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ABSTRACT 

 

Perceiving Emotion in Sounds: Does Timbre Play a Role? (December 2011) 

Casady Diane Bowman, B.S., Oklahoma State University 

Chair of Advisory Committee: Dr. Takashi Yamauchi 

 

 

Acoustic features of sound such as pitch, loudness, perceived duration and timbre have 

been shown to be related to emotion in regard to sound, demonstrating that research 

involving the important connection between the perceived emotions and their timbres is 

lacking. This study investigates the relationship between acoustic features of sound and 

emotion with regard to timbre. In two experiments, we investigated whether particular 

acoustic components of sound can predict timbre and particular categories of emotion, 

and how these attributes are related. Two behavioral experiments related perceived 

emotion ratings with synthetically created sounds and International Affective Digitized 

Sounds (IADS). Also, two timbre experiments found a connection between acoustic 

components of synthetically created sounds, and IADS. Regression analyses uncovered 

some relationships between emotion, timbre, and acoustic features of sound. Results 

indicate that emotion is perceived differently for synthetic instrumental sounds and 

IADS. Mel-frequency cepstral coefficients were a strong predictor of perceived emotion 

of instrumental sounds; however, this was not the case for the IADS. This difference 

lends itself to the idea that there is a strong relationship between emotion and timbre for 

instrumental sounds, perhaps in part because of their relationship to speech and the way 

these different sounds are processed. 

. 
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1. INTRODUCTION 

Music and language are the most cognitively complex and emotionally 

expressive sounds invented by humans. They are both generative; that is, complexity is 

built up by rules and hierarchical organization that result in sentences or songs. So what 

is it that links these two modes of communication? Much is known and studied about the 

syntactic relations between music and language, but is there more we can say based on 

their sound relations, emotion, or how we use them? The study of music used as a form 

of emotion may help to disentangle the mysteries of its use in social communication, as 

well as the functional dissimilarities and similarities. Research distinguishing between 

music and language, and finding a link between timbre and emotion, can help to further 

identify the role of the processes for music and language in the brain. 

This study focuses on the relationship between timbre and emotion. There is 

much research regarding timbre (Koelsch, 2005), but few studies have explored the link 

between timbre and emotion, (see Caclin et al., 2006, and Hailstone et al., 2009 for 

exceptions) to any degree of specificity.  The main question addressed here is, do 

particular acoustic components of sound predict particular categories of emotion (e.g., 

happiness, sadness, anger, fear or disgust; see Ekman, 1992), as well as timbre?  

Perceiving timbre is presumed to rely upon the capacity to perceive and process 

differences between sounds, such as the difference between musical instruments or 

voices.  

____________ 

This thesis follows the style of the Journal of the Acoustical Society of America. 
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 This ability to distinguish between sounds is essential to everyday human 

functioning, and is a fundamental task of the auditory system (McAdams & Cunible, 

1992; Godyke et al., 2003). But how is this capacity linked to our ability to perceive 

emotions? If music and speech share some fundamental characteristics, then the ability 

to perceive timbre should be also related to the ability to perceive speech sounds. By 

investigating the relationship between timbre and emotion, this research aims to shed 

light on the basic acoustic features that define it. 

The outline of this thesis is as follows. Related research analyzing timbre, 

emotion and the link between timbre and emotion is reviewed in sections 1.1 – 1.3. 

Section 1.4 gives an overview of experiments, and 1.5 details computational sound 

analyses for timbre extractions. In section 1.6 correlations of acoustic components are 

discusses, followed by 2.0 which details predictions of the data. Section 3.0 includes two 

experiments that demonstrate, and explain the similarities between timbre and emotion 

in terms of acoustic features. In section 3.3 and 3.4 principal component analysis is 

reviewed. Section 3.5 includes a preliminary data analysis, of Experiments 1a, and 1b as 

well as their results and discussion in section 3.8. Section 4.0 comprises Experiments 2a 

and 2b as well as their results, and discussion. Finally, section 5.0 consists of a general 

discussion section. Overall, this research aims to investigate and further explicate the 

relationship between timbre, sound, and emotion.  

1.1. Timbre 

Sounds are perceived and characterized by a number of attributes such as pitch, 

loudness, perceived duration, and timbre. Timbre is defined as the ―acoustic property 
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that distinguishes two sounds of identical pitch, duration, and intensity‖; it is essential 

for the identification of auditory stimuli (Hailstone et al., 2009; Bregman, Liao & 

Levitan, 1990; McAdams & Cunible, 1992). When identifying a musical instrument, to 

tell the difference between a flute and guitar playing the same note, pitch, and duration, 

one uses timbre. This quality of timbre allows a listener to identify individual 

instruments of an orchestra, and involves dynamic features of the sound, especially onset 

characteristics (Grey & Moorer, 1977, and Risset & Wessel, 1982).  

The classic definition of timbre holds that different timbres result from the sound 

of different amplitudes (of harmonic components) of a complex tone in a steady state‖ 

(Helmholtz, 1885). These definitions illustrate the relationship between sound and 

timbre in that it is a feature of sound, but they do not adequately inform us regarding 

acoustic components that create different timbres and how these components are shared 

for the perception of emotions of sounds. Timbre is complex and is made up of several 

acoustic components; it is multidimensional (Caclin et al., 2005). The 

multidimensionality of timbre makes it difficult to study or measure on a single 

continuum such as low to high. Contrary to pitch, which relies on the tone‘s fundamental 

frequency and loudness, timbre relies on several parameters, or acoustic dimensions of 

the sound. The main goal of most timbre studies has been to uncover the number and 

nature of these dimensions of timbre. A method most often used is that of 

multidimensional scaling (MDS) of dissimilarity ratings (McAdams & Bigand, 1993; 

Hajda et al., 1997). The advantage of MDS is that it does not make any assumptions 

about the acoustic dimensions of a sound. Studies using MDS typically have listeners 
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rate the dissimilarity between two stimuli, to result in a dissimilarity matrix which 

undergoes MDS to fit a perceptual timbre space. The dilemma with using this method is 

uncovering the acoustic components of timbre, and linking these to perceived emotions 

(McAdams et al., 1995) in order to better understand how the perception of timbre, and 

emotion are related.  

In the research of Padova et al., (2003), an often misled notion is discussed that 

sounds with identical spectra, or sound distribution, have identical timbres. Berger 

(1964) notes that the timbre of a piano tone is perceived as completely different when it 

is played backward even though the original and the reversed sound have the same 

spectra (Berger 1964). Another point of interest is that even major changes of the 

spectrum of a tone, do not prevent a listener from recognizing a musical instrument. 

Padova et al. (2003) argue that musical timbre does not depend upon one single physical 

dimension. Other researchers (see Caclin et al., 2005; Hailstone et al., 2009) have shown 

that other features such as amplitude, phase, attack time, and decay in a tone, all work 

simultaneously to influence the perception of timbre. 

Some of the most studied populations are those of musicians in regard to their 

music processing abilities. Musicians are able to outperform non-musicians when 

processing an instrument‘s timbre. Research such as that of McAdams et al., (1995) has 

evaluated the perceptual structure of musical timbre in musicians, amateur musicians 

and non-musicians. Using a three-dimensional model, McAdams et al. (1995) was able 

to identify the attack time, the spectral centroid, and the spectral flux to be the acoustic 
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correlates to discriminate timbres in a dissimilarity-rating task (Chartrand & Belin, 

2008). 

Recent studies using a multidimensional scaling technique have identified two-

dimensional and three dimensional structures of timbre (Rasch & Plomp 1982; Wedin & 

Goude 1972; Wessel & Grey 1978; Grey & Moorer, 1977; Miller & Carterette, 1975; 

Krumhansl, 1989; Plomp, 1970; McAdams & Cunible, 1992).  The timbre space 

resulting from the studies of Miller and Carterette (1975) discovered a three dimensional 

model where two of the dimensions were related to the harmonic structure, and the third 

was related to the amplitude envelope of a sound; similar results were achieved by 

Samson, Zatorre & Ramsay (1997). According to the research and studies of Grey & 

Moorer (1977), three dimensions exist for describing timbre, that of spectral energy 

distribution, presence of synchronicity also termed spectral fluctuation and the presence 

of low-amplitude, high-frequency energy in the attack of a sound.  

Furthermore, several studies highlight the role of the distribution of spectral 

energy in dissimilarity and similarity judgments (Plomp 1970; Samson, Zatorre & 

Ramsay, 1997; Wedin and Goude 1972; Grey & Moorer, 1977; Krumhansl 1989). Music 

producers and researchers alike are now able to produce and create many kinds of 

complex sounds by controlling for specific acoustical properties (Padova et al., 2003).  

While this applies to music excerpts, and pieces, the timbral variations within a single 

instrument that are used to transmit emotional expressions are different and are likely 

smaller than those that are present between instruments (Godyke et al., 2003).  
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In summary, research in the field of timbre shows that there are several acoustic 

features with which timbre can be characterized such as attack time, and spectral flux; 

however, these do not allow for the full range of emotion that is said to describe timbre.  

1.2. Emotion  

Emotions are social. To understand the relationship between emotions and the 

social world, it is necessary to include a social psychological approach.  To say that 

emotions are social is to say that emotions are deeply entrenched in our social world. For 

example, we experience jealousy in relationships, appreciation for help from others, and 

anger at others actions. It is also appropriate to look at social roles people play in 

interactions – these can specify what emotions and moods are to be displayed in a given 

situation. It has been argued that the communication of emotions serves as the 

groundwork of the social order in animals and humans. However, this same type of 

communication is also significant within performing arts such as music.  

The scope of this present research will make use of ―basic‖ emotions. Ekman 

(1992) states that the meaning of ―basic‖ emotions illuminates the viewpoint that 

emotions have evolved for their adaptive value in dealing with fundamental life tasks. 

These fundamental life tasks as described by Johnson-Laird & Oatley (1992) are 

universal human predicaments, such as achievements, losses, frustrations, etc. These 

basic emotions, and fundamental life tasks, are adaptive in that they lead us, in the 

course of evolution, to create better solutions than those used previously in attaining 

relevant goals. Emotions deal with recurrent adaptive situations, (Tooby & Cosmides, 
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1990), these adaptive situations emphasize what distinguishes emotions, our appraisal of 

a current event is influenced by our ancestral past. 

Emotions represent reactions to an event of significance; they produce changes in 

an organism. One important feature of emotion is that it produces specific action 

readiness (or reactions) while providing a latency period to allow for adaptation of 

behavioral reactions to a situation (Scherer, 1995). This latency period is used so that the 

organism can predict the reaction of others to an action as the result of a particular 

emotional state. As in the classic work of emotion in humans and animals by Darwin 

(1872), it has been shown that emotional expressions provide an essential function of 

communicating action and reaction to the social environment (Scherer, 1995). Emotion 

as well as expression are phylogenetically continous and are found in many species, 

especially in species where social life is based on complex interactions between 

individuals. Many expressive modalities are important to emotion communication such 

as body posture, facial features, and vocalization (Scherer, 1995). Communication of 

emotions is crucial to social relationships and survival (Ekman, 1992). The two most 

effective resources for emotional communication are both vocal expression and music 

(Gabrielsson & Juslin, 1996). 

It is clear that emotions in music are important; yet there are issues that remain 

difficult to resolve such as whether music can convey specific emotions, or if music 

really does evoke emotion in listeners. Facial recognition research by Ekman (1992) 

showed that the basic emotions, happy, sad, anger, and fear, are universal and cross-
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cultural, as well as important for social communication. Such emotions are also 

prevalent within music and sound used for communication.  

To summarize, the past research on the relationship between music and emotions 

has well covered the association between social cognition, universality, and 

physiological arousal explained within emotion; however, very little research has 

covered the link between emotion and sound in terms of acoustic components (see 

Caclin et al. 2006; and Hailstone et al., 2009 for a few exceptions). With the exception 

of work by Bradley and Lang (1999), using the International Affective Digitized Sounds 

(IADS), most studies have not examined the connection between sound and emotion in 

terms of important acoustic components that work to explain emotion in sound.  

1.3. Linking timbre and emotion 

Distinct sounds in both language and music are used to express emotion, but 

what acoustic features of sound relate to emotion? Previous research has shown that 

emotion in music and sound is influenced by structure such as melodic contour, vibrato, 

tempo, rhythm, mode, consonance, dissonance and timbre (Gabrielsson & Juslin, 1996). 

Listeners are able to readily interpret emotional meaning of music by attending to 

specific properties of the music (Hevner, 1935; Balkwill et al., 2004). As an example, 

joy in music is often associated with fast tempo, a major mode, wide pitch range, and 

high loudness (Gabrielsson & Juslin, 1996). These properties of music, such as tempo 

and loudness could provide evidence to support universal cues to emotion in music. 

Such acoustic cues are used, either unconsciously or consciously by performers and 
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composers (Balkwill et al., 2004) as well as culturally specified conventions to 

determine and express emotion in music. 

Other studies have also proposed that emotion in music is related to pitch, tempo, 

loudness and timbre of speech (Ladd et al., 1985; Johnstone & Scherer, 2000). Though 

specifics of studies are different, both domains of research suggest timbre as one 

important factor for experiencing emotion in speech, music, and sound.  

The emotions happy and anger are similar in terms of acoustic cues relating to 

rate, intensity and pitch patterns, yet differ in regard to timbre (Patel, 2009). Hailstone et 

al. (2009) found that instrument identity, or timbre, influences perception of emotion in 

music. Other early studies such as those by Hajda et al., (1997) demonstrated the use of 

timbre‘s temporal and spectral components in instrument recognition. This was done 

using recorded and transformed versions of sounds. Results showed that both spectral 

and temporal characteristics were important for an instrument recognition task. This 

demonstrates the importance of giving further attention to studying timbre as a major 

contributor to emotion in music.  

A major limitation of past research on timbre and music is that there is little 

focus on the relationship between the perceptual components of timbre and perceived 

emotion. Adding to the drawback are the differing claims that have been made with 

reference to emotion in music. For example, it has been stated that emotions are 

spontaneous responses, or that emotions are consistent between subjects, or that music 

does not induce basic emotions (Koelsch, 2005; Scherer, 2003). There is lacking in 

current research an important aspect connecting perceived emotion influenced by timbre, 
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and sound identity (Hailstone et al., 2009). This gap in the literature reflects the idea that 

musical emotions are not like other emotions (Krumhansl, 1997). Differences between 

these emotions are evident in the antecedents and consequences of emotions. 

Antecedents are environmentally determined conditions that have perceived or real 

implications for an individual's welfare; these are commonly trailed by withdrawal or 

aggression, for example (Krumhansl, 1997). In order to physically prepare an individual 

to perform such actions, emotions are essential. Music however does not have such an 

overt effect on an individual‘s welfare; it is not often followed by a goal-directed action. 

Here, the strategy is to investigate how acoustic components relate to timbre and 

emotion, both with synthetically created sounds, as well as with the International 

Affective Digitized sounds (Bradley & Lang, 2007). In conducting this study it was 

important to control for factors such as pitch, familiarity, and structural cues that could 

affect perception of emotion. Novel stimuli were created from ten instruments for 

Experiments 1a and 1b, Experiments 2a and 2b utilized the International Affective 

Digitized Sounds (IADS) (Bradley & Lang, 1999). Two, two-part experiments were 

conducted; for Experiment 1a and 1b sounds had synthetically modified timbres, these 

sounds were designed to include timbral cues to particular basic emotions. The basic 

emotions, happy, sad, anger and fear were chosen over other emotions because they 

support work on emotion perception from facial expressions by Ekman (1992), which 

shows that these emotions are universally recognized by normal human participants, and 

they are well represented in music.  
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Once ratings were obtained for Experiments 1a and 1b, the goal of analysis was 

to uncover the relationship between emotion, and timbre in the synthetically created 

sounds. This was done using principal components analysis to reduce the dimensions of 

the original data sets (both for acoustic components as well as emotion and timbre). A 

regression analysis was then applied to identify the acoustic components that would 

predict timbre and emotion ratings in sound. This same method of analysis was repeated 

for Experiments 2a and 2b using the IADS, which were more environmentally based 

sounds. 

1.4. Overview of the experiments 

The main question this research asks is if particular acoustic qualities of sound 

can explain, or predict particular categories of emotion and timbre. This research 

endeavors to find how these attributes of sound, timbre, and emotion are related. Two 

behavioral experiments were conducted: an instrument judgment experiment and an 

emotion judgment experiment as well as an analysis of previously collected data using 

the International Affective Digitized Sounds (IADS), (Bradley & Lang, 2007). 

Computational sound analyses were run on all sound stimuli. In the behavioral 

experiments, participants rated the extent to which instrumental, or IAD sounds 

conveyed particular emotions, timbre, or categories using a 1-7 scale.  

To identify the acoustic properties that were able to predict instrument judgments 

and emotion judgments, eight components of timbre (i.e. attack time, attack slope, zero-

cross, roll off, brightness, mel-frequency cepstral coefficients, roughness, and 

irregularity) were extracted from a total of 179 stimuli as well as 106 IADS stimuli. By 
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applying principal component analysis (PCA), and stepwise multiple regression 

analyses, we compared which acoustic features of timbre could predict the behavioral 

performance obtained from the instrument judgment, the emotion judgment experiment 

and the IADS emotion data. Principal components analysis (PCA) was used on emotion, 

instrument, and International affective digitized sounds data to reduce the 

dimensionality.  

To analyze the sounds and rating data, several different independent and 

dependent variables for the regression analyses were investigated. The first regression 

analysis uses the independent variable of predictors (acoustic features) as well as the 

dependent variable of emotion ratings for synthesized sounds (Experiment 1a). The next 

regression analysis uses the predictor variables (independent variables) and timbre 

ratings of the synthesized sounds (Experiment 1b). The same analyses were used with 

the independent variables for Experiments 2a and 2b, involving the International 

Affective digitized category ratings, as well as emotion ratings, respectively.  

This study shows that there is a visible overlap as well as disparity in the acoustic 

components that explain timbre and emotion; this is most noted for the components mel-

frequency cepstral coefficient for synthetically created instrumental sounds. Mfcc‘s have 

been especially important in the field of speech recognition; they are a set of 

perceptually motivated features that offer a condensed representation of the spectral 

envelope, such that most of the signal energy is concentrated in the first coefficients 

(Tzanetakis, 2002). For both the timbre and emotion judgments, these speech-related 

audio-features play a central role. However, this is not the case for the IADS.  
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1.5. Timbre extraction  

In what follows, acoustic features of timbre are described in detail, as well as the 

computational procedure of extracting these features. The purpose of using these 

acoustic features is to act as predictors in regression analyses that can explain perceived 

emotion and timbre perception.  A total of 179 sound stimuli were analyzed.  

Eight acoustic properties of timbre: attack time, attack slope, zero-cross, roll off, 

brightness, mel-frequency cepstral coefficients, roughness, and irregularity were 

extracted from a total of 179 stimuli sounds using MIRToolbox in Matlab (Lartillot, 

Toiviainen, & Eerola, 2008). These acoustic properties are known to contribute to the 

perception of timbre in music and are likely to influence emotion independently of 

melody and other musical cues (Hailstone et al., 2009). The acoustic features were 

extracted from synthesized sounds rated in Experiments 1a for timbre, and 1b for 

emotion, as well as the IADS rated in Experiments 2a for category, and 2b for emotion. 

Attack time is the time in seconds it takes for a sound to travel from amplitude of 

zero, to the maximum amplitude of a given sound signal, or more simply the temporal 

duration. Some features of timbre such as attack time contribute to the perception of 

emotion in music (Gabrielsson & Juslin, 1996; Juslin, 2000; Loughran et al., 2001); 

which suggests that features of timbre can at least in part determine the emotional 

content of music (Hailstone et al., 2009). 

Attack time is computed using the equation of a line, y = mx + b, it is part of a 

sounds amplitude envelope where m is the slope of the line and b is the point where the 

line crosses the vertical axis (t=0). For example, Figure 1 gives a demonstration of attack 



 14 

time. The horizontal segments below the x-axis indicate the time it takes in seconds to 

achieve the maximum peak of each frame for which the attack time was calculated. 

 

 
 

Figure 1. Attack time of a waveform audio file. This figure gives an example of the 

acoustic component attack time, for a waveform audio file (wav). Sections a through i in 

the figure indicates separate attack times; this is the time in seconds from the vertical 

black line, to the peak of the sound indicated by the vertical red line. 

 

 

 

Attack slope is the attack phase of the amplitude envelope of a sound, also 

interpreted as the average slope leading to the attack time. This can also be calculated 

using the equation of a line y = mx +b, where m is the slope of the line and b is the point 

where the line crosses the vertical axis (t=0), see Figure 2. The red line in Figure 2 

indicates the slope of the attack. 
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Figure 2. Attack slope of a waveform audio file. This figure gives an illustration of the 

acoustic component attack slope. The red arrow indicates the duration (attack time) for  

which the attack slope is calculated. 

 

 

 

Zero-cross is the number of times a sound signal crosses the x-axis, this accounts 

for noisiness in a signal and is calculated using the following equation where sign is 1 

for positive arguments and 0 for negative arguments. X[n] is the time domain signal for 

frame t.  
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Roll off is the amount of high frequencies in a signal which is specified by a cut-

off point. The roll-off frequency is defined as the frequency where response is reduced 

by -3 dB. This is calculated using the following equation where Mt is the magnitude of 

the Fourier transform at frame t and frequency bin n. Rt is the cutoff frequency, see 

Figure 3. 
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Figure 3. Roll off of a waveform audio file. This figure shows the acoustic component 

roll off, the red segment indicates the cutoff point of 85% for the amount of high 

frequencies in the signal.  

 

 

 

Brightness is the amount of energy above a specified frequency, typically set at 

1500 Hz – this is related to spectral centroid. The term "brightness" is also used in 

discussions of sound timbres, in a rough analogy with visual brightness. Timbre 

researchers consider brightness to be one of the strongest perceptual distinctions between 

sounds.
 
Acoustically it is an indication of the amount of high-frequency content in a 

sound, and uses a measure such as the spectral centroid, see Figure 4. 
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Figure 4. Brightness of a waveform audio file. This figure shows the acoustic component 

brightness. To the right of the red line is the amount of energy above 1500 Hz, or the 

brightness of the sound. 

 

 

 

Roughness is sensory dissonance, the perceived harshness of a sound; this is the 

opposite of consonance (harmony) within music or even a single tone harmonics. Both 

consonance and dissonance are relevant to emotion perception (Koelsch, 2005). 

Roughness is calculated by computing the peaks within a sound‘s spectrum and 

measuring the distance between peaks, dissonant sounds have irregularly placed spectral 

peaks as compared to consonant sounds with evenly spaced spectral peaks. 

Formally, roughness is calculated using the following equation where aj and ak 

are the amplitudes of the components, and g (fcb) is a ‗standard curve.‘ This was first 

proposed by Plomp & Levelt (1965).  
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Following extraction of the value for roughness from the sound stimuli, principal 

components analysis was used to reduce the dimensions of the roughness data, principal 

components analysis is explained in detail, in section 2.2.  

Mel-frequency Cepstral Coefficients (mfcc) represent the power spectrum of a 

sound. This power spectrum is based on a linear transformation from actual frequency to 

the Mel-scale of frequency. The Mel scale is based on a mapping between actual 

frequency and perceived pitch as the human auditory system does not perceive pitch in a 

linear manner. Mel-frequency cepstral coefficients are the dominant features used in 

speech recognition as well as some music modeling (Logan, 2001). Frequencies in the 

Mel scale are equally spaced, and approximate the human auditory system more closely 

than a linearly spaced frequency bands used in a normal cepstrum. Due to large data 

output, prior to analyses mfcc data were reduced using principal components analyses to 

create a workable set of data. A cutoff criterion of 80% was used to represent the 

variability in the original mfcc data. Figure 5 shows the numerical Mel-frequency 

cepstral coefficient rank values for the 13 mfcc components returned. Thirteen 

components are returned due to the concentration of the signal information in only a few 

low-frequency components. 
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Figure 5. Mel-frequency cepstral coefficients (mfcc) of a waveform audio file. This 

figure shows the acoustic component mfcc. Each bar represents the numerical (rank 

coefficient) value computed for the thirteen components returned. 

 

 

 

Irregularity of a spectrum is the degree of variation between peaks of a spectrum 

(Lartillot, Toiviainen, & Eerola, 2008). This is calculated using the following equation 

where irregularity is the sum of the square of the difference in amplitude between 

adjoining partials in a sound. 
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1.6. Correlation of acoustic components 

This section reviews correlations found between acoustic components used as 

predictors in the regression analyses. To assure that the regressions of the principal 

components are run correctly, it is important to test for multicollinearity. In regression 
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analysis, this is when two or more predictor variables in a multiple regression model are 

highly correlated. This can cause problems for the data in that calculations of individual 

predictors might not predict the data as well, while the predictive power (reliability) of 

the regression model as a whole is not reduced.  

Table 1 shows the entire matrix of correlations (Pearson‘s r) among the fourteen 

predictors. This can give us an idea of how the emotion and timbre data will interact in 

terms of the predictors, or acoustic features.  

Significantly correlated predictor variables include attack slope, with roughness, 

and zero cross; brightness with mfcc 2, mfcc 3, mfcc 6, roughness, zero cross, and roll 

off; irregularity with mfcc 2, mfcc 7, roughness and zero cross.  These significant 

correlations indicate that the predictors used may not individually adequately predict 

timbre, or emotion. This means that none of the correlated predictors may contribute 

significantly to the model after the other one is included; however, altogether they 

contribute a lot. If the correlated variables are removed from the model, the fit of the 

model to the data will decrease. Simply put, it is possible that the overall model will fit 

the data, but that none of the correlated variables will have a significant contribution 

when added to the model.  
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Table 1 

Pearson correlation of predictor variables  

 Atta
ck 
tim
e 

Atta
ck 
slop
e 

Brig
ht-
ness 

Irregul
arity 

MF
CC 
1 

MF
CC 
2 

MF
CC 
3 

MF
CC 
4 

MF
CC 
5 

MF
CC 
6 

MF
CC 
7 

MF
CC 
8 

Rou
gh-
ness 

Zer
o 
Cro
ss 

Roll 
off 

Attack 
time 
 

1 .03 -.13 -.01 -.00 .09 -.01 .07 -.12 -.10 .13 .09 -.07 -

.08 

-

.02 

Attack 
slope 
 

 1 .03 .12 -.12 -.13 -.05 .07 -.03 .10 .09 -.04 -

.20*

* 

.18

* 

.08 

Brightn
ess 
 

  1 .12 -.14 -

.38

** 

.28

** 

-.03 -.07 -

.24

** 

-.04 -.08 -

.20*

* 

.59

** 

.54

** 

Irregul
arity 
 

   1 .04 -

.21

** 

-.09 -.01 -.05 -.04 .26

** 

-.03 -

.29*

* 

.19

** 

.06 

MFCC 
1 
 

    1 .00 .00 .00 .00 .00 .00 .00 .12 -

.18

* 

-

.22

** 

MFCC 
2 
 

     1 .00 .00 .00 .00 .00 .00 .35*

* 

-

.30

** 

-

.16

* 

MFCC 
3 
 

      1 .00 .00 .00 .00 .00 .09 .16

* 

.22

** 

MFCC 
4 
 

       1 .00 .00 .00 .00 -.01 .00 .01 

MFCC 
5 
 

        1 .00 .00 .00 -.01 -

.16

* 

-

.12 

MFCC 
6 
 

         1 .00 .00 .04 -

.06 

-

.14 

MFCC 
7 
 

          1 .00 -

.17* 

.04 .06 

MFCC 
8 
 

           1 .03 -

.09 

-

.06 

Rough-
ness 

            1 -

.22

** 

-

.14 

Zero -
Cross 

             1 .86

** 

Roll -
off 

              1 

* p <.05, ** p < .01, and *** p < .001. 
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2. PREDICTIONS 

 To determine the relationship between the independent variables (acoustic 

components), and the dependent variables (emotion ratings, instrument ratings, and 

IADS ratings), principal components analysis was performed, followed by regression 

analysis. The main goal of the research was to establish whether particular categories of 

emotion (e.g., happy, sad, anger, fear or disgust; see Ekman, 1992) and timbre are 

explained by particular acoustic qualities of sound, and to discover how these attributes 

are related.  

 Due to the ease with which producers and researchers produce and create many 

kinds of complex sounds by controlling for specific acoustical properties (Padova et al., 

2003), the timbral variations within a single instrument that are used to transmit 

emotions are more variable and more easily manipulated. In this regard, implications for 

this research could mean that, if the acoustic feature roughness is found to be a 

significant predictor for both emotion and timbre in terms of the synthetically created 

stimuli, that roughness is a main determinant of both timbre and emotion.  

 Speech perception research has indicated that mel-frequency cepstral coefficients 

are a major source, or carrier, of information (Loughran et al., 2001. Mfcc‘s are the 

dominant features used for speech recognition (Logan, 2001), and are based on the mel-

scale which approximates the human auditory system's response. The mel-scale is based 

on a mapping between the actual frequency of a sound and its perceived pitch. Due to 

this underlying relationship between speech and music processing, it is hypothesized that 

mel-frequency cepstral coefficients will be a significant acoustic component for timbre 
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with instrumental sounds. If mfcc‘s are also a strong predictor for emotion, it can be 

foretelling that both emotion and timbre are related in terms of speech sounds. Mfcc‘s 

have recently come into the music field as a new point of research; for example, Brown 

(1998) discriminates between oboe and saxophone sounds by calculating cepstral 

coefficients.  

 For the IADS (environmental type sounds) it is not thought that mel-frequency 

cepstral coefficients will apply in the same way due to the processing used for the 

different types of sounds. It has been acknowledged that the gap in literature linking the 

acoustic components of sound and emotion reflects the idea that musical emotions are 

not like other emotions (Krumhansl, 1997). Environmentally based sounds have real 

implications for an individual's welfare; these sounds are followed by a bodily reaction, 

and emotions are essential to physically prepare an individual to perform such an action. 

Music however does not have such an overt effect; it is hypothesized that though the 

same acoustic features may not be located for the IADS, it is expected that there will be 

a connection between the category and emotion within the sounds.  
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3. EXPERIMENTS 1A AND 1B: INSTRUMENTAL SOUNDS 

3.1. Experiment 1a: Instrument Judgment Experiment 

Novel stimuli were created to convey particular emotions based on previous 

research (Gabrielsson & Juslin, 1996; Hailstone et al., 2009; Juslin, 2000; Sloboda, 

1991). The stimuli were created, as in Hailstone et al., (2009) to be complex and 

perceptually distinct to avoid similarities with real musical instruments. This lack of 

close similarity helped to minimize the effects of learned emotional associations with 

particular instruments. Synthetic stimuli also removes effects such dynamics or tempo, 

which may modulate emotional impact (Hailstone et al., 2009). 

Participants. A total of 219 participants (73 male, mean age = 18.6, 146 female, mean 

age = 18.5) participated. Subjects were recruited from the Texas A&M University 

subject pool and received course credit for participation. 

Materials. Stimuli were combinations of two instruments taken from one of four 

categories of instruments: wind (flute, clarinet, alto saxophone), brass (trumpet, French 

horn, tuba), string (guitar, piano, violin), and other (bells). 

To produce stimuli, ten different instruments were recorded and tuned to 

approximately 440 Hz. From these ten original sounds, 180 ―synthetic‖ stimuli were 

created by mixing recordings of two instruments with an audio analysis, editing, and 

synthesis program (SPEAR, Klingbeil, 2005). Specifically, fast Fourier transform 

analysis was applied to decompose the sounds into amplitude and frequency 

components. With the help of laboratory assistants the fundamental frequencies and 

other frequencies were arbitrarily chosen from each instrument sound and combined to 
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create 180 total stimuli. Laboratory assistants were instructed to take the instrument 

combinations, for example, frequencies from both flute and clarinet, to create a happy 

sound using that combination of instruments. For each instrument pair (45 pairs of 

instruments in all) four sounds were created to sound happy, sad, angry, and fearful. One 

sound was discarded due to an error in creation leaving a total of 179 sound stimuli. 

Procedure. Participants were presented 45 sounds using customized Visual Basic 

software through Flats stereo headphones. Each stimulus‘s maximum volume was 

adjusted and normalized. No participants reported having difficulty hearing the sounds. 

Stimuli were presented in a random order for each participant. After listening to the 

stimuli, participants rated each sound on ten different rating scales for instrument type 

including flute, clarinet, alto saxophone, trumpet, tuba, French horn, violin, guitar, 

piano, and bell, see Figure 6. These instruments comprised the 179 total stimuli. 

Participants rated each sound on all ten instruments independently, with each scale 

ranging from 1 to 7-1 being strongly disagree (the degree to which the stimuli, sounded 

like one of the ten given instruments), and 7 being strongly agree, (Figure 6). Results for 

Experiment 1a will follow the methods for Experiment 1b.  

 

 

 
 

Figure 6. Instrument judgment experiment example. Participants rated each sound on all 

10 instruments. 
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3.2. Experiment 1b. Emotion Judgment Experiment 

Having established timbre ratings for synthetically created stimuli, the purpose of 

this Experiment 1b was to acquire emotion judgment ratings for the same synthetic 

stimuli.  

Participants. A total of 376 participants (202 male, mean age = 19.2 174 female, mean 

age = 19.2) participated in the experiment for course credit. No participants who 

participated in Experiment 1a participated in Experiment 1b.  

Materials. Stimuli used were the same as Experiment 1a; combination of two 

instruments taken from one of four categories of instruments; wind (flute, clarinet, alto 

saxophone), brass (trumpet, French horn, tuba), string (guitar, piano, violin), and other 

(bells).  

Procedure. The procedure of the emotion judgment experiment was identical to that in 

the Experiment 1a, except for a minor modification. In this experiment, participants were 

presented 90 sounds, one at a time, and rated each sound on five different rating scales 

including happy, anger, sad, fear, and disgust. These emotions were chosen based on 

previous emotion literature (Ekman, 1992). Participants rated each sound on all five 

emotions; with each emotional scale ranging from 1 to 7-1 being strongly disagree, and 

7 strongly agree, see Figure 7. 

 

 



 27 

 
 

Figure 7. Emotion judgment experiment example. Participants rated each sound on all 

five emotions. 

 

 

 

3.3. Principal Components Analysis (PCA): Experiments 1a and 1b 

Using principal components analysis (PCA), a large number of variables are 

reduced to a smaller, more coherent set of variables. The primary reason for using PCA 

prior to analyses was to compare responses made for emotion ratings and instrument 

ratings; PCA allows comparison of the data at a certain percent cutoff of the total 

variability of the original data (emotion and instrument ratings). This technique works to 

linearly transform a set of variables into a set of smaller, uncorrelated variables; the goal 

is to reduce the dimensionality of the original data set (Abdi & Williams, 2010). Because 

the principal components are uncorrelated, or orthogonal, each one makes an 

independent contribution to accounting for the variance of the original variables. The 

first component has the largest possible variance, and explains the largest part of the 

original data set. The second component is orthogonal to the first component and also 

works to explain as much of the data from the original data set as possible, and so on for 

subsequent components.  

When measuring two variables, for example, height and weight in a ten hospital 

patients, it is easy to plot and visualize this data and assess the correlations between the 
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two factors. However, when more than two or three dimensions of data are used, it is 

difficult to visualize the interactions and correlations within the data set, therefore, PCA 

is a useful tool to make a large data set more manageable. Figure 8 illustrates this 

method of dimension reduction used for the dependent variable of instrument ratings in 

Experiment 1a; the same procedure was applied to emotion ratings for Experiment 1b. 

The original data in Experiment 1a contained ratings of 179 sounds, for 10 instruments 

each, and for over 100 participants; a very large data set. PCA works to fit the data into 

components that account for a certain amount of variance within the data. 

 

 

 

 

 

 

 

Figure 8. Principal component analysis of instrument ratings. This figure illustrates the 

method used for PCA to reduce the dimensions of instrument ratings. Figure 8 A shows 

the original data while Figure 8 B demonstrates the reduction of the original data into 

principal components. The actual size of original data in Figure 8 part A and B have 

been decreased by the number of sounds for purposes of explanation. 

 

 

 

PCA was used on instrument and emotion responses to reduce the dimensionality 

of the dependent variables. The cutoff criterion selected, uses the first three components 

which describe nearly 80% of the variance for the rating data extracted in the timbre 

 

A. 

Flute Clarinet Trumpet Tuba Piano French 

Horn 

Violin Guitar Saxophone Bell 

Sound 

1 3.43 3.28 2.62 1.83 3.22 2.35 3.01 2.13 2.47 5.8457 
Sound 

2 3.45 2.64 2 1.47 2.71 1.71 2.50 1.81 2.07 5.96 
Sound 

3 3.792 2.92 2.28 1.88 2.75 2.16 2.62 2.01 2.50 5.03 

B. PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 

Sound 1 2.61 -0.92 -0.22 -0.01 -0.29 
Sound 2 1.35 -0.89 -0.29 0.16 -0.05 
Sound 3 0.00 -1.29 0.04 -0.41 -0.27 
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judgment and emotion judgment experiments. Methods such as this are based on 

previous principal components research (Wold, 1987; Abdi & Williams, 2010). See 

Figure 9 for a visual depiction of percent variance accounted for by each principal 

component for instrument rating data and Figure 10 for emotion rating data.   

 

 
 

Figure 9. Scree plot of observations for principal components describing instrument 

ratings. This figure demonstrates the variance in timbre ratings for each principal 

component of Experiment 1a. Percent variance accounted for by each principal 

component is indicated by a point on the red line. The blue line indicates cumulative 

percent variance for the principal components. The first two principal components 

account for more than 80% of the variance in the instrument rating data. 
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Figure 10. Scree plot of observations for principal components of emotion ratings. This 

figure shows the variance in emotion ratings for each principal component for 

Experiment 1b. Percent variance explained for each principal component is specified by 

a point on the red line, while cumulative percent variance is indicated by the blue line. 

The first two principal components account for more than 80% of the variance in the 

emotion rating data. 

 

 

 

3.4. Principal Components Analysis (PCA): Experiments 2a and 2b 

PCA was also used on IADS category and IADS emotion responses to reduce the 

dimensionality of the dependent variables. A cutoff criterion for the principal 

components of 80% of the cumulative percentage of total variation was used. 

Three principal components accounted for approximately 80% of the data for the 

category judgment regression analysis, and three principal components for the emotion 

judgment regression analysis, see Figure 11 for a visual depiction of percent variance 

accounted for by each principal component for IADS category rating data, and Figure 12 

for IADS emotion rating data. 
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Figure 11. Scree plot of observations for principal components describing IADS 

category ratings. This figure shows the variance in IADS category ratings for 

Experiment 2a. The percent variance accounted for by each principal component is noted 

by a point on the red line, the blue line shows the cumulative percent variance for by the 

principal components. The first three principal components account for more than 80% 

of the variance in the IADS category rating data. 

 

 

 

 
 

Figure 12. Scree plot of observations for principal components describing IADS emotion 

ratings. This figure shows the variance in IADS emotion ratings for each principal 

component of Experiment 2b. The percent variance accounted for by each principal 

component is indicated by a point on the red line. The blue line shows the cumulative 

percent variance accounted for by the principal components. The first three principal 

components account for more than 80% of the variance in the emotion rating data. 
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3.5. Results. Experiments 1a and 1b  

The following sections explain the results of Experiment 1a and 1b. First a 

preliminary data analysis of Experiment 1a was run to explain general elements of the 

instrument rating data followed by results of the stepwise regression for Experiment 1a. 

The same order of presentation is utilized for Experiment 1b. 

Stepwise regression analyses evaluate different independent and dependent 

variables. The first regression analysis uses the independent variable (predictors) and 

regresses this on the dependent variables (instrument ratings) for synthesized sounds of 

Experiment 1a. The next stepwise regression is between the predictor variables 

(independent variables) and emotion ratings of the synthesized sounds from Experiment 

1b. The purpose is to locate the acoustic components that can explain both emotion and 

timbre.  

The timbre data alone are able to convey interesting patterns and implications for 

the results of the Experiments 1a and 1b. Figure 13 shows a preliminary analysis of 

instrument ratings for the timbre Experiment 1a. From the figure, it is apparent that there 

is more variability in ratings for the instruments flute, tuba, and bell, over and above the 

other seven instruments.  

It has been noted that the selection of musical instruments is relevant to the 

expression of emotion in a sound (Balkwill & Thompson, 1999; Gabrielsson, 2001; 

Gabrielsson & Juslin, 1996; Juslin, 2000). Figure 13 shows the observations for each of 

the 10 instruments rated for Experiment 1a. From the whiskers of the box plot for the 

instrument data, it is evident that there is spread within the data. The highest rating for 
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the timbre data did not exceed a value of approximately 6.25, on the scale of 1-7. The 

median of the ratings for instrument varied between approximately 1.25 and 6.25 

signifying some amount of variability within the data. For all 179 sounds rated, most 

were rated as piano or bell, indicated by the median of the data for piano and bell. The 

sounds were rated least like the instrument tuba, as the median for this instrument was 

the lowest for all sounds rated on the ten instruments.  

 

 

Figure 13. Box plot of observations for timbre ratings. This figure illustrates the timbre 

ratings for the Experiment 1a. Each box indicates one instrument rated by participants, 

the median is indicated by the red line in the center of each box, and the edges indicate 

the 25
th

 and 75
th

 percentiles. The whiskers of each plot indicate the extreme data points, 

and outliers are plotted outside of the whiskers. 
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3.6. Results 1a: Instrument Judgment  

A step-wise regression was used to determine statistically significant predictor 

variables; this analysis worked by including predictors step-by-step to the model, to 

determine which acoustic components could best explains the instrument judgment data. 

Principal component analysis was used to reduce the dimensions of the 

instrument judgment data from ten dimensions to two in the instrument regression for 

Experiment 1a, which explained 80% of the variance in the instrument rating data. The 

steepest decline in the data (see Figure 14a and 14b) occurred in the first two 

components of the instrument judgment data.  

For principal component one, the results of this regression indicated that eight 

acoustic features, out of fourteen total acoustic features could significantly predict 

instrument ratings, these are as follows; mfcc 2 (β = -.500, p<.001), mfcc1 (β = -.441, 

p<.001), mfcc 3 (β = .340, p<.001), mfcc8 (β = -.183, p<.001), attack slope (β = .123, 

p<.01), mfcc4 (β = -.119, p<.01), mfcc 7 (β = -.135, p<.001), and roughness 2 (β = -.106, 

p<.001), see Table 2 for R-squared, or percent of variance described by the regression 

for principal component 1. The R-squared value tells which model works the best to 

explain the dependent variable, and also conveys the ―fit‖ of the model to the data for 

each predictor added to the model. Results for principal component two showed that 

eight acoustic features significantly predicted instrument ratings, these are; mfcc 1 (β = 

.297, p<.001), mfcc 2 (β = -.230, p<.001), attack time (β = -.193, p<.01), irregularity (β 

= .114, p<.05), mfcc 5 (β = .165, p<.01), mfcc 4 (β = -.149, p<.05), roll off (β = -.490, 

p<.001), and zero cross (β = .432, p<.001), (Table 2).  
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Figure 14 shows the proportion of R-squared contributed for each addition of a 

predictor to the model for each principal component, and the proportion of R-squared 

that was contributed for each addition of a predictor to the model for instrument ratings. 

 

 

 

 

Figure 14. R-squared. Instrument principal component two. This figure illustrates the 

change in R-squared for each addition of a predictor to the model. The dashed line in 

each figure demonstrates cumulative change, and the solid line represents the proportion 

of R-squared for each additional predictor to the model. Figure 14a demonstrates these 

values of R-squared for principal component one, and Figure 14b shows the values of R-

squared for principal component two for the instrument rating data. 
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Overall, the first two components of instrument PCA work well to describe a 

majority of the instrument ratings (70.98% of the instrument rating data). The most 

common features between all of the components are mfcc 1, mfcc 2, and mfcc 4. 

Table 2 

Significant acoustic components for instrument PCA 

 PCA 1 PCA 2 

% PCA explained 41.49 29.49 

Attack time  X* 

Attack slope X**  

Brightness   

Irregularity  X 

MFCC 1 X*** X*** 

MFCC 2 X*** X*** 

MFCC 3 X***  

MFCC 4 X** X** 

MFCC 5  X** 

MFCC 6   

MFCC 7 X***  

MFCC 8 X***  

Roughness X***  

Zero Cross  X*** 

Roll off  X*** 

R-squared 0.717 0.935 
       * p <.05, ** p < .01, and *** p < .001. 

 

 

It is important to note that each principal component is orthogonal from the 

other; they make an independent contribution in accounting for the variance of the 

original variables. In the case of the instrument principal components here, this does not 

seem to hold true due to the many shared predictors between the components.  
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The results from Experiment 1a, as a whole, show that mfcc 1, mfcc 2, and mfcc 

4 are very good predictors of instrument rating data (Figure 14a and 14b; Table 2). To 

determine if there is a relationship between predictors for timbre and emotion, it is 

necessary to analyze emotion rating data, where it is expected that mfcc will also be a 

main contributor to emotion rating data due to the presupposed relationship between 

timbre and emotion. 

A preliminary data analysis for emotion judgments are shown in Figure 15 which 

depicts observations for each emotion rated in Experiment 1b. From the whiskers of the 

box plot for the emotion data, it is evident that there is a small amount variation within 

the data; indicating that perhaps emotion was an easier to access and rate within the 

sound stimuli. It is also noted that the highest rating for the emotion data did not exceed 

a value of 6, on the scale of 1-7. The median of the ratings for emotion only varied 

between approximately 2.8 and 4.0 within the emotion rating data. For all 179 sounds 

rated, most were rated as fearful, indicated by the median of the data for fear. The 

sounds were rated least like the emotion happy, as the median for this emotion was the 

lowest for all sounds rated on the five emotions. 
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Figure 15. Box plot of observations for emotion ratings. This figure illustrates emotion 

ratings for Experiment 1b. Each box indicates one emotion rated by participants, the 

median is indicated by the red line, and the edges show the 25
th

 and 75
th

 percentiles. 

Whiskers of each plot indicate the extreme data points, and outliers are plotted outside of 

the whiskers. 

 

 

 

3.7. Results 1b: Emotion Judgment  

Similarly to the regression for the instrument judgment Experiment 1a, a step-

wise regression analysis was used to analyze the collected rating data and acoustic 

features. Principal component analysis was also used as in Experiment 1a with a cutoff 

criterion of 80% and a reduction from five to two dimensions.  

The results of the regression for emotion ratings of the first principal component 

indicated three acoustic features significantly predicted emotion ratings; roughness (β = -

.517, p<.001), mfcc 3 (β = -.184, p<.01), and mfcc5 (β = .132, p<.05, (Table 3).  Five 

acoustic features of fourteen total significantly predicted emotion ratings for principal 
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component two; mfcc 2 (β = .498, p<.001), mfcc 1 (β = .322, p<.001), mfcc 3 (β = -.296, 

p<.001), attack time (β = -.157, p<.01), and brightness (β = -.153, p<.01), (Table 3).  

 

 

Table 3 

Significant acoustic components for emotion PCA 

Predictors EPCA 1 EPCA 2 

% explained 63.27 26.26 
Attack time  X** 

Attack slope   

Brightness  X** 

Irregularity   

Mfcc 1  X*** 

Mfcc 2  X*** 

Mfcc 3 X** X*** 

Mfcc 4   

Mfcc 5 X*  

Mfcc 6   

Mfcc 7   

Mfcc 8   

Roughness X***  

Zero-cross   

Roll off   

R-squared 0.333 0.562 
             * p <.05, ** p < .01, and *** p < .001. 

 

 

Figure 16 shows the proportion of R-squared contributed for each addition of a 

predictor to the model for principal component one from the emotion judgments as well 

as the proportion of R-squared that was contributed for each addition of a predictor to 

the model for principal component two from the emotion judgments. 
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Figure 16. R-squared. Emotion principal component two. This figure illustrates the 

change in R-squared for each addition of a predictor to the model. The dashed line in 

each figure demonstrates cumulative change, and the solid line represents the proportion 

of R-squared for each additional predictor to the model. Figure 16a demonstrates these 

values of R-squared for principal component one, and Figure 16b shows the values of R-

squared for principal component two for the emotion rating data. 

 

 

 

In regard to the comparison between the regression results for instrument and 

emotion, Table 4 lists the shared predictors between the principal components for 

emotion (EPCA) and timbre (IPCA). It is interesting to note that the predictors, or 

acoustic components, shared by both timbre and emotion are attack time, mfcc 1-3, mfcc 
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5, and roughness. Due to the implications of mfcc and speech processing and simulation, 

this relationship shows that predictors that can explain both emotion and timbre for the 

synthetically created sounds could also explain speech; though no other predictors were 

able to do so. This relationship between the synthetic sounds and speech is discussed 

more in the general discussion section in comparison with the emotion rating and IADS 

data.  

 

 

Table 4 

Shared predictors for timbre and emotion 

Predictors IPCA 1 IPCA 2 EPCA 1 EPCA 2 

% Explained 41.49 29.49 63.27 26.26 

Attack time   X*  X* 

Attack slope X*    

Brightness    X* 

Irregularity  X*   

Mfcc 1 X* X*  X* 

Mfcc 2 X* X*  X* 

Mfcc 3 X*  X* X* 

Mfcc 4 X* X*   

Mfcc 5  X* X*  

 Mfcc 6     

Mfcc 7 X    

Mfcc 8 X    

Roughness X*  X*  

Zero-cross  X*   

Roll off  X*   

R-squared 0.717 0.935 0.333 0.562 
          * p <.05, ** p < .01, and *** p < .001. 

 

Figure 17 displays the porportion of R-squared for each of the principal 

components for both the instrument and emotion. This figure represents the percent of 
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the data explained for each principal component. The instrument principal component 

first explained 41.49% of the isntrument rating data, and principal component two 

explained 29.49% of the instrument data, or that not accounted for by the first principal 

component. The primary reason for using PCA is to be able to compare responses made 

for both emotion and instrument ratings. Figure 17 shows that the difference in percent 

explained moving from instrument and emotion principal component one, to instrument 

and emotion principal component two decreases considerably.  

 

 

 

Figure 17. Amount of instrument and emotion rating data explained for each principal 

component. This figure illustrates the instrument (solid) and emotion (dashed) changes 

in the percent explained from the first principal component, to the second principal 

component. This value indicates how much of the instrument data, or emotion rating 

data, is explained by the principal component. 

 

 

 

3.8. Discussion. Experiments 1a and 1b 

The conclusions that can be drawn from the results of Experiments 1a and 1b 

show that timbre components do have an effect on the perception of emotion in sound by 
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normal participants. The shared predictors between emotion and timbre go a long way in 

answering whether or not the acoustic components can predict both emotion and timbre 

in sound. Attack time, roughness, and mfcc‘s were main contributors that could explain 

both instrument ratings, and emotion ratings. While both roughness and attack time were 

significant at each stage in the stepwise regression model, (roughness was able to 

explain much more data for the first principal component than the second), they did not 

explain the overall instrument or emotion ratings as well as mfcc‘s (Figure 16a and 16b). 

In terms of mfcc‘s, research by Loughran et al. (2001) found that this particular 

component was the most useful and efficient predictor to classify musical instruments. 

Similar findings for acoustic components were observed in Caclin et al., (2005) where it 

was discovered through the use of multi-dimensional scaling, one major determinant of 

timbre was attack time. Irregularity was also found to be a salient acoustic feature of 

timbre. While Caclin utilized timbre dissimilarity ratings, we believe that direct ratings 

are more effective to understand the implications of timbre and emotion in sound.  

Both the instrument and emotion rating data were predicted by very similar 

acoustic components, mfcc 1 and mfcc 2 were strong predictors for both sets of data. 

This gives merit to the theory that emotion and timbre are intrinsically related and 

answers the research question, to what degree or how are these related. One possible 

determinant of the relationship between timbre and emotion for these instrumental 

sounds is a possibility of some unique quality embedded in instrumental sounds. This 

unique quality could extend to type of instrument, possibly woodwind instruments 

ratings are better predicted by mfcc. It is also possible that there is an intrinsically more 
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interesting quality linking timbre and emotion in terms of instrumental sounds, such a 

connection could explain why people are so moved by and connected to music.  

Overall, the results of this study expand upon other timbre research that has 

found an explanation of the relationship between timbre and emotion in that particular 

acoustic features can explain the relationship between timbre and emotion. In this case, 

for synthetically created instrumental sounds, a relationship was discovered in terms of 

mfcc.   
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4. EXPERIMENTS 2A AND 2B: INTERNATIONAL AFFECTIVE DIGITIZED 

SOUNDS (IADS) 

4.1. Experiment 2a. International Affective Digitized Sounds: Category judgment 

experiment 

To further clarify the relationship between emotion, timbre, and sound in a more 

natural way, it is necessary to use sounds that mimic the environmental world. The 

IADS include sounds of a cat meowing, carnival noises, human interactions, etc. 

environmental type sounds. These sounds utilize a simple dimensional view, which 

―assumes emotion can be defined by a coincidence of values on a number of different 

strategic dimensions‖ Bradley & Lang (2007). Dimensional views of emotion have been 

advocated by a large number of theorists through the years, including Mehrabian and 

Russell (1974) and Tellegen (1985).  

In terms of category rating of sound and emotion, very little research is available. 

One study by Gygi et al. (2007), had listeners rate145 environmental sounds on 20 

semantic dimensions. Intercorrelations of the ratings suggested that 90% of the variance 

was associated with four factors; harshness, size, complexity, and appeal. 

The categories used, power, safe, alive, natural, useful, near, and action, were 

chosen based on Ekman‘s (1992) line of work about basic emotions. Basic emotions can 

be thought of in several ways, first that they are separate and differ in important ways 

(such as physiology, or behavioral response), this is more the social constructionist view 

of basic emotions. They can also be viewed in terms of basic meaning that these 

emotions evolved for adaptive value to deal with fundamental life tasks, or that basic 
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emotions are used for appraisal of a task and they are influenced by ancestral past 

(Ekman, 1992). In this light, Cosmides, Tooby, & Barkow (1992) focus on the 

relationship between the structure of psychological mechanisms and human culture (how 

psychological mechanisms are used to solve adaptive problems). Cosmides, Tooby, & 

Barkow (1992) look not only at behavioral descriptions of brain function, but also 

information-processing - the how and why information processing has the functional 

properties it does. These functions are adaptive problems such as finding a mate, finding 

food, avoiding predation etc., which is why the categories of power, safe, alive, natural, 

useful, near, and action were chosen. 

 The purpose of this experiment is to gain a better understanding of the 

relationship between sound and emotion in terms of acoustic features, and to see whether 

the same features will be used to predict emotion and categories with non-instrumental 

sounds. 

Participants. A total of 361 participants (185 male, mean age = 18.6, 176 female, mean 

age = 18.5) participated in the experiment for course credit. 

Materials. Stimuli used were the International Affective Digitized Sounds, Stevenson & 

James (2008).  

Procedure. The procedure of the emotion judgment experiment was identical to that in 

the emotion, and instrument judgment experiment (Experiments 1a and 1b) with minor 

modifications. In this experiment, participants were presented 106 sounds, one at a time, 

and rated each sound on seven different rating scales including power, safe, alive, 

natural, useful, near, and action. These categories were chosen based on previous music 
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and evolution literature (Balkwill et al., 2004; Hailstone et al., 2009). Participants rated 

each sound on all five categories; with each category scale ranging from 1 to 7-1 being 

strongly disagree, and 7 strongly agree, see Figure 18. 

 

 

 

Figure 18. IADS judgment experiment example. Participants rated each sound for all 7 

categories. 

 

 

 

4.2. Experiment 2b. International Affective Digitized Sounds: Emotion Judgment 

Experiment 

Previously collected data from Stevenson & James (2008) were analyzed for this 

experiment. Five sounds used in Stevenson & James (2008) were not included in our 

analysis due to exclusion in the collected IADS data. 

Participants. College students, both female and male, attending Introductory 

Psychology classes at the University of Florida participated as part of a course 

requirement. At least 100 participants rated each sound of which approximately half 

were female, a total of 167 sounds were rated. 

Materials. Stimuli used were the International Affective Digitized Sounds, Bradley & 

Lang (2007). 
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Sixty sounds were obtained from a variety of formats ~e.g., CDROM collections, 

audiotapes, recordings made in the laboratory using actors and actresses from the 

University of Florida‘s Theatre department, and digitized. Each sound was edited to a 6 

seconds. Peak sound intensity at presentation ranged from 64 to 81 dB as measured 

using a Quest 1700 Precision Impulse Sound Level Meter, and varied according to 

natural volumes in the environment. Rise and fall times varied across stimuli, and were 

controlled to prevent eliciting startle responses. Presentation of sounds was controlled 

and each sound was presented for 6 s over a pair of JBL 4311 Control Monitor speakers. 

Ratings for each sound were completed using the Self-Assessment Manikin (Lang, 

1980). SAM ranges from a smiling, happy figure to a frowning, unhappy figure, 

representing the pleasure dimension, and SAM ranges from an excited, wide-eyed figure 

to a relaxed, sleepy figure for the arousal dimension. For the dominance dimension, 

SAM ranges from a large figure (in control) to a small figure (dominated).  

Procedure. Procedures to collect ratings were from Stevenson & James (2008). 

Participants were presented 111 sounds from the IADS using MATLAB 5.2 

(Math Works, Inc., Natick, MA) software with the Psychophysics Toolbox extensions 

(Brainard, 1997; Pelli, 1997) running on a Macintosh computer, through Beyerdynamic 

DT 100 headphones. Each stimulus‘s maximum RMS was adjusted to 1 and presented at 

full volume. Stimuli were presented in a random order for each participant. Following 

the sound, participants saw a series of five rating scales including happiness, anger, 

sadness, fear, and disgust, with scales presented in random orders. These emotions were 

chosen for two reasons: their inclusion in nearly all discrete categorical theories of 
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emotion, and their inclusion in databases of facial expression. Participants rated each 

sound on all five emotions independently, with each discrete emotional scale ranging 

from 1 to 9—1 being not at all and 9 being extremely. Participants had one hour to 

complete all ratings. In the case that participants did not finish within one hour, only 

sounds for which all five ratings had been given were scored, resulting in 71–75 scores 

for each sound (M 5 73.7). No participants reported having any difficulty hearing the 

sounds. 

4.3. Results. Experiments 2a and 2b 

The following sections feature the results of Experiment 2a and 2b. First  a 

preliminary data analysis of Experiment 2a to explain general features of the IADS 

category rating data is detailed, and then the results of the stepwise regression for 

Experiment 2a. After presenting the results of Experiment 2a the preliminary data 

analysis of Experiment 2b and the results of the stepwise regression analysis with the 

IADS emotion rating data of Experiment 2b are presented. 

The stepwise regression analyses use the independent variable of predictors 

(acoustic components) and regresses these upon the dependent variable of either IADS 

category or IADS emotion ratings, respectively. The purpose is to locate the acoustic 

components that can explain both emotion and timbre, in other words, whether acoustic 

qualities of sound can predict particular categories of emotion (e.g., happy, sad, anger, 

fear or disgust) or categories, and how such attributes are related. 

Figure 19 shows a preliminary data analysis of the overall category ratings for the IADS 

category data. Categories were chosen based off of work by Gygi et al., (2007) as well as 
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Ekman‘s (1992) work on basic emotions. For the IADS, the highest rated category was 

action. From the whiskers of the box plot for the category data, it is evident that there is 

some variation within the data. The median of the ratings, as indicated by the horizontal 

red line in each box, varied between approximately 3.5 and 5.75 signifying a moderate 

amount of variability within the data. For all 106 sounds rated, most were rated as 

belonging to the category action, indicated by the median of the data for the category 

action. The use of this category, action, shows listeners‘ use of adaptive functioning, 

according to Tooby & Cosmides (1989), as well as Ekman (1992) as a major 

determinant of this category. Tooby & Cosmides (1989) state that an evolutionarily 

derived task analysis can help to produce a hypothesis about the structure of human 

cognitive processes and by understanding the environmental sounds in terms of adaptive 

categories, it is easier to understand their use evolutionarily. The sounds were rated least 

belonging to the category natural, as the median for this instrument was the lowest for all 

sounds rated on the seven categories. 
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Figure 19. Box plot of observations for IADS category ratings. Each box indicates one 

category rated by participants, the median is indicated by the red line in the center of each box, 

and the edges indicate the 25
th

 and 75
th

 percentiles. The whiskers of each plot indicate the 

extreme data points, and outliers are plotted outside of the whiskers. 

 

 

 

4.4. Results 2a: IADS Category Judgments 

Categorization of sounds is influenced by factors such as goals, variability, and 

theories (Barsalou, 1991; Fried & Holyoak, 1984; Murphy & Medin, 1985). Through 

using multidimensional scaling, Gygi et al, (2007) found that perceived similarities 

among environmental sounds are strongly determined by the acoustic features of those 

sounds, such as harmonicity, spectral spread, continuity, periodicity, and envelope 

modulation.  

Principal component analysis was used, as in Experiment 1a, to reduce the 

dimensions of the category judgment data from seven different dimensions to three, with 
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a cutoff criterion of approximately 80% of the data being explained within these selected 

dimensions 

The results indicated that only one acoustic feature, zero cross, significantly 

predicted IADS category rating for principal component one (β = -.225, p<.05), (Table 

5), for principal component two, roll off was the only acoustic feature significantly 

predicted IADS category ratings (β = .441, p<.01), (Table 5) and irregularity was the 

only reliable acoustic feature for principal component three (β = -.210, p<.05), (Table 5). 

Overall these acoustic components did not work well to explain the category 

rating data as indicated by the R-squared values (Table 5). The best predictor, roll off, 

explained 20% while other predictors explained less than 10% of the principal 

component data.  

 

 

 

Table 5 

Significant acoustic components for IADS category PCA 

 IADS PCA 1 IADS PCA 2 IADS PCA 3 

% PCA explained 36.99 28.20 12.72 

Attack time    

Attack slope    

Brightness    

Irregularity   X* 

MFCC 1    

Roughness    

Zero Cross X*   

Roll off  X***  

R-squared 0.051 0.194 0.044 
                               * p <.05, ** p < .01, and *** p < .001. 
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A preliminary data analysis of the emotion rating data is shown in Figure 20. 

From the whiskers of the box plot for the IADS emotion data it is evident that there is 

very little variation within the data; there is even less variation than that of the emotion 

ratings for synthesized sound in Experiment 1a, indicating that perhaps emotion was a 

more difficult entity to rate for the IADS stimuli. The median of the ratings for emotion 

only varied between a little bit under and a little bit over 2.0, signifying a small, limited 

variability within the IADS emotion rating data.  

 

 

Figure 20. Box plot of observations for IADS emotion ratings. Each box indicates one 

emotion rated by participants, the median is indicated by the red line in the center of each 

box, and the edges indicate the 25
th

 and 75
th

 percentiles. The whiskers of each plot indicate 

the extreme data points, and outliers are plotted outside of the whiskers. 
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4.5. Results. Experiment 2b: IADS Emotion Judgments  

The goal of Experiment 2b was to determine if acoustic components map onto 

listeners‘ emotion ratings for environmental sounds in the same way that they map on to 

the synthesized sounds created and used in Experiments 1a and 1b. As in Experiments 1a 

and 1b principal components analysis and step-wise regression were utilized to analyze 

the rating data.  

The first principal component had no significant acoustic features that could 

predict IADS emotion ratings. Results for principal component two found two 

significant acoustic features; brightness (β = .458, p<.01), and zero cross (β = -.340, 

p<.01). Results for the regression on the third principal component indicated that two 

significant acoustic features; roll off (β = -.447, p<.01), and brightness (β = .302, p<.05), 

(Table 6).  

The best overall model for the emotion data is indicated in Table 6, in terms of 

R-squared. Figure 21 shows the proportion of R-squared contributed for each addition of 

a predictor to the model for principal component two from the IADS emotion judgments, 

as well as the proportion of R-squared contributed for each addition of a predictor to the 

model for principal component three from the IADS emotion judgments.  
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Figure 21. R-squared. Emotion principal component three. This figure illustrates the 

change in R-squared for each addition of a predictor to the model. The dashed line in 

each figure demonstrates cumulative change, and the solid line represents the value of R-

squared for each additional predictor to the model. No component could explain emotion 

for principal component one. Figure 23a demonstrates change in amount of R-squared in 

the model for principal component two for the emotion rating data. Figure 23b 

demonstrates change in amount of R-squared in the model for principal component three 

for the emotion rating data.  
 

 

 

These results suggest that there is little overlap between acoustic features that can 

explain the IADS emotion in regard to principal components 1, 2 and 3; however, the 

two principal components may describe separate features of emotion in sound. 
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Table 6 

Significant acoustic components for IADS emotion PCA 

 IADS PCA 1 IADS PCA 2 IADS PCA 3 

% PCA explained 64.17 15.64 11.23 

Attack time    

Attack slope    

Brightness  X*** X* 

Irregularity    

MFCC 1    

Roughness    

Zero Cross  X**  

Roll off   X** 

R-squared - .122 .094 
* p <.05, ** p < .01, and *** p < .001. 

 

 

 

Matching predictors for IADS category (CPCA) and IADS emotion (EPCA) data 

are shown in Table 7; respective p-values are indicated by an asterisk. It is interesting to 

note that the predictors, or acoustic components, shared by both category and emotion 

are zero-cross and roll off. These are very different components than those found for 

Experiments 1a and 1b. This reveals that the link between the predictors used to explain 

timbre and emotion for the synthetically created instrumental stimuli and that of 

category and emotion for IADS stimuli are different. 
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Table 7 

Matching acoustic components for IADS category PCA (CPCA) and IADS emotion PCA 

(EPCA) 

Predictors  CPCA 1 CPCA 2 CPCA 3 EPCA 1 EPCA 2 EPCA 3 

% PCA explained 36.99 28.20 12.72 64.17 15.64 11.23 

Attack time       

Attack slope       

Brightness     X*** X* 

Irregularity   X*    

MFCC 1       

Roughness       

Zero Cross X*    X**  

Roll off  X***    X** 

R-squared 0.051 0.194 0.044 - .122 .094 
             * p <.05, ** p < .01, and *** p < .001. 

 

 

Figure 22 displays the percent of the data explained by each principal component 

for both the IADS category and IADS emotion data. The first principal component for 

IADS category explained 36.99% of the category rating data, and the second explained 

28.2%, and the third explained 12.72% of the category data not accounted for by either 

principal component one or two. The first principal component for the IADS emotion 

explained 64.17% of the emotion rating data, the second component described 15.64% 

of the emotion rating data, and the third component described 11.23% of the emotion 

rating data not accounting for data already explained by principal components one and 

two.  
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Figure 22. Amount of category and emotion rating data explained for each principal 

component This figure illustrates the category (solid) and emotion (dashed) changes in 

the percent explained from the first principal component, to the second principal 

component. This value of percent explained tells how much of the category or emotion 

rating data respectively, is explained by the principal component.  

 

 

 

4.6. Discussion. Experiments 2a and 2b 

The results of Experiments 2a and 2b suggest that timbre does not have an effect 

on the perception of emotion in sound by normal participants; this is due to the small 

number of shared predictors for the IADS category, and IADS emotion rating data. In 

Experiments 1a and 1b, mfcc‘s were found to be a main contributor of explaining both 

instrument ratings, and emotion ratings, however, this was not the case for Experiments 

2a or 2b. Though Juslin & Laukka (2001, 2003) were able to locate timbral properties 

that could express affect and some basic emotions relevant to both real and synthetic 

instruments, this idea according to the results for Experiments 2a and 2b does not apply 

to the IADS. There was not a significant link between timbre and emotion for the IADS 

sounds. 
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One possible reason for the deficit in the relationship between timbre and 

emotion for these IADS is the small variation within the sound stimuli, or within the 

ratings for the sounds. Perhaps listeners do not feel the same emotional response from 

the IADS as from instrumental sounds. This leads to a goal for future research to find the 

acoustic components that do link IADS, or environmental type sounds in terms of timbre 

and emotion, perhaps there are acoustic components that can better explain emotion 

within environmental sounds. 

Overall, shared predictors between category and emotion for the IADS sounds of 

the PCA components show that there is a weak relationship compared to timbre and 

emotion ratings for the synthetically created stimuli of Experiments 1a and 1b. The 

results of this study do not work well to explain the relationship between category and 

emotion.  
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5. GENERAL DISCUSSION 

5.1 Overview 

 The goal of this research was to determine how timbre and emotion are related in 

terms of acoustic components in synthetically created instrumental sound stimuli and 

IADS stimuli. In Experiment 1a participants took part in an instrument judgment task, 

where the objective was to determine the timbre of synthetic sound stimuli. In 

Experiment 1b participants rated the same synthetic sound stimuli and performed an 

emotion judgment task to identify the emotion of the sound stimuli. As hypothesized, the 

results show that mel-frequency cepstral coefficients were largely responsible for both 

timbre and emotion. Experiment 2a utilized previously collected emotion rating data of 

the International affective digitized sounds (Bradley & Lang, 2007). In Experiment 2b 

participants performed a category rating task on the same IADS. As hypothesized it was 

found that there was not a significant strong relationship between the acoustic 

components, timbre, or sound for the IADS. Taken together, these two experiments 

show that there is a perceptual difference between the relationship of timbre and emotion 

for instrumental sounds and IADS.  

5.2. Implications  

 Hailstone et al., (2009) claim that it is the timbre of a sound that affects 

perception of emotion in music. The underlying difference in function of the timbres for 

instrumental sounds and IADS possibly creates a division in the way they are processed. 

This research assists in clearing up the poorly defined relationship between perceptual 

characteristics of a sound and the emotion information they express. 
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 The importance of acoustic features that convey emotion in music and sound has 

been observed by many studies (Caclin et al., 2006; and Hailstone et al., 2009), but few 

have been able to make specific conclusions regarding individual acoustic features. This 

study illustrated that specific acoustic features of timbre, such as mel-frequency cepstral 

coefficients, could predict both emotion and instrument judgments for non-

environmental (instrumental only) stimuli. 

 Results found in this study are consistent with previous evidence on the effects of 

timbre on emotion judgments (Balkwill & Thompson, 1999; Hailstone et al., 2009) and 

suggest that there is some overlap between acoustic features that explain both emotion 

and instrument judgments. 

 Though this research does not endeavor to ultimately answer or refute the tension 

that exists between the body of researchers that attend to a functional difference between 

music and language, and that which finds evidence for shared features, it can at least 

shed new light in the field. In taking the view that both language and music share 

functional processes, we can further research the origin and function of music and 

language. 

5.3. Mel-frequency Cepstral Coefficients 

 The most dominant acoustic feature that explained both emotion and instrument 

judgments (Experiments 1a and 1b) were Mel-frequency cepstral coefficients. Mfcc‘s 

are features that describe the spectral shape of a sound and are used in speech 

recognition software, music classification, and audio classification research. The 

successful use of mfcc‘s in speech recognition is due to its ability to represent the 
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amplitude spectrum of speech. In the current study, mfcc‘s are significant for 

determining emotion and instrument judgments, this could be due to the lack of temporal 

information in the synthesized sounds; no rhythm or beat information was included and 

no competing information was present within the sound signal.  

 Mfcc was a significant acoustic component in Experiment 1, however the same 

components were not found for Experiment 2. Why was mfcc found to be a significant 

acoustic predictor for the instrumental sounds? The instrumental stimuli were able to 

provide a link between timbre and emotion. This finding is in accordance with past 

research stating a known general link between timbre and emotion (Hailstone et al., 

2009). With the inclusion of this research, there has been further evidence for the 

identification of a specific acoustic component of sound relating both timbre and 

emotion for instrumental sounds. This component, mfcc, is largely used in speech 

recognition and music recognition software and production. The fact that mfcc‘s were 

found as a good predictor of timbre and emotion suggests that there is an underlying 

relationship between speech sounds and instrumental sounds with regard to emotion.  

 Past research by Dolgin and Adelson (1990) tested whether acoustic features of 

emotional speech are parallel to the emotion in music. They did this by composing 

musical pieces with varying articulation (such as staccato, and legato), varying tempo 

(allegro, moderato, largo), and motion (step, skip). Findings showed above-chance 

accuracy as early as four years of age. This gives a good indication that the emotional 

associations to music, aside from beginning at an early age, also map on to facial and 

vocal expressions of emotion (Krumhansl, 1997). The results of this study are consistent 
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with previous evidence on the effects of timbre on emotion judgments (Balkwill & 

Thompson, 1999; Hailstone et al., 2009), insofar as instrumental sounds are concerned.  

 Mfcc‘s were found relevant to the link between timbre and emotion for 

instrumental sounds; however they were not uncovered as a significant acoustic 

predictor for the IADS. The lack of congruency between the two experiments could have 

been due to the variation of timbre for different emotions. Hailstone et al. (2009) much 

like Juslin & Laukka, (2001; 2003), found that properties of timbre could express 

affective valences related to both real and synthetic instruments, including some basic 

emotions. The current experiments, however, did not find this to be the case for these 

IADS stimuli. For example, fear may be difficult to convey using purely timbral cues 

without regard to dynamic variations or tempo (Gabrielsson & Juslin, 1996; Sloboda & 

O‘Neill, 2001). 

 It is possible that timbre can explain emotion for only instrumental and not 

IADS. A solution to answer this issue might be to limit IADS to a particular category or 

type of sound, possibly more related to instrumental sounds to see if the same effect is 

acquired. 

 It is plausible to think that listeners may make judgments differently for different 

types of stimuli. Instruments‘ timbres are comprised of and relate to the type of 

instrument, as well as properties of that particular instrument. For example, a violin has a 

different timbre than a flute because it is a string instrument, it is created from wood and 

not metal, which contributes to the differing timbres. The IADS do not contain the same 

type of timbre information; they are related to evolutionary goals such as that of safety, 
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and power. These sound stimuli encompassed adaptive problems such as finding a mate, 

finding food, avoiding predation etc., which is why the categories of power, safe, alive, 

natural, useful, near, and action were chosen.  

5.4. Sound, Speech and Evolution 

 Previous research suggests that we process different types of sounds in different 

ways. Perceiving timbre is presumed to rely upon the capacity to perceive and process 

differences such as the difference between musical instruments, or voices. These 

differences are fundamental to everyday human functioning and timbre analysis is a 

fundamental task of the auditory system (McAdams & Bigand, 1993; Godyke et al., 

2003). Research using instrumental sound stimuli has found that the influence of 

instrument timbre on emotion may apply not only to instrumental sounds, but to the 

processing of other types of sounds in different contexts. However, mfcc was used in the 

speech processing and was also found as a predictor for the processing instrumental 

sounds. Due to this connection it can be speculated that the way in which instrumental 

sounds are processed is directly related to the processing of speech. 

 Evolutionarily, it has been argued that the brain mechanisms for processing 

timbre in music evolved for the representation and evaluation of vocal sounds (Juslin & 

Laukka, 2003). Research in this domain has argued that musical timbres might share 

acoustic components with emotional vocal expressions (Juslin & Laukka, 2001, 2003); 

the findings from Experiment 1a and 1b confirm this notion. Features of timbre, such as 

attack, or low or high frequencies may be able to indicate a form of emotion in music, 

for example, a ―dull‖ spectral quality is associated with sadness in music, whereas the 
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―brash‖ quality conferred by prominent high frequencies is associated with anger (Juslin 

& Laukka, 2001). These may generalize to the expression of emotion through other 

structural cues in music, the expression of vocal emotion, or expression of emotion in 

other modalities such as gesture (Hailstone et al., 2009; Sloboda & Juslin, 2001). 

5.5. Music background and sound perception 

 Musical background has been shown to effect the perception of sound. It has 

been shown that listeners‘ understanding of emotion in music is affected by their 

familiarity with the tonal system (e.g., Western music) and by their sensitivity to basic 

perceptual cues (Balkwill & Thompson, 1999). No data were collected from participants 

to indicate involvement or level of musical experience or expertise. The combination of 

musical knowledge information with instrumental music knowledge may have had an 

effect on emotion and timbre ratings. For example, it could be determined that mfcc‘s 

are stronger predictors of timbre and emotion for those participants with a higher 

musical knowledge, or that mfcc‘s are a strong predictor despite previous musical 

knowledge. 
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6. CONCLUSIONS 

 This research attempted to link timbre, sound and emotion in terms of acoustic 

cues. The same acoustic cues could explain emotion people infer from a sound and 

instrument people identified of the same sound. The results imply that perception of 

emotion in sound as well as judgment of instrument identity is related to timbre. 

Specifically, we suggest that the shared acoustic cues are the element of timbre that 

influences emotion judgment.  
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