soil cations in deforested tropical 

ecosystems (Markewitz et al. 2006) and a similar occurrence may be responsible for 

losses of calcium and magnesium in agricultural and potassium in urban soils. 

 Chen and Driscoll (2009) conducted a study on twenty-two river sites along the 

New York coast of Lake Ontario.  They observed that major cations (Na
+
, K

+
, Ca

2+
, 

Mg
2+

) tended to exhibit seasonal patterns in streams, with concentrations generally 

lowest during the spring period (March-May).  Cation concentrations then increased in 

late summer/early fall and decreased as discharge increased during late fall and early 

winter.  Additionally, the study showed that higher cation concentrations were observed 

at sites with greater agricultural land cover which was contributed to factors such as 

fertilizer and manure applications, enhanced mineralization of organic matter, and 

weathering (Ahearn et al. 2004; Chen and Driscoll 2009). 

 Weathering of bedrock geology contributes cations to stream water.  In a study 

located in southwest Germany, geology explained the highest percentage of total 

variance when determining sources of Ca
2+

 and Mg
2+

 ions (Xie et al. 2005). Geologic 

formations made up of easily soluble minerals of carbonate and evaporatic lithological 

origin were observed to be the main source of calcium and magnesium to the stream 

water.   In countries with dominant carbonate geology, such as the United States, both 

Ca
2+

 and Mg
2+

 can be contributed through the two main minerals found in limestone: 
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calcite (CaCO3) and dolomite (CaMg[CO3]2) as a result of weathering (Szramek et al. 

2007). 

 Higher concentrations of sodium were also found in a study on all Texas aquifers 

in areas where the bedrock geology was primarily limestone, marine formations (Hudak 

1999). Natural salt dissolution from these formations can contribute sodium ions into the 

groundwater.  Additionally, in areas such as the southwest United States, heavy pumping 

for agricultural irrigation or oil and gas exploration contributes a number of chemical 

constituents, including sodium ions to the surface that can potentially be drained into 

adjacent watersheds (Hudak 1999). 

 

1.5 Anions  

The most common anions observed in surface waters include chloride, sulfate, 

and fluoride.    Chloride concentrations were observed to be the strongest indicator of 

anthropogenic disturbance in streams in a study conducted across the Mid-Atlantic 

region (Herlihy et al. 1998; Dow et al., 2006).  Chen and Driscoll (2009) further 

suggested that Cl
-
 concentrations were a valuable indicator of human disturbance and 

urbanization of a watershed.  On the contrary, chloride as an indicator of agricultural 

activities did not prove to be useful (Chen and Driscoll 2009).  

Sulfate has multiple sources and sinks due to its high reactivity.  High 

concentrations of sulfate have the potential to contribute to soil salinity, limit plant water 

uptake, and negatively impact water quality (Scanlon et al. 2009).  Sources of sulfate can 

be derived from atmospheric deposition which includes anthropogenic sources such as 
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industrial fallout in addition to land applied fertilizer, irrigation water, and also 

geological sources, mainly gypsum (CaSO4·2H2O), anhydrite (CaSO4), and pyrite (FeS2) 

that are weathered in the watershed (Scanlon et al. 2009).  Sulfate and chloride also 

show seasonality; decreasing with increased discharge in the fall and winter, and 

increasing at a return to baseflow in the spring and summer (Chen and Driscoll 2009) 

suggesting a predominant groundwater source.  Sulfate and fluoride also exhibit a strong 

correlation with agricultural land cover (Chen and Driscoll 2009).  Fluoride has been 

observed to be toxic at high concentrations.   Concentrations of fluoride ranging from 

0.1 to 2.5 mg/L found in groundwater in the Ganga Plain in India were severe enough to 

cause skeletal and dental fluorosis to humans consuming the water (Misra and Mishra 

2007).  Groundwater F concentrations in groundwater were even higher in Andhra 

Pradesh, India and concentrations of up to 5.65 mg/L were found (Arveti et al. 2011). 

Sources of fluoride include atmospheric deposition, as well as mineral weathering (from 

fluorite and apatite), pesticides, and impurities in fertilizers (Scanlon et al. 2009). 

 

1.6 Dissolved Organic Carbon 

Sources of dissolved organic carbon (DOC) can vary greatly depending upon 

watershed characteristics.  In general, the primary sources of DOC are derived from 

organic soils, vegetation, and wastewater effluent (Aitkenhead-Peterson et al. 2003; 

Aitkenhead-Peterson et al. 2009). A study conducted on the River Swale in Yorkshire, 

U.K. showed that diffuse sources of soil organic carbon dominated in some catchments 

during high flow conditions, particularly in those catchments that contained a large 
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storage of organic carbon in the soil (Eatherall et al. 2000).  Conversely, during periods 

of low flow, these same catchments were dominated by sewage point sources of DOC, 

unless very high carbon deposits were present in the soil (Eatherall et al. 2000).  The 

Eatherall et al. (2000) study supported the findings by Aitkenhead et al. (1999) who 

suggested that the proportion of peat cover in a watershed was a reliable predictor of 

surface water DOC concentrations. The quantity and quality of allochthonous sources of 

DOC in streams are largely driven by the type of soil organic matter, character of 

hydrologic flowpaths, and amount of wetland area in a basin (Aitkenhead-Peterson et al. 

2003; Johnson et al. 2009). 

 Research on the effect of land use on DOC export is highly variable.  Eighteen 

headwater streams draining forested, agriculture, and urban land uses in southwest 

Michigan were studied and the researchers found no correlation between type of land use 

and dissolved organic carbon (Johnson et al. 2009).  Research on Eagle Creek Watershed 

in Indiana also reported that precipitation characteristics and discharge act as the primary 

controls on stream DOC concentrations during storms and not land use when comparing 

an agricultural catchment and a mixed land use catchment (Wagner et al. 2008). On the 

other hand, research in Red Hill State Forest in Australia showed that stream waters in a 

forested catchment had higher DOC concentrations than those stream waters in a pasture 

catchment, on average 13.8 mg/L and 9.6 mg/L, respectively.  This was attributed to 

greater input and subsequent breakdown of leaf-litter in the forest catchment (Vink et al. 

2007).  Piatek et al. (2009) indicated that sources of DOC during high discharge events 

of summer and fall come from near-surface soil water, and runoff from wetlands. Their 



 14 

study showed that samples taken from streams draining wetlands exhibited higher DOC 

concentrations and some of the lowest NO3
-
 concentrations. This observation is 

consistent with incomplete and slow organic matter breakdown in conditions of low 

oxygen wetlands.  Aitkenhead-Peterson et al. (2005, 2007) suggested that to remove the 

variability of DOC export within watershed land cover or land use it was better to 

examine soil C:N ratio’s which were a robust predictor of DOC export (Aitkenhead-

Peterson and McDowell 2000). 

 More recently research on riverine DOC from urban watersheds has become 

available (Sickman et al. 2007; Aitkenhead-Peterson et al. 2009; Petrone 2010).  Sources 

of DOC from the urban landscape have been postulated as sewage effluent and carbon 

loss from watershed soils due to irrigation of turfgrass with high pH, high sodium 

irrigation water. 

 

1.7 Dissolved Oxygen 

 Dissolved Oxygen (DO) is a critical component of stream water quality and the 

concomitant ability of a stream to support its aquatic life. The combination of turbidity, 

additional nutrients, and substrate settling all contribute to low concentrations of 

dissolved oxygen in surface waters, largely as a result of increased sediment loads.  The 

addition of nutrients stimulates bacterial action to break down the organic waste 

(Cordone and Kelly 1961). To do so, the bacteria that break down the nutrients require 

oxygen and contribute to the overall reduction of dissolved oxygen in streams (Cordone 

and Kelly1961). It is common for DO concentrations to fluctuate both seasonally (Crowe 
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and Bayer 2005), and diurnally (Miltner 2010) as a result of in-stream photosynthetic 

processes. Miltner (2010) studied 109 survey sites in Ohio in an effort to understand 

nutrient criteria thresholds for analysis of aquatic health and found that dissolved oxygen 

concentrations falling below the established water quality standard of 4.0 mg/L have the 

potential to negatively impact aquatic life.  Additionally, wide swings in DO fluctuation 

(>4.0 mg/L) throughout the day appeared to be particularly detrimental to biological 

communities (Miltner 2010). A study by Berka et al., (2001) on the Sumas River 

Watershed located along the British Columbia/Washington State border, examined the 

impact of agricultural land use on dissolved oxygen concentrations.  Their findings 

showed that agricultural intensification in the watershed, particularly as a result of heavy 

manure application in the fall resulted in decreased dissolved oxygen concentrations; 

exhibiting a significant negative relationship between surplus nitrogen application and 

DO (Berka et al.  2001). 

 Overall, it appears that any input to surface waters that will initiate microbial 

breakdown of organic substrate such as limiting nutrients will result in reduced DO 

concentrations. 

   

1.8 Land Use:  Effect on Nutrient Inputs to Watersheds 

The impacts of land use and land management practices on stream water 

chemistry have been widely studied in an effort to understand and determine causes of 

impairment to surface waters.  Numerous studies have shown that different land uses 

contribute differently to stream water chemistry. (e.g., Bolda and Meyers 1997; Poor and 
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McDonnell 2006; Vink et al. 2007; Wagner et al. 2008; Johnson et al. 2009; Scanlon et 

al. 2009; Molinero and Burke 2009; Steele and Aitkenhead-Peterson 2011; Petrone 

2010).  

1.8.1 Urban Development 

It is widely recognized that urban development in watersheds and close to 

surface waters can significantly alter water quality.  For example, increases in nearly all 

constituents have been documented with particular emphasis on the consistency of 

oxygen demand, conductivity, suspended sediments, ammonium, hydrocarbons, and 

metals (Paul and Meyer 2001).   

The expansion of development and urban areas fueled by population growth 

ultimately leads to increases in impervious surfaces. Arnold and Gibbons (1996) studied 

the impacts of impervious surfaces on surface runoff as a mechanism for understanding 

contaminant pathways. Their research showed that as the proportion of impervious 

surface cover in a watershed increased to 10-20% from prior land cover, runoff 

increased from 10% to 20%; a 35-50% increase in a watersheds impervious surface 

resulted in a threefold increase in runoff to 30%; 75-100% impervious surface increase 

in a watershed resulted in 50% of the incoming precipitation being lost to runoff instead 

of the natural watershed soil infiltration.  

In urban areas, studies have shown that a significant portion of sediment, up to 

40%, is derived from sources such as solids from sewage treatment works and roads, 

often containing higher concentrations of contaminants and nutrients (Owens et al. 

2005).  The correlation between land use and sediment loads, although not unique to 
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sedimentation issues, is particularly important given that many nonpoint sources of 

pollution can be transported to streams through their adsorption to clays and metal 

oxyhydroxides and eroded as sediment particles. 

Wastewater treatment plants (WWTP) contribute a unique composition of 

nutrients into surface waters by point source inputs.  Point sources from a WWTP can 

add significant amounts of solutes, particularly nitrate, sulfate, phosphate, chloride, and 

sodium to streams (Lewis et al. 2007; Steele et al.  2010; Aitkenhead-Peterson et al. 

2011; Steele and Aitkenhead-Peterson 2011), as well as the addition of dissolved organic 

carbon and nitrogen (Sickman et al. 2007; Aitkenhead-Peterson et al. 2009; Petrone 

2010).  Other studies have emphasized the impact of construction in developing areas on 

surface water quality (Carpenter et al. 1998; Line et al. 2002). Construction sites 

increase erosion rates of the watershed landscape contributing to sediment transport to 

streams. The eroded material contributes to siltation of water bodies as well as to 

eutrophication because orthophosphate, which binds tightly to mineral soil adsorption 

sites, is carried with the eroded sediment (Carpenter et al. 1998; Line et al. 2002).  When 

compared to other land uses or landscape disturbances, construction sites tend to 

contribute to higher total suspended sediments (TSS) in surface waters due to runoff 

from exposed soils at these sites (Line et al. 2002).   While sewage effluent and 

construction are commonly associated with areas of urban development, it does not 

exonerate them from impacts to surface waters in rural watersheds although perhaps on a 

smaller scale. 
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 Faulty residential septic systems, more common in rural watersheds, can input a 

similar composition of solutes to those found in WWTP point source effluent into 

surface waters.  Impervious surfaces such as roads and construction sites are also 

relevant impacts in rural watersheds.  In addition rural watersheds contain land uses that 

are not typically found in urban catchments but will also negatively impact the chemistry 

of rural surface waters.   

1.8.2 Agriculture 

Two major sources of nutrient over-enrichment in streams from agricultural non-

point-source (NPS) pollution are nitrogen and phosphorous (Carpenter et al. 1998).  It is 

largely recognized that the greater the proportion of agriculture in a watershed, the 

greater nutrient inputs into surrounding surface waters are observed.  Reimann et al. 

(2009), found elevated concentrations of nitrate ranging from 2 to 20 mg/L in low-lying 

agricultural areas outside of Oslo, Norway.  Similar findings were observed in Eagle 

Creek Watershed, Indiana where nitrate concentrations were recorded to be significantly 

higher in an agricultural watershed (2.5 mg/L to 14.3 mg/L) relative to a mixed land use 

watershed (0.3 mg/L to 3.3 mg/L) (Wagner et al. 2008).   

Approximately 31% of the nation’s stream length (207,355 miles) has high 

concentrations of phosphorus, and 32% have high concentrations of nitrogen (USEPA 

2007). Eutrophication is caused by excessive inputs of phosphorous and nitrogen to 

surface waters in watersheds with a high percentage of agriculture land, and accounts for 

approximately 6% of the impaired streams in the United States (Carpenter et al. 1998).  

Inputs of N and P in agricultural watersheds are generally derived from excess 
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fertilization and manure production (Carpenter et al. 1998).  Agricultural fertilizer inputs 

of phosphorus, at concentrations greater than output, has created an imbalance that has 

increased soil phosphorus to concentrations of concern (Daniel et al. 1998).  During 

heavy runoff events, the excess P bound to eroded soils and sediment can then be 

delivered to surface waters via surface or subsurface flows (Correll 1998).   Similarly, a 

surplus of N, particularly nitrate, which has high mobility in many watersheds soils, 

leaches readily to surface waters.  

Manure can contribute a significant amount of phosphorus loading into adjacent 

streams from livestock agriculture (James et al. 2007).  Contributions from dairy cattle in 

a watershed in southeastern New York showed that in-stream fecal deposits from 

pastured cattle represented 10% of watershed phosphorus loadings (James et al. 2007).  

Additionally, it was found that livestock grazing along streams and riparian zones can 

also have adverse effects on surface water quality by increasing turbidity, water 

temperature, bacteria, and overall nutrient concentrations (Belsky et al. 1999).  Another 

study showed that nitrate + nitrite, total Kjeldahl nitrogen, total phosphorus, and 

sediment loads were reduced by 33, 78, 76, and 82 percent, respectively, after BMPs 

were implemented using a livestock exclusion fence along a riparian corridor in North 

Carolina to reduce the influx of pollutants resulting from livestock access to streams 

(Line et al. 2002). 

Low agricultural intensity watersheds tend to have lower concentrations of most 

phosphorous fractions than predominately arable watersheds (Jarvie et al. 2010).   On the 

contrary, livestock farming has resulted in higher concentrations of P, DON, and DOC, 
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demonstrating that intensive cattle farming in close proximity to stream channels is a 

major source of organic and particulate N and P (Jarvie et al. 2010).  

1.8.3 Forestry  

Rural watersheds are impacted by industries other than agriculture.  For example, 

timber harvesting within a watershed catchment can result in temporary watershed soil 

disturbances and water quality degradation in nearby streams due to different activities 

such as road building, harvesting, fire and timber salvage which are all involved in the 

harvesting process (Bolda and Meyers 1997). The harvesting of timber in watersheds 

with some forestry is capable of changing several aspects of a watershed through 

changes in plant water uptake and hence evapotranspiration (ET), hydrologic flow paths 

through changed volumes of water reaching the watershed soil and subsequently altering 

stream water sediment transport, nutrient concentrations, and overall biogeochemical 

cycling (Gravelle et al. 2009).  Removal of vegetation, particularly in the riparian zone, 

during harvesting can also cause increases in stream water temperature, which will 

decrease oxygen solubility (Gravelle et al. 2009).  A study conducted in the Pacific 

Northwest U.S. on a watershed before and after timber harvest observed a five-fold 

increase in nitrate concentrations in adjacent stream water following harvest (Gravelle et 

al. 2009).  The study in the Pacific Northwest supported the earlier experiments 

conducted at Hubbard Brook Experimental Station in New Hampshire which showed 

similar results after clear-cutting.  Increases in NO3
-
, Ca

2+
, and K

+
 in stream water 

chemistry were documented in the first three years following harvest at Hubbard Brook 

during their clear-cutting and strip-cutting timber harvests (Martin et al. 1984).  
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1.8.4 Mining 

 Surface mining has adverse affects on nearby watershed water quality if BMPs 

are not followed.  Mining activity in a watershed is conducive to high sediment loads in 

streams and rivers.  Stream chemical analysis of historic and ongoing mining activities 

on the Susquehanna River in Pennsylvania and New York revealed elevated acidity, 

turbidity, and sulfate concentrations in areas of intensive and intermediate mining (Bruns 

2005).  Yet, alkalinity and pH were recorded as being sufficiently high in surface waters 

therefore minimizing the risk of acid mine drainage in the study area (Bruns 2005).  The 

Bruns (2005) study indicated that although acid mine drainage was not necessarily 

present, residual mine drainage could still impact water quality within the watershed.  

Further, when compared to areas of urbanization and agriculture in the study, it was 

concluded that impacts to streams by mining exceeded those impacts from the other land 

uses (Bruns 2005).  Not all incidences of low pH and high sulfate and metal 

concentrations in surface waters are indicative of mining however. Weathering of black 

shales or pyrite containing rocks in a watershed, particularly those exposed by road 

cutting, can also be observed in stream chemistry, particularly in relation to sulfate 

concentrations (Tuttle et al. 2009). 

The impact of mining activity around Lake Coeur d’Alene and the Coeur 

d’Alene and Spokane river basins in Idaho and Washington, USA was investigated by 

Owens et al. (2005).  Prior to the establishment of mine tailings ponds in 1968, highly 

enriched mine tailings, were being directly discharged into local surface waters.  

Subsequent studies during the 1990s showed that 70 x 10
6
 tons of trace-element rich 
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sediments had settled in Lake Coeur d’Alene with additional quantities of trace-element 

rich sediments entering into the river system.  Estimates of the sediment chemical 

composition showed that 10% was composed of mine tailings with the remaining 90% 

composed of background sediment material.  This hazardous sediment composition has 

extreme implications for the water quality of the affected rivers, the aquatic life, and 

downstream users. 

 

1.9 Objectives of Study 

The objectives of this study were to investigate land use and stream chemistry 

dynamics of a rural watershed in the Post Oak Savannah region of Northeast Texas. 

Persistent drought conditions in the South have necessitated the need for a greater and 

more expansive degree of monitoring of our surface waters for their future protection.  

Understanding how land use may jeopardize or impact the quality of our waters and 

finding ways to manage these effects are inherent to the purpose of this research. The 

research broadens the available data on US surface waters and nutrient concentrations 

and loads exported downstream to reservoirs for drinking water supply. 

Specific objectives of this study were to:  (1) quantify nutrient suspended sediment, 

dissolved oxygen and general stream chemistry within tributaries and the main stem of 

the White Oak Creek Watershed; and (2) identify and map land uses within the studied 

sub-watersheds using GIS software. And, examine relationships between existing land 

uses and stream chemistry.  
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1.10 Hypotheses 

 Objective 1: Quantify nutrient suspended sediment and dissolved oxygen concentrations 

within tributaries and the main stem of the White Oak Creek Watershed 

1. H0:   Nutrient, suspended sediment and dissolved oxygen concentrations will          

not be significantly different in the sub-catchments sampled 

 

2. H1:  There will be significant differences in water chemistry among the sub-

catchments sampled 

 

3. H2:  Nutrient and sediment concentrations are positively and significantly 

correlated to dissolved oxygen concentrations among White Oak Creek 

Watershed sub-catchments 

 

1. Objective 2: Examine relationships between existing land uses and stream 

chemistry H0:  There is no relationship between any watershed land use and 

nutrient concentrations, sediment loads, and dissolved oxygen concentrations in 

White Oak Creek Watershed and its sub-catchments 

 

2. H1:  There is a positive and significant correlation between nutrient 

concentrations in White Oak Creek sub-catchments and land use  
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2. MATERIALS AND METHODS 

2.1 Site Description 

The White Oak Creek Watershed is located in the Sulphur River Basin in 

Northeast Texas (Figure 1).  The soils of this area are dominated by dark brown and dark 

grayish brown alfisols of two main soil series (1) Nahatche series, a poorly drained 

loam-silty clay loam soil, moderately permeable, frequently flooded, and typical of flood 

plains in the region; and (2) Estes series, a somewhat poorly drained clay loam, very 

slowly permeable, frequently flooded, and typical of flood plains in the region (NRCS, 

1990). Soils of the Nahatche series are fine-loamy, siliceous, nonacid, thermic Aeric 

Fluvaquents. Soils of the Estes series are fine, montmorillonitic, acid, thermic Aeric 

Haplaquepts.  Both soil series were formed in clayey and loamy alluvial sediments over 

Wilcox and Midway geologic groups of the Paleocene era.  The Wilcox Formation, 

which is prevalent across the entire watershed, consists of cross-bedded layers of shale, 

lignite, and sand.  Medium to very fine quartz sand constitutes about half of the Wilcox 

group.  Sands and shales in the Wilcox group are typically light gray in color.  The 

Midway Formation is the other dominant geologic formation in the watershed.  This 

formation consists mainly of calcareous clay and is impermeable in nature (Figure 2). 

The climate for the region is humid subtropical having a mean annual temperature of 

17 C and annual precipitation of 1,200 mm.   Precipitation is distributed fairly evenly 

throughout the year.  Livestock, timber, poultry, and dairy farming are the major 

agricultural enterprises in the area.   
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2.2 Sampling Sites and Their Land Use 

White Oak Creek watershed (TCEQ Segment 0303B) spans across Hopkins, 

Franklin, Titus, and Morris Counties in Northeast Texas (eastern point N 33 15’49.92” 

W 94 44’32.05” and western point N 33 10’43.35”  W 95 35’23.58”). The extent of 

White Oak Creek has been identified as having surface water impairment due to bacteria 

(Category 5b) since 2006, and depressed dissolved oxygen (Category 5b) since 2000 by 

the Texas Commission for Environmental Quality (TCEQ 2010b).  White Oak Creek is 

listed in Appendix D of the Texas Surface Water Quality Standards as a perennial stream 

with an intermediate aquatic life use with an average dissolved oxygen (D.O.) standard 

of 4.0 mg/L.  The stream’s designation on the 303(d) list identifies it as unable to meet 

this criterion. Category 5b designation on the 303(d) list indicates that “a review of the 

water quality standards for this water body will be conducted before a Total Maximum 

Daily Load (TMDL) is scheduled (TCEQ 2010b).”    

Eighteen tributary or main stem sites were sampled within the watershed over a 

1-year period, April 2010 through March 2011.  Three of the sites were on the main stem 

of White Oak Creek, and the remaining 15 were taken from sub-catchments off of the 

main stem when flow permitted (Figure 1). 
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Figure 1. Sampling sites on the main stem and tributaries of White Oak Creek. 

 

 

  

 

Figure 2.  White Oak Creek geology and sub-catchments 
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Table 1. Coordinates and percent land use in the main stem watersheds. Source of data: NLCD (2001). 
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WOCMS1 33°16’27.60” 94°44’30.05” 1968 1.2 1.2 5.0 0.4 0.2 6.8 0.1 16.6 0.7 0.1 4.5 50.7 6.0 13.5 

WOCMS2 33°18’49.45” 95°03’16.38” 1556 1.2 1.3 5.4 0.5 0.2 7.4 0.1 13.2 0.2 0.1 3.8 54.8 7.3 12.1 

WOCMS3 33°14’06.58” 95°21’38.31” 772 1.6 1.6 6.1 0.7 0.4 8.8 0.1 11.0 0.1 0.1 2.2 56.3 10.0 10.0 
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Table 2. Coordinates of sample sites and percent land use in the sub-catchments.  Source of data: NLCD (2001) 
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WOCT1 33°10’48.58” 95°35’23.26” 196 4.0 1.8 6.9 1.0 0.4 10.0 0.1 10.4 0.2 0.1 1.6 56.4 10.5 6.8 

WOCT2 33°10’06.05” 95°32’53.99” 10 0.7 4.4 35.0 8.5 4.3 52.2 0.0 7.9 0.0 0.1 1.4 33.2 2.4 2.1 

WOCT3 33°12’24.15” 95°29’36.96” 142 0.5 1.0 4.0 0.0 0.0 5.0 0.0 8.6 0.1 0.0 1.6 61.6 12.4 10.2 

WOCT6 33°16’09.40” 95°23’49.81” 55 0.7 0.7 4.2 0.0 0.0 4.9 0.0 20.3 0.2 0.2 8.8 52.6 3.6 8.8 

WOCT7 33°13’31.06” 95°19’57.83” 66 0.6 0.6 4.5 0.1 0.0 5.1 0.2 14.7 0.2 0.1 4.1 55.0 5.9 14.2 

WOCT8 33°14’32.00” 95°16’21.39” 123 0.9 1.0 6.4 0.7 0.2 8.2 0.0 11.4 0.5 0.1 2.4 65.8 5.2 5.6 

WOCT9 33°13’38.48” 95°13’28.87” 5 1.0 0.2 3.8 0.2 0.0 4.2 0.0 12.3 0.5 0.2 13.1 37.4 0.0 31.2 

WOCT10 33°16’12.36” 95°10’45.60” 15 4.0 1.2 2.3 0.1 0.0 3.5 0.0 14.7 0.1 0.0 3.6 53.6 12.2 8.3 

WOCT12 33°17’03.29” 94°58’30.04” 26 1.5 0.5 3.8 0.4 0.1 4.8 2.4 28.5 3.5 0.2 13.3 30.6 6.5 8.9 

WOCT13 33°18’21.19” 94°57’11.33” 35 0.6 0.7 3.8 0.0 0.0 4.4 0.0 30.0 3.5 0.4 6.1 38.7 0.8 15.4 

WOCT14 33°15’06.81” 94°51’41.72” 14 0.7 0.7 3.4 0.1 0.0 4.1 0.0 42.0 1.4 0.1 9.9 30.8 0.0 11.0 

Crosstimber 33°14’47.01” 95°28’00.56” 52 1.1 0.8 3.4 0.0 0.0 4.2 0.0 14.4 0.1 0.1 3.4 57.0 9.1 10.5 

Lewis 33°19’57.33” 95°07’40.11” 27 0.6 1.4 7.1 0.0 0.0 8.6 0.0 24.9 0.1 0.0 12.5 34.8 3.9 14.5 

Piney 33°15’21.17” 95°00’27.40” 37 0.8 0.7 5.3 0.3 0.1 6.4 0.6 26.9 3.4 0.1 6.1 42.9 6.4 6.5 

Ripley 33°18’29.86” 95°04’15.16” 135 1.1 1.6 5.1 0.3 0.1 7.0 0.1 14.2 0.5 0.1 2.5 59.6 3.4 11.6 
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Figure 3. White Oak Creek Watershed land use/land cover within sub-catchments analyzed.  Source: NLCD 2001. 
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2.2.1 Main Stem 

Approximately fifty percent of White Oak Creek Watershed is used for 

pasture/hay land with less than six percent characterized as having some degree of 

urban/residential development.  The remaining land use in the watershed is comprised of 

forest, wetlands, and shrub/scrub (Table 1, Figure 3).  The cities of Sulphur Springs and 

Mount Vernon located in the south-eastern and central region of the watershed have 

wastewater treatment facilities that discharge into tributaries of White Oak Creek before 

joining the main stem (USEPA 2011).  Luminant Monticello-Thermo Mine also has 

permitted wastewater discharge below the city of Sulphur Springs within the watershed 

that also runs into White Oak Creek.  There are also a number of dairy farms permitted 

to discharge into tributaries within the watershed (USEPA 2011). 

2.2.2 Sub-catchments 

The headwaters of White Oak Creek originate approximately twelve miles west 

of the city of Sulphur Springs.  The first sampling site (WOCT1) at its headwaters was 

taken north of the city on highway 19/154 on the main stem of the creek.  Despite its 

proximity to the city, WOCT1 is largely pastured land and forest, encompassing only the 

western most portion of the City of Sulphur Springs.  WOCT1 sub-catchment drains an 

approximate area of 196 km
2 

(Table 2, Figure 3).  Northwest of the city, White Oak 

Creek is dammed to form a 1,340 acre impoundment, Lake Sulphur Springs, for the 

city’s backup water supply.   

Sub-catchment WOCT2 is the most developed of the sampling sites with its 

headwaters forming in the most developed area of the entire watershed, which graduates 
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to pasture/hay land before merging with White Oak Creek. Drainage area is 10 km
2
 for 

this sub-catchment (Table 2).  

WOCT3 has the highest percentage of cultivated crops out of all the sub-

catchments, in addition to over sixty percent pasture and hay land cover.  The remaining 

land use is comprised mainly of forest and wetlands. WOCT3 is one of the largest sub-

catchments draining approximately 142 km
2
 (Table 2). Similarly, the adjacent sub-

catchment, Crosstimber, also follows this land use pattern with higher percentages of 

cultivated crops, pasture, forest, and wetland, although its drainage area is only 52 km
2
 

(Table 2). 

Sub-catchments WOCT6, on the north side of White Oak Creek, and WOCT7 on 

the south side of White Oak Creek are also similar in that the largest proportion of land 

use is contributed to pasture and hay land cover. WOCT6 and WOCT7 drain areas of 55 

km
2
 and 66 km

2
, respectively (Table 2).  WOCT7 has two registered dairy farms 

permitted for discharge into the tributaries of this catchment (USEPA 2011). 

The adjacent sub-catchment on the south side of White Oak Creek, WOCT8, 

contains the largest percentage of pasture hay land cover in the watershed, and drains an 

area of 123 km
2
 (Table 2).  A small portion of the headwaters for this catchment begin in 

low-intensity development areas at the City of Mount Vernon.  The city of Mount 

Vernon wastewater treatment facility discharges into the tributaries of this catchment.  

One registered dairy farm is permitted to discharge in this sub catchment. 

WOCT9 is a small sub-catchment draining 5 km
2
.  One third of its area is 

characterized as woody wetlands, while another third is pastured land, and the remaining 
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is forest and shrub/scrub land.  Similarly, WOCT10 another smaller sub-catchment with 

a drainage area of 15 km
2
 consists of pastured land and forest with some cultivated 

crops, but also contains a higher percentage of open water (Table 2).   

On the northern side of White Oak Creek towards the middle of White Oak 

Creek Watershed, the Lewis Creek sampling site is a sub-catchment that consists of a 

higher proportion of wetlands than most other catchments.  It is also mixed with 

deciduous forest, pasture, and scrub land (Table 2). 

Ripley Creek sub-catchment has the second largest drainage area of all the 

sampling sites with 135 km
2
.  Its headwaters begin near the city of Mount Vernon and 

flow northeast into White Oak Creek.  Nearly sixty percent of the sub-catchment area is 

used as pasture land, while the remaining is composed of deciduous forest, woody 

wetlands, and low intensity development (Table 2).  A portion of the headwaters in the 

southeastern area of the catchment is located in a reclaimed lignite coal surface mine 

site. 

Adjacent sub-catchments Piney and WOCT12 merge before flowing into White 

Oak Creek.  Similar to Ripley catchment, both Piney and WOCT12 headwaters form in 

an area that was previously used for lignite coal surface mining.  Much of the area is 

now reclaimed land.  In the Piney sub-catchment forty-three percent is used for pasture 

and hay, while the remaining majority is forested land.  WOCT12 contains the highest 

percentage, although minimal, of the classified barren land, largely as a result of mining 

activities, with the remaining land uses consisting of forested, pasture, shrubs and 

wetland. 
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WOCT13 and WOCT14 are the western most sub-catchment sampling sites.  A 

greater proportion of these areas consist of deciduous forest, pasture, and woody 

wetlands.  WOCT14 is located in the protected White Oak Creek Wildlife Management 

Area. 

 

2.3 Stream Sample Collection 

Grab samples were collected from the 18 sampling sites mid-channel and mid 

depth using 500 mL sterile Whirlpak sample bags (Nasco Co., Modest CA) at least once 

a month between April 2010 and March 2011. Samples were taken from the upstream 

side of bridges for ease of sampling. Electrical conductivity and pH were quantified on 

unfiltered samples and then a portion of each sample was syringe filtered through 

Whatman GF/F filters (0.7 m nominal pore size) into acid washed ultra-pure water 

rinsed HDPE bottles.  Further aliquots were filtered through 0.2 m Pall filters in 

readiness for cation and anion analysis.  These samples were either analyzed on the day 

of collection or frozen after filtration for later analysis.   

2.3.1 Biological Oxygen Demand 

Samples for BOD5 analysis were taken from the 18 sampling sites in 500 mL 

acid washed, ultra-pure rinsed water high density polyethelene (HDPE) bottles for DO 

analysis on the day of sampling. BOD samples were analyzed from the 18 sampling sites 

using 300 mL of stream water poured into acid washed, ultra-pure water rinsed glass 

BOD bottles.  Dissolved oxygen, quantified with a YSI 5000 BOD/DO meter (YSI Inc., 

Yellow Springs, OH) was recorded at t = 1, and the bottles were incubated at 25 C for 
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five days where dissolved oxygen (DO) was recorded again at t = 5.  BOD was 

calculated as the difference of DO at t = 1 and DO t = 5 in mg/L. 

2.3.2 Sediment Analysis 

Suspended sediments were analyzed by filtering 100 mL of stream water through 

pre-weighed glass fiber Whatman GF/F filters (0.7 m nominal pore size).  Filters were 

then placed in the oven at 60 C for 2 days to evaporate water.  Filters were then re-

weighed after 2 days and equilibrium with room temperature to determine suspended 

sediments. Total solids were quantified by weighing 50 mL of stream water into pre-

weighed Pyrex® beakers and placed in the oven at 60 C for 3 days or until evaporation 

was complete.  After cooling to room temperature the beakers were then weighed to 

determine total solids. Total dissolved solids were calculated as total solids minus 

suspended solids.   

Turbidity was measured in nephelometric turbidity units (NTU) using a Turbidity 

Meter Model 800 (VWR International, Radnor, PA).  The meter was calibrated with 

solutions of 0 and 10 NTU prior to analysis. 

2.3.3 Chemical Analysis 

Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were 

measured using high temperature Platinum-catalyzed combustion with a Shimadzu 

TOC-VCSH and Shimadzu total measuring unit TNM-1 (Shimadzu Corp. Houston, TX, 

USA). Dissolved organic carbon was measured as non-purgeable carbon, which entails 

acidifying the sample (250 µL 2M HCl) and sparging for 4 min with C-free air. 

Ammonium was analyzed using the phenate hypochlorite method with sodium 



 

 

35 

nitroprusside enhancement (USEPA method 350.1) and nitrate was analyzed using Cd-

Cu reduction (USEPA method 353.3).  Alkalinity was quantified using methyl orange 

(USEPA method 310.2).  Alkalinity was converted to the major carbonate species 

(AqQA, Rockware Inc., Denver, CO), which in this study was bicarbonate.  All 

colorimetric methods were performed with a Westco Scientific Smartchem Discrete 

Analyzer.    Calcium, magnesium, potassium and sodium were quantified by ion 

chromatography using an Ionpac CS12A analytical and Ionpac CG12A guard column for 

separation and 20 mM methanosulfonic acid as eluent at a flow rate of 1 mL min
-1

 and 

injection volume of 25 µL (DIONEX ICS 1000).    Fluoride, chloride, bromide, sulfate 

and phosphate were quantified using Ionpak AS20 and Ionpak AG20 analytical and 

guard columns for separation with 35 mM KOH as eluent at a flow rate of 1 mL min
-1

 

and an injection volume of 25 µL (DIONEX ICS 1000).  Dissolved organic nitrogen was 

estimated by deducting inorganic-N (NH3-N + NO3-N) from TDN.  NIST traceable 

check standards and water blanks were analyzed every 12
th

 sample for QA/QC on 

instrument precision and coefficient of variance between replicates. 

 

2.4  Watershed Delineation and Land Cover Analysis 

ArcGIS version 10.0 ESRI 2010 software was used to delineate the watershed 

and each sub-catchment and to calculate land cover type and geology for each 

watershed.  Watershed delineation was performed using the Hydrology functions under 

the Spatial Analyst Toolbox in the software.  Input data is 30 x 30 m digital elevation 

model (DEM) raster data, which is publically available from the USGS Seamless (USGS 
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2011).  Geology (USGS 2011) and National Land Cover Data (USEPA 2001) for each 

watershed was calculated using the zonal statistics calculator in the Spatial Analyst using 

data from the USGS Seamless database (USGS 2011).   ArcMap’s Spatial Analyst 

function was used to estimate the area of each of the land uses within each catchment 

and watershed as a whole.  Land use areas were divided by the catchment and watershed 

area to derive the percentage of the catchment and watershed covered by each type.  All 

LULC files were cast to the Universal Transverse Mercator (UTM) projection, and 

referenced to the North American Datum of 1983 (NAD83). 

 

2.5 Load and Export Estimation for White Oak Creek 

 Two methods of estimating daily load and annual export in White Oak Creek 

were used.  The USGS Gauge 073433500 near Talco (N33  19’ 30” W95  05’ 33’ NAD 

27) was used for daily discharge during the study period.  The first method examined 

natural log transformed concentrations paired with natural log transformed discharge at 

the gauge on the days that the sample was collected (Ln-Ln model) and used the paired 

concentration (mg/L) and discharge (L/sec) in regression analysis to derive an equation 

that was used to estimate concentrations of chemical constituent on the days that samples 

were not collected.  Natural log concentrations were derived for each day of the 

sampling period and then re-transformed using their exponential to give an estimation of 

milligrams per second.  These values were then multiplied by 86,400 and divided by 

1,000,000 for a load value of kilograms per day.  Data were summed for an annual load 

and divided by the watershed area for annual export (kg/km
2
/yr).  Because not all of the 
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chemical constituents had a significant positive of negative relationship with stream 

discharge, a second method of determining daily load and annual export was used.  The 

second method was that of linear interpolation (LI model).  Here a regression line is 

drawn between two collected sample concentrations and the equation derived is used 

with the number of day (counting 1 though n) as the independent variable (x) to calculate 

concentrations on those days not sampled.  Both methods of determining load and export 

have been published (e.g. Steele and Aitkenhead-Peterson 2011; Petrone 2010). 

 

2.6 Statistical Analysis 

Data was examined for normality and transformed prior to statistical analysis if 

necessary. Annual and seasonal means of each stream chemical constituent were 

calculated and student’s two-tailed t-tests were used to test the null hypothesis that the 

stream chemistries for the main stem and sub-catchments were not significantly 

different.  Correlation analysis was used to test the hypothesis that high sediments would 

result in low dissolved oxygen within each individual sub-catchment and to examine 

correlations between land use and water chemistry and between stream chemistries in 

the sub-catchments.  Annual mean stream chemical constituents were used in regression 

analysis with watershed land use to examine relationships with any specific land uses. 

All statistical analysis was performed using SPSS v. 16. 
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3. RESULTS 

3.1 Mean Annual Surface Water Chemistry: Sub-catchments 

There were no significant differences in mean annual surface water pH in the 

White Oak Creek sub-catchments (Figure 4A).  Mean annual surface water pH ranged 

from 6.94±0.29 to 7.37±0.39.  Electrical conductivity (EC) was however significantly 

different among the sub-catchments.  WOCT8 and WOCT13 had significantly higher 

EC than all the other streams with the exception of WOCT9, WOCT 7, WOCT 14, 

Ripley and Piney (Figure 4B).  Mean annual surface water EC ranged from 146±64 to 

638±198 µS cm
-1

. 

Although White Oak Creek is on the TCEQ 303(d) list for low oxygen. The 

mean annual DO concentrations were above 4 mg/L at all the sampling sites.  Lowest 

DO concentration was found in WOCT12 at 7.32±0.75 mg/L and the highest DO at 

WOCT9 at 8.25±0.38.  There was no significant difference in surface water DO among 

the sub-catchments (Figure 5).  Biological oxygen demand in the sub-catchments was 

minimal and ranged from 0±0 to 2.1±1.9 mg/L the lowest BOD5 was at sub-catchments 

Lewis and WOCT7 and the highest BOD5 was at WOCT3 (data not shown). 

 

 

 

 

 



 

 

39 

All nitrogen and soluble phosphorus nutrients were significantly different among 

the sub-catchments and the same general sub-catchments were responsible for the 

highest mean annual concentrations of N and P.  Significantly higher annual mean 

ammonium-N concentrations were found at WOCT2 relative to all the other sub-

catchments with the exception of Lewis and WOCT8.  Mean annual ammonium-N 

concentrations at WOCT2 were 0.32±0.31 mg/L.  Lowest ammonium-N concentrations 

were found for WOCT14 at 0.09±0.03 mg/L but the concentrations were not 

significantly lower than any of the other sub-catchments with the exception of WOCT2 

(Figure 6A).  Mean annual nitrate-N concentrations ranged from 0.13±0.08 to 0.97±0.89 

mg/L.   

Lowest nitrate-N concentrations were at Piney and the highest were at WOCT2 

(Figure 6B).  WOCT2 had significantly higher mean annual nitrate-N concentrations 

relative to all the other sub-catchments with the exception of WOCT7 and WOCT9 

(Figure 6B).  Soluble phosphorus, quantified as othophosphate-P was highest at WOCT7 

where it was significantly higher in concentration than all the other sub-catchments 

except WOCT2.  Mean annual soluble phosphorus ranged from 0.03±0.02 to 0.44±0.74 

mg/L (Figure 7A). 

 Alkalinity quantified as CaCO3 was not significantly different among the sub-

catchments and mean annual concentrations ranged from 36.9±16.4 to 104.8±61.4 mg/L 

the lowest alkalinity was in WOCT10 and the highest in WOCT7 (Figure 5B). 
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Figure 4.  A) pH and B) electrical conductivity of samples taken from the White Oak 

Creek sub-catchments. Differences in lower-case, superscript letters indicate a 

significant difference at α < 0.05 and similar letters indicate no significant difference 

between streams.  No letters indicate there was no significant difference (pH). Error bars 

are standard deviation. 
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Figure 5. Dissolved oxygen concentrations in the eighteen sub-catchments.  Error bars 

are standard deviation. 
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Figure 6. A) Ammonium-N and B) nitrate-N concentrations of samples taken from the 

White Oak Creek sub-catchments. Differences in lower-case, superscript letters indicate 

a significant difference at α < 0.05 and similar letters indicate no significant difference 

between streams. Error bars are standard deviation. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Crosstimber

Lewis

Piney

Ripley

WOCT1

WOCT10

WOCT12

WOCT13

WOCT14

WOCT3

WOCT6

WOCT7

WOCT8

WOCT9

WOCT2

Ammonium-N (mg L-1) 

ab 

a 

a 

a 

a 

ab 

b 

a 

a 

a 

a 

a 

a 

a 

A 

0 0.5 1 1.5 2

Crosstimber

Lewis

Piney

Ripley

WOCT1

WOCT10

WOCT12

WOCT13

WOCT14

WOCT3

WOCT6

WOCT7

WOCT8

WOCT9

WOCT2

Nitrate-N (mg L-1) 

a 

a 

a 

a 

ab 

ab 

b 

a 

a 

a 

a 

a 

a 

a 

a 

B 



 

 

43 

 

 
Figure 7. A) Soluble phosphate-P and B) alkalinity measured as CaCO3 concentrations 

of samples taken from the White Oak Creek sub-catchments. Differences in lower-case, 

superscript letters indicate a significant difference at α < 0.05 and similar letters indicate 

no significant difference between streams. No letters indicate there was no significant 

difference (Alkalinity). Error bars are standard deviation. 
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 Mean annual cation concentrations were significantly different among the White 

Oak Creek sub-catchments.  Sodium concentrations ranged from 18.6±8.02 to 

53.6±17.14 mg/L.  The highest sodium concentrations were in WOCT8 and here sodium 

concentrations were significantly higher than all the other sub-catchments with the 

exception of WOCT7, WOCT14, WOCT9, Piney, WOCT13 and Ripley.  The lowest 

mean annual sodium concentration was in Crosstimber where it was significantly lower 

than WOCT14, WOCT9, Piney, WOCT13 and Ripley sub-catchments. (Figure 8A). 

 Potassium concentrations ranged from 3.89±1.34 to 12.07±3.49 mg/L.  The 

highest potassium concentrations were found in WOCT7 where they were significantly 

higher than all the other sub-catchments and the lowest in WOCT14 where they were 

significantly lower than in WOCT7, WOCT8, WOCT9 and WOCT2 (Figure 8B).   

Magnesium and calcium concentrations in the sub-catchments ranged from 

4.87±1.83 to 12.30±3.73 mg/L and 11.68±3.97 to 26.48±15.59 mg/L, respectively.  

Lowest mean annual magnesium concentrations were found in WOCT1 and highest in 

WOCT8. Lowest mean annual calcium concentrations were found in WOCT10 and 

highest in WOCT2 (Figure 9B).  WOCT1 had significantly lower magnesium 

concentrations relative to WOCT8, WOCT7, WOCT13, and Piney, and WOCT8 had 

significantly higher magnesium concentrations compared to WOCT14, Ripley, WOCT7, 

WOCT13, and Piney (Figure 9A). 
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Figure 8. A) Sodium and B) potassium concentrations of samples taken from the White 

Oak Creek sub-catchments. Differences in lower-case, superscript letters indicate a 

significant difference at α < 0.05 and similar letters indicate no significant difference 

between streams. Error bars are standard deviation. 
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Figure 9. A) Magnesium and B) calcium concentrations of samples taken from the White 

Oak Creek sub-catchments. Differences in lower-case, superscript letters indicate a 

significant difference at α < 0.05 and similar letters indicate no significant difference 

between streams. Error bars are standard deviation. 
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 Mean annual anion concentrations, fluoride, chloride and sulfate showed 

significant differences in concentrations among the sub-catchments.  Mean annual 

fluoride concentrations ranged from 0.09±0.06 mg/L to 0.41±0.28 mg/L.  Lowest 

fluoride concentrations were found at WOCT12, while the highest were found at 

WOCT2 (Figure 10A).  Sub-catchment WOCT2 had significantly higher mean annual 

fluoride concentrations than the other sub-catchments, with the exception of WOCT9 

and WOCT3 (Figure 10A).  Chloride concentrations varied widely among the sub-

catchments (Figure 10B).  Mean annual chloride concentrations ranged from 11.82±4.37 

mg/L at sub-catchment WOCT10 to 53.19±16.00 mg/L at sub-catchment WOCT8.  

WOCT10 had significantly lower chloride concentrations relative to WOCT8, WOCT7, 

WOCT6, WOCT14, WOCT13, Ripley, and Piney.  While WOCT8 and WOCT13 had 

significantly higher chloride concentrations than all the other streams with the exception 

of WOCT9, WOCT7, WOCT6, WOCT14, Ripley, Piney, and Lewis (Figure 10B). 

 Mean annual sulfate concentrations were significantly different among the White 

Oak Creek sub-catchments (Figure 11).  Sulfate concentrations ranged from 17.42±13.31 

mg/L to 104.40±44.40 mg/L.  Lowest mean annual sulfate concentrations were found in 

Crosstimber, while highest mean annual concentrations were found in Piney.  Piney had 

significantly higher sulfate concentrations when compared to the other streams with the 

exception of WOCT8, WOCT13, and Ripley (Figure 11). 
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Figure 10. A) Fluoride and B) chloride concentrations of samples taken from the White 

Oak Creek sub-catchments. Differences in lower-case, superscript letters indicate a 

significant difference at α < 0.05 and similar letters indicate no significant difference 

between streams. Error bars are standard deviation. 
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Figure 11. Sulfate concentrations of samples taken from the White Oak Creek sub-

catchments. Differences in lower-case, superscript letters indicate a significant 

difference at α < 0.05 and similar letters indicate no significant difference between 

streams. Error bars are standard deviation. 
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Figure 12. A) Dissolved organic carbon (DOC) and, B) dissolved organic nitrogen 

(DON) concentrations of samples taken from the White Oak Creek sub-catchments. 

Differences in lower-case, superscript letters indicate a significant difference at α < 0.05 

and similar letters indicate no significant difference between streams. Error bars are 

standard deviation. 
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3.2 Mean Annual Surface Water Chemistry: Main Stem 

 

Three sites along the main stem were sampled during my study period.  

WOCMS4 is the first 1/3
rd

 of the basin downstream from eight of the sub-catchments, 

WOCMS2 is approximately center of White Oak Creek basin and is just downstream of 

a USGS gauge and WOCMS1 is the main stem prior to its confluence with Sulphur 

River (Figure 2).  Measurements of pH were not significantly different along the main 

stem and ranged from 7.2 to 7.4 (Figure 13A).  There was a significant difference among 

the main stem sampling sites for electrical conductivity with WOCMS4 having 

significantly higher conductivity relative to WOCMS1 (Figure 13B). 

 

 
Figure 13. A) pH and B) electrical conductivity of the main stream sampling sites. Error 

bars are standard deviation. 
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Figure 14. Nutrients, carbon and measures of total suspended solids, DO and BOD along the main stem.  Error bars are standard 

deviation.  Significant differences (p < 0.05) are shown by different lower case letters.  Figures with no letters have no significant 

difference. 
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Figure 15. Cations, anions and DON:TDN ratio along the main stem.  Error bars are standard deviation.  Significant 

differences (p < 0.05) are shown by different lower case letters.  Figures with no letters have no significant difference. 
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Several of the chemical constituents were not significantly different along White 

Oak Creek main stem and these included Ammonium-N (Figure 14A), Dissolved 

organic Nitrogen (Figure 14C), Alkalinity (Figure 14E), DOC (Figure 14F), total 

suspended solids (Figure 14G), biological oxygen demand (BOD), dissolved oxygen 

(Figures 14H and 14I), magnesium (Figure 15C), chloride (Figure 15F), sulfate (Figure 

15G) and turbidity (Figure 15H).  Other chemical constituents showed a significant 

difference along the main stem, and for the most part were all significantly higher at 

WOCMS4 and included nitrate-N (Figure 14B), orthophosphate-P (Figure 14D), sodium 

(Figure 15A), potassium (Figure 15B), calcium (Figure 15D), fluoride (Figure 15E) and 

the DON:TDN ratio (Figure 15I). 

 Concentrations of chemical constituents decreased along the main stem, which 

could be attributed to dilution from the sub-catchments. 

 

3.3 Discharge, Loads and Exports of Nutrients and Chemical Constituents from 

White Oak Creek Watershed 

 

A total of twelve surface water samples were taken from downstream of the 

gauge at WOCMS2 throughout the course of the study period which were pretty evenly 

distributed throughout the year to take account of high and low flow discharge (Figure 

16A). One extreme storm event occurred on July 17
th

, 2010 at Clarkesville, TX 

approximately 20 miles north of the Talco gauge when 32 mm of precipitation fell  

(Figure 16B) and one extreme event occurred at Sulphur Springs, TX on November 2
nd
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2011 when 29 mm rain was recorded (Figure 16B). Several smaller storm events 

occurred in the watershed throughout the sampling period (Figure 16B). 

 

 

 

Figure 16. Average discharge each day at the White Oak Creek gauge and days sampled 

throughout the study period.  
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this I also examined linear interpolation to estimate the concentrations of each chemical 

constituent on the days not sampled.   

 

Table 3. Slopes, coefficients and R
2
 for the Ln-Ln model to determine concentrations on 

days not sampled. Significant relationships * α < 0.05 and ** α < 0.01. 

Constituent Concentration Discharge Slope Coefficient R
2
 

      

Ammonium-N mg/L Ln L/sec 0.0129 0.0391 0.27 

Nitrate-N Ln mg/L Ln L/sec 0.4 3.209 0.39* 

Phosphate-P Ln mg/L Ln L/sec 0.1895 3.6516 0.15 

Alkalinity Ln mg/L Ln L/sec -0.2116 5.4072 0.57** 

Sodium Ln mg/L Ln L/sec -0.1611 4.6052 0.31 

Potassium Ln mg/L Ln L/sec 0.0072 1.9144 0.0055 

Magnesium Ln mg/L Ln L/sec 0.028 1.7915 0.02 

Calcium Ln mg/L Ln L/sec 0.0393 2.5638 0.031 

Fluoride mg/L Ln L/sec -0.0285 0.403 0.114 

Sulfate mg/L Ln L/sec -9.0963 116.24 0.144 

Chloride Ln mg/L Ln L/sec -0.0587 3.854 0.0687 

DOC mg/L Ln L/sec 0.7488 5.2265 0.16 

TDN Ln mg/L Ln L/sec 0.202 1.19 0.54** 
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Annual load and export for each of the chemical constituents was calculated 

using the LI model and Ln-Ln model for comparative purposes (Table 4).  Seven metric 

tonnes of ammonium-N went through the White Oak Creek gage which corresponds to 

an export of 4.7 kg km
-2

 yr
-1

.  Nitrate-N load and export was greater than that of 

ammonium-N at 85 metric tonnes corresponding to 54.4 kg km
-2

 yr
-1

 (Table 4).  Of the 

cations, sodium was dominant with a load of 1933 metric tonnes and an export of 1241 

kg km
-2

 yr
-1

.  Sulfate was the dominant anion with a load of 1998 metric tonnes and 

export of 1283 kg km
-2

 yr
-1

. 

Dissolved organic carbon losses from a watershed correspond to losses of 

terrestrial carbon.  At White Oak Creek 578 metric tonnes were lost during the study 

period representing an export of 371 kg km
-2

 yr
-1

. Dissolved organic nitrogen annual 

load was 17.5 metric tonnes with an export of 27 kg km
-2

 yr
-1

.  Thus nitrate-N was the 

dominant nitrogen species released from this watershed.  Of the other nutrients, 

Orthophosphate-P had an annual load of 5 metric tonnes and an export of 3.2 kg  km
-2

 

yr
-1

.   
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Table 4.  Estimated concentrations, annual load and export of chemical constituents at the White Oak Creek gauge.  The LI 

model represents linear interpolation between observed concentrations and the Ln-Ln model regression analysis between Ln 

discharge and transformed or Ln transformed concentrations.  Values in bold represent those concentrations and exports that 

are used in comparison with other studies. 

 LI Model Ln-Ln Model 

Chemical 

Mean 

Concentration Annual Load Export Mean Concentration Annual Load Export 

 mg/L tonne/yr kg/km
2
/yr mg/L tonne/yr kg/km

2
/yr 

Ammonium-N 0.12 7 4.7 0.12 9 5.6 

Nitrate-N 0.57 45 28.8 0.57 85 54.4 

Phosphate-P 0.11 5 3.17 0.09 8 5.32 

Alkalinity 64.55 3124 2010 64.46 2043 1312 

Sodium 38.95 1930 1241 38.50 1398 898 

Potassium 7.30 405 260 7.30 420 270 

Magnesium 7.15 443 285 7.13 435 279 

Calcium 16.88 1014 651 16.55 1042 669 

Fluoride 0.22 12 8 1.26 66 42 

Chloride 32.85 1892 1215 33.08 1588 1020 

Sulfate 57.41 2984 1916 60.54 1998 1283 

DOC 9.66 578 371 9.81 671 431 

TDN 1.05 77 49 1.11 109 70 

DON 0.43 27 17 0.42 16 10 

TSS 56.58 2407 1546 35.09 2773 1781 
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3.4 Land Use and Land Management Effects on Surface Water Chemistry 

 
For an initial examination of possible land use interaction with sub-catchment 

surface water chemistry I performed a Pearson bivariate correlation analysis.  All sub-

catchment classified land uses were correlated so some surface water chemistry with the 

exception of wetlands.  Open water in a sub-catchment such as reservoir or lake was 

negatively correlated with surface water electrical conductivity (R = -0.56; p = 0.03), 

calcium (R = -0.59; p = 0.02) and chloride (R = -0.59; p = 0.02) as such that if an open 

water source was in the catchment then these surface water chemical constituents 

decreased in the surface waters (Table 5). Urban open areas in a sub-catchment were 

positively correlated with conductivity (R = 0.71; p < 0.001), ammonium-N (R = 0.60; p 

= 0.02) and calcium (R = 0.66; p = 0.01).  Low, medium and high density urban 

development was positively correlated with surface water conductivity (R = 0.74-0.79; p 

< 0.01), ammonium-N (R = 0.77-0.79; p < 0.01), calcium (R = 0.77-0.81; p < 0.01) and 

dissolved organic carbon (R = 0.60-0.62; p < 0.05).  A correlation between magnesium 

and urban land use only occurred in the medium and high-density land use (R = 0.53-

0.56; p <0.05) and was not as strongly correlated as the other chemical constituents 

(Table 5).  Dissolved organic nitrogen had a negative relationship with barren land as 

such that as barren land in a watershed increased then DON in surface water decreased 

(Table 5). 

Agricultural land use also had effects on surface water chemistry (Table 5).  

Moderate, positive correlations were found between pasture and soluble phosphate-P (R 

= 0.52; p < 0.05), DON (R = 0.67; p = 0.01), total suspended solids (R = 0.66; p = 0.01) 
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and turbidity (0.66; p = 0.01) and negative correlation with the DON:TDN ratio (R = 

0.52; p < 0.05).  Agricultural cropland was also correlated to some chemical constituents 

found in surface waters across the sub-catchment dataset.  Interestingly as the proportion 

of cropland in a sub-catchment increased so did dissolved oxygen in surface waters (R = 

0.56; p < 0.05).  Other correlations between the proportion of agricultural crop in a sub-

catchment and surface water chemistry were negative; for example, pH (R = -0.61; p = 

0.01), alkalinity (R = -66; p = 0.01), fluoride (R = -0.73; p < 0.01) and the DON:TDN 

ratio (R = -0.66; p = 0.01). 

Natural resource land use such as forestry had differing correlations with sub-

catchment surface water chemistry (Table 5).  Deciduous forests were negatively 

correlated with surface water nitrate-N (R = -0.54; p < 0.05), soluble phosphate-P (R = -

0.55; p < 0.05), sulfate (R = -0.54; p < 0.05), DOC (R = -0.63; p = 0.01) and BOD5  (R = 

-0.52; p < 0.05).  The proportion of evergreen forests in a sub-catchment appeared to 

have a different effect on surface water chemistry relative to deciduous forests.  

Although there was a similar response in surface water sulfate (R = -0.69; p < 0.01) and 

DOC (R = -0.51; p <0.05), evergreen forest had a positive influence on surface water 

chloride (R = 0.53; p <0.05) and negative correlations were found for TSS (R = -0.57; 

p<0.05) and turbidity (R = -0.57; p<0.05).  There we no negative or positive correlations 

between surface water chemistry and mixed forests.  Rangeland, shrub and scrub was 

positively correlated with the DON:TDN ratio (R = 0.56; p<0.05) and negatively 

correlated with TSS (R = -0.57; p< 0.05) and turbidity (R = -0.57; p<0.05). 
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Table 5. Pearson bivariate correlation between sub-catchment surface water chemistry and land use.  *Significant at α < 0.05 

and **significant at α < 0.01. 

  URBAN      AGRICULTURE 

 water Open Low Medium High Barren Deciduous Evergreen Mixed Range Pasture Crop 

pH -0.35 -0.15 -0.01 -0.05 -0.05 -0.16 0.23 0.38 0.52 -0.03 0.01 -0.61** 

EC -0.56* 0.71** 0.79** 0.74** 0.74** -0.21 -0.25 -0.34 -0.11 -0.10 -0.16 -0.28 

NH4—N -0.27 0.60* 0.77** 0.79** 0.78** 0.05 -0.46 -0.28 -0.07 -0.10 -0.25 -0.23 

NO3-N -0.17 0.15 0.26 0.28 0.27 -0.21 -0.55* -0.45 -0.16 -0.29 0.21 0.10 

PO4-P 0.00 0.16 0.17 0.15 0.15 -0.33 -0.55* -0.50 -0.06 -0.46 0.52* 0.00 

Alkalinity -0.18 -0.15 -0.03 -0.04 -0.06 -0.07 0.24 0.39 0.44 0.07 -0.04 -0.66** 

Mg
2+ -0.50 0.42 0.58 0.53* 0.53* -0.27 -0.16 0.10 0.18 -0.33 -0.02 -0.43 

Ca
2+ -0.59* 0.66** 0.77** 0.80** 0.81** -0.37 -0.34 -0.24 0.02 -0.45 -0.09 -0.09 

F
- -0.05 -0.22 -0.08 -0.13 -0.13 -0.08 0.47 0.36 0.43 0.22 -0.14 -0.73** 

Cl
- -0.59* -0.04 0.03 0.01 0.00 0.04 0.11 0.53* 0.32 -0.16 0.05 -0.31 

SO4
2- -0.26 -0.04 -0.08 -0.16 -0.15 -0.46 -0.54* -0.69** -0.40 -0.17 0.49 0.28 

DOC -0.20 0.47 0.62** 0.60* 0.60* -0.20 -0.63** -0.51* -0.15 -0.22 0.04 -0.09 

DON -0.21 -0.22 -0.38 -0.45 -0.43 -0.56* -0.24 -0.37 -0.28 -0.40 0.67** 0.37 

DONTDN 0.02 -0.24 -0.06 -0.05 -0.07 0.34 0.42 0.45 0.26 0.56* -0.52* -0.66** 

DO -0.27 0.03 -0.09 -0.03 -0.03 -0.15 -0.42 -0.26 -0.28 -0.38 0.40 0.56* 

BOD 0.20 0.33 0.39 0.36 0.36 -0.29 -0.52* -0.30 -0.13 -0.53* 0.47 0.13 

TS -0.33 0.35 0.40 0.37 0.37 -0.27 -0.51 -0.30 -0.14 -0.54* 0.47 0.16 

TSS -0.24 -0.20 -0.27 -0.27 -0.28 -0.34 -0.51 -0.57* -0.23 -0.34 0.66** 0.20 

Turbidity 0.09 1.00 -0.27 -0.27 -0.28 -0.34 -0.51 -0.57* -0.23 -0.34 0.66** 0.20 
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4. DISCUSSION 

Relatively little research is published on general stream water chemistry in sub-

tropical and semi-arid ecosystems (Mulholland and Watts 1982; Figueiredo and Ovalle 

1998; Yuan et al. 2007; Aitkenhead-Peterson et al. 2011; Slye et al. 2011; Steele and 

Aitkenhead-Peterson 2011) relative to stream water chemistry in temperate ecosystems. 

Furthermore, surface water chemistry is researched more frequently in temperate and 

tropical forested (e.g. Ertel et al. 1986), temperate peatland (e.g. Aitkenhead et al. 1999; 

Kortelainen et al. 1997) and urban watersheds (e.g. Sickman et al. 2007; Petrone 2010; 

Aitkenhead-Peterson et al. 2011; Mouri et al. 2011) than in mediterranean or sub-

tropical rangeland ecosystems (Lewis et al. 2007; O’Green et al. 2010). Thus the relative 

effect of land use and land management practices on stream chemistry in sub-tropical 

rangeland ecosystems, where much of the land use is converted to pasture and 

agriculture is largely unknown.  One of the major objectives of my research was to 

determine the cause of low dissolved oxygen in White Oak Creek, a tributary of the 

Sulphur River in North-East Texas 

 

4.1 Concentrations of Chemical Constituents in White Oak Creek Sub-catchments 

4.1.1 Dissolved Oxygen 

Dissolved oxygen (DO) is a recorded impairment on the TCEQ 303d list in 

White Oak Creek.  I expected to find that high nutrient inputs such as nitrogen and 

phosphorus and high total suspended solids would be a causative factor affecting low 

DO concentrations.  Dissolved oxygen in the main stem and sub-catchments of White 
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Oak Creek during my twelve sampling campaigns throughout 2010 and 2011 yielded 

DO concentrations that averaged from 7.3±1.4 to 8.3±0.4 mg/L among the 15 sub-

catchment sample sites which was much higher on average than that recorded by TCEQ 

whose data ranged from 3.1 to 11.6 mg/L and averaged 6.36 mg/L during 2010.  The 

first year that White Oak Creek was listed on the 303d list in 2000 for depressed 

dissolved oxygen, DO data ranged from 3.8 to 10.4 mg/L, with mean concentration of 

6.03 mg/L (TCEQ 2010a). To examine why my DO readings were higher than those 

reported by TCEQ I decided to conduct a 12h and a 24 h monitoring of DO using the 

same protocol used by TCEQ (Table 6).  It was likely that my collection of samples may 

have been during a part of the day that DO normally peaked in streams (Goldman and 

Horne 1983) or that the method I was using to quantify DO was compromised by the 

long travel time between stream water collection and measurement of DO. 

 

Table 6. Dissolved oxygen concentration and percent in White Oak Creek during spring 

2011. 

12 Hour  24 Hour 

Time 

DO 

(mg/L) 

DO 

% 

Temp 

C  Time DO (mg/L) 

DO 

% 

Temp 

C 

0700 5.37 56 17.7  0630 5.23 57.9 20.3 

0800 5.39 56.6 17.7  0830 5.23 58 21.2 

0900 5.42 57.7 18.1  1030 5.21 58.7 21.2 

1000 5.4 57.5 18.3  1230 5.28 60.1 21.8 

1100 5.55 59.6 18.6  1430 5.47 62.8 22.1 

1200 5.49 59.1 18.8  1630 5.23 60.1 22.2 

1300 5.52 59.4 19.2  1830 5.34 62.2 22.2 

1400 5.57 61 19.7  2030 5.43 60.9 21.6 

1500 5.55 60.8 19.7  2230 5.45 61 20.9 

1600 5.53 60.5 19.7  0030 5.48 61.1 20.6 

1700 5.54 60.5 19.6  0230 5.49 61 20.6 

1800 5.55 60.8 19.6  0430 5.33 59.1 20.4 
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The measurements for DO were taken at WOCMS2 site on the main stem. The 

12 h dissolved oxygen measurements taken after a storm event showed very little 

fluctuation with a minimum of 5.37 mg/L in the morning and maximum 5.57 mg/L mid-

afternoon. Twenty-four hour DO have similar concentrations ranging from 5.21 to 5.47 

mg/L.  Measurement for the 24 h DO was taken after a period of no rainfall.  Although 

my mean annual DO concentrations among the sites I sampled was higher than that 

reported by TCEQ, my average DO concentrations taken in the spring at WOCMS2 

using TCEQ protocol were lower, although concentrations were still above the 4.0 mg/L 

minimum standard designated by TCEQ.   

Some characteristics of a watershed and its stream are known to depress DO.  For 

example higher temperatures typically reduce the concentration of DO in water 

(Goldman and Horne 1983); higher salinity, or salt content also depress DO 

concentrations in surface water (Goldman and Horne 1983; Kim et al 2010).  Finally, 

elevation or atmospheric pressure has an impact on DO concentrations in surface waters 

with higher elevations experiencing lower DO concentrations, and lower elevations 

experiencing higher DO concentrations (Goldman and Horne 1983).  Water flow in the 

channel as turbulent or laminar flow, presence or absence of aquatic vegetation, and 

bacterial and nutrient loading have also been shown to affect surface water DO 

concentrations and increase CO2 concentrations (Goldman and Horne 1983; Kim et al 

2010).  In my study, alkalinity was inversely correlated with DO concentrations in the 

sub-catchments but the correlation was very weak though significant. This would make 

some sense because alkalinity is a measure of calcium carbonate and a form of dissolved 
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inorganic carbon (DIC). Form of DIC depends upon the pH of the surface water, with 

low pH having DIC in the form of CO2, moderate pH having DIC in the form of HCO3
-
, 

and high pH having DIC in the form of HCO3
2-

 (Cole 1994). Typically DO is consumed 

by aquatic microorganisms or fauna and hence CO2 released.  The data also showed a 

moderate positive correlation between DO and cultivated cropland, suggesting that as 

crop area increased DO concentrations increased.  This data is contrary to what I had 

predicted, as typically fertilizer application to cropland might result in a decrease in DO 

concentrations (Goolsby et al. 2001) if those nutrients are transported to streams.  

Based on my results, dissolved oxygen concentrations in White Oak Creek and 

its sub-catchments did not indicate a serious concern to water quality. Hypoxic 

conditions exist at DO concentrations below 2 to 3 mg/L (USEPA 2010), much lower 

than that measured during my sampling campaigns.  No clear correlation between DO 

and land use or any other chemical constituent in the study is likely due to very little 

fluctuation in DO concentrations among the sub-catchments throughout the sampling 

period.    

My findings found no land use or land management effect on mean annual 

concentrations and I found no cause for concern relating to DO concentrations in White 

Oak Creek.  However the differences between returning the sample to the laboratory (5 – 

24 hours) prior to measuring DO and measurement in stream on site was large 

suggesting that in retrospect DO concentrations should be measured and recorded in situ. 
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4.1.2 Inorganic Nitrogen and Phosphorus Concentrations 

Inputs of nitrogen and phosphorus to waterways can result in impairments and 

potential eutrophication not only at the local scale, but also through accumulation or 

addition of loading at points further downstream (Goolsby et al 2001; Kemp et al 2005). 

Continuous and sustained contributions of nitrogen and phosphorus, we now understand, 

can have very significant environmental impacts to large bodies of water such as those 

observed in the Chesapeake Bay, and the Gulf of Mexico (Goolsby et al 2001; Kemp et 

al 2005; Osterman et al 2009; Brush 2009). Therefore identifying sources of nitrogen 

and phosphorus in watersheds that eventually make their way to surface waters and these 

near coastal zones is crucial for directing upstream management.   

Inputs from fertilizer contribute ammonium ions (NH4
+
) to the soil that can be 

leached into the groundwater if not converted to NO3
-
 or adsorbed to the negative charge 

on clay particles and transported to streams on eroded soils (Donstova et al 2005).  

Volatilization of ammonium is also a problem in agricultural watersheds (Jarvis and Pain 

1990).  Ammonium also accounts for approximately half of the nitrogen content of 

manure. Jokela and Meisinger (2008) and Houlbrooke et al. (2004) reported that manure 

from farm dairy effluent can be a major source of total nitrogen to surrounding surface 

waters of pastured land.  Ammonium ions are also commonly found in urban runoff 

transported to streams (Brainwood et al. 2004) and wastewater effluent discharged into 

rivers (Brion and Billen 2000).  

In the sub-catchments studied in White Oak Creek Watershed, urban runoff, 

wastewater effluent, and manure are all likely contributors of ammonium-N.  
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Characteristic of what has been observed in urban watersheds, sub-catchment WOCT2 

had the highest ammonium-N concentrations (mean 0.32 mg/L) and also the highest 

percentage of urban development (52%) of the sub-catchments examined. Furthermore I 

found that between 74 and 79% of the variance in ammonium-N among my sub-

catchments was described by urban development. Ammonium-N inputs associated with 

urban development was also observed by Brainwood et al., (2004) in New South Wales, 

Australia where ammonium ions found in farm dams with adjacent urban development 

were a contribution of urban runoff.   Contributions of ammonium-N from cattle manure 

are also likely in Lewis and WOCT8, which also had significantly higher annual mean 

ammonium-N concentrations because of the higher proportion of improved pasture in 

their watersheds.  

Nitrate-N is a highly soluble and mobile form of nitrogen and can easily be 

leached into the groundwater and streams (Malhi et al. 2011).  High nitrate-N 

concentrations in surface waters are generally associated with high population density 

and development, and row crop agriculture (Goolsby et al. 2001).  In my study, nitrate-N 

was not significantly correlated with agricultural crops or urban development but 

WOCT2, with the highest proportion of urban development had the highest mean annual 

concentration of nitrate-N.    Deciduous forests were negatively correlated with nitrate-N 

in my study, supporting the findings of Daniel et al. (2009) in the Little Miami River 

Basin, a tributary of the Ohio River.  Those sub-catchments with the lowest nitrate-N 

concentrations (WOCT6, WOCT13, Ripley, Piney and Lewis) all had a relatively high 

proportion of deciduous forest land cover ranging from 14 to 30 percent in their 
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watersheds.  This suggests that the land management practice of leaving some deciduous 

forest, particularly if used as a buffer between the stream and urban and agricultural land 

uses may reduce nitrate-N movement to surface waters.  However, during timber harvest 

a combination of soil aeration which leads to nitrification and removal of vegetation that 

would normally take up nitrate results in enhanced streamwater nitrate concentrations 

(Hornbeck et al. 1986).  Increases in stream nitrate-N exports were observed for the 

three years after timber harvest only (Hornbeck et al. 1986) which suggests that as 

ground cover increased, plant uptake of nitrate-N also increased.  Mean annual nitrate-N 

concentrations in the White Oak Watershed sub-catchments were comparative to forest 

and urban land uses reported in a study in the Kalamazoo River Basin in Michigan, USA 

where mean nitrate-N concentrations for forested watersheds ranged from 0.01 mg/L to 

0.4 mg/L and urban watersheds ranged from 0.2 mg/L to 1.1 mg/L (Johnson et al. 2009). 

Mean annual nitrate-N concentrations in Kalamazoo watersheds dominated by 

agriculture were much higher than I found in the White Oak Creek sub-catchments 

where they ranged from 0.3 mg/L to 17.5 mg/L (Johnson et al. 2009) compared to 0.13 

mg/L to 0.97 mg/L in my sub-catchments.  Differences in type of agricultural watersheds 

can help to explain the lower nitrate concentrations found in my study.  Johnson et al.’s 

(2009) study focused on row crop agriculture, while my study based agricultural activity 

on pastured farm land, where nitrogen inputs are likely to be less intense.  Another 

reason for lower nitrate in my streams may be stream length differences.  Longer streams 

have the potential to denitrify nitrate resulting in lower concentrations downstream.  

Sub-catchment WOCT9 has the highest proportion of wetland in its watershed yet it had 
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relatively high nitrate concentrations. Mitsch et al. (2005) showed that wetlands can act 

as a beneficial sink for nitrate-N, which can be retained in wetland areas which can be 

used as a buffer zone to reduce agricultural impacts to downstream loading.  Because 

wetlands are water saturated and therefore anaerobic, nitrate-N is reduced and released 

into the atmosphere as nitrous oxide.  Why my subcatchment with the highest proportion 

of wetland did not have significantly lower nitrate-N concentration in its stream is 

unknown.   

Manure from cattle on dairy farms and ranches are also an important source of 

nitrate-N to the soil in the watershed.  Studies have shown that nitrate-N content of the 

total nitrogen found in dairy manure can vary depending on the type of feed or 

vegetation consumed by the cattle (Tomlinson et al. 1996; Chastain and Camberato 

2004).  Dairy manure from South Carolina has been reported to contain between 0.02 

mg/L to 0.1 mg/L NO3
-
 (Chastain and Camberato 2004) which has the potential to be 

transported into adjacent streams or directly deposited into the stream by cattle keeping 

cool or drinking water (Belsky et al. 1999).  Contributions from two permitted dairy 

farm discharges, as well as other cattle in the watershed may be the cause of relatively 

high nitrate-N concentrations in WOCT7 sub-catchment.  

 Discharge and nitrate-N on the main stem of White Oak had a significant 

positive relationship (Table 3).  This suggests that nitrate-N concentrations increase in 

response to storm events and that the hydrological flowpath is likely throughflow 

through the upper organic soil horizons or Hortonion overland flow leaching and 

transporting nitrate-N to the stream.    Additional sources of nitrate-N in a watershed 
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may be due to application of fertilizers for hay production (Randall et al. 1997).  Here 

nitrogen is stored in the soil as a result of dry conditions when crop uptake is reduced; 

nitrate is then flushed out during wetter periods at above normal concentrations.  This 

scenario was unlikely to have occurred in my sub-catchments because of the relatively 

constant precipitation events during my sampling year though may have contributed to 

the nitrate-N during the drier period in late summer.  Over application of fertilizers can 

also lead to a build-up of nitrate-N in the soil where higher concentrations could be 

flushed during one storm event. 

Phosphorus loss to waters from surface runoff and subsurface flow has also been 

related to land management practices and soil properties (Sharpley et al. 2007). Sub-

catchment WOCT7 had the highest annual mean concentration of PO4-P (0.44 mg/L). 

During my sampling year this site was undergoing a significant amount of clear-cutting 

for timber harvest. Undisturbed watersheds typically have low PO4
3-

 concentrations as a 

study on undeveloped stream basins in the U.S revealed; where maximum PO4
3
 

concentrations did not exceed 0.13 mg/L (Clarke et al. 2000).  Timber harvesting 

activities can alter watersheds and initiate erosion processes.  Subsequent runoff from 

disturbed and exposed soils may contain phosphorus-bound soil particles resulting in 

higher concentrations of soluble phosphate-P reaching the stream. Soluble phosphate 

exhibits a very strong negative charge and will typically bind tightly to mineral soil 

adsorption sites (McDowell et al. 2001).  The main path of transport for these particles to 

streams is by overland flow.  McDowell et al. (2001) showed that during storm events in 

a tributary of the Susquehanna River, overland flow can originate from as far as 62 m 
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away from the stream channel; however 90% of overland flow occurs within 30 m of the 

stream channel.  

Higher nitrate-N concentrations coupled with higher soluble phosphate-P 

concentrations at WOCT 7 may also be indicative of farm dairy discharge into the 

tributaries of this watershed as mentioned above.   The positive correlation between PO4-

P and pasture in my study was consistent with a study conducted in Red Hill State 

Forest, Australia which compared pasture and forest catchments (Vink et al. 2007).  

Vink et al. (2007) reported that mean PO4-P concentrations were higher in the pasture 

catchment relative to the forested catchment. A similar observation was reported in 

Dorset, U.K. where orthophosphate was most dominant in pasture soils compared to 

cultivated soils (Ballantine et al. 2009).  Further, research conducted on nutrient delivery 

to surface waters from dairy farms showed that surface applications of manures resulted 

in temporary increases in water soluble P at the soil surface, and therefore increased the 

likelihood of elevated concentrations of soluble P in surface runoff (Knowlton et al. 

2006).  The combination of increasing areas of exposed soil from timber harvest 

disruption, as well as significant percentages of pastured land in the watershed could 

explain the elevated concentrations of orthophosphate in sub-catchment WOCT7. 

Sources of phosphorous in urban watersheds include wastewater effluent and 

fertilizers (LaValle 1975). LaValle (1975) assessed the relationship between stream 

orthophosphate and domestic sources and found that 76% of the variation in stream 

PO4
3- 

concentrations was accounted for by the percentage of households connected to the 

municipal sewer system.  Sub-catchment WOCT2 with the highest percent of urban 
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development was one of the catchments that had significantly higher PO4
3-

 

concentrations with mean 0.2 mg/L and maximum 0.44 mg/L.  Panno et al. (2007) took 

effluent samples from the discharge pipes of on-site residential septic systems in Illinois 

and found PO4
3-

 concentrations ranging from 1.4 to 48 mg/L with mean 9.31 mg/L.  The 

range reported by Panno et al. (2007) is well above that observed in the White Oak 

Creek sub-catchments, but can be recognized as a potential source of PO4
3-

 to streams in 

the subcatchment if septic systems are located in close proximity to stream channels.  

Sewage effluent from moderate urban development was also attributed to higher 

phosphate concentrations ranging from 0.05 mg/L to 0.7 mg/L, in a study by Robson and 

Neal (1997) in a rural U.K. catchment.  Robson and Neal (1997) results are comparative 

to what was observed in WOCT2 with no direct municipal wastewater discharge. 

4.1.3 Cation Concentrations 

Cations in surface waters are typically higher under baseflow conditions 

reflecting the underlying geology of the watershed (Billett et al. 1996). Bedrock has been 

found to largely influence the presence and load of cations in Texas groundwater (Hudak 

1999).  Hudak (1999) reported that sodium concentrations are naturally relatively low in 

northeast Texas groundwater, with sodium ranging from 21 to 100 mg/L in northeast 

Texas counties.   Low flow conditions as a result of lack of major storm events during 

the late summer months of the sampling period resulted in sodium concentrations 

ranging from 11.1 to 81.3 mg/L with a mean dry period concentration of 34.0 mg/L 

(calculated from sample days 5,6,7, and 9) throughout the fifteen sub-catchments.  These 

sodium concentrations reflect concentrations observed in groundwater in this area by 
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Hudak (1999).  Additional contributions of sodium have also been identified in 

reclaimed wastewater effluent (Provin and Pitt 2002).  The Mt. Vernon water treatment 

facility in WOCT8 uses NaOH (caustic soda) as a treatment chemical for potable water, 

thus higher concentrations of sodium in municipal water that reaches the wastewater 

treatment plant upstream of the sampling point at WOCT8 may explain the elevated 

concentrations of sodium relative to the other sub-catchments.  Other factors such as 

diets high in sodium consumption, laundry detergents containing sodium, and the 

addition of sodium hydroxide for potable water treatment are all being recognized as 

contributing to high sodium in effluent discharge (Steele and Aitkenhead-Peterson 2011; 

Steele et al. 2010). 

    N-P-K fertilizer is commonly applied in northeast Texas due to the high 

volume of hay production and pasture management for grazing animals (Northeast Texas 

Farmers COOP 2011).  Fifty-five percent of the land in WOCT7 is used for pasture and 

hay production for dairy farming.  Inputs of potassium into the adjacent streams 

resulting from fertilizer application was also observed at Muddy Creek outside of 

Harrisburg, VA where K
+
 concentrations after application and following a storm event 

increased 5-fold at two different sites from <5 mg/L to 25 mg/L and from 10 mg/L to 50 

mg/L via overland flow (Hyer et al. 2001). Chen and Driscoll (2009) also reported 

higher K
+ 

concentrations in an agricultural watershed (range 2.5 mg/L to 16 mg/L), 

which was similar to the concentrations at WOCT7. Chen and Driscoll (2009) concluded 

that the higher concentrations found in their study were likely due to the combination of 

fertilizers, manure application, mineralization of organic matter and weathering. 



 

 

74 

Another possible contribution of potassium to streams in this particular 

watershed may be a result of the timber harvesting that was occurring during the 

sampling period.  The Hubbard Brook experiment also provides insight into processes of 

timber harvest and potential impacts to surface water quality.  Potassium concentrations 

tripled from 0.3 mg/L to 0.9 mg/L, and peaked at 1.25 mg/L immediately following 

whole tree harvest at the Hubbard Brook experimental forest in New Hampshire 

(Hornbeck and Federer 1975).  Potassium concentrations remained elevated in the 

following 20 years since the initial clear cut.  Because potassium is rarely seen in high 

concentrations in forested watershed streams, this suggests that a prime sink for 

postassium is plant uptake.  Potassium concentrations are exceedingly high in 

throughfall and vegetation in forested watersheds (Likens et al. 1994) and removal of 

vegetation through timber harvest will result in potassium available for runoff. 

Inputs of potassium to sub-catchment WOCT8, which also had high mean annual 

concentrations of potassium were likely due to direct inputs of potassium alum 

[KAl(SO4)2 12H2O] at the Water Treatment Plant.  Potassium alum is commonly used as 

a flocculating agent in the water purification process to remove negatively charged 

colloids (Lenntech 2011).   Potassium and sulfate dissolve in the water and the 

aluminum ion adsorbs the colloids for removal. Potassium and sulfate are subsequently 

cycled through the system to the wastewater treatment plant.  

 Calcium and Magnesium are abundant in natural waters due to the weathering of 

rocks such as limestone (CaCO3), dolomite ([CaCO3]2 and [MgCO3]2), and minerals 

such as calcite and magnesite (CaCO3 and MgCO3).  Mean annual concentrations of 
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calcium and magnesium were positively correlated with urban development, particularly 

medium and high-density development.  Sub-catchment WOCT2 had the highest 

proportion of its watershed under urban development and further had an annual mean 

concentration of 26.48 mg/L of calcium, which was much higher than that recorded in 

Brazil on research studying land use effects on benthic communities (Hepp and Santos 

2008).  In the Hepp and Santos (2008) study a catchment located in an urban watershed 

was measured having calcium concentrations of 8.0 mg/L.  The contribution from 

bedrock geology in the White Oak Creek watershed can help account for elevated 

concentrations of calcium.  Approximately forty-four percent of this sub-catchment is 

underlain by a fine-grained mixed clastic and limestone formation. Urbanization has 

been shown to increase some surface water base cations and decrease others (Steele et al. 

2010).  For example as urbanization increases surface water calcium and magnesium 

decrease and sodium and potassium increase (Steele et al. 2010). There is little 

contribution from sewage effluent to calcium and magnesium concentrations in surface 

waters (Steele et al. 2010) and so contributions of calcium and magnesium in an urban 

watershed may include road dusts, deicing salts and horticultural products.  Therefore, 

calcium and magnesium inputs may largely be attributed to geologic formations and 

weathering in my subcatchments.  Data in the White Oak Creek Watershed for CaCO3, 

is generally much higher than the data gathered by Hudak (1999) for northeast Texas on 

geologic contributions.  Their research found that regional CaCO3 concentrations for the 

area ranged from 0 to 60 mg/L, yet mean annual concentration of CaCO3 for sub-

catchment WOCT7 exceeded this at 104.8 mg/L.  Only one-third of the mean annual 
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surface water CaCO3 concentrations for White Oak Creek sub-catchments are below 60 

mg/L CaCO3, with the lowest mean concentration of 36.9 mg/L. 

4.1.4 Anion Concentrations 

Twenty-four percent of the variation in surface water chloride concentrations is 

explained by urbanization (Steele et al. 2010). Chloride is typically correlated with 

sodium and is a measure of overall salinity.  Sodium and chloride are naturally occurring 

constituents of surface waters with sources including geological weathering, marine 

aerosols, salt water intrusion and atmospheric deposition (Steele et al. 2010).  High 

concentrations of chloride in surface waters can have a detrimental effect on aquatic 

fauna.  Enrichment of chloride in surface waters has been reported in northern states as a 

result of long-term application of de-icing salts (Kaushal et al. 2005) but recent research 

on the Trinity River in Texas, USA reported that chloride loading and exports were 

similar to those reported from northern watersheds even though the use of deicing salts 

was minimal in Texas (Steele and Aitkenhead-Peterson 2011). Greater chloride 

contributions are more commonly observed in the northeast U.S. where road salt 

application runs off into nearby waterways or in areas of greater urban or suburban 

development (Kaushal et al. 2005; Daley et al. 2009).  Elevated chloride concentrations 

in a forested catchment were also observed in a rural watershed in Eastern New York 

throughout the entire year, not strictly during winter road salt application periods and 

concentrations ranged from 16.6 mg/L to 104.7 mg/L at two different tributaries 

(Madden et al. 2007). Research conducted in Oklahoma, with similar geographic and 

land use characteristics as my study sought to determine potential sources of chloride to 
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surface and ground waters where it was determined that sources were likely 

anthropogenic coming from septic waste, wastewater treatment plant effluent, industrial 

waste, animal waste, fertilizer, and produced water from oilfield operations (Mashburn 

and Sughru 2004).  Highest mean annual concentration of chloride (53±16 mg/L) was 

found in WOCT8, which had the City of Mt. Vernon’s waste water treatment facility in 

its headwaters.  Drinking water in this sub-catchment is pre-treated with chloride, likely 

contributing to the elevated concentrations of Cl
-
 found in the tributary.  Even so, 

relatively high mean annual concentrations of chloride were found in sub-catchments 

without wastewater facilities.  These catchments, WOCT6, WOCT7, WOCT14, 

WOCT13, Ripley, Piney, and Lewis (33±8 to 49±16 mg/L) all had forest land cover 

ranging from 14 to 42 percent.  It is difficult to determine exact sources of chloride 

within these watersheds.    Possible contributions may be from septic systems leaching 

chloride derived from household cleaning products to the groundwater and into the 

stream.    Other research has shown that forests may act as a sink for chloride, and 

retention and release may be depend on the availability of oxygen or organic matter 

present (Bastviken et al. 2006).  The exact conditions for chloride retention are still 

unclear, having a single negative charge it was assumed chloride to be a conservative ion 

and it was commonly used as a tracer in the past.  Nevertheless, the surface water 

concentrations of chloride in White Oak Creek sub-catchments are much lower than 

those reported for many watersheds. 

 Natural contributions of fluoride in the watershed can be a result of rock 

weathering and is typically higher in concentration in granitic aquifers (Arveti et al. 
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2011).  Fluoride concentrations in groundwater wells in India where excess fluoride is 

linked to detriments in human health ranged from 0.78 to 5.40 mg/L, much higher than 

the range found in White Oak Creek sub-catchments (0.09±0.06 to 0.4±0.3 mg/L) 

reflecting the difference in bedrock geology. Anthropogenic inputs can also be 

accredited to fertilizer runoff and industrial activities.  Fluoride’s negative correlation 

with cultivated crop activities in the tributaries of White Oak Creek infers that fertilizer 

may not be a contributing factor to surface water quality for this particular ion.  The 

most urbanized sub-catchment (WOCT2) had significantly higher fluoride 

concentrations than the other catchments, and although there is not a wastewater 

treatment facility in this catchment, fluoride is added to the city of Sulphur Spring’s 

drinking water supply at a rate of 0.7 mg/L (Mount Vernon Water Treatment 2011).  

Therefore, it is likely that fluoride may be released through subsequent pathways into the 

groundwater or stream system from lawn irrigation, septic systems, or urban runoff.  

Previous chemical additions to drinking water supply were seen in sub-catchment 

WOCT8, whereas fluoride concentrations are not elevated in this tributary, largely as a 

result of fluoride not being added to this area’s drinking water supply. 

Higher sulfate concentrations in surface waters are typically observed in 

watersheds with mining activities (Davies et al. 2011) and in watersheds where the 

underlying geology contains iron pyrite which is exposed through weathering or road 

cuts (Reinhardt 1999). High sulfate concentrations were also observed in watersheds 

subjected to sulfur deposition during the acid rain era (Norton et al. 1988), and 

watersheds impacted by volcanic eruptions (Ezoe et al. 2002).  While sulfate shows a 
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pattern of increase with urbanization it is not a strong relationship (Steele et al. 2010). 

Previous and ongoing lignite coal surface mining activities in the area are located in the 

south-eastern portion of the watershed.  The primary composition of coal is carbon with 

secondary composites of sulfur, hydrogen, oxygen, and nitrogen.  Overall pH for the 

entire watershed and particularly those sub-catchments (WOCT8, WOCT13, Ripley, and 

Piney) with high sulfate concentrations are well within the acceptable range of pH 

values, therefore acidic mine drainage is not a factor in this study.  Both Ripley and 

Piney sub-catchment headwaters are directly located in what is now reclaimed mine 

land.  Sub-catchment WOCT13 has the second highest percentage of coal formation out 

of the sub-catchments and WOCT8 sub-catchments headwaters are largely dominated by 

coal formation. Therefore, higher sulfate concentrations may largely be a result of rock 

weathering from iron pyrite minerals.  Seventy-three percent of the variance in sulfate 

was explained by sodium in my sub-catchments (R
2
 = 0.73; p < 0.01); sodium sulfate 

occurs naturally from mineral deposits and is likely to be responsible for sulfate 

concentrations in my streams, furthermore it should be noted that the higher surface 

water sulfate concentrations occurred in a region underlain by clastic/coal deposits 

(Figure 2) which likely was the driver of high sulfate. Highest mean annual sulfate 

concentrations from surface waters in reclaimed surface mine land in my watershed were 

lower than those concentrations reported by Helsel (1983) in reclaimed surface mine 

land in Ohio surface waters where concentrations ranged from 301 to 659 mg/L as 

compared to mean concentrations at Piney at 104.4±44.4 mg/L.  Concentrations at Piney 

were still higher however than those reported on un-mined land in the same study in 



 

 

80 

Ohio.  WOCT8 also receives wastewater discharges from a municipal system where 

potassium alum [KAl(SO4)2
 .
 12H2O] is used in the purification process for the local 

water supply (Lenntech 2011). Potassium and sulfate ions are dissolved in the 

purification process and can cycle through the municipal water system and discharged 

into the receiving stream.  

Sulfate and forest cover were significantly and negatively correlated in my study. 

Research conducted by the USDA Forest Service in the Appalachian Mountains in North 

Carolina showed that microbial activity in forested soils is capable of incorporating 

sulfate into soil organic matter through metabolizing sulfate to organic sulfur (Swank et 

al. 1987).  This process can therefore reduce the mobility of the sulfate ion in forested 

soils, and potentially prevent further transport to streams or groundwater. 

Transformation of inorganic sulfate to organic sulfate could explain the weak 

relationship between coal formation and sulfate concentration in WOCT14 which had 

the largest proportion of coal formation in its sub-catchment yet relatively low sulfate 

concentrations in its surface water.  The remaining sub-catchments in White Oak Creek 

Watershed did not have significant, or any, coal formation in the sub-catchments, which 

was reflected in low sulfate concentrations. 

4.1.5. Organic Carbon and Nitrogen Concentrations 

Dissolved organic carbon (DOC) is a continuum of organic molecules that fit 

through a 0.45 µm filter (Thurman 1986) and is therefore not necessarily dissolved, but 

is a range of carbon-based compounds which exhibit a wide range of biodegradability 

(McDowell et al. 2006) and recalcitrance (Johnson et al. 2011) and are fundamental to 
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processes in the global carbon cycle (Cole et al. 2007). Dissolved organic nitrogen 

(DON) typically considered a subset of DOC is a range of carbon molecules that contain 

an amino-group.  Dissolved organic carbon and DON showed similar patterns among the 

sub-catchments studied.  Highest DOC concentrations were found in WOCT7, WOCT3, 

Lewis and Crosstimber and highest DON concentrations were found in the same sub-

catchments plus WOCT8.  Both DOC and DON were negatively correlated with barren 

land and DOC was negatively correlated with deciduous and evergreen forests.  On the 

other hand DOC was positively correlated with low, medium, and high urban 

development, while DON was positively correlated with pastured land.  Sub-catchment 

WOCT8 supported the findings of Aitkenhead-Peterson et al. (2009) where sub-

catchments sampled downstream of a WWTP displayed higher mean concentrations of 

DOC than those sub-catchments without a WWTP.  Sub-catchment WOCT8, sampled 

downstream of a WWTP had significantly higher mean annual DOC concentrations than 

eight of the other sub-catchments in the White Oak Creek watershed, but five sub-

catchments without a WWTP had higher mean concentrations than WOCT8 suggesting 

that wastewater effluent alone cannot explain DOC inputs to surface waters.  There are 

two sources of dissolved organic matter (DOM) to surface waters, allochthonous (from 

the watershed) and autochthonous (within the surface water) with the majority of DOC 

typically derived from allochthonous sources (Aitkenhead-Peterson et al. 2003).  Type of 

land cover has been implicated in high DOC concentrations and exports (Aitkenhead-

Peterson and McDowell 2000) with peatland and wetland typically responsible for 

higher DOC concentrations and exports (Aitkenhead et al. 1999; Malcolm and Durum 
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1976) Wetlands in the White Oak Creek subcatchments ranged from 2.1% in WOCT2 to 

31.2% in WOCT9 yet the surface water DOC concentrations were not significantly 

different between the two watersheds suggesting that in the White Oak Creek wetlands 

do not have much of an impact on surface water DOC concentrations.   Mean annual 

concentrations of DOC which ranged from 6±2 mg/L at WOCT14 to 14.6±.5 mg/L at 

Lewis were lower than those reported for a rural to urban land use gradient in south-

central Texas which ranged from 20.4 to 52.5 mg/L (Aitkenhead-Peterson et al. 2009) 

but higher than those observed in rangeland and urban sub-catchments of the upper 

Trinity River basin, TX which ranged from 5.7 to 6.4 mg/L (Aitkenhead-Peterson and 

Steele 2012).  At a land cover scale, DOC concentrations in humid temperate northern 

mixed forests streams typically range from 2 to 20 mg/L (Clair et al. 1994; Campbell et 

al. 2000) in tropical forest streams from 1.5 to 4.4 mg/L (Lewis et al. 1999; McDowell 

and Asbury 1994) and in Scottish rangeland streams from 1.2 to 10.6 mg/L with the 

major contribution coming from soil carbon deposits stored in peat (Aitkenhead et al. 

1999).  

 Relatively less research has been conducted on streamwater DON relative to that 

conducted on stream DOC over the last three decades.  While DOC and DON are 

generally highly correlated, particularly in relatively undisturbed watersheds (McDowell 

2003) some uncoupling or lack of correlation has been observed over the last decade 

(McDowell 2003). In the White Oak Creek sub-catchments DOC and DON showed a 

significant, strong positive correlation (R = 0.86 p < 0.001) suggesting that the stream 

chemistry is what should be expected in watersheds not severely impacted by 
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anthropogenic activities.  Another indicator of relatively undisturbed watersheds is the 

DON:TDN ratio which is a measure of the relative proportion of organic to inorganic 

nitrogen in surface waters.  In the White Oak Creek sub-catchments the DON:TDN ratio 

ranged from 0.12±11 in WOCT12 which is indicative of high anthropogenic inputs of 

in-organic nitrogen to 0.71±0.15 in Crosstimber which is indicative of a relatively 

undisturbed watershed.  In a study of 348 streams with varying land use and land 

management Pellerin et al. (2006) suggested that DON:TDN ratios < 0.35 indicated 

streams with urban impacts and DON:TDN ratios of > 0.55 indicated forested streams 

with little anthropogenic impact. In the White Oak Creek sub-catchments mean annual 

DON concentrations were significantly and positively correlated with pasture (R = 0.67; 

p = 0.01) and not urban land cover as DOC was.  Those sub-catchments with the highest 

DON concentrations all have >35 % pastured land within their watershed. Pastured land 

is largely grazed by cattle in the northeast region of Texas and sub-catchments (WOCT7, 

WOCT8, WOCT3, Lewis, and Crosstimber) with high proportions of pasture in their 

watershed and high mean annual concentrations of DON are likely a result of the organic 

nitrogen found in manure.  Additionally, both WOCT7 and WOCT8 sub-catchments 

contain dairy farms with permitted discharge that may also be a source of organic 

nitrogen to their surface waters.  Agricultural soils with high DON concentrations were 

observed in a study conducted near the city of Munster, Germany where significant 

correlation was found between DON in soil leachate and agriculture (Siemans and 

Kaupenjohann 2002).  Mean annual DON concentrations in the White Oak Creek sub-

catchments ranged from 0.16±0.10 in WOCT12 to 0.69±0.20 in Crosstimber and these 
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concentrations are typical of those observed globally for undisturbed watersheds.  For 

example, surface water DON concentrations in mixed northern forests range from 0.12 

to 0.37 mg/L (Campbell et al. 2000) and from 0.11 to 0.16 in tropical forest surface 

waters (Lewis and Saunders 1990; McDowell and Asbury 1994).   

4.1.6 Turbidity and Total Suspended Solids 

 Values for turbidity and total suspended solids (TSS) varied widely between the 

sub-catchments and generally high TSS values were also reflected in high turbidity 

values within the same sub-catchment.  Differences in soil properties can usually explain 

any discrepancy, as the size, weight, and refractive properties of the type of suspended 

sediment can vary which will determine the degree of turbidity.  Consistent with 

previous studies (Brisbois et al. 2008; Chua et al. 2009; Vink et al 2007; Sheeder and 

Evans 2004), both turbidity and TSS were positively and significantly correlated with 

pasture land use and negatively correlated with evergreen forest.  Vink et al. (2007) 

examined nutrient and TSS exports from forested and agricultural catchments in 

southeastern Australia and found TSS concentrations for pastured land significantly 

higher than those of forested land at 148 mg/L and 29 mg/L, respectively.  Similarly, 

WOCT8 had the highest percentage of pasture (66%), and had the highest mean annual 

TSS concentrations at 128±105.5 mg/L and WOCT14 with the highest forest land cover 

(43%) had one of the lowest mean annual TSS concentrations at 61±16.8 mg/L. Cattle 

manure from dairy farms or other pastures in the sub-catchment may play a critical role 

in the elevated TSS concentrations.  Soupir et al. (2006), observed in their study in 

Virginia, USA on the effects of P-based manure application on TSS and nutrient 
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transport on pasture land that TSS concentrations from plots treated with cowpies 

(preserved cattle manure) were significantly higher than the control due to the 

breakdown of the cowpies from the rainfall impact.  TSS concentrations in the runoff 

from cowpie plots ranged from 72 to 189 mg/L, producing the highest TSS 

concentration out of liquid dairy slurry, turkey litter, and the control plot.  Additionally, 

it is not uncommon for cattle grazing on pasture land to have direct access to streams for 

their water source (Belsky et al.1999).  As a result, fecal matter is directly deposited into 

the stream along with eroded sediment from stream bank disturbance, and increased 

sediment transport from overland flow in the near stream area where compaction from 

cattle access has reduced soil infiltration capacity in the riparian zone (Belsky et al. 

1999).  

 

4.2 Land Use and Land Management Effects on Surface Water Chemistry 

Stream chemistry, a result of biogeochemical cycling in small watersheds was 

described by Likens and Borman (1974) as geological, meteorological and biological 

vectors.  Their descriptors loosely follow Jenny’s (1941) descriptors of soil forming 

factors which are time, climate, geology, biology and topography.  In 2005 Aitkenhead-

Peterson et al. suggested these same factors could be used to describe DOC in surface 

waters and adopting this analogy, Perakis and Hedin (2007) coined the term “State 

Factors” to describe the components that were most important to describe chemical 

constituents in surface waters.    Therefore comparison of land use and land management 

practices and their impacts to surface water chemistry can be difficult given differences 
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in other state factors such as geology, topography and climate, but comparison is 

valuable for providing a basis for observations among different watersheds in different 

climatic zones.  The benefit of my study which examined 15 sub-catchments underlain 

by a similar geology and climatic zone meant that the effect of land cover, land use and 

land management practices could be observed  readily without the implications of 

different geology and climate which might be responsible for differences observed in 

similar land uses reported in other studies. Overall my study indicated that there are 

significant differences among the sub-catchments as a result of different land uses and 

land management practices, and that these differences are generally aligned to similar 

studies addressing land use and surface water chemistry (e.g. Lenat and Crawford 1993; 

Goolsby et al. 2001).   

Urbanization in watershed studies has gained much attention over the last decade 

(Williams et al. 2005; Lewis et al. 2007; Sickman et al. 2007; Aitkenhead-Peterson et al. 

2009; Petrone 2010; Steele et al. 2010; Aitkenhead-Peterson et al. 2011; Paul & Meyer 

2001).  In my study, urban land use resulted in significant correlations with salinity 

(quantified as electrical conductivity), ammonium-N, calcium, magnesium and DOC.  

Ammonium-N in the Chicago area had mean annual concentrations of 0.2 mg/L 

(Goolsby et al. 2001), which was slightly lower than observed in my most urbanized 

sub-catchment. Salinity was associated with increased urbanization in North Carolina 

when compared to watersheds dominated by forest and agriculture with concentrations 

of 85 µS/cm in urban watersheds compared to values of 60 and 65 µS/cm in forested and 

agricultural watersheds (Lenat and Crawford 1993).  Electrical conductivity (EC) was 



 

 

87 

much lower in the North Carolina watersheds compared to my observed EC which 

ranged from 146±64 to 638±198 µS/cm.  Lewis et al. (2007) also reported lower EC 

values for urban sub-catchments in the Big Brushy Creek watershed in South Carolina 

with values ranging from 65 to 80 µS/cm and values ranging from 55 to 60 µS/cm in 

rural sub-catchments.  While EC was clearly higher in urban relative to rural sub-

catchments, the difference between surface water EC in South Carolina watersheds and 

White Oak Creek clearly illustrates how other state factors such as the geology 

underlying a sub-catchment might compromise ones interpretation. .  

Dissolved organic carbon concentrations can be highly variable with land use, 

while my study found that DOC is positively correlated to urban land use, supporting 

studies by Aitkenhead-Peterson et al. (2009), research by Molinero and Burke (2009) 

found positive correlations between DOC and pasture land which they attributed to 

agricultural practices which enriched organic matter in the near stream area.  

Increases in forested land cover resulted in decreases in surface water nitrate-N, 

orthophosphate-P, sulfate, DOC, TSS and turbidity. In contrast to my findings, other 

studies reported a positive correlation between DOC and forest land cover in a Michigan 

watershed (Molinero and Burke 2009) and in a forested catchment in south eastern 

Australia (Vink et al. 2007). Both studies accredited the addition of leaf litter to nearby 

streams for the higher DOC concentrations observed.  Decreases observed in nitrate-N, 

soluble phosphate-P, and sulfate in surfaces waters with a high proportion of forest cover 

may be a result of attenuation in forest soils as indicated by Ranalli and Macalady (2010) 

and Swank et al. (1987) where nitrate and sulfate concentrations were significantly 
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reduced in riparian and forested areas through plant/vegetation uptake and 

immobilization or transformation by microorganisms. Both sulfate and nitrate can serve 

as electron acceptors under anaerobic conditions found in riparian soils. My observation 

of declining orthophosphate-P with increased forest cover supports other land use 

catchment studies which report negative correlations between orthophosphate and forest 

cover and positive correlations between orthophosphate and agricultural land use 

(Nimiroski et al. 2008; Sussman 1983; Chen and Driscoll 2009).  

The affect of agricultural land use in a watershed will depend upon the type of 

agriculture (crop or husbandry) and best management practices in operation to reduce 

runoff to surface waters.  Land used for pasture showed a significant positive correlation 

with surface water orthophosphate-P in my study supporting findings of other 

researchers (Vink et al. 2007; Ballantine et al. 2009; Knowlton et al. 2006). Pastures also 

showed positive correlations with DON, TSS and turbidity and a negative correlation 

with the DON:TDN ratio.  DON had a positive correlation to pasture and grazed cattle 

land relative to other land uses in a Georgia Piedmont watershed with DON 

concentration for the pastured land ranging from 0.22 to 0.84 mg/L (Molinero and Burke 

2009).  TSS and turbidity concentrations were also linked to pastures in agricultural land 

use studies (Brisbois et al. 2008; Vink et al. 2007). 

Overall land management practices in the White Oak Creek watershed reflect 

what has been observed in other studies researching urban, agricultural, and forested 

land uses.  Results from my study are valuable in that they provide a comparison for 

other regions with similar land uses. Nutrient concentrations from my study can be used 
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to further determine areas of excessive nutrient concentrations relative to those observed 

in other regions and seek better alternatives for land best management practices.  

 

4.3 Exports of Nutrients in a Rangeland Watershed 

There is relatively little up to date information on loads and exports of DOC, 

DON, anions and cations from sub-tropical rangelands.  Most interest in DOC and DON 

exports has centered around forested and peatland watersheds (Clair et al. 1994; 

Kortelainen et al. 1997; Aitkenhead-Peterson et al. 2005; Aitkenhead-Peterson et al. 

2007) because of the perceived loss of sequestered carbon in watershed soils and more 

recently because of observations in long-term data of increasing DOC concentrations 

and exports over the last two decades attributed to land use change, climate change, 

recovery from acid deposition (Evans et al. 2002; Freeman et al. 2001; Tranvik and 

Jansson 2002; Worrall et al. 2003; Hongve et al. 2004; Tetzlaff et al. 2007; Garnett et al. 

2000; Clark et al. 2005; Sucker and Krause 2011). Loads and exports of chloride and 

sodium have become important recently in northern watersheds because of the deicing 

salt issue (Kaushal et al. 2005; Daley et al. 2009). To counter this trend, Aitkenhead-

Peterson and Steele (2012) have reported on sub-tropical exports of DOC, DON and 

DIN from urban and rural watersheds and examined sodium and chloride loadings in 

sub-tropical watersheds not impacted with deicing salts (Steele and Aitkenhead-Peterson 

2011).  Cation exports, with the exception of sodium and exports of anions with the 

exception of chloride and sulfate are rarely reported.   
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There are several methods to calculate daily loads and annual exports of 

chemical constituents.  In my study I used two typically used methods, the first was 

linear interpolation of concentrations between sampling dates followed by multiplying 

daily concentration (mg/L) by average daily export reported for the gauge (L/sec) and 

multiplying by seconds in a day results in a daily load of chemical constituent, which 

when summed and divided by watershed area results in annual export per unit area.  The 

second method relies on a relatively strong and significant relationship with discharge 

and is described in detail in Aitkenhead-Peterson et al. (2005, 2007).  In my study I used 

both methods and report best estimates of exports. It is important to examine loading and 

exports because White Oak Creek joins the Sulphur River near Texarkana, TX and then 

flows into Wright Patman Lake impoundment as Texarkana’s drinking water supply.  

Water from Wright Patman Lake is released into the Red River in Louisiana and finally 

flows into the Mississippi River where it is deposited into the Gulf of Mexico.  Goolsby 

et al. (2001) and Alexander et al. (2004) have examined the increases of nutrient loads to 

the Gulf of Mexico that have led to conditions of hypoxia spanning an area of 6,765 mi
2
 

along the gulf (USEPA 2011).  Exports of chemical constituents from White Oak Creek 

were compared to exports reported in the literature for forested and pasture watersheds.    

Studies showed a range of export values for nitrogen in forested watersheds.  

Ammonium-N exports ranged from 0.61 to 39.0 kg/km
2
/yr in forested watersheds (Chen 

and Driscoll 2009; Lewis et al. 1999; Vink et al. 2007) which suggests that ammonium-

N exports in White Oak Creek at 4.7 kg/km
2
/yr are relatively low compared to other 

studies.  Nitrate-N in forested watersheds ranged from 15 to 243   kg/km
2
/yr (Chen and 



 

 

91 

Driscoll 2009; Lewis et al. 1999; Vink et al. 2007) and compared to my estimated export 

of nitrate-N of 54.4 kg/km
2
/yr suggests that loss of nitrate-N from White Oak Creek is 

not a major issue.  Typically older forests do not utilize soil nitrate as well as younger 

forests and it is typical to observe higher nitrate export from older forests relative to 

younger forests.  Land management practices such as strip and clear-cutting for timber 

harvest also have an effect on increasing nitrate export because of soil aeration and 

increased precipitation reaching watershed soils resulting in higher runoff.  Watersheds 

with pasture as the dominant land use have fewer reports of inorganic-N exports.  Vink 

et al. (2007) reported ammonium-N exports of 1.6 kg/km
2
/yr and nitrate-N exports of 3.4 

kg/km
2
/y in a pastured watershed in south-eastern Australia which were much lower 

than my exports.  My watershed had almost 55% of its land use under pasture and this 

comparison suggests that management practices should be put into place to mitigate 

enhanced ammonium-N and nitrate-N export from White Oak Creek watershed.  Where 

nitrate-N was the dominant N species exported from White Oak Creek, DON was the 

next exporting 17 kg/km
2
/yr.  The literature on DON export from agricultural watersheds 

is relatively sparse.  Van Kessel et al. (2009) suggested that DON exports from 

agricultural watersheds are largely ignored despite the effect they have on eutrophication 

and acidification of surface waters.  Van Kessel et al. (2009) reported exports ranging 

from 3.5 to 4.3 kg/km
2
/yr from watersheds dominated by pasture, fertilized with 

inorganic-N in Northern Ireland. Exports of DON in White Oak Creek were almost 5 

times higher than those observed in Northern Ireland and suggests that perhaps land 

management practices such as restricted access to cattle to surface water and rotational 
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grazing may help reduce DON exports at White Oak Creek.  Another factor of course is 

climatic differences, higher temperatures and lower precipitation in sub-tropical 

ecosystems result likely result in higher microbial activity which releases more DON in 

the dissolved form. A second theory, though not tested, is that increased pH in watershed 

soils may solubilize DON more readily than watersheds with a lower pH expected in 

Northern Ireland.    Export of phosphate-P from watersheds dominated by pasture is 

relatively low at 0.95 kg/km
2
/yr in Australia (Vink et al. 2007).   Export from White Oak 

Creek was over three times higher at 3.2 kg/km
2
/yr.  The combination of organic 

nitrogen from manure and annual fertilizer additions to pastures in my study watershed 

may explain the higher exports than those observed in the study in Australia where 

pastures were reported as unfertilized. 

Similar to other exports, little has been reported for dissolved organic carbon 

from pastures (Vink et al. 2007).  The export at White Oak Creek was 371 kg/km
2
/yr 

slightly lower than the 577 kg/km
2
/yr reported by Vink et al. (2007). Dissolved organic 

carbon concentrations and exports have been shown to be driven by allochthonous 

exports such as soil and litter (Aitkenhead-Peterson et al. 2003).  .   

 Many of the study sites examined for cation export are reported from watersheds 

in the north where deicing salts are applied and are dominated by forest land use.  Chen 

and Driscoll (2009) reported estimated cation exports assuming 100% agricultural land 

cover of 48,000 calcium kg/km
2
/yr, 12,500 magnesium kg/km

2
/yr and 2, 400 potassium 

values that were about two orders of magnitude higher than I found at White Oak Creek.  

Bear in mind that their estimates are just estimates, and I feel do not describe realistic 
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cation exports from watersheds underlain by shales and sandstones.  Similar to cation 

exports from sub-tropical rangeland, no reasonable estimates have been published for 

exports of chloride and sulfate.  Chen and Driscoll (2009) estimated that watersheds 

underlain by shale and sandstone and having 100% agriculture would export 25,000 

kg/km
2
/yr sulfate and did not estimate export of chloride.  Sulfate export estimates by 

Chen and Driscoll (2009) were an order of magnitude greater than the exports observed 

at White Oak Creek (1916 kg/km
2
/yr). Jeje (2006) reported that TSS exports from 

watersheds with pasture as the dominant land use was 51,450 kg/km
2
/yr again an order 

of magnitude higher than observed at White Oak Creek.  
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5. CONCLUSION 

5.1 Limitations of Study 

 There were several limitations to this study that prevented a more comprehensive 

assessment of stream chemistry and land use within the White Oak Creek Watershed.  

Low flow conditions during summer months prevented sampling at certain sites, limiting 

the data available.  Transport of biological oxygen demand samples from the site to the 

laboratory may have caused some disturbance in dissolved oxygen saturation, preventing 

observation of more significant findings for this parameter.  

 

5.2 Conclusion 

 This study has highlighted several important water quality management issues 

for rural watersheds. Additionally, this study advanced the knowledge of mean annual 

concentrations and exports of nutrients in a south-central, sub-tropical rangeland 

ecosystem. Overall, the data from this study suggests that a rural, dominantly pastured 

watershed does not lead to excessive nutrient concentrations in adjacent stream waters.    

Specifically, when compared to other research on land use activities and land 

management impacts to surface water chemistry, I found that: 

 Nitrate-N concentrations in my forested and urban catchments were 

comparable to those found in other studies, while agricultural, pastured land 

use in my watershed were lower than those reported by other studies on 

agricultural catchments, and much lower than those reported with dominant 

row crop agriculture.  
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 Concentrations of orthophosphate-P in my watershed were comparable to 

other watershed studies with effluent inputs and fertilized pastured land.   

 Cation concentrations in my watershed were found to be typical of what you 

would expect in this region of Texas, with natural sources such as bedrock 

geology providing the dominant inputs. 

 Chloride and fluoride concentrations were observed to be lower than what 

has been observed in many other watersheds.  While sulfate concentrations 

were observed to be higher than un-mined watersheds, but lower than those 

concentrations reported for abandoned and previously mined land. 

 Dissolved organic carbon concentrations were lower than those reported in 

areas of south central Texas, but slightly higher than what has been reported 

for other areas in northeast Texas.  Dissolved organic nitrogen 

concentrations were largely comparable to what has been reported for 

undisturbed watersheds globally. 

 Total suspended solids and turbidity concentrations were observed to be 

comparable to other studies, and also showed consistency with other studies 

with higher concentrations reported in pastured land, and lower 

concentrations in forested land. 
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APPENDICES 

 

Appendix 1.  Raw data for sub-catchments pH, electrical conductivity (µS/cm) and nutrients (mg/L) 

Date NAWA ID Sample ID Creek # pH EC NH4-N NO3-N PO4-P CaCO3 

     µS/cm mg/L 

4/5/2010 3372 Crosstimber 1 7.31 580 0.07 0.10 0.02 105 

5/17/2010 3423 Crosstimber 1 7.56 170 0.10 0.49 0.05 56 

6/2/2010 3502 Crosstimber 1 7.10 160 0.13 0.29 0.06 92 

6/24/2010 3562 Crosstimber 1 7.60 102 0.09 0.39 0.05 66 

7/23/2010 3593 Crosstimber 1 7.10 150 0.13 0.14 0.03 54 

9/26/2010 3661 Crosstimber 1 7.50 130 0.09 0.20 0.08 35 

10/30/2010  Crosstimber 1 7.00 190 0.05 0.06 0.02 77 

1/19/2011 4249 Crosstimber 1 7.60 170 0.08 0.05 0.19 55 

2/19/2011 4373 Crosstimber 1 6.40 130 0.08 0.06 0.17 72 

3/25/2011 4456 Crosstimber 1 7.30 210 0.10 0.09 0.08 103 

4/5/2010 3374 Lewis 2 7.11 450 0.17 0.12 0.03 39 

5/17/2010 3424 Lewis 2 7.20 185 0.19 0.34 0.13 35 

6/2/2010 3503 Lewis 2 6.90 409 0.28 0.29 0.02 71 

6/24/2010 3558 Lewis 2 7.10 310 0.18 0.16 0.02 67 

7/23/2010 3595 Lewis 2 7.20 300 0.27 0.13 0.03 56 

1/19/2011 4254 Lewis 2 6.90 250 0.07 0.05 0.06 45 

3/25/2011 4460 Lewis 2 6.60 230 0.11 0.10 0.06 66 

4/5/2010 3373 Piney 3 7.17 740 0.06 0.05 0.03 43 

5/17/2010 3422 Piney 3 7.34 587 0.16 0.11 0.04 41 

6/2/2010 3504 Piney 3 7.30 160 0.21 0.15 0.01 55 

6/24/2010 3552 Piney 3 7.60 297 0.08 0.10 0.02 45 

7/23/2010 3596 Piney 3 7.10 300 0.09 0.34 0.03 50 

10/9/2010 3689 Piney 3 7.30 540 0.08 0.09 0.03 125 

10/30/2010 3719 Piney 3 7.30 450 0.04 0.06 0.18 34 

12/11/2010 4189 Piney 3 7.20 410 0.06 0.07 0.02 51 
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1/19/2011 4255 Piney 3 7.60 350 0.09 0.19 0.03 35 

2/19/2011 4366 Piney 3 7.00 660 0.08 0.10 0.04 56 

3/25/2011 4465 Piney 3 6.70 710 0.08 0.08 0.02 75 

6/2/2010 3505 Ripley 4 7.10  0.16 0.26 0.02 56 

6/24/2010 3550 Ripley 4 6.90 620 0.13 0.24 0.02 44 

7/23/2010 3594 Ripley 4 7.30 660 0.13 0.14 0.02 60 

9/26/2010 3660 Ripley 4 7.40 490 0.12 0.12 0.03 47 

10/9/2010 3680 Ripley 4 7.20 470 0.07 0.12 0.04 119 

10/30/2010 3717 Ripley 4 7.40 250 0.06 0.18 0.07 54 

12/11/2010 4176 Ripley 4 7.50 360 0.08 0.06 0.04 255 

1/19/2011 4260 Ripley 4 7.40 290 0.07 0.18 0.09 48 

3/25/2011 4461 Ripley 4 7.50 580 0.09 0.09 0.03 82 

4/5/2010 3361 WOCT1 8 7.10 430 0.17 0.18 0.07 62 

5/17/2010 3408 WOCT1 8 7.07 356 0.15 0.49 0.06 57 

6/24/2010 3554 WOCT1 8 7.10 175 0.10 0.21 0.06 45 

6/2/2010 3491 WOCT1 8 7.50 244 0.07 0.36 0.07 29 

7/23/2010 3601 WOCT1 8 6.80 150 0.15 0.23 0.05 40 

9/26/2010 3662 WOCT1 8 7.20 160 0.12 0.12 0.05 45 

10/9/2010 3685 WOCT1 8 7.20 150 0.14 0.17 0.04 65 

10/30/2010 3714 WOCT1 8 6.70 150 0.11 0.11 0.17 33 

12/11/2010 4175 WOCT1 8 7.10 180 0.04 0.05 0.04 489 

1/19/2011 4246 WOCT1 8 8.20 170 0.07 0.14 0.05 81 

2/19/2010 4370 WOCT1 8 7.30 200 0.06 0.06 0.05 90 

3/25/2010 4458 WOCT1 8 6.90 260 0.09 0.09 0.05 106 

5/17/2010 3415 WOCT10 9 7.20  0.26 0.21 0.03 57 

6/2/2010 3498 WOCT10 9 6.80  0.12 0.15 0.01 45 

6/24/2010 3547 WOCT10 9 6.90 228 0.19 0.21 0.01 28 

7/23/2010 3591 WOCT10 9 6.90 190 0.11 0.22 0.01 42 

9/26/2010 3667 WOCT10 9 7.40 140 0.10 0.35 0.37 50 

10/30/2010 3710 WOCT10 9 6.50 90 0.04 0.06 0.08 27 

1/19/2011 4253 WOCT10 9 6.90 80 0.07 0.12 0.02 9 

5/17/2010 3416 WOCT12 10 7.47 248 0.12 0.85 0.07 36 

6/2/2010 3499 WOCT12 10 7.30 227 0.13 0.65 0.04 38 
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6/24/2010 3564 WOCT12 10 6.90 283 0.11 0.59 0.05 49 

7/23/2010 3603 WOCT12 10 6.90 210 0.08 0.49 0.03 31 

9/26/2010 3670 WOCT12 10 7.00 160 0.08 0.17 0.10 20 

10/9/2010 3681 WOCT12 10 7.00 170 0.13 0.26 0.04 40 

10/30/2010 3716 WOCT12 10 6.90 240 0.05 0.24 0.07 54 

12/11/2010 4178 WOCT12 10 6.80 200 0.07 0.35 0.02 190 

1/19/2011 4259 WOCT12 10 7.10 330 0.08 0.46 0.02 16 

2/19/2010 4368 WOCT12 10 6.70 330 0.07 0.24 0.02 26 

3/25/2010 4464 WOCT12 10 6.80 360 0.16 0.12 0.03 40 

4/5/2010 3364 WOCT13 11 7.21 520 0.19 0.09 0.03 45 

5/17/2010 3417 WOCT13 11 6.82 1124 0.17 0.36 0.02 37 

6/2/2010 3500 WOCT13 11 7.20 828 0.18 0.21 0.03 60 

6/24/2010 3548 WOCT13 11 6.90 470 0.16 0.16 0.03 8 

7/23/2010 3589 WOCT13 11 7.10 590 0.22 0.13 0.03 63 

9/26/2010 3669 WOCT13 11 7.20 720 0.18 0.10 0.09 79 

10/9/2010 3682 WOCT13 11 7.10 750 0.18 0.10 0.08 108 

10/30/2010 3711 WOCT13 11 7.00 520 0.07 0.06 0.05 48 

12/11/2010 4183 WOCT13 11 7.20 430 0.04 0.05 0.04 107 

1/19/2011 4258 WOCT13 11 7.10 450 0.07 0.12 0.02 28 

2/19/2010 4369 WOCT13 11 6.60 590 0.05 0.06 0.01 35 

3/25/2010 4466 WOCT13 11 6.70 660 0.07 0.07 0.03 67 

5/17/2010 3418 WOCT14 12 7.14  0.10 0.32 0.02 68 

6/2/2010 3501 WOCT14 12 7.30 850 0.09 0.32 0.02 72 

6/24/2010 3559 WOCT14 12 7.20 372 0.09 0.39 0.04 77 

7/23/2010 3600 WOCT14 12 7.20 370 0.10 0.21 0.03 66 

9/26/2010 3666 WOCT14 12 7.30 340 0.07 0.11 0.04 54 

10/9/2010 3691 WOCT14 12 7.20 210 0.07 0.16 0.04 64 

10/30/2010 3704 WOCT14 12 7.00 220 0.06 0.14 0.05 44 

12/11/2010 4180 WOCT14 12 7.20 330 0.05 0.35 0.05 66 

1/19/2011 4257 WOCT14 12 7.50 310 0.14 0.32 0.06 34 

2/19/2010 4376 WOCT14 12 7.10 480 0.06 0.19 0.02 65 

3/25/2010 4453 WOCT14 12 7.10 510 0.11 0.11 0.03 92 

4/5/2010 3362 WOCT3 13 7.58 450 0.19 0.25 0.02 82 
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5/17/2010 3410 WOCT3 13 7.65  0.18 0.32 0.05 89 

6/2/2010 3493 WOCT3 13 7.00 320 0.12 0.18 0.04 85 

6/24/2010 3557 WOCT3 13 7.50 450 0.07 0.08 0.02 109 

7/23/2010 3597 WOCT3 13 7.10 310 0.13 0.07 0.05 100 

9/26/2010 3664 WOCT3 13 7.40 240 0.18 0.17 0.16 70 

10/9/2010 3687 WOCT3 13 7.20 290 0.09 0.09 0.03 133 

10/30/2010 3715 WOCT3 13 6.80 120 0.17 1.32 0.09 35 

12/11/2010 4187 WOCT3 13 7.10 200 0.06 0.05 0.08 62 

1/19/2011 4248 WOCT3 13 7.50 140 0.08 0.17 0.07 115 

2/19/2010 4379 WOCT3 13 6.60 140 0.08 0.17 0.09 72 

4/5/2010 3363 WOCT6 14 7.21 670 0.24 0.06 0.01 70 

5/17/2010 3411 WOCT6 14 7.27 417 0.22 0.11 0.03 83 

6/2/2010 3494 WOCT6 14 7.10 410 0.16 0.49 0.01 93 

6/24/2010 3551 WOCT6 14 7.40 569 0.07 0.06 0.01 59 

7/23/2010 3598 WOCT6 14 7.20 350 0.15 0.04 0.01 98 

9/26/2010 3664/3659 WOCT6 14 7.50 300 0.12 0.12 0.02 69 

10/9/2010 3688 WOCT6 14 7.50 320 0.47 0.09 0.04 131 

10/30/2010 3708 WOCT6 14 7.20 290 0.12 0.06 0.03 87 

12/11/2010 4179 WOCT6 14 7.20 350 0.07 0.23 0.06 68 

1/19/2011 4250 WOCT6 14 7.60 170 0.08 0.08 0.05 50 

2/19/2010 4374 WOCT6 14 6.50 120 0.08 0.06 0.06 62 

3/25/2010 4452 WOCT6 14 6.70 220 0.13 0.13 0.05 77 

5/17/2010 3412 WOCT7 15 7.20  0.17 1.06 2.06 38 

6/2/2010 3495 WOCT7 15 7.30 540 0.10 0.49 0.14 71 

6/24/2010 3556 WOCT7 15 7.50 423 0.12 0.27 0.20 98 

7/23/2010 3604 WOCT7 15 7.40 500 0.10 0.19 0.22 106 

12/11/2010 4177 WOCT7 15 7.20 380 0.05 0.06 0.11 229 

2/19/2010 4373 WOCT7 15 6.80 460 0.17 1.26 0.26 69 

3/25/2010 4459 WOCT7 15 7.40 580 0.26 0.22 0.07 122 

5/17/2010 3413 WOCT8 16 7.03  0.17 0.73 0.09 63 

6/2/2010 3496 WOCT8 16 7.10 700 0.12 0.28 0.09 127 

6/24/2010 3549 WOCT8 16 7.10 747 0.12 0.22 0.04 60 

7/23/2010 3590 WOCT8 16 7.20 760 0.15 0.16 0.05 77 
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9/26/2010 3665 WOCT8 16 7.80 830 0.36 0.12 0.09 124 

10/9/2010 3684 WOCT8 16 7.40 810 0.17 0.31 0.09 149 

10/30/2010 3713 WOCT8 16 7.10 320 0.08 0.17 0.07 46 

12/11/2010 4184 WOCT8 16 7.20 490 0.06 0.05 0.07 67 

1/19/2011 4251 WOCT8 16 7.50 270 0.31 1.03 0.17 34 

2/19/2010 4372 WOCT8 16 7.40 470 0.12 0.83 0.12 82 

3/25/2010 4463 WOCT8 16 7.30 660 0.10 0.08 0.09 106 

5/17/2010 3414 WOCT9 17 7.35  0.17 0.23 0.08 74 

6/2/2010 3497 WOCT9 17 7.00 210 0.08 0.11 0.04 61 

6/24/2010 3553 WOCT9 17 7.80 469 0.07 0.36 0.05 59 

7/23/2010 3599 WOCT9 17 6.90 350 0.10 0.07 0.03 74 

9/26/2010 3657 WOCT9 17 8.00 610 0.11 1.03 0.27 107 

10/30/2010 3712 WOCT9 17 7.30 170 0.07 0.58 0.22 38 

12/11/2010 4188 WOCT9 17 7.50 610 0.06 1.81 0.32 97 

1/19/2011 4252 WOCT9 17 7.70 290 0.28 1.13 0.30 73 

2/19/2010 4365 WOCT9 17 7.30 340 0.10 0.89 0.20 87 

3/25/2010 4462 WOCT9 17 6.80 390 0.12 0.14 0.10 98 

5/17/2010 3409 WOCT2 18 6.98  1.01 2.24 0.31 77 

6/2/2010 3492 WOCT2 18 7.10 110 0.09 0.32 0.06 26 

6/24/2010 3563 WOCT2 18 7.40  0.06 0.07 0.21 123 

9/26/2010 3658 WOCT2 18 7.40 160 0.51 1.51 0.32 30 

10/30/2010 3705 WOCT2 18 7.10 240 0.09 0.45 0.19 72 

12/11/2010 4186 WOCT2 18 7.20 310 0.12 0.26 0.13 50 

1/19/2011 4247 WOCT2 18 7.70 220 0.55 1.58 0.44 67 

2/19/2010 4367 WOCT2 18 7.20 630 0.11 2.21 0.12 119 

3/25/2010 4455 WOCT2 18 6.90 720 0.27 0.12 0.14 152 
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Appendix 2 Raw data for subcatchment cations and anions. 

Date NAWA ID Sample ID Creek # Na
+ 

K
+ 

Mg
2+ 

Ca
2+ 

F
- 

Cl
- 

NO3
- 

SO4
2- 

    mg/L 

4/5/2010 3372 Crosstimber 1 20.02 6.45 14.98 24.10 0.19 27.18 1.67 54.30 

5/17/2010 3423 Crosstimber 1 11.71 4.44 7.30 15.56 0.17 13.11 1.52 17.68 

6/2/2010 3502 Crosstimber 1 35.95 4.11 4.44 10.47 0.25 16.95 0.78 15.24 

6/24/2010 3562 Crosstimber 1 22.39 4.45 4.91 11.96 0.27 14.18 0.68 13.23 

7/23/2010 3593 Crosstimber 1 11.11 4.60 5.49 13.07 0.23 9.10 4.14 7.81 

9/26/2010 3661 Crosstimber 1 23.41 1.74 2.30 7.94 0.12 10.20 0.21 14.29 

10/30/2010  Crosstimber 1 18.52 7.01 6.64 15.61 0.21 9.16 5.55 9.01 

1/19/2011 4249 Crosstimber 1 9.15 7.18 6.06 15.64 0.00 6.49 0.50 16.32 

2/19/2011 4373 Crosstimber 1 21.32 4.74 4.39 11.73 0.27 11.32 1.93 12.66 

3/25/2011 4456 Crosstimber 1 12.38 6.46 8.15 22.61 0.25 12.65 0.12 13.63 

4/5/2010 3374 Lewis 2 33.33 5.74 6.74 13.75 0.09 45.02 0.32 50.37 

5/17/2010 3424 Lewis 2 19.57 4.39 4.31 11.55 0.05 26.30 1.28 23.81 

6/2/2010 3503 Lewis 2 32.17 4.36 8.60 21.79 0.17 39.24 0.84 46.64 

6/24/2010 3558 Lewis 2 37.07 4.17 6.97 19.32 0.18 33.88 0.47 38.28 

7/23/2010 3595 Lewis 2 28.93 5.39 7.85 21.14 0.10 32.32 4.51 34.24 

1/19/2011 4254 Lewis 2 22.17 6.80 4.83 12.77 0.02 20.10 3.58 18.40 

3/25/2011 4460 Lewis 2 26.60 5.16 6.21 18.63 0.20 37.58 0.14 22.02 

4/5/2010 3373 Piney 3 44.09 6.63 14.52 22.42 0.17 47.48 1.05 128.13 

5/17/2010 3422 Piney 3 64.17 5.33 15.15 28.22 0.25 61.26 1.94 152.43 

6/2/2010 3504 Piney 3 60.20 5.47 16.00 27.37 0.27 61.54 0.42 141.98 

6/24/2010 3552 Piney 3 26.70 3.04 5.47 14.31 0.20 20.20 0.13 36.47 

7/23/2010 3596 Piney 3 22.60 5.08 7.50 18.49 0.20 22.64 4.30 44.78 

10/9/2010 3689 Piney 3 53.04 4.53 7.48 11.56 0.24 38.31  73.33 

10/30/2010 3719 Piney 3 44.84 5.65 9.88 21.55 0.14 28.25 17.83  

12/11/2010 4189 Piney 3 42.59 7.10 10.40 19.96 0.09 31.03 3.76 98.19 

1/19/2011 4255 Piney 3 24.25 7.02 10.08 24.39 0.04 29.49 2.38 81.09 

2/19/2011 4366 Piney 3 50.76 3.81 13.39 27.81 0.15 40.46 2.83 125.93 

3/25/2011 4465 Piney 3 62.52 5.86 19.65 43.21 0.24 61.47 3.93 161.65 
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6/2/2010 3505 Ripley 4 57.46 6.38 14.04 22.07 0.24 61.36 1.11 126.18 

6/24/2010 3550 Ripley 4 50.54 6.17 12.44 25.25 0.17 50.09 0.55 112.16 

7/23/2010 3594 Ripley 4 62.68 7.05 13.52 25.86 0.08 61.50 4.23 108.75 

9/26/2010 3660 Ripley 4 29.91 2.74 4.25 11.81 0.13 18.81 0.13 56.82 

10/9/2010 3680 Ripley 4 54.72 3.97 6.73 14.23 0.11 36.87 0.09 80.14 

10/30/2010 3717 Ripley 4 43.01 7.16 6.26 14.27 0.15 24.53 24.50 48.77 

12/11/2010 4176 Ripley 4 40.29 7.23 8.39 17.58 0.06 41.24 3.32 55.10 

1/19/2011 4260 Ripley 4 28.58 7.22 6.33 14.51 0.14 26.51 3.66 41.84 

3/25/2011 4461 Ripley 4 66.91 7.42 15.27 34.20 0.22 55.59 4.59 121.74 

4/5/2010 3361 WOCT1 8 23.98 8.54 8.49 17.97 0.30 22.53 0.39 40.49 

5/17/2010 3408 WOCT1 8 20.61 4.96 6.69 17.16 0.10 23.98 1.73 34.34 

6/24/2010 3554 WOCT1 8 25.35 3.55 4.21 10.37 0.19 16.33 0.49 26.34 

6/2/2010 3491 WOCT1 8 8.15 4.47 2.79 8.07 0.09 9.04 1.25 13.64 

7/23/2010 3601 WOCT1 8 11.91 4.64 4.35 11.63 0.16 13.59 3.55 14.07 

9/26/2010 3662 WOCT1 8 20.72 2.50 2.07 8.10 0.19 9.01 0.11 13.87 

10/9/2010 3685 WOCT1 8 29.03 4.74 5.12 13.46 0.19 19.15 0.34 60.07 

10/30/2010 3714 WOCT1 8 28.61 6.02 3.74 11.24 0.18 14.11 3.31 19.95 

12/11/2010 4175 WOCT1 8 19.87 6.50 5.77 16.36 0.08 12.76 4.10 24.18 

1/19/2011 4246 WOCT1 8 13.25 4.54 4.24 14.11 0.14 9.37 3.09 14.52 

2/19/2010 4370 WOCT1 8 31.17 4.42 4.04 14.24 0.18 19.91 3.52 19.42 

3/25/2010 4458 WOCT1 8 22.69 5.95 6.91 24.69 0.19 20.19 0.07 23.25 

5/17/2010 3415 WOCT10 9 34.71 5.02 5.96 11.49 0.24 18.95 0.43 47.40 

6/2/2010 3498 WOCT10 9 16.77 6.17 7.99 16.13 0.19 9.00 0.25 50.92 

6/24/2010 3547 WOCT10 9 16.23 5.68 7.24 15.09 0.16 7.98 0.49 58.66 

7/23/2010 3591 WOCT10 9 18.81 5.45 7.95 15.56 0.21 16.07 3.86 45.11 

9/26/2010 3667 WOCT10 9 20.31 1.70 1.48 9.21 0.11 8.94 0.18 9.44 

10/30/2010 3710 WOCT10 9 33.92 3.77 3.08 7.55 0.15 13.44 17.43 17.19 

1/19/2011 4253 WOCT10 9 9.63 3.79 3.20 6.72 0.03 8.33 1.37 17.11 

5/17/2010 3416 WOCT12 10 32.66 3.91 7.89 14.31 0.12 36.07 3.04 59.31 

6/2/2010 3499 WOCT12 10 25.20 3.84 6.28 12.02 0.17 26.50 1.99 36.45 

6/24/2010 3564 WOCT12 10 30.01 4.09 5.68 13.93 0.12 24.79 1.79 38.77 

7/23/2010 3603 WOCT12 10 24.50 5.78 5.84 14.74 0.18 25.22 7.07 39.23 

9/26/2010 3670 WOCT12 10 33.99 1.47 1.73 5.28 0.07 15.44 0.26 20.08 
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10/9/2010 3681 WOCT12 10 27.62 3.13 2.91 6.52 0.03 21.74 0.55 30.89 

10/30/2010 3716 WOCT12 10 38.84 6.03 5.29 12.23 0.06 27.45 5.25 35.13 

12/11/2010 4178 WOCT12 10 20.90 5.65 5.71 10.84 0.03 26.15 3.06 28.47 

1/19/2011 4259 WOCT12 10 27.98 5.60 8.63 17.39 0.03 32.51 2.67 69.22 

2/19/2010 4368 WOCT12 10 29.31 3.60 8.34 16.14  32.80 2.48 54.84 

3/25/2010 4464 WOCT12 10 29.13 3.10 7.42 16.73 0.07 21.56 0.15 35.78 

4/5/2010 3364 WOCT13 11 41.00 5.85 7.96 15.74 0.12 66.42 0.09 50.49 

5/17/2010 3417 WOCT13 11 52.10 4.81 14.21 23.84 0.16 54.25 1.23 121.09 

6/2/2010 3500 WOCT13 11 43.87 5.48 12.33 21.45 0.25 46.45 0.49 89.00 

6/24/2010 3548 WOCT13 11 32.66 3.61 7.60 16.68 0.19 28.16 0.27 63.11 

7/23/2010 3589 WOCT13 11 39.54 4.21 8.87 20.42 0.18 37.31 4.02 60.66 

9/26/2010 3669 WOCT13 11 47.28 2.18 5.14 12.16  28.42 0.06 76.23 

10/9/2010 3682 WOCT13 11 76.46 6.43 13.77 17.83 0.11 66.41 0.25 253.66 

10/30/2010 3711 WOCT13 11 63.95 6.16 11.31 21.28 0.13 37.34 6.15 0.00 

12/11/2010 4183 WOCT13 11 37.10 7.27 12.61 22.03 0.13 28.90 3.17 107.24 

1/19/2011 4258 WOCT13 11 33.21 7.37 11.83 23.48 0.23 53.30 2.06 72.78 

2/19/2010 4369 WOCT13 11 50.39 5.29 16.85 31.97 0.14 68.11 0.74 104.53 

3/25/2010 4466 WOCT13 11 53.08 5.64 17.68 33.40 0.17 69.13 3.87 89.39 

5/17/2010 3418 WOCT14 12 49.30 3.86 10.34 20.00 0.35 73.70 3.47 47.97 

6/2/2010 3501 WOCT14 12 43.07 3.77 9.77 18.21 0.19 62.03 0.90 43.61 

6/24/2010 3559 WOCT14 12 46.41 5.06 6.97 16.50 0.14 57.39 1.19 28.92 

7/23/2010 3600 WOCT14 12 32.61 4.44 7.92 17.34 0.13 46.03 4.48 22.85 

9/26/2010 3666 WOCT14 12 33.45 1.51 2.52 8.76 0.27 20.88 0.07 24.83 

10/9/2010 3691 WOCT14 12 27.54 1.78 2.69 7.20 0.08 19.60 0.21 23.09 

10/30/2010 3704 WOCT14 12 22.12 5.21 4.89 11.09 0.15 21.60 2.61 16.96 

12/11/2010 4180 WOCT14 12 42.71 5.10 7.78 17.99 0.09 47.16 4.08 35.96 

1/19/2011 4257 WOCT14 12 27.60 5.37 7.16 12.82 0.11 34.94 2.87 32.05 

2/19/2010 4376 WOCT14 12 43.99 3.05 10.65 19.09 0.07 66.37 2.99 39.44 

3/25/2010 4453 WOCT14 12 57.94 3.66 13.23 25.68 0.07 79.13 0.44 49.77 

4/5/2010 3362 WOCT3 13 21.50 5.76 10.52 20.49 0.31 22.71 0.53 44.04 

5/17/2010 3410 WOCT3 13 26.78 5.57 11.70 24.45 0.19 29.57 0.83 40.98 

6/2/2010 3493 WOCT3 13 17.01 5.94 8.32 21.22 0.24 14.67 0.48 28.93 

6/24/2010 3557 WOCT3 13 36.11 5.54 10.91 27.79 0.24 27.97 0.19 38.23 
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7/23/2010 3597 WOCT3 13 17.11 5.98 8.84 22.63 0.35 13.89 5.37 19.89 

9/26/2010 3664 WOCT3 13 23.13 3.16 2.69 13.28 0.35 10.92 0.94 19.41 

10/9/2010 3687 WOCT3 13 37.36 4.13 5.45 16.84 0.21 20.84 2.32 39.23 

10/30/2010 3715 WOCT3 13 31.89 5.49 3.07 8.30 0.13 14.14 29.66 11.14 

12/11/2010 4187 WOCT3 13 16.52 7.97 7.55 15.83 0.07 13.94 2.58 17.61 

1/19/2011 4248 WOCT3 13 11.70 6.33 4.26 11.16 0.11 10.60 2.57 18.54 

2/19/2010 4379 WOCT3 13 25.38 4.09 4.98 15.97 0.27 16.02 3.70 27.37 

4/5/2010 3363 WOCT6 14 38.80 6.49 11.65 21.24 0.26 70.21 0.08 42.71 

5/17/2010 3411 WOCT6 14 40.31 4.39 10.49 22.96 0.20 75.41 0.29 24.36 

6/2/2010 3494 WOCT6 14 29.52 5.73 9.80 24.37 0.30 52.63 0.11 13.73 

6/24/2010 3551 WOCT6 14 33.17 4.10 7.88 20.59 0.25 56.57 3.84 10.06 

7/23/2010 3598 WOCT6 14 28.50 4.71 8.28 21.37 0.38 35.86 5.89 8.93 

9/26/2010 3664/3659 WOCT6 14 33.42 2.38 2.53 8.82 0.36 19.27 0.44 9.86 

10/9/2010 3688 WOCT6 14 44.97 4.07 5.69 12.11 0.20 32.15 0.06 20.40 

10/30/2010 3708 WOCT6 14 41.84 5.15 7.13 17.16 0.17 27.23 4.42 18.47 

12/11/2010 4179 WOCT6 14 42.46 6.48 6.29 14.13 0.10 47.57 3.07 20.10 

1/19/2011 4250 WOCT6 14 16.83 4.28 4.11 10.33 0.13 13.56 3.51 7.20 

2/19/2010 4374 WOCT6 14 27.53 4.31 2.69 7.34 0.15 14.81 2.14 9.97 

3/25/2010 4452 WOCT6 14 18.43 6.26 6.27 18.76 0.19 25.47 0.06 24.10 

5/17/2010 3412 WOCT7 15 25.07 11.41 7.31 13.96 0.19 31.39 3.84 46.17 

6/2/2010 3495 WOCT7 15 42.63 9.96 13.93 26.78 0.25 53.49 1.36 82.51 

6/24/2010 3556 WOCT7 15 41.89 10.93 9.81 22.85 0.27 41.06 0.57 47.81 

7/23/2010 3604 WOCT7 15 32.47 11.98 12.11 23.42 0.22 37.72 5.27 51.35 

12/11/2010 4177 WOCT7 15 29.07 17.21 9.81 19.64 0.17 39.80 4.97 25.78 

2/19/2010 4373 WOCT7 15 31.01 7.01 4.83 12.06 0.05 23.72 3.04 15.12 

3/25/2010 4459 WOCT7 15 53.10 15.95 14.58 29.33 0.16 60.16 0.34 67.58 

5/17/2010 3413 WOCT8 16 44.31 8.54 11.84 23.95 0.18 52.66 2.71 82.98 

6/2/2010 3496 WOCT8 16 80.57 7.99 15.36 25.06 0.28 74.54 0.93 103.83 

6/24/2010 3549 WOCT8 16 51.26 6.11 12.91 26.59 0.19 48.02 0.50 107.13 

7/23/2010 3590 WOCT8 16 61.61 9.72 18.10 30.91 0.25 70.97 4.60 119.08 

9/26/2010 3665 WOCT8 16 55.96 5.10 9.13 14.42 0.41 46.51 0.15 98.35 

10/9/2010 3684 WOCT8 16 77.96 7.73 14.44 23.57 0.38 61.53 0.80 262.30 

10/30/2010 3713 WOCT8 16 37.67 8.43 7.26 15.69 0.21 31.21 0.14 44.17 
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12/11/2010 4184 WOCT8 16 39.01 11.28 12.70 21.44 0.08 43.52 4.56 60.67 

1/19/2011 4251 WOCT8 16 24.13 8.40 6.52 13.67 0.10 26.99 5.27 45.49 

2/19/2010 4372 WOCT8 16 52.62 10.86 10.39 19.36 0.03 56.71 4.34 56.92 

3/25/2010 4463 WOCT8 16 64.50 11.56 16.62 35.27 0.24 72.43 5.92 78.83 

5/17/2010 3414 WOCT9 17 30.23 5.06 5.02 12.91 0.12 23.45 0.59 20.15 

6/2/2010 3497 WOCT9 17 20.53 6.31 6.53 15.83 0.10 20.30 0.23 23.48 

6/24/2010 3553 WOCT9 17 36.16 4.96 6.62 19.86 0.26 31.68 0.94 43.77 

7/23/2010 3599 WOCT9 17 29.10 7.35 7.51 20.99 0.13 34.25 4.86 26.47 

9/26/2010 3657 WOCT9 17 81.33 7.04 3.89 10.74 0.57 49.32 2.60 105.90 

10/30/2010 3712 WOCT9 17 23.24 6.03 3.73 10.54 0.18 13.58 1.54 20.22 

12/11/2010 4188 WOCT9 17 73.47 12.66 9.08 25.62 0.52 48.54 9.79 104.87 

1/19/2011 4252 WOCT9 17 27.35 9.69 5.83 16.57 0.13 26.85 4.72 37.71 

2/19/2010 4365 WOCT9 17 44.06 7.19 6.24 18.42 0.15 33.59 5.29 38.94 

3/25/2010 4462 WOCT9 17 45.51 8.21 9.76 25.43 0.31 39.60 0.22 48.78 

5/17/2010 3409 WOCT2 18 36.32 8.00 9.07 36.90 0.54 39.12 6.90 74.25 

6/2/2010 3492 WOCT2 18 6.92 4.35 2.62 7.41 0.11 6.69 1.04 11.63 

6/24/2010 3563 WOCT2 18 33.51 8.07 7.15 31.55 0.71 24.04 7.51 33.24 

9/26/2010 3658 WOCT2 18 24.61 3.97 1.57 9.04 0.16 13.92 3.24 33.62 

10/30/2010 3705 WOCT2 18 35.26 5.25 4.88 19.67 0.25 16.13 6.66 25.80 

12/11/2010 4186 WOCT2 18 22.98 7.78 6.59 25.35 0.16 16.48 4.77 39.16 

1/19/2011 4247 WOCT2 18 12.24 6.03 4.49 18.33 0.22 23.37 4.99 26.33 

2/19/2010 4367 WOCT2 18 62.75 8.22 9.30 32.07 0.82 48.15 9.12 81.69 

3/25/2010 4455 WOCT2 18 55.50 10.58 13.41 58.05 0.67 50.28 4.78 108.45 
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Appendix 3 Raw data for subcatchments. 

Date NAWA ID Sample ID 

Creek 

# DOC TDN DON DON:TDN DO TS TDS TSS Turbidity 

    mg/L  mg/L NU 

4/5/2010 3372 Crosstimber 1 10.00 0.74 0.56 0.76      

5/17/2010 3423 Crosstimber 1 11.75 1.27 0.68 0.54      

6/2/2010 3502 Crosstimber 1 10.40 1.12 0.70 0.62  280 229 51 23 

6/24/2010 3562 Crosstimber 1 11.10 1.17 0.69 0.59  154 92 62 13 

7/23/2010 3593 Crosstimber 1 10.42 0.95 0.68 0.72      

9/26/2010 3661 Crosstimber 1 6.55 0.55 0.26 0.47 7.79 166 104 62  

10/30/2010  Crosstimber 1 18.58 0.68 0.58 0.84 5.10 240 125 115 30 

1/19/2011 4249 Crosstimber 1 20.53 1.04 0.91 0.87 7.93 268 249 19 26 

2/19/2011 4373 Crosstimber 1 17.31 0.97 0.84 0.86 7.06 774 753 21 23 

3/25/2011 4456 Crosstimber 1 20.96 1.13 0.95 0.84 8.79 196 177 19 9 

4/5/2010 3374 Lewis 2 12.11 0.68 0.39 0.57      

5/17/2010 3424 Lewis 2 12.94 1.11 0.58 0.52      

6/2/2010 3503 Lewis 2 13.62 1.05 0.49 0.46  320 287 33 4 

6/24/2010 3558 Lewis 2 12.83 0.79 0.46 0.57  208 122 86 4 

7/23/2010 3595 Lewis 2 16.12 1.17 0.77 0.66      

1/19/2011 4254 Lewis 2 15.93 0.64 0.52 0.81 7.05 256 240 16 16 

3/25/2011 4460 Lewis 2 19.06 0.84 0.63 0.75 8.61 222 159 63 18 

4/5/2010 3373 Piney 3 7.95 0.48 0.37 0.77      

5/17/2010 3422 Piney 3 6.30 0.59 0.31 0.53      

6/2/2010 3504 Piney 3 8.24 0.73 0.37 0.50  464 421 43 2 

6/24/2010 3552 Piney 3 5.52 0.39 0.20 0.52  204 155 49 4 

7/23/2010 3596 Piney 3 6.47 0.69 0.26 0.38      

10/9/2010 3689 Piney 3 6.74 0.39 0.22 0.57 6.28 162 148 14  

10/30/2010 3719 Piney 3 7.13 0.30 0.20 0.66 8.14 336 246 90 16 

12/11/2010 4189 Piney 3 9.05 0.39 0.26 0.67 7.83 322 276 46 6 

1/19/2011 4255 Piney 3 8.16 0.55 0.27 0.49 8.48 294 271 23 17 

2/19/2011 4366 Piney 3 6.08 0.47 0.29 0.61 8.37 1294 1285 9 5 

3/25/2011 4465 Piney 3 8.23 0.38 0.21 0.56 9.08 602 530 72 15 

6/2/2010 3505 Ripley 4 9.80 0.87 0.46 0.53  532 413 119 12 

6/24/2010 3550 Ripley 4 8.82 0.77 0.40 0.52  476 329 147 15 

7/23/2010 3594 Ripley 4 10.35 0.71 0.44 0.61      

9/26/2010 3660 Ripley 4 7.06 0.49 0.25 0.50 8.59 440 328 112  

10/9/2010 3680 Ripley 4 8.36 0.55 0.35 0.64 7.37 194 135 59  
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10/30/2010 3717 Ripley 4 8.12 0.56 0.32 0.57 8.30 260 183 77 50 

12/11/2010 4176 Ripley 4 12.52 0.72 0.59 0.82 6.81 348 270 78 39 

1/19/2011 4260 Ripley 4 10.07 0.58 0.33 0.57 7.77 300 248 52 42 

3/25/2011 4461 Ripley 4 12.35 0.61 0.43 0.70 9.30 390 377 13 11 

4/5/2010 3361 WOCT1 8 12.49 0.91 0.57 0.63      

5/17/2010 3408 WOCT1 8 8.71 1.03 0.39 0.38      

6/24/2010 3554 WOCT1 8 5.75 0.59 0.29 0.48  284 227 57 7 

6/2/2010 3491 WOCT1 8 7.89 0.76 0.33 0.44  270 255 15 9 

7/23/2010 3601 WOCT1 8 7.71 0.73 0.35 0.48      

9/26/2010 3662 WOCT1 8 5.23 0.44 0.21 0.48 8.56 186 139 47  

10/9/2010 3685 WOCT1 8 6.85 0.61 0.31 0.50 6.03 66  118  

10/30/2010 3714 WOCT1 8 9.93 0.69 0.47 0.68 7.67 216 59 157 39 

12/11/2010 4175 WOCT1 8 9.86 0.49 0.40 0.81 6.85 222 165 57 36 

1/19/2011 4246 WOCT1 8 9.96 0.58 0.37 0.64 7.70 256 204 52 38 

2/19/2010 4370 WOCT1 8 11.85 0.68 0.56 0.82 6.85 2452 2424 28 30 

3/25/2010 4458 WOCT1 8 15.65 0.87 0.68 0.79 8.37 174 158 16 9 

5/17/2010 3415 WOCT10 9 10.44 0.89 0.43 0.48      

6/2/2010 3498 WOCT10 9 8.59 0.63 0.36 0.57  204 155 49 2 

6/24/2010 3547 WOCT10 9 5.28 0.58 0.17 0.30  20 18 2 2 

7/23/2010 3591 WOCT10 9 7.29 0.60 0.27 0.45      

9/26/2010 3667 WOCT10 9 9.14 0.68 0.24 0.35 7.80 148 113 35  

10/30/2010 3710 WOCT10 9 8.71 0.30 0.19 0.65 7.06 240 176 64 31 

1/19/2011 4253 WOCT10 9 16.37 0.86 0.67 0.78 7.91 196 157 39 35 

5/17/2010 3416 WOCT12 10 8.49 1.25 0.29 0.23      

6/2/2010 3499 WOCT12 10 6.97 0.97 0.18 0.19  234 207 27 3 

6/24/2010 3564 WOCT12 10 6.95 0.96 0.25 0.26  226 139 87 4 

7/23/2010 3603 WOCT12 10 6.37 0.82 0.24 0.29      

9/26/2010 3670 WOCT12 10 3.13 0.29 0.04 0.13 8.85 154 83 71  

10/9/2010 3681 WOCT12 10 3.65 0.44 0.05 0.10 6.65 21 0 21  

10/30/2010 3716 WOCT12 10 6.24 0.44 0.15 0.35 8.45 162 159 3 6 

12/11/2010 4178 WOCT12 10 5.39 0.49 0.08 0.15 6.60 178 149 29 3 

1/19/2011 4259 WOCT12 10 8.61 0.80 0.26 0.33 8.16 266 258 8 9 

2/19/2010 4368 WOCT12 10 6.11 0.53 0.22 0.42 8.35 240 237 3 6 

3/25/2010 4464 WOCT12 10 6.17 0.31 0.02 0.07 9.31 214 208 6 11 

4/5/2010 3364 WOCT13 11 13.30 0.81 0.53 0.65      

5/17/2010 3417 WOCT13 11 7.48 0.82 0.29 0.35      

6/2/2010 3500 WOCT13 11 10.46 0.78 0.39 0.49  328 247 81 4 
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6/24/2010 3548 WOCT13 11 6.21 0.59 0.26 0.45  320 191 129 4 

7/23/2010 3589 WOCT13 11 7.14 0.66 0.31 0.46      

9/26/2010 3669 WOCT13 11 4.25 0.37 0.09 0.23 8.42 454 237 217  

10/9/2010 3682 WOCT13 11 7.91 0.79 0.51 0.64 7.13 360 299 61  

10/30/2010 3711 WOCT13 11 4.91 0.24 0.10 0.43 7.92 332 319 13 6 

12/11/2010 4183 WOCT13 11 9.12 0.38 0.29 0.76 6.18 322 241 81 3 

1/19/2011 4258 WOCT13 11 9.10 0.48 0.29 0.60 8.18 372 353 19 18 

2/19/2010 4369 WOCT13 11 6.32 0.39 0.28 0.72 8.17 614 607 7 5 

3/25/2010 4466 WOCT13 11 9.97 0.41 0.26 0.64 8.46    12 

5/17/2010 3418 WOCT14 12 5.53 0.62 0.20 0.32      

6/2/2010 3501 WOCT14 12 5.31 0.58 0.17 0.29  280 246 34 4 

6/24/2010 3559 WOCT14 12 5.76 0.80 0.33 0.41  170 133 37 11 

7/23/2010 3600 WOCT14 12 6.17 0.58 0.27 0.47      

9/26/2010 3666 WOCT14 12 3.23 0.29 0.12 0.40 8.45 342 266 76  

10/9/2010 3691 WOCT14 12 2.82 0.27 0.04 0.14 6.58 56 3 53  

10/30/2010 3704 WOCT14 12 8.70 0.64 0.44 0.68 7.98 186 121 65 23 

12/11/2010 4180 WOCT14 12 6.36 0.54 0.14 0.25 7.30 242 204 38 8 

1/19/2011 4257 WOCT14 12 9.80 0.74 0.28 0.38 8.22 296 280 16 19 

2/19/2010 4376 WOCT14 12 5.95 0.50 0.25 0.50 8.34 308 301 7 11 

3/25/2010 4453 WOCT14 12 6.70 0.30 0.08 0.26 9.52 306 294 12 12 

4/5/2010 3362 WOCT3 13 12.24 1.00 0.57 0.57      

5/17/2010 3410 WOCT3 13 13.54 1.13 0.63 0.56      

6/2/2010 3493 WOCT3 13 12.96 0.87 0.57 0.65  274 189 85 2 

6/24/2010 3557 WOCT3 13 12.47 0.66 0.51 0.77  296 171 125 7 

7/23/2010 3597 WOCT3 13 12.40 0.82 0.62 0.75      

9/26/2010 3664 WOCT3 13 8.87 0.81 0.47 0.58 6.73 328 261 67  

10/9/2010 3687 WOCT3 13 7.86 0.50 0.32 0.63 6.99 526 410 116  

10/30/2010 3715 WOCT3 13 11.20 1.74 0.25 0.14 8.39 164 103 61 42 

12/11/2010 4187 WOCT3 13 17.49 0.87 0.76 0.87 6.39 180 94 86 6 

1/19/2011 4248 WOCT3 13 21.87 1.23 0.98 0.80 7.80 268 214 54 38 

2/19/2010 4379 WOCT3 13 16.63 1.04 0.79 0.76 7.61 6200 6178 22 27 

4/5/2010 3363 WOCT6 14 13.19 0.89 0.59 0.66      

5/17/2010 3411 WOCT6 14 10.97 0.74 0.42 0.56      

6/2/2010 3494 WOCT6 14 9.70 0.66 0.00 0.01  248 201 47 5 

6/24/2010 3551 WOCT6 14 6.77 0.43 0.30 0.70  37 0 37 7 

7/23/2010 3598 WOCT6 14 11.15 0.69 0.50 0.72      

9/26/2010 3664/3659 WOCT6 14 6.32 0.46 0.22 0.47 8.51 288 213 75  
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10/9/2010 3688 WOCT6 14 7.91 0.76 0.20 0.26 6.49 142 88 54  

10/30/2010 3708 WOCT6 14 9.68 0.55 0.37 0.68 7.46 196 155 41 19 

12/11/2010 4179 WOCT6 14 15.05 0.83 0.53 0.63 6.24 272 225 47 9 

1/19/2011 4250 WOCT6 14 15.10 0.60 0.44 0.73 7.49 254 204 50 45 

2/19/2010 4374 WOCT6 14 13.93 0.79 0.65 0.82 7.31 4782 4745 37 40 

3/25/2010 4452 WOCT6 14 18.18 0.94 0.69 0.73 8.32 190 164 26 15 

5/17/2010 3412 WOCT7 15 12.91 1.96 0.73 0.37      

6/2/2010 3495 WOCT7 15 11.48 1.15 0.56 0.49  686    

6/24/2010 3556 WOCT7 15 11.61 1.03 0.64 0.62      

7/23/2010 3604 WOCT7 15 12.42 0.98 0.70 0.71      

12/11/2010 4177 WOCT7 15 15.87 0.88 0.76 0.87 6.77 308   8 

2/19/2010 4373 WOCT7 15 10.59 2.09 0.66 0.31 8.13    16 

3/25/2010 4459 WOCT7 15 16.96 1.51 1.02 0.68 8.81    99 

5/17/2010 3413 WOCT8 16 10.20 1.36 0.46 0.34      

6/2/2010 3496 WOCT8 16 10.83 0.96 0.56 0.58  476 376 100 4 

6/24/2010 3549 WOCT8 16 7.96 0.74 0.40 0.54  518 295 223 5 

7/23/2010 3590 WOCT8 16 12.03 0.94 0.63 0.67      

9/26/2010 3665 WOCT8 16 7.54 0.68 0.20 0.29 8.20 514 300 214  

10/9/2010 3684 WOCT8 16 10.30 0.92 0.43 0.47 7.03 364 338 26  

10/30/2010 3713 WOCT8 16 7.97 0.58 0.33 0.57 8.49 236 189 47 35 

12/11/2010 4184 WOCT8 16 16.40 0.86 0.74 0.86 6.21 328 226 102 5 

1/19/2011 4251 WOCT8 16 13.44 1.94 0.60 0.31 7.73 350 267 83 66 

2/19/2010 4372 WOCT8 16 12.51 1.60 0.65 0.41 8.05 6174 6162 12 17 

3/25/2010 4463 WOCT8 16 13.70 0.77 0.59 0.77 9.77 420 401 19 8 

5/17/2010 3414 WOCT9 17 12.58 0.91 0.52 0.57      

6/2/2010 3497 WOCT9 17 10.93 0.63 0.45 0.71  320 241 79 7 

6/24/2010 3553 WOCT9 17 7.30 0.78 0.34 0.44  348 208 140 8 

7/23/2010 3599 WOCT9 17 10.67 0.71 0.54 0.76      

9/26/2010 3657 WOCT9 17 6.89 1.29 0.15 0.12 8.46 404 311 93  

10/30/2010 3712 WOCT9 17 7.89 0.70 0.05 0.08 8.05 114 46 68 34 

12/11/2010 4188 WOCT9 17 12.50 2.44 0.57 0.23 7.85 408 314 94 9 

1/19/2011 4252 WOCT9 17 13.30 2.03 0.62 0.31 7.92 338 261 77 59 

2/19/2010 4365 WOCT9 17 12.23 1.53 0.54 0.35 8.41 262 253 9 15 

3/25/2010 4462 WOCT9 17 14.05 0.86 0.60 0.70 8.83 320 257 63 35 

5/17/2010 3409 WOCT2 18 9.85 3.56 0.31 0.09      

6/2/2010 3492 WOCT2 18 7.90 0.76 0.35 0.45 7.59 444 376 68 12 

6/24/2010 3563 WOCT2 18 9.23 0.64 0.51 0.79  254 146 108 4 
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9/26/2010 3658 WOCT2 18 7.04 2.23 0.21 0.09  244 104 140  

10/30/2010 3705 WOCT2 18 6.52 0.76 0.22 0.29 7.82 192 137 55 10 

12/11/2010 4186 WOCT2 18 8.98 0.74 0.35 0.48 6.71 236 165 71 5 

1/19/2011 4247 WOCT2 18 12.49 2.30 0.17 0.07 7.96 262 247 15 15 

2/19/2010 4367 WOCT2 18 7.39 2.39 0.08 0.03 8.20 4646 4638 8 4 

3/25/2010 4455 WOCT2 18 12.06 0.90 0.51 0.57 8.20 464 433 31 8 
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Appendix 4 Raw data for main stem sites nutrients and cations (mg/L) 

Date 

NAWA 

ID Sample ID 

Creek 

# pH EC NH4-N NO3-N PO4-P CaCO3 Na K Mg Ca 

     µS/cm mg/L 

4/5/2010 3367 WOCMS1 5 7.27 340 0.18 0.26 0.06 40.14 19.80 6.28 7.95 13.78 

5/17/2010 3419 WOCMS1 5 7.39  0.12 0.67 0.07 62.92 33.13 6.13 9.38 21.10 

6/2/2010 3506 WOCMS1 5 7.1  0.12 0.68 0.05 51.22 25.49 5.80 7.20 15.50 

6/24/2010 3561 WOCMS1 5 7.1 293 0.11 0.38 0.06 51.49 26.08 4.33 5.19 13.04 

7/23/2010 3588 WOCMS1 5 7.2 390 0.09 0.34 0.04 61.94 33.14 5.97 6.67 16.20 

9/26/2010 3662 WOCMS1 5 7.2 580 0.10 0.11 0.03 80.33 26.59 3.18 4.51 13.26 

10/9/2010 3690 WOCMS1 5 7.6 470 0.08 0.13 0.04 89.24 33.98 3.10 5.14 12.27 

10/30/2010 3707 WOCMS1 5 7.3 220 0.07 0.36 0.09 63.00 47.07 5.84 4.03 9.76 

12/11/2010 4182 WOCMS1 5 7.3 250 0.07 0.10 0.06 22.00 23.11 6.32 6.74 14.77 

1/19/2011 4256 WOCMS1 5 7.6 400 0.10 0.27 0.08 56.00 43.88 9.18 7.59 17.53 

2/19/2011 7377 WOCMS1 5 6.7 280 0.11 0.45 0.10 79.00 51.34 6.09 6.04 15.90 

3/25/2011 4467 WOCMS1 5 7 410 0.12 0.21 0.04 73.08 42.54 7.11 9.43 23.01 

4/5/2010 3368 WOCMS2 6 7.21 490 0.17 0.58 0.06 33.19 27.95 6.80 8.81 16.43 

5/17/2010 3420 WOCMS2 6 7.1 490 0.14 1.29 0.07 56.67 41.36 6.88 10.22 22.54 

6/2/2010 3507 WOCMS2 6 7.2 388 0.12 1.01 0.06 57.35 30.08 7.62 7.85 17.98 

6/24/2010 3555 WOCMS2 6 7.1 416 0.12 0.49 0.04 66.61 39.04 6.26 7.78 17.80 

7/23/2010 3592 WOCMS2 6 7.1 380 0.10 0.44 0.04 63.53 31.55 6.98 7.87 18.18 

9/26/2010 3656 WOCMS2 6 7.7 590 0.14 0.14 0.05 93.20 60.90 5.87 4.80 7.80 

10/9/2010 3683 WOCMS2 6 7.9 620 0.10 0.38 0.06 135.34 83.59 8.17 7.18 13.80 

10/30/2010 3705 WOCMS2 6 7.2 300 0.07 1.51 0.25 43.00 48.54 7.22 4.73 13.06 

12/11/2010 4185 WOCMS2 6 7.4 320 0.06 0.07 0.07 70.00 32.18 7.87 7.28 20.33 

1/19/2011 4261 WOCMS2 6 7.6 320 0.10 0.48 0.31 51.00 19.93 9.33 5.36 15.57 

2/19/2011 4371 WOCMS2 6 6.9 260 0.14 0.54 0.10 43.00 26.47 6.75 5.90 16.18 

3/25/2011 4454 WOCMS2 6 6.9 420 0.15 0.32 0.12 84.14 46.28 8.45 10.19 25.80 

4/5/2010 3369 WOCMS4 7 7.09 280 0.22 0.13 0.04 46.74 12.91 8.05 5.93 11.34 
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5/17/2010 3421 WOCMS4 7 7.4  0.12 4.24 0.49 55.53 42.08 10.68 8.05 20.22 

6/2/2010 3508 WOCMS4 7 7.2 520 0.09 4.50 0.40 65.54 50.42 9.00 8.25 22.83 

6/24/2010 3560 WOCMS4 7 7.5 669 0.09 6.38 0.26 82.79 75.63 10.59 11.12 26.06 

7/23/2010 3602 WOCMS4 7 7.3 690 0.11 5.24 0.43 96.73 64.74 10.78 8.21 26.30 

9/26/2010 3663 WOCMS4 7 7.9 740 0.08 2.23 1.16 85.78 44.34 4.97 2.90 14.89 

10/9/2010 3686 WOCMS4 7 7.5 690 0.09 6.71 0.91 109.97 96.47 9.89 5.71 22.99 

10/30/2010 3709 WOCMS4 7 7.2 210 0.06 1.17 0.27 55.00 36.49 5.60 3.53 11.62 

12/11/2010 4181 WOCMS4 7 7.4 540 0.06 3.02 0.37 103.00 46.77 9.33 6.42 21.26 

1/19/2011 4262 WOCMS4 7 7.9 240 0.24 0.98 0.03 26.00 25.42 5.22 7.69 16.48 

2/19/2011 4378 WOCMS4 7 6.9 530 0.09 1.84 0.20 97.00 68.30 8.08 6.81 19.88 

3/25/2011 4457 WOCMS4 7 7.4 680 0.17 0.65 0.34 129.58 75.72 12.57 10.24 35.09 
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Appendix 5 Raw data for main stem anions and ratios. 

Date 

NAWA 

ID 

Sample 

ID 

Creek 

# F
- 

Cl
- 

NO3
- 

SO4
2- 

NPOC TN 

CNP 

ratio DON 

DON:TDN 

Ratio 

    mg/L  mg/L  

4/5/2010 3367 WOCMS1 5 0.18 25.57 0.53 32.90 11.32 0.90 215.16 0.47 0.52 

5/17/2010 3419 WOCMS1 5 0.17 43.61 2.38 55.89 10.44 1.26 124.17 0.46 0.37 

6/2/2010 3506 WOCMS1 5 0.22 34.09 2.14 32.46 9.47 1.21 149.00 0.41 0.34 

6/24/2010 3561 WOCMS1 5 0.14 23.65 1.10 26.15 8.52 0.87 176.63 0.37 0.43 

7/23/2010 3588 WOCMS1 5 0.16 35.46 4.40 38.00 7.86 0.76 230.78 0.33 0.43 

9/26/2010 3662/3668 WOCMS1 5 0.14 23.18 0.08 53.48 5.17 0.40 441.40 0.19 0.47 

10/9/2010 3690 WOCMS1 5 0.26 27.11 0.07 57.89 4.72 0.35 348.94 0.13 0.38 

10/30/2010 3707 WOCMS1 5 0.13 23.63 3.67 28.55 6.34 0.61 115.48 0.18 0.30 

12/11/2010 4182 WOCMS1 5 0.15 23.36 3.29 34.77 8.50 0.53 267.30 0.35 0.67 

1/19/2011 4256 WOCMS1 5 0.06 37.49 4.28 61.06 11.06 0.87 158.91 0.50 0.57 

2/19/2011 7377 WOCMS1 5 0.05 37.48 2.21 52.82 9.54 0.95 104.17 0.39 0.41 

3/25/2011 4467 WOCMS1 5 0.34 46.63 0.41 67.95 11.99 0.72 384.79 0.39 0.54 

4/5/2010 3368 WOCMS2 6 0.23 35.66 1.53 55.82 10.95 1.27 151.89 0.52 0.41 

5/17/2010 3420 WOCMS2 6 0.20 44.18 4.45 74.74 10.69 1.83 78.63 0.40 0.22 

6/2/2010 3507 WOCMS2 6 0.25 33.31 3.62 46.05 10.89 1.69 103.44 0.56 0.33 

6/24/2010 3555 WOCMS2 6 0.18 34.71 1.50 51.79 7.86 0.98 192.00 0.37 0.38 

7/23/2010 3592 WOCMS2 6 0.30 29.90 5.01 44.56 8.18 0.85 213.33 0.31 0.36 

9/26/2010 3656 WOCMS2 6 0.28 42.88 0.28 83.21 6.91 0.50 294.99 0.22 0.44 

10/9/2010 3683 WOCMS2 6 0.55 58.76 0.94 154.17 7.60 0.81 164.02 0.33 0.40 

10/30/2010 3705 WOCMS2 6 0.14 27.14 12.59 38.63 5.34 1.24 17.23  0.00 

12/11/2010 4185 WOCMS2 6 0.12 25.66 3.58 50.70 10.56 0.64 234.98 0.51 0.80 

1/19/2011 4261 WOCMS2 6 0.15 19.34 4.60 35.33 12.33 1.14 34.98 0.56 0.49 

2/19/2011 4371 WOCMS2 6 0.18 24.09 3.58 41.30 12.05 1.23 97.64 0.55 0.45 

3/25/2011 4454 WOCMS2 6 0.17 38.43 4.22 57.93 13.73 1.01 111.34 0.54 0.54 

4/5/2010 3369 WOCMS4 7 0.14 20.73 0.39 26.99 13.10 1.01 314.91 0.66 0.65 
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5/17/2010 3421 WOCMS4 7 0.20 44.48 14.31 56.64 13.55 5.02 5.50 0.66 0.13 

6/2/2010 3508 WOCMS4 7 0.31 49.05 19.30 71.10 9.28 5.45 4.23 0.85 0.16 

6/24/2010 3560 WOCMS4 7 0.36 71.82 27.34 104.03 10.16 6.88 5.71 0.40 0.06 

7/23/2010 3602 WOCMS4 7 0.46 60.19 21.22 71.70 8.51 5.25 3.77 0.00 0.00 

9/26/2010 3663 WOCMS4 7 0.65 27.79 6.72 89.77 5.56 2.36 2.04 0.05 0.02 

10/9/2010 3686 WOCMS4 7 0.37 66.87 29.30 198.82 8.06 7.07 1.25 0.27 0.04 

10/30/2010 3709 WOCMS4 7 0.21 18.54 8.04 23.76 8.63 1.46 21.89 0.23 0.16 

12/11/2010 4181 WOCMS4 7 0.28 35.49 9.93 69.25 9.03 2.94 8.30   

1/19/2011 4262 WOCMS4 7  24.69 2.41 64.39 12.40 1.68 246.03 0.46 0.27 

2/19/2011 4378 WOCMS4 7 0.06 49.13 3.49 74.66 9.65 2.37 20.37 0.44 0.19 

3/25/2011 4457 WOCMS4 7 0.37 53.92 6.87 85.18 14.15 1.56 27.03 0.74 0.47 
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Appendix 6 Raw data for dissolved oxygen and solids in the main stem 

Date 

NAWA 

ID 

Sample 

ID 

Creek 

# DO TS TDS TSS Turbidity 

4/5/2010 3367 WOCMS1 5      

5/17/2010 3419 WOCMS1 5      

6/2/2010 3506 WOCMS1 5  344 274 70 8.85 

6/24/2010 3561 WOCMS1 5  202 193 9 10.20 

7/23/2010 3588 WOCMS1 5      

9/26/2010 3662/3668 WOCMS1 5 8.71 368 201 167  

10/9/2010 3690 WOCMS1 5 7.07 138 107 31  

10/30/2010 3707 WOCMS1 5 8.28 310 177 133 69.80 

12/11/2010 4182 WOCMS1 5 7.39 218 151 67 25.90 

1/19/2011 4256 WOCMS1 5 7.98 1020 966 54 38.00 

2/19/2011 7377 WOCMS1 5 8.42 230 204 26 28.50 

3/25/2011 4467 WOCMS1 5 9.33 336 264 72 41.70 

4/5/2010 3368 WOCMS2 6      

5/17/2010 3420 WOCMS2 6      

6/2/2010 3507 WOCMS2 6  258 217 41 8.10 

6/24/2010 3555 WOCMS2 6  262 162 100 4.80 

7/23/2010 3592 WOCMS2 6      

9/26/2010 3656 WOCMS2 6 8.81 352 206 146  

10/9/2010 3683 WOCMS2 6 6.49 216 195 21  

10/30/2010 3705 WOCMS2 6 7.43 288 233 55 39.80 

12/11/2010 4185 WOCMS2 6 7.52 240 211 29 13.00 

1/19/2011 4261 WOCMS2 6 7.83 346 253 93 50.10 

2/19/2011 4371 WOCMS2 6 8.26 252 240 12 23.70 

3/25/2011 4454 WOCMS2 6 9.33 306 304 2 25.70 

4/5/2010 3369 WOCMS4 7      

5/17/2010 3421 WOCMS4 7      
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6/2/2010 3508 WOCMS4 7  412 309 103 8.70 

6/24/2010 3560 WOCMS4 7  476 260 216 9.32 

7/23/2010 3602 WOCMS4 7      

9/26/2010 3663 WOCMS4 7 8.93 474 281 193  

10/9/2010 3686 WOCMS4 7 6.96 300 237 63  

10/30/2010 3709 WOCMS4 7 7.81 194 124 70 33.00 

12/11/2010 4181 WOCMS4 7 7.70 356 252 104 3.85 

1/19/2011 4262 WOCMS4 7 7.72 280 232 48 40.20 

2/19/2011 4378 WOCMS4 7 8.35 7552 7545 7 8.50 

3/25/2011 4457 WOCMS4 7 9.29 438 399 39 16.20 
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Appendix 7. Subcatchment land use and nitrogen and phosphorus. 

 
 

 NH4
+-N

 Correlation: Urban (+)

 Sub-catchments:WOCT2,WOCT8, 
Lewis 

 Source: Fertilizer, manure, WWTP, 
urban runoff

 NO3
—N

 Correlation: Deciduous Forest (-)

 Sub-catchments:  
WOCT2,WOCT7, WOCT9

 Source: fertilizer, manure, sewage 
effluent, dairy discharge

• PO4
3—P

• Correlation: Pasture (+), 
Deciduous Forest (-)

• Sub-catchments: WOCT2 & 
WOCT7

• Source: Timber harvest, dairy 
discharge, manure, sewage 
effluent

WOCT2
WOCT8

WOCT7

WOCT9
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Appendix 8. Subcatchment land use and cations 

 
 

 Na+

 Correlation: None

 Sub-
catchments:WOCT8, 
WOCT13, Ripley, Piney

 Source: Bedrock,
wastewater effluent, 
NaOH water treatment

 K+

 Correlation: None

 Sub-
catchments:WOCT7, 
WOCT8

 Source: Fertilizer, timber
harvest, Potassium alum 
water treatment

 Ca2+

 Correlation: Urban (+), 
Open water (-)

 Sub-catchments:WOCT2, 
WOCT8, WOCT13, Piney

 Source: Bedrock, urban 
runoff

 Mg2+

 Correlation: Urban (+)

 Sub-
catchments:WOCT8, 
WOCT13, Piney

 Source: Bedrock

WOCT 2

WOCT 8

WOCT 7

Piney

WOCT 13

Ripley



 

 

1
3
5
 

Appendix 9. Subcatchment land use and anions 

 
 

 F-

 Correlation: Cultivated Crop (-)

 Sub-catchments:WOCT2

 Source: Fluoride additions to water 

supply

 Cl-

 Correlation: Evergreen Forest(+). 
Open water (-)

 Sub-catchments:WOCT8,WOCT7, 
WOCT6, WOCT14, WOCT13, 
Ripley, Piney Lewis 

 Source: Bedrock, treated water, septic 
systems

 SO4
2-

 Correlation: Deciduous and 
Evergreen Forest (-)

 Sub-catchments: Piney,WOCT8, 
WOCT13, Ripley

 Source: Iron pyrite, coal, sodium 
sulfate

WOCT2
WOCT8

Ripley

Piney

WOCT13

WOCT7
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Appendix 10 Subcatchment landuse and DOC and DON 

 
 

 DOC
 Correlation: Urban (+), Deciduous and Evergreen

Forest (-)

 Sub-catchments: Lewis, Crosstimber, WOCT3, 
WOCT7, WOCT8

 Source: WWTP, terrestrial

 DON

 Correlation: Pasture (+), Barren land (-)

 Sub-catchments:WOCT7, Crosstimber, Lewis, 

WOCT3, WOCT8 

 Source: manure, dairy discharge, terrestrial

WOCT8

Crosstimber

WOCT3
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Appendix 11. Subcatchment landuse and total suspended solids and turbidity 

 

 TSS

 Correlation: Pasture (+), Evergreen Forest (-)

 Sub-catchments:WOCT8, WOCT9, Ripley, WOCT3, 

WOCT13

 Source: Manure, Road dust, construction

 Turbidity

 Correlation: Pasture (+), Evergreen Forest (-)

 Sub-catchments:WOCT7, WOCT9, Ripley, WOCT1

 Source: Manure, Construction, Road dust

WOCT3 Ripley

WOCT9

WOC73

WOCT8

WOCT13
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