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ABSTRACT 

New Solutions of Half-Space Contact Problems Using Potential Theory, Surface 

Elasticity and Strain Gradient Elasticity. (December 2011) 

Songsheng Zhou, B.Sc.; M.Sc., Wuhan University of Technology 

Chair of Advisory Committee: Dr. Xin-Lin Gao  

 

Size-dependent material responses observed at fine length scales are receiving 

growing attention due to the need in the modeling of very small sized mechanical 

structures. The conventional continuum theories do not suffice for accurate descriptions 

of the exact material behaviors in the fine-scale regime due to the lack of inherent 

material lengths. A number of new theories/models have been propounded so far to 

interpret such novel phenomena. In this dissertation a few enriched-continuum theories – 

the adhesive contact mechanics, surface elasticity and strain gradient elasticity – are 

employed to study the mechanical behaviors of a semi-infinite solid induced by the 

boundary forces.  

A unified treatment of axisymmetric adhesive contact problems is developed 

using the harmonic functions. The generalized solution applies to the adhesive contact 

problems involving an axisymmetric rigid punch of arbitrary shape and an adhesive 

interaction force distribution of any profile, and it links existing solutions/models for 

axisymmetric non-adhesive and adhesive contact problems like the Hertz solution, 

Sneddon’s solution, the JKR model, the DMT model and the M-D model. 
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The generalized Boussinesq and Flamant problems are examined in the context 

of the surface elasticity of Gurtin and Murdoch (1975, 1978), which treats the surface as 

a negligibly thin membrane with material properties differing from those of the bulk. 

Analytical solution is derived based on integral transforms and use of potential 

functions. The newly derived solution applies to the problems of an elastic half-space 

(half-plane as well) subjected to prescribed surface tractions with consideration of 

surface effects. The newly derived results exhibit substantial deviations from the 

classical predictions near the loading points and converge to the classical ones at a 

distance far away from those points. The size-dependency of material responses is 

clearly demonstrated and material hardening effects are predicted.  

The half-space contact problems are also studied using the simplified strain 

gradient elasticity theory which incorporates material microstructural effects. The 

solution is obtained by taking advantage of the displacement functions of Mindlin (1964) 

and integral transforms. Significant discrepancy between the current and the classical 

solutions is seen to exist in the immediate vicinity of the loading area. The discontinuity 

and singularity exist in classical solution are removed, and the stress and displacement 

components change smoothly through the solid body.  
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1. INTRODUCTION 

 

1.1 Technical Advances and Challenges 

The past century has witnessed the rapid development of micro/nano-

technologies, which deal with structures or components of extremely small sizes. This 

technical advance has brought about revolutionary devices that are of cutting-edge 

interest. To realize the full potential of the emerging micro/nano-industry it is essential 

that relevant studies be conducted to gain a fundamental understanding of the material 

behaviors at small length scales.  

Numerious experimental studies have indicated that the classical continuum 

theories are inadequate to accurately describe the material response at micron and nano-

meter scales, where materials are frequently reported to exhibit increased stiffness with 

decreasing sample size, e.g. torsion stiffness of wires (e.g., Flect and Hutchinson, 1993), 

bending stiffness of plates and bars (Miller and Shenoy, 2000), indentation hardness 

(e.g., Stelmashenko et al., 1993; De Guzman et al., 1993; Ma and Clarke, 1995), tensile 

strength of ultra-thin films (e.g., Judelewicz et al., 1994; Hong and Weil, 1996; Read, 

1998; Zhang et al., 2008;). The classical continuum mechanics cannot describe this 

microstructure-dependent size effect due to the lack of inherent material length 

parameters. Hence, higher order continuum theories that contain material length scale 

parameters are needed to capture the size and other effects at the micron and nanometer 

scales. 

____________ 

This dissertation follows the style of Journal of the Mechanics and Physics of Solids. 
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1.2 Review of Existing Studies 

1.2.1 Adhesive Contact 

Forces at interfaces are familiar to colloid and surface chemists. For a long time 

relevant studies and measurements have been mainly confined to liquids. It is not until 

1930s that considerable efforts were made to the understanding of the surface interaction 

forces between solids and particular between colloids. The dispersion forces were first 

explained by London in 1930 (Maugis, 1992; Tabor, 1977) and the London theory of 

Van der Waals was later applied by Bradley (1932), Derjaguin (1934), de Boer (1936) 

and Hamaker (1937) to the problem of forces between macroscopic bodies.  

Surface forces can make a significant contribution to the contact equilibrium 

under conditions of light loading between elastic solids, e.t. contact at the micron and 

submicron scales. In the later 1960s, experimental contradictions to the famous Hertz 

theory (Hertz, 1882) were reported by Roberts (1968) and Kendall (1969), which 

revealed that the contact area between elastic bodies is considerably larger than the Hertz 

result at low loads. In addition, the contact area does not vanish upon the removal of 

loads, and a mechanical load is required to separate two solid bodies in intimate contact 

(e.g. Adamson, 1967; Tabor and Winterton, 1969). These and other evidence suggested 

that attractive forces act between solids close together and their influence on the material 

response cannot be neglected at low loads (Johnson et al., 1971).  

The concept of adhesive forces between elastic solids in contact was propound in 

the 1960s and improved understanding of the adherence of solids was gained with the 

introduction of the energy balance concept by Kendall (1971) and Johnson et al. (1971). 
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Their energy balance approach was successfully applied to problems of peeling 

(Kendall, 1973, 1975b), adherence of spheres (Johnson et al., 1971), composite 

(Kendall, 1975a, 1976) and etc. The adhesive contact model of Johnson et al. (1971) 

(known as the JKR model) accounts for the adhesion inside the contact zone and the 

surface energy is included in the energy balance involving the strain energy and potential 

energy additionally. An extensive experimental investigation regarding the energy 

release rate and system stability was later conducted by Maugis and Barquins (1978).  

Not long after the publication of the paper of Johnson et al. (1971), Derjaguin et 

al. (1975) proposed a model (called DMT model) that considers the molecular 

attractions in a ring-shaped zone right outside the contact area (the non-contact 

adhesion). The two theories – JKR and DMT – are essentially different from each other 

although they are both evolved from Hertz’s solution and both give an equilibrium 

contact area larger than Hertz’s result. The sharp differences between these two 

landmarked models led to a long and heated debate in the 1980s (e.g., Muller et al., 

1980, 1982, 1983; Greenwood and Johnson, 1981; Pashley, 1984) and the controversy 

was finally resolved by Maugis’ (1992) transition model (called the M-D model) based 

on the Dugdale cohesive zone model and the Griffith energy criterion in fracture 

mechanics.  

The Maugis’ (1992) work bridges the JKR and DMT models via a transition 

parameter similar to Tabor’s number (Tabor, 1977) and thereby greatly clarifies the 

distinctions between the two theories. The JKR model and DMT models are found to be 

two limiting cases of the general M-D model. It is now widely acknowledged that the 
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former is accurate for soft solids having high surface energy whereas the latter is suitable 

for hard materials with low surface energy (e.g., Tabor, 1977; Hughes and White, 1979; 

Muller et al., 1980; Johnson and Greenwood, 1997; Yao et al., 2007; Barthel, 2008; 

Zhou et al., 2011).  

These three monumental models – JKR, DMT and M-D – have been receiving 

growing attention due to the need of knowledge in micro-/nano-contact. The M-D 

adhesive contact model involving a spherical punch and a constant cohesive stress has 

been extended by Barthel (1998) and Greenwood and Johnson (1998) to more general 

surface interactions and by Goryacheva and Makhovskaya (2001) and Zheng and Yu 

(2007) to arbitrary axisymmetric punch profiles. The M-D model has also been 

generalized to the non-slipping adhesive contact of an elastic cylinder with a stretched 

substrate by Chen and Gao (2006a). Recently, a potential function based treatment was 

provided by Zhou et al. (2011) which unifies existing solutions/models for axisymmetric 

non-adhesive and adhesive contact problems in one framework.  

The interaction surface forces used in the aforementioned references were 

infinitesimal-range forces. Finite-range interaction forces were employed by Attard and 

Parker (1992) and Attard (2000) to consider the interaction of spherical bodies. In 

addition, Graham et al. (2010) analyzed the nano-indentation problems involving 

sphero-concical tips due to realistic, finite-range surface forces.  

1.2.2 Surface Elasticity  

In classical continuum mechanics, the material properties of the solid surfaces 

are regarded to be the same as those of the bulk material. This ignores the fact that the 
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near surface physical properties are sensibly different from those of the bulk interior. 

The reason for such difference is that the nature of the chemical bonding of the surface 

atoms differs from that of the interior atoms and the surface atomic structure changes 

relative to the bulk so that the structure equilibrium is maintained (Thomson et al., 1986; 

Cammarata, 1994).  

Mechanical work is required to create a new surface. The concept of surface 

energy is defined as the reversible work to isothermally create an element area of a new 

surface (Cammarata and Sieradzki, 1994; Maugis 2000, pp28). It has been known that 

the surface energy is identical to the surface tension for a fluid (Dupré, 1869), but they 

are not equal for solids as was first shown by Gibbs (1876). The presence of the surface 

stress is predicted from microscopic considerations whenever a new surface is created 

(Shuttleworth, 1950; Herring, 1951; Orawan, 1970). It was verified experimentally by 

Nicolson (1955) that certain crystals exhibit a surface stress when cleaved.  

The studiess of Shuttleworth (1950) and Herring (1951) firstly connect the 

surface tension to the surface energy of a solid. Their seminal findings were elaborated 

by the subsequent researchers (e.g., Cammarata, 1994; Cammarata and Sieradzki, 1994) 

and were successfully applied to cases such as crystal surface morphology (Shchukin 

and Bimberg, 1999) and thin films (e.g., Koch, 1994; Streitz et al. 1994).  

The surface free energy is associated with only a few layers of atoms near the 

surface and is typically neglected in traditional continuum mechanics (Dingreville et al., 

2005). For a solid of macro-dimension its surface energy is relatively negligible when 

compared to its bulk energy. However, the surface energy is appreciable at small length 

http://publish.aps.org/search/field/author/Bimberg_Dieter
http://publish.aps.org/search/field/author/Streitz_F_H
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scales and the influence of surface stress on the material behavior is significant, 

especially for dimensions below 10 nm (Cammarat, 1994).  

Blinowski (1970, cf. Povstenko (1993)) suggested a constitutive equation that 

incorporates the surface stresses, but his formulation lacks mathematical rigor. It is due 

to Gurtin and Murdoch (1975, 1978) that a rigorous theory for surface elasticity was 

established. In the Gurtin-Murdoch model, the surface is treated as a negligibly thin 

membrane adhering to the underlying bulk without slipping. This model is quite general 

in the sense that it allows the surface to possess its own elastic constants and stress by an 

additional constitutive law. The model was later extended by Gurtin et al. (1998) to treat 

interfacial stress. As noted in Gurtin and Murdoch (1978), their general theory can also 

be applied to describe the mechanical behaviors of an elastic substrate coated with thin 

film of another material.  

The special importance of the theory of Gurtin and Murdoch (1975, 1978) is that 

it contains intrinsic material lengths arisen from the surface effects and thereby it offers 

an explanation for size effects at fine scales, especially when the associated solid has a 

large surface to bulk ratio. This theory has received a lot of attention in recent years due 

to the progress in micro-/nano-materials and devices. In particular, simplified versions 

(by retaining only the surface residual stress) of the Gurtin-Murdoch theory have been 

used to analyze responses of nano-structures (Miller and Shenoy, 2000; Shenoy, 2002), 

deformation of semi-infinite solids (He and Lim, 2006; Wang and Feng, 2007; Zhao and 

Rajapakse, 2009), deflections of thin films (He et al., 2004) and inclusion problems 

(Sharma et al., 2003; Sharma and Ganti, 2004). All these studies show that the presence 



 7 

of surface/interface stresses results in size-dependent elastic responses.  

1.2.3 Higher-Order Strain Gradient Theories 

The micro-structural effects are important at small length scales, particularly for 

materials like polymer, polycrystalline and granular materials. A common approach to 

incorporating the microstructural effects is to enrich the classical constitutive equations 

with additional higher-order derivatives.  

In the early 20
th

 century, the Cosserat brothers (Cosserat and Cosserat, 1909) 

generalized Cauchy’s model to include additionally the micro-rotation in an elastic solid 

and thereby included the couple stress (energetically conjugated to the micro-rotation) in 

the equilibrium equations. It was not until 1960s that this higher order continuum 

approach received serious attention. Casal (1961) formulated a simple linear continuum 

theory that incorporates material microstructures. The framework for gradient theories 

was latter established by Mindlin and his associates (1964, 1965; Mindlin and Tiersten 

1962; Mindlin and Eshel, 1968), Toupin (1962, 1964) and Kioter (1964). Germain 

(1972, 1973a,b) later addressed several theoretical issues to strain gradient elasticity.  

In gradient theories, material length scale parameters enter the constitutive 

equations through the strain energy density function. In a landmark paper, Mindlin 

(1964) introduced the idea of unit cell (or micro-media) in solids that are in themselves 

deformable media and considered micro-deformations in addition to macro-deformation. 

In its most general form, Mindlin’s theory contains 18 material constants (two being 

Lamé constants) and was simplified to contain five additional material constants by 

himself (Mindlin, 1964).  
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Mindlin’s original theories are general but complicated. One would face 

considerable difficulties attempting to solve even simple boundary value problems 

(BVPs) with these general theories (Georgiadis and Anagnostou, 2008). Besides, the 

experimental quantification of the associate material constants is a formidable task 

(Exadaktylos and Vardoulakis, 1998). As a result, the Mindlin’s original theories have 

not found widespread applications in the modeling of size-dependent phenomena.  

To progress from this situation, simplified strain gradient theories have been 

suggested (e.g., Vardoulakis et al., 1996; Exadaktylos et al., 1996; Altan and Aifantis, 

1992, 1997). Vardoulakis’ version contains volume and surface energy strain gradient 

terms, whereas Altan and Aifantis’ includes one additional material constant. These 

simplified models are mathematically more tractable and have been adopted to analyze 

various problems, such as Kelvin’s problems (Karlis et al., 2010), fracture (Exadaktylos, 

1998; Shi et al., 2000; Georgiadis, 2003), mechanics of defects (Lazar and Maugin, 

2005), thick-walled shell problem (Goa and Park, 2007; Gao et al., 2009) and Eshelby 

type inclusion problem (Gao and Ma, 2009, 2010a,b).  

Despite the successful applications of strain gradient elasticity, the fundamental 

problems of a half-plane or half-space subjected to a concentrated force have not been 

well addressed in gradient elasticity.  

 

1.3 Motivations and Objectives 

As reviewed in the last section, the mechanisms of non-conventional behaviors at 

small length scales have not been fully understood and some fundamental issues have 
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not been thoroughly discussed. In this dissertation, several fundamental problems in 

contact mechanics are studied in the context of adhesive contact mechanics, surface 

elasticity and strain gradient elasticity.  

The fundamental problems of an elastic isotropy subjected to a concentrated 

force are viewed as the most celebrated problems in the theory of elasticity. In classical 

doctrine, the problems of Kelvin (an elastic solid of infinite extend acted by a point 

force), Boussinesq/Cerruti (an elastic half-space subjected to surface normal/tangential 

force) and Mindlin (an elastic half-space under the action of a buried force) afford 

closed-form solutions and are of significant importance in the field of contact mechanics, 

tribology and soil mechanics. However, these fundamental problems have not been fully 

examined in the context of the newly proposed enriched continuum theories reviewed in 

the last section. 

In this dissertation we shall be concerned with the small-scale elastic response of 

a homogeneous semi-infinite isotropy subjected to prescribed boundary tractions. The 

fundamental contact problems will be examined in the context of the three renowned 

theories outlined in the preceding section – adhesive contact mechanics, surface 

elasticity and gradient elasticity. It is expected that certain types of size-dependency be 

observed when each of these refined continuum theory is adopted. Special attentions 

shall be drawn to the possible deviation of the newly derived solutions from the classical 

ones.  

The role of adhesive interaction forces is significant for the material responses of 

contact solid bodies under small load. A general model will be developed for 
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axisymmetric contact problems by using classical elasticity theory and incorporating the 

effect of adhesive interaction forces. This general model is expected to be applicable for 

adhesive contact problems with arbitrary punch profiles and adhesive interaction force 

distributions.  

At small length scale the influences of material microstructural and surface 

energy effects on the mechanical behaviors of materials are non-negligible. The surface 

elasticity of Gurtin and Murdoch (1975, 1978) and strain gradient elasticity theory of 

Mindlin (1964) will be adopted to study the elastic field of a semi-infinite solid 

subjected to prescribed boundary tractions. For the fundamental problems of an elastic 

half-space, the existing surface elasticity-based (e.g., He and Lim, 2006; Wang and Feng, 

2007; Zhao and Rajapakse, 2009) and strain gradient-based solutions (e.g., Zhou and Jin, 

2003; Li et al., 2004) involve certain simplifications/assumptions and thus these 

solutions are either incomplete or not exact. A complete formulation and exact solutions 

shall be pursued by using the two theories – surface elasticity and strain gradient 

elasticity – and the departure between the newly derived solutions and their classical 

counterparts will be examined and discussed.  
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2. A UNIFIED TREATMENT OF AXISYMMETRIC ADHESIVE CONTACT 

PROBLEMS
*
 

 

2.1 Introduction  

Contact of two elastic solids was first studied by Hertz (1882) using the theory of 

elasticity. Hertz’s solution is for the frictionless non-adhesive contact of two elastic 

spheres under a pair of compressive forces, which was reviewed and elaborated by 

Johnson (1982) in a broad context. To account for the adhesion inside the contact zone, 

Johnson et al. (1971) extended Hertz’s theory and developed an adhesive contact model 

(known as the JKR model) by including the surface energy in the energy balance 

involving the strain energy and potential energy additionally, which yields an 

equilibrium contact area larger than that given by the Hertz solution.  

On the other hand, by considering the molecular attractions in a ring-shaped zone 

right outside the contact area, Derjaguin et al. (1975) proposed another model (called 

DMT model), which adopts Hertz’s stress distribution and displacement field but 

predicts a larger contact radius than that predicted by Hertz’s theory due to the 

incorporation of the non-contact adhesion in the ring-shaped zone. The JKR and DMT 

models are found to work well for two extreme cases, with the former being accurate for 

soft solids having high surface energy and the latter valid for hard materials with low 

surface energy (e.g., Tabor, 1977; Hughes and White, 1979; Muller et al., 1980; Johnson 

                                                 

* Reprint with permission from ‘‘A unified treatment of axisymmetric adhesive contact 

problems using the harmonic potential function method’’ by S.-S. Zhou, X.-L. Gao and 

Q.-C. He, 2011, Journal of the Mechanics and Physics of Solids, 59, 145-159, Copyright 

[2011] by Elsevier.  
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and Greenwood, 1997; Yao et al., 2007; Barthel, 2008).  

The sharp differences between these two models were resolved by Maugis’ 

(1992) transition model (called the M-D model) based on the Dugdale cohesive zone 

model and the Griffith energy criterion in fracture mechanics. The M-D adhesive contact 

model involving a spherical punch and a constant cohesive stress has been extended by 

Barthel (1998) and Greenwood and Johnson (1998) to more general surface interactions 

and by Goryacheva and Makhovskaya (2001) and Zheng and Yu (2007) to an ‘arbitrary’ 

axisymmetric punch represented by a power-law shape function. The M-D model for 

frictionless adhesive contact has also been generalized to the no-slipping adhesive 

contact of an elastic cylinder with a stretched substrate by Chen and Gao (2006a), who 

also extended the JKR model to no-slipping adhesive contact problems involving 

isotropic and transversely isotropic materials (Chen and Gao, 2006b, 2007).  

The original M-D model and the subsequently modified models mentioned above 

are built on Sneddon’s (1965) Hankel transform-based solution for the frictionless 

contact problem (involving an axisymmetric punch of arbitrary profile) and the solution 

of Lowengrub and Sneddon (1965) for an external crack problem. In this strain energy 

release rate-based approach (Maugis, 1992, 2000), evaluations of some crucial 

parameters, such as stress intensity factor and applied normal load, are quite challenging, 

and the interpretation of the energy balance in terms of the strain energy release rate can 

be difficult at times (Greenwood and Johnson, 1998).  

On the other hand, the harmonic potential function method for axisymmetric 

elasticity problems developed by Green (1949) and Collins (1959, 1963) and elaborated 
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in Green and Zerna (1968) has been found to exhibit significant advantages in solving 

axisymmetric half space problems with mixed boundary conditions (e.g., Barber, 1983; 

Chaiyat et al., 2008; Jin et al., 2008). However, this method has not been systematically 

explored for its use in studying adhesive contact problems of axisymmetric elastic 

bodies, for which the JKR model, the DMT model, and the M-D model and its variants 

have been developed using the Hertz theory (1882) or  Sneddon’s (1965) solution. This 

motivated the current study. 

In the present paper, a unified treatment of non-adhesive and adhesive 

axisymmetric contact problems is provided using the harmonic potential function 

method. Based on this method and the principle of superposition, a general solution for 

the adhesive contact problem involving an axisymmetric rigid punch of arbitrary shape 

and an adhesive interaction force distribution of any profile is derived, which gives 

analytical expressions for all non-zero displacement and stress components on the 

contact surface, differing from other solutions. It is demonstrated that Sneddon’s 

axisymmetric punch solution, Boussinesq’s flat punch solution, Hertz’s spherical punch 

solution, the JKR model, the DMT model, the M-D model, and the M-D-n model, which 

were developed individually using various methods (other than the harmonic function 

method) over the years, can all be reduced from the current general solution as 

special/limiting cases.   

 

2.2 Harmonic Potential Function Method 

For an axisymmetric problem of a homogeneous, isotropic, linearly elastic 
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material, the general elasticity solution can be written in terms of a harmonic (potential) 

function ϕ = ϕ (r, z) as (e.g., Green and Zerna, 1968) 
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 (2.1) 

where (r, θ, z) are the usual cylindrical coordinates, μ and  are, respectively, the shear 

modulus and Poisson’s ratio of the material, σij = σij(r, z) are the stress components, and 

ui = ui(r, z) are the displacement components. 

In particular, on the plane z = 0, Eq. (2.1) gives 
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 (2.2) 

which show that all the shear stress components vanish on the z = 0 plane.  

Clearly, the solution for a given axisymmetric problem hinges on the 

determination of the harmonic function ϕ (r, z). This will depend on the boundary 

conditions of the problem.  

An illuminating discussion on using the harmonic function method to solve 

axisymmetric mixed boundary value problems and many useful expressions have been 
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provided by Barber (1983). Also, some important contributions to fracture mechanics 

have recently been made by Chaiyat et al. (2008) and Jin et al. (2008) utilizing this 

method. The current formulation of non-adhesive and adhesive contact problems is 

greatly facilitated by the findings of these studies.   

This harmonic potential function method has also been extended to solve non-

axisymmetric elasticity problems by Keer (1964) and in other subsequent studies.  

 

2.3 Two Types of Contact Problems    

Consider the problem of a rigid axisymmetric punch of arbitrary shape in contact 

with an elastic half space. The following two types of boundary conditions (BCs) will be 

discussed: (1) displacement prescribed inside the contact zone, as shown in Figure 2.1a; 

(2) traction prescribed outside the contact zone, as illustrated in Figure 2.1b.  

For the first type, the normal stresses inside and outside the contact zone and the 

  

(a) Displacement prescribed  inside 

(0, a) 

(b) Traction prescribed 

outside (0, a) 

Figure 2.1. Schematic of two different types of contact problems. 

 



 16 

displacements outside it will be sought. An example of this type is Hertz’s (1882) 

contact problem. For the second type, the displacements outside the contact zone and the 

normal stresses inside it are to be found. External circular crack problems in fracture 

mechanics belong to this type. 

To solve the axisymmetric contact problems schematically shown in Figure 2.1, 

the following harmonic function is adopted:  

 0
0

1
( ) ( ) ,zA e J r d   




   (2.3) 

where J0 is the Bessel function of the first kind of the zeroth order, and 

 ( ) ( )cos( ) ,
o

i

r

r
A g t t dt    (2.4) 

with g(t) being an unknown function to be determined from boundary conditions, and ri, 

ro being the inner and outer radii of the axisymmetric circular area on the plane z = 0 

under consideration. For the problems shown in Figure 2.1, ri = 0 and ro = a inside the 

contact zone, and ri = a and ro =  outside it. It can be readily proved that ϕ = ϕ (r, z) 

defined in Eqs. (2.3) and (2.4) satisfies Laplace’s equation and is therefore a harmonic 

function. Equations (2.3) and (2.4) were recently used by Jin et al. (2008), with specified 

values of ri and ro, to solve an external circular crack problem. Equation (2.3) and an 

expression similar to Eq. (2.4) (containing sin(t) rather than cos(t)) were employed 

earlier to solve penny-shaped and other internal crack problems (Kassir and Sih, 1975; 

Chen and Keer, 1993; Chaiyat et al., 2008). This harmonic function is adopted in the 

current study to solve non-adhesive and adhesive contact problems involving 

axisymmetric punches of arbitrary shapes and BCs of both types.   
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From Eqs. (2.3) and (2.4), the surface values of the derivatives of ϕ involved in 

Eq. (2.2) can be readily obtained. These are listed in Table 2.1 separately for the two 

different types of BCs shown in Figure 2.1.  

In Table 2.1, ϕ1 and ϕ2 denote, respectively, the harmonic functions satisfying the 

first type of BCs and the second type of BCs, H(x) is the Heaviside function defined by 

0 0
( )

1 0

x
H x

x


 


 , and g1(x) (for ϕ1) and g2(x) (for ϕ2) are the unknown functions to be 

determined from BCs in each problem.  

It can be shown from Table 2.1 that the relation:   
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holds for both types of BCs mentioned above. It then follows from Eqs. (2.2) and (2.5a) 

that the surface values of the radial and circumferential stress components can be 

expressed as 
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Equations (2.5b,c) are applicable to both types of BCs and are valid in the entire domain, 

and they will be used to obtain the expressions of the two in-plane normal stresses. 

From Table 2.1 and Eq. (2.2), the normal load (P) and the stress intensity factor 

(KI for Mode I loading) at the periphery of the contact area (as the front of an external 

Mode I circular crack) can also be readily obtained. The relevant results are listed in 

Table 2.2, which are the same as those provided in Barber (1983) using more general 

harmonic potential functions. 
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Clearly, the normal load P and the stress intensity factor KI will become 

immediately available once the unknown functions g1(x) and g2(x) have been determined 

from BCs.  

Table 2.1 Surface values of derivatives of the harmonic functions for the two types of 

boundary conditions 

  r < a

 

r > a

 

First type 

(Displacement 

prescribed 

inside the 

contact zone)

 

   

   

0

 

Second type 

(Traction  

prescribed 

outside the  

contact zone)

 

   

 
0 

 

 

 

Table 2.2 Normal load and stress intensity factor 

 First type  Second type 
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2.3.1 Problems with BCs of the First Type  

Applying a normal load P
I
 on the rigid axisymmetric punch will lead to a rigid-

body displacement δ (also known as the depth of penetration of the tip of the punch) and 

a circular contact area of radius a. The elastic half space after contact is schematically 

shown in Figure 2.1a. The BCs of the first type can be expressed as  
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 (2.6a-c) 

where f(r) is the shape function of the axisymmetric punch. Note that Eq. (2.6c) is 

automatically satisfied by the general solution given in Eq. (2.2), irrespective of the 

expression of ϕ. Also, since ∂
2
ϕ1/∂z

2 
= 0 outside the contact zone (i.e., z = 0, r>a) (see 

Table 2.1), it follows from Eq. (2.2) that Eq. (2.6b) is exactly met. Upon using Eq. (2.2) 

and ∂ϕ1/∂z
 
(for z = 0, r < a) listed in Table 2.1, Eq. (2.6a), the only remaining boundary 

condition, has the form:  
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This integral equation can be solved by the inverse Abel transform (or using a direct 

procedure of integration and differentiation similar to that employed in Green and Zerna 

(1968)) to obtain   
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With ψ(r)    f (r)
 
and f (0) = 0 (i.e., the origin of the cylindrical coordinate system 

coincides with the tip of the punch before indenting occurs), Eq. (2.8) becomes 
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Therefore, for given punch shape function f (r) and penetration δ, the explicit expression 

of g1(t) can be readily obtained from Eq. (2.9).  

Using Eq. (2.9) and the derivative expressions from Table 2.1 in Eq. (2.2) will 

then yield the out-of-plane displacement and normal stress components on the contact 

surface as 

 
1 2 2

2 2 2 20 0

( )2
sin , ;

( )

a
I

z z

tf ta
u r a dt r a

r r t a t







 
    

  
  (2.10a) 

 
2 2 2 2 2 2 2 20 0 0

( )( )2 1
, .

(1 ) ( )( )

a a x
I

zz z r

tf taf t
dt dtdx r a

a r a t x t x r


 

 

   
             

  
 

(2.10b) 

Also, it follows from Eq. (2.9) and Table 2.2 that the normal load is given by 
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and the stress intensity factor by 
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It can be readily shown that Eqs. (2.10a,b) and (2.11a) are the same as those obtained by 

Sneddon (1965) based on the Hankel transform method
†
. Physically, the problem studied 

in Sneddon (1965) is the indentation of an isotropic elastic half space by an 

                                                 
†
 Note that there was a typographical error in equation (5.2) of Sneddon (1965). That is, 

the sign in front of the second term on the right-hand side of his equation (5.2) should be 

negative (rather than positive).  
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axisymmetric rigid punch of arbitrary profile.   

In particular, for a flat-ended cylindrical punch, f (r) = 0 and f ' (r) = 0. It then 

follows from Eq. (2.9) that g1(t) = 2/[(1)] (a constant), and from Eqs. (2.10a,b) 

and (2.11a) that  
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Equations (2.12a-c) are identical to those given by Boussinesq’s solution (e.g., Sneddon, 

1965; Maugis, 2000), which is for the indentation of a half space by a flat-ended 

cylindrical punch.  

From Eq. (2.9) and Table 2.1 it follows that 
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Using Eqs. (2.6b), (2.10b) and (2.13) in Eqs. (2.2) and (2.5b,c) then yields the in-plane 

displacement and normal stress components on the contact surface as 
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For a flat-ended cylindrical punch with f (r) = 0 and f ' (r) = 0, Eqs. (2.14a-d) give 
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Note that at the periphery of the contact zone (i.e., at r = a) all the three normal stress 

components for the flat punch problem given in Eqs. (2.12b) and (2.15b,c) exhibit the 

same singularity as that of an external circular crack with the front at r = a, thereby 

confirming the analogy between the external crack problem and the flat punch contact 
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problem and validating the use of fracture mechanics concepts in solving contact 

problems.

 

For a spherical punch, the punch shape function can be approximately 

represented by f(r) = r
2
/(2R) (e.g., Barthel, 2008), which results from a Taylor’s 

expansion (e.g., Gao et al., 2006; Gao, 2006a,b). Using this shape function in Eqs. (2.10

a,b) and (2.11a) then gives 
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In order for σzz to be finite (non-singular) at r = a, it is required from Eq. (2.16c) that 
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Using Eq. (2.17) in Eqs. (2.16a-c) then leads to  
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Equations (2.18a-c) are exactly those given by the Hertz solution for the indentation of a 

half space by a spherical punch (e.g., Maugis, 2000).  

Similarly, using f (r) = r
2
/(2R) and Eq. (2.17) in Eqs. (2.14a-d) yields 
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(2.19a-d) 

as the in-plane displacement and normal stress components on the contact surface z = 0 

for the spherical punch problem. Equations (2.18a-c) and (2.19a-d) are the same as those 

provided in Johnson (1985) using a different approach. 

Note that in this spherical punch problem all the stress components remain finite 

in the entire contact zone. In particular, the normal stresses at r = a, z = 0 and r = 0, z = 0 

are obtained from Eqs. (2.18c) and (2.19b-d) as  
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2.3.2 Problems with BCs of the Second Type  

With prescribed normal traction p(r) outside the contact zone and zero out-of-

plane displacement inside it, as shown in Figure 2.1b, the boundary conditions of the 

second type can be expressed as 
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Again, Eq. (2.21c) is automatically satisfied by the general solution given in Eq. (2.2). 

Also, from Eq. (2.2) and ∂ϕ2/∂z = 0 (for z = 0, r < a) given in Table 2.1, it follows that 

Eq. (2.21a) is exactly met. Hence, upon using Eq. (2.2) and ∂
2
ϕ2/∂

2
z (for z = 0, r > a) 

listed in Table 2.1, Eq. (2.21b), the only remaining boundary condition, becomes  
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By using the inverse Abel transform, Eq. (2.22) can be solved to get 
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For given p(r), the explicit expression of g2(t) can be readily obtained from Eq. (2.23). 

By using Eq. (2.23) and the derivative expressions from Table 2.1 in Eq. (2.2), the out-

of-plane displacement and normal stress components on the contact surface can then be 

determined as  
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Also, it follows from Eq. (2.23) and Table 2.2 that the normal load is given by 
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a
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and the stress intensity factor by 
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From Eq. (2.23) and Table 2.1, it follows that 

 

2 2
1 1

2 2

2

0
1

2 1
( ) cos tan , ;

2 1
( )cos ( ) , .

2

a

z

a r

a a t
tp t dt r a

r t r a

r a
tp t dt tp t dt r a

r t








 

  


  
   

     
   

    
 



 

 (2.26) 

Using Eqs. (2.21b), (2.24b) and (2.26) in Eqs. (2.2) and (2.5b,c) then yields the in-plane 

displacement and normal stress components on the contact surface as 
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(2.27c) 

Equations (2.24a,b), (2.25a,b) and (2.27a-c) provide the general solution for the 

frictionless axisymmetric punch problem with the boundary conditions of the second 

type.   
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As an example, consider the cohesive stress p(r) (a < r < ) of the Dugdale type:  
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where c is the outer radius of the adhesive interaction zone, and σ0 = 1.026w/z0 is the 

theoretical strength of the indented material chosen to match what is given by the 

Lennard-Jones potential (Maugis, 1992; Johnson and Greenwood, 1997; Zheng and Yu, 

2007; Yao et al., 2007), with w being the Dupré energy of adhesion (also called surface 

energy or work of adhesion) and z0 the equilibrium separation distance between atomic 

planes. Using Eqs. (2.21a,b) and (2.28) in Eqs. (2.24a,b) and (2.27a-c) then gives the 

displacement components on the contact surface as 
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(2.29b) 

and the normal stress components as 
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in the contact zone, 
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in the adhesive zone, and   
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in the non-contact zone.  

It is seen from Eqs. (2.29c-e) that the stress field is singular at the periphery of 

the contact zone where r = a. 

 

2.4 Adhesive Contact Problems  

As demonstrated in the previous section, by using the harmonic potential 

function method for solving axisymmetric mixed boundary value elasticity problems, the 

stress and displacement components, applied normal load, and stress intensity factor can 
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all be expressed in terms of g(x) (see Eq. (2.4)) in a unified manner. This makes the 

harmonic potential function method very advantageous, particularly in treating adhesive 

contact problems. 

In solving an adhesive contact problem, the stress intensity factor needs to be 

evaluated, and the normal load has to be computed. The determination of these quantities 

using Sneddon’s (1965) solution for an axisymmetric punch problem based on the 

Hankel transform method tends to be complex, as reflected in the development of the M-

D model (Maugis, 1992). However, finding these two quantities is rather straightforward 

when using the harmonic potential function method: both the normal load P and the 

stress intensity factor KI can be easily obtained once g(x) has been determined, as 

indicated in Table 2.2. This feature greatly facilitates the formulation of the adhesive 

contact problem, as demonstrated below. 

Figure 2.2 schematically shows an axisymmetric adhesive contact problem with 

an arbitrary adhesive interaction force distribution in the deformed configuration. It is 

 
Figure 2.2. Schematic illustration of an adhesive contact problem.  
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assumed that the punch is rigid and the contact is frictionless. Inside the contact zone (0 

< r < a) the out-of-plane displacement is a given function of r related to the punch shape 

(i.e., ψ(r) =   f(r)), and in the adhesive zone (a < r < c) the surface adhesive interaction 

force is a known function of r (i.e., p(r)). Both f(r) (and thus ψ(r)) and p(r) can be 

arbitrary. 

2.4.1 Solution by Superposition  

The boundary conditions of the adhesive contact problem shown in Figure 2.2 

can be expressed as 
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Based on the superposition principle, this axisymmetric mixed boundary value problem 

(BVP) of elasticity can be decomposed into two simpler BVPs, with the first BVP 

having the boundary conditions: 
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 (2.31a-c) 

and the second BVP having the boundary conditions: 
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Note that Eqs. (2.31a-c) and Eqs. (2.32a-c) are, respectively, the boundary conditions of 

the first type and of the second type discussed in the preceding section (see Eqs. (2.6a-c) 

and Eqs. (2.21a-c)). Hence, the solution of the first BVP is that given in Eqs. (2.10a,b), 
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(2.11a,b) and (2.14a-d), and the solution of the second BVP is that listed in Eqs. (2.24

a,b), (2.25a,b) and (2.27a-c). It then follows from the principle of superposition that the 

solution of the current adhesive contact problem with the boundary conditions expressed 

in Eqs. (2.30a-c) can be obtained from the solutions of the first BVP and the second 

BVP as 
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2.4.2 General Solution of the Adhesive Contact Problem  

The solution obtained above by superposition is not yet complete, and additional 

conditions are needed to close the solution. The “closure” conditions can be either stress 

(pressure profile) continuity (as in the DMT model) or energy minimization (as in the 
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JKR model), but the former is believed to be more natural (e.g., Barthel, 1998). Hence, 

the stress continuity is adopted here as the closure condition.  

To eliminate the stress discontinuity (singularity) at the periphery of the contact 

zone (i.e., at r = a) explicitly shown in Eqs. (2.33b), (2.33g) and (2.33i), it is required 

that KI = 0, as was done in Maugis (1992). This gives, upon using Eq. (2.33d),  

 
2 2 2 20

( ) 1 ( )
.

a

a

af t tp t
dt dt

a t t a






 
 

 
   (2.34) 

Equation (2.34) relates the penetration   to the punch shape function f (r), the adhesive 

interaction force p(r), the contact radius a, and the material properties μ and . 

Then, using Eq. (2.34) in Eqs. (2.33b,c) leads to 
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Note that the normal stress component given in Eq. (2.35a) no longer has singularity at r 

= a.  

Similarly, substituting Eq. (2.34) into Eqs. (2.33e-j) will result in the expressions 

of the in-plane displacement and normal stress components on the contact surface as 
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Equations (2.35a-h) are the expressions of a general solution for the adhesive 

contact problem under consideration, which involves an axisymmetric rigid punch of 
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arbitrary shape (represented by f (r)) and an adhesive interaction force of any profile 

(described by p(r)). Clearly, when p(r)  0 for any value of r (i.e., no adhesion is 

present), Eqs. (2.35a-h) will reduce to those of the solution for the non-adhesive contact 

problem with the BCs of the first type given in Eqs. (2.10a,b), (2.11a,b) and (2.14a-d), 

which includes Sneddon’s axisymmetric punch solution, Boussinesq’s flat punch 

solution, and Hertz’s spherical punch solution as special cases, as demonstrated in the 

previous section.  

For the punch profile, consider a power-law function of the form (e.g., Zheng and 

Yu, 2007): 

 ( ) ,
nr

f r
nQ

  (2.36) 

where n (>0) is a shape index, and Q (>0) is a shape parameter with the dimension of 

[length]
n1

. In particular, when n = 1, Eq. (2.36) represents a cone-shaped punch, with Q 

= tan , where  is the cone angle; when n = 2, Eq. (2.36) approximates a spherical 

punch, with Q = R, the radius of the spherical punch; when n  , Eq. (2.36) 

corresponds to a flat-ended cylindrical punch, with Q = a
 n1

, where a is the radius of the 

contact area, which is the same as the radius of the cylindrical punch. The index n can 

take other positive values to represent other punch shapes (e.g., Segedin, 1957; Sneddon, 

1965; Spence, 1968; Goryacheva and Makhovskaya, 2001; Borodich et al., 2003; 

Woirgard et al., 2008). Hence, this power-law shape function is also called an 

“arbitrary” shape function in the literature (e.g., Zheng and Yu, 2007).   

Using Eq. (2.36) in Eqs. (2.33a), (2.34) and (2.35a-h) will result in 
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where B(·,·) and B(·;·,·) are, respectively, the beta function and the incomplete beta 

function defined by 
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(2.37k,l) 

with the real parts of  and  being positive.  

Equations (2.37a-j) provide explicit expressions of the general solution for the 

penetration, applied load, and non-zero displacement and stress components on the 

contact surface in the frictionless adhesive contact of a power-law axisymmetric rigid 

punch with an elastic half space involving an arbitrary adhesive interaction force. The 

existing models of adhesive contact reviewed in Section 2.1 can all be recovered by this 

general solution as specific/limiting cases, as shown next.   

2.4.3 Reduction from the General Solution 

In the M-D model (Maugis, 1992) and the M-D-n model (Zheng and Yu, 2007), 

the adhesive interaction force distribution of the Dugdale type given in Eq. (2.28) is used 
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to obtain analytical expressions.    

Substituting Eq. (2.28) into Eqs. (2.37a-d) leads to  
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Note that after contact the separation distance (also called the air gap) between 

the punch and the deformed half space surface at r = c is given by 
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Using Eqs. (2.36), (2.38a) and (2.38b) in Eq. (2.39) then leads to  
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where m  c/a. 

The surface energy w, also called the Dupré energy of adhesion as defined near 

Eq. (2.28), represents the work required to separate two surfaces to infinity (Greenwood 
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and Johnson, 1998). That is,  
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where h = h(r) is the separation distance between the two surfaces at position r, and p = 

p(h) is the cohesive stress at r (with p > 0 for a surface pressure as shown in Figure 2.1b 

and Figure 2.2). Using the Dugdale cohesive stress expression (see Eq. (2.28)) in Eq. 

(2.41) then yields, with h(r) = 0 (i.e., no air gap) in the contact area (i.e., 0 ≤ r ≤ a),  

 0 0 ( ),
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w dr h c
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where σ0 is the theoretical strength defined near Eq. (2.28). Note that Eq. (2.42) can also 

be obtained using the Griffith energy criterion, as was done in Maugis (1992). However, 

the current approach is more direct and less confusing than the method based on the 

strain energy release rate (Greenwood and Johnson, 1998; Kim et al., 1998). 

Substituting Eq. (2.40) into Eq. (2.42) results in 
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which provides a relation among the punch shape parameters n and Q, the material 

properties of the indented half space μ, ν and σ0, the contact radius a, and the radius of 

the adhesive interaction zone c. Equation (2.43) can be used to determine the value of c 

when the other parameters are known.  

Equations (2.38b,c) and (2.43) are identical to those provided by the M-D-n 

model of Zheng and Yu (2007), who also employed Sneddon’s (1965) Hankel 
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transform-based solution for an axisymmetric punch problem. That is, the general 

solution obtained in Eqs. (2.37a-j) has recovered the M-D-n model. The M-D-n model 

extends the M-D model of Maugis (1992) for the adhesive indentation of a half space by 

a spherical punch to that by an arbitrary punch represented by a power-law shape 

function.  

Furthermore, when n = 2 and Q = R, Eqs. (2.38a-d) and (2.43) become 
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where use has been made of the results: 
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which are computed from Eqs. (2.37k,l).  

Equation (2.44e) can be rewritten in a non-dimensional form as 
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are non-dimensional parameters, with E
*
  / (1). These two expressions are taken to 

be the same as those introduced by Maugis (1992) to facilitate a direct comparison.  The 

parameter  is directly related to Tabor’s parameter μT through  = 1.16 μT , thereby 

having the same physical interpretation as that of μT (i.e., it is a measure of the ratio of 

the surface elastic deformation to the range of surface forces). The parameter  has been 

used to construct adhesion maps (Johnson and Greenwood, 1997; Yao et al., 2007; 

Zheng and Yu, 2007). However, non-dimensional parameters differing from  or μT have 

also been used by others, and no agreement seems to have been reached about the best 

form of such a parameter (Greenwood, 1997). 

Equations (2.44a,b) and (2.46) are identical to those of the M-D model derived in 

Maugis (1992) (see his Eq. [5.9], Eq. [6.17] and Eq. [6.18]). Hence, the M-D model for 

the adhesive indentation of a half space by a spherical punch has been recovered by the 

general solution given in Eqs. (2.37a-j).  

Moreover, when σ0 is small and m → ∞, Eq. (2.44e) gives 
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which are the DMT results (modified) (Maugis, 1992), including the Hertzian pressure 

distribution as a limiting case as σ0 → 0 (see Eq. (2.18c)). This shows that the DMT 

model has been reduced from the current general solution as a limiting case with small  

and very large m. 

On the other hand, when σ0 is large and m → 1, Eq. (2.44e) yields 
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which are the JKR results (Maugis, 1992; Zheng and Yu, 2007). Thus, the JKR model 

has been recovered from the general solution provided in Eqs. (2.37a-j) as a limiting 

case with large σ0 and m → 1.  

Finally, when m = 1, Eqs. (2.44a) and (2.44b) reduce to Eqs. (2.17) and (2.18a), 

respectively. That is, when there is no adhesive zone, the Hertz model is reduced from 

the current general solution. This agrees with what is discussed earlier in Sections 2.3.1 

and 2.4.2. 

For general punch profiles (that is n is arbitrary), similar to the normalization 

introduced in Eq. (2.47) we can define the following non-dimensional parameters as was 

done in (Zheng and Yu, 2007): 
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Then Eqs. (2.38b,c) and (2.43) can be rewritten as 
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(2.51a-c) 

The above equations provide the relation between the load and depth of 

penetration (all be normalized) for arbitrary punch profiles and this general model is 

called M-D-n model in literature (Zheng and Yu, 2007). Apparently, the above equations 

regenerate the Maugis’ solution when n = 2 and they further reduces to the solutions by 

DMT and JKR model when the parameter Λ approaches zero and infinite, respectively. 

The corresponding results for DMT and JKR model with arbitrary n can be readily 

obtained simply by setting Λ = 0 and Λ → ∞, respectively, in Eq. (2.51). 

2.4.4 Numerical Results  

Last section shows, analytically, the connections between the generalized DMT, 

JKR and M-D models. Here we are going to demonstrate the transition between the 

DMT-n and JKR-n models by using the established M-D-n model for different values of 

the transition parameter Λ. Firstly, we solve Eq. (2.51c) to obtain the value of m 

numerically (the values of the rest parameters in this equation need to be specified first) 

and then substitute the obtained value for m into Eq. (2.51a,b) to evaluate the values of 

  and P .  



 44 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 2.3. Relations between a , P  and   for variou values of  with n = 2 in 

(a), (b), and (c) and n = 3 in (d), (e) and (f). Note in (b), (d), (e) and (f) the Hertz’s 

results and DMT’s are indistinguishible. 
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The relations between a , P  and   for two types of punch profiles (n = 2 and 3) 

are depicted in Figure 2.3. The transition from the JKR model to DMT model is clearly 

observed: with the value of Λ increasing from zero to infinite the M-D-n results deviate 

from the DMT’s and gradually approach the results by JKR model. It is also noticed that 

the discrepancies between the three models (DMT, JKR and M-D) are smaller when the 

punch profile index n is larger.  

Figure 2.4 shows the normalized load P  as function of parameter Λ for various 

values of punch shape index, n. As we seen from Figure 2.4, the difference between the 

P -Λ curves is remarkable when Λ < 1 and is insignificant for Λ > 1.  

 

 
Figure 2.4. Variation of normalized load as function of parameter Λ for different 

punch shapes. 
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2.5 Summary 

A unified treatment of axisymmetric adhesive contact problems is provided using 

the harmonic potential function method for axisymmetric elasticity problems. It is shown 

that this method enables straightforward calculations of the normal load and stress 

intensity factor and leads to a simpler and more consistent formulation of non-adhesive 

and adhesive contact problems. 

A general solution is derived using the harmonic potential function method and 

the superposition principle for the adhesive contact problem involving an axisymmetric 

punch of arbitrary shape and an adhesive interaction force distribution of any profile. 

This solution furnishes analytical expressions for all non-zero displacement and stress 

components on the contact surface, which is different from other solutions. 

The newly obtained solution unifies existing solutions/models for axisymmetric 

non-adhesive and adhesive contact problems in one framework and reveals the 

connections and differences among these solutions/models developed by different people 

using various methods over a long period of time. Specifically, it is shown that the 

current general solution explicitly recovers Sneddon’s solution for the frictionless 

axisymmetric punch problem, Boussinesq’s solution for the flat-ended cylindrical punch 

problem, the Hertz solution for the spherical punch problem, the JKR model, the DMT 

model, the M-D model, and the M-D-n model. 

Finally, it should be pointed out that in the current formulation the adhesive 

normal traction outside the contact area is taken to be an explicit function of position r 

(i.e., p = p(r)). Since the determination of the surface energy w requires knowing the 
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surface separation h = h(r), the Dugdale cohesive zone model with a constant cohesive 

stress that corresponds to a linear interaction potential is used in order to obtain the 

analytical solution. But the present formulation can be extended to more general 

separation laws by following the self-consistent approach of Barthel (1998) who 

employed a non-linear interaction potential and generalized the M-D model. However, 

the resulting solutions based on such non-linear interaction potentials would inevitably 

be numerical.  
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3. SEMI-INFINITE INDENTATION PROBLEMS WITH SURFACE EFFECTS 

 

3.1 Introduction 

The non-conventional behaviors of solids of very small volume is receiving 

growing interest nowadays, e.g. small volume torsion wires (Fleck and Hutchinson, 

1993), plates and bars (Miller and Shenoy, 2000), thin film (Doerner and Nix, 1986; Lim 

and He, 2004) and nano-composites (Duan et al., 2005, Yvonnet et al., 2008). 

Micro/nano-indentation tests have become a widespread technique used to determine the 

material properties at small length scales (Fargesa and Degouta, 1989; McElhaney et al., 

1998; Bei et al., 2005) and the related experiments show that the measured material 

hardness increases with decreasing indenter size (e.g. Stelmashenko et al., 1993; De 

Guzman et al., 1993; Ma and Clarke, 1995; Huang et al., 2010). The classical continuum 

theories cannot explain the indentation size effect (ISE) due to the lack of intrinsic 

material length scale parameters. Other factors such as work hardening, indenter pile-up 

and indenter tip radius effect (see Xue et al. (2002) for a review in this respect) are 

viewed to be partially responsible for the ISE and their effects should be taken into 

account for accurate predictions of material responses taking place at fine scales.  

The theory of strain gradient plasticity pioneered by Fleck and Hutchinson 

(1993) is one dominating approach widely adopted to explain the ISEs and the material 

hardening is attributed to the geometrically necessary dislocations (GNDs) in the bulk. 

The depth-dependent indentation hardness is successfully addressed in a well-cited 

model of Nix and Gao (1998). This model works well for micro-indentation hardness 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DFarges,%2520G.%26authorID%3D24358991100%26md5%3D6f26913784d4093411319c8e0310eb4f&_acct=C000049198&_version=1&_userid=952835&md5=1a284d8715f92022085c8b4d0d446291
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DFarges,%2520G.%26authorID%3D24358991100%26md5%3D6f26913784d4093411319c8e0310eb4f&_acct=C000049198&_version=1&_userid=952835&md5=1a284d8715f92022085c8b4d0d446291
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DDegout,%2520D.%26authorID%3D24358838200%26md5%3Da988f313ec8d3014143c9418dce6307b&_acct=C000049198&_version=1&_userid=952835&md5=3954ee955965d56ba9d9fee6bac9dffd
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DDegout,%2520D.%26authorID%3D24358838200%26md5%3Da988f313ec8d3014143c9418dce6307b&_acct=C000049198&_version=1&_userid=952835&md5=3954ee955965d56ba9d9fee6bac9dffd
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data but overestimates the hardness when indentation depth is at nano-level (e.g. 

Swadener et al., 2002; Feng and Nix, 2004; Qu et al., 2004; Huang et al., 2006). Other 

evidence (e.g. Tymiak et al., 2001; Gerberich et al., 2002) indicates that the strain 

gradient plasticity based theories is insufficient to describe ISEs at very shallow depth.  

The surface energy of solids of macro-dimension is relatively negligible when 

compared to their bulk energy and hence is typically neglected in traditional continuum 

mechanics. However, the ratio of surface energy to bulk energy becomes appreciable for 

fine-scale contact problems and the influence of surface stress on the material responses 

is significant, especially for dimensions below 10 nm (Cammarat, 1994). The theory of 

surface elasticity originated by Gurtin and Murdoch (1975, 1978) accounts for the 

surface effects and contains intrinsic material length scale parameters. Therefore, it can 

be employed to model size effects, particularly when the surface to bulk ratio of the 

associated solid is large. This Gurtin and Murdoch model is quite general in a sense that 

it allows the surface to possess its own elastic constants and stresses by an additional 

constitutive law. Simplified versions of Gurtin and Murdoch model have been used in 

literature to analyze contact problems of a half-space (He and Lim, 2006), of a half-

plane (Wang and Feng, 2007) and of an elastic layer (Zhao and Rajapakse, 2009).  

The present work is intended to examine the contact problems in the context of 

theory of surface elasticity and thereby interpret the ISEs from a viewpoint of 

incorporating surface effects. General models for both the two-dimensional (2D) and 

three-dimensional (3D) contact problem are developed using the complete version of 

surface elasticity of Gurtin and Murdoch (1975, 1978).  



 50 

3.2 Surface Elasticity  

The nature of chemical bonding of the surface atoms differs from that of interior 

atoms and the surface atomic structure changes relative to the bulk so that the structural 

equilibrium is maintained (Thomson et al., 1986; Cammarata, 1994). As a result, the 

physical properties near a surface are sensibly different from those of the bulk interior. 

Surface energy, which is the reversible work to isothermally create an element area of a 

new surface (Cammarata and Sieradzki, 1994; Maugis, 2000, pp28), is used as a 

measurement of chemical bonding near a surface. For a fluid, surface energy is identical 

to surface tension, but they are not equal for solids unless the surface energy is 

deformation independent. An equation that relates the surface tension to the surface 

energy Γ (energy per unit area) of a solid was first suggested by Shuttleworth (1950) and 

Herring (1951), which now has the following form (Cammarata, 1994; Cammarata and 

Sieradzki, 1994) 

 . 



 



  


 (3.1) 

Therein, ταβ and εαβ are, respectively, the components of surface stress and infinitesimal 

surface strain, and δαβ is Kronecker delta. Throughout the paper, the usual summation 

convention is adopted for repeated indices with the Greek indices running from 1 to 2 

and the Latin ones taking 1 through 3, unless otherwise indicated. 

A constitutive equation that incorporates the surface stress was proposed by 

Gurtin and Murdoch (1975). According to the Gurtin and Murdoch model, the surface is 

treated as a negligibly thin membrane with distinct material properties that adheres to the 
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underlying bulk material without slipping. This general theory is also applicable to 

describe the mechanical behaviors of an elastic substrate coated with a thin film of 

another material (Gurtin and Murdoch, 1978).  

The classical theory of elasticity holds valid for the bulk solid, that is, the 

equilibrium and constitutive equations read: 

 
, 0,

2 ,

ij j i

ij kk ij ij

b

   

 

 
 (3.2) 

where bi is the body force, εij is the infinitesimal strain given by  

  , ,

1
,

2
ij i j j iu u    (3.3) 

with ui being the displacement components, and μ and λ are the standard Lamé constants 

related to elastic modulus E and Poisson’s ratio ν  by 

 , .
2(1 ) (1 )(1 2 )

E E
 

  
 

  
 (3.4) 

According to the surface elasticity of Gurtin and Murdoch (1975, 1978), the 

classical governing equations are coupled with surface equations, resulting in non-

standard boundary conditions (BCs) involving the surface stresses which have the 

following form (Miller and Shenoy, 2000; Koguchi, 2003; Wang and Feng, 2007; Zhao 

and Rajapakse, 2009)
‡
:  

 
, ,

,ij i j

n

n n k

   

 

 

 

 


 (3.5) 

                                                 
‡ This two equations can be found in Zhao and Rajapakse (2009) and Wang and Feng 

(2007) and similar equations are also seen in Miller and Shenoy (2000, Eq. (4)), Yang 

(2004) and Koguchi (2003).  
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on the free surface of the substrate. In Eq. (3.5) k is the surface curvature tensor, n is the 

outward unit normal to the surface/interface and the surface stress components ταβ are 

given by (Gurtin and Murdoch, 1975, Eq. (L); 1978, Eq. (2)) 

 
0 0 0 0 0 02( ) ( ) ( ) .S S

Str           I I I u    (3.6) 

Therein, μ0 and λ0 are the surface Lamé constants, τ0 is the residual surface stress, and ε
S
 

is the surface strain tensor given by (Povstenko, 1993)
§
 

  
1

( ) ,
2

S T

S S
       I n n u u  (3.7) 

with I being the identity tensor and S  the surface gradient operator
**

. By using the 

standard index notation, one can rewrite Eqs. (3.6) and (3.7) as   

 

   

0 0 0 0 0 0 , ,

, , , ,

2( ) ( ) ( ),

1
.

2

S S

ij ij ij kk ij i j j k i k

S

ij ik i k k j j k l j k l k j l

u n n u

n n u u n n u n u

          

 

      

     
 

 (3.8) 

In general, the surface elastic moduli (namely, μ0 and λ0) vary over the surface with the 

change in surface tension (Povstenko, 1993). For simplicity, they are assumed to be 

constant in this work.  

For an elastic body occupying the half-space (x3 > 0), the surface equilibrium 

equations and the surface stress components given by Eq. (3.8) are (e.g., Gurtin and 

Murdoch, 1978) 

                                                 
§
 This definition differs from that provided in Gurtin and Murdoch (1975). However, 

both of them lead to Eq. (3.9b). 
**

 The surface gradient of a scalar is given by: ( )Su u u   n n . 
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 

 
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 (3.9) 

Equation (3.9b) with μ0 = λ0 = 0 is the simplified surface constitutive equation employed 

by He and Lim (2006) to derive fundamental solutions for an elastic half-space. 

It follows from Eq. (3.9) that the conventional traction-free BCs for a semi-

infinite solid are  

 
3 3

3 3 3

33 0 3,0 0

3 0 0 , 0 ,0 0 0

,
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  

 
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 (3.10) 

and they become (by setting the partial derivatives with respective to x2 as zero) 

 
3 3

3 3

33 0 3,110 0

13 0 0 1,110 0

,

(2 ) ,

x x

x x

u

u

 
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 

 

 

  

 (3.11) 

in the case of a semi-infinite plane. In arriving at Eqs. (3.10) and (3.11), it has been 

assumed that parameters μ0, λ0 and τ0 are deformation independent. These BCs can be 

easily modified to include prescribed boundary tractions.  

Equations (3.10) and (3.11) provide, respectively, the general BCs for an elastic 

half-space and half-plane with free surfaces in the context of surface elasticity of Gurtin 

and Murdoch (1975, 1978). BCs other than Eq. (3.10) have been used in literature, e.g., 

He and Lim (2006), Wang and Feng (2007) and Zhao and Rajapakse (2009). The models 

employed by He and Lim (2006) and Wang and Feng (2007) only include the residual 

surface stress and lead to the same BCs for the problem of a semi-infinite medium, i.e., 
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3 0   and 
33 0 3,u    . On the other hand, the surface moduli (μ0 and λ0) are 

included in the formulations in Zhao and Rajapakse (2009). However, the surface 

curvature u3,αα is assumed to be zero as was done in Miller and Shenoy (2000).  

Note that in each of the aforementioned models certain simplifications were 

made and the BCs are not exact. In the current work, the general BCs are formulated 

using the general surface elasticity theory of Gurtin and Murdoch (1975) and the only 

assumption being made is that μ0, λ0 and τ0 are deformation independent.  

 

3.3 Papkovitch-Neuber Potential Functions 

The technique of integral transforms is very desirable in attacking higher order 

partial differential equations (PDEs) in that it enables one to obtain the solutions by 

manipulating algebraic equations in the transformed domain. This method is particularly 

powerful when associated with the used of potential functions. A monograph on the 

development of assorted potential functions is presented in Sternberg (1960) and the 

readers can refer to Truesdell (1959) for the bibliography of stress functions as well as a 

short note by Mindlin (1936) for the relations between different types of potential 

functions. The Papkovitch-Neuber (P-N) representation which contains a vector 

potential Ψ and scalar potential Φ is employed to solve the current half-space problem.  

The displacement field in terms of P-N functions is given by (e.g., Ling et al., 

2002, pp71) 

 
,

1
( ) .

4(1 )
i i j j iu x


    


 (3.12) 

https://springerlink3.metapress.com/content/?Author=C.+Truesdell
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Upon use of Eq. (3.12) it can be shown that the Navier’s equation is reduced to  

 2 ,i ib     (3.13) 

so far as the scalar function Φ satisfies  

 2 ,i ix b    (3.14) 

where x is the position vector of a field point. Apparently, Ψi and Φ are harmonic 

functions when the body forces are absent, i.e.,  

  2 20 and 0.i       (3.15) 

The problems of a half-plane and of a half-space subjected to boundary normal 

forces are illustrated in Figure 3.1. The body forces are assumed to be absent through the 

discussion. The coordinate system is chosen such that the xy-plane coincides with the top 

bounding surface and its origin is at the geometry center of the distributed load.  

For a semi-infinite solid subjected to a normal force, the vector potential Ψ takes 

  
(a)  (b)  

Figure 3.1. An elastic half-plane (a) and an elastic half-space (b) subject to the 

distributed normal forces. 
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the form (0, 0, Ψ3) and consequently, we have from Eq. (3.12) 
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 (3.16) 

Using Eq. (3.16) in Eq. (3.2b) then gives the stress components as  
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 (3.17) 

where summation is not applied on α in Eq. (3.17b) and Eq. (3.15) has been used in 

arriving at Eq. (3.17).  

Similarly, using Eq. (3.16) and Eq. (3.15) one obtains  
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 (3.18) 

Then by using Eqs. (3.17) and (3.18) in Eq. (3.10) whilst taking x3 = 0, the non-standard 

BCs are expressed in terms of potential functions as  
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 (3.19) 
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where it is defined that  

 0 0 02
, ,

  
 

 


   (3.20) 

and p denotes the normal pressure function and is positive for compressive forces. 

Integration with respect to xα has been performed in arriving at Eq. (3.19b) and the 

constant of integration is taken to be zero
††

. It is of practical interest to note that both η 

and χ have dimensions of length characterized by the surface mechanical properties (τ0, 

λ0 and μ0) and thus can be interpreted as intrinsic material length scale parameters.  

Equation (3.19) provides the general BCs for semi-infinite contact problems in 

terms of the P-N functions and applies to the problems of a half-plane and of a half-

space subjected to boundary normal forces.  

 

3.4 Fourier Transform 

The method of Fourier transform is widely used in literature to solve boundary 

value problems in solid mechanics. A successful treatment of axisymmetric contact 

problems was presented by Harding and Sneddon (1945) using Hankel transform and a 

biharmonic function (known as Love function or Galerkin vector). Recently, this Hankel 

transform based formulation was adopted by Zhao and Rajapakse (2009) to solve contact 

problems with consideration of surface effects.  

The Fourier transforms and P-N functions are employed in the current approach 

to formulate the semi-infinite contact problems. The standard Fourier transform and 

                                                 
††

 Analogous argument can be found in Ling et al. (2002, pp84). 
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double Fourier transform are used, respectively, for the half-plane and half-space contact 

problems.  

The standard Fourier transform pair is  
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whereas the double Fourier transform pair reads  
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where the overhead bar denotes a function in the transformed space.  

For the harmonic functions Ψ3 and Φ, the application of Fourier transform leads 

to  
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whose general solutions are  

 3 3 3 3
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Herein 
2

     and equals to 2  and 
2 2

1 2   for 2D and 3D contact problems, 

respectively. The unknowns A, B, Aʹ, and Bʹ, in general, are functions of ξ and are to be 

determined from the BCs. Since it has been of our attention to solve semi-infinite 

problems, we should have  

 3 3
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x x

Ae Be
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such that 
3  and   converge at x3 → ∞. The potential functions Ψ3 and Φ are then 

obtained by using the inverse Fourier transform to be 

 1 3 1 3i i
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1 1
,
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x x x x
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as for the half-plane problems, and 
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as for half-space problems.  

As shown in the Appendix, simpler integral forms can be obtained for double 

inverse Fourier transforms when the coordinate transform is used along with Bessel 

functions.  

When f  is θ-independent, it can be shown that  
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where 2r x x  . Also, one can show that  
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Equation (3.28) provides the link between Fourier transforms and Hankel 

transforms and is used to evaluate the displacements and stresses in the space domain. 

Note that Eqs. (3.28c,d) are used to calculate σαβ, which are not discussed in this work.  
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3.5 General Solutions 

The general solution for a semi-infinite medium subjected to a prescribed surface 

pressure is sought by using the BCs in Eq. (3.19) and the potential functions given in 

Eqs. (3.26) and (3.27). 

Substituting Eq. (3.27) into Eq. (3.19) yields  
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the solution of which is given by 
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where  
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If A and B are to be well-defined in the entire Fourier domain it is then required that 

0 0   and 0 02 0   .  

The expression for p  can be readily obtained once the surface pressure is given. 

For instance, p P when the imposed boundary load is a concentrated force of 

magnitude P, i.e., p(x) = Pδ(x); and 
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when a uniformly distributed pressure of intensity q0 is applied over the region |x1| ≤ a 

(as for 2D) and r ≤ a (for 3D), respectively. 

In case of symmetric (2D case) or axisymmetric (3D case) loading, p  is an even 

function of ξ. Accordingly, A and B given in Eq. (3.30) are even functions of ξ. This 

permits the use of Fourier cosine transform for potential functions:  
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Similarly, for the axisymmetric contact problems use of Eq. (3.28a) gives 
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Then it follows from Eqs. (3.16) and (3.17) that the displacement and stress field 

are 
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for the 2D contact problem with symmetrical load distribution, and  
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for the axisymmetric contact problems, where  
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As seen from Eqs. (3.36) and (3.37), the 2D and 3D solutions given in integral forms are 

analogous – with sin(ξx1) corresponding to ξJ1(ξr) and cos(ξx1) to ξJ0(ξr). This 

correspondence property enables one to attack the 2D and 3D problems of similar kind 

in a unified manner.  

Equations (3.35) and (3.36) provide, respectively, the general solutions for 

contact problems of an elastic half-plane and of an elastic half-space based on the 

surface elasticity of Gurthin and Murdoch (1975). These results apply to symmetric (as 

in 2D cases) and axisymmetric (as in 3D cases) contact problems, and the classical 

solutions can be recovered from the newly derived solution as special cases wherein the 
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surface effects are neglected.  

In contact mechanics, the surface displacements and stresses are of prime interest 

and are therefore examined. By setting x3 = 0 in Eq. (3.35) and (3.36), we find on the 

surface x3 = 0 of a half-plane the current results deviate from its classical counterparts by  
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and for the problems of a half-space they become  

 

1 10 0

3 2 00 0

2

3 3 10 0

2

33 4 00 0

( ) ( ) ( ) ,
2

1
( ) ( ) ( ) ,

2

( ) ( ) ( ) ,
2

1
( ) ( ) ( ) ,

2

s

z

s

z

s

z

s

z

x
u g p J r d

r

u g p J r d

x
g p J r d

r

g p J r d







    

    

     

     

































 (3.39) 

where  
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(3.40a,b) 
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In Eqs. (3.38) and (3.39) the superscripts ‘c’ and ‘s’ denote, respectively, the classical 

solution and the departure between the newly derived solution and its classical 

counterpart. Clearly, gi(ξ) = 0 (i = 1, 2, 3, 4) in the absence of the surface effects and the 

surface elasticity-based solution becomes identical to the classical one.  

Provided 0 0   and 0 02 0   , one shall have from Eqs. (3.38)-(3.40) that 

g1(ξ) > 0, g2(ξ) < 0, g3(ξ) < 0 and g4(ξ) > 0, which imply that incorporating surface 

effects results in smaller displacements and normal stress, but non-vanishing shear 

stresses on the bounding surface. Besides, the influence of surface effects are more 

pronounced when the values of 0  
and 0 02   larger.  

 

3.6 Illustrative Examples 

Representative problems are selected for demonstration of the potential 

applications of the current solution as well as to assess the influence of the surface 

effects on the responses of the semi-infinite solids.  

3.6.1 Concentrated Vertical Force 

Determination of the stress state in an isotropic elastic half-space subjected to a 

concentrated force acting normally to the plane surface was first studied by Boussinesq 

(1885). The Boussinesq problem is one of the most celebrated problems in classical 
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elasticity, and as a fundamental solution has found numerous applications in contact 

mechanics. Different approaches have been made to solve the Boussinesq problem, such 

as potential theory, combinations of dipoles and integral transform techniques 

(Selvadurai, 2007).  

As mentioned near Eq. (3.32), p P  when p represents a concentrated force of 

magnitude P. By setting χ = κ1 = κ2 = 0 and p P  in Eq. (3.34) one obtains the classical 

solutions of P-N functions for Boussinesq problem as  
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where 
2 2 2

3 i iR r x x x   . The solution given by Eq. (3.41) is in agreement with the 

known results obtained by Mindlin (1953) using a different approach. The displacement 

field and state of stress for Bousinessq problem are readily obtained by using Eq. (3.41) 

in Eq. (3.17).  

In the presence of surface effects, by replacing p  with P in Eq. (3.36) we have  
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 (3.42) 

for the Boussinesq Problem. The displacements on the plane x3 = 0 can be subsequently 

deduced by setting x3 = 0 in Eq. (3.42). 

Equation (3.42) provide the fundamental solution to the Boussinesq problem 

based on the theory of surface elasticity. Unlike the classical solution, the displacement 
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field now is dependent on the surface parameters through functions hi(x3, ξ) given in Eq. 

(3.37). Besides, the displacement field obtained by He and Lim (2006) can be recovered 

from Eq. (3.42) as a special case with χ = 0 and ν = 0.5.  

The surface effects on the elastic field are then examined for η and χ taking 

different values and the results are displayed in Figure 3.2. The solid blue lines with η = 

χ = 0 correspond to the classical elastic solution which does not consider surface effects. 

The well-known displacement singularity and discontinuity at the point of the 

application of force are alleviated when the surface effects are incorporated and the 

magnitudes of displacements near the loading point are markedly smaller than the 

corresponding classical results. The current prediction of vanishing in-plane 

displacements at the loading point is more physical than the classical solution (e.g., 

Georgiadis and Anagnostou, 2008). 

It is further noticed that the influence of the surface parameter χ is significant on 

  
(a) (a) 

Figure 3.2. Surface effects on the surface displacements for the Bausinessq’s problem. 
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the in-plane displacements, but is negligible on the out-of-plane displacement. On the 

contrary, all surface displacements rely heavily on the residual surface stress τ0 and their 

magnitudes drop considerably with increasing τ0.  

3.6.2 Uniformly Distributed Pressure 

Next we consider a semi-infinite elastic solid subjected to a uniformly distributed 

normal load over the region r < a on the plane x3 = 0. Substituting Eqs. (3.32a) and (3.32

b) respectively into Eqs. (3.35) and (3.36) gives 
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for the half-plane problem, and  
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for the half-space problem.  

In a similar fashion one can recover the classical solution for the half-plane 

problem considered here by setting χ = κ1 = κ2 = 0 in Eq. (3.43) and by knowing (e.g., 

Georgiadis and Anagnostou, 2008)  
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where sgn(·) is the signum function. In addition, the solution derived by Wang and Feng 

(2007) is reproduced as a particular case in which the surface elastic moduli (μ0 and λ0) 

are treated as zero. 

The classical solution for the associated half-space problem can be regenerated 

from Eq. (3.44). For instance, along the x3-axis (r = 0) one finds uα = 0 and  
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which are in agreement with the known classical solution (e.g., Ling et al., 2000, pp90). 

Figure 3.3 shows the surface displacements and stresses of a half-plane subjected 

to a uniformly distributed load and those for the half-space are displayed in Figure 3.4. 

Various values of η and χ are taken to assess their influences on the mechanical 

response. One can conclude from these figures that: 

1)  The sharp edges encountered in classical results disappear when the surface 

effects are considered, and u1 and σ33 change smoothly across the loading boundary. 

2)  Inside and near the loading zone, the magnitudes of the out-of-plane 

displacement (u3) and stress (σ33) decrease noticeably as the value of η increases. 

However, their dependences on χ are seen to be insignificant.  

3)  The magnitude of σ33 is considerably smaller inside the loading area and larger 

near the contact zone when it is compared with the classical result. Such difference is 
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mainly attributed to the residual surface stress included in the current model.  

4)  Surface shear stresses do not vanish in case χ ≠ 0 and under this condition their 

magnitudes decrease with increasing values of η.  

  

  
(a) (b) 

  
(c) (d) 

Figure 3.3. Surface displacements and stresses of a half-plane acted by a uniform 

pressure of intensity q0 on the region of – a < x1 < a. 
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3.7 Axisymmetric Contact Problems with Surface Effects 

Axisymmetric contact problems have been extensively studied since the 

investigations conducted by Boussinesq (1885) and Herzt (1882) in the late 1800s. A 

  
(a) (b) 

  
(c) (d) 

Figure 3.4. Surface displacements and stresses of a half-space acted by a uniform 

pressure of intensity q0 on a circular region of radius a. 
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landmark achievement was made by Sneddon (1965) who obtained explicit solutions for 

the problems of contact between a semi-infinite solid and a punch of arbitrary profile by 

means of the Hankel transform and the theory of dual integral equations.  

3.7.1 Boussinesq’s Flat-Ended Punch Problem 

The state of stress in an elastic half-space indented by a rigid punch was first 

studied by Boussinesq (1885) using the method of potential theory. According to his 

solution, the contact pressure under the flat-ended punch has the form  

 2 2 1/2

0( ) ( ) ,p r q a r 

    (3.47) 

and is undefined at the periphery of the contact zone. Herein, the subscript ‘∞’ is used to 

denote the flat-ended profile (related discussion can be found in S.-S Zhou et al. (2011)). 

Then we find  
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with the knowledge of the integral identity 2 2 1/2
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The displacement and stress fields can be readily obtained by inserting Eq. (3.48) 

into Eq. (3.36). The surface displacements and stresses can be subsequently computed by 

setting x3 = 0 in the obtained results. For contact problems, the depth of penetration of 

the punch tip δ (also called indentation depth) is an important quantity (e.g. S.-S Zhou et 

al., 2011). Substituting Eq. (3.48) into Eq. (3.36b) while taking with x3 = 0 and r = 0 

yields 
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3.7.2 Spherical Punch – Hertz Problem 

Contact of two elastic solids was first studied by Hertz (1882) using classical 

elasticity. Hertz’s solution for the frictionless and non-adhesive contact of two elastic 

spheres has led to numerous applications in contact mechanics.  

The profile of the spherical indenter can be approximated by f (r) = r
2
/2R if its 

radius is considerably larger than the contact radius a, and the pressure distribution 

under the indenter is given by (e.g., Barber, 2002) 

 2 2

2 0( ) .p r q a r   (3.50) 

It is not difficult to show that 

  3

2 0( ) 2 sin( ) cos( )p q a a a        (3.51) 

by knowing 2 2

0
0

( ) sin cos
a

r a r J r dr a a a   .  

The elastic field are readily obtained by use of Eq. (3.51) in Eq. (3.36). Setting r 

= 0 in the obtained expression for u3, one finds   

  2

2 0 2
0

(0, ) sin( ) cos( ) .q h a a a d       


   (3.52) 

3.7.3 Conical Punch  

For a conical shaped punch, the pressure distribution inside the contact zone has 

the form (e.g. Sneddon, 1965) 

 1

1 0( ) cosh .
a

p r q
r

  (3.53) 

The Fourier transform then yields  

  2

1 0( ) 2 1 cos( ) ,p q a      (3.54) 
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arriving at which the definition of 1 2 1/2cosh ln[ ( 1) ]x x x    , integration by parts and 

the integral identity  2 2 1/2

1
0

( ) ( ) 1 cos
a

a a t J t dt a    
has been used.  

Similarly, we find 

  1

1 0 2
0

(0, ) 1 cos( ) .q h a d     


   (3.55) 

For the aforementioned punch problems, their respective classical solutions for 

the surface displacements and stresses can be reproduced with the aid of integral 

identities (e.g., Maugis, 2000, pp403):  

 

0 0
2 2 2 20 0

1 1
2 2 2 20 0
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t r r t

tH r t tH t r
t J r d t J r d

rr r t r t r

     

     

 

 

 
 

 

 
  

 

 

 

 (3.56) 

Variation of displacements and stresses on the surface for different punch 

profiles are depicted in Figures 3.5, 3.6 and 3.7. The classical solution is recovered from 

the newly derived solution as a particular case with η = χ = 0 and is provide for 

comparison purpose. Similar observations to those discussed in the previous section are 

made: the newly derived solution predicts smaller surface displacements and a smoother 

normal stress profile; the current results converge to the classical ones at far distance 

away from the loading area; and the parameter η has a more significant impact on the 

mechanical response than χ does. 
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(a) (b) 

 
 

(c) (d) 

Figure 3.5. Surface displacements and stresses of a half-space subjected to the 

Boussinesq pressure distribution. 
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(a) (b) 

  
(c) (d) 

Figure 3.6. Surface displacements and stresses of a half-space subjected to the Hertzian 

pressure distribution. 
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(a) (b) 

  
(c) (d) 

Figure 3.7. Surface displacements and stresses of a half-space subjected to the conical 

punch pressure distribution. 
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0

2 ( ) .
a

P p r rdr   (3.57) 

For Boussinesq pressure distribution (flat-ended punch), Hertzian pressure profile 

(spherical punch) and conical punch pressure distribution, the applied loads are obtained 

to be   

 3 2

0 2 0 1 0

2
2 ,   and .

3
P aq P a q P a q       (3.58) 

The indentation hardness is usually defined as the mean pressure exerted by the 

indenter at the maximum load (e.g., Fargesa and Degouta, 1989; McElhaney et al., 1998; 

Qu et al., 2004). Here, the parameter defined as (e.g., Wang and Feng, 2007)  

 
P

H


  (3.59) 

is adopted as a measure of the hardness of the indented material.  

If the surface effects are ignored, use of Eq. (3.49), (3.52) or (3.55) in Eq. (3.59) 

leads to  

 
2 1

4 8 2
, , .

)

c c ca a a
H H H

  

  
   

  
 (3.60) 

Upon reaching Eq. (3.60) use has been made of the following integral identities: 

 
2 30 0 0

1 1 1
sin , (1 cos )  and (sin cos ) .

2 2 4
tdt t dt t t t dt

t t t

    

        (3.61) 

When the surface effects are accounted, the indentation hardness for each of the 

three pressure profiles is found to be related to the conventional results by  

 
0

2
1 ( , )sin

cH
a t tdt

H









    (3.62a) 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DFarges,%2520G.%26authorID%3D24358991100%26md5%3D6f26913784d4093411319c8e0310eb4f&_acct=C000049198&_version=1&_userid=952835&md5=1a284d8715f92022085c8b4d0d446291
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DFarges,%2520G.%26authorID%3D24358991100%26md5%3D6f26913784d4093411319c8e0310eb4f&_acct=C000049198&_version=1&_userid=952835&md5=1a284d8715f92022085c8b4d0d446291
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for the Boussinesq pressure distribution, 

 

22

0
2

4
1 ( , ) (sin cos )

cH
a t t t t t dt

H





  

 
(3.62b) 

for the Hertzian pressure profile, and   
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0
1

2
1 ( , ) (1 cos )

cH
a t t t dt

H





  

 
(3.62c) 

for the conical punch pressure distribution, where 

 
1 2

2

1 2
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)
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( , ) .

1

a a a

a a

t
a t

t t

 


 





  


 
 (3.63) 

By Eq. (3.63) we have φ(a,t) → 0 if the contact radius a is considerably larger than the 

parameters η and χ, which are typically on the order of microns, and hence the formulae 

given in Eq. (3.62) become identical to the classical ones. However, when the magnitude 

of a is close to those of η or χ, the integrals on the right hand side of Eq. (3.62) become 

significant, thereby leading to an indentation hardness H that deviates substantially from 

the classical one.  

The size-dependency of indentation hardness is clearly demonstrated in Figures 

3.8 and 3.9. Including surface effects leads to a significant increase in the indentation 

hardness for all pressure profiles considered when the contact radius is small. Residual 

surface stress is found to have a dominant effect on H-curves, while the influence of the 

parameter χ is negligible. The profile of the H-curve shown in Figure 3.8 is in good 

agreement with the trends exhibited by experimental data presented in Ma and Clark 

(1995), Tymiak et al. (2001) and Gerberich et al. (2002).  
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(a) (b) 

 
(c) 

Figure 3.8. Variation of the indentation hardness with the contact radius for different 

pressure profiles: (a) flat-end, (b) spherical and (c) conical.  
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Figure 3.9. H-curves for different punch profiles (with χ = 0 and η / l = 2). 
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displacement discontinuity and singularity existed in the classical solutions are alleviated 

when the surface effects are incorporated. The in-plane displacements decrease 

remarkably as parameter χ increases. However, the out-of-plane displacement and stress 

components remain largely unaffected as χ changes, which indicates that the simplified 

models considering the residual surface stress (e.g., He and Lim, 2006; Wang and Feng, 

2007) can be satisfactorily applied to calculate out-of-plane displacement and stress.  

The well-known indenter size effect at fine scale is predicted by the current 

solution. It is demonstrated that including the surface effects results in increased 

indentation hardness as indenter size decreases and the trend of the profile of the 

hardness curves are in good agreement with existing experimental observations.  



 82 

4. GENERALIZED CERRUTI’S PROBLEM WITH SURFACE EFFECTS 

 

4.1 Introduction 

The size-dependency of material responses at small length scales has become an 

important research area, such as the indentation size effect observed in micro/nano-

indentation tests (e.g. Stelmashenko et al., 1993; De Guzman et al., 1993; Ma and 

Clarke, 1995). Size-dependent behaviors cannot be satisfactorily explained by classical 

elasticity based models due to the lack of material length scale parameters. A number of 

new theories/models have thus been proposed to simulate the small-scale structures, like 

the JKR adhesive contact theory (Johnson et al., 1971), surface elasticity (Gurtin and 

Murdoch, 1975, 1978), and higher order elasticity theories (Toupin, 1962; Koiter, 1964; 

Mindlin, 1964). Unlike the classical scale-free continuum theories, the afore-mentioned 

theories contain inherent material lengths and can account for the size effects.  

The Cerruti’s problem is a fundamental problem in solid mechanics that deals 

with the deformation of a semi-infinite elastic solid loaded by a concentrated tangential 

force on its bounding surface. This problem has been extensively studied by different 

lines of approach in the context of classical elasticity (e.g., Johnson, 1985, pp68-70). The 

nonlocal Cerruti’s problem was solved by Nowinki (1992) using the twin gradient theory 

of Westergaard (e.g., Ling et al., 2002) and the existing nonlocal solution of Kelvin’s 

point force problem. Recently, the classical Boussinesq’s and Cerruti’s problems were 

extended by Barbot and Fialko (2010) to include a restoring buoyancy condition at the 

surface.  
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The theory of surface elasticity of Gurtin and Murdoch (1975, 1978) has been 

successfully implemented to interpret the size dependent deformation of solids (e.g. He 

and Lim, 2006; Wang and Feng, 2007; Zhao and Rajapakse, 2009). The problem of 

Cerruti was studied for an incompressible medium by He and Lim (2006) using a 

simplified version of the surface elasticity that retains only the surface residual stress.  

In the present study, the Cerruti’s problem is solved by using the original surface 

elasticity theory of Gurtin and Murdoch (1975, 1978). The resulting solution is valid for 

both incompressible and compressible materials.  

 

4.2 Problem Statement  

In this work we shall be concerned with the analysis of the stress and 

displacement fields in a half-space induced by uni-directional surface tangential forces, 

as illustrated in Figure 4.1. A Cartesian coordinate system is introduced and, as a 

 
 

(a)  (b)  

Figure 4.1. Schematics of the generalized Cerruti’s problem: (a) two-dimensional and 

(b) three-dimensional. 
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convention, the x3-axis is taken as the axis of revolution of the solid and the x1x2-plane as 

the free surface. Without loss of generality, it is assumed that the surface tangential 

forces act in the x1-direction. Through the discussion, stress components will be denoted 

by σij while the components of displacement will be taken as ui. The Einstein summation 

convention is adopted for repeated indices, with each Greek index running from 1 to 2 

and the Latin one from 1 to 3, unless otherwise indicated. 

The framework for elastic deformations with surface effects was established by 

Gurtin and Murdoch (1975, 1978), who treated the surface as a two-dimensional 

membrane with its material properties differing from those of the bulk material. The 

influence of surface effects on the material response is most pronounced when the 

surface energy to the bulk energy ratio of the associated solid is large (Cammarat, 1994). 

For macroscopic structures the stresses and strains attributable to the surface effects are 

negligible and the surface effects are typically ignored. 

The non-standard boundary conditions (BCs) in the context of surface elasticity 

has been discussed in Section 3 and for a half-space (occupying x3 > 0) subjected to 

prescribed traction t on the bounding surface the corresponding BCs can be written as  

 
3 3

3 3 3
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3 0 0 , 0 ,0 0 0
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 (4.1) 

which become  
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 (4.2) 
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for the cases of a half-plane occupying x3 > 0. In Eqs. (4.1) and (4.2), τ0 is the surface 

residual stress, μ0 and λ0 are the surface Lamé constants.  

 

4.3 Two-Dimensional Cerruti’s Problem 

Consider the elastostatic deformation of a half-plane subjected to a surface 

tangential traction t(x1), as shown in Figure 4.1a. The Airy’s stress function is very 

preferable in attacking two-dimensional elastic problem in that it breaks the very 

problem to a tractable potential problem (Barber, 2002, pp42-43). The stresses and 

displacements can all be expressed in terms of the Airy’s stress function G (a biharmonic 

potential) as (e.g., Selvadurai, 2000, pp131-132)
 ‡‡
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 (4.3) 

where ν is Poisson’s ratio, μ and λ are Lamé constants of the bulk material, and variables 

with overhead bars indicate that the Fourier transforms has been applied.  

Vanishing stresses at x3 → ∞ requires that the solution of the biharmoic function 

in the Fourier domain take the form 

                                                 
‡‡

 Note that the form of the Fourier transform pair used in Selvadurai (2000) is different 

from that adopted in Section 3.  
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 3 | |

3( ) ,
x

G A Bx e


   (4.4) 

where the unknowns A and B are either arbitrary functions of ξ or constants to be 

determined from the BCs. 

Substituting Eqs. (4.3) and (4.4) into the BCs listed in Eq. (4.2) (with t2 = t3 = 0, 

t1 = t) gives  
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 (4.5) 

where  
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Note that each of the two material constants, η and χ, has a dimension of length 

characterized by four elastic properties of the solid (one from the bulk and three from the 

surface) and therefore can be regarded as intrinsic material length scale parameters.  

The solution of Eq. (4.5) is given by 
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 (4.7) 

with 

   3
1 2 4

(1 ) , ( ) .            (4.8) 

In order to take advantage of the Fourier cosine/sine series it is natural to 
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consider the cases wherein the magnitude of surface tangential load is symmetric. The 

expressions for A and B given in Eq. (4.7) are seen to be odd functions of ξ under this 

condition. Consequently, using Eqs. (4.4) and (4.7) in Eq. (4.3) and applying the Fourier 

cosine/sine transforms yield 
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 

 

 

 

3

3

3

3

3
1 3 2

1 2

3
2 3 2

1 2

3
3 3 2

1 2

3
4 3 2

1 2

4(1 ) (3 4 ) (2 )
( , ) ,

4 1

2(1 2 ) (2 )
( , ) ,

4 1

2 2(1 ) (2 )
( , ) ,

2 1

(1 2 ) (2 )
( , ) .

2 1

x

x

x

x

x
g x e

x
g x e

x
g x e

x
g x e









    


    

  


    

   


    

  
 

    









    


 

  


 

   
 

 

  


 

 (4.10) 

The surface stress and displacement components can be directly obtained from 

Eqs. (4.9) and (4.10) by setting x3 = 0. The results read 
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 (4.11) 

The classical elasticity-based solution be readily recovered from the current 

solution given in Eq. (4.9) by neglecting the surface effects. For instance, we have t T

for a concentrated tangential force of magnitude T. Replacing t  by T and setting η, κ1 

and κ2 equal to zero in Eq. (4.9) one obtains  
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 (4.12) 

where 2 2 2

1 3x x   . These results recovered from the current solution are the same as 

the known classical ones (e.g., Johnson, 1985, pp18; Selvadurai, 2000, pp150). 

The influence of surface effects for the 2D Cerruti’s problem is examined for 

different values of η and χ. The results depicted in Figure 4.2 show that changing χ has a 

significant effect on all the surface quantities with the magnitudes of displacements and 

shear stress decreasing as χ increases. On the other hand, η has a negligible influence on 

the in-plane displacement and stress (u1 and σ13), but its impact on the out-of-plane 

displacement and stress (u3 and σ33) is noticeable.  
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(a) (b) 

  
(c) (d) 

Figure 4.2. Surface displacements and stresses in an elastic half-plane induced by a 

concentrated tangential force. Herein the parameter a can be viewed as a scaling factor. 
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(P-N) potential functions, consisting of a harmonic vector potential B = (B1, B2, B3) and 

a harmonic scalar potential B0, are adopted to formulate the solution. In the absence of 

body forces, the displacement components in a solid can be expressed in terms of the 

harmonic potentials as (e.g., Ling et al., 2002, pp71) 

 
0 ,( ) ,

2
i i j j iu B x B B


    (4.13) 

where 
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2 2(1 )
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  


 

 
.  

For a semi-infinite solid subjected to unidirectional forces acting in the x1 

direction (see Figure 4.1b), the vector potential B takes the form (B1, 0, B3) (e.g. 

Mindlin, 1953; Barbot and Fialko, 2010). Using B = (B1, 0, B3) in Eq. (4.13) yields  
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 (4.14) 

and based on Hooke’s law the stress components are then found to be 
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 (4.15) 

For a semi-infinite solid, the harmonic functions B1 and B3 in the Fourier domain 

take the solution form 

 3 3| | | |

1 1 3 3, ,
x x

B b e B b e
  

   (4.16) 
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where ξ 

2
 = ξαξα, and  b1, b3 are unknowns to be determined from the imposed BCs.  

With the help of identities [ ] i /F x f df d   and 
,[ ] iF f f 

§§
, one finds 

after taking Fourier transforms on Eqs. (4.14) and (4.15) 
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and  
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It follows from Eq. (4.17) that  
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Next, we substitute Eqs. (4.18) and (4.19) into Eq. (4.1) and obtain the three 

unknowns from the resulting equations: 

                                                 
§§

 These two identities hold when the Fourier transform pair is given by  
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where 
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with coefficients ai and ci defined by  
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The parameters 0


, 0


 and 0


 have dimensions of length and can be regarded as 

intrinsic length parameters.  

Up till here we have actually completed the solution to the 3D Cerruti’s problem, 

inasmuch as what remains is no more than transforming the stresses and displacements 

given in Eqs. (4.17) and (4.18) into the space domain using the obtained results for b0, b1 

and b3.  

For simplicity we shall focus our discussion on t  that is function of ξ only, 

which is the case when the magnitude of tangential traction is axisymmetric. The 

displacements and stresses can be derived by inverse Fourier transform of Eqs. (4.17) 

and (4.18). With the aid of transform identities outlined in Section 3 one finally gets on 

the plane x3 = 0  
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and  
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where 22 2

1 2r x x  , and  
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The above results will be greatly simplified if the surface elastic constants are set 

equal to zero. That is, letting μ0 = λ0 = 0 in Eq. (4.23) gives the surface displacements as  
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where 0(1 ) /     . It is of interest to note that the surface displacements given by 

Eq. (4.26) are independent of surface residual stress for incompressible solids (ν = 0.5), 

which agrees with the observation made by He and Lim’s (2006).  

4.4.2 Illustrative Examples 

To demonstrate the analytical solutions derived in the preceding sections, two 

representative problems, one with a concentrated tangential force and another with 

uniformly distributed uni-directional tangential traction, are quantitatively studied here.  

4.4.2.1 Concentrated Tangential Force 

In the presence of surface effects, the solution of the Cerruti’s problem is readily 

obtained by setting t  = T in Eqs. (4.23) and (4.24). If the surface effects are ignored, i.e. 

setting κ = 0 in Eq. (4.26) leads to the classical solutions (e.g. Johnson, 1985, pp69; Ling 

et al., 2000, pp88):  
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 (4.27) 

Figure 4.3 shows the displacement and stress components along the x1-axis (u2 

and σ23 vanish on the plane x2 = 0 and hence they are not displayed).  

The classical elasticity solutions are recovered as a special case in which τ0 = μ0 

= λ0 = 0, and they are represented by the solid blue lines in Figure 4.3. It is seen that the 

in-plane surface displacements are insensitive to the change in the surface residual stress, 

τ0 and they depend decisively on the surface elastic constants, μ0 and λ0, particularly for 

those points near the point of application of force. However, the out-of-plane 

displacement exhibits strong dependence on all surface parameters and decreases with 
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increasing values of μ0, λ0, or τ0. As reflected in Figure 4.3, the consideration of surface 

effects results in decreased magnitudes of the surface displacements, which implies 

material hardening.  

 

  
(a) (b) 

  
(c) (d) 

Figure 4.3. Displacements and stresses along the x1-axis of an elastic half space 

subjected to a concentrated surface tangential force (Herein a is a scaling factor).  
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4.4.2.2 Uniformly Distributed Tangential Force 

Next we consider a half-plane loaded by a uniform traction of intensity t0 acting 

tangentially on the surface of an elastic half space over a circular region of radius a. In 

the transformed domain, we have  

  
(a)  (b) 

  
(c) (d) 

  Figure 4.4. Surface displacements and stresses along the x1-axis of a half space under 

uniformly distributed surface tangential forces acting in a circular region of radius a.  
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 1

0 12 ( ).t t a J a    (4.28) 

The surface stresses and displacements can then be obtained by using Eq. (4.28) in Eqs. 

(4.23) and (4.24).  

The numerical results shown in Figure 4.4 reveal analogous observations on the 

surface effects. Besides, we notice a smooth change in the shear stress profile across the 

loading boundary as long as the surface elastic constants (τ0 and μ0) are non-zero. That 

is, the jump in the shear stress existing in the classical solution disappears when the very 

problem is examined in the context of surface elasticity. 

 

4.5 Summary 

In this section the solution for the elastic field in a homogeneous elastic half-

space subject to a surface tangential traction is derived using the theory of surface 

elasticity of Gurtin and Murdoch (1975, 1978). The formulation is based on the Fourier 

transform method and makes use of stress functions – Airy’s stress function for the half-

plane problem and P-N functions for the half-space. This technique enables one to obtain 

the analytical solution to the Navier’s equation with the non-standard BCs in integral 

forms. The newly derived solution includes material length scale parameters that are 

characterized by the surface residual stress and surface elastic constants, and the 

classical elasticity solution can be reproduced as a particular solution in which the 

surface effects are ignored.  

The derived general solution is applied to few illustrative examples to assess the 

possible impact of the surface effects on the elastic field of the half-space induced by the 
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surface tangential forces. The numerical results show substantial departure between the 

classical results and the newly derived ones in the vicinity of the loading area. For the 

generalized Cerruti’s problem considered, the current solution predicts a much smoother 

elastic field and smaller deformation. Therefore, the material hardening effect can be 

captured by the current solution which incorporates the surface effects.  
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5. STRAIN GRADIENT SOLUTIONS OF SEMI-INFINITE INDENTATION 

PROBLEMS  

 

5.1 Introduction  

Due to the lack of intrinsic material lengths the classical continuum mechanics 

cannot describe size-effects exhibited by many materials at micron and nanometer 

scales. At such scales, the effects of surface energy, defects and microstructure, and 

internal strain become significant and need to be considered in the modeling of material 

behaviors. Augmented higher-order continuum theories have been developed to interpret 

the micro-structure dependent phenomena, which include the Cosserat elasticity 

(Cosserat and Cosserat, 1909), couple stress theory (e.g., Toupin, 1962, 1964; Kioter, 

1964; Mindlin, 1962, 1963), higher order strain gradient elasticity (e.g., Mindlin, 1964, 

1965), surface elasticity (e.g., Gurtin and Murdoch, 1975, 1978), and strain gradient 

plasticity (e.g., Fleck and Hutchinson, 1993; Flect et al., 1994).  

A common approach to incorporate the effects of microstructure is to enrich the 

classical equations with additional higher-order derivatives. In the early 20
th

 century, the 

Cosserat brothers (Cosserat and Cosserat, 1909) took into account the micro-rotation and 

included the couple stress (energetically conjugated to the micro-rotation) in the 

equilibrium equations. The framework of the couple stress theory and gradient theories 

were mainly developed in the 1960s with essential contributions from Mindlin (1962, 

1964, 1965), Toupin (1962, 1964) and Kioter (1964). In gradient theories, the micro-

structure features are demonstrated through the micro-deformations and the material 
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characteristic lengths enter the constitutive equations through the strain energy function.  

The work of Mindlin and coworkers (Mindlin, 1964, 1965; Mindlin and Eshel, 

1968) is especially valuable in the development of strain gradient theories. In a landmark 

paper, Mindlin (1964) developed a strain gradient theory with 18 material constants for 

isotropic materials. Mindlin’s original theories contain many material constants that are 

challenging to be quantified experimentally (Exadaktylos and Vardoulakis, 1998; Askes 

and Aifantis, 2011). Difficulties also arise from the mathematical manipulations of the 

associated equilibrium equations and constitutive relations. Due to these and other 

reasons, Mindlin’s original theory has not been widely applied in the modeling of size-

dependent phenomena.  

Simplified strain gradient elasticity theories (SSGETs) have been suggested (e.g., 

Vardoulakis et al., 1996; Exadaktylos et al., 1996; Altan and Aifantis, 1992, 1997). 

Vardoulakis’ model contains two additional constants associated with volume and 

surface energy terms, whereas that of Altan and Aifantis (1992, 1997) includes one 

additional material constant corresponding to the volume strain energy. These simplified 

models are mathematically more tractable and are very desirable due to the formidable 

experimental efforts in determining the extra material constants. 

These simplified versions of Mindlin’s strain gradient elasticity theory have been 

employed to analyze various problems, such as fracture (Exadaktylos, 1998; Shi et al., 

2000; Georgiadis, 2003), mechanics of defects (Lazar and Maugin, 2005), thick-walled 

shell problem (Gao et al., 2009) and Eshelby type  inclusion problems (Gao and Ma, 

2009, 2010a,b). The two-dimensional (2D) and three-dimensional (3D) problems of a 
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point force in an infinite elastic body have been well studied in strain gradient elasticity 

(e.g., Karlis et al., 2010). However, the problems of a half-plane and of a half-space 

subjected to a concentrated force, e.t. the Flamant and Boussinesq problems, have not 

been satisfactorily addressed using strain gradient elasticity theories. The Flamant 

problem was analyzed by Zhou and Jin (2003) and Li et al. (2004) employing the 

simplified versions of Vardoulakis kind (Vardoulakis et al., 1996) and Altan and 

Aifantis (1997), respectively. However, these solutions are not exact in that the boundary 

conditions (BCs) used are not variationally consistent with those derived in Bleustein 

(1967), Mindlin and Eshel (1968) and Gao and Park (2007). The Flamant problem was 

recently re-examined by Georgiadis and Anagnostou (2008) using the correct BCs. 

Following Zhou and Jin (2003) and Li et al. (2004), they also utilized the Fourier 

transform method to directly solve the displacement-equation of motion, which are forth 

order partial differential equations (PDEs).  

In the present work the Flamant and Boussinesq problems are solved in a unified 

manner using the simplified strain gradient elasticity theory. The SSGET based solutions 

are derived by using the Fourier transform method along with the stress functions of 

Mindlin (1965).  

 

5.2 Displacement Function Method  

5.2.1 Simplified Strain Gradient Elasticity  

In classical elastic theory the strain energy density, w, is a function of strains 

only, whereas in the context of the strain gradient elasticity the strain energy density 



 102 

depends, additionally, on the gradient of strains, e.t.,  

 ( , ),ij kijw w    (5.1) 

where εij and 
kij  are, respectively, the infinitesimal strain and strain gradient defined by  

  , , ,

1
, ,

2
ij i j j i kij ij ku u      (5.2) 

with ui being the displacement component.  

For an isotropic, linearly elastic material, the expression of w can be written as 

(Mindlin, 1964, Eqs. (9.11) and (11.3); Mindlin and Eshel, 1968, Eqs. (2.4-2.5)) 

 
1

2 3 4 5

1

2

,

ii jj ij ij iik kjj

ijj ikk iik jjk ijk ijk ijk kji

w a

a a a a

     

       

  

   

 (5.3) 

where (a1, a2, a3, a4, a5) are material constants in addition to Lamé’s constants μ and λ.  

In Eqs. (5.1-5.3) and through this section the summation convention and standard 

index notation are used with the Greek indices running from 1 to 2 and the Latin ones 

taking 1 through 3, unless otherwise indicated. 

Considering the case in which  

 2 2

1 3 5 2 4

1
0, , and ,

2
a a a a l a l       (5.4) 

Eq. (5.3) then becomes 

 2

, , , ,

1 1
,

2 2
ii jj ij ij ii k jj k ij k ij kw l       

 
    

 
 (5.5) 

which corresponds to the SSGET suggested by Altan and Aifantis (1997, Eq. (5)). 

Consequently, in the standard variational manner we can define the associated Cauchy 

stress, τij, and the double stress, μijk, as  
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 2 2

, , ,

2 ,

2 .

ij ll ij ij ji

ij

kij ll k ij ij k ij k

kij

w

w
l l

    


    



   



   


 (5.6) 

The total stress, σij, is related to the Cauchy stress through   

 2 2

, (1 ) .ij ij kij k ijl         (5.7) 

The displacement-equation of motion is then obtained by inserting Eqs. (5.6) and 

(5.7) into the equilibrium equations (Mindlin and Eshel, 1968; Bleustein, 1967) 

 
, 0ji j if    (5.8) 

where fi is the body force components. In the absent of the body forces, the equilibrium 

equation can be written in terms of displacements as (e.g., Altan and Aifantis, 1997; Gao 

and Park, 2007) 

  2 2(1 ) ( 2 ) ,l         u u 0  (5.9) 

which is a special case of the general displacement-equation of motion provided in 

Mindlin and Eshel (1968).  

5.2.2 Displacement Functions of Mindlin 

According to Mindlin (1964), the equations of equilibrium in terms of 

displacements can have the form (Mindlin, 1964, Eqs. (9.31), (10.8) and (13.1)) 

 2 2 2 2

1 2( 2 )(1 ) (1 ) .l l          u u 0  (5.10) 

Herein l1 and l2 are two intrinsic material length scale parameters, which can 

characterize a cell size, e.g., a crystallite of a polycrystalline or a grain of a granular 
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material. The two parameters l1 and l2 can be related to the material constant ai by
***

 

(Karlis et al., 2010; Shodja and Tehranchi, 2010) 

 2 21 2 3 4 5
1 2 3 4 5

2( ) 1
, ( 2 ).

2 2

a a a a a
l l a a a

  

   
   


 (5.11) 

Apparently, Eq. (5.10) reduces to Eq. (5.9) when l1 = l2 = l.  

Based on the Helmholtz decomposition of breaking a displacement vector into 

the gradient of a scalar potential and the curl of a vector potential, Mindlin (1964) 

showed that any solution u of Eq. (5.10) can be represented by  

 2 2 2 2 2

2 1 2 0

1
( ) (1 ) ,

2
l l l B             u B B r B  (5.12a) 

where 1/ (2 2 )   , r is a position vector, and B is a vector function and B0 a scalar 

function satisfying  

 

2 2 2

2

2 2 2

1 0

(1 ) ,

(1 ) 0.

l

l B





   

   

B 0
 (5.12b,c) 

Clearly, when both length parameters are set equal to zero Eq. (5.10) reduces to 

the Navier equations of equilibrium in classical elasticity and the displacement functions 

(B and B0) become the well-known Papkovitch-Neuber functions. Particular, when l1 = 

0, Equation (5.10) and its corresponding solution given in Eq. (5.12) reduce to those 

derived in Mindlin and Tiersten (1962, Eq. (11.1) and (11.17-19)), e.t.,  

 
2 2 2( ) ,l          u u u 0  (5.13) 

and  

                                                 
***

The expression 2

2 3 42( ) /l a a    as found in Mindlin (1964) is seen to be 

inconsistent with Eq. (5.9) when Eq. (5.4) is used in Eq. (5.10).  
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2 2 2

0

2 2 2
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(1 ) ,
2

(1 ) ,

0.

l l B

l

B







          

   

 

u B B r B

B 0  (5.14) 

Equation (5.10) has been used by Dhaliwal (1973) and Exadaktylos (1999) to solve 

axisymmetric contact problems and the problems of a half-plane subjected to arbitrary 

surface loads, respectively. 

Note that Eqs. (5.9) and (5.10) are identical if l1 = l2. Hence, the solution to Eq. 

(5.9) can be obtained by setting l1 = l2 = l in Eq. (5.12): 

 2 2 2 2 2

0

1
( ) (1 ) ,

2
l l l B             u B B r B  (5.15a) 

where  

 

2 2 2

2 2 2

0

(1 ) ,

(1 ) 0.

l

l B

   

   

B 0
 (5.15b,c) 

The displacement functions B and B0 will be determined from the imposed 

boundary conditions. This displacement function method will be adopted in the current 

study along with the integral transforms to solve the non-standard boundary value 

problems involving high order partial differential equations (PDEs). This problem 

solving technique is more advisable than the Fourier transform method commonly 

employed by others (e.g., Zhou and Jin, 2003; Li et al., 2004; Georgiadis and 

Anagnostou, 2008).  
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5.3 Formulation 

Problems of a semi-infinite elastic solid subjected to normal loads applied on its 

bounding surface are analytically solved using the simplified strain gradient elasticity 

theory. The half-plane and half-space problems being considered are schematically 

shown in Figure 5.1, and the body forces and body double forces are assumed to be 

absent. 

For a half-space (occupying x3 > 0) subjected to normal forces, the vector 

function B takes the form [0, 0, B3] and the scalar function B0 is non-vanishing (e.g. 

Mindlin, 1953; Dhaliwal, 1973). As a result, by Eq. (5.15) the displacement components 

are now written as  

 

2 2 2 2 2

3,3 3 3 0 ,

2 2 2 2 2

3 3 3,33 3 3 0 ,3

1
( ) (1 ) ,

2

1
( ) (1 ) ,

2

u l B l x l B B

u B l B l x l B B

  




         

         

 (5.16) 

  
(a)  (b)  

Figure 5.1. Schematics of a half-plane (a) and half-space (b) subjected to normal forces 

applied on the surface. 
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with  

 

2 2 2

3

2 2 2

0

(1 ) 0,

(1 ) 0.

l B

l B

   

   
 (5.17) 

5.3.1 Boundary Conditions  

The BCs in strain gradient theories were firstly formulated in Mindlin (1964) 

based on variational principle and were further clarified by Bleustein (1967). The natural 

BCs were well summarized in a paper by Mindlin and Eshel (1968) based on 

conservation principle. The readers can also refer to Polyzos et al. (2003) and Gao and 

Park (2007) for detailed derivation regarding the BCs for form II of Mindlin’s theory.  

The natural BCs for the linear strain gradient theory are (e.g., Gao and Park, 

2007) 

 
, , ,( ) ( ) ( ) ,

,

j jk ijk i i ijk j j l i ijk l k

j i ijk k

n n n n n t

n n q

   



   


 (5.18) 

where  ti and qi are the surface traction and the surface double traction components, 

respectively. These BCs are variationally consistent and hence should be adopted in 

solving relevant problems. However, incomplete BCs have been used in literature (e.g., 

Dhaliwal, 1973; Exadaktylos, 1999; Zhou and Jin, 2003; Li et al., 2004; Lazar and 

Maugin, 2005) and the corresponding solutions are not exact. 

By using Eq. (5.6) in Eq. (5.18) one obtains the BCs for a semi-infinite solid 

under prescribed normal forces as  
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 (5.19) 

where p = p(r) denotes the normal pressure distribution. In arriving at Eq. (5.19a), use 

has been made of Eq. (5.19c). Apparently, when l = 0 Eqs. (5.19a,b) reduce to the 

conventional BCs.  

For a half-plane problem, Eq. (5.19) becomes, after setting derivative with 

respect to x2 equal to zero,  
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 (5.20) 

which are identical to the BCs used in Georgiadis and Anagnostou (2008).  

The BCs listed in Eqs. (5.19) and (5.20) will be used to determine the constants 

involved in the stress function B and B0 defined by Eq. (5.17).  

5.3.2 Solutions by Fourier Transform Method 

The Fourier transforms and Hankel transforms are widespread techniques used to 

solve boundary value problems (BVPs). These techniques are especially powerful when 

they are used along with certain potential functions. For example, an elegant treatment of 

contact problems was presented by Harding and Sneddon (1945) using Hankel 

transforms. As demonstrated in Selvadurai (2000, pp131-132), the use of Airy stress 

functions under Fourier transform is very advantageous in solving 2D elastic problems 

and this method is borrowed by Zhao and Rajapakse (2009) to solve half-plane problems 
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with surface energy effects. More recently, Barbot and Fialko (2010) solved a 3D non-

classical BVP by using Fourier transforms and potential functions.  

In this section, the Fourier transform method is employed along with the use of 

displacement functions of Mindlin to solve the semi-infinite contact problems using 

SSGET. The ordinary Fourier transform pair and double Fourier transform pair will be 

used, respectively, for the half-plane and half-space problems.  

The ordinary Fourier transform pair is given by  
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i
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 (5.21) 

whereas the double Fourier transform pair reads  
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 
 (5.22) 

where the overhead bar denotes the function in the transformed space.  

The solutions to the displacement functions can be readily identified in the 

Fourier domain, e.t., by Eq. (5.17) we have  

 

2 2 2 2 2 2

3

2 2 2 2 2 2

0

(1 )( ) 0,

(1 )( ) 0,

l l d d B

l l d d B

 

 

   

   
 (5.23) 

where 3d  
 
is the derivative operator, and 2

     (it equals to 2

1  and 2 2

1 2   for 

the ordinary and double Fourier transforms, respectively).  

If the stress components are to vanish at x3 → ∞, the solutions for Eq. (5.23) have 

forms  
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in which 2 2l     and A, B, C and D are unknowns to be determined from the 

imposed BCs.  

Performing Fourier transforms on Eq. (5.16) and using Eq. (5.24) yield 
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 (5.25) 

In a similar fashion, the transformed Cauchy stress components in the 

transformed space are obtained to be  
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 (5.26) 

Note no summation is implied on β in Eq. (5.26c) 

Equations (5.25) and (5.26) provide the expressions of the stress and 

displacement components in the Fourier domain. These expressions also hold for the 

half-plane problem by replacing 1  with ξ : 
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 (5.28) 

Insertion of Eq. (5.26) (for a half-space) and Eq. (5.28) (for a half-plane), 

respectively, in Eq. (5.19) and Eq. (5.20) leads to the corresponding BCs in the Fourier 

domain. These BCs, which happen to be the same for the half-space and half-plane 

problems, have the form 
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 (5.29) 

where p  is the normal load in the Fourier domain. In matrix form they can be written as  
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Solving Eq. (5.29) gives  
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 (5.30) 

in which 2 2 6 2 2 2( ) (1 )(1 2 ) 2 ( )l l            . It is of interest to note that A, B, C 

and D are all even functions of ξ and ( ) 1     regardless of the value of ξ.  

 

5.4 General Solutions  

General expressions for the displacements and Cauchy stresses are provided here 

in integral forms. For simplicity the pressure distribution for the half-plane and half-

space problems are assumed to be symmetric and axisymmetric, respectively. This 

assumption enables the use of Fourier sine/cosine transforms as for the 2D problems and 

Hankel transforms for the 3D problems.  

5.4.1 2D Solutions 

For a symmetrically distributed contact pressure profile p  is an even function of 

ξ. Accordingly, 1u  and 13
 
are odd functions of ξ, while 3u , 11  and 33  are even 

functions of ξ. Substituting Eq. (5.30) into Eqs. (5.27) and (5.28), and making use of 

Fourier sine/cosine transforms defined by   
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we obtain the displacements in a half-plane as  
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 (5.32) 

and the Cauchy stress components are    
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 (5.33) 

where  
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 (5.34) 

and  
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(5.35a-c) 
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By setting x3 = 0 in Eqs. (5.32) and (5.33), the displacement and stress 

components on the bounding surface can be readily obtained as  
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and  
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5.4.2 3D Solutions  

For an axisymmetric contact pressure distribution, Hankel transforms can be 

applied. By using the formulae derived in Section 3: 
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 (5.38) 

the expressions for the displacement and Cauchy stress components are found to be  
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and 
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On the loading surface, Eqs. (5.39) and (5.40) give 
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and 
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From Eqs. (5.36), (5.37), (5.41) and (5.42) it can be observed that  

1)  The SSGET-based solution predicts smaller in-plane displacements, uα, and 

Cauchy stress, τα3, than the classical solution. 

2)  According to the newly derived solution, the surface shear stresses are non-

vanishing, which is similar to the observation made by using the theory of surface 

elasticity in Section 3.   
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5.5 Illustrative Examples  

The general solutions derived in the preceding section are in integral forms and 

their closed form solutions are typically not available. These integrals are evaluated 

numerically for simple load distributions – concentrated force and uniform pressure 

distribution – to demonstrate the possible departure between the SSGET-based solution 

and the classical one.  

5.5.1 Point Force  

The classical problems of a semi-infinite elastic solid acted by a concentrated 

force and by a line force are known as Boussinesq problem and Flamant problem, 

respectively. These two fundamental problems are studied using the SSGET-based 

solutions derived in the preceding section. For a concentrated force of magnitude P, we 

shall have p P  in the Fourier domain. The displacement and stress components for the 

2D and 3D problems can then be obtained by replacing p  with P in Eqs. (5.36) and 

(5.37) and Eqs. (5.41) and (5.42), respectively.  

For the Flamant problem, the current SSGET-based solution gives, using Eqs. 

(5.36) and (5.37), the surface displacements as  
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 (5.43) 

and the surface Cauchy stresses as  
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Regarding the Boussinesq problem, the use of Eqs. (5.41) and (5.42) leads to  

 
3

3

4 2 2

10 0

2 3 1 4 2

3 00 0

1
(1 )(1 2 ) 2 ( ) ( ) ,

4 ( )

1 1
1 2 ( ) ( ) ,

2 ( )

x

x

Px
u l J r d

r

u P l l J r d



        
  


        

  










       


      





 (5.45) 

and  
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Note that the current SSGET-based solutions include the classical Flamant and 

Boussinesq solutions as special cases. Setting l = 0 and p P  in Eqs. (5.32) and (5.33) 

yield the following classical elasticity solution (e.g., Ling et al., 2002, pp95-96):  
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and  



 118 

 

3

3

3

2

3 1
11 3 1 40

2

1 3
13 3 1 40

2

3
33 3 1 40

2
(1 ) cos( )

2
sin( ) ,

2
(1 ) cos( ) .

xc

xc

xc

x xP P
x e x d

r

x xP P
x e x d

r

xP P
x e x d

r







   
 

   
 

   
 










    

   

    







 (5.48) 

The classical solution for the displacements obtained from Eq. (5.47) is discontinuous 

and unbounded at the loading point.  

By evaluating the integrals in Eqs. (5.43) and (5.44), the variations of the surface 

displacements and Cauchy stresses are examined to assess the influence of the intrinsic 

material length scale parameter l. These results are shown in Figure 5.2 and 5.3. A 

Poisson’s ratio of 0.27 is used in the numerical simulations.  

According to the classical Flamant solution, the in-plane displacement, u1, is 

discontinuous and the out-of-plane displacement, u3, is unbounded at the point of 

application of force. However, such discontinuity and singularity are not predicted by 

the current SSGET-based solution for the same problem. As shown in Figure 5.2, u1 

vanishes at the loading point (and thus is continuous), and u3 is well-defined at that 

point. The current solutions for u1 and u3 gradually converge to the classical ones at far 

distance from the loading point. Such mechanical responses are believed to be more 

natural than the singular behavior predicted by the classical solution (e.g., Georgiadis 

and Anagnostou, 2008). In addition, the newly derived strain gradient solution deviates 

significantly from the classical one in the immediate vicinity of the loading point and the 

discrepancy between the two solutions increases as the characteristic length l increases.  
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Figure 5.2. Surface displacements of a half-plane loaded by a concentrated normal force 

(assuming u3 = 0 at x1 = 10a).  

 

  
Figure 5.3. Surface displacements along x2 = 0 of a half-space loaded by a concentrated 

normal force (assuming u3 = 0 at x1 = 10a).  

 

 

5.5.2 Uniformly Distributed Load 

When there is a uniformly distributed load of intensity q0 applied over the region 

– a < x < a in the bonding surface of a half-plane, the Fourier cosine transform can be 
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applied to obtain 

 1

0 0
0

2 cos( ) 2 sin( ).
a

p q x dx q a     (5.49) 

For a half-space, if the uniform pressure is distributed over the region r < a, then it 

follows that (refer to Section 3 for detailed derivation) 

 1

0 12 ( ).p aq J a    (5.50) 

 

 

Figure 5.4. Surface displacements and Cauchy stresses of a half-plane loaded by a 

uniform pressure on the bounding surface.  
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Using Eqs. (5.49) and Eq. (5.50), respectively, in Eqs. (5.36-5.37) and Eqs. (5.41

-5.42) immediately leads to the analytical solutions for the displacements and stresses for 

the 2D and 3D problems.  

As reflected in Figures 5.4 and 5.5, the influence of the material length l on the 

displacement field is analogous to that observed in the previous section. It is worth 

   

  

Figure 5.5. Surface displacements and Cauchy stresses along x2 = 0 of a half-space 

loaded by a uniform pressure on its bounding surface.  
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noting that the SSGET-based solutions are smoother – both u1 and τ33 change smoothly 

across the loading periphery – than the classical ones which show sharp angles, and 

converge to the classical solutions at a distance far from the loading zone. A similar 

observation was made for the near-tip displacement in the 2D crack problem (e.g., Shi et 

al., 2000 and Georgiadis, 2003) which closes more smoothly if a strain gradient theory is 

used to describe the material behavior. Also it should be noticed that the surface shear 

stress is non-vanishing according to the SSGET-based solution.   

 

5.6 Indentation Problems 

The analysis of the state of stress and strain in an elastic body indented by a 

punch is of significant practical interest. There have been extensive studies in this 

respect (e.g., Johnson, 1985) since the late 1800s when the problems of a semi-infinite 

elastic solid indented by a flat-ended punch and by a spherical punch were solved, 

respectively, by Boussinesq (1885) and Hertz (1882).  

However, the well-established classical contact mechanics cannot explain non-

conventional mechanical behaviors in micron and nanometer ranges such as size-

dependent indentation hardness (e.g., Stelmashenko et al., 1993; De Guzman et al., 

1993; Ma and Clarke, 1995). This is due to the lack of any material length scale 

parameter.  

In this section, the axisymmetric contact problems are investigated using the 

newly derived solutions which contains one material length scale parameter and can be 

used to model substrates with significant microstructures. Several types of load 
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distributions are selected to illustrate the possible deviation from the predictions by 

classical continuum theory.   

5.6.1 Flat-Ended Punch  

The problem of an elastic half-space indented by a rigid flat-ended punch was 

first solved by Boussinesq (1885) using the classical theory of elasticity. According to 

Boussinesq’s solution the pressure profile under the punch takes the form (e.g., Barber, 

2002): 

 2 2 1/2

0( ) ( ) ,p r q a r 

    (5.51) 

where a is the radius of the punch, and the subscripts ‘∞’, ‘1’, and ‘2’ denote the flat-

ended, conical and spherical punch profile, respectively (e.g., S.-S Zhou et al., 2011). 

Taking Fourier transform on Eq. (5.51) gives  

 
0 0

1

0

( ), 2 ,
( )

2 sin( ), 3 .

q J a D
p

q a D

 


  
 


 


 (5.52) 

The displacements and stresses can be readily obtained by using Eq. (5.52) in the 

general solutions for the half-plane or half-space problem. For contact problems the 

indentation depth δ (or the depth of penetration of the punch tip) is an important quantity 

highly concerned (S.-S Zhou et al., 2011). Substituting Eq. (5.52b) into Eq. (5.41) and 

taking r = 0 yield  

 
3

0 0
0 0

( )1 ( ) 1
sin( ) sin ,

( ) ( )

t
D a

t
a

q a d q tdt
t

   
  

    

 



 
    (5.53) 

where 
2 3 1 4 2( ) 1 2 ( )l l              and ( )   is defined near Eq. (5.30). 

Figures 5.6 and 5.7 show the variations of surface displacements and Cauchy 
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stresses of the half-plane and half-space problems for different values of l/a. The 

particular solution with l = 0 corresponds to the classical solution and is displayed for 

comparison purpose. The displacements of strain gradient theory are considerably 

smaller in and near the loading zone than those of the classical solutions. Also, it is 

observed that the Cauchy stress τ33 given by the current solution is well-defined and 

smooth, unlike that predicted by the classical solution.  

 

 

 

Figure 5.6. Variations of displacements and Cauchy stresses on x3 = 0 of a half-plane 

subjected to the Boussinesq pressure distribution.  
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Figure 5.7. Variations of the displacements and Cauchy stresses along x2 = 0 of a half-

space subjected to the Boussinesq pressure distribution. 

 

5.6.2 Spherical Punch  

The Hertz’s solution (1882) for the frictionless and non-adhesive contact 

problems of two elastic spheres is one of the most prestigious models in contact 

mechanics. According to Hertz’s solution, the pressure distribution under the indenter is 

given by  

 2 2

2 0( ) ,p r q a r   (5.54) 
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and the corresponding Fourier transform yields  

 
 

1

0 1

2 3
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 (5.55) 

Using Eq. (5.55b) in Eq. (5.41b) leads to  

  
2
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2 0 30
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sin cos ,
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D a
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q t t t dt

t




 


   (5.56) 

where the definitions for ϕ and φ can be found near Eq. (5.53). 

 

 

 

Figure 5.8. Surface displacements and Cauchy stresses in a half-plane subjected to the 

Hertzian pressure distribution.  

0 1 2 3 4
-0.2

-0.15

-0.1

-0.05

0

x
1
/a


 u

1
/ a

2
q

0

0 1 2 3 4
0.2

0.4

0.6

0.8

1

1.2

x
1
/a


 u

3
/ a

2
q

0

 

 
l/a = 0

l/a = 1

l/a = 2

0 1 2 3 4
-0.1

-0.08

-0.06

-0.04

-0.02

0

x
1
/a

 1
3
/ a

q
0

0 1 2 3 4

-1

-0.8

-0.6

-0.4

-0.2

0

x
1
/a

 3
3
/ a

q
0

 

 

l/a = 0

l/a = 1

l/a = 2



 127 

The displacement field and state of stress in the half-plane and half-space are 

displayed in Figures 5.8 and 5.9. The effect of the strain gradient on the displacement 

and stress components is analogous to the discussion for the flat-ended punch problem.  

5.6.3 Conical Punch  

The conical shaped indenters are frequently used in indentation tests. According 

to the classical elasticity-based solution, the pressure distribution in the contact zone has 

 

   

 Figure 5.9. Surface displacements and Cauchy stresses of a half-space subjected to the 

Hertzian pressure distribution. 
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the form (Sneddon, 1965) 

 1

1 0( ) cosh ,
a

p r q
r

  (5.57) 

and it is found in the Fourier domain  

  2

1 0( ) 2 1 cos( ) , 3 .p q a D      (5.58) 

Consequently, by using Eq. (5.58) in Eq. (5.41b) we find  

 

 
Figure 5.10. Surface displacements and Cauchy stresses of a half-space subjected to the 

conical punch pressure distribution. 
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  3

1 0 20

( )1
1 cos .
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t
D a

t
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a
q t dt

t




 


   (5.59) 

The numerical results for the conical punch indentation are shown in Figure 5.10.  

5.6.4 Depth-Dependent Hardness  

In contact mechanics, the indentation depth δ and total applied load P are of 

significant practical interest. The resultant forces P for the Boussinesq pressure 

distribution (flat-ended punch), the Hertzian pressure profile (spherical punch) and the 

conical punch pressure distribution have been calculated in Section 3 to be, respectively,  

 3 2

0 2 0 1 0

2
2 ,   and .

3
P aq P a q P a q       (5.60) 

The indentation hardness adopted here is defined to be (e.g., Wang and Feng, 

2007) 

 .
P

H


  (5.61) 

In the absence of the strain gradient effect, use of Eq. (5.53), (5.56) or (5.59) and 

Eq. (5.60) in Eq. (5.61) yield 

 2 1

4 8 2
, , .

)

c c ca a a
H H H

  

  
   

  
 (5.62) 

The newly derived solution for indentation hardness relates to the conventional 

indentation hardness through   

 
1

0

2
1 ( , ) sin ,

cH
a t t tdt

H









    (5.63a) 

for the Boussinesq pressure distribution,  
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for the Hertzian pressure profile, and  

  21

0
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2
1 ( , ) 1 cos ,

cH
a t t t dt

H





    (5.63c) 

  
(a) (b) 

 

 (c) 

Figure 5.11. Indentation hardness versus the contact radius for different punch profiles: 

(a) flat-ended, (b) spherical, and (c) conical (L is a scaling parameter).  



 131 

for the pressure distribution of a conical punch. In Eq. (5.63)  
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 (5.63d) 

with 
l

l
a

  and 
2 21 l t   .

 

If the strain gradient effect is neglected (that is, l = 0) we have from Eq. (5.63d) 

ψ (a, t) = 0 and thus 
1 1

cH H , 
2 2

cH H  and cH H  . That is, the indentation hardness 

given by the current SSGET-based solution reduces to that by the classical solution in 

each of the three indentation problems considered. The microstructural effect is 

significant when the contact radius a is close to the value of l, and in case a >> l (e.g., 

indentation at macro scale) one has ψ (a, t) → 0 and the current solution converges to the 

classical one.  

The numerical results displayed in Figures 5.11 and 5.12 show the variation of 

 
Figure 5.12. H-curves for different pressure distributions with l / L = 1. 
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the indentation hardness against contact radius a. For each type of the pressure 

distribution we examined, the ratio of H to H
c
 increases with decreasing contact radius a 

and increases as l increases. In addition, we noticed that the H to H
c
 ratios are different 

for different pressure profiles at given values of l and a.  

 

5.7 Summary 

The contact problems of a half-plane/space subjected to boundary normal forces 

are analyzed using the simplified strain gradient elasticity theory (SSGET). The general 

SSGET-based solutions for the half-plane and half-space problems are derived in a 

unified manner by use of the potential function method of Mindlin (1964) and integral 

transforms. The current solution incorporates the microstructural effects into the 

modeling of material responses and contains material length scale parameter that is 

capable of capturing material size effect at small length scales. The classical elasticity 

solution is regenerated as a special/limiting case in which the strain gradient effects are 

disregarded or the contact radius is much larger than the length scale parameter.  

For the 2D and 3D fundamental problems, the numerical results show that the 

displacement singularity and discontinuity as exist in the classical solutions are removed 

when the same problems are examined under SSGET. The established general solution is 

also applied to study the contact problems with pressure distributions produced by a flat-

ended, spherical and conical punch indenting an elastic half-space. The newly derived 

solution is found to deviate considerably from the classical predictions within and near 

the loading zone, and converge to the classical solution at increasing distances away 
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from the loading area. The departure between the two solutions increases with increasing 

material length scale parameter. The size-dependency of indentation hardness is studied 

by using the general solution and the indentation hardness predicted by the current 

solution is markedly higher than the classical results.  

At this point we need to point out that the SSGET-based solution is suitable for 

modeling substrate materials with significant micro-structures, e.g., polycrystalline or 

granular materials; while the surface elasticity based model presented in Section 3 is 

oriented to substrates with distinct surface properties, e.g., substrate with a coated thin 

film or peened surface. Both of the two solutions are derived for contact problems 

involving an elastic, homogeneous and isotropic semi-infinite solid, and do not consider 

material anisotropy and inhomogeneity.  
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6. SUMMARY  

 

6.1 Summary of Major Findings 

This dissertation is intended to study the size-dependent material responses 

observed at micron and submicron levels, which cannot be satisfactorily explained by 

classical continuum theories due to the lack of inherent material length scale parameters. 

A number of enriched-continuum models are employed to examine the mechanical 

behavior of a semi-infinite solid subjected to normal and tangential boundary forces. The 

size effects are well predicted when the associated problems are examined by each of the 

three theories being used – adhesive contact mechanics, surface elasticity and strain 

gradient elasticity. 

By employing the cohesive contact model pioneered by Johnson et al. (1971) and 

Derjaguin et al. (1975), and elaborated by Maugis (1992) we studied in Section 2 the 

elastic field of a half-space indented by a rigid punch and the relations between applied 

load, contact radius and depth of penetration. The use of harmonic functions – Green and 

Zerna potentials – permits an easy calculation of normal load and stress intensity factor, 

and effectively resolves the axisymmetric contact problems. The general solution we 

established is applicable to the adhesive contact problems involving an arbitrary punch 

shape and an adhesive interaction force distribution, and links many existing 

solutions/models for axisymmetric non-adhesive and adhesive contact problems like the 

Hertz solution, Sneddon’s solution, the JKR, DMT and M-D models. It is demonstrated 

that the adhesive interaction forces could contribute significantly to the mechanical 
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behaviors of elastic solids under light load. It is because of the presence of the adhesive 

forces that in the absence of applied load the contact radius of solids under intimate 

contact is non-vanishing and a pull-off force is required to separate the solids.  

The theory of surface elasticity of Gurtin and Murdoch (1975, 1978) is adopted 

in Sections 3 and 4 to study the mechanical behaviors of the generalized problems of 

Boussinesq and Cerruti, respectively. The technique of Fourier transform and certain 

types of potential functions are employed in attacking the problems of Boussinesq and 

Cerruti. The corresponding numerical results for each of the three problems studied 

show substantial deviation from their classical counterparts near the area of application 

of load, and the newly derived solution predicts a smoother elastic field and smaller 

deformation. The material hardening/stiffening effect is clearly predicted by the current 

solution which incorporates the surface effects. Note that these outlined solutions are 

also applicable to describe the behaviors of a considerably thick substrate with coated 

thin film (distinct surface properties) or with peened surface (high residual surface 

stress). 

Regarding the generalized Boussinesq’s and Cerruti’s problems, it is observed 

that the discontinuity and singularity of the elastic field which exist in the classical 

theory are markedly alleviated when the surface effects are considered. Unlike the 

classical solution, surface elasticity based solution predicts non-vanishing out-of plane 

normal stress and in plane shear stresses outside the loading zone. Application of the 

generalized solution to the axisymmetric contact problems reveals that the indentation 

hardness predicted by the current solution is considerably higher than the classical result 
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at small length scales. For a half-region under normal loads, the out-of plane 

displacement and stress as well as the indentation hardness are shown to primarily 

depend on the residual surface stress, whereas the influence of the surface elastic 

constants is only significant on the in-plane displacements and stresses. On the other 

hand, for a half-region acted by surface tangential forces the surface material constants 

have a dominating impact on the elastic field, while the influence of residual surface 

stress is relatively insignificant.  

In Section 5 we re-examined the Boussinesq’s problem using the strain gradient 

elasticity theory, which is a more refined continuum theory that incorporates material 

microstructure and is capable to capture size effects. By using the displacement 

functions of Mindlin (1964) we were able to obtain solutions to the problems of a half-

space (3D) and half-plane (2D) subjected to normal loads in a unified fashion based on 

Fourier transforms. The 2D and 3D fundamental solutions as well as surface Green’s 

functions are provided and they regenerate the classical solutions if the microstructural 

effects are disregarded. Various load distributions are investigated to demonstrate the 

possible deviation from the classical results as well as to show the size-dependent 

phenomena. The displacements and stresses are found to change very smoothly 

(smoother than those obtained in Section 3 using surface elasticity) if the mechanical 

behavior of material is governed by gradient elasticity. Most importantly, the 

singularities and discontinuities as encountered in classical solutions are eliminated 

when the same problems are studied in the context of strain gradient elasticity. 
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6.2 Recommendations for Future Works 

In this dissertation we examined a series of fundamental problems involving an 

elastic half-region within the context of several enriched-continuum theories and derived 

the point load solutions which form the basis of solutions to complex loading problems. 

However, limited applications of the formulated solutions have been investigated in the 

current study and extension of the generalized solutions to more general problems shall 

be a suitable topic for future studies in this field. Besides, the fundamental solutions 

outlined in this work can be used by researchers specializing on numerical analysis to 

develop programs that can be embed in the finite element method (FEM) or boundary 

element method (BEM). 

The integral transform is a wide-spread technique frequently adopted in literature 

and this method is employed in many sections of this dissertation – standard Fourier 

transforms are used in solving 2D problems and double Fourier transforms for 3D 

problems. The connections between the double Fourier transforms and Hankel 

transforms are established and used to calculate the displacement and stress components 

of axisymmetric contact problems. The advantage of the integral transform approach is 

that it enables one to obtain analytical solutions to the PDEs with prescribed BCs by 

manipulating algebraic equations.  

Of special importance is the use of various potential functions suggested by 

different authors which automatically satisfy the displacement-equation of motion and 

effectively break the associated high-order PDEs into tractable potentials. The stress 

functions are extremely powerful when they are appropriately used in association with 
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the method of integral transforms in that their analytical solutions can be readily 

determined in the transformed domain. The potential functions are very desirable and 

sometimes indispensible in solving problems in the framework of non-conventional 

continuum theories. The difficulties arisen from the non-classical BCs (such as the 

problems examined under theory of surface elasticity) or very higher order PDEs (e.g. 

the strain gradient elasticity) can all be satisfactorily addressed once certain types of 

potential functions are employed. Such advantages are highlighted in many parts in this 

study: 

In Section 2 the harmonic functions suggested by Green and Zerna (1968) are 

used to solve axisymmetric adhesive contact problems. Based on this approach, one is 

able to calculate the normal load and stress intensity factor in an easy manner. Therefore, 

this method can be applied to solve axisymmetric crack problems in which the 

evaluation of stress intensity factor usually involves formidable efforts.  

The Papkovitch-Neuber functions are employed in Section 3 and 4 to attack the 

BVPs in the context of surface elasticity. The methodology outline in these sections can 

be adopted to solve problems of similar kind in which the material behaviors are 

governed by the classical elastic theory while the BCs are non-classical. The models and 

corresponding results in each of these two sections are derived by using the general 

formulations of Gurtin and Murdoch (1975, 1978) which includes the surface elastic 

constants and residual stress. The fundamental studies and associated methodologies in 

these sections can be adopted to investigate surface energy effects which are gaining 

increased attention in recent years.  
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The displacement functions propounded by Mindlin (1964) can be viewed as 

generalized P-N functions that contain intrinsic material lengths and they effectively 

reduce the high-order PDEs in SSGET into to tractable potential functions. The 

Mindlin’s stress functions have not been well-recognized and can be widely applied to 

solve pertinent problems under strain gradient elasticity. The theory we employed in 

Section 5 is the most simplified version, however, the same methodology can be applied 

to solve the same problem by using the more general theory, such as the one containing 

two material lengths (e.g., Mindlin, 1964).  

Both the surface elasticity based and SSGET-based solutions are derived for 

semi-infinite contact problems involving elastic, homogeneous and isotropic solids. 

However, this idealized condition might deviate from the materials used in micro/nano-

indentation, which typically exhibit certain degrees of inhomogeneity and/or anisotropy. 

Refined models are needed to include material anisotropy and/or inhomogeneity, and 

thereby yield more accurate results.  
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APPENDIX  

 

For axisymmetric contact problems, by defining 1 cos   , 2 sin   , 

1 cosx r  , and 2 sinx r   one has cos( )x r      . Accordingly the double 

Fourier transform can be rewritten as 
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For a function f  that is θ-independent, we obtain by using the periodic nature  
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The integral definition for Bessel function of the first kind is (Abramowitz and Stegun, 

1964, pp360)  

 i cos

0

i
( ) cos( )d ,

n
x

nJ x e n


  




   (A.3) 

and application of the periodic nature leads to  
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It follows from Eq. (A.4) that  
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Use of Eq. (A.5a) in Eq. (A.2) yields  
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If a function in Fourier domain can be expressed as 
1( )f   , then its inverse 

Fourier transform is given by   
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In a similar fashion, one can obtain  
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( ) cos 2 ,

8

r

r t

r t

F f f e d d

f t t e dtd

f te dtd


  

 







        


    



  




 

 







 



 

 

 

 (A.10) 
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 

 

 

2
1 2 3 2 i cos( )

1 2 0 0

2
3 i cos

2 0

2
3 i cos

2 0 0

2
3 2 2 i cos

12 0 0

1
[ ( ) ] ( ) cos

4

1
( ) 1 cos 2 cos 2 sin 2 sin 2

8

1
( ) 1 cos 2 cos 2

8

1
( ) 1 cos 2 2 1 ,

8

r

r t

r t

r t

F f f e d d

f t t e dtd

f t e dtd

f t x r e dtd


  

 










      


    


   


  



 

 










  

 

   
 

 

 

 

 

 (A.11) 

where use has been made of the fact that 

2 2
i cos i cossin 2 2 cos cos 0r t r tte dt te d t

   
 

 

 

 
    . 

Using Eq. (A.5c) in Eqs. (A.10) and (A.11) yields 

 1 31 2
1 2 22 0

[ ( ) ] ( ) ( ) ,
2

x x
F f f J r d

r
      




     (A.12) 

 1 2 3 2 2

1 0 1 2
0

1
[ ( ) ] ( ) ( ) (2 1) ( ) .

4
F f f J r x r J r d      




       (A.13) 

Analogous result can be obtained for 1 2

2[ ( ) ]F f    by replacing x1 with x2 in Eq. 

(A.13).  
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